1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/jiffies.h> 14 #include <linux/slab.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 97 struct sk_buff *skb, 98 unsigned int rtap_vendor_space) 99 { 100 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 101 if (likely(skb->len > FCS_LEN)) 102 __pskb_trim(skb, skb->len - FCS_LEN); 103 else { 104 /* driver bug */ 105 WARN_ON(1); 106 dev_kfree_skb(skb); 107 return NULL; 108 } 109 } 110 111 __pskb_pull(skb, rtap_vendor_space); 112 113 return skb; 114 } 115 116 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 117 unsigned int rtap_vendor_space) 118 { 119 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 120 struct ieee80211_hdr *hdr; 121 122 hdr = (void *)(skb->data + rtap_vendor_space); 123 124 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 125 RX_FLAG_FAILED_PLCP_CRC)) 126 return true; 127 128 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 129 return true; 130 131 if (ieee80211_is_ctl(hdr->frame_control) && 132 !ieee80211_is_pspoll(hdr->frame_control) && 133 !ieee80211_is_back_req(hdr->frame_control)) 134 return true; 135 136 return false; 137 } 138 139 static int 140 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 141 struct ieee80211_rx_status *status, 142 struct sk_buff *skb) 143 { 144 int len; 145 146 /* always present fields */ 147 len = sizeof(struct ieee80211_radiotap_header) + 8; 148 149 /* allocate extra bitmaps */ 150 if (status->chains) 151 len += 4 * hweight8(status->chains); 152 153 if (ieee80211_have_rx_timestamp(status)) { 154 len = ALIGN(len, 8); 155 len += 8; 156 } 157 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 158 len += 1; 159 160 /* antenna field, if we don't have per-chain info */ 161 if (!status->chains) 162 len += 1; 163 164 /* padding for RX_FLAGS if necessary */ 165 len = ALIGN(len, 2); 166 167 if (status->flag & RX_FLAG_HT) /* HT info */ 168 len += 3; 169 170 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 171 len = ALIGN(len, 4); 172 len += 8; 173 } 174 175 if (status->flag & RX_FLAG_VHT) { 176 len = ALIGN(len, 2); 177 len += 12; 178 } 179 180 if (status->chains) { 181 /* antenna and antenna signal fields */ 182 len += 2 * hweight8(status->chains); 183 } 184 185 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 186 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 187 188 /* vendor presence bitmap */ 189 len += 4; 190 /* alignment for fixed 6-byte vendor data header */ 191 len = ALIGN(len, 2); 192 /* vendor data header */ 193 len += 6; 194 if (WARN_ON(rtap->align == 0)) 195 rtap->align = 1; 196 len = ALIGN(len, rtap->align); 197 len += rtap->len + rtap->pad; 198 } 199 200 return len; 201 } 202 203 /* 204 * ieee80211_add_rx_radiotap_header - add radiotap header 205 * 206 * add a radiotap header containing all the fields which the hardware provided. 207 */ 208 static void 209 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 210 struct sk_buff *skb, 211 struct ieee80211_rate *rate, 212 int rtap_len, bool has_fcs) 213 { 214 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 215 struct ieee80211_radiotap_header *rthdr; 216 unsigned char *pos; 217 __le32 *it_present; 218 u32 it_present_val; 219 u16 rx_flags = 0; 220 u16 channel_flags = 0; 221 int mpdulen, chain; 222 unsigned long chains = status->chains; 223 struct ieee80211_vendor_radiotap rtap = {}; 224 225 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 226 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 227 /* rtap.len and rtap.pad are undone immediately */ 228 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 229 } 230 231 mpdulen = skb->len; 232 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 233 mpdulen += FCS_LEN; 234 235 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 236 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 237 it_present = &rthdr->it_present; 238 239 /* radiotap header, set always present flags */ 240 rthdr->it_len = cpu_to_le16(rtap_len); 241 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 242 BIT(IEEE80211_RADIOTAP_CHANNEL) | 243 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 244 245 if (!status->chains) 246 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 247 248 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 249 it_present_val |= 250 BIT(IEEE80211_RADIOTAP_EXT) | 251 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 252 put_unaligned_le32(it_present_val, it_present); 253 it_present++; 254 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 255 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 256 } 257 258 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 259 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 260 BIT(IEEE80211_RADIOTAP_EXT); 261 put_unaligned_le32(it_present_val, it_present); 262 it_present++; 263 it_present_val = rtap.present; 264 } 265 266 put_unaligned_le32(it_present_val, it_present); 267 268 pos = (void *)(it_present + 1); 269 270 /* the order of the following fields is important */ 271 272 /* IEEE80211_RADIOTAP_TSFT */ 273 if (ieee80211_have_rx_timestamp(status)) { 274 /* padding */ 275 while ((pos - (u8 *)rthdr) & 7) 276 *pos++ = 0; 277 put_unaligned_le64( 278 ieee80211_calculate_rx_timestamp(local, status, 279 mpdulen, 0), 280 pos); 281 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 282 pos += 8; 283 } 284 285 /* IEEE80211_RADIOTAP_FLAGS */ 286 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 287 *pos |= IEEE80211_RADIOTAP_F_FCS; 288 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 289 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 290 if (status->flag & RX_FLAG_SHORTPRE) 291 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 292 pos++; 293 294 /* IEEE80211_RADIOTAP_RATE */ 295 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 296 /* 297 * Without rate information don't add it. If we have, 298 * MCS information is a separate field in radiotap, 299 * added below. The byte here is needed as padding 300 * for the channel though, so initialise it to 0. 301 */ 302 *pos = 0; 303 } else { 304 int shift = 0; 305 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 306 if (status->flag & RX_FLAG_10MHZ) 307 shift = 1; 308 else if (status->flag & RX_FLAG_5MHZ) 309 shift = 2; 310 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 311 } 312 pos++; 313 314 /* IEEE80211_RADIOTAP_CHANNEL */ 315 put_unaligned_le16(status->freq, pos); 316 pos += 2; 317 if (status->flag & RX_FLAG_10MHZ) 318 channel_flags |= IEEE80211_CHAN_HALF; 319 else if (status->flag & RX_FLAG_5MHZ) 320 channel_flags |= IEEE80211_CHAN_QUARTER; 321 322 if (status->band == IEEE80211_BAND_5GHZ) 323 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 324 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 325 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 326 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 327 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 328 else if (rate) 329 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 330 else 331 channel_flags |= IEEE80211_CHAN_2GHZ; 332 put_unaligned_le16(channel_flags, pos); 333 pos += 2; 334 335 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 336 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 337 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 338 *pos = status->signal; 339 rthdr->it_present |= 340 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 341 pos++; 342 } 343 344 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 345 346 if (!status->chains) { 347 /* IEEE80211_RADIOTAP_ANTENNA */ 348 *pos = status->antenna; 349 pos++; 350 } 351 352 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 353 354 /* IEEE80211_RADIOTAP_RX_FLAGS */ 355 /* ensure 2 byte alignment for the 2 byte field as required */ 356 if ((pos - (u8 *)rthdr) & 1) 357 *pos++ = 0; 358 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 359 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 360 put_unaligned_le16(rx_flags, pos); 361 pos += 2; 362 363 if (status->flag & RX_FLAG_HT) { 364 unsigned int stbc; 365 366 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 367 *pos++ = local->hw.radiotap_mcs_details; 368 *pos = 0; 369 if (status->flag & RX_FLAG_SHORT_GI) 370 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 371 if (status->flag & RX_FLAG_40MHZ) 372 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 373 if (status->flag & RX_FLAG_HT_GF) 374 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 375 if (status->flag & RX_FLAG_LDPC) 376 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 377 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 378 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 379 pos++; 380 *pos++ = status->rate_idx; 381 } 382 383 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 384 u16 flags = 0; 385 386 /* ensure 4 byte alignment */ 387 while ((pos - (u8 *)rthdr) & 3) 388 pos++; 389 rthdr->it_present |= 390 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 391 put_unaligned_le32(status->ampdu_reference, pos); 392 pos += 4; 393 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 394 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 395 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 396 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 397 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 398 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 399 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 400 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 401 put_unaligned_le16(flags, pos); 402 pos += 2; 403 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 404 *pos++ = status->ampdu_delimiter_crc; 405 else 406 *pos++ = 0; 407 *pos++ = 0; 408 } 409 410 if (status->flag & RX_FLAG_VHT) { 411 u16 known = local->hw.radiotap_vht_details; 412 413 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 414 put_unaligned_le16(known, pos); 415 pos += 2; 416 /* flags */ 417 if (status->flag & RX_FLAG_SHORT_GI) 418 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 419 /* in VHT, STBC is binary */ 420 if (status->flag & RX_FLAG_STBC_MASK) 421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 422 if (status->vht_flag & RX_VHT_FLAG_BF) 423 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 424 pos++; 425 /* bandwidth */ 426 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 427 *pos++ = 4; 428 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 429 *pos++ = 11; 430 else if (status->flag & RX_FLAG_40MHZ) 431 *pos++ = 1; 432 else /* 20 MHz */ 433 *pos++ = 0; 434 /* MCS/NSS */ 435 *pos = (status->rate_idx << 4) | status->vht_nss; 436 pos += 4; 437 /* coding field */ 438 if (status->flag & RX_FLAG_LDPC) 439 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 440 pos++; 441 /* group ID */ 442 pos++; 443 /* partial_aid */ 444 pos += 2; 445 } 446 447 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 448 *pos++ = status->chain_signal[chain]; 449 *pos++ = chain; 450 } 451 452 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 453 /* ensure 2 byte alignment for the vendor field as required */ 454 if ((pos - (u8 *)rthdr) & 1) 455 *pos++ = 0; 456 *pos++ = rtap.oui[0]; 457 *pos++ = rtap.oui[1]; 458 *pos++ = rtap.oui[2]; 459 *pos++ = rtap.subns; 460 put_unaligned_le16(rtap.len, pos); 461 pos += 2; 462 /* align the actual payload as requested */ 463 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 464 *pos++ = 0; 465 /* data (and possible padding) already follows */ 466 } 467 } 468 469 /* 470 * This function copies a received frame to all monitor interfaces and 471 * returns a cleaned-up SKB that no longer includes the FCS nor the 472 * radiotap header the driver might have added. 473 */ 474 static struct sk_buff * 475 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 476 struct ieee80211_rate *rate) 477 { 478 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 479 struct ieee80211_sub_if_data *sdata; 480 int rt_hdrlen, needed_headroom; 481 struct sk_buff *skb, *skb2; 482 struct net_device *prev_dev = NULL; 483 int present_fcs_len = 0; 484 unsigned int rtap_vendor_space = 0; 485 486 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 487 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 488 489 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 490 } 491 492 /* 493 * First, we may need to make a copy of the skb because 494 * (1) we need to modify it for radiotap (if not present), and 495 * (2) the other RX handlers will modify the skb we got. 496 * 497 * We don't need to, of course, if we aren't going to return 498 * the SKB because it has a bad FCS/PLCP checksum. 499 */ 500 501 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 502 present_fcs_len = FCS_LEN; 503 504 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 505 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 506 dev_kfree_skb(origskb); 507 return NULL; 508 } 509 510 if (!local->monitors) { 511 if (should_drop_frame(origskb, present_fcs_len, 512 rtap_vendor_space)) { 513 dev_kfree_skb(origskb); 514 return NULL; 515 } 516 517 return remove_monitor_info(local, origskb, rtap_vendor_space); 518 } 519 520 /* room for the radiotap header based on driver features */ 521 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 522 needed_headroom = rt_hdrlen - rtap_vendor_space; 523 524 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 525 /* only need to expand headroom if necessary */ 526 skb = origskb; 527 origskb = NULL; 528 529 /* 530 * This shouldn't trigger often because most devices have an 531 * RX header they pull before we get here, and that should 532 * be big enough for our radiotap information. We should 533 * probably export the length to drivers so that we can have 534 * them allocate enough headroom to start with. 535 */ 536 if (skb_headroom(skb) < needed_headroom && 537 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 538 dev_kfree_skb(skb); 539 return NULL; 540 } 541 } else { 542 /* 543 * Need to make a copy and possibly remove radiotap header 544 * and FCS from the original. 545 */ 546 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 547 548 origskb = remove_monitor_info(local, origskb, 549 rtap_vendor_space); 550 551 if (!skb) 552 return origskb; 553 } 554 555 /* prepend radiotap information */ 556 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 557 558 skb_reset_mac_header(skb); 559 skb->ip_summed = CHECKSUM_UNNECESSARY; 560 skb->pkt_type = PACKET_OTHERHOST; 561 skb->protocol = htons(ETH_P_802_2); 562 563 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 564 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 565 continue; 566 567 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 568 continue; 569 570 if (!ieee80211_sdata_running(sdata)) 571 continue; 572 573 if (prev_dev) { 574 skb2 = skb_clone(skb, GFP_ATOMIC); 575 if (skb2) { 576 skb2->dev = prev_dev; 577 netif_receive_skb(skb2); 578 } 579 } 580 581 prev_dev = sdata->dev; 582 ieee80211_rx_stats(sdata->dev, skb->len); 583 } 584 585 if (prev_dev) { 586 skb->dev = prev_dev; 587 netif_receive_skb(skb); 588 } else 589 dev_kfree_skb(skb); 590 591 return origskb; 592 } 593 594 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 595 { 596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 597 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 598 int tid, seqno_idx, security_idx; 599 600 /* does the frame have a qos control field? */ 601 if (ieee80211_is_data_qos(hdr->frame_control)) { 602 u8 *qc = ieee80211_get_qos_ctl(hdr); 603 /* frame has qos control */ 604 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 605 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 606 status->rx_flags |= IEEE80211_RX_AMSDU; 607 608 seqno_idx = tid; 609 security_idx = tid; 610 } else { 611 /* 612 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 613 * 614 * Sequence numbers for management frames, QoS data 615 * frames with a broadcast/multicast address in the 616 * Address 1 field, and all non-QoS data frames sent 617 * by QoS STAs are assigned using an additional single 618 * modulo-4096 counter, [...] 619 * 620 * We also use that counter for non-QoS STAs. 621 */ 622 seqno_idx = IEEE80211_NUM_TIDS; 623 security_idx = 0; 624 if (ieee80211_is_mgmt(hdr->frame_control)) 625 security_idx = IEEE80211_NUM_TIDS; 626 tid = 0; 627 } 628 629 rx->seqno_idx = seqno_idx; 630 rx->security_idx = security_idx; 631 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 632 * For now, set skb->priority to 0 for other cases. */ 633 rx->skb->priority = (tid > 7) ? 0 : tid; 634 } 635 636 /** 637 * DOC: Packet alignment 638 * 639 * Drivers always need to pass packets that are aligned to two-byte boundaries 640 * to the stack. 641 * 642 * Additionally, should, if possible, align the payload data in a way that 643 * guarantees that the contained IP header is aligned to a four-byte 644 * boundary. In the case of regular frames, this simply means aligning the 645 * payload to a four-byte boundary (because either the IP header is directly 646 * contained, or IV/RFC1042 headers that have a length divisible by four are 647 * in front of it). If the payload data is not properly aligned and the 648 * architecture doesn't support efficient unaligned operations, mac80211 649 * will align the data. 650 * 651 * With A-MSDU frames, however, the payload data address must yield two modulo 652 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 653 * push the IP header further back to a multiple of four again. Thankfully, the 654 * specs were sane enough this time around to require padding each A-MSDU 655 * subframe to a length that is a multiple of four. 656 * 657 * Padding like Atheros hardware adds which is between the 802.11 header and 658 * the payload is not supported, the driver is required to move the 802.11 659 * header to be directly in front of the payload in that case. 660 */ 661 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 662 { 663 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 664 WARN_ONCE((unsigned long)rx->skb->data & 1, 665 "unaligned packet at 0x%p\n", rx->skb->data); 666 #endif 667 } 668 669 670 /* rx handlers */ 671 672 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 673 { 674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 675 676 if (is_multicast_ether_addr(hdr->addr1)) 677 return 0; 678 679 return ieee80211_is_robust_mgmt_frame(skb); 680 } 681 682 683 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 684 { 685 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 686 687 if (!is_multicast_ether_addr(hdr->addr1)) 688 return 0; 689 690 return ieee80211_is_robust_mgmt_frame(skb); 691 } 692 693 694 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 695 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 696 { 697 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 698 struct ieee80211_mmie *mmie; 699 struct ieee80211_mmie_16 *mmie16; 700 701 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 702 return -1; 703 704 if (!ieee80211_is_robust_mgmt_frame(skb)) 705 return -1; /* not a robust management frame */ 706 707 mmie = (struct ieee80211_mmie *) 708 (skb->data + skb->len - sizeof(*mmie)); 709 if (mmie->element_id == WLAN_EID_MMIE && 710 mmie->length == sizeof(*mmie) - 2) 711 return le16_to_cpu(mmie->key_id); 712 713 mmie16 = (struct ieee80211_mmie_16 *) 714 (skb->data + skb->len - sizeof(*mmie16)); 715 if (skb->len >= 24 + sizeof(*mmie16) && 716 mmie16->element_id == WLAN_EID_MMIE && 717 mmie16->length == sizeof(*mmie16) - 2) 718 return le16_to_cpu(mmie16->key_id); 719 720 return -1; 721 } 722 723 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 724 struct sk_buff *skb) 725 { 726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 727 __le16 fc; 728 int hdrlen; 729 u8 keyid; 730 731 fc = hdr->frame_control; 732 hdrlen = ieee80211_hdrlen(fc); 733 734 if (skb->len < hdrlen + cs->hdr_len) 735 return -EINVAL; 736 737 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 738 keyid &= cs->key_idx_mask; 739 keyid >>= cs->key_idx_shift; 740 741 return keyid; 742 } 743 744 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 745 { 746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 747 char *dev_addr = rx->sdata->vif.addr; 748 749 if (ieee80211_is_data(hdr->frame_control)) { 750 if (is_multicast_ether_addr(hdr->addr1)) { 751 if (ieee80211_has_tods(hdr->frame_control) || 752 !ieee80211_has_fromds(hdr->frame_control)) 753 return RX_DROP_MONITOR; 754 if (ether_addr_equal(hdr->addr3, dev_addr)) 755 return RX_DROP_MONITOR; 756 } else { 757 if (!ieee80211_has_a4(hdr->frame_control)) 758 return RX_DROP_MONITOR; 759 if (ether_addr_equal(hdr->addr4, dev_addr)) 760 return RX_DROP_MONITOR; 761 } 762 } 763 764 /* If there is not an established peer link and this is not a peer link 765 * establisment frame, beacon or probe, drop the frame. 766 */ 767 768 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 769 struct ieee80211_mgmt *mgmt; 770 771 if (!ieee80211_is_mgmt(hdr->frame_control)) 772 return RX_DROP_MONITOR; 773 774 if (ieee80211_is_action(hdr->frame_control)) { 775 u8 category; 776 777 /* make sure category field is present */ 778 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 779 return RX_DROP_MONITOR; 780 781 mgmt = (struct ieee80211_mgmt *)hdr; 782 category = mgmt->u.action.category; 783 if (category != WLAN_CATEGORY_MESH_ACTION && 784 category != WLAN_CATEGORY_SELF_PROTECTED) 785 return RX_DROP_MONITOR; 786 return RX_CONTINUE; 787 } 788 789 if (ieee80211_is_probe_req(hdr->frame_control) || 790 ieee80211_is_probe_resp(hdr->frame_control) || 791 ieee80211_is_beacon(hdr->frame_control) || 792 ieee80211_is_auth(hdr->frame_control)) 793 return RX_CONTINUE; 794 795 return RX_DROP_MONITOR; 796 } 797 798 return RX_CONTINUE; 799 } 800 801 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 802 struct tid_ampdu_rx *tid_agg_rx, 803 int index, 804 struct sk_buff_head *frames) 805 { 806 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 807 struct sk_buff *skb; 808 struct ieee80211_rx_status *status; 809 810 lockdep_assert_held(&tid_agg_rx->reorder_lock); 811 812 if (skb_queue_empty(skb_list)) 813 goto no_frame; 814 815 if (!ieee80211_rx_reorder_ready(skb_list)) { 816 __skb_queue_purge(skb_list); 817 goto no_frame; 818 } 819 820 /* release frames from the reorder ring buffer */ 821 tid_agg_rx->stored_mpdu_num--; 822 while ((skb = __skb_dequeue(skb_list))) { 823 status = IEEE80211_SKB_RXCB(skb); 824 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 825 __skb_queue_tail(frames, skb); 826 } 827 828 no_frame: 829 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 830 } 831 832 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 833 struct tid_ampdu_rx *tid_agg_rx, 834 u16 head_seq_num, 835 struct sk_buff_head *frames) 836 { 837 int index; 838 839 lockdep_assert_held(&tid_agg_rx->reorder_lock); 840 841 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 842 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 843 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 844 frames); 845 } 846 } 847 848 /* 849 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 850 * the skb was added to the buffer longer than this time ago, the earlier 851 * frames that have not yet been received are assumed to be lost and the skb 852 * can be released for processing. This may also release other skb's from the 853 * reorder buffer if there are no additional gaps between the frames. 854 * 855 * Callers must hold tid_agg_rx->reorder_lock. 856 */ 857 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 858 859 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 860 struct tid_ampdu_rx *tid_agg_rx, 861 struct sk_buff_head *frames) 862 { 863 int index, i, j; 864 865 lockdep_assert_held(&tid_agg_rx->reorder_lock); 866 867 /* release the buffer until next missing frame */ 868 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 869 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && 870 tid_agg_rx->stored_mpdu_num) { 871 /* 872 * No buffers ready to be released, but check whether any 873 * frames in the reorder buffer have timed out. 874 */ 875 int skipped = 1; 876 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 877 j = (j + 1) % tid_agg_rx->buf_size) { 878 if (!ieee80211_rx_reorder_ready( 879 &tid_agg_rx->reorder_buf[j])) { 880 skipped++; 881 continue; 882 } 883 if (skipped && 884 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 885 HT_RX_REORDER_BUF_TIMEOUT)) 886 goto set_release_timer; 887 888 /* don't leave incomplete A-MSDUs around */ 889 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 890 i = (i + 1) % tid_agg_rx->buf_size) 891 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 892 893 ht_dbg_ratelimited(sdata, 894 "release an RX reorder frame due to timeout on earlier frames\n"); 895 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 896 frames); 897 898 /* 899 * Increment the head seq# also for the skipped slots. 900 */ 901 tid_agg_rx->head_seq_num = 902 (tid_agg_rx->head_seq_num + 903 skipped) & IEEE80211_SN_MASK; 904 skipped = 0; 905 } 906 } else while (ieee80211_rx_reorder_ready( 907 &tid_agg_rx->reorder_buf[index])) { 908 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 909 frames); 910 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 911 } 912 913 if (tid_agg_rx->stored_mpdu_num) { 914 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 915 916 for (; j != (index - 1) % tid_agg_rx->buf_size; 917 j = (j + 1) % tid_agg_rx->buf_size) { 918 if (ieee80211_rx_reorder_ready( 919 &tid_agg_rx->reorder_buf[j])) 920 break; 921 } 922 923 set_release_timer: 924 925 if (!tid_agg_rx->removed) 926 mod_timer(&tid_agg_rx->reorder_timer, 927 tid_agg_rx->reorder_time[j] + 1 + 928 HT_RX_REORDER_BUF_TIMEOUT); 929 } else { 930 del_timer(&tid_agg_rx->reorder_timer); 931 } 932 } 933 934 /* 935 * As this function belongs to the RX path it must be under 936 * rcu_read_lock protection. It returns false if the frame 937 * can be processed immediately, true if it was consumed. 938 */ 939 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 940 struct tid_ampdu_rx *tid_agg_rx, 941 struct sk_buff *skb, 942 struct sk_buff_head *frames) 943 { 944 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 945 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 946 u16 sc = le16_to_cpu(hdr->seq_ctrl); 947 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 948 u16 head_seq_num, buf_size; 949 int index; 950 bool ret = true; 951 952 spin_lock(&tid_agg_rx->reorder_lock); 953 954 /* 955 * Offloaded BA sessions have no known starting sequence number so pick 956 * one from first Rxed frame for this tid after BA was started. 957 */ 958 if (unlikely(tid_agg_rx->auto_seq)) { 959 tid_agg_rx->auto_seq = false; 960 tid_agg_rx->ssn = mpdu_seq_num; 961 tid_agg_rx->head_seq_num = mpdu_seq_num; 962 } 963 964 buf_size = tid_agg_rx->buf_size; 965 head_seq_num = tid_agg_rx->head_seq_num; 966 967 /* frame with out of date sequence number */ 968 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 969 dev_kfree_skb(skb); 970 goto out; 971 } 972 973 /* 974 * If frame the sequence number exceeds our buffering window 975 * size release some previous frames to make room for this one. 976 */ 977 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 978 head_seq_num = ieee80211_sn_inc( 979 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 980 /* release stored frames up to new head to stack */ 981 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 982 head_seq_num, frames); 983 } 984 985 /* Now the new frame is always in the range of the reordering buffer */ 986 987 index = mpdu_seq_num % tid_agg_rx->buf_size; 988 989 /* check if we already stored this frame */ 990 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { 991 dev_kfree_skb(skb); 992 goto out; 993 } 994 995 /* 996 * If the current MPDU is in the right order and nothing else 997 * is stored we can process it directly, no need to buffer it. 998 * If it is first but there's something stored, we may be able 999 * to release frames after this one. 1000 */ 1001 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1002 tid_agg_rx->stored_mpdu_num == 0) { 1003 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1004 tid_agg_rx->head_seq_num = 1005 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1006 ret = false; 1007 goto out; 1008 } 1009 1010 /* put the frame in the reordering buffer */ 1011 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1012 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1013 tid_agg_rx->reorder_time[index] = jiffies; 1014 tid_agg_rx->stored_mpdu_num++; 1015 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1016 } 1017 1018 out: 1019 spin_unlock(&tid_agg_rx->reorder_lock); 1020 return ret; 1021 } 1022 1023 /* 1024 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1025 * true if the MPDU was buffered, false if it should be processed. 1026 */ 1027 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1028 struct sk_buff_head *frames) 1029 { 1030 struct sk_buff *skb = rx->skb; 1031 struct ieee80211_local *local = rx->local; 1032 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1033 struct sta_info *sta = rx->sta; 1034 struct tid_ampdu_rx *tid_agg_rx; 1035 u16 sc; 1036 u8 tid, ack_policy; 1037 1038 if (!ieee80211_is_data_qos(hdr->frame_control) || 1039 is_multicast_ether_addr(hdr->addr1)) 1040 goto dont_reorder; 1041 1042 /* 1043 * filter the QoS data rx stream according to 1044 * STA/TID and check if this STA/TID is on aggregation 1045 */ 1046 1047 if (!sta) 1048 goto dont_reorder; 1049 1050 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1051 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1052 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1053 1054 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1055 if (!tid_agg_rx) 1056 goto dont_reorder; 1057 1058 /* qos null data frames are excluded */ 1059 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1060 goto dont_reorder; 1061 1062 /* not part of a BA session */ 1063 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1064 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1065 goto dont_reorder; 1066 1067 /* new, potentially un-ordered, ampdu frame - process it */ 1068 1069 /* reset session timer */ 1070 if (tid_agg_rx->timeout) 1071 tid_agg_rx->last_rx = jiffies; 1072 1073 /* if this mpdu is fragmented - terminate rx aggregation session */ 1074 sc = le16_to_cpu(hdr->seq_ctrl); 1075 if (sc & IEEE80211_SCTL_FRAG) { 1076 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1077 skb_queue_tail(&rx->sdata->skb_queue, skb); 1078 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1079 return; 1080 } 1081 1082 /* 1083 * No locking needed -- we will only ever process one 1084 * RX packet at a time, and thus own tid_agg_rx. All 1085 * other code manipulating it needs to (and does) make 1086 * sure that we cannot get to it any more before doing 1087 * anything with it. 1088 */ 1089 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1090 frames)) 1091 return; 1092 1093 dont_reorder: 1094 __skb_queue_tail(frames, skb); 1095 } 1096 1097 static ieee80211_rx_result debug_noinline 1098 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1099 { 1100 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1101 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1102 1103 /* 1104 * Drop duplicate 802.11 retransmissions 1105 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1106 */ 1107 1108 if (rx->skb->len < 24) 1109 return RX_CONTINUE; 1110 1111 if (ieee80211_is_ctl(hdr->frame_control) || 1112 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1113 is_multicast_ether_addr(hdr->addr1)) 1114 return RX_CONTINUE; 1115 1116 if (rx->sta) { 1117 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1118 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1119 hdr->seq_ctrl)) { 1120 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1121 rx->sta->num_duplicates++; 1122 return RX_DROP_UNUSABLE; 1123 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1124 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1125 } 1126 } 1127 1128 return RX_CONTINUE; 1129 } 1130 1131 static ieee80211_rx_result debug_noinline 1132 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1133 { 1134 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1135 1136 /* Drop disallowed frame classes based on STA auth/assoc state; 1137 * IEEE 802.11, Chap 5.5. 1138 * 1139 * mac80211 filters only based on association state, i.e. it drops 1140 * Class 3 frames from not associated stations. hostapd sends 1141 * deauth/disassoc frames when needed. In addition, hostapd is 1142 * responsible for filtering on both auth and assoc states. 1143 */ 1144 1145 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1146 return ieee80211_rx_mesh_check(rx); 1147 1148 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1149 ieee80211_is_pspoll(hdr->frame_control)) && 1150 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1151 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1152 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1153 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1154 /* 1155 * accept port control frames from the AP even when it's not 1156 * yet marked ASSOC to prevent a race where we don't set the 1157 * assoc bit quickly enough before it sends the first frame 1158 */ 1159 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1160 ieee80211_is_data_present(hdr->frame_control)) { 1161 unsigned int hdrlen; 1162 __be16 ethertype; 1163 1164 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1165 1166 if (rx->skb->len < hdrlen + 8) 1167 return RX_DROP_MONITOR; 1168 1169 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1170 if (ethertype == rx->sdata->control_port_protocol) 1171 return RX_CONTINUE; 1172 } 1173 1174 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1175 cfg80211_rx_spurious_frame(rx->sdata->dev, 1176 hdr->addr2, 1177 GFP_ATOMIC)) 1178 return RX_DROP_UNUSABLE; 1179 1180 return RX_DROP_MONITOR; 1181 } 1182 1183 return RX_CONTINUE; 1184 } 1185 1186 1187 static ieee80211_rx_result debug_noinline 1188 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1189 { 1190 struct ieee80211_local *local; 1191 struct ieee80211_hdr *hdr; 1192 struct sk_buff *skb; 1193 1194 local = rx->local; 1195 skb = rx->skb; 1196 hdr = (struct ieee80211_hdr *) skb->data; 1197 1198 if (!local->pspolling) 1199 return RX_CONTINUE; 1200 1201 if (!ieee80211_has_fromds(hdr->frame_control)) 1202 /* this is not from AP */ 1203 return RX_CONTINUE; 1204 1205 if (!ieee80211_is_data(hdr->frame_control)) 1206 return RX_CONTINUE; 1207 1208 if (!ieee80211_has_moredata(hdr->frame_control)) { 1209 /* AP has no more frames buffered for us */ 1210 local->pspolling = false; 1211 return RX_CONTINUE; 1212 } 1213 1214 /* more data bit is set, let's request a new frame from the AP */ 1215 ieee80211_send_pspoll(local, rx->sdata); 1216 1217 return RX_CONTINUE; 1218 } 1219 1220 static void sta_ps_start(struct sta_info *sta) 1221 { 1222 struct ieee80211_sub_if_data *sdata = sta->sdata; 1223 struct ieee80211_local *local = sdata->local; 1224 struct ps_data *ps; 1225 int tid; 1226 1227 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1228 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1229 ps = &sdata->bss->ps; 1230 else 1231 return; 1232 1233 atomic_inc(&ps->num_sta_ps); 1234 set_sta_flag(sta, WLAN_STA_PS_STA); 1235 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1236 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1237 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1238 sta->sta.addr, sta->sta.aid); 1239 1240 ieee80211_clear_fast_xmit(sta); 1241 1242 if (!sta->sta.txq[0]) 1243 return; 1244 1245 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1246 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1247 1248 if (!skb_queue_len(&txqi->queue)) 1249 set_bit(tid, &sta->txq_buffered_tids); 1250 else 1251 clear_bit(tid, &sta->txq_buffered_tids); 1252 } 1253 } 1254 1255 static void sta_ps_end(struct sta_info *sta) 1256 { 1257 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1258 sta->sta.addr, sta->sta.aid); 1259 1260 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1261 /* 1262 * Clear the flag only if the other one is still set 1263 * so that the TX path won't start TX'ing new frames 1264 * directly ... In the case that the driver flag isn't 1265 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1266 */ 1267 clear_sta_flag(sta, WLAN_STA_PS_STA); 1268 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1269 sta->sta.addr, sta->sta.aid); 1270 return; 1271 } 1272 1273 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1274 clear_sta_flag(sta, WLAN_STA_PS_STA); 1275 ieee80211_sta_ps_deliver_wakeup(sta); 1276 } 1277 1278 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1279 { 1280 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1281 bool in_ps; 1282 1283 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1284 1285 /* Don't let the same PS state be set twice */ 1286 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1287 if ((start && in_ps) || (!start && !in_ps)) 1288 return -EINVAL; 1289 1290 if (start) 1291 sta_ps_start(sta); 1292 else 1293 sta_ps_end(sta); 1294 1295 return 0; 1296 } 1297 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1298 1299 static ieee80211_rx_result debug_noinline 1300 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1301 { 1302 struct ieee80211_sub_if_data *sdata = rx->sdata; 1303 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1304 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1305 int tid, ac; 1306 1307 if (!rx->sta) 1308 return RX_CONTINUE; 1309 1310 if (sdata->vif.type != NL80211_IFTYPE_AP && 1311 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1312 return RX_CONTINUE; 1313 1314 /* 1315 * The device handles station powersave, so don't do anything about 1316 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1317 * it to mac80211 since they're handled.) 1318 */ 1319 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1320 return RX_CONTINUE; 1321 1322 /* 1323 * Don't do anything if the station isn't already asleep. In 1324 * the uAPSD case, the station will probably be marked asleep, 1325 * in the PS-Poll case the station must be confused ... 1326 */ 1327 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1328 return RX_CONTINUE; 1329 1330 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1331 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1332 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1333 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1334 else 1335 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1336 } 1337 1338 /* Free PS Poll skb here instead of returning RX_DROP that would 1339 * count as an dropped frame. */ 1340 dev_kfree_skb(rx->skb); 1341 1342 return RX_QUEUED; 1343 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1344 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1345 ieee80211_has_pm(hdr->frame_control) && 1346 (ieee80211_is_data_qos(hdr->frame_control) || 1347 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1348 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1349 ac = ieee802_1d_to_ac[tid & 7]; 1350 1351 /* 1352 * If this AC is not trigger-enabled do nothing. 1353 * 1354 * NB: This could/should check a separate bitmap of trigger- 1355 * enabled queues, but for now we only implement uAPSD w/o 1356 * TSPEC changes to the ACs, so they're always the same. 1357 */ 1358 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1359 return RX_CONTINUE; 1360 1361 /* if we are in a service period, do nothing */ 1362 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1363 return RX_CONTINUE; 1364 1365 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1366 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1367 else 1368 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1369 } 1370 1371 return RX_CONTINUE; 1372 } 1373 1374 static ieee80211_rx_result debug_noinline 1375 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1376 { 1377 struct sta_info *sta = rx->sta; 1378 struct sk_buff *skb = rx->skb; 1379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1380 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1381 int i; 1382 1383 if (!sta) 1384 return RX_CONTINUE; 1385 1386 /* 1387 * Update last_rx only for IBSS packets which are for the current 1388 * BSSID and for station already AUTHORIZED to avoid keeping the 1389 * current IBSS network alive in cases where other STAs start 1390 * using different BSSID. This will also give the station another 1391 * chance to restart the authentication/authorization in case 1392 * something went wrong the first time. 1393 */ 1394 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1395 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1396 NL80211_IFTYPE_ADHOC); 1397 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1398 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1399 sta->last_rx = jiffies; 1400 if (ieee80211_is_data(hdr->frame_control) && 1401 !is_multicast_ether_addr(hdr->addr1)) { 1402 sta->last_rx_rate_idx = status->rate_idx; 1403 sta->last_rx_rate_flag = status->flag; 1404 sta->last_rx_rate_vht_flag = status->vht_flag; 1405 sta->last_rx_rate_vht_nss = status->vht_nss; 1406 } 1407 } 1408 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1409 sta->last_rx = jiffies; 1410 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1411 /* 1412 * Mesh beacons will update last_rx when if they are found to 1413 * match the current local configuration when processed. 1414 */ 1415 sta->last_rx = jiffies; 1416 if (ieee80211_is_data(hdr->frame_control)) { 1417 sta->last_rx_rate_idx = status->rate_idx; 1418 sta->last_rx_rate_flag = status->flag; 1419 sta->last_rx_rate_vht_flag = status->vht_flag; 1420 sta->last_rx_rate_vht_nss = status->vht_nss; 1421 } 1422 } 1423 1424 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1425 ieee80211_sta_rx_notify(rx->sdata, hdr); 1426 1427 sta->rx_fragments++; 1428 sta->rx_bytes += rx->skb->len; 1429 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1430 sta->last_signal = status->signal; 1431 ewma_signal_add(&sta->avg_signal, -status->signal); 1432 } 1433 1434 if (status->chains) { 1435 sta->chains = status->chains; 1436 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1437 int signal = status->chain_signal[i]; 1438 1439 if (!(status->chains & BIT(i))) 1440 continue; 1441 1442 sta->chain_signal_last[i] = signal; 1443 ewma_signal_add(&sta->chain_signal_avg[i], -signal); 1444 } 1445 } 1446 1447 /* 1448 * Change STA power saving mode only at the end of a frame 1449 * exchange sequence. 1450 */ 1451 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1452 !ieee80211_has_morefrags(hdr->frame_control) && 1453 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1454 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1455 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1456 /* PM bit is only checked in frames where it isn't reserved, 1457 * in AP mode it's reserved in non-bufferable management frames 1458 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1459 */ 1460 (!ieee80211_is_mgmt(hdr->frame_control) || 1461 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1462 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1463 if (!ieee80211_has_pm(hdr->frame_control)) 1464 sta_ps_end(sta); 1465 } else { 1466 if (ieee80211_has_pm(hdr->frame_control)) 1467 sta_ps_start(sta); 1468 } 1469 } 1470 1471 /* mesh power save support */ 1472 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1473 ieee80211_mps_rx_h_sta_process(sta, hdr); 1474 1475 /* 1476 * Drop (qos-)data::nullfunc frames silently, since they 1477 * are used only to control station power saving mode. 1478 */ 1479 if (ieee80211_is_nullfunc(hdr->frame_control) || 1480 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1481 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1482 1483 /* 1484 * If we receive a 4-addr nullfunc frame from a STA 1485 * that was not moved to a 4-addr STA vlan yet send 1486 * the event to userspace and for older hostapd drop 1487 * the frame to the monitor interface. 1488 */ 1489 if (ieee80211_has_a4(hdr->frame_control) && 1490 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1491 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1492 !rx->sdata->u.vlan.sta))) { 1493 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1494 cfg80211_rx_unexpected_4addr_frame( 1495 rx->sdata->dev, sta->sta.addr, 1496 GFP_ATOMIC); 1497 return RX_DROP_MONITOR; 1498 } 1499 /* 1500 * Update counter and free packet here to avoid 1501 * counting this as a dropped packed. 1502 */ 1503 sta->rx_packets++; 1504 dev_kfree_skb(rx->skb); 1505 return RX_QUEUED; 1506 } 1507 1508 return RX_CONTINUE; 1509 } /* ieee80211_rx_h_sta_process */ 1510 1511 static ieee80211_rx_result debug_noinline 1512 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1513 { 1514 struct sk_buff *skb = rx->skb; 1515 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1516 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1517 int keyidx; 1518 int hdrlen; 1519 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1520 struct ieee80211_key *sta_ptk = NULL; 1521 int mmie_keyidx = -1; 1522 __le16 fc; 1523 const struct ieee80211_cipher_scheme *cs = NULL; 1524 1525 /* 1526 * Key selection 101 1527 * 1528 * There are four types of keys: 1529 * - GTK (group keys) 1530 * - IGTK (group keys for management frames) 1531 * - PTK (pairwise keys) 1532 * - STK (station-to-station pairwise keys) 1533 * 1534 * When selecting a key, we have to distinguish between multicast 1535 * (including broadcast) and unicast frames, the latter can only 1536 * use PTKs and STKs while the former always use GTKs and IGTKs. 1537 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1538 * unicast frames can also use key indices like GTKs. Hence, if we 1539 * don't have a PTK/STK we check the key index for a WEP key. 1540 * 1541 * Note that in a regular BSS, multicast frames are sent by the 1542 * AP only, associated stations unicast the frame to the AP first 1543 * which then multicasts it on their behalf. 1544 * 1545 * There is also a slight problem in IBSS mode: GTKs are negotiated 1546 * with each station, that is something we don't currently handle. 1547 * The spec seems to expect that one negotiates the same key with 1548 * every station but there's no such requirement; VLANs could be 1549 * possible. 1550 */ 1551 1552 /* start without a key */ 1553 rx->key = NULL; 1554 fc = hdr->frame_control; 1555 1556 if (rx->sta) { 1557 int keyid = rx->sta->ptk_idx; 1558 1559 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1560 cs = rx->sta->cipher_scheme; 1561 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1562 if (unlikely(keyid < 0)) 1563 return RX_DROP_UNUSABLE; 1564 } 1565 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1566 } 1567 1568 if (!ieee80211_has_protected(fc)) 1569 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1570 1571 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1572 rx->key = sta_ptk; 1573 if ((status->flag & RX_FLAG_DECRYPTED) && 1574 (status->flag & RX_FLAG_IV_STRIPPED)) 1575 return RX_CONTINUE; 1576 /* Skip decryption if the frame is not protected. */ 1577 if (!ieee80211_has_protected(fc)) 1578 return RX_CONTINUE; 1579 } else if (mmie_keyidx >= 0) { 1580 /* Broadcast/multicast robust management frame / BIP */ 1581 if ((status->flag & RX_FLAG_DECRYPTED) && 1582 (status->flag & RX_FLAG_IV_STRIPPED)) 1583 return RX_CONTINUE; 1584 1585 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1586 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1587 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1588 if (rx->sta) 1589 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1590 if (!rx->key) 1591 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1592 } else if (!ieee80211_has_protected(fc)) { 1593 /* 1594 * The frame was not protected, so skip decryption. However, we 1595 * need to set rx->key if there is a key that could have been 1596 * used so that the frame may be dropped if encryption would 1597 * have been expected. 1598 */ 1599 struct ieee80211_key *key = NULL; 1600 struct ieee80211_sub_if_data *sdata = rx->sdata; 1601 int i; 1602 1603 if (ieee80211_is_mgmt(fc) && 1604 is_multicast_ether_addr(hdr->addr1) && 1605 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1606 rx->key = key; 1607 else { 1608 if (rx->sta) { 1609 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1610 key = rcu_dereference(rx->sta->gtk[i]); 1611 if (key) 1612 break; 1613 } 1614 } 1615 if (!key) { 1616 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1617 key = rcu_dereference(sdata->keys[i]); 1618 if (key) 1619 break; 1620 } 1621 } 1622 if (key) 1623 rx->key = key; 1624 } 1625 return RX_CONTINUE; 1626 } else { 1627 u8 keyid; 1628 1629 /* 1630 * The device doesn't give us the IV so we won't be 1631 * able to look up the key. That's ok though, we 1632 * don't need to decrypt the frame, we just won't 1633 * be able to keep statistics accurate. 1634 * Except for key threshold notifications, should 1635 * we somehow allow the driver to tell us which key 1636 * the hardware used if this flag is set? 1637 */ 1638 if ((status->flag & RX_FLAG_DECRYPTED) && 1639 (status->flag & RX_FLAG_IV_STRIPPED)) 1640 return RX_CONTINUE; 1641 1642 hdrlen = ieee80211_hdrlen(fc); 1643 1644 if (cs) { 1645 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1646 1647 if (unlikely(keyidx < 0)) 1648 return RX_DROP_UNUSABLE; 1649 } else { 1650 if (rx->skb->len < 8 + hdrlen) 1651 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1652 /* 1653 * no need to call ieee80211_wep_get_keyidx, 1654 * it verifies a bunch of things we've done already 1655 */ 1656 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1657 keyidx = keyid >> 6; 1658 } 1659 1660 /* check per-station GTK first, if multicast packet */ 1661 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1662 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1663 1664 /* if not found, try default key */ 1665 if (!rx->key) { 1666 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1667 1668 /* 1669 * RSNA-protected unicast frames should always be 1670 * sent with pairwise or station-to-station keys, 1671 * but for WEP we allow using a key index as well. 1672 */ 1673 if (rx->key && 1674 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1675 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1676 !is_multicast_ether_addr(hdr->addr1)) 1677 rx->key = NULL; 1678 } 1679 } 1680 1681 if (rx->key) { 1682 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1683 return RX_DROP_MONITOR; 1684 1685 /* TODO: add threshold stuff again */ 1686 } else { 1687 return RX_DROP_MONITOR; 1688 } 1689 1690 switch (rx->key->conf.cipher) { 1691 case WLAN_CIPHER_SUITE_WEP40: 1692 case WLAN_CIPHER_SUITE_WEP104: 1693 result = ieee80211_crypto_wep_decrypt(rx); 1694 break; 1695 case WLAN_CIPHER_SUITE_TKIP: 1696 result = ieee80211_crypto_tkip_decrypt(rx); 1697 break; 1698 case WLAN_CIPHER_SUITE_CCMP: 1699 result = ieee80211_crypto_ccmp_decrypt( 1700 rx, IEEE80211_CCMP_MIC_LEN); 1701 break; 1702 case WLAN_CIPHER_SUITE_CCMP_256: 1703 result = ieee80211_crypto_ccmp_decrypt( 1704 rx, IEEE80211_CCMP_256_MIC_LEN); 1705 break; 1706 case WLAN_CIPHER_SUITE_AES_CMAC: 1707 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1708 break; 1709 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1710 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1711 break; 1712 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1713 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1714 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1715 break; 1716 case WLAN_CIPHER_SUITE_GCMP: 1717 case WLAN_CIPHER_SUITE_GCMP_256: 1718 result = ieee80211_crypto_gcmp_decrypt(rx); 1719 break; 1720 default: 1721 result = ieee80211_crypto_hw_decrypt(rx); 1722 } 1723 1724 /* the hdr variable is invalid after the decrypt handlers */ 1725 1726 /* either the frame has been decrypted or will be dropped */ 1727 status->flag |= RX_FLAG_DECRYPTED; 1728 1729 return result; 1730 } 1731 1732 static inline struct ieee80211_fragment_entry * 1733 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1734 unsigned int frag, unsigned int seq, int rx_queue, 1735 struct sk_buff **skb) 1736 { 1737 struct ieee80211_fragment_entry *entry; 1738 1739 entry = &sdata->fragments[sdata->fragment_next++]; 1740 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1741 sdata->fragment_next = 0; 1742 1743 if (!skb_queue_empty(&entry->skb_list)) 1744 __skb_queue_purge(&entry->skb_list); 1745 1746 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1747 *skb = NULL; 1748 entry->first_frag_time = jiffies; 1749 entry->seq = seq; 1750 entry->rx_queue = rx_queue; 1751 entry->last_frag = frag; 1752 entry->ccmp = 0; 1753 entry->extra_len = 0; 1754 1755 return entry; 1756 } 1757 1758 static inline struct ieee80211_fragment_entry * 1759 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1760 unsigned int frag, unsigned int seq, 1761 int rx_queue, struct ieee80211_hdr *hdr) 1762 { 1763 struct ieee80211_fragment_entry *entry; 1764 int i, idx; 1765 1766 idx = sdata->fragment_next; 1767 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1768 struct ieee80211_hdr *f_hdr; 1769 1770 idx--; 1771 if (idx < 0) 1772 idx = IEEE80211_FRAGMENT_MAX - 1; 1773 1774 entry = &sdata->fragments[idx]; 1775 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1776 entry->rx_queue != rx_queue || 1777 entry->last_frag + 1 != frag) 1778 continue; 1779 1780 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1781 1782 /* 1783 * Check ftype and addresses are equal, else check next fragment 1784 */ 1785 if (((hdr->frame_control ^ f_hdr->frame_control) & 1786 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1787 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1788 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1789 continue; 1790 1791 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1792 __skb_queue_purge(&entry->skb_list); 1793 continue; 1794 } 1795 return entry; 1796 } 1797 1798 return NULL; 1799 } 1800 1801 static ieee80211_rx_result debug_noinline 1802 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1803 { 1804 struct ieee80211_hdr *hdr; 1805 u16 sc; 1806 __le16 fc; 1807 unsigned int frag, seq; 1808 struct ieee80211_fragment_entry *entry; 1809 struct sk_buff *skb; 1810 struct ieee80211_rx_status *status; 1811 1812 hdr = (struct ieee80211_hdr *)rx->skb->data; 1813 fc = hdr->frame_control; 1814 1815 if (ieee80211_is_ctl(fc)) 1816 return RX_CONTINUE; 1817 1818 sc = le16_to_cpu(hdr->seq_ctrl); 1819 frag = sc & IEEE80211_SCTL_FRAG; 1820 1821 if (is_multicast_ether_addr(hdr->addr1)) { 1822 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1823 goto out_no_led; 1824 } 1825 1826 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1827 goto out; 1828 1829 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1830 1831 if (skb_linearize(rx->skb)) 1832 return RX_DROP_UNUSABLE; 1833 1834 /* 1835 * skb_linearize() might change the skb->data and 1836 * previously cached variables (in this case, hdr) need to 1837 * be refreshed with the new data. 1838 */ 1839 hdr = (struct ieee80211_hdr *)rx->skb->data; 1840 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1841 1842 if (frag == 0) { 1843 /* This is the first fragment of a new frame. */ 1844 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1845 rx->seqno_idx, &(rx->skb)); 1846 if (rx->key && 1847 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1848 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) && 1849 ieee80211_has_protected(fc)) { 1850 int queue = rx->security_idx; 1851 /* Store CCMP PN so that we can verify that the next 1852 * fragment has a sequential PN value. */ 1853 entry->ccmp = 1; 1854 memcpy(entry->last_pn, 1855 rx->key->u.ccmp.rx_pn[queue], 1856 IEEE80211_CCMP_PN_LEN); 1857 } 1858 return RX_QUEUED; 1859 } 1860 1861 /* This is a fragment for a frame that should already be pending in 1862 * fragment cache. Add this fragment to the end of the pending entry. 1863 */ 1864 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1865 rx->seqno_idx, hdr); 1866 if (!entry) { 1867 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1868 return RX_DROP_MONITOR; 1869 } 1870 1871 /* Verify that MPDUs within one MSDU have sequential PN values. 1872 * (IEEE 802.11i, 8.3.3.4.5) */ 1873 if (entry->ccmp) { 1874 int i; 1875 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1876 int queue; 1877 if (!rx->key || 1878 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1879 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256)) 1880 return RX_DROP_UNUSABLE; 1881 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1882 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1883 pn[i]++; 1884 if (pn[i]) 1885 break; 1886 } 1887 queue = rx->security_idx; 1888 rpn = rx->key->u.ccmp.rx_pn[queue]; 1889 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1890 return RX_DROP_UNUSABLE; 1891 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1892 } 1893 1894 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1895 __skb_queue_tail(&entry->skb_list, rx->skb); 1896 entry->last_frag = frag; 1897 entry->extra_len += rx->skb->len; 1898 if (ieee80211_has_morefrags(fc)) { 1899 rx->skb = NULL; 1900 return RX_QUEUED; 1901 } 1902 1903 rx->skb = __skb_dequeue(&entry->skb_list); 1904 if (skb_tailroom(rx->skb) < entry->extra_len) { 1905 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 1906 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1907 GFP_ATOMIC))) { 1908 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1909 __skb_queue_purge(&entry->skb_list); 1910 return RX_DROP_UNUSABLE; 1911 } 1912 } 1913 while ((skb = __skb_dequeue(&entry->skb_list))) { 1914 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1915 dev_kfree_skb(skb); 1916 } 1917 1918 /* Complete frame has been reassembled - process it now */ 1919 status = IEEE80211_SKB_RXCB(rx->skb); 1920 1921 out: 1922 ieee80211_led_rx(rx->local); 1923 out_no_led: 1924 if (rx->sta) 1925 rx->sta->rx_packets++; 1926 return RX_CONTINUE; 1927 } 1928 1929 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1930 { 1931 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1932 return -EACCES; 1933 1934 return 0; 1935 } 1936 1937 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1938 { 1939 struct sk_buff *skb = rx->skb; 1940 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1941 1942 /* 1943 * Pass through unencrypted frames if the hardware has 1944 * decrypted them already. 1945 */ 1946 if (status->flag & RX_FLAG_DECRYPTED) 1947 return 0; 1948 1949 /* Drop unencrypted frames if key is set. */ 1950 if (unlikely(!ieee80211_has_protected(fc) && 1951 !ieee80211_is_nullfunc(fc) && 1952 ieee80211_is_data(fc) && rx->key)) 1953 return -EACCES; 1954 1955 return 0; 1956 } 1957 1958 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1959 { 1960 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1961 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1962 __le16 fc = hdr->frame_control; 1963 1964 /* 1965 * Pass through unencrypted frames if the hardware has 1966 * decrypted them already. 1967 */ 1968 if (status->flag & RX_FLAG_DECRYPTED) 1969 return 0; 1970 1971 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1972 if (unlikely(!ieee80211_has_protected(fc) && 1973 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1974 rx->key)) { 1975 if (ieee80211_is_deauth(fc) || 1976 ieee80211_is_disassoc(fc)) 1977 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1978 rx->skb->data, 1979 rx->skb->len); 1980 return -EACCES; 1981 } 1982 /* BIP does not use Protected field, so need to check MMIE */ 1983 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1984 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1985 if (ieee80211_is_deauth(fc) || 1986 ieee80211_is_disassoc(fc)) 1987 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1988 rx->skb->data, 1989 rx->skb->len); 1990 return -EACCES; 1991 } 1992 /* 1993 * When using MFP, Action frames are not allowed prior to 1994 * having configured keys. 1995 */ 1996 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1997 ieee80211_is_robust_mgmt_frame(rx->skb))) 1998 return -EACCES; 1999 } 2000 2001 return 0; 2002 } 2003 2004 static int 2005 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2006 { 2007 struct ieee80211_sub_if_data *sdata = rx->sdata; 2008 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2009 bool check_port_control = false; 2010 struct ethhdr *ehdr; 2011 int ret; 2012 2013 *port_control = false; 2014 if (ieee80211_has_a4(hdr->frame_control) && 2015 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2016 return -1; 2017 2018 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2019 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2020 2021 if (!sdata->u.mgd.use_4addr) 2022 return -1; 2023 else 2024 check_port_control = true; 2025 } 2026 2027 if (is_multicast_ether_addr(hdr->addr1) && 2028 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2029 return -1; 2030 2031 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2032 if (ret < 0) 2033 return ret; 2034 2035 ehdr = (struct ethhdr *) rx->skb->data; 2036 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2037 *port_control = true; 2038 else if (check_port_control) 2039 return -1; 2040 2041 return 0; 2042 } 2043 2044 /* 2045 * requires that rx->skb is a frame with ethernet header 2046 */ 2047 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2048 { 2049 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2050 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2051 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2052 2053 /* 2054 * Allow EAPOL frames to us/the PAE group address regardless 2055 * of whether the frame was encrypted or not. 2056 */ 2057 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2058 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2059 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2060 return true; 2061 2062 if (ieee80211_802_1x_port_control(rx) || 2063 ieee80211_drop_unencrypted(rx, fc)) 2064 return false; 2065 2066 return true; 2067 } 2068 2069 /* 2070 * requires that rx->skb is a frame with ethernet header 2071 */ 2072 static void 2073 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2074 { 2075 struct ieee80211_sub_if_data *sdata = rx->sdata; 2076 struct net_device *dev = sdata->dev; 2077 struct sk_buff *skb, *xmit_skb; 2078 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2079 struct sta_info *dsta; 2080 2081 skb = rx->skb; 2082 xmit_skb = NULL; 2083 2084 ieee80211_rx_stats(dev, skb->len); 2085 2086 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2087 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2088 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2089 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2090 if (is_multicast_ether_addr(ehdr->h_dest)) { 2091 /* 2092 * send multicast frames both to higher layers in 2093 * local net stack and back to the wireless medium 2094 */ 2095 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2096 if (!xmit_skb) 2097 net_info_ratelimited("%s: failed to clone multicast frame\n", 2098 dev->name); 2099 } else { 2100 dsta = sta_info_get(sdata, skb->data); 2101 if (dsta) { 2102 /* 2103 * The destination station is associated to 2104 * this AP (in this VLAN), so send the frame 2105 * directly to it and do not pass it to local 2106 * net stack. 2107 */ 2108 xmit_skb = skb; 2109 skb = NULL; 2110 } 2111 } 2112 } 2113 2114 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2115 if (skb) { 2116 /* 'align' will only take the values 0 or 2 here since all 2117 * frames are required to be aligned to 2-byte boundaries 2118 * when being passed to mac80211; the code here works just 2119 * as well if that isn't true, but mac80211 assumes it can 2120 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2121 */ 2122 int align; 2123 2124 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2125 if (align) { 2126 if (WARN_ON(skb_headroom(skb) < 3)) { 2127 dev_kfree_skb(skb); 2128 skb = NULL; 2129 } else { 2130 u8 *data = skb->data; 2131 size_t len = skb_headlen(skb); 2132 skb->data -= align; 2133 memmove(skb->data, data, len); 2134 skb_set_tail_pointer(skb, len); 2135 } 2136 } 2137 } 2138 #endif 2139 2140 if (skb) { 2141 /* deliver to local stack */ 2142 skb->protocol = eth_type_trans(skb, dev); 2143 memset(skb->cb, 0, sizeof(skb->cb)); 2144 if (rx->napi) 2145 napi_gro_receive(rx->napi, skb); 2146 else 2147 netif_receive_skb(skb); 2148 } 2149 2150 if (xmit_skb) { 2151 /* 2152 * Send to wireless media and increase priority by 256 to 2153 * keep the received priority instead of reclassifying 2154 * the frame (see cfg80211_classify8021d). 2155 */ 2156 xmit_skb->priority += 256; 2157 xmit_skb->protocol = htons(ETH_P_802_3); 2158 skb_reset_network_header(xmit_skb); 2159 skb_reset_mac_header(xmit_skb); 2160 dev_queue_xmit(xmit_skb); 2161 } 2162 } 2163 2164 static ieee80211_rx_result debug_noinline 2165 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2166 { 2167 struct net_device *dev = rx->sdata->dev; 2168 struct sk_buff *skb = rx->skb; 2169 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2170 __le16 fc = hdr->frame_control; 2171 struct sk_buff_head frame_list; 2172 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2173 2174 if (unlikely(!ieee80211_is_data(fc))) 2175 return RX_CONTINUE; 2176 2177 if (unlikely(!ieee80211_is_data_present(fc))) 2178 return RX_DROP_MONITOR; 2179 2180 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2181 return RX_CONTINUE; 2182 2183 if (ieee80211_has_a4(hdr->frame_control) && 2184 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2185 !rx->sdata->u.vlan.sta) 2186 return RX_DROP_UNUSABLE; 2187 2188 if (is_multicast_ether_addr(hdr->addr1) && 2189 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2190 rx->sdata->u.vlan.sta) || 2191 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2192 rx->sdata->u.mgd.use_4addr))) 2193 return RX_DROP_UNUSABLE; 2194 2195 skb->dev = dev; 2196 __skb_queue_head_init(&frame_list); 2197 2198 if (skb_linearize(skb)) 2199 return RX_DROP_UNUSABLE; 2200 2201 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2202 rx->sdata->vif.type, 2203 rx->local->hw.extra_tx_headroom, true); 2204 2205 while (!skb_queue_empty(&frame_list)) { 2206 rx->skb = __skb_dequeue(&frame_list); 2207 2208 if (!ieee80211_frame_allowed(rx, fc)) { 2209 dev_kfree_skb(rx->skb); 2210 continue; 2211 } 2212 2213 ieee80211_deliver_skb(rx); 2214 } 2215 2216 return RX_QUEUED; 2217 } 2218 2219 #ifdef CONFIG_MAC80211_MESH 2220 static ieee80211_rx_result 2221 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2222 { 2223 struct ieee80211_hdr *fwd_hdr, *hdr; 2224 struct ieee80211_tx_info *info; 2225 struct ieee80211s_hdr *mesh_hdr; 2226 struct sk_buff *skb = rx->skb, *fwd_skb; 2227 struct ieee80211_local *local = rx->local; 2228 struct ieee80211_sub_if_data *sdata = rx->sdata; 2229 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2230 u16 q, hdrlen; 2231 2232 hdr = (struct ieee80211_hdr *) skb->data; 2233 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2234 2235 /* make sure fixed part of mesh header is there, also checks skb len */ 2236 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2237 return RX_DROP_MONITOR; 2238 2239 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2240 2241 /* make sure full mesh header is there, also checks skb len */ 2242 if (!pskb_may_pull(rx->skb, 2243 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2244 return RX_DROP_MONITOR; 2245 2246 /* reload pointers */ 2247 hdr = (struct ieee80211_hdr *) skb->data; 2248 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2249 2250 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2251 return RX_DROP_MONITOR; 2252 2253 /* frame is in RMC, don't forward */ 2254 if (ieee80211_is_data(hdr->frame_control) && 2255 is_multicast_ether_addr(hdr->addr1) && 2256 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2257 return RX_DROP_MONITOR; 2258 2259 if (!ieee80211_is_data(hdr->frame_control)) 2260 return RX_CONTINUE; 2261 2262 if (!mesh_hdr->ttl) 2263 return RX_DROP_MONITOR; 2264 2265 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2266 struct mesh_path *mppath; 2267 char *proxied_addr; 2268 char *mpp_addr; 2269 2270 if (is_multicast_ether_addr(hdr->addr1)) { 2271 mpp_addr = hdr->addr3; 2272 proxied_addr = mesh_hdr->eaddr1; 2273 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2274 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2275 mpp_addr = hdr->addr4; 2276 proxied_addr = mesh_hdr->eaddr2; 2277 } else { 2278 return RX_DROP_MONITOR; 2279 } 2280 2281 rcu_read_lock(); 2282 mppath = mpp_path_lookup(sdata, proxied_addr); 2283 if (!mppath) { 2284 mpp_path_add(sdata, proxied_addr, mpp_addr); 2285 } else { 2286 spin_lock_bh(&mppath->state_lock); 2287 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2288 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2289 spin_unlock_bh(&mppath->state_lock); 2290 } 2291 rcu_read_unlock(); 2292 } 2293 2294 /* Frame has reached destination. Don't forward */ 2295 if (!is_multicast_ether_addr(hdr->addr1) && 2296 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2297 return RX_CONTINUE; 2298 2299 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2300 if (ieee80211_queue_stopped(&local->hw, q)) { 2301 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2302 return RX_DROP_MONITOR; 2303 } 2304 skb_set_queue_mapping(skb, q); 2305 2306 if (!--mesh_hdr->ttl) { 2307 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2308 goto out; 2309 } 2310 2311 if (!ifmsh->mshcfg.dot11MeshForwarding) 2312 goto out; 2313 2314 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2315 if (!fwd_skb) { 2316 net_info_ratelimited("%s: failed to clone mesh frame\n", 2317 sdata->name); 2318 goto out; 2319 } 2320 2321 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2322 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2323 info = IEEE80211_SKB_CB(fwd_skb); 2324 memset(info, 0, sizeof(*info)); 2325 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2326 info->control.vif = &rx->sdata->vif; 2327 info->control.jiffies = jiffies; 2328 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2329 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2330 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2331 /* update power mode indication when forwarding */ 2332 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2333 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2334 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2335 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2336 } else { 2337 /* unable to resolve next hop */ 2338 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2339 fwd_hdr->addr3, 0, 2340 WLAN_REASON_MESH_PATH_NOFORWARD, 2341 fwd_hdr->addr2); 2342 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2343 kfree_skb(fwd_skb); 2344 return RX_DROP_MONITOR; 2345 } 2346 2347 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2348 ieee80211_add_pending_skb(local, fwd_skb); 2349 out: 2350 if (is_multicast_ether_addr(hdr->addr1)) 2351 return RX_CONTINUE; 2352 return RX_DROP_MONITOR; 2353 } 2354 #endif 2355 2356 static ieee80211_rx_result debug_noinline 2357 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2358 { 2359 struct ieee80211_sub_if_data *sdata = rx->sdata; 2360 struct ieee80211_local *local = rx->local; 2361 struct net_device *dev = sdata->dev; 2362 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2363 __le16 fc = hdr->frame_control; 2364 bool port_control; 2365 int err; 2366 2367 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2368 return RX_CONTINUE; 2369 2370 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2371 return RX_DROP_MONITOR; 2372 2373 if (rx->sta) { 2374 /* The seqno index has the same property as needed 2375 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2376 * for non-QoS-data frames. Here we know it's a data 2377 * frame, so count MSDUs. 2378 */ 2379 rx->sta->rx_msdu[rx->seqno_idx]++; 2380 } 2381 2382 /* 2383 * Send unexpected-4addr-frame event to hostapd. For older versions, 2384 * also drop the frame to cooked monitor interfaces. 2385 */ 2386 if (ieee80211_has_a4(hdr->frame_control) && 2387 sdata->vif.type == NL80211_IFTYPE_AP) { 2388 if (rx->sta && 2389 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2390 cfg80211_rx_unexpected_4addr_frame( 2391 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2392 return RX_DROP_MONITOR; 2393 } 2394 2395 err = __ieee80211_data_to_8023(rx, &port_control); 2396 if (unlikely(err)) 2397 return RX_DROP_UNUSABLE; 2398 2399 if (!ieee80211_frame_allowed(rx, fc)) 2400 return RX_DROP_MONITOR; 2401 2402 /* directly handle TDLS channel switch requests/responses */ 2403 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2404 cpu_to_be16(ETH_P_TDLS))) { 2405 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2406 2407 if (pskb_may_pull(rx->skb, 2408 offsetof(struct ieee80211_tdls_data, u)) && 2409 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2410 tf->category == WLAN_CATEGORY_TDLS && 2411 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2412 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2413 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2414 schedule_work(&local->tdls_chsw_work); 2415 if (rx->sta) 2416 rx->sta->rx_packets++; 2417 2418 return RX_QUEUED; 2419 } 2420 } 2421 2422 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2423 unlikely(port_control) && sdata->bss) { 2424 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2425 u.ap); 2426 dev = sdata->dev; 2427 rx->sdata = sdata; 2428 } 2429 2430 rx->skb->dev = dev; 2431 2432 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2433 !is_multicast_ether_addr( 2434 ((struct ethhdr *)rx->skb->data)->h_dest) && 2435 (!local->scanning && 2436 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2437 mod_timer(&local->dynamic_ps_timer, jiffies + 2438 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2439 } 2440 2441 ieee80211_deliver_skb(rx); 2442 2443 return RX_QUEUED; 2444 } 2445 2446 static ieee80211_rx_result debug_noinline 2447 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2448 { 2449 struct sk_buff *skb = rx->skb; 2450 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2451 struct tid_ampdu_rx *tid_agg_rx; 2452 u16 start_seq_num; 2453 u16 tid; 2454 2455 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2456 return RX_CONTINUE; 2457 2458 if (ieee80211_is_back_req(bar->frame_control)) { 2459 struct { 2460 __le16 control, start_seq_num; 2461 } __packed bar_data; 2462 struct ieee80211_event event = { 2463 .type = BAR_RX_EVENT, 2464 }; 2465 2466 if (!rx->sta) 2467 return RX_DROP_MONITOR; 2468 2469 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2470 &bar_data, sizeof(bar_data))) 2471 return RX_DROP_MONITOR; 2472 2473 tid = le16_to_cpu(bar_data.control) >> 12; 2474 2475 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2476 if (!tid_agg_rx) 2477 return RX_DROP_MONITOR; 2478 2479 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2480 event.u.ba.tid = tid; 2481 event.u.ba.ssn = start_seq_num; 2482 event.u.ba.sta = &rx->sta->sta; 2483 2484 /* reset session timer */ 2485 if (tid_agg_rx->timeout) 2486 mod_timer(&tid_agg_rx->session_timer, 2487 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2488 2489 spin_lock(&tid_agg_rx->reorder_lock); 2490 /* release stored frames up to start of BAR */ 2491 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2492 start_seq_num, frames); 2493 spin_unlock(&tid_agg_rx->reorder_lock); 2494 2495 drv_event_callback(rx->local, rx->sdata, &event); 2496 2497 kfree_skb(skb); 2498 return RX_QUEUED; 2499 } 2500 2501 /* 2502 * After this point, we only want management frames, 2503 * so we can drop all remaining control frames to 2504 * cooked monitor interfaces. 2505 */ 2506 return RX_DROP_MONITOR; 2507 } 2508 2509 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2510 struct ieee80211_mgmt *mgmt, 2511 size_t len) 2512 { 2513 struct ieee80211_local *local = sdata->local; 2514 struct sk_buff *skb; 2515 struct ieee80211_mgmt *resp; 2516 2517 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2518 /* Not to own unicast address */ 2519 return; 2520 } 2521 2522 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2523 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2524 /* Not from the current AP or not associated yet. */ 2525 return; 2526 } 2527 2528 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2529 /* Too short SA Query request frame */ 2530 return; 2531 } 2532 2533 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2534 if (skb == NULL) 2535 return; 2536 2537 skb_reserve(skb, local->hw.extra_tx_headroom); 2538 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2539 memset(resp, 0, 24); 2540 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2541 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2542 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2543 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2544 IEEE80211_STYPE_ACTION); 2545 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2546 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2547 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2548 memcpy(resp->u.action.u.sa_query.trans_id, 2549 mgmt->u.action.u.sa_query.trans_id, 2550 WLAN_SA_QUERY_TR_ID_LEN); 2551 2552 ieee80211_tx_skb(sdata, skb); 2553 } 2554 2555 static ieee80211_rx_result debug_noinline 2556 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2557 { 2558 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2559 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2560 2561 /* 2562 * From here on, look only at management frames. 2563 * Data and control frames are already handled, 2564 * and unknown (reserved) frames are useless. 2565 */ 2566 if (rx->skb->len < 24) 2567 return RX_DROP_MONITOR; 2568 2569 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2570 return RX_DROP_MONITOR; 2571 2572 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2573 ieee80211_is_beacon(mgmt->frame_control) && 2574 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2575 int sig = 0; 2576 2577 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2578 sig = status->signal; 2579 2580 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2581 rx->skb->data, rx->skb->len, 2582 status->freq, sig); 2583 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2584 } 2585 2586 if (ieee80211_drop_unencrypted_mgmt(rx)) 2587 return RX_DROP_UNUSABLE; 2588 2589 return RX_CONTINUE; 2590 } 2591 2592 static ieee80211_rx_result debug_noinline 2593 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2594 { 2595 struct ieee80211_local *local = rx->local; 2596 struct ieee80211_sub_if_data *sdata = rx->sdata; 2597 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2598 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2599 int len = rx->skb->len; 2600 2601 if (!ieee80211_is_action(mgmt->frame_control)) 2602 return RX_CONTINUE; 2603 2604 /* drop too small frames */ 2605 if (len < IEEE80211_MIN_ACTION_SIZE) 2606 return RX_DROP_UNUSABLE; 2607 2608 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2609 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2610 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2611 return RX_DROP_UNUSABLE; 2612 2613 switch (mgmt->u.action.category) { 2614 case WLAN_CATEGORY_HT: 2615 /* reject HT action frames from stations not supporting HT */ 2616 if (!rx->sta->sta.ht_cap.ht_supported) 2617 goto invalid; 2618 2619 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2620 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2621 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2622 sdata->vif.type != NL80211_IFTYPE_AP && 2623 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2624 break; 2625 2626 /* verify action & smps_control/chanwidth are present */ 2627 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2628 goto invalid; 2629 2630 switch (mgmt->u.action.u.ht_smps.action) { 2631 case WLAN_HT_ACTION_SMPS: { 2632 struct ieee80211_supported_band *sband; 2633 enum ieee80211_smps_mode smps_mode; 2634 2635 /* convert to HT capability */ 2636 switch (mgmt->u.action.u.ht_smps.smps_control) { 2637 case WLAN_HT_SMPS_CONTROL_DISABLED: 2638 smps_mode = IEEE80211_SMPS_OFF; 2639 break; 2640 case WLAN_HT_SMPS_CONTROL_STATIC: 2641 smps_mode = IEEE80211_SMPS_STATIC; 2642 break; 2643 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2644 smps_mode = IEEE80211_SMPS_DYNAMIC; 2645 break; 2646 default: 2647 goto invalid; 2648 } 2649 2650 /* if no change do nothing */ 2651 if (rx->sta->sta.smps_mode == smps_mode) 2652 goto handled; 2653 rx->sta->sta.smps_mode = smps_mode; 2654 2655 sband = rx->local->hw.wiphy->bands[status->band]; 2656 2657 rate_control_rate_update(local, sband, rx->sta, 2658 IEEE80211_RC_SMPS_CHANGED); 2659 goto handled; 2660 } 2661 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2662 struct ieee80211_supported_band *sband; 2663 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2664 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2665 2666 /* If it doesn't support 40 MHz it can't change ... */ 2667 if (!(rx->sta->sta.ht_cap.cap & 2668 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2669 goto handled; 2670 2671 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2672 max_bw = IEEE80211_STA_RX_BW_20; 2673 else 2674 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2675 2676 /* set cur_max_bandwidth and recalc sta bw */ 2677 rx->sta->cur_max_bandwidth = max_bw; 2678 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2679 2680 if (rx->sta->sta.bandwidth == new_bw) 2681 goto handled; 2682 2683 rx->sta->sta.bandwidth = new_bw; 2684 sband = rx->local->hw.wiphy->bands[status->band]; 2685 2686 rate_control_rate_update(local, sband, rx->sta, 2687 IEEE80211_RC_BW_CHANGED); 2688 goto handled; 2689 } 2690 default: 2691 goto invalid; 2692 } 2693 2694 break; 2695 case WLAN_CATEGORY_PUBLIC: 2696 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2697 goto invalid; 2698 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2699 break; 2700 if (!rx->sta) 2701 break; 2702 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2703 break; 2704 if (mgmt->u.action.u.ext_chan_switch.action_code != 2705 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2706 break; 2707 if (len < offsetof(struct ieee80211_mgmt, 2708 u.action.u.ext_chan_switch.variable)) 2709 goto invalid; 2710 goto queue; 2711 case WLAN_CATEGORY_VHT: 2712 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2713 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2714 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2715 sdata->vif.type != NL80211_IFTYPE_AP && 2716 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2717 break; 2718 2719 /* verify action code is present */ 2720 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2721 goto invalid; 2722 2723 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2724 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2725 u8 opmode; 2726 2727 /* verify opmode is present */ 2728 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2729 goto invalid; 2730 2731 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2732 2733 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2734 opmode, status->band, 2735 false); 2736 goto handled; 2737 } 2738 default: 2739 break; 2740 } 2741 break; 2742 case WLAN_CATEGORY_BACK: 2743 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2744 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2745 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2746 sdata->vif.type != NL80211_IFTYPE_AP && 2747 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2748 break; 2749 2750 /* verify action_code is present */ 2751 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2752 break; 2753 2754 switch (mgmt->u.action.u.addba_req.action_code) { 2755 case WLAN_ACTION_ADDBA_REQ: 2756 if (len < (IEEE80211_MIN_ACTION_SIZE + 2757 sizeof(mgmt->u.action.u.addba_req))) 2758 goto invalid; 2759 break; 2760 case WLAN_ACTION_ADDBA_RESP: 2761 if (len < (IEEE80211_MIN_ACTION_SIZE + 2762 sizeof(mgmt->u.action.u.addba_resp))) 2763 goto invalid; 2764 break; 2765 case WLAN_ACTION_DELBA: 2766 if (len < (IEEE80211_MIN_ACTION_SIZE + 2767 sizeof(mgmt->u.action.u.delba))) 2768 goto invalid; 2769 break; 2770 default: 2771 goto invalid; 2772 } 2773 2774 goto queue; 2775 case WLAN_CATEGORY_SPECTRUM_MGMT: 2776 /* verify action_code is present */ 2777 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2778 break; 2779 2780 switch (mgmt->u.action.u.measurement.action_code) { 2781 case WLAN_ACTION_SPCT_MSR_REQ: 2782 if (status->band != IEEE80211_BAND_5GHZ) 2783 break; 2784 2785 if (len < (IEEE80211_MIN_ACTION_SIZE + 2786 sizeof(mgmt->u.action.u.measurement))) 2787 break; 2788 2789 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2790 break; 2791 2792 ieee80211_process_measurement_req(sdata, mgmt, len); 2793 goto handled; 2794 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2795 u8 *bssid; 2796 if (len < (IEEE80211_MIN_ACTION_SIZE + 2797 sizeof(mgmt->u.action.u.chan_switch))) 2798 break; 2799 2800 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2801 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2802 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2803 break; 2804 2805 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2806 bssid = sdata->u.mgd.bssid; 2807 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2808 bssid = sdata->u.ibss.bssid; 2809 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2810 bssid = mgmt->sa; 2811 else 2812 break; 2813 2814 if (!ether_addr_equal(mgmt->bssid, bssid)) 2815 break; 2816 2817 goto queue; 2818 } 2819 } 2820 break; 2821 case WLAN_CATEGORY_SA_QUERY: 2822 if (len < (IEEE80211_MIN_ACTION_SIZE + 2823 sizeof(mgmt->u.action.u.sa_query))) 2824 break; 2825 2826 switch (mgmt->u.action.u.sa_query.action) { 2827 case WLAN_ACTION_SA_QUERY_REQUEST: 2828 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2829 break; 2830 ieee80211_process_sa_query_req(sdata, mgmt, len); 2831 goto handled; 2832 } 2833 break; 2834 case WLAN_CATEGORY_SELF_PROTECTED: 2835 if (len < (IEEE80211_MIN_ACTION_SIZE + 2836 sizeof(mgmt->u.action.u.self_prot.action_code))) 2837 break; 2838 2839 switch (mgmt->u.action.u.self_prot.action_code) { 2840 case WLAN_SP_MESH_PEERING_OPEN: 2841 case WLAN_SP_MESH_PEERING_CLOSE: 2842 case WLAN_SP_MESH_PEERING_CONFIRM: 2843 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2844 goto invalid; 2845 if (sdata->u.mesh.user_mpm) 2846 /* userspace handles this frame */ 2847 break; 2848 goto queue; 2849 case WLAN_SP_MGK_INFORM: 2850 case WLAN_SP_MGK_ACK: 2851 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2852 goto invalid; 2853 break; 2854 } 2855 break; 2856 case WLAN_CATEGORY_MESH_ACTION: 2857 if (len < (IEEE80211_MIN_ACTION_SIZE + 2858 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2859 break; 2860 2861 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2862 break; 2863 if (mesh_action_is_path_sel(mgmt) && 2864 !mesh_path_sel_is_hwmp(sdata)) 2865 break; 2866 goto queue; 2867 } 2868 2869 return RX_CONTINUE; 2870 2871 invalid: 2872 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2873 /* will return in the next handlers */ 2874 return RX_CONTINUE; 2875 2876 handled: 2877 if (rx->sta) 2878 rx->sta->rx_packets++; 2879 dev_kfree_skb(rx->skb); 2880 return RX_QUEUED; 2881 2882 queue: 2883 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2884 skb_queue_tail(&sdata->skb_queue, rx->skb); 2885 ieee80211_queue_work(&local->hw, &sdata->work); 2886 if (rx->sta) 2887 rx->sta->rx_packets++; 2888 return RX_QUEUED; 2889 } 2890 2891 static ieee80211_rx_result debug_noinline 2892 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2893 { 2894 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2895 int sig = 0; 2896 2897 /* skip known-bad action frames and return them in the next handler */ 2898 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2899 return RX_CONTINUE; 2900 2901 /* 2902 * Getting here means the kernel doesn't know how to handle 2903 * it, but maybe userspace does ... include returned frames 2904 * so userspace can register for those to know whether ones 2905 * it transmitted were processed or returned. 2906 */ 2907 2908 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2909 sig = status->signal; 2910 2911 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2912 rx->skb->data, rx->skb->len, 0)) { 2913 if (rx->sta) 2914 rx->sta->rx_packets++; 2915 dev_kfree_skb(rx->skb); 2916 return RX_QUEUED; 2917 } 2918 2919 return RX_CONTINUE; 2920 } 2921 2922 static ieee80211_rx_result debug_noinline 2923 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2924 { 2925 struct ieee80211_local *local = rx->local; 2926 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2927 struct sk_buff *nskb; 2928 struct ieee80211_sub_if_data *sdata = rx->sdata; 2929 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2930 2931 if (!ieee80211_is_action(mgmt->frame_control)) 2932 return RX_CONTINUE; 2933 2934 /* 2935 * For AP mode, hostapd is responsible for handling any action 2936 * frames that we didn't handle, including returning unknown 2937 * ones. For all other modes we will return them to the sender, 2938 * setting the 0x80 bit in the action category, as required by 2939 * 802.11-2012 9.24.4. 2940 * Newer versions of hostapd shall also use the management frame 2941 * registration mechanisms, but older ones still use cooked 2942 * monitor interfaces so push all frames there. 2943 */ 2944 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2945 (sdata->vif.type == NL80211_IFTYPE_AP || 2946 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2947 return RX_DROP_MONITOR; 2948 2949 if (is_multicast_ether_addr(mgmt->da)) 2950 return RX_DROP_MONITOR; 2951 2952 /* do not return rejected action frames */ 2953 if (mgmt->u.action.category & 0x80) 2954 return RX_DROP_UNUSABLE; 2955 2956 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2957 GFP_ATOMIC); 2958 if (nskb) { 2959 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2960 2961 nmgmt->u.action.category |= 0x80; 2962 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2963 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2964 2965 memset(nskb->cb, 0, sizeof(nskb->cb)); 2966 2967 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2968 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2969 2970 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2971 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2972 IEEE80211_TX_CTL_NO_CCK_RATE; 2973 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 2974 info->hw_queue = 2975 local->hw.offchannel_tx_hw_queue; 2976 } 2977 2978 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2979 status->band); 2980 } 2981 dev_kfree_skb(rx->skb); 2982 return RX_QUEUED; 2983 } 2984 2985 static ieee80211_rx_result debug_noinline 2986 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2987 { 2988 struct ieee80211_sub_if_data *sdata = rx->sdata; 2989 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2990 __le16 stype; 2991 2992 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2993 2994 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2995 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2996 sdata->vif.type != NL80211_IFTYPE_OCB && 2997 sdata->vif.type != NL80211_IFTYPE_STATION) 2998 return RX_DROP_MONITOR; 2999 3000 switch (stype) { 3001 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3002 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3003 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3004 /* process for all: mesh, mlme, ibss */ 3005 break; 3006 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3007 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3008 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3009 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3010 if (is_multicast_ether_addr(mgmt->da) && 3011 !is_broadcast_ether_addr(mgmt->da)) 3012 return RX_DROP_MONITOR; 3013 3014 /* process only for station */ 3015 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3016 return RX_DROP_MONITOR; 3017 break; 3018 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3019 /* process only for ibss and mesh */ 3020 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3021 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3022 return RX_DROP_MONITOR; 3023 break; 3024 default: 3025 return RX_DROP_MONITOR; 3026 } 3027 3028 /* queue up frame and kick off work to process it */ 3029 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3030 skb_queue_tail(&sdata->skb_queue, rx->skb); 3031 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3032 if (rx->sta) 3033 rx->sta->rx_packets++; 3034 3035 return RX_QUEUED; 3036 } 3037 3038 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3039 struct ieee80211_rate *rate) 3040 { 3041 struct ieee80211_sub_if_data *sdata; 3042 struct ieee80211_local *local = rx->local; 3043 struct sk_buff *skb = rx->skb, *skb2; 3044 struct net_device *prev_dev = NULL; 3045 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3046 int needed_headroom; 3047 3048 /* 3049 * If cooked monitor has been processed already, then 3050 * don't do it again. If not, set the flag. 3051 */ 3052 if (rx->flags & IEEE80211_RX_CMNTR) 3053 goto out_free_skb; 3054 rx->flags |= IEEE80211_RX_CMNTR; 3055 3056 /* If there are no cooked monitor interfaces, just free the SKB */ 3057 if (!local->cooked_mntrs) 3058 goto out_free_skb; 3059 3060 /* vendor data is long removed here */ 3061 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3062 /* room for the radiotap header based on driver features */ 3063 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3064 3065 if (skb_headroom(skb) < needed_headroom && 3066 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3067 goto out_free_skb; 3068 3069 /* prepend radiotap information */ 3070 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3071 false); 3072 3073 skb_set_mac_header(skb, 0); 3074 skb->ip_summed = CHECKSUM_UNNECESSARY; 3075 skb->pkt_type = PACKET_OTHERHOST; 3076 skb->protocol = htons(ETH_P_802_2); 3077 3078 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3079 if (!ieee80211_sdata_running(sdata)) 3080 continue; 3081 3082 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3083 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3084 continue; 3085 3086 if (prev_dev) { 3087 skb2 = skb_clone(skb, GFP_ATOMIC); 3088 if (skb2) { 3089 skb2->dev = prev_dev; 3090 netif_receive_skb(skb2); 3091 } 3092 } 3093 3094 prev_dev = sdata->dev; 3095 ieee80211_rx_stats(sdata->dev, skb->len); 3096 } 3097 3098 if (prev_dev) { 3099 skb->dev = prev_dev; 3100 netif_receive_skb(skb); 3101 return; 3102 } 3103 3104 out_free_skb: 3105 dev_kfree_skb(skb); 3106 } 3107 3108 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3109 ieee80211_rx_result res) 3110 { 3111 switch (res) { 3112 case RX_DROP_MONITOR: 3113 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3114 if (rx->sta) 3115 rx->sta->rx_dropped++; 3116 /* fall through */ 3117 case RX_CONTINUE: { 3118 struct ieee80211_rate *rate = NULL; 3119 struct ieee80211_supported_band *sband; 3120 struct ieee80211_rx_status *status; 3121 3122 status = IEEE80211_SKB_RXCB((rx->skb)); 3123 3124 sband = rx->local->hw.wiphy->bands[status->band]; 3125 if (!(status->flag & RX_FLAG_HT) && 3126 !(status->flag & RX_FLAG_VHT)) 3127 rate = &sband->bitrates[status->rate_idx]; 3128 3129 ieee80211_rx_cooked_monitor(rx, rate); 3130 break; 3131 } 3132 case RX_DROP_UNUSABLE: 3133 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3134 if (rx->sta) 3135 rx->sta->rx_dropped++; 3136 dev_kfree_skb(rx->skb); 3137 break; 3138 case RX_QUEUED: 3139 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3140 break; 3141 } 3142 } 3143 3144 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3145 struct sk_buff_head *frames) 3146 { 3147 ieee80211_rx_result res = RX_DROP_MONITOR; 3148 struct sk_buff *skb; 3149 3150 #define CALL_RXH(rxh) \ 3151 do { \ 3152 res = rxh(rx); \ 3153 if (res != RX_CONTINUE) \ 3154 goto rxh_next; \ 3155 } while (0); 3156 3157 /* Lock here to avoid hitting all of the data used in the RX 3158 * path (e.g. key data, station data, ...) concurrently when 3159 * a frame is released from the reorder buffer due to timeout 3160 * from the timer, potentially concurrently with RX from the 3161 * driver. 3162 */ 3163 spin_lock_bh(&rx->local->rx_path_lock); 3164 3165 while ((skb = __skb_dequeue(frames))) { 3166 /* 3167 * all the other fields are valid across frames 3168 * that belong to an aMPDU since they are on the 3169 * same TID from the same station 3170 */ 3171 rx->skb = skb; 3172 3173 CALL_RXH(ieee80211_rx_h_check_more_data) 3174 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 3175 CALL_RXH(ieee80211_rx_h_sta_process) 3176 CALL_RXH(ieee80211_rx_h_decrypt) 3177 CALL_RXH(ieee80211_rx_h_defragment) 3178 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 3179 /* must be after MMIC verify so header is counted in MPDU mic */ 3180 #ifdef CONFIG_MAC80211_MESH 3181 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3182 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3183 #endif 3184 CALL_RXH(ieee80211_rx_h_amsdu) 3185 CALL_RXH(ieee80211_rx_h_data) 3186 3187 /* special treatment -- needs the queue */ 3188 res = ieee80211_rx_h_ctrl(rx, frames); 3189 if (res != RX_CONTINUE) 3190 goto rxh_next; 3191 3192 CALL_RXH(ieee80211_rx_h_mgmt_check) 3193 CALL_RXH(ieee80211_rx_h_action) 3194 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3195 CALL_RXH(ieee80211_rx_h_action_return) 3196 CALL_RXH(ieee80211_rx_h_mgmt) 3197 3198 rxh_next: 3199 ieee80211_rx_handlers_result(rx, res); 3200 3201 #undef CALL_RXH 3202 } 3203 3204 spin_unlock_bh(&rx->local->rx_path_lock); 3205 } 3206 3207 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3208 { 3209 struct sk_buff_head reorder_release; 3210 ieee80211_rx_result res = RX_DROP_MONITOR; 3211 3212 __skb_queue_head_init(&reorder_release); 3213 3214 #define CALL_RXH(rxh) \ 3215 do { \ 3216 res = rxh(rx); \ 3217 if (res != RX_CONTINUE) \ 3218 goto rxh_next; \ 3219 } while (0); 3220 3221 CALL_RXH(ieee80211_rx_h_check_dup) 3222 CALL_RXH(ieee80211_rx_h_check) 3223 3224 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3225 3226 ieee80211_rx_handlers(rx, &reorder_release); 3227 return; 3228 3229 rxh_next: 3230 ieee80211_rx_handlers_result(rx, res); 3231 3232 #undef CALL_RXH 3233 } 3234 3235 /* 3236 * This function makes calls into the RX path, therefore 3237 * it has to be invoked under RCU read lock. 3238 */ 3239 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3240 { 3241 struct sk_buff_head frames; 3242 struct ieee80211_rx_data rx = { 3243 .sta = sta, 3244 .sdata = sta->sdata, 3245 .local = sta->local, 3246 /* This is OK -- must be QoS data frame */ 3247 .security_idx = tid, 3248 .seqno_idx = tid, 3249 .napi = NULL, /* must be NULL to not have races */ 3250 }; 3251 struct tid_ampdu_rx *tid_agg_rx; 3252 3253 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3254 if (!tid_agg_rx) 3255 return; 3256 3257 __skb_queue_head_init(&frames); 3258 3259 spin_lock(&tid_agg_rx->reorder_lock); 3260 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3261 spin_unlock(&tid_agg_rx->reorder_lock); 3262 3263 if (!skb_queue_empty(&frames)) { 3264 struct ieee80211_event event = { 3265 .type = BA_FRAME_TIMEOUT, 3266 .u.ba.tid = tid, 3267 .u.ba.sta = &sta->sta, 3268 }; 3269 drv_event_callback(rx.local, rx.sdata, &event); 3270 } 3271 3272 ieee80211_rx_handlers(&rx, &frames); 3273 } 3274 3275 /* main receive path */ 3276 3277 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3278 { 3279 struct ieee80211_sub_if_data *sdata = rx->sdata; 3280 struct sk_buff *skb = rx->skb; 3281 struct ieee80211_hdr *hdr = (void *)skb->data; 3282 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3283 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3284 int multicast = is_multicast_ether_addr(hdr->addr1); 3285 3286 switch (sdata->vif.type) { 3287 case NL80211_IFTYPE_STATION: 3288 if (!bssid && !sdata->u.mgd.use_4addr) 3289 return false; 3290 if (multicast) 3291 return true; 3292 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3293 case NL80211_IFTYPE_ADHOC: 3294 if (!bssid) 3295 return false; 3296 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3297 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3298 return false; 3299 if (ieee80211_is_beacon(hdr->frame_control)) 3300 return true; 3301 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3302 return false; 3303 if (!multicast && 3304 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3305 return false; 3306 if (!rx->sta) { 3307 int rate_idx; 3308 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3309 rate_idx = 0; /* TODO: HT/VHT rates */ 3310 else 3311 rate_idx = status->rate_idx; 3312 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3313 BIT(rate_idx)); 3314 } 3315 return true; 3316 case NL80211_IFTYPE_OCB: 3317 if (!bssid) 3318 return false; 3319 if (!ieee80211_is_data_present(hdr->frame_control)) 3320 return false; 3321 if (!is_broadcast_ether_addr(bssid)) 3322 return false; 3323 if (!multicast && 3324 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3325 return false; 3326 if (!rx->sta) { 3327 int rate_idx; 3328 if (status->flag & RX_FLAG_HT) 3329 rate_idx = 0; /* TODO: HT rates */ 3330 else 3331 rate_idx = status->rate_idx; 3332 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3333 BIT(rate_idx)); 3334 } 3335 return true; 3336 case NL80211_IFTYPE_MESH_POINT: 3337 if (multicast) 3338 return true; 3339 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3340 case NL80211_IFTYPE_AP_VLAN: 3341 case NL80211_IFTYPE_AP: 3342 if (!bssid) 3343 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3344 3345 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3346 /* 3347 * Accept public action frames even when the 3348 * BSSID doesn't match, this is used for P2P 3349 * and location updates. Note that mac80211 3350 * itself never looks at these frames. 3351 */ 3352 if (!multicast && 3353 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3354 return false; 3355 if (ieee80211_is_public_action(hdr, skb->len)) 3356 return true; 3357 return ieee80211_is_beacon(hdr->frame_control); 3358 } 3359 3360 if (!ieee80211_has_tods(hdr->frame_control)) { 3361 /* ignore data frames to TDLS-peers */ 3362 if (ieee80211_is_data(hdr->frame_control)) 3363 return false; 3364 /* ignore action frames to TDLS-peers */ 3365 if (ieee80211_is_action(hdr->frame_control) && 3366 !ether_addr_equal(bssid, hdr->addr1)) 3367 return false; 3368 } 3369 return true; 3370 case NL80211_IFTYPE_WDS: 3371 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3372 return false; 3373 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3374 case NL80211_IFTYPE_P2P_DEVICE: 3375 return ieee80211_is_public_action(hdr, skb->len) || 3376 ieee80211_is_probe_req(hdr->frame_control) || 3377 ieee80211_is_probe_resp(hdr->frame_control) || 3378 ieee80211_is_beacon(hdr->frame_control); 3379 default: 3380 break; 3381 } 3382 3383 WARN_ON_ONCE(1); 3384 return false; 3385 } 3386 3387 /* 3388 * This function returns whether or not the SKB 3389 * was destined for RX processing or not, which, 3390 * if consume is true, is equivalent to whether 3391 * or not the skb was consumed. 3392 */ 3393 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3394 struct sk_buff *skb, bool consume) 3395 { 3396 struct ieee80211_local *local = rx->local; 3397 struct ieee80211_sub_if_data *sdata = rx->sdata; 3398 3399 rx->skb = skb; 3400 3401 if (!ieee80211_accept_frame(rx)) 3402 return false; 3403 3404 if (!consume) { 3405 skb = skb_copy(skb, GFP_ATOMIC); 3406 if (!skb) { 3407 if (net_ratelimit()) 3408 wiphy_debug(local->hw.wiphy, 3409 "failed to copy skb for %s\n", 3410 sdata->name); 3411 return true; 3412 } 3413 3414 rx->skb = skb; 3415 } 3416 3417 ieee80211_invoke_rx_handlers(rx); 3418 return true; 3419 } 3420 3421 /* 3422 * This is the actual Rx frames handler. as it belongs to Rx path it must 3423 * be called with rcu_read_lock protection. 3424 */ 3425 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3426 struct sk_buff *skb, 3427 struct napi_struct *napi) 3428 { 3429 struct ieee80211_local *local = hw_to_local(hw); 3430 struct ieee80211_sub_if_data *sdata; 3431 struct ieee80211_hdr *hdr; 3432 __le16 fc; 3433 struct ieee80211_rx_data rx; 3434 struct ieee80211_sub_if_data *prev; 3435 struct sta_info *sta, *prev_sta; 3436 struct rhash_head *tmp; 3437 int err = 0; 3438 3439 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3440 memset(&rx, 0, sizeof(rx)); 3441 rx.skb = skb; 3442 rx.local = local; 3443 rx.napi = napi; 3444 3445 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3446 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 3447 3448 if (ieee80211_is_mgmt(fc)) { 3449 /* drop frame if too short for header */ 3450 if (skb->len < ieee80211_hdrlen(fc)) 3451 err = -ENOBUFS; 3452 else 3453 err = skb_linearize(skb); 3454 } else { 3455 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3456 } 3457 3458 if (err) { 3459 dev_kfree_skb(skb); 3460 return; 3461 } 3462 3463 hdr = (struct ieee80211_hdr *)skb->data; 3464 ieee80211_parse_qos(&rx); 3465 ieee80211_verify_alignment(&rx); 3466 3467 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3468 ieee80211_is_beacon(hdr->frame_control))) 3469 ieee80211_scan_rx(local, skb); 3470 3471 if (ieee80211_is_data(fc)) { 3472 const struct bucket_table *tbl; 3473 3474 prev_sta = NULL; 3475 3476 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 3477 3478 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) { 3479 if (!prev_sta) { 3480 prev_sta = sta; 3481 continue; 3482 } 3483 3484 rx.sta = prev_sta; 3485 rx.sdata = prev_sta->sdata; 3486 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3487 3488 prev_sta = sta; 3489 } 3490 3491 if (prev_sta) { 3492 rx.sta = prev_sta; 3493 rx.sdata = prev_sta->sdata; 3494 3495 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3496 return; 3497 goto out; 3498 } 3499 } 3500 3501 prev = NULL; 3502 3503 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3504 if (!ieee80211_sdata_running(sdata)) 3505 continue; 3506 3507 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3508 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3509 continue; 3510 3511 /* 3512 * frame is destined for this interface, but if it's 3513 * not also for the previous one we handle that after 3514 * the loop to avoid copying the SKB once too much 3515 */ 3516 3517 if (!prev) { 3518 prev = sdata; 3519 continue; 3520 } 3521 3522 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3523 rx.sdata = prev; 3524 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3525 3526 prev = sdata; 3527 } 3528 3529 if (prev) { 3530 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3531 rx.sdata = prev; 3532 3533 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3534 return; 3535 } 3536 3537 out: 3538 dev_kfree_skb(skb); 3539 } 3540 3541 /* 3542 * This is the receive path handler. It is called by a low level driver when an 3543 * 802.11 MPDU is received from the hardware. 3544 */ 3545 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb, 3546 struct napi_struct *napi) 3547 { 3548 struct ieee80211_local *local = hw_to_local(hw); 3549 struct ieee80211_rate *rate = NULL; 3550 struct ieee80211_supported_band *sband; 3551 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3552 3553 WARN_ON_ONCE(softirq_count() == 0); 3554 3555 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3556 goto drop; 3557 3558 sband = local->hw.wiphy->bands[status->band]; 3559 if (WARN_ON(!sband)) 3560 goto drop; 3561 3562 /* 3563 * If we're suspending, it is possible although not too likely 3564 * that we'd be receiving frames after having already partially 3565 * quiesced the stack. We can't process such frames then since 3566 * that might, for example, cause stations to be added or other 3567 * driver callbacks be invoked. 3568 */ 3569 if (unlikely(local->quiescing || local->suspended)) 3570 goto drop; 3571 3572 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3573 if (unlikely(local->in_reconfig)) 3574 goto drop; 3575 3576 /* 3577 * The same happens when we're not even started, 3578 * but that's worth a warning. 3579 */ 3580 if (WARN_ON(!local->started)) 3581 goto drop; 3582 3583 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3584 /* 3585 * Validate the rate, unless a PLCP error means that 3586 * we probably can't have a valid rate here anyway. 3587 */ 3588 3589 if (status->flag & RX_FLAG_HT) { 3590 /* 3591 * rate_idx is MCS index, which can be [0-76] 3592 * as documented on: 3593 * 3594 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3595 * 3596 * Anything else would be some sort of driver or 3597 * hardware error. The driver should catch hardware 3598 * errors. 3599 */ 3600 if (WARN(status->rate_idx > 76, 3601 "Rate marked as an HT rate but passed " 3602 "status->rate_idx is not " 3603 "an MCS index [0-76]: %d (0x%02x)\n", 3604 status->rate_idx, 3605 status->rate_idx)) 3606 goto drop; 3607 } else if (status->flag & RX_FLAG_VHT) { 3608 if (WARN_ONCE(status->rate_idx > 9 || 3609 !status->vht_nss || 3610 status->vht_nss > 8, 3611 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3612 status->rate_idx, status->vht_nss)) 3613 goto drop; 3614 } else { 3615 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3616 goto drop; 3617 rate = &sband->bitrates[status->rate_idx]; 3618 } 3619 } 3620 3621 status->rx_flags = 0; 3622 3623 /* 3624 * key references and virtual interfaces are protected using RCU 3625 * and this requires that we are in a read-side RCU section during 3626 * receive processing 3627 */ 3628 rcu_read_lock(); 3629 3630 /* 3631 * Frames with failed FCS/PLCP checksum are not returned, 3632 * all other frames are returned without radiotap header 3633 * if it was previously present. 3634 * Also, frames with less than 16 bytes are dropped. 3635 */ 3636 skb = ieee80211_rx_monitor(local, skb, rate); 3637 if (!skb) { 3638 rcu_read_unlock(); 3639 return; 3640 } 3641 3642 ieee80211_tpt_led_trig_rx(local, 3643 ((struct ieee80211_hdr *)skb->data)->frame_control, 3644 skb->len); 3645 __ieee80211_rx_handle_packet(hw, skb, napi); 3646 3647 rcu_read_unlock(); 3648 3649 return; 3650 drop: 3651 kfree_skb(skb); 3652 } 3653 EXPORT_SYMBOL(ieee80211_rx_napi); 3654 3655 /* This is a version of the rx handler that can be called from hard irq 3656 * context. Post the skb on the queue and schedule the tasklet */ 3657 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3658 { 3659 struct ieee80211_local *local = hw_to_local(hw); 3660 3661 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3662 3663 skb->pkt_type = IEEE80211_RX_MSG; 3664 skb_queue_tail(&local->skb_queue, skb); 3665 tasklet_schedule(&local->tasklet); 3666 } 3667 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3668