1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 15 #include <linux/jiffies.h> 16 #include <linux/slab.h> 17 #include <linux/kernel.h> 18 #include <linux/skbuff.h> 19 #include <linux/netdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/rcupdate.h> 22 #include <linux/export.h> 23 #include <linux/bitops.h> 24 #include <net/mac80211.h> 25 #include <net/ieee80211_radiotap.h> 26 #include <asm/unaligned.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "led.h" 31 #include "mesh.h" 32 #include "wep.h" 33 #include "wpa.h" 34 #include "tkip.h" 35 #include "wme.h" 36 #include "rate.h" 37 38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 39 { 40 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 41 42 u64_stats_update_begin(&tstats->syncp); 43 tstats->rx_packets++; 44 tstats->rx_bytes += len; 45 u64_stats_update_end(&tstats->syncp); 46 } 47 48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_mgmt(fc)) { 68 if (len < 24) /* drop incorrect hdr len (mgmt) */ 69 return NULL; 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_ctl(fc)) { 74 if (ieee80211_is_pspoll(fc)) 75 return hdr->addr1; 76 77 if (ieee80211_is_back_req(fc)) { 78 switch (type) { 79 case NL80211_IFTYPE_STATION: 80 return hdr->addr2; 81 case NL80211_IFTYPE_AP: 82 case NL80211_IFTYPE_AP_VLAN: 83 return hdr->addr1; 84 default: 85 break; /* fall through to the return */ 86 } 87 } 88 } 89 90 return NULL; 91 } 92 93 /* 94 * monitor mode reception 95 * 96 * This function cleans up the SKB, i.e. it removes all the stuff 97 * only useful for monitoring. 98 */ 99 static void remove_monitor_info(struct sk_buff *skb, 100 unsigned int present_fcs_len, 101 unsigned int rtap_space) 102 { 103 if (present_fcs_len) 104 __pskb_trim(skb, skb->len - present_fcs_len); 105 __pskb_pull(skb, rtap_space); 106 } 107 108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 109 unsigned int rtap_space) 110 { 111 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 112 struct ieee80211_hdr *hdr; 113 114 hdr = (void *)(skb->data + rtap_space); 115 116 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 117 RX_FLAG_FAILED_PLCP_CRC | 118 RX_FLAG_ONLY_MONITOR | 119 RX_FLAG_NO_PSDU)) 120 return true; 121 122 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 123 return true; 124 125 if (ieee80211_is_ctl(hdr->frame_control) && 126 !ieee80211_is_pspoll(hdr->frame_control) && 127 !ieee80211_is_back_req(hdr->frame_control)) 128 return true; 129 130 return false; 131 } 132 133 static int 134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 135 struct ieee80211_rx_status *status, 136 struct sk_buff *skb) 137 { 138 int len; 139 140 /* always present fields */ 141 len = sizeof(struct ieee80211_radiotap_header) + 8; 142 143 /* allocate extra bitmaps */ 144 if (status->chains) 145 len += 4 * hweight8(status->chains); 146 /* vendor presence bitmap */ 147 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 148 len += 4; 149 150 if (ieee80211_have_rx_timestamp(status)) { 151 len = ALIGN(len, 8); 152 len += 8; 153 } 154 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 155 len += 1; 156 157 /* antenna field, if we don't have per-chain info */ 158 if (!status->chains) 159 len += 1; 160 161 /* padding for RX_FLAGS if necessary */ 162 len = ALIGN(len, 2); 163 164 if (status->encoding == RX_ENC_HT) /* HT info */ 165 len += 3; 166 167 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 168 len = ALIGN(len, 4); 169 len += 8; 170 } 171 172 if (status->encoding == RX_ENC_VHT) { 173 len = ALIGN(len, 2); 174 len += 12; 175 } 176 177 if (local->hw.radiotap_timestamp.units_pos >= 0) { 178 len = ALIGN(len, 8); 179 len += 12; 180 } 181 182 if (status->encoding == RX_ENC_HE && 183 status->flag & RX_FLAG_RADIOTAP_HE) { 184 len = ALIGN(len, 2); 185 len += 12; 186 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 187 } 188 189 if (status->encoding == RX_ENC_HE && 190 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 191 len = ALIGN(len, 2); 192 len += 12; 193 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 194 } 195 196 if (status->flag & RX_FLAG_NO_PSDU) 197 len += 1; 198 199 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 200 len = ALIGN(len, 2); 201 len += 4; 202 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 203 } 204 205 if (status->chains) { 206 /* antenna and antenna signal fields */ 207 len += 2 * hweight8(status->chains); 208 } 209 210 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 211 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 212 213 /* alignment for fixed 6-byte vendor data header */ 214 len = ALIGN(len, 2); 215 /* vendor data header */ 216 len += 6; 217 if (WARN_ON(rtap->align == 0)) 218 rtap->align = 1; 219 len = ALIGN(len, rtap->align); 220 len += rtap->len + rtap->pad; 221 } 222 223 return len; 224 } 225 226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 227 struct sk_buff *skb, 228 int rtap_space) 229 { 230 struct { 231 struct ieee80211_hdr_3addr hdr; 232 u8 category; 233 u8 action_code; 234 } __packed action; 235 236 if (!sdata) 237 return; 238 239 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 240 241 if (skb->len < rtap_space + sizeof(action) + 242 VHT_MUMIMO_GROUPS_DATA_LEN) 243 return; 244 245 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 246 return; 247 248 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 249 250 if (!ieee80211_is_action(action.hdr.frame_control)) 251 return; 252 253 if (action.category != WLAN_CATEGORY_VHT) 254 return; 255 256 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 257 return; 258 259 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 260 return; 261 262 skb = skb_copy(skb, GFP_ATOMIC); 263 if (!skb) 264 return; 265 266 skb_queue_tail(&sdata->skb_queue, skb); 267 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 268 } 269 270 /* 271 * ieee80211_add_rx_radiotap_header - add radiotap header 272 * 273 * add a radiotap header containing all the fields which the hardware provided. 274 */ 275 static void 276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 277 struct sk_buff *skb, 278 struct ieee80211_rate *rate, 279 int rtap_len, bool has_fcs) 280 { 281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 282 struct ieee80211_radiotap_header *rthdr; 283 unsigned char *pos; 284 __le32 *it_present; 285 u32 it_present_val; 286 u16 rx_flags = 0; 287 u16 channel_flags = 0; 288 int mpdulen, chain; 289 unsigned long chains = status->chains; 290 struct ieee80211_vendor_radiotap rtap = {}; 291 struct ieee80211_radiotap_he he = {}; 292 struct ieee80211_radiotap_he_mu he_mu = {}; 293 struct ieee80211_radiotap_lsig lsig = {}; 294 295 if (status->flag & RX_FLAG_RADIOTAP_HE) { 296 he = *(struct ieee80211_radiotap_he *)skb->data; 297 skb_pull(skb, sizeof(he)); 298 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 299 } 300 301 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 302 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 303 skb_pull(skb, sizeof(he_mu)); 304 } 305 306 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 307 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 308 skb_pull(skb, sizeof(lsig)); 309 } 310 311 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 312 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 313 /* rtap.len and rtap.pad are undone immediately */ 314 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 315 } 316 317 mpdulen = skb->len; 318 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 319 mpdulen += FCS_LEN; 320 321 rthdr = skb_push(skb, rtap_len); 322 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 323 it_present = &rthdr->it_present; 324 325 /* radiotap header, set always present flags */ 326 rthdr->it_len = cpu_to_le16(rtap_len); 327 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 328 BIT(IEEE80211_RADIOTAP_CHANNEL) | 329 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 330 331 if (!status->chains) 332 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 333 334 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 335 it_present_val |= 336 BIT(IEEE80211_RADIOTAP_EXT) | 337 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 338 put_unaligned_le32(it_present_val, it_present); 339 it_present++; 340 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 341 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 342 } 343 344 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 345 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 346 BIT(IEEE80211_RADIOTAP_EXT); 347 put_unaligned_le32(it_present_val, it_present); 348 it_present++; 349 it_present_val = rtap.present; 350 } 351 352 put_unaligned_le32(it_present_val, it_present); 353 354 pos = (void *)(it_present + 1); 355 356 /* the order of the following fields is important */ 357 358 /* IEEE80211_RADIOTAP_TSFT */ 359 if (ieee80211_have_rx_timestamp(status)) { 360 /* padding */ 361 while ((pos - (u8 *)rthdr) & 7) 362 *pos++ = 0; 363 put_unaligned_le64( 364 ieee80211_calculate_rx_timestamp(local, status, 365 mpdulen, 0), 366 pos); 367 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 368 pos += 8; 369 } 370 371 /* IEEE80211_RADIOTAP_FLAGS */ 372 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 373 *pos |= IEEE80211_RADIOTAP_F_FCS; 374 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 375 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 376 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 377 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 378 pos++; 379 380 /* IEEE80211_RADIOTAP_RATE */ 381 if (!rate || status->encoding != RX_ENC_LEGACY) { 382 /* 383 * Without rate information don't add it. If we have, 384 * MCS information is a separate field in radiotap, 385 * added below. The byte here is needed as padding 386 * for the channel though, so initialise it to 0. 387 */ 388 *pos = 0; 389 } else { 390 int shift = 0; 391 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 392 if (status->bw == RATE_INFO_BW_10) 393 shift = 1; 394 else if (status->bw == RATE_INFO_BW_5) 395 shift = 2; 396 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 397 } 398 pos++; 399 400 /* IEEE80211_RADIOTAP_CHANNEL */ 401 put_unaligned_le16(status->freq, pos); 402 pos += 2; 403 if (status->bw == RATE_INFO_BW_10) 404 channel_flags |= IEEE80211_CHAN_HALF; 405 else if (status->bw == RATE_INFO_BW_5) 406 channel_flags |= IEEE80211_CHAN_QUARTER; 407 408 if (status->band == NL80211_BAND_5GHZ) 409 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 410 else if (status->encoding != RX_ENC_LEGACY) 411 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 412 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 413 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 414 else if (rate) 415 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 416 else 417 channel_flags |= IEEE80211_CHAN_2GHZ; 418 put_unaligned_le16(channel_flags, pos); 419 pos += 2; 420 421 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 422 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 423 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 424 *pos = status->signal; 425 rthdr->it_present |= 426 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 427 pos++; 428 } 429 430 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 431 432 if (!status->chains) { 433 /* IEEE80211_RADIOTAP_ANTENNA */ 434 *pos = status->antenna; 435 pos++; 436 } 437 438 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 439 440 /* IEEE80211_RADIOTAP_RX_FLAGS */ 441 /* ensure 2 byte alignment for the 2 byte field as required */ 442 if ((pos - (u8 *)rthdr) & 1) 443 *pos++ = 0; 444 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 445 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 446 put_unaligned_le16(rx_flags, pos); 447 pos += 2; 448 449 if (status->encoding == RX_ENC_HT) { 450 unsigned int stbc; 451 452 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 453 *pos++ = local->hw.radiotap_mcs_details; 454 *pos = 0; 455 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 456 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 457 if (status->bw == RATE_INFO_BW_40) 458 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 459 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 460 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 461 if (status->enc_flags & RX_ENC_FLAG_LDPC) 462 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 463 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 464 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 465 pos++; 466 *pos++ = status->rate_idx; 467 } 468 469 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 470 u16 flags = 0; 471 472 /* ensure 4 byte alignment */ 473 while ((pos - (u8 *)rthdr) & 3) 474 pos++; 475 rthdr->it_present |= 476 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 477 put_unaligned_le32(status->ampdu_reference, pos); 478 pos += 4; 479 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 480 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 481 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 482 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 483 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 484 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 485 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 486 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 487 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 488 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 489 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 490 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 491 put_unaligned_le16(flags, pos); 492 pos += 2; 493 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 494 *pos++ = status->ampdu_delimiter_crc; 495 else 496 *pos++ = 0; 497 *pos++ = 0; 498 } 499 500 if (status->encoding == RX_ENC_VHT) { 501 u16 known = local->hw.radiotap_vht_details; 502 503 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 504 put_unaligned_le16(known, pos); 505 pos += 2; 506 /* flags */ 507 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 508 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 509 /* in VHT, STBC is binary */ 510 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 511 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 512 if (status->enc_flags & RX_ENC_FLAG_BF) 513 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 514 pos++; 515 /* bandwidth */ 516 switch (status->bw) { 517 case RATE_INFO_BW_80: 518 *pos++ = 4; 519 break; 520 case RATE_INFO_BW_160: 521 *pos++ = 11; 522 break; 523 case RATE_INFO_BW_40: 524 *pos++ = 1; 525 break; 526 default: 527 *pos++ = 0; 528 } 529 /* MCS/NSS */ 530 *pos = (status->rate_idx << 4) | status->nss; 531 pos += 4; 532 /* coding field */ 533 if (status->enc_flags & RX_ENC_FLAG_LDPC) 534 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 535 pos++; 536 /* group ID */ 537 pos++; 538 /* partial_aid */ 539 pos += 2; 540 } 541 542 if (local->hw.radiotap_timestamp.units_pos >= 0) { 543 u16 accuracy = 0; 544 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 545 546 rthdr->it_present |= 547 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 548 549 /* ensure 8 byte alignment */ 550 while ((pos - (u8 *)rthdr) & 7) 551 pos++; 552 553 put_unaligned_le64(status->device_timestamp, pos); 554 pos += sizeof(u64); 555 556 if (local->hw.radiotap_timestamp.accuracy >= 0) { 557 accuracy = local->hw.radiotap_timestamp.accuracy; 558 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 559 } 560 put_unaligned_le16(accuracy, pos); 561 pos += sizeof(u16); 562 563 *pos++ = local->hw.radiotap_timestamp.units_pos; 564 *pos++ = flags; 565 } 566 567 if (status->encoding == RX_ENC_HE && 568 status->flag & RX_FLAG_RADIOTAP_HE) { 569 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 570 571 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 572 he.data6 |= HE_PREP(DATA6_NSTS, 573 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 574 status->enc_flags)); 575 he.data3 |= HE_PREP(DATA3_STBC, 1); 576 } else { 577 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 578 } 579 580 #define CHECK_GI(s) \ 581 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 582 (int)NL80211_RATE_INFO_HE_GI_##s) 583 584 CHECK_GI(0_8); 585 CHECK_GI(1_6); 586 CHECK_GI(3_2); 587 588 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 589 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 590 he.data3 |= HE_PREP(DATA3_CODING, 591 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 592 593 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 594 595 switch (status->bw) { 596 case RATE_INFO_BW_20: 597 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 598 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 599 break; 600 case RATE_INFO_BW_40: 601 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 602 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 603 break; 604 case RATE_INFO_BW_80: 605 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 606 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 607 break; 608 case RATE_INFO_BW_160: 609 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 610 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 611 break; 612 case RATE_INFO_BW_HE_RU: 613 #define CHECK_RU_ALLOC(s) \ 614 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 615 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 616 617 CHECK_RU_ALLOC(26); 618 CHECK_RU_ALLOC(52); 619 CHECK_RU_ALLOC(106); 620 CHECK_RU_ALLOC(242); 621 CHECK_RU_ALLOC(484); 622 CHECK_RU_ALLOC(996); 623 CHECK_RU_ALLOC(2x996); 624 625 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 626 status->he_ru + 4); 627 break; 628 default: 629 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 630 } 631 632 /* ensure 2 byte alignment */ 633 while ((pos - (u8 *)rthdr) & 1) 634 pos++; 635 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 636 memcpy(pos, &he, sizeof(he)); 637 pos += sizeof(he); 638 } 639 640 if (status->encoding == RX_ENC_HE && 641 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 642 /* ensure 2 byte alignment */ 643 while ((pos - (u8 *)rthdr) & 1) 644 pos++; 645 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 646 memcpy(pos, &he_mu, sizeof(he_mu)); 647 pos += sizeof(he_mu); 648 } 649 650 if (status->flag & RX_FLAG_NO_PSDU) { 651 rthdr->it_present |= 652 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 653 *pos++ = status->zero_length_psdu_type; 654 } 655 656 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 657 /* ensure 2 byte alignment */ 658 while ((pos - (u8 *)rthdr) & 1) 659 pos++; 660 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 661 memcpy(pos, &lsig, sizeof(lsig)); 662 pos += sizeof(lsig); 663 } 664 665 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 666 *pos++ = status->chain_signal[chain]; 667 *pos++ = chain; 668 } 669 670 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 671 /* ensure 2 byte alignment for the vendor field as required */ 672 if ((pos - (u8 *)rthdr) & 1) 673 *pos++ = 0; 674 *pos++ = rtap.oui[0]; 675 *pos++ = rtap.oui[1]; 676 *pos++ = rtap.oui[2]; 677 *pos++ = rtap.subns; 678 put_unaligned_le16(rtap.len, pos); 679 pos += 2; 680 /* align the actual payload as requested */ 681 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 682 *pos++ = 0; 683 /* data (and possible padding) already follows */ 684 } 685 } 686 687 static struct sk_buff * 688 ieee80211_make_monitor_skb(struct ieee80211_local *local, 689 struct sk_buff **origskb, 690 struct ieee80211_rate *rate, 691 int rtap_space, bool use_origskb) 692 { 693 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 694 int rt_hdrlen, needed_headroom; 695 struct sk_buff *skb; 696 697 /* room for the radiotap header based on driver features */ 698 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 699 needed_headroom = rt_hdrlen - rtap_space; 700 701 if (use_origskb) { 702 /* only need to expand headroom if necessary */ 703 skb = *origskb; 704 *origskb = NULL; 705 706 /* 707 * This shouldn't trigger often because most devices have an 708 * RX header they pull before we get here, and that should 709 * be big enough for our radiotap information. We should 710 * probably export the length to drivers so that we can have 711 * them allocate enough headroom to start with. 712 */ 713 if (skb_headroom(skb) < needed_headroom && 714 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 715 dev_kfree_skb(skb); 716 return NULL; 717 } 718 } else { 719 /* 720 * Need to make a copy and possibly remove radiotap header 721 * and FCS from the original. 722 */ 723 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 724 725 if (!skb) 726 return NULL; 727 } 728 729 /* prepend radiotap information */ 730 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 731 732 skb_reset_mac_header(skb); 733 skb->ip_summed = CHECKSUM_UNNECESSARY; 734 skb->pkt_type = PACKET_OTHERHOST; 735 skb->protocol = htons(ETH_P_802_2); 736 737 return skb; 738 } 739 740 /* 741 * This function copies a received frame to all monitor interfaces and 742 * returns a cleaned-up SKB that no longer includes the FCS nor the 743 * radiotap header the driver might have added. 744 */ 745 static struct sk_buff * 746 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 747 struct ieee80211_rate *rate) 748 { 749 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 750 struct ieee80211_sub_if_data *sdata; 751 struct sk_buff *monskb = NULL; 752 int present_fcs_len = 0; 753 unsigned int rtap_space = 0; 754 struct ieee80211_sub_if_data *monitor_sdata = 755 rcu_dereference(local->monitor_sdata); 756 bool only_monitor = false; 757 unsigned int min_head_len; 758 759 if (status->flag & RX_FLAG_RADIOTAP_HE) 760 rtap_space += sizeof(struct ieee80211_radiotap_he); 761 762 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 763 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 764 765 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 766 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 767 768 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 769 struct ieee80211_vendor_radiotap *rtap = 770 (void *)(origskb->data + rtap_space); 771 772 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 773 } 774 775 min_head_len = rtap_space; 776 777 /* 778 * First, we may need to make a copy of the skb because 779 * (1) we need to modify it for radiotap (if not present), and 780 * (2) the other RX handlers will modify the skb we got. 781 * 782 * We don't need to, of course, if we aren't going to return 783 * the SKB because it has a bad FCS/PLCP checksum. 784 */ 785 786 if (!(status->flag & RX_FLAG_NO_PSDU)) { 787 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 788 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 789 /* driver bug */ 790 WARN_ON(1); 791 dev_kfree_skb(origskb); 792 return NULL; 793 } 794 present_fcs_len = FCS_LEN; 795 } 796 797 /* also consider the hdr->frame_control */ 798 min_head_len += 2; 799 } 800 801 /* ensure that the expected data elements are in skb head */ 802 if (!pskb_may_pull(origskb, min_head_len)) { 803 dev_kfree_skb(origskb); 804 return NULL; 805 } 806 807 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 808 809 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 810 if (only_monitor) { 811 dev_kfree_skb(origskb); 812 return NULL; 813 } 814 815 remove_monitor_info(origskb, present_fcs_len, rtap_space); 816 return origskb; 817 } 818 819 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 820 821 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 822 bool last_monitor = list_is_last(&sdata->u.mntr.list, 823 &local->mon_list); 824 825 if (!monskb) 826 monskb = ieee80211_make_monitor_skb(local, &origskb, 827 rate, rtap_space, 828 only_monitor && 829 last_monitor); 830 831 if (monskb) { 832 struct sk_buff *skb; 833 834 if (last_monitor) { 835 skb = monskb; 836 monskb = NULL; 837 } else { 838 skb = skb_clone(monskb, GFP_ATOMIC); 839 } 840 841 if (skb) { 842 skb->dev = sdata->dev; 843 ieee80211_rx_stats(skb->dev, skb->len); 844 netif_receive_skb(skb); 845 } 846 } 847 848 if (last_monitor) 849 break; 850 } 851 852 /* this happens if last_monitor was erroneously false */ 853 dev_kfree_skb(monskb); 854 855 /* ditto */ 856 if (!origskb) 857 return NULL; 858 859 remove_monitor_info(origskb, present_fcs_len, rtap_space); 860 return origskb; 861 } 862 863 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 864 { 865 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 866 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 867 int tid, seqno_idx, security_idx; 868 869 /* does the frame have a qos control field? */ 870 if (ieee80211_is_data_qos(hdr->frame_control)) { 871 u8 *qc = ieee80211_get_qos_ctl(hdr); 872 /* frame has qos control */ 873 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 874 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 875 status->rx_flags |= IEEE80211_RX_AMSDU; 876 877 seqno_idx = tid; 878 security_idx = tid; 879 } else { 880 /* 881 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 882 * 883 * Sequence numbers for management frames, QoS data 884 * frames with a broadcast/multicast address in the 885 * Address 1 field, and all non-QoS data frames sent 886 * by QoS STAs are assigned using an additional single 887 * modulo-4096 counter, [...] 888 * 889 * We also use that counter for non-QoS STAs. 890 */ 891 seqno_idx = IEEE80211_NUM_TIDS; 892 security_idx = 0; 893 if (ieee80211_is_mgmt(hdr->frame_control)) 894 security_idx = IEEE80211_NUM_TIDS; 895 tid = 0; 896 } 897 898 rx->seqno_idx = seqno_idx; 899 rx->security_idx = security_idx; 900 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 901 * For now, set skb->priority to 0 for other cases. */ 902 rx->skb->priority = (tid > 7) ? 0 : tid; 903 } 904 905 /** 906 * DOC: Packet alignment 907 * 908 * Drivers always need to pass packets that are aligned to two-byte boundaries 909 * to the stack. 910 * 911 * Additionally, should, if possible, align the payload data in a way that 912 * guarantees that the contained IP header is aligned to a four-byte 913 * boundary. In the case of regular frames, this simply means aligning the 914 * payload to a four-byte boundary (because either the IP header is directly 915 * contained, or IV/RFC1042 headers that have a length divisible by four are 916 * in front of it). If the payload data is not properly aligned and the 917 * architecture doesn't support efficient unaligned operations, mac80211 918 * will align the data. 919 * 920 * With A-MSDU frames, however, the payload data address must yield two modulo 921 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 922 * push the IP header further back to a multiple of four again. Thankfully, the 923 * specs were sane enough this time around to require padding each A-MSDU 924 * subframe to a length that is a multiple of four. 925 * 926 * Padding like Atheros hardware adds which is between the 802.11 header and 927 * the payload is not supported, the driver is required to move the 802.11 928 * header to be directly in front of the payload in that case. 929 */ 930 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 931 { 932 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 933 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 934 #endif 935 } 936 937 938 /* rx handlers */ 939 940 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 941 { 942 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 943 944 if (is_multicast_ether_addr(hdr->addr1)) 945 return 0; 946 947 return ieee80211_is_robust_mgmt_frame(skb); 948 } 949 950 951 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 952 { 953 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 954 955 if (!is_multicast_ether_addr(hdr->addr1)) 956 return 0; 957 958 return ieee80211_is_robust_mgmt_frame(skb); 959 } 960 961 962 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 963 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 964 { 965 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 966 struct ieee80211_mmie *mmie; 967 struct ieee80211_mmie_16 *mmie16; 968 969 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 970 return -1; 971 972 if (!ieee80211_is_robust_mgmt_frame(skb)) 973 return -1; /* not a robust management frame */ 974 975 mmie = (struct ieee80211_mmie *) 976 (skb->data + skb->len - sizeof(*mmie)); 977 if (mmie->element_id == WLAN_EID_MMIE && 978 mmie->length == sizeof(*mmie) - 2) 979 return le16_to_cpu(mmie->key_id); 980 981 mmie16 = (struct ieee80211_mmie_16 *) 982 (skb->data + skb->len - sizeof(*mmie16)); 983 if (skb->len >= 24 + sizeof(*mmie16) && 984 mmie16->element_id == WLAN_EID_MMIE && 985 mmie16->length == sizeof(*mmie16) - 2) 986 return le16_to_cpu(mmie16->key_id); 987 988 return -1; 989 } 990 991 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 992 struct sk_buff *skb) 993 { 994 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 995 __le16 fc; 996 int hdrlen; 997 u8 keyid; 998 999 fc = hdr->frame_control; 1000 hdrlen = ieee80211_hdrlen(fc); 1001 1002 if (skb->len < hdrlen + cs->hdr_len) 1003 return -EINVAL; 1004 1005 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 1006 keyid &= cs->key_idx_mask; 1007 keyid >>= cs->key_idx_shift; 1008 1009 return keyid; 1010 } 1011 1012 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1013 { 1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1015 char *dev_addr = rx->sdata->vif.addr; 1016 1017 if (ieee80211_is_data(hdr->frame_control)) { 1018 if (is_multicast_ether_addr(hdr->addr1)) { 1019 if (ieee80211_has_tods(hdr->frame_control) || 1020 !ieee80211_has_fromds(hdr->frame_control)) 1021 return RX_DROP_MONITOR; 1022 if (ether_addr_equal(hdr->addr3, dev_addr)) 1023 return RX_DROP_MONITOR; 1024 } else { 1025 if (!ieee80211_has_a4(hdr->frame_control)) 1026 return RX_DROP_MONITOR; 1027 if (ether_addr_equal(hdr->addr4, dev_addr)) 1028 return RX_DROP_MONITOR; 1029 } 1030 } 1031 1032 /* If there is not an established peer link and this is not a peer link 1033 * establisment frame, beacon or probe, drop the frame. 1034 */ 1035 1036 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1037 struct ieee80211_mgmt *mgmt; 1038 1039 if (!ieee80211_is_mgmt(hdr->frame_control)) 1040 return RX_DROP_MONITOR; 1041 1042 if (ieee80211_is_action(hdr->frame_control)) { 1043 u8 category; 1044 1045 /* make sure category field is present */ 1046 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1047 return RX_DROP_MONITOR; 1048 1049 mgmt = (struct ieee80211_mgmt *)hdr; 1050 category = mgmt->u.action.category; 1051 if (category != WLAN_CATEGORY_MESH_ACTION && 1052 category != WLAN_CATEGORY_SELF_PROTECTED) 1053 return RX_DROP_MONITOR; 1054 return RX_CONTINUE; 1055 } 1056 1057 if (ieee80211_is_probe_req(hdr->frame_control) || 1058 ieee80211_is_probe_resp(hdr->frame_control) || 1059 ieee80211_is_beacon(hdr->frame_control) || 1060 ieee80211_is_auth(hdr->frame_control)) 1061 return RX_CONTINUE; 1062 1063 return RX_DROP_MONITOR; 1064 } 1065 1066 return RX_CONTINUE; 1067 } 1068 1069 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1070 int index) 1071 { 1072 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1073 struct sk_buff *tail = skb_peek_tail(frames); 1074 struct ieee80211_rx_status *status; 1075 1076 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1077 return true; 1078 1079 if (!tail) 1080 return false; 1081 1082 status = IEEE80211_SKB_RXCB(tail); 1083 if (status->flag & RX_FLAG_AMSDU_MORE) 1084 return false; 1085 1086 return true; 1087 } 1088 1089 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1090 struct tid_ampdu_rx *tid_agg_rx, 1091 int index, 1092 struct sk_buff_head *frames) 1093 { 1094 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1095 struct sk_buff *skb; 1096 struct ieee80211_rx_status *status; 1097 1098 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1099 1100 if (skb_queue_empty(skb_list)) 1101 goto no_frame; 1102 1103 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1104 __skb_queue_purge(skb_list); 1105 goto no_frame; 1106 } 1107 1108 /* release frames from the reorder ring buffer */ 1109 tid_agg_rx->stored_mpdu_num--; 1110 while ((skb = __skb_dequeue(skb_list))) { 1111 status = IEEE80211_SKB_RXCB(skb); 1112 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1113 __skb_queue_tail(frames, skb); 1114 } 1115 1116 no_frame: 1117 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1118 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1119 } 1120 1121 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1122 struct tid_ampdu_rx *tid_agg_rx, 1123 u16 head_seq_num, 1124 struct sk_buff_head *frames) 1125 { 1126 int index; 1127 1128 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1129 1130 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1131 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1132 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1133 frames); 1134 } 1135 } 1136 1137 /* 1138 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1139 * the skb was added to the buffer longer than this time ago, the earlier 1140 * frames that have not yet been received are assumed to be lost and the skb 1141 * can be released for processing. This may also release other skb's from the 1142 * reorder buffer if there are no additional gaps between the frames. 1143 * 1144 * Callers must hold tid_agg_rx->reorder_lock. 1145 */ 1146 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1147 1148 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1149 struct tid_ampdu_rx *tid_agg_rx, 1150 struct sk_buff_head *frames) 1151 { 1152 int index, i, j; 1153 1154 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1155 1156 /* release the buffer until next missing frame */ 1157 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1158 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1159 tid_agg_rx->stored_mpdu_num) { 1160 /* 1161 * No buffers ready to be released, but check whether any 1162 * frames in the reorder buffer have timed out. 1163 */ 1164 int skipped = 1; 1165 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1166 j = (j + 1) % tid_agg_rx->buf_size) { 1167 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1168 skipped++; 1169 continue; 1170 } 1171 if (skipped && 1172 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1173 HT_RX_REORDER_BUF_TIMEOUT)) 1174 goto set_release_timer; 1175 1176 /* don't leave incomplete A-MSDUs around */ 1177 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1178 i = (i + 1) % tid_agg_rx->buf_size) 1179 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1180 1181 ht_dbg_ratelimited(sdata, 1182 "release an RX reorder frame due to timeout on earlier frames\n"); 1183 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1184 frames); 1185 1186 /* 1187 * Increment the head seq# also for the skipped slots. 1188 */ 1189 tid_agg_rx->head_seq_num = 1190 (tid_agg_rx->head_seq_num + 1191 skipped) & IEEE80211_SN_MASK; 1192 skipped = 0; 1193 } 1194 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1195 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1196 frames); 1197 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1198 } 1199 1200 if (tid_agg_rx->stored_mpdu_num) { 1201 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1202 1203 for (; j != (index - 1) % tid_agg_rx->buf_size; 1204 j = (j + 1) % tid_agg_rx->buf_size) { 1205 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1206 break; 1207 } 1208 1209 set_release_timer: 1210 1211 if (!tid_agg_rx->removed) 1212 mod_timer(&tid_agg_rx->reorder_timer, 1213 tid_agg_rx->reorder_time[j] + 1 + 1214 HT_RX_REORDER_BUF_TIMEOUT); 1215 } else { 1216 del_timer(&tid_agg_rx->reorder_timer); 1217 } 1218 } 1219 1220 /* 1221 * As this function belongs to the RX path it must be under 1222 * rcu_read_lock protection. It returns false if the frame 1223 * can be processed immediately, true if it was consumed. 1224 */ 1225 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1226 struct tid_ampdu_rx *tid_agg_rx, 1227 struct sk_buff *skb, 1228 struct sk_buff_head *frames) 1229 { 1230 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1231 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1232 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1233 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1234 u16 head_seq_num, buf_size; 1235 int index; 1236 bool ret = true; 1237 1238 spin_lock(&tid_agg_rx->reorder_lock); 1239 1240 /* 1241 * Offloaded BA sessions have no known starting sequence number so pick 1242 * one from first Rxed frame for this tid after BA was started. 1243 */ 1244 if (unlikely(tid_agg_rx->auto_seq)) { 1245 tid_agg_rx->auto_seq = false; 1246 tid_agg_rx->ssn = mpdu_seq_num; 1247 tid_agg_rx->head_seq_num = mpdu_seq_num; 1248 } 1249 1250 buf_size = tid_agg_rx->buf_size; 1251 head_seq_num = tid_agg_rx->head_seq_num; 1252 1253 /* 1254 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1255 * be reordered. 1256 */ 1257 if (unlikely(!tid_agg_rx->started)) { 1258 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1259 ret = false; 1260 goto out; 1261 } 1262 tid_agg_rx->started = true; 1263 } 1264 1265 /* frame with out of date sequence number */ 1266 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1267 dev_kfree_skb(skb); 1268 goto out; 1269 } 1270 1271 /* 1272 * If frame the sequence number exceeds our buffering window 1273 * size release some previous frames to make room for this one. 1274 */ 1275 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1276 head_seq_num = ieee80211_sn_inc( 1277 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1278 /* release stored frames up to new head to stack */ 1279 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1280 head_seq_num, frames); 1281 } 1282 1283 /* Now the new frame is always in the range of the reordering buffer */ 1284 1285 index = mpdu_seq_num % tid_agg_rx->buf_size; 1286 1287 /* check if we already stored this frame */ 1288 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1289 dev_kfree_skb(skb); 1290 goto out; 1291 } 1292 1293 /* 1294 * If the current MPDU is in the right order and nothing else 1295 * is stored we can process it directly, no need to buffer it. 1296 * If it is first but there's something stored, we may be able 1297 * to release frames after this one. 1298 */ 1299 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1300 tid_agg_rx->stored_mpdu_num == 0) { 1301 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1302 tid_agg_rx->head_seq_num = 1303 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1304 ret = false; 1305 goto out; 1306 } 1307 1308 /* put the frame in the reordering buffer */ 1309 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1310 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1311 tid_agg_rx->reorder_time[index] = jiffies; 1312 tid_agg_rx->stored_mpdu_num++; 1313 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1314 } 1315 1316 out: 1317 spin_unlock(&tid_agg_rx->reorder_lock); 1318 return ret; 1319 } 1320 1321 /* 1322 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1323 * true if the MPDU was buffered, false if it should be processed. 1324 */ 1325 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1326 struct sk_buff_head *frames) 1327 { 1328 struct sk_buff *skb = rx->skb; 1329 struct ieee80211_local *local = rx->local; 1330 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1331 struct sta_info *sta = rx->sta; 1332 struct tid_ampdu_rx *tid_agg_rx; 1333 u16 sc; 1334 u8 tid, ack_policy; 1335 1336 if (!ieee80211_is_data_qos(hdr->frame_control) || 1337 is_multicast_ether_addr(hdr->addr1)) 1338 goto dont_reorder; 1339 1340 /* 1341 * filter the QoS data rx stream according to 1342 * STA/TID and check if this STA/TID is on aggregation 1343 */ 1344 1345 if (!sta) 1346 goto dont_reorder; 1347 1348 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1349 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1350 tid = ieee80211_get_tid(hdr); 1351 1352 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1353 if (!tid_agg_rx) { 1354 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1355 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1356 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1357 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1358 WLAN_BACK_RECIPIENT, 1359 WLAN_REASON_QSTA_REQUIRE_SETUP); 1360 goto dont_reorder; 1361 } 1362 1363 /* qos null data frames are excluded */ 1364 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1365 goto dont_reorder; 1366 1367 /* not part of a BA session */ 1368 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1369 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1370 goto dont_reorder; 1371 1372 /* new, potentially un-ordered, ampdu frame - process it */ 1373 1374 /* reset session timer */ 1375 if (tid_agg_rx->timeout) 1376 tid_agg_rx->last_rx = jiffies; 1377 1378 /* if this mpdu is fragmented - terminate rx aggregation session */ 1379 sc = le16_to_cpu(hdr->seq_ctrl); 1380 if (sc & IEEE80211_SCTL_FRAG) { 1381 skb_queue_tail(&rx->sdata->skb_queue, skb); 1382 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1383 return; 1384 } 1385 1386 /* 1387 * No locking needed -- we will only ever process one 1388 * RX packet at a time, and thus own tid_agg_rx. All 1389 * other code manipulating it needs to (and does) make 1390 * sure that we cannot get to it any more before doing 1391 * anything with it. 1392 */ 1393 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1394 frames)) 1395 return; 1396 1397 dont_reorder: 1398 __skb_queue_tail(frames, skb); 1399 } 1400 1401 static ieee80211_rx_result debug_noinline 1402 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1403 { 1404 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1405 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1406 1407 if (status->flag & RX_FLAG_DUP_VALIDATED) 1408 return RX_CONTINUE; 1409 1410 /* 1411 * Drop duplicate 802.11 retransmissions 1412 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1413 */ 1414 1415 if (rx->skb->len < 24) 1416 return RX_CONTINUE; 1417 1418 if (ieee80211_is_ctl(hdr->frame_control) || 1419 ieee80211_is_nullfunc(hdr->frame_control) || 1420 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1421 is_multicast_ether_addr(hdr->addr1)) 1422 return RX_CONTINUE; 1423 1424 if (!rx->sta) 1425 return RX_CONTINUE; 1426 1427 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1428 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1429 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1430 rx->sta->rx_stats.num_duplicates++; 1431 return RX_DROP_UNUSABLE; 1432 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1433 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1434 } 1435 1436 return RX_CONTINUE; 1437 } 1438 1439 static ieee80211_rx_result debug_noinline 1440 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1441 { 1442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1443 1444 /* Drop disallowed frame classes based on STA auth/assoc state; 1445 * IEEE 802.11, Chap 5.5. 1446 * 1447 * mac80211 filters only based on association state, i.e. it drops 1448 * Class 3 frames from not associated stations. hostapd sends 1449 * deauth/disassoc frames when needed. In addition, hostapd is 1450 * responsible for filtering on both auth and assoc states. 1451 */ 1452 1453 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1454 return ieee80211_rx_mesh_check(rx); 1455 1456 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1457 ieee80211_is_pspoll(hdr->frame_control)) && 1458 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1459 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1460 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1461 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1462 /* 1463 * accept port control frames from the AP even when it's not 1464 * yet marked ASSOC to prevent a race where we don't set the 1465 * assoc bit quickly enough before it sends the first frame 1466 */ 1467 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1468 ieee80211_is_data_present(hdr->frame_control)) { 1469 unsigned int hdrlen; 1470 __be16 ethertype; 1471 1472 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1473 1474 if (rx->skb->len < hdrlen + 8) 1475 return RX_DROP_MONITOR; 1476 1477 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1478 if (ethertype == rx->sdata->control_port_protocol) 1479 return RX_CONTINUE; 1480 } 1481 1482 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1483 cfg80211_rx_spurious_frame(rx->sdata->dev, 1484 hdr->addr2, 1485 GFP_ATOMIC)) 1486 return RX_DROP_UNUSABLE; 1487 1488 return RX_DROP_MONITOR; 1489 } 1490 1491 return RX_CONTINUE; 1492 } 1493 1494 1495 static ieee80211_rx_result debug_noinline 1496 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1497 { 1498 struct ieee80211_local *local; 1499 struct ieee80211_hdr *hdr; 1500 struct sk_buff *skb; 1501 1502 local = rx->local; 1503 skb = rx->skb; 1504 hdr = (struct ieee80211_hdr *) skb->data; 1505 1506 if (!local->pspolling) 1507 return RX_CONTINUE; 1508 1509 if (!ieee80211_has_fromds(hdr->frame_control)) 1510 /* this is not from AP */ 1511 return RX_CONTINUE; 1512 1513 if (!ieee80211_is_data(hdr->frame_control)) 1514 return RX_CONTINUE; 1515 1516 if (!ieee80211_has_moredata(hdr->frame_control)) { 1517 /* AP has no more frames buffered for us */ 1518 local->pspolling = false; 1519 return RX_CONTINUE; 1520 } 1521 1522 /* more data bit is set, let's request a new frame from the AP */ 1523 ieee80211_send_pspoll(local, rx->sdata); 1524 1525 return RX_CONTINUE; 1526 } 1527 1528 static void sta_ps_start(struct sta_info *sta) 1529 { 1530 struct ieee80211_sub_if_data *sdata = sta->sdata; 1531 struct ieee80211_local *local = sdata->local; 1532 struct ps_data *ps; 1533 int tid; 1534 1535 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1536 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1537 ps = &sdata->bss->ps; 1538 else 1539 return; 1540 1541 atomic_inc(&ps->num_sta_ps); 1542 set_sta_flag(sta, WLAN_STA_PS_STA); 1543 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1544 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1545 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1546 sta->sta.addr, sta->sta.aid); 1547 1548 ieee80211_clear_fast_xmit(sta); 1549 1550 if (!sta->sta.txq[0]) 1551 return; 1552 1553 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1554 if (txq_has_queue(sta->sta.txq[tid])) 1555 set_bit(tid, &sta->txq_buffered_tids); 1556 else 1557 clear_bit(tid, &sta->txq_buffered_tids); 1558 } 1559 } 1560 1561 static void sta_ps_end(struct sta_info *sta) 1562 { 1563 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1564 sta->sta.addr, sta->sta.aid); 1565 1566 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1567 /* 1568 * Clear the flag only if the other one is still set 1569 * so that the TX path won't start TX'ing new frames 1570 * directly ... In the case that the driver flag isn't 1571 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1572 */ 1573 clear_sta_flag(sta, WLAN_STA_PS_STA); 1574 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1575 sta->sta.addr, sta->sta.aid); 1576 return; 1577 } 1578 1579 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1580 clear_sta_flag(sta, WLAN_STA_PS_STA); 1581 ieee80211_sta_ps_deliver_wakeup(sta); 1582 } 1583 1584 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1585 { 1586 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1587 bool in_ps; 1588 1589 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1590 1591 /* Don't let the same PS state be set twice */ 1592 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1593 if ((start && in_ps) || (!start && !in_ps)) 1594 return -EINVAL; 1595 1596 if (start) 1597 sta_ps_start(sta); 1598 else 1599 sta_ps_end(sta); 1600 1601 return 0; 1602 } 1603 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1604 1605 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1606 { 1607 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1608 1609 if (test_sta_flag(sta, WLAN_STA_SP)) 1610 return; 1611 1612 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1613 ieee80211_sta_ps_deliver_poll_response(sta); 1614 else 1615 set_sta_flag(sta, WLAN_STA_PSPOLL); 1616 } 1617 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1618 1619 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1620 { 1621 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1622 int ac = ieee80211_ac_from_tid(tid); 1623 1624 /* 1625 * If this AC is not trigger-enabled do nothing unless the 1626 * driver is calling us after it already checked. 1627 * 1628 * NB: This could/should check a separate bitmap of trigger- 1629 * enabled queues, but for now we only implement uAPSD w/o 1630 * TSPEC changes to the ACs, so they're always the same. 1631 */ 1632 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1633 tid != IEEE80211_NUM_TIDS) 1634 return; 1635 1636 /* if we are in a service period, do nothing */ 1637 if (test_sta_flag(sta, WLAN_STA_SP)) 1638 return; 1639 1640 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1641 ieee80211_sta_ps_deliver_uapsd(sta); 1642 else 1643 set_sta_flag(sta, WLAN_STA_UAPSD); 1644 } 1645 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1646 1647 static ieee80211_rx_result debug_noinline 1648 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1649 { 1650 struct ieee80211_sub_if_data *sdata = rx->sdata; 1651 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1652 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1653 1654 if (!rx->sta) 1655 return RX_CONTINUE; 1656 1657 if (sdata->vif.type != NL80211_IFTYPE_AP && 1658 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1659 return RX_CONTINUE; 1660 1661 /* 1662 * The device handles station powersave, so don't do anything about 1663 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1664 * it to mac80211 since they're handled.) 1665 */ 1666 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1667 return RX_CONTINUE; 1668 1669 /* 1670 * Don't do anything if the station isn't already asleep. In 1671 * the uAPSD case, the station will probably be marked asleep, 1672 * in the PS-Poll case the station must be confused ... 1673 */ 1674 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1675 return RX_CONTINUE; 1676 1677 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1678 ieee80211_sta_pspoll(&rx->sta->sta); 1679 1680 /* Free PS Poll skb here instead of returning RX_DROP that would 1681 * count as an dropped frame. */ 1682 dev_kfree_skb(rx->skb); 1683 1684 return RX_QUEUED; 1685 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1686 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1687 ieee80211_has_pm(hdr->frame_control) && 1688 (ieee80211_is_data_qos(hdr->frame_control) || 1689 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1690 u8 tid = ieee80211_get_tid(hdr); 1691 1692 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1693 } 1694 1695 return RX_CONTINUE; 1696 } 1697 1698 static ieee80211_rx_result debug_noinline 1699 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1700 { 1701 struct sta_info *sta = rx->sta; 1702 struct sk_buff *skb = rx->skb; 1703 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1704 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1705 int i; 1706 1707 if (!sta) 1708 return RX_CONTINUE; 1709 1710 /* 1711 * Update last_rx only for IBSS packets which are for the current 1712 * BSSID and for station already AUTHORIZED to avoid keeping the 1713 * current IBSS network alive in cases where other STAs start 1714 * using different BSSID. This will also give the station another 1715 * chance to restart the authentication/authorization in case 1716 * something went wrong the first time. 1717 */ 1718 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1719 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1720 NL80211_IFTYPE_ADHOC); 1721 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1722 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1723 sta->rx_stats.last_rx = jiffies; 1724 if (ieee80211_is_data(hdr->frame_control) && 1725 !is_multicast_ether_addr(hdr->addr1)) 1726 sta->rx_stats.last_rate = 1727 sta_stats_encode_rate(status); 1728 } 1729 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1730 sta->rx_stats.last_rx = jiffies; 1731 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1732 /* 1733 * Mesh beacons will update last_rx when if they are found to 1734 * match the current local configuration when processed. 1735 */ 1736 sta->rx_stats.last_rx = jiffies; 1737 if (ieee80211_is_data(hdr->frame_control)) 1738 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1739 } 1740 1741 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1742 ieee80211_sta_rx_notify(rx->sdata, hdr); 1743 1744 sta->rx_stats.fragments++; 1745 1746 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1747 sta->rx_stats.bytes += rx->skb->len; 1748 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1749 1750 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1751 sta->rx_stats.last_signal = status->signal; 1752 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1753 } 1754 1755 if (status->chains) { 1756 sta->rx_stats.chains = status->chains; 1757 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1758 int signal = status->chain_signal[i]; 1759 1760 if (!(status->chains & BIT(i))) 1761 continue; 1762 1763 sta->rx_stats.chain_signal_last[i] = signal; 1764 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1765 -signal); 1766 } 1767 } 1768 1769 /* 1770 * Change STA power saving mode only at the end of a frame 1771 * exchange sequence, and only for a data or management 1772 * frame as specified in IEEE 802.11-2016 11.2.3.2 1773 */ 1774 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1775 !ieee80211_has_morefrags(hdr->frame_control) && 1776 !is_multicast_ether_addr(hdr->addr1) && 1777 (ieee80211_is_mgmt(hdr->frame_control) || 1778 ieee80211_is_data(hdr->frame_control)) && 1779 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1780 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1781 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1782 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1783 if (!ieee80211_has_pm(hdr->frame_control)) 1784 sta_ps_end(sta); 1785 } else { 1786 if (ieee80211_has_pm(hdr->frame_control)) 1787 sta_ps_start(sta); 1788 } 1789 } 1790 1791 /* mesh power save support */ 1792 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1793 ieee80211_mps_rx_h_sta_process(sta, hdr); 1794 1795 /* 1796 * Drop (qos-)data::nullfunc frames silently, since they 1797 * are used only to control station power saving mode. 1798 */ 1799 if (ieee80211_is_nullfunc(hdr->frame_control) || 1800 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1801 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1802 1803 /* 1804 * If we receive a 4-addr nullfunc frame from a STA 1805 * that was not moved to a 4-addr STA vlan yet send 1806 * the event to userspace and for older hostapd drop 1807 * the frame to the monitor interface. 1808 */ 1809 if (ieee80211_has_a4(hdr->frame_control) && 1810 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1811 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1812 !rx->sdata->u.vlan.sta))) { 1813 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1814 cfg80211_rx_unexpected_4addr_frame( 1815 rx->sdata->dev, sta->sta.addr, 1816 GFP_ATOMIC); 1817 return RX_DROP_MONITOR; 1818 } 1819 /* 1820 * Update counter and free packet here to avoid 1821 * counting this as a dropped packed. 1822 */ 1823 sta->rx_stats.packets++; 1824 dev_kfree_skb(rx->skb); 1825 return RX_QUEUED; 1826 } 1827 1828 return RX_CONTINUE; 1829 } /* ieee80211_rx_h_sta_process */ 1830 1831 static ieee80211_rx_result debug_noinline 1832 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1833 { 1834 struct sk_buff *skb = rx->skb; 1835 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1836 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1837 int keyidx; 1838 int hdrlen; 1839 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1840 struct ieee80211_key *sta_ptk = NULL; 1841 int mmie_keyidx = -1; 1842 __le16 fc; 1843 const struct ieee80211_cipher_scheme *cs = NULL; 1844 1845 /* 1846 * Key selection 101 1847 * 1848 * There are four types of keys: 1849 * - GTK (group keys) 1850 * - IGTK (group keys for management frames) 1851 * - PTK (pairwise keys) 1852 * - STK (station-to-station pairwise keys) 1853 * 1854 * When selecting a key, we have to distinguish between multicast 1855 * (including broadcast) and unicast frames, the latter can only 1856 * use PTKs and STKs while the former always use GTKs and IGTKs. 1857 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1858 * unicast frames can also use key indices like GTKs. Hence, if we 1859 * don't have a PTK/STK we check the key index for a WEP key. 1860 * 1861 * Note that in a regular BSS, multicast frames are sent by the 1862 * AP only, associated stations unicast the frame to the AP first 1863 * which then multicasts it on their behalf. 1864 * 1865 * There is also a slight problem in IBSS mode: GTKs are negotiated 1866 * with each station, that is something we don't currently handle. 1867 * The spec seems to expect that one negotiates the same key with 1868 * every station but there's no such requirement; VLANs could be 1869 * possible. 1870 */ 1871 1872 /* start without a key */ 1873 rx->key = NULL; 1874 fc = hdr->frame_control; 1875 1876 if (rx->sta) { 1877 int keyid = rx->sta->ptk_idx; 1878 1879 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1880 cs = rx->sta->cipher_scheme; 1881 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1882 if (unlikely(keyid < 0)) 1883 return RX_DROP_UNUSABLE; 1884 } 1885 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1886 } 1887 1888 if (!ieee80211_has_protected(fc)) 1889 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1890 1891 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1892 rx->key = sta_ptk; 1893 if ((status->flag & RX_FLAG_DECRYPTED) && 1894 (status->flag & RX_FLAG_IV_STRIPPED)) 1895 return RX_CONTINUE; 1896 /* Skip decryption if the frame is not protected. */ 1897 if (!ieee80211_has_protected(fc)) 1898 return RX_CONTINUE; 1899 } else if (mmie_keyidx >= 0) { 1900 /* Broadcast/multicast robust management frame / BIP */ 1901 if ((status->flag & RX_FLAG_DECRYPTED) && 1902 (status->flag & RX_FLAG_IV_STRIPPED)) 1903 return RX_CONTINUE; 1904 1905 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1906 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1907 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1908 if (rx->sta) { 1909 if (ieee80211_is_group_privacy_action(skb) && 1910 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1911 return RX_DROP_MONITOR; 1912 1913 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1914 } 1915 if (!rx->key) 1916 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1917 } else if (!ieee80211_has_protected(fc)) { 1918 /* 1919 * The frame was not protected, so skip decryption. However, we 1920 * need to set rx->key if there is a key that could have been 1921 * used so that the frame may be dropped if encryption would 1922 * have been expected. 1923 */ 1924 struct ieee80211_key *key = NULL; 1925 struct ieee80211_sub_if_data *sdata = rx->sdata; 1926 int i; 1927 1928 if (ieee80211_is_mgmt(fc) && 1929 is_multicast_ether_addr(hdr->addr1) && 1930 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1931 rx->key = key; 1932 else { 1933 if (rx->sta) { 1934 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1935 key = rcu_dereference(rx->sta->gtk[i]); 1936 if (key) 1937 break; 1938 } 1939 } 1940 if (!key) { 1941 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1942 key = rcu_dereference(sdata->keys[i]); 1943 if (key) 1944 break; 1945 } 1946 } 1947 if (key) 1948 rx->key = key; 1949 } 1950 return RX_CONTINUE; 1951 } else { 1952 u8 keyid; 1953 1954 /* 1955 * The device doesn't give us the IV so we won't be 1956 * able to look up the key. That's ok though, we 1957 * don't need to decrypt the frame, we just won't 1958 * be able to keep statistics accurate. 1959 * Except for key threshold notifications, should 1960 * we somehow allow the driver to tell us which key 1961 * the hardware used if this flag is set? 1962 */ 1963 if ((status->flag & RX_FLAG_DECRYPTED) && 1964 (status->flag & RX_FLAG_IV_STRIPPED)) 1965 return RX_CONTINUE; 1966 1967 hdrlen = ieee80211_hdrlen(fc); 1968 1969 if (cs) { 1970 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1971 1972 if (unlikely(keyidx < 0)) 1973 return RX_DROP_UNUSABLE; 1974 } else { 1975 if (rx->skb->len < 8 + hdrlen) 1976 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1977 /* 1978 * no need to call ieee80211_wep_get_keyidx, 1979 * it verifies a bunch of things we've done already 1980 */ 1981 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1982 keyidx = keyid >> 6; 1983 } 1984 1985 /* check per-station GTK first, if multicast packet */ 1986 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1987 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1988 1989 /* if not found, try default key */ 1990 if (!rx->key) { 1991 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1992 1993 /* 1994 * RSNA-protected unicast frames should always be 1995 * sent with pairwise or station-to-station keys, 1996 * but for WEP we allow using a key index as well. 1997 */ 1998 if (rx->key && 1999 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2000 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2001 !is_multicast_ether_addr(hdr->addr1)) 2002 rx->key = NULL; 2003 } 2004 } 2005 2006 if (rx->key) { 2007 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2008 return RX_DROP_MONITOR; 2009 2010 /* TODO: add threshold stuff again */ 2011 } else { 2012 return RX_DROP_MONITOR; 2013 } 2014 2015 switch (rx->key->conf.cipher) { 2016 case WLAN_CIPHER_SUITE_WEP40: 2017 case WLAN_CIPHER_SUITE_WEP104: 2018 result = ieee80211_crypto_wep_decrypt(rx); 2019 break; 2020 case WLAN_CIPHER_SUITE_TKIP: 2021 result = ieee80211_crypto_tkip_decrypt(rx); 2022 break; 2023 case WLAN_CIPHER_SUITE_CCMP: 2024 result = ieee80211_crypto_ccmp_decrypt( 2025 rx, IEEE80211_CCMP_MIC_LEN); 2026 break; 2027 case WLAN_CIPHER_SUITE_CCMP_256: 2028 result = ieee80211_crypto_ccmp_decrypt( 2029 rx, IEEE80211_CCMP_256_MIC_LEN); 2030 break; 2031 case WLAN_CIPHER_SUITE_AES_CMAC: 2032 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2033 break; 2034 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2035 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2036 break; 2037 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2038 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2039 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2040 break; 2041 case WLAN_CIPHER_SUITE_GCMP: 2042 case WLAN_CIPHER_SUITE_GCMP_256: 2043 result = ieee80211_crypto_gcmp_decrypt(rx); 2044 break; 2045 default: 2046 result = ieee80211_crypto_hw_decrypt(rx); 2047 } 2048 2049 /* the hdr variable is invalid after the decrypt handlers */ 2050 2051 /* either the frame has been decrypted or will be dropped */ 2052 status->flag |= RX_FLAG_DECRYPTED; 2053 2054 return result; 2055 } 2056 2057 static inline struct ieee80211_fragment_entry * 2058 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2059 unsigned int frag, unsigned int seq, int rx_queue, 2060 struct sk_buff **skb) 2061 { 2062 struct ieee80211_fragment_entry *entry; 2063 2064 entry = &sdata->fragments[sdata->fragment_next++]; 2065 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2066 sdata->fragment_next = 0; 2067 2068 if (!skb_queue_empty(&entry->skb_list)) 2069 __skb_queue_purge(&entry->skb_list); 2070 2071 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2072 *skb = NULL; 2073 entry->first_frag_time = jiffies; 2074 entry->seq = seq; 2075 entry->rx_queue = rx_queue; 2076 entry->last_frag = frag; 2077 entry->check_sequential_pn = false; 2078 entry->extra_len = 0; 2079 2080 return entry; 2081 } 2082 2083 static inline struct ieee80211_fragment_entry * 2084 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2085 unsigned int frag, unsigned int seq, 2086 int rx_queue, struct ieee80211_hdr *hdr) 2087 { 2088 struct ieee80211_fragment_entry *entry; 2089 int i, idx; 2090 2091 idx = sdata->fragment_next; 2092 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2093 struct ieee80211_hdr *f_hdr; 2094 struct sk_buff *f_skb; 2095 2096 idx--; 2097 if (idx < 0) 2098 idx = IEEE80211_FRAGMENT_MAX - 1; 2099 2100 entry = &sdata->fragments[idx]; 2101 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2102 entry->rx_queue != rx_queue || 2103 entry->last_frag + 1 != frag) 2104 continue; 2105 2106 f_skb = __skb_peek(&entry->skb_list); 2107 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2108 2109 /* 2110 * Check ftype and addresses are equal, else check next fragment 2111 */ 2112 if (((hdr->frame_control ^ f_hdr->frame_control) & 2113 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2114 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2115 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2116 continue; 2117 2118 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2119 __skb_queue_purge(&entry->skb_list); 2120 continue; 2121 } 2122 return entry; 2123 } 2124 2125 return NULL; 2126 } 2127 2128 static ieee80211_rx_result debug_noinline 2129 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2130 { 2131 struct ieee80211_hdr *hdr; 2132 u16 sc; 2133 __le16 fc; 2134 unsigned int frag, seq; 2135 struct ieee80211_fragment_entry *entry; 2136 struct sk_buff *skb; 2137 2138 hdr = (struct ieee80211_hdr *)rx->skb->data; 2139 fc = hdr->frame_control; 2140 2141 if (ieee80211_is_ctl(fc)) 2142 return RX_CONTINUE; 2143 2144 sc = le16_to_cpu(hdr->seq_ctrl); 2145 frag = sc & IEEE80211_SCTL_FRAG; 2146 2147 if (is_multicast_ether_addr(hdr->addr1)) { 2148 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2149 goto out_no_led; 2150 } 2151 2152 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2153 goto out; 2154 2155 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2156 2157 if (skb_linearize(rx->skb)) 2158 return RX_DROP_UNUSABLE; 2159 2160 /* 2161 * skb_linearize() might change the skb->data and 2162 * previously cached variables (in this case, hdr) need to 2163 * be refreshed with the new data. 2164 */ 2165 hdr = (struct ieee80211_hdr *)rx->skb->data; 2166 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2167 2168 if (frag == 0) { 2169 /* This is the first fragment of a new frame. */ 2170 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2171 rx->seqno_idx, &(rx->skb)); 2172 if (rx->key && 2173 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2174 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2175 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2176 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2177 ieee80211_has_protected(fc)) { 2178 int queue = rx->security_idx; 2179 2180 /* Store CCMP/GCMP PN so that we can verify that the 2181 * next fragment has a sequential PN value. 2182 */ 2183 entry->check_sequential_pn = true; 2184 memcpy(entry->last_pn, 2185 rx->key->u.ccmp.rx_pn[queue], 2186 IEEE80211_CCMP_PN_LEN); 2187 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2188 u.ccmp.rx_pn) != 2189 offsetof(struct ieee80211_key, 2190 u.gcmp.rx_pn)); 2191 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2192 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2193 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2194 IEEE80211_GCMP_PN_LEN); 2195 } 2196 return RX_QUEUED; 2197 } 2198 2199 /* This is a fragment for a frame that should already be pending in 2200 * fragment cache. Add this fragment to the end of the pending entry. 2201 */ 2202 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2203 rx->seqno_idx, hdr); 2204 if (!entry) { 2205 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2206 return RX_DROP_MONITOR; 2207 } 2208 2209 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2210 * MPDU PN values are not incrementing in steps of 1." 2211 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2212 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2213 */ 2214 if (entry->check_sequential_pn) { 2215 int i; 2216 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2217 int queue; 2218 2219 if (!rx->key || 2220 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2221 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2222 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2223 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2224 return RX_DROP_UNUSABLE; 2225 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2226 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2227 pn[i]++; 2228 if (pn[i]) 2229 break; 2230 } 2231 queue = rx->security_idx; 2232 rpn = rx->key->u.ccmp.rx_pn[queue]; 2233 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2234 return RX_DROP_UNUSABLE; 2235 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2236 } 2237 2238 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2239 __skb_queue_tail(&entry->skb_list, rx->skb); 2240 entry->last_frag = frag; 2241 entry->extra_len += rx->skb->len; 2242 if (ieee80211_has_morefrags(fc)) { 2243 rx->skb = NULL; 2244 return RX_QUEUED; 2245 } 2246 2247 rx->skb = __skb_dequeue(&entry->skb_list); 2248 if (skb_tailroom(rx->skb) < entry->extra_len) { 2249 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2250 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2251 GFP_ATOMIC))) { 2252 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2253 __skb_queue_purge(&entry->skb_list); 2254 return RX_DROP_UNUSABLE; 2255 } 2256 } 2257 while ((skb = __skb_dequeue(&entry->skb_list))) { 2258 skb_put_data(rx->skb, skb->data, skb->len); 2259 dev_kfree_skb(skb); 2260 } 2261 2262 out: 2263 ieee80211_led_rx(rx->local); 2264 out_no_led: 2265 if (rx->sta) 2266 rx->sta->rx_stats.packets++; 2267 return RX_CONTINUE; 2268 } 2269 2270 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2271 { 2272 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2273 return -EACCES; 2274 2275 return 0; 2276 } 2277 2278 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2279 { 2280 struct sk_buff *skb = rx->skb; 2281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2282 2283 /* 2284 * Pass through unencrypted frames if the hardware has 2285 * decrypted them already. 2286 */ 2287 if (status->flag & RX_FLAG_DECRYPTED) 2288 return 0; 2289 2290 /* Drop unencrypted frames if key is set. */ 2291 if (unlikely(!ieee80211_has_protected(fc) && 2292 !ieee80211_is_nullfunc(fc) && 2293 ieee80211_is_data(fc) && rx->key)) 2294 return -EACCES; 2295 2296 return 0; 2297 } 2298 2299 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2300 { 2301 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2303 __le16 fc = hdr->frame_control; 2304 2305 /* 2306 * Pass through unencrypted frames if the hardware has 2307 * decrypted them already. 2308 */ 2309 if (status->flag & RX_FLAG_DECRYPTED) 2310 return 0; 2311 2312 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2313 if (unlikely(!ieee80211_has_protected(fc) && 2314 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2315 rx->key)) { 2316 if (ieee80211_is_deauth(fc) || 2317 ieee80211_is_disassoc(fc)) 2318 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2319 rx->skb->data, 2320 rx->skb->len); 2321 return -EACCES; 2322 } 2323 /* BIP does not use Protected field, so need to check MMIE */ 2324 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2325 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2326 if (ieee80211_is_deauth(fc) || 2327 ieee80211_is_disassoc(fc)) 2328 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2329 rx->skb->data, 2330 rx->skb->len); 2331 return -EACCES; 2332 } 2333 /* 2334 * When using MFP, Action frames are not allowed prior to 2335 * having configured keys. 2336 */ 2337 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2338 ieee80211_is_robust_mgmt_frame(rx->skb))) 2339 return -EACCES; 2340 } 2341 2342 return 0; 2343 } 2344 2345 static int 2346 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2347 { 2348 struct ieee80211_sub_if_data *sdata = rx->sdata; 2349 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2350 bool check_port_control = false; 2351 struct ethhdr *ehdr; 2352 int ret; 2353 2354 *port_control = false; 2355 if (ieee80211_has_a4(hdr->frame_control) && 2356 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2357 return -1; 2358 2359 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2360 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2361 2362 if (!sdata->u.mgd.use_4addr) 2363 return -1; 2364 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2365 check_port_control = true; 2366 } 2367 2368 if (is_multicast_ether_addr(hdr->addr1) && 2369 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2370 return -1; 2371 2372 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2373 if (ret < 0) 2374 return ret; 2375 2376 ehdr = (struct ethhdr *) rx->skb->data; 2377 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2378 *port_control = true; 2379 else if (check_port_control) 2380 return -1; 2381 2382 return 0; 2383 } 2384 2385 /* 2386 * requires that rx->skb is a frame with ethernet header 2387 */ 2388 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2389 { 2390 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2391 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2392 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2393 2394 /* 2395 * Allow EAPOL frames to us/the PAE group address regardless 2396 * of whether the frame was encrypted or not. 2397 */ 2398 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2399 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2400 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2401 return true; 2402 2403 if (ieee80211_802_1x_port_control(rx) || 2404 ieee80211_drop_unencrypted(rx, fc)) 2405 return false; 2406 2407 return true; 2408 } 2409 2410 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2411 struct ieee80211_rx_data *rx) 2412 { 2413 struct ieee80211_sub_if_data *sdata = rx->sdata; 2414 struct net_device *dev = sdata->dev; 2415 2416 if (unlikely((skb->protocol == sdata->control_port_protocol || 2417 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && 2418 sdata->control_port_over_nl80211)) { 2419 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2420 bool noencrypt = status->flag & RX_FLAG_DECRYPTED; 2421 2422 cfg80211_rx_control_port(dev, skb, noencrypt); 2423 dev_kfree_skb(skb); 2424 } else { 2425 /* deliver to local stack */ 2426 if (rx->napi) 2427 napi_gro_receive(rx->napi, skb); 2428 else 2429 netif_receive_skb(skb); 2430 } 2431 } 2432 2433 /* 2434 * requires that rx->skb is a frame with ethernet header 2435 */ 2436 static void 2437 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2438 { 2439 struct ieee80211_sub_if_data *sdata = rx->sdata; 2440 struct net_device *dev = sdata->dev; 2441 struct sk_buff *skb, *xmit_skb; 2442 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2443 struct sta_info *dsta; 2444 2445 skb = rx->skb; 2446 xmit_skb = NULL; 2447 2448 ieee80211_rx_stats(dev, skb->len); 2449 2450 if (rx->sta) { 2451 /* The seqno index has the same property as needed 2452 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2453 * for non-QoS-data frames. Here we know it's a data 2454 * frame, so count MSDUs. 2455 */ 2456 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2457 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2458 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2459 } 2460 2461 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2462 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2463 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2464 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2465 if (is_multicast_ether_addr(ehdr->h_dest) && 2466 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2467 /* 2468 * send multicast frames both to higher layers in 2469 * local net stack and back to the wireless medium 2470 */ 2471 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2472 if (!xmit_skb) 2473 net_info_ratelimited("%s: failed to clone multicast frame\n", 2474 dev->name); 2475 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2476 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2477 dsta = sta_info_get(sdata, ehdr->h_dest); 2478 if (dsta) { 2479 /* 2480 * The destination station is associated to 2481 * this AP (in this VLAN), so send the frame 2482 * directly to it and do not pass it to local 2483 * net stack. 2484 */ 2485 xmit_skb = skb; 2486 skb = NULL; 2487 } 2488 } 2489 } 2490 2491 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2492 if (skb) { 2493 /* 'align' will only take the values 0 or 2 here since all 2494 * frames are required to be aligned to 2-byte boundaries 2495 * when being passed to mac80211; the code here works just 2496 * as well if that isn't true, but mac80211 assumes it can 2497 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2498 */ 2499 int align; 2500 2501 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2502 if (align) { 2503 if (WARN_ON(skb_headroom(skb) < 3)) { 2504 dev_kfree_skb(skb); 2505 skb = NULL; 2506 } else { 2507 u8 *data = skb->data; 2508 size_t len = skb_headlen(skb); 2509 skb->data -= align; 2510 memmove(skb->data, data, len); 2511 skb_set_tail_pointer(skb, len); 2512 } 2513 } 2514 } 2515 #endif 2516 2517 if (skb) { 2518 skb->protocol = eth_type_trans(skb, dev); 2519 memset(skb->cb, 0, sizeof(skb->cb)); 2520 2521 ieee80211_deliver_skb_to_local_stack(skb, rx); 2522 } 2523 2524 if (xmit_skb) { 2525 /* 2526 * Send to wireless media and increase priority by 256 to 2527 * keep the received priority instead of reclassifying 2528 * the frame (see cfg80211_classify8021d). 2529 */ 2530 xmit_skb->priority += 256; 2531 xmit_skb->protocol = htons(ETH_P_802_3); 2532 skb_reset_network_header(xmit_skb); 2533 skb_reset_mac_header(xmit_skb); 2534 dev_queue_xmit(xmit_skb); 2535 } 2536 } 2537 2538 static ieee80211_rx_result debug_noinline 2539 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2540 { 2541 struct net_device *dev = rx->sdata->dev; 2542 struct sk_buff *skb = rx->skb; 2543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2544 __le16 fc = hdr->frame_control; 2545 struct sk_buff_head frame_list; 2546 struct ethhdr ethhdr; 2547 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2548 2549 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2550 check_da = NULL; 2551 check_sa = NULL; 2552 } else switch (rx->sdata->vif.type) { 2553 case NL80211_IFTYPE_AP: 2554 case NL80211_IFTYPE_AP_VLAN: 2555 check_da = NULL; 2556 break; 2557 case NL80211_IFTYPE_STATION: 2558 if (!rx->sta || 2559 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2560 check_sa = NULL; 2561 break; 2562 case NL80211_IFTYPE_MESH_POINT: 2563 check_sa = NULL; 2564 break; 2565 default: 2566 break; 2567 } 2568 2569 skb->dev = dev; 2570 __skb_queue_head_init(&frame_list); 2571 2572 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2573 rx->sdata->vif.addr, 2574 rx->sdata->vif.type, 2575 data_offset)) 2576 return RX_DROP_UNUSABLE; 2577 2578 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2579 rx->sdata->vif.type, 2580 rx->local->hw.extra_tx_headroom, 2581 check_da, check_sa); 2582 2583 while (!skb_queue_empty(&frame_list)) { 2584 rx->skb = __skb_dequeue(&frame_list); 2585 2586 if (!ieee80211_frame_allowed(rx, fc)) { 2587 dev_kfree_skb(rx->skb); 2588 continue; 2589 } 2590 2591 ieee80211_deliver_skb(rx); 2592 } 2593 2594 return RX_QUEUED; 2595 } 2596 2597 static ieee80211_rx_result debug_noinline 2598 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2599 { 2600 struct sk_buff *skb = rx->skb; 2601 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2602 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2603 __le16 fc = hdr->frame_control; 2604 2605 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2606 return RX_CONTINUE; 2607 2608 if (unlikely(!ieee80211_is_data(fc))) 2609 return RX_CONTINUE; 2610 2611 if (unlikely(!ieee80211_is_data_present(fc))) 2612 return RX_DROP_MONITOR; 2613 2614 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2615 switch (rx->sdata->vif.type) { 2616 case NL80211_IFTYPE_AP_VLAN: 2617 if (!rx->sdata->u.vlan.sta) 2618 return RX_DROP_UNUSABLE; 2619 break; 2620 case NL80211_IFTYPE_STATION: 2621 if (!rx->sdata->u.mgd.use_4addr) 2622 return RX_DROP_UNUSABLE; 2623 break; 2624 default: 2625 return RX_DROP_UNUSABLE; 2626 } 2627 } 2628 2629 if (is_multicast_ether_addr(hdr->addr1)) 2630 return RX_DROP_UNUSABLE; 2631 2632 return __ieee80211_rx_h_amsdu(rx, 0); 2633 } 2634 2635 #ifdef CONFIG_MAC80211_MESH 2636 static ieee80211_rx_result 2637 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2638 { 2639 struct ieee80211_hdr *fwd_hdr, *hdr; 2640 struct ieee80211_tx_info *info; 2641 struct ieee80211s_hdr *mesh_hdr; 2642 struct sk_buff *skb = rx->skb, *fwd_skb; 2643 struct ieee80211_local *local = rx->local; 2644 struct ieee80211_sub_if_data *sdata = rx->sdata; 2645 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2646 u16 ac, q, hdrlen; 2647 2648 hdr = (struct ieee80211_hdr *) skb->data; 2649 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2650 2651 /* make sure fixed part of mesh header is there, also checks skb len */ 2652 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2653 return RX_DROP_MONITOR; 2654 2655 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2656 2657 /* make sure full mesh header is there, also checks skb len */ 2658 if (!pskb_may_pull(rx->skb, 2659 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2660 return RX_DROP_MONITOR; 2661 2662 /* reload pointers */ 2663 hdr = (struct ieee80211_hdr *) skb->data; 2664 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2665 2666 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2667 return RX_DROP_MONITOR; 2668 2669 /* frame is in RMC, don't forward */ 2670 if (ieee80211_is_data(hdr->frame_control) && 2671 is_multicast_ether_addr(hdr->addr1) && 2672 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2673 return RX_DROP_MONITOR; 2674 2675 if (!ieee80211_is_data(hdr->frame_control)) 2676 return RX_CONTINUE; 2677 2678 if (!mesh_hdr->ttl) 2679 return RX_DROP_MONITOR; 2680 2681 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2682 struct mesh_path *mppath; 2683 char *proxied_addr; 2684 char *mpp_addr; 2685 2686 if (is_multicast_ether_addr(hdr->addr1)) { 2687 mpp_addr = hdr->addr3; 2688 proxied_addr = mesh_hdr->eaddr1; 2689 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2690 MESH_FLAGS_AE_A5_A6) { 2691 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2692 mpp_addr = hdr->addr4; 2693 proxied_addr = mesh_hdr->eaddr2; 2694 } else { 2695 return RX_DROP_MONITOR; 2696 } 2697 2698 rcu_read_lock(); 2699 mppath = mpp_path_lookup(sdata, proxied_addr); 2700 if (!mppath) { 2701 mpp_path_add(sdata, proxied_addr, mpp_addr); 2702 } else { 2703 spin_lock_bh(&mppath->state_lock); 2704 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2705 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2706 mppath->exp_time = jiffies; 2707 spin_unlock_bh(&mppath->state_lock); 2708 } 2709 rcu_read_unlock(); 2710 } 2711 2712 /* Frame has reached destination. Don't forward */ 2713 if (!is_multicast_ether_addr(hdr->addr1) && 2714 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2715 return RX_CONTINUE; 2716 2717 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2718 q = sdata->vif.hw_queue[ac]; 2719 if (ieee80211_queue_stopped(&local->hw, q)) { 2720 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2721 return RX_DROP_MONITOR; 2722 } 2723 skb_set_queue_mapping(skb, q); 2724 2725 if (!--mesh_hdr->ttl) { 2726 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2727 goto out; 2728 } 2729 2730 if (!ifmsh->mshcfg.dot11MeshForwarding) 2731 goto out; 2732 2733 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2734 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2735 if (!fwd_skb) 2736 goto out; 2737 2738 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2739 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2740 info = IEEE80211_SKB_CB(fwd_skb); 2741 memset(info, 0, sizeof(*info)); 2742 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2743 info->control.vif = &rx->sdata->vif; 2744 info->control.jiffies = jiffies; 2745 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2746 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2747 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2748 /* update power mode indication when forwarding */ 2749 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2750 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2751 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2752 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2753 } else { 2754 /* unable to resolve next hop */ 2755 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2756 fwd_hdr->addr3, 0, 2757 WLAN_REASON_MESH_PATH_NOFORWARD, 2758 fwd_hdr->addr2); 2759 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2760 kfree_skb(fwd_skb); 2761 return RX_DROP_MONITOR; 2762 } 2763 2764 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2765 ieee80211_add_pending_skb(local, fwd_skb); 2766 out: 2767 if (is_multicast_ether_addr(hdr->addr1)) 2768 return RX_CONTINUE; 2769 return RX_DROP_MONITOR; 2770 } 2771 #endif 2772 2773 static ieee80211_rx_result debug_noinline 2774 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2775 { 2776 struct ieee80211_sub_if_data *sdata = rx->sdata; 2777 struct ieee80211_local *local = rx->local; 2778 struct net_device *dev = sdata->dev; 2779 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2780 __le16 fc = hdr->frame_control; 2781 bool port_control; 2782 int err; 2783 2784 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2785 return RX_CONTINUE; 2786 2787 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2788 return RX_DROP_MONITOR; 2789 2790 /* 2791 * Send unexpected-4addr-frame event to hostapd. For older versions, 2792 * also drop the frame to cooked monitor interfaces. 2793 */ 2794 if (ieee80211_has_a4(hdr->frame_control) && 2795 sdata->vif.type == NL80211_IFTYPE_AP) { 2796 if (rx->sta && 2797 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2798 cfg80211_rx_unexpected_4addr_frame( 2799 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2800 return RX_DROP_MONITOR; 2801 } 2802 2803 err = __ieee80211_data_to_8023(rx, &port_control); 2804 if (unlikely(err)) 2805 return RX_DROP_UNUSABLE; 2806 2807 if (!ieee80211_frame_allowed(rx, fc)) 2808 return RX_DROP_MONITOR; 2809 2810 /* directly handle TDLS channel switch requests/responses */ 2811 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2812 cpu_to_be16(ETH_P_TDLS))) { 2813 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2814 2815 if (pskb_may_pull(rx->skb, 2816 offsetof(struct ieee80211_tdls_data, u)) && 2817 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2818 tf->category == WLAN_CATEGORY_TDLS && 2819 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2820 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2821 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2822 schedule_work(&local->tdls_chsw_work); 2823 if (rx->sta) 2824 rx->sta->rx_stats.packets++; 2825 2826 return RX_QUEUED; 2827 } 2828 } 2829 2830 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2831 unlikely(port_control) && sdata->bss) { 2832 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2833 u.ap); 2834 dev = sdata->dev; 2835 rx->sdata = sdata; 2836 } 2837 2838 rx->skb->dev = dev; 2839 2840 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2841 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2842 !is_multicast_ether_addr( 2843 ((struct ethhdr *)rx->skb->data)->h_dest) && 2844 (!local->scanning && 2845 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2846 mod_timer(&local->dynamic_ps_timer, jiffies + 2847 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2848 2849 ieee80211_deliver_skb(rx); 2850 2851 return RX_QUEUED; 2852 } 2853 2854 static ieee80211_rx_result debug_noinline 2855 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2856 { 2857 struct sk_buff *skb = rx->skb; 2858 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2859 struct tid_ampdu_rx *tid_agg_rx; 2860 u16 start_seq_num; 2861 u16 tid; 2862 2863 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2864 return RX_CONTINUE; 2865 2866 if (ieee80211_is_back_req(bar->frame_control)) { 2867 struct { 2868 __le16 control, start_seq_num; 2869 } __packed bar_data; 2870 struct ieee80211_event event = { 2871 .type = BAR_RX_EVENT, 2872 }; 2873 2874 if (!rx->sta) 2875 return RX_DROP_MONITOR; 2876 2877 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2878 &bar_data, sizeof(bar_data))) 2879 return RX_DROP_MONITOR; 2880 2881 tid = le16_to_cpu(bar_data.control) >> 12; 2882 2883 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2884 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2885 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2886 WLAN_BACK_RECIPIENT, 2887 WLAN_REASON_QSTA_REQUIRE_SETUP); 2888 2889 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2890 if (!tid_agg_rx) 2891 return RX_DROP_MONITOR; 2892 2893 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2894 event.u.ba.tid = tid; 2895 event.u.ba.ssn = start_seq_num; 2896 event.u.ba.sta = &rx->sta->sta; 2897 2898 /* reset session timer */ 2899 if (tid_agg_rx->timeout) 2900 mod_timer(&tid_agg_rx->session_timer, 2901 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2902 2903 spin_lock(&tid_agg_rx->reorder_lock); 2904 /* release stored frames up to start of BAR */ 2905 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2906 start_seq_num, frames); 2907 spin_unlock(&tid_agg_rx->reorder_lock); 2908 2909 drv_event_callback(rx->local, rx->sdata, &event); 2910 2911 kfree_skb(skb); 2912 return RX_QUEUED; 2913 } 2914 2915 /* 2916 * After this point, we only want management frames, 2917 * so we can drop all remaining control frames to 2918 * cooked monitor interfaces. 2919 */ 2920 return RX_DROP_MONITOR; 2921 } 2922 2923 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2924 struct ieee80211_mgmt *mgmt, 2925 size_t len) 2926 { 2927 struct ieee80211_local *local = sdata->local; 2928 struct sk_buff *skb; 2929 struct ieee80211_mgmt *resp; 2930 2931 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2932 /* Not to own unicast address */ 2933 return; 2934 } 2935 2936 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2937 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2938 /* Not from the current AP or not associated yet. */ 2939 return; 2940 } 2941 2942 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2943 /* Too short SA Query request frame */ 2944 return; 2945 } 2946 2947 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2948 if (skb == NULL) 2949 return; 2950 2951 skb_reserve(skb, local->hw.extra_tx_headroom); 2952 resp = skb_put_zero(skb, 24); 2953 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2954 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2955 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2956 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2957 IEEE80211_STYPE_ACTION); 2958 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2959 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2960 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2961 memcpy(resp->u.action.u.sa_query.trans_id, 2962 mgmt->u.action.u.sa_query.trans_id, 2963 WLAN_SA_QUERY_TR_ID_LEN); 2964 2965 ieee80211_tx_skb(sdata, skb); 2966 } 2967 2968 static ieee80211_rx_result debug_noinline 2969 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2970 { 2971 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2972 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2973 2974 /* 2975 * From here on, look only at management frames. 2976 * Data and control frames are already handled, 2977 * and unknown (reserved) frames are useless. 2978 */ 2979 if (rx->skb->len < 24) 2980 return RX_DROP_MONITOR; 2981 2982 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2983 return RX_DROP_MONITOR; 2984 2985 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2986 ieee80211_is_beacon(mgmt->frame_control) && 2987 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2988 int sig = 0; 2989 2990 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 2991 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 2992 sig = status->signal; 2993 2994 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2995 rx->skb->data, rx->skb->len, 2996 status->freq, sig); 2997 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2998 } 2999 3000 if (ieee80211_drop_unencrypted_mgmt(rx)) 3001 return RX_DROP_UNUSABLE; 3002 3003 return RX_CONTINUE; 3004 } 3005 3006 static ieee80211_rx_result debug_noinline 3007 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3008 { 3009 struct ieee80211_local *local = rx->local; 3010 struct ieee80211_sub_if_data *sdata = rx->sdata; 3011 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3012 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3013 int len = rx->skb->len; 3014 3015 if (!ieee80211_is_action(mgmt->frame_control)) 3016 return RX_CONTINUE; 3017 3018 /* drop too small frames */ 3019 if (len < IEEE80211_MIN_ACTION_SIZE) 3020 return RX_DROP_UNUSABLE; 3021 3022 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3023 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3024 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3025 return RX_DROP_UNUSABLE; 3026 3027 switch (mgmt->u.action.category) { 3028 case WLAN_CATEGORY_HT: 3029 /* reject HT action frames from stations not supporting HT */ 3030 if (!rx->sta->sta.ht_cap.ht_supported) 3031 goto invalid; 3032 3033 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3034 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3035 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3036 sdata->vif.type != NL80211_IFTYPE_AP && 3037 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3038 break; 3039 3040 /* verify action & smps_control/chanwidth are present */ 3041 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3042 goto invalid; 3043 3044 switch (mgmt->u.action.u.ht_smps.action) { 3045 case WLAN_HT_ACTION_SMPS: { 3046 struct ieee80211_supported_band *sband; 3047 enum ieee80211_smps_mode smps_mode; 3048 struct sta_opmode_info sta_opmode = {}; 3049 3050 /* convert to HT capability */ 3051 switch (mgmt->u.action.u.ht_smps.smps_control) { 3052 case WLAN_HT_SMPS_CONTROL_DISABLED: 3053 smps_mode = IEEE80211_SMPS_OFF; 3054 break; 3055 case WLAN_HT_SMPS_CONTROL_STATIC: 3056 smps_mode = IEEE80211_SMPS_STATIC; 3057 break; 3058 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3059 smps_mode = IEEE80211_SMPS_DYNAMIC; 3060 break; 3061 default: 3062 goto invalid; 3063 } 3064 3065 /* if no change do nothing */ 3066 if (rx->sta->sta.smps_mode == smps_mode) 3067 goto handled; 3068 rx->sta->sta.smps_mode = smps_mode; 3069 sta_opmode.smps_mode = 3070 ieee80211_smps_mode_to_smps_mode(smps_mode); 3071 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3072 3073 sband = rx->local->hw.wiphy->bands[status->band]; 3074 3075 rate_control_rate_update(local, sband, rx->sta, 3076 IEEE80211_RC_SMPS_CHANGED); 3077 cfg80211_sta_opmode_change_notify(sdata->dev, 3078 rx->sta->addr, 3079 &sta_opmode, 3080 GFP_ATOMIC); 3081 goto handled; 3082 } 3083 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3084 struct ieee80211_supported_band *sband; 3085 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3086 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3087 struct sta_opmode_info sta_opmode = {}; 3088 3089 /* If it doesn't support 40 MHz it can't change ... */ 3090 if (!(rx->sta->sta.ht_cap.cap & 3091 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3092 goto handled; 3093 3094 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3095 max_bw = IEEE80211_STA_RX_BW_20; 3096 else 3097 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3098 3099 /* set cur_max_bandwidth and recalc sta bw */ 3100 rx->sta->cur_max_bandwidth = max_bw; 3101 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3102 3103 if (rx->sta->sta.bandwidth == new_bw) 3104 goto handled; 3105 3106 rx->sta->sta.bandwidth = new_bw; 3107 sband = rx->local->hw.wiphy->bands[status->band]; 3108 sta_opmode.bw = 3109 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3110 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3111 3112 rate_control_rate_update(local, sband, rx->sta, 3113 IEEE80211_RC_BW_CHANGED); 3114 cfg80211_sta_opmode_change_notify(sdata->dev, 3115 rx->sta->addr, 3116 &sta_opmode, 3117 GFP_ATOMIC); 3118 goto handled; 3119 } 3120 default: 3121 goto invalid; 3122 } 3123 3124 break; 3125 case WLAN_CATEGORY_PUBLIC: 3126 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3127 goto invalid; 3128 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3129 break; 3130 if (!rx->sta) 3131 break; 3132 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3133 break; 3134 if (mgmt->u.action.u.ext_chan_switch.action_code != 3135 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3136 break; 3137 if (len < offsetof(struct ieee80211_mgmt, 3138 u.action.u.ext_chan_switch.variable)) 3139 goto invalid; 3140 goto queue; 3141 case WLAN_CATEGORY_VHT: 3142 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3143 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3144 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3145 sdata->vif.type != NL80211_IFTYPE_AP && 3146 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3147 break; 3148 3149 /* verify action code is present */ 3150 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3151 goto invalid; 3152 3153 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3154 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3155 /* verify opmode is present */ 3156 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3157 goto invalid; 3158 goto queue; 3159 } 3160 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3161 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3162 goto invalid; 3163 goto queue; 3164 } 3165 default: 3166 break; 3167 } 3168 break; 3169 case WLAN_CATEGORY_BACK: 3170 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3171 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3172 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3173 sdata->vif.type != NL80211_IFTYPE_AP && 3174 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3175 break; 3176 3177 /* verify action_code is present */ 3178 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3179 break; 3180 3181 switch (mgmt->u.action.u.addba_req.action_code) { 3182 case WLAN_ACTION_ADDBA_REQ: 3183 if (len < (IEEE80211_MIN_ACTION_SIZE + 3184 sizeof(mgmt->u.action.u.addba_req))) 3185 goto invalid; 3186 break; 3187 case WLAN_ACTION_ADDBA_RESP: 3188 if (len < (IEEE80211_MIN_ACTION_SIZE + 3189 sizeof(mgmt->u.action.u.addba_resp))) 3190 goto invalid; 3191 break; 3192 case WLAN_ACTION_DELBA: 3193 if (len < (IEEE80211_MIN_ACTION_SIZE + 3194 sizeof(mgmt->u.action.u.delba))) 3195 goto invalid; 3196 break; 3197 default: 3198 goto invalid; 3199 } 3200 3201 goto queue; 3202 case WLAN_CATEGORY_SPECTRUM_MGMT: 3203 /* verify action_code is present */ 3204 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3205 break; 3206 3207 switch (mgmt->u.action.u.measurement.action_code) { 3208 case WLAN_ACTION_SPCT_MSR_REQ: 3209 if (status->band != NL80211_BAND_5GHZ) 3210 break; 3211 3212 if (len < (IEEE80211_MIN_ACTION_SIZE + 3213 sizeof(mgmt->u.action.u.measurement))) 3214 break; 3215 3216 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3217 break; 3218 3219 ieee80211_process_measurement_req(sdata, mgmt, len); 3220 goto handled; 3221 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3222 u8 *bssid; 3223 if (len < (IEEE80211_MIN_ACTION_SIZE + 3224 sizeof(mgmt->u.action.u.chan_switch))) 3225 break; 3226 3227 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3228 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3229 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3230 break; 3231 3232 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3233 bssid = sdata->u.mgd.bssid; 3234 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3235 bssid = sdata->u.ibss.bssid; 3236 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3237 bssid = mgmt->sa; 3238 else 3239 break; 3240 3241 if (!ether_addr_equal(mgmt->bssid, bssid)) 3242 break; 3243 3244 goto queue; 3245 } 3246 } 3247 break; 3248 case WLAN_CATEGORY_SA_QUERY: 3249 if (len < (IEEE80211_MIN_ACTION_SIZE + 3250 sizeof(mgmt->u.action.u.sa_query))) 3251 break; 3252 3253 switch (mgmt->u.action.u.sa_query.action) { 3254 case WLAN_ACTION_SA_QUERY_REQUEST: 3255 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3256 break; 3257 ieee80211_process_sa_query_req(sdata, mgmt, len); 3258 goto handled; 3259 } 3260 break; 3261 case WLAN_CATEGORY_SELF_PROTECTED: 3262 if (len < (IEEE80211_MIN_ACTION_SIZE + 3263 sizeof(mgmt->u.action.u.self_prot.action_code))) 3264 break; 3265 3266 switch (mgmt->u.action.u.self_prot.action_code) { 3267 case WLAN_SP_MESH_PEERING_OPEN: 3268 case WLAN_SP_MESH_PEERING_CLOSE: 3269 case WLAN_SP_MESH_PEERING_CONFIRM: 3270 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3271 goto invalid; 3272 if (sdata->u.mesh.user_mpm) 3273 /* userspace handles this frame */ 3274 break; 3275 goto queue; 3276 case WLAN_SP_MGK_INFORM: 3277 case WLAN_SP_MGK_ACK: 3278 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3279 goto invalid; 3280 break; 3281 } 3282 break; 3283 case WLAN_CATEGORY_MESH_ACTION: 3284 if (len < (IEEE80211_MIN_ACTION_SIZE + 3285 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3286 break; 3287 3288 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3289 break; 3290 if (mesh_action_is_path_sel(mgmt) && 3291 !mesh_path_sel_is_hwmp(sdata)) 3292 break; 3293 goto queue; 3294 } 3295 3296 return RX_CONTINUE; 3297 3298 invalid: 3299 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3300 /* will return in the next handlers */ 3301 return RX_CONTINUE; 3302 3303 handled: 3304 if (rx->sta) 3305 rx->sta->rx_stats.packets++; 3306 dev_kfree_skb(rx->skb); 3307 return RX_QUEUED; 3308 3309 queue: 3310 skb_queue_tail(&sdata->skb_queue, rx->skb); 3311 ieee80211_queue_work(&local->hw, &sdata->work); 3312 if (rx->sta) 3313 rx->sta->rx_stats.packets++; 3314 return RX_QUEUED; 3315 } 3316 3317 static ieee80211_rx_result debug_noinline 3318 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3319 { 3320 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3321 int sig = 0; 3322 3323 /* skip known-bad action frames and return them in the next handler */ 3324 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3325 return RX_CONTINUE; 3326 3327 /* 3328 * Getting here means the kernel doesn't know how to handle 3329 * it, but maybe userspace does ... include returned frames 3330 * so userspace can register for those to know whether ones 3331 * it transmitted were processed or returned. 3332 */ 3333 3334 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3335 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3336 sig = status->signal; 3337 3338 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3339 rx->skb->data, rx->skb->len, 0)) { 3340 if (rx->sta) 3341 rx->sta->rx_stats.packets++; 3342 dev_kfree_skb(rx->skb); 3343 return RX_QUEUED; 3344 } 3345 3346 return RX_CONTINUE; 3347 } 3348 3349 static ieee80211_rx_result debug_noinline 3350 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3351 { 3352 struct ieee80211_local *local = rx->local; 3353 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3354 struct sk_buff *nskb; 3355 struct ieee80211_sub_if_data *sdata = rx->sdata; 3356 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3357 3358 if (!ieee80211_is_action(mgmt->frame_control)) 3359 return RX_CONTINUE; 3360 3361 /* 3362 * For AP mode, hostapd is responsible for handling any action 3363 * frames that we didn't handle, including returning unknown 3364 * ones. For all other modes we will return them to the sender, 3365 * setting the 0x80 bit in the action category, as required by 3366 * 802.11-2012 9.24.4. 3367 * Newer versions of hostapd shall also use the management frame 3368 * registration mechanisms, but older ones still use cooked 3369 * monitor interfaces so push all frames there. 3370 */ 3371 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3372 (sdata->vif.type == NL80211_IFTYPE_AP || 3373 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3374 return RX_DROP_MONITOR; 3375 3376 if (is_multicast_ether_addr(mgmt->da)) 3377 return RX_DROP_MONITOR; 3378 3379 /* do not return rejected action frames */ 3380 if (mgmt->u.action.category & 0x80) 3381 return RX_DROP_UNUSABLE; 3382 3383 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3384 GFP_ATOMIC); 3385 if (nskb) { 3386 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3387 3388 nmgmt->u.action.category |= 0x80; 3389 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3390 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3391 3392 memset(nskb->cb, 0, sizeof(nskb->cb)); 3393 3394 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3395 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3396 3397 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3398 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3399 IEEE80211_TX_CTL_NO_CCK_RATE; 3400 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3401 info->hw_queue = 3402 local->hw.offchannel_tx_hw_queue; 3403 } 3404 3405 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3406 status->band, 0); 3407 } 3408 dev_kfree_skb(rx->skb); 3409 return RX_QUEUED; 3410 } 3411 3412 static ieee80211_rx_result debug_noinline 3413 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3414 { 3415 struct ieee80211_sub_if_data *sdata = rx->sdata; 3416 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3417 __le16 stype; 3418 3419 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3420 3421 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3422 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3423 sdata->vif.type != NL80211_IFTYPE_OCB && 3424 sdata->vif.type != NL80211_IFTYPE_STATION) 3425 return RX_DROP_MONITOR; 3426 3427 switch (stype) { 3428 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3429 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3430 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3431 /* process for all: mesh, mlme, ibss */ 3432 break; 3433 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3434 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3435 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3436 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3437 if (is_multicast_ether_addr(mgmt->da) && 3438 !is_broadcast_ether_addr(mgmt->da)) 3439 return RX_DROP_MONITOR; 3440 3441 /* process only for station */ 3442 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3443 return RX_DROP_MONITOR; 3444 break; 3445 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3446 /* process only for ibss and mesh */ 3447 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3448 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3449 return RX_DROP_MONITOR; 3450 break; 3451 default: 3452 return RX_DROP_MONITOR; 3453 } 3454 3455 /* queue up frame and kick off work to process it */ 3456 skb_queue_tail(&sdata->skb_queue, rx->skb); 3457 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3458 if (rx->sta) 3459 rx->sta->rx_stats.packets++; 3460 3461 return RX_QUEUED; 3462 } 3463 3464 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3465 struct ieee80211_rate *rate) 3466 { 3467 struct ieee80211_sub_if_data *sdata; 3468 struct ieee80211_local *local = rx->local; 3469 struct sk_buff *skb = rx->skb, *skb2; 3470 struct net_device *prev_dev = NULL; 3471 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3472 int needed_headroom; 3473 3474 /* 3475 * If cooked monitor has been processed already, then 3476 * don't do it again. If not, set the flag. 3477 */ 3478 if (rx->flags & IEEE80211_RX_CMNTR) 3479 goto out_free_skb; 3480 rx->flags |= IEEE80211_RX_CMNTR; 3481 3482 /* If there are no cooked monitor interfaces, just free the SKB */ 3483 if (!local->cooked_mntrs) 3484 goto out_free_skb; 3485 3486 /* vendor data is long removed here */ 3487 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3488 /* room for the radiotap header based on driver features */ 3489 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3490 3491 if (skb_headroom(skb) < needed_headroom && 3492 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3493 goto out_free_skb; 3494 3495 /* prepend radiotap information */ 3496 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3497 false); 3498 3499 skb_reset_mac_header(skb); 3500 skb->ip_summed = CHECKSUM_UNNECESSARY; 3501 skb->pkt_type = PACKET_OTHERHOST; 3502 skb->protocol = htons(ETH_P_802_2); 3503 3504 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3505 if (!ieee80211_sdata_running(sdata)) 3506 continue; 3507 3508 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3509 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3510 continue; 3511 3512 if (prev_dev) { 3513 skb2 = skb_clone(skb, GFP_ATOMIC); 3514 if (skb2) { 3515 skb2->dev = prev_dev; 3516 netif_receive_skb(skb2); 3517 } 3518 } 3519 3520 prev_dev = sdata->dev; 3521 ieee80211_rx_stats(sdata->dev, skb->len); 3522 } 3523 3524 if (prev_dev) { 3525 skb->dev = prev_dev; 3526 netif_receive_skb(skb); 3527 return; 3528 } 3529 3530 out_free_skb: 3531 dev_kfree_skb(skb); 3532 } 3533 3534 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3535 ieee80211_rx_result res) 3536 { 3537 switch (res) { 3538 case RX_DROP_MONITOR: 3539 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3540 if (rx->sta) 3541 rx->sta->rx_stats.dropped++; 3542 /* fall through */ 3543 case RX_CONTINUE: { 3544 struct ieee80211_rate *rate = NULL; 3545 struct ieee80211_supported_band *sband; 3546 struct ieee80211_rx_status *status; 3547 3548 status = IEEE80211_SKB_RXCB((rx->skb)); 3549 3550 sband = rx->local->hw.wiphy->bands[status->band]; 3551 if (status->encoding == RX_ENC_LEGACY) 3552 rate = &sband->bitrates[status->rate_idx]; 3553 3554 ieee80211_rx_cooked_monitor(rx, rate); 3555 break; 3556 } 3557 case RX_DROP_UNUSABLE: 3558 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3559 if (rx->sta) 3560 rx->sta->rx_stats.dropped++; 3561 dev_kfree_skb(rx->skb); 3562 break; 3563 case RX_QUEUED: 3564 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3565 break; 3566 } 3567 } 3568 3569 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3570 struct sk_buff_head *frames) 3571 { 3572 ieee80211_rx_result res = RX_DROP_MONITOR; 3573 struct sk_buff *skb; 3574 3575 #define CALL_RXH(rxh) \ 3576 do { \ 3577 res = rxh(rx); \ 3578 if (res != RX_CONTINUE) \ 3579 goto rxh_next; \ 3580 } while (0) 3581 3582 /* Lock here to avoid hitting all of the data used in the RX 3583 * path (e.g. key data, station data, ...) concurrently when 3584 * a frame is released from the reorder buffer due to timeout 3585 * from the timer, potentially concurrently with RX from the 3586 * driver. 3587 */ 3588 spin_lock_bh(&rx->local->rx_path_lock); 3589 3590 while ((skb = __skb_dequeue(frames))) { 3591 /* 3592 * all the other fields are valid across frames 3593 * that belong to an aMPDU since they are on the 3594 * same TID from the same station 3595 */ 3596 rx->skb = skb; 3597 3598 CALL_RXH(ieee80211_rx_h_check_more_data); 3599 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3600 CALL_RXH(ieee80211_rx_h_sta_process); 3601 CALL_RXH(ieee80211_rx_h_decrypt); 3602 CALL_RXH(ieee80211_rx_h_defragment); 3603 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3604 /* must be after MMIC verify so header is counted in MPDU mic */ 3605 #ifdef CONFIG_MAC80211_MESH 3606 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3607 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3608 #endif 3609 CALL_RXH(ieee80211_rx_h_amsdu); 3610 CALL_RXH(ieee80211_rx_h_data); 3611 3612 /* special treatment -- needs the queue */ 3613 res = ieee80211_rx_h_ctrl(rx, frames); 3614 if (res != RX_CONTINUE) 3615 goto rxh_next; 3616 3617 CALL_RXH(ieee80211_rx_h_mgmt_check); 3618 CALL_RXH(ieee80211_rx_h_action); 3619 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3620 CALL_RXH(ieee80211_rx_h_action_return); 3621 CALL_RXH(ieee80211_rx_h_mgmt); 3622 3623 rxh_next: 3624 ieee80211_rx_handlers_result(rx, res); 3625 3626 #undef CALL_RXH 3627 } 3628 3629 spin_unlock_bh(&rx->local->rx_path_lock); 3630 } 3631 3632 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3633 { 3634 struct sk_buff_head reorder_release; 3635 ieee80211_rx_result res = RX_DROP_MONITOR; 3636 3637 __skb_queue_head_init(&reorder_release); 3638 3639 #define CALL_RXH(rxh) \ 3640 do { \ 3641 res = rxh(rx); \ 3642 if (res != RX_CONTINUE) \ 3643 goto rxh_next; \ 3644 } while (0) 3645 3646 CALL_RXH(ieee80211_rx_h_check_dup); 3647 CALL_RXH(ieee80211_rx_h_check); 3648 3649 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3650 3651 ieee80211_rx_handlers(rx, &reorder_release); 3652 return; 3653 3654 rxh_next: 3655 ieee80211_rx_handlers_result(rx, res); 3656 3657 #undef CALL_RXH 3658 } 3659 3660 /* 3661 * This function makes calls into the RX path, therefore 3662 * it has to be invoked under RCU read lock. 3663 */ 3664 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3665 { 3666 struct sk_buff_head frames; 3667 struct ieee80211_rx_data rx = { 3668 .sta = sta, 3669 .sdata = sta->sdata, 3670 .local = sta->local, 3671 /* This is OK -- must be QoS data frame */ 3672 .security_idx = tid, 3673 .seqno_idx = tid, 3674 .napi = NULL, /* must be NULL to not have races */ 3675 }; 3676 struct tid_ampdu_rx *tid_agg_rx; 3677 3678 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3679 if (!tid_agg_rx) 3680 return; 3681 3682 __skb_queue_head_init(&frames); 3683 3684 spin_lock(&tid_agg_rx->reorder_lock); 3685 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3686 spin_unlock(&tid_agg_rx->reorder_lock); 3687 3688 if (!skb_queue_empty(&frames)) { 3689 struct ieee80211_event event = { 3690 .type = BA_FRAME_TIMEOUT, 3691 .u.ba.tid = tid, 3692 .u.ba.sta = &sta->sta, 3693 }; 3694 drv_event_callback(rx.local, rx.sdata, &event); 3695 } 3696 3697 ieee80211_rx_handlers(&rx, &frames); 3698 } 3699 3700 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3701 u16 ssn, u64 filtered, 3702 u16 received_mpdus) 3703 { 3704 struct sta_info *sta; 3705 struct tid_ampdu_rx *tid_agg_rx; 3706 struct sk_buff_head frames; 3707 struct ieee80211_rx_data rx = { 3708 /* This is OK -- must be QoS data frame */ 3709 .security_idx = tid, 3710 .seqno_idx = tid, 3711 }; 3712 int i, diff; 3713 3714 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3715 return; 3716 3717 __skb_queue_head_init(&frames); 3718 3719 sta = container_of(pubsta, struct sta_info, sta); 3720 3721 rx.sta = sta; 3722 rx.sdata = sta->sdata; 3723 rx.local = sta->local; 3724 3725 rcu_read_lock(); 3726 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3727 if (!tid_agg_rx) 3728 goto out; 3729 3730 spin_lock_bh(&tid_agg_rx->reorder_lock); 3731 3732 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3733 int release; 3734 3735 /* release all frames in the reorder buffer */ 3736 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3737 IEEE80211_SN_MODULO; 3738 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3739 release, &frames); 3740 /* update ssn to match received ssn */ 3741 tid_agg_rx->head_seq_num = ssn; 3742 } else { 3743 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3744 &frames); 3745 } 3746 3747 /* handle the case that received ssn is behind the mac ssn. 3748 * it can be tid_agg_rx->buf_size behind and still be valid */ 3749 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3750 if (diff >= tid_agg_rx->buf_size) { 3751 tid_agg_rx->reorder_buf_filtered = 0; 3752 goto release; 3753 } 3754 filtered = filtered >> diff; 3755 ssn += diff; 3756 3757 /* update bitmap */ 3758 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3759 int index = (ssn + i) % tid_agg_rx->buf_size; 3760 3761 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3762 if (filtered & BIT_ULL(i)) 3763 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3764 } 3765 3766 /* now process also frames that the filter marking released */ 3767 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3768 3769 release: 3770 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3771 3772 ieee80211_rx_handlers(&rx, &frames); 3773 3774 out: 3775 rcu_read_unlock(); 3776 } 3777 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3778 3779 /* main receive path */ 3780 3781 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3782 { 3783 struct ieee80211_sub_if_data *sdata = rx->sdata; 3784 struct sk_buff *skb = rx->skb; 3785 struct ieee80211_hdr *hdr = (void *)skb->data; 3786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3787 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3788 bool multicast = is_multicast_ether_addr(hdr->addr1); 3789 3790 switch (sdata->vif.type) { 3791 case NL80211_IFTYPE_STATION: 3792 if (!bssid && !sdata->u.mgd.use_4addr) 3793 return false; 3794 if (multicast) 3795 return true; 3796 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3797 case NL80211_IFTYPE_ADHOC: 3798 if (!bssid) 3799 return false; 3800 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3801 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3802 return false; 3803 if (ieee80211_is_beacon(hdr->frame_control)) 3804 return true; 3805 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3806 return false; 3807 if (!multicast && 3808 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3809 return false; 3810 if (!rx->sta) { 3811 int rate_idx; 3812 if (status->encoding != RX_ENC_LEGACY) 3813 rate_idx = 0; /* TODO: HT/VHT rates */ 3814 else 3815 rate_idx = status->rate_idx; 3816 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3817 BIT(rate_idx)); 3818 } 3819 return true; 3820 case NL80211_IFTYPE_OCB: 3821 if (!bssid) 3822 return false; 3823 if (!ieee80211_is_data_present(hdr->frame_control)) 3824 return false; 3825 if (!is_broadcast_ether_addr(bssid)) 3826 return false; 3827 if (!multicast && 3828 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3829 return false; 3830 if (!rx->sta) { 3831 int rate_idx; 3832 if (status->encoding != RX_ENC_LEGACY) 3833 rate_idx = 0; /* TODO: HT rates */ 3834 else 3835 rate_idx = status->rate_idx; 3836 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3837 BIT(rate_idx)); 3838 } 3839 return true; 3840 case NL80211_IFTYPE_MESH_POINT: 3841 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3842 return false; 3843 if (multicast) 3844 return true; 3845 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3846 case NL80211_IFTYPE_AP_VLAN: 3847 case NL80211_IFTYPE_AP: 3848 if (!bssid) 3849 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3850 3851 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3852 /* 3853 * Accept public action frames even when the 3854 * BSSID doesn't match, this is used for P2P 3855 * and location updates. Note that mac80211 3856 * itself never looks at these frames. 3857 */ 3858 if (!multicast && 3859 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3860 return false; 3861 if (ieee80211_is_public_action(hdr, skb->len)) 3862 return true; 3863 return ieee80211_is_beacon(hdr->frame_control); 3864 } 3865 3866 if (!ieee80211_has_tods(hdr->frame_control)) { 3867 /* ignore data frames to TDLS-peers */ 3868 if (ieee80211_is_data(hdr->frame_control)) 3869 return false; 3870 /* ignore action frames to TDLS-peers */ 3871 if (ieee80211_is_action(hdr->frame_control) && 3872 !is_broadcast_ether_addr(bssid) && 3873 !ether_addr_equal(bssid, hdr->addr1)) 3874 return false; 3875 } 3876 3877 /* 3878 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3879 * the BSSID - we've checked that already but may have accepted 3880 * the wildcard (ff:ff:ff:ff:ff:ff). 3881 * 3882 * It also says: 3883 * The BSSID of the Data frame is determined as follows: 3884 * a) If the STA is contained within an AP or is associated 3885 * with an AP, the BSSID is the address currently in use 3886 * by the STA contained in the AP. 3887 * 3888 * So we should not accept data frames with an address that's 3889 * multicast. 3890 * 3891 * Accepting it also opens a security problem because stations 3892 * could encrypt it with the GTK and inject traffic that way. 3893 */ 3894 if (ieee80211_is_data(hdr->frame_control) && multicast) 3895 return false; 3896 3897 return true; 3898 case NL80211_IFTYPE_WDS: 3899 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3900 return false; 3901 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3902 case NL80211_IFTYPE_P2P_DEVICE: 3903 return ieee80211_is_public_action(hdr, skb->len) || 3904 ieee80211_is_probe_req(hdr->frame_control) || 3905 ieee80211_is_probe_resp(hdr->frame_control) || 3906 ieee80211_is_beacon(hdr->frame_control); 3907 case NL80211_IFTYPE_NAN: 3908 /* Currently no frames on NAN interface are allowed */ 3909 return false; 3910 default: 3911 break; 3912 } 3913 3914 WARN_ON_ONCE(1); 3915 return false; 3916 } 3917 3918 void ieee80211_check_fast_rx(struct sta_info *sta) 3919 { 3920 struct ieee80211_sub_if_data *sdata = sta->sdata; 3921 struct ieee80211_local *local = sdata->local; 3922 struct ieee80211_key *key; 3923 struct ieee80211_fast_rx fastrx = { 3924 .dev = sdata->dev, 3925 .vif_type = sdata->vif.type, 3926 .control_port_protocol = sdata->control_port_protocol, 3927 }, *old, *new = NULL; 3928 bool assign = false; 3929 3930 /* use sparse to check that we don't return without updating */ 3931 __acquire(check_fast_rx); 3932 3933 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3934 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3935 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3936 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3937 3938 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3939 3940 /* fast-rx doesn't do reordering */ 3941 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3942 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3943 goto clear; 3944 3945 switch (sdata->vif.type) { 3946 case NL80211_IFTYPE_STATION: 3947 if (sta->sta.tdls) { 3948 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3949 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3950 fastrx.expected_ds_bits = 0; 3951 } else { 3952 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3953 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3954 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3955 fastrx.expected_ds_bits = 3956 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3957 } 3958 3959 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 3960 fastrx.expected_ds_bits |= 3961 cpu_to_le16(IEEE80211_FCTL_TODS); 3962 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3963 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3964 } 3965 3966 if (!sdata->u.mgd.powersave) 3967 break; 3968 3969 /* software powersave is a huge mess, avoid all of it */ 3970 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3971 goto clear; 3972 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3973 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3974 goto clear; 3975 break; 3976 case NL80211_IFTYPE_AP_VLAN: 3977 case NL80211_IFTYPE_AP: 3978 /* parallel-rx requires this, at least with calls to 3979 * ieee80211_sta_ps_transition() 3980 */ 3981 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3982 goto clear; 3983 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3984 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3985 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3986 3987 fastrx.internal_forward = 3988 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3989 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3990 !sdata->u.vlan.sta); 3991 3992 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3993 sdata->u.vlan.sta) { 3994 fastrx.expected_ds_bits |= 3995 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3996 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3997 fastrx.internal_forward = 0; 3998 } 3999 4000 break; 4001 default: 4002 goto clear; 4003 } 4004 4005 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4006 goto clear; 4007 4008 rcu_read_lock(); 4009 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4010 if (key) { 4011 switch (key->conf.cipher) { 4012 case WLAN_CIPHER_SUITE_TKIP: 4013 /* we don't want to deal with MMIC in fast-rx */ 4014 goto clear_rcu; 4015 case WLAN_CIPHER_SUITE_CCMP: 4016 case WLAN_CIPHER_SUITE_CCMP_256: 4017 case WLAN_CIPHER_SUITE_GCMP: 4018 case WLAN_CIPHER_SUITE_GCMP_256: 4019 break; 4020 default: 4021 /* we also don't want to deal with WEP or cipher scheme 4022 * since those require looking up the key idx in the 4023 * frame, rather than assuming the PTK is used 4024 * (we need to revisit this once we implement the real 4025 * PTK index, which is now valid in the spec, but we 4026 * haven't implemented that part yet) 4027 */ 4028 goto clear_rcu; 4029 } 4030 4031 fastrx.key = true; 4032 fastrx.icv_len = key->conf.icv_len; 4033 } 4034 4035 assign = true; 4036 clear_rcu: 4037 rcu_read_unlock(); 4038 clear: 4039 __release(check_fast_rx); 4040 4041 if (assign) 4042 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4043 4044 spin_lock_bh(&sta->lock); 4045 old = rcu_dereference_protected(sta->fast_rx, true); 4046 rcu_assign_pointer(sta->fast_rx, new); 4047 spin_unlock_bh(&sta->lock); 4048 4049 if (old) 4050 kfree_rcu(old, rcu_head); 4051 } 4052 4053 void ieee80211_clear_fast_rx(struct sta_info *sta) 4054 { 4055 struct ieee80211_fast_rx *old; 4056 4057 spin_lock_bh(&sta->lock); 4058 old = rcu_dereference_protected(sta->fast_rx, true); 4059 RCU_INIT_POINTER(sta->fast_rx, NULL); 4060 spin_unlock_bh(&sta->lock); 4061 4062 if (old) 4063 kfree_rcu(old, rcu_head); 4064 } 4065 4066 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4067 { 4068 struct ieee80211_local *local = sdata->local; 4069 struct sta_info *sta; 4070 4071 lockdep_assert_held(&local->sta_mtx); 4072 4073 list_for_each_entry_rcu(sta, &local->sta_list, list) { 4074 if (sdata != sta->sdata && 4075 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4076 continue; 4077 ieee80211_check_fast_rx(sta); 4078 } 4079 } 4080 4081 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4082 { 4083 struct ieee80211_local *local = sdata->local; 4084 4085 mutex_lock(&local->sta_mtx); 4086 __ieee80211_check_fast_rx_iface(sdata); 4087 mutex_unlock(&local->sta_mtx); 4088 } 4089 4090 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4091 struct ieee80211_fast_rx *fast_rx) 4092 { 4093 struct sk_buff *skb = rx->skb; 4094 struct ieee80211_hdr *hdr = (void *)skb->data; 4095 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4096 struct sta_info *sta = rx->sta; 4097 int orig_len = skb->len; 4098 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4099 int snap_offs = hdrlen; 4100 struct { 4101 u8 snap[sizeof(rfc1042_header)]; 4102 __be16 proto; 4103 } *payload __aligned(2); 4104 struct { 4105 u8 da[ETH_ALEN]; 4106 u8 sa[ETH_ALEN]; 4107 } addrs __aligned(2); 4108 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4109 4110 if (fast_rx->uses_rss) 4111 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4112 4113 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4114 * to a common data structure; drivers can implement that per queue 4115 * but we don't have that information in mac80211 4116 */ 4117 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4118 return false; 4119 4120 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4121 4122 /* If using encryption, we also need to have: 4123 * - PN_VALIDATED: similar, but the implementation is tricky 4124 * - DECRYPTED: necessary for PN_VALIDATED 4125 */ 4126 if (fast_rx->key && 4127 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4128 return false; 4129 4130 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4131 return false; 4132 4133 if (unlikely(ieee80211_is_frag(hdr))) 4134 return false; 4135 4136 /* Since our interface address cannot be multicast, this 4137 * implicitly also rejects multicast frames without the 4138 * explicit check. 4139 * 4140 * We shouldn't get any *data* frames not addressed to us 4141 * (AP mode will accept multicast *management* frames), but 4142 * punting here will make it go through the full checks in 4143 * ieee80211_accept_frame(). 4144 */ 4145 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4146 return false; 4147 4148 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4149 IEEE80211_FCTL_TODS)) != 4150 fast_rx->expected_ds_bits) 4151 return false; 4152 4153 /* assign the key to drop unencrypted frames (later) 4154 * and strip the IV/MIC if necessary 4155 */ 4156 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4157 /* GCMP header length is the same */ 4158 snap_offs += IEEE80211_CCMP_HDR_LEN; 4159 } 4160 4161 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4162 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4163 goto drop; 4164 4165 payload = (void *)(skb->data + snap_offs); 4166 4167 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4168 return false; 4169 4170 /* Don't handle these here since they require special code. 4171 * Accept AARP and IPX even though they should come with a 4172 * bridge-tunnel header - but if we get them this way then 4173 * there's little point in discarding them. 4174 */ 4175 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4176 payload->proto == fast_rx->control_port_protocol)) 4177 return false; 4178 } 4179 4180 /* after this point, don't punt to the slowpath! */ 4181 4182 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4183 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4184 goto drop; 4185 4186 if (unlikely(fast_rx->sta_notify)) { 4187 ieee80211_sta_rx_notify(rx->sdata, hdr); 4188 fast_rx->sta_notify = false; 4189 } 4190 4191 /* statistics part of ieee80211_rx_h_sta_process() */ 4192 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4193 stats->last_signal = status->signal; 4194 if (!fast_rx->uses_rss) 4195 ewma_signal_add(&sta->rx_stats_avg.signal, 4196 -status->signal); 4197 } 4198 4199 if (status->chains) { 4200 int i; 4201 4202 stats->chains = status->chains; 4203 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4204 int signal = status->chain_signal[i]; 4205 4206 if (!(status->chains & BIT(i))) 4207 continue; 4208 4209 stats->chain_signal_last[i] = signal; 4210 if (!fast_rx->uses_rss) 4211 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4212 -signal); 4213 } 4214 } 4215 /* end of statistics */ 4216 4217 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4218 goto drop; 4219 4220 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4221 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4222 RX_QUEUED) 4223 goto drop; 4224 4225 return true; 4226 } 4227 4228 stats->last_rx = jiffies; 4229 stats->last_rate = sta_stats_encode_rate(status); 4230 4231 stats->fragments++; 4232 stats->packets++; 4233 4234 /* do the header conversion - first grab the addresses */ 4235 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4236 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4237 /* remove the SNAP but leave the ethertype */ 4238 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4239 /* push the addresses in front */ 4240 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4241 4242 skb->dev = fast_rx->dev; 4243 4244 ieee80211_rx_stats(fast_rx->dev, skb->len); 4245 4246 /* The seqno index has the same property as needed 4247 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4248 * for non-QoS-data frames. Here we know it's a data 4249 * frame, so count MSDUs. 4250 */ 4251 u64_stats_update_begin(&stats->syncp); 4252 stats->msdu[rx->seqno_idx]++; 4253 stats->bytes += orig_len; 4254 u64_stats_update_end(&stats->syncp); 4255 4256 if (fast_rx->internal_forward) { 4257 struct sk_buff *xmit_skb = NULL; 4258 if (is_multicast_ether_addr(addrs.da)) { 4259 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4260 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4261 sta_info_get(rx->sdata, addrs.da)) { 4262 xmit_skb = skb; 4263 skb = NULL; 4264 } 4265 4266 if (xmit_skb) { 4267 /* 4268 * Send to wireless media and increase priority by 256 4269 * to keep the received priority instead of 4270 * reclassifying the frame (see cfg80211_classify8021d). 4271 */ 4272 xmit_skb->priority += 256; 4273 xmit_skb->protocol = htons(ETH_P_802_3); 4274 skb_reset_network_header(xmit_skb); 4275 skb_reset_mac_header(xmit_skb); 4276 dev_queue_xmit(xmit_skb); 4277 } 4278 4279 if (!skb) 4280 return true; 4281 } 4282 4283 /* deliver to local stack */ 4284 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4285 memset(skb->cb, 0, sizeof(skb->cb)); 4286 if (rx->napi) 4287 napi_gro_receive(rx->napi, skb); 4288 else 4289 netif_receive_skb(skb); 4290 4291 return true; 4292 drop: 4293 dev_kfree_skb(skb); 4294 stats->dropped++; 4295 return true; 4296 } 4297 4298 /* 4299 * This function returns whether or not the SKB 4300 * was destined for RX processing or not, which, 4301 * if consume is true, is equivalent to whether 4302 * or not the skb was consumed. 4303 */ 4304 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4305 struct sk_buff *skb, bool consume) 4306 { 4307 struct ieee80211_local *local = rx->local; 4308 struct ieee80211_sub_if_data *sdata = rx->sdata; 4309 4310 rx->skb = skb; 4311 4312 /* See if we can do fast-rx; if we have to copy we already lost, 4313 * so punt in that case. We should never have to deliver a data 4314 * frame to multiple interfaces anyway. 4315 * 4316 * We skip the ieee80211_accept_frame() call and do the necessary 4317 * checking inside ieee80211_invoke_fast_rx(). 4318 */ 4319 if (consume && rx->sta) { 4320 struct ieee80211_fast_rx *fast_rx; 4321 4322 fast_rx = rcu_dereference(rx->sta->fast_rx); 4323 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4324 return true; 4325 } 4326 4327 if (!ieee80211_accept_frame(rx)) 4328 return false; 4329 4330 if (!consume) { 4331 skb = skb_copy(skb, GFP_ATOMIC); 4332 if (!skb) { 4333 if (net_ratelimit()) 4334 wiphy_debug(local->hw.wiphy, 4335 "failed to copy skb for %s\n", 4336 sdata->name); 4337 return true; 4338 } 4339 4340 rx->skb = skb; 4341 } 4342 4343 ieee80211_invoke_rx_handlers(rx); 4344 return true; 4345 } 4346 4347 /* 4348 * This is the actual Rx frames handler. as it belongs to Rx path it must 4349 * be called with rcu_read_lock protection. 4350 */ 4351 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4352 struct ieee80211_sta *pubsta, 4353 struct sk_buff *skb, 4354 struct napi_struct *napi) 4355 { 4356 struct ieee80211_local *local = hw_to_local(hw); 4357 struct ieee80211_sub_if_data *sdata; 4358 struct ieee80211_hdr *hdr; 4359 __le16 fc; 4360 struct ieee80211_rx_data rx; 4361 struct ieee80211_sub_if_data *prev; 4362 struct rhlist_head *tmp; 4363 int err = 0; 4364 4365 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4366 memset(&rx, 0, sizeof(rx)); 4367 rx.skb = skb; 4368 rx.local = local; 4369 rx.napi = napi; 4370 4371 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4372 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4373 4374 if (ieee80211_is_mgmt(fc)) { 4375 /* drop frame if too short for header */ 4376 if (skb->len < ieee80211_hdrlen(fc)) 4377 err = -ENOBUFS; 4378 else 4379 err = skb_linearize(skb); 4380 } else { 4381 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4382 } 4383 4384 if (err) { 4385 dev_kfree_skb(skb); 4386 return; 4387 } 4388 4389 hdr = (struct ieee80211_hdr *)skb->data; 4390 ieee80211_parse_qos(&rx); 4391 ieee80211_verify_alignment(&rx); 4392 4393 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4394 ieee80211_is_beacon(hdr->frame_control))) 4395 ieee80211_scan_rx(local, skb); 4396 4397 if (ieee80211_is_data(fc)) { 4398 struct sta_info *sta, *prev_sta; 4399 4400 if (pubsta) { 4401 rx.sta = container_of(pubsta, struct sta_info, sta); 4402 rx.sdata = rx.sta->sdata; 4403 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4404 return; 4405 goto out; 4406 } 4407 4408 prev_sta = NULL; 4409 4410 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4411 if (!prev_sta) { 4412 prev_sta = sta; 4413 continue; 4414 } 4415 4416 rx.sta = prev_sta; 4417 rx.sdata = prev_sta->sdata; 4418 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4419 4420 prev_sta = sta; 4421 } 4422 4423 if (prev_sta) { 4424 rx.sta = prev_sta; 4425 rx.sdata = prev_sta->sdata; 4426 4427 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4428 return; 4429 goto out; 4430 } 4431 } 4432 4433 prev = NULL; 4434 4435 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4436 if (!ieee80211_sdata_running(sdata)) 4437 continue; 4438 4439 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4440 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4441 continue; 4442 4443 /* 4444 * frame is destined for this interface, but if it's 4445 * not also for the previous one we handle that after 4446 * the loop to avoid copying the SKB once too much 4447 */ 4448 4449 if (!prev) { 4450 prev = sdata; 4451 continue; 4452 } 4453 4454 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4455 rx.sdata = prev; 4456 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4457 4458 prev = sdata; 4459 } 4460 4461 if (prev) { 4462 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4463 rx.sdata = prev; 4464 4465 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4466 return; 4467 } 4468 4469 out: 4470 dev_kfree_skb(skb); 4471 } 4472 4473 /* 4474 * This is the receive path handler. It is called by a low level driver when an 4475 * 802.11 MPDU is received from the hardware. 4476 */ 4477 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4478 struct sk_buff *skb, struct napi_struct *napi) 4479 { 4480 struct ieee80211_local *local = hw_to_local(hw); 4481 struct ieee80211_rate *rate = NULL; 4482 struct ieee80211_supported_band *sband; 4483 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4484 4485 WARN_ON_ONCE(softirq_count() == 0); 4486 4487 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4488 goto drop; 4489 4490 sband = local->hw.wiphy->bands[status->band]; 4491 if (WARN_ON(!sband)) 4492 goto drop; 4493 4494 /* 4495 * If we're suspending, it is possible although not too likely 4496 * that we'd be receiving frames after having already partially 4497 * quiesced the stack. We can't process such frames then since 4498 * that might, for example, cause stations to be added or other 4499 * driver callbacks be invoked. 4500 */ 4501 if (unlikely(local->quiescing || local->suspended)) 4502 goto drop; 4503 4504 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4505 if (unlikely(local->in_reconfig)) 4506 goto drop; 4507 4508 /* 4509 * The same happens when we're not even started, 4510 * but that's worth a warning. 4511 */ 4512 if (WARN_ON(!local->started)) 4513 goto drop; 4514 4515 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4516 /* 4517 * Validate the rate, unless a PLCP error means that 4518 * we probably can't have a valid rate here anyway. 4519 */ 4520 4521 switch (status->encoding) { 4522 case RX_ENC_HT: 4523 /* 4524 * rate_idx is MCS index, which can be [0-76] 4525 * as documented on: 4526 * 4527 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4528 * 4529 * Anything else would be some sort of driver or 4530 * hardware error. The driver should catch hardware 4531 * errors. 4532 */ 4533 if (WARN(status->rate_idx > 76, 4534 "Rate marked as an HT rate but passed " 4535 "status->rate_idx is not " 4536 "an MCS index [0-76]: %d (0x%02x)\n", 4537 status->rate_idx, 4538 status->rate_idx)) 4539 goto drop; 4540 break; 4541 case RX_ENC_VHT: 4542 if (WARN_ONCE(status->rate_idx > 9 || 4543 !status->nss || 4544 status->nss > 8, 4545 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4546 status->rate_idx, status->nss)) 4547 goto drop; 4548 break; 4549 case RX_ENC_HE: 4550 if (WARN_ONCE(status->rate_idx > 11 || 4551 !status->nss || 4552 status->nss > 8, 4553 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4554 status->rate_idx, status->nss)) 4555 goto drop; 4556 break; 4557 default: 4558 WARN_ON_ONCE(1); 4559 /* fall through */ 4560 case RX_ENC_LEGACY: 4561 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4562 goto drop; 4563 rate = &sband->bitrates[status->rate_idx]; 4564 } 4565 } 4566 4567 status->rx_flags = 0; 4568 4569 /* 4570 * key references and virtual interfaces are protected using RCU 4571 * and this requires that we are in a read-side RCU section during 4572 * receive processing 4573 */ 4574 rcu_read_lock(); 4575 4576 /* 4577 * Frames with failed FCS/PLCP checksum are not returned, 4578 * all other frames are returned without radiotap header 4579 * if it was previously present. 4580 * Also, frames with less than 16 bytes are dropped. 4581 */ 4582 skb = ieee80211_rx_monitor(local, skb, rate); 4583 if (!skb) { 4584 rcu_read_unlock(); 4585 return; 4586 } 4587 4588 ieee80211_tpt_led_trig_rx(local, 4589 ((struct ieee80211_hdr *)skb->data)->frame_control, 4590 skb->len); 4591 4592 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4593 4594 rcu_read_unlock(); 4595 4596 return; 4597 drop: 4598 kfree_skb(skb); 4599 } 4600 EXPORT_SYMBOL(ieee80211_rx_napi); 4601 4602 /* This is a version of the rx handler that can be called from hard irq 4603 * context. Post the skb on the queue and schedule the tasklet */ 4604 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4605 { 4606 struct ieee80211_local *local = hw_to_local(hw); 4607 4608 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4609 4610 skb->pkt_type = IEEE80211_RX_MSG; 4611 skb_queue_tail(&local->skb_queue, skb); 4612 tasklet_schedule(&local->tasklet); 4613 } 4614 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4615