1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static void remove_monitor_info(struct sk_buff *skb, 99 unsigned int present_fcs_len, 100 unsigned int rtap_vendor_space) 101 { 102 if (present_fcs_len) 103 __pskb_trim(skb, skb->len - present_fcs_len); 104 __pskb_pull(skb, rtap_vendor_space); 105 } 106 107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 108 unsigned int rtap_vendor_space) 109 { 110 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 111 struct ieee80211_hdr *hdr; 112 113 hdr = (void *)(skb->data + rtap_vendor_space); 114 115 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 116 RX_FLAG_FAILED_PLCP_CRC | 117 RX_FLAG_ONLY_MONITOR)) 118 return true; 119 120 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 121 return true; 122 123 if (ieee80211_is_ctl(hdr->frame_control) && 124 !ieee80211_is_pspoll(hdr->frame_control) && 125 !ieee80211_is_back_req(hdr->frame_control)) 126 return true; 127 128 return false; 129 } 130 131 static int 132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 133 struct ieee80211_rx_status *status, 134 struct sk_buff *skb) 135 { 136 int len; 137 138 /* always present fields */ 139 len = sizeof(struct ieee80211_radiotap_header) + 8; 140 141 /* allocate extra bitmaps */ 142 if (status->chains) 143 len += 4 * hweight8(status->chains); 144 145 if (ieee80211_have_rx_timestamp(status)) { 146 len = ALIGN(len, 8); 147 len += 8; 148 } 149 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 150 len += 1; 151 152 /* antenna field, if we don't have per-chain info */ 153 if (!status->chains) 154 len += 1; 155 156 /* padding for RX_FLAGS if necessary */ 157 len = ALIGN(len, 2); 158 159 if (status->encoding == RX_ENC_HT) /* HT info */ 160 len += 3; 161 162 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 163 len = ALIGN(len, 4); 164 len += 8; 165 } 166 167 if (status->encoding == RX_ENC_VHT) { 168 len = ALIGN(len, 2); 169 len += 12; 170 } 171 172 if (local->hw.radiotap_timestamp.units_pos >= 0) { 173 len = ALIGN(len, 8); 174 len += 12; 175 } 176 177 if (status->chains) { 178 /* antenna and antenna signal fields */ 179 len += 2 * hweight8(status->chains); 180 } 181 182 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 183 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 184 185 /* vendor presence bitmap */ 186 len += 4; 187 /* alignment for fixed 6-byte vendor data header */ 188 len = ALIGN(len, 2); 189 /* vendor data header */ 190 len += 6; 191 if (WARN_ON(rtap->align == 0)) 192 rtap->align = 1; 193 len = ALIGN(len, rtap->align); 194 len += rtap->len + rtap->pad; 195 } 196 197 return len; 198 } 199 200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 201 struct sk_buff *skb, 202 int rtap_vendor_space) 203 { 204 struct { 205 struct ieee80211_hdr_3addr hdr; 206 u8 category; 207 u8 action_code; 208 } __packed action; 209 210 if (!sdata) 211 return; 212 213 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 214 215 if (skb->len < rtap_vendor_space + sizeof(action) + 216 VHT_MUMIMO_GROUPS_DATA_LEN) 217 return; 218 219 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 220 return; 221 222 skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action)); 223 224 if (!ieee80211_is_action(action.hdr.frame_control)) 225 return; 226 227 if (action.category != WLAN_CATEGORY_VHT) 228 return; 229 230 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 231 return; 232 233 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 234 return; 235 236 skb = skb_copy(skb, GFP_ATOMIC); 237 if (!skb) 238 return; 239 240 skb_queue_tail(&sdata->skb_queue, skb); 241 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 242 } 243 244 /* 245 * ieee80211_add_rx_radiotap_header - add radiotap header 246 * 247 * add a radiotap header containing all the fields which the hardware provided. 248 */ 249 static void 250 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 251 struct sk_buff *skb, 252 struct ieee80211_rate *rate, 253 int rtap_len, bool has_fcs) 254 { 255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 256 struct ieee80211_radiotap_header *rthdr; 257 unsigned char *pos; 258 __le32 *it_present; 259 u32 it_present_val; 260 u16 rx_flags = 0; 261 u16 channel_flags = 0; 262 int mpdulen, chain; 263 unsigned long chains = status->chains; 264 struct ieee80211_vendor_radiotap rtap = {}; 265 266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 267 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 268 /* rtap.len and rtap.pad are undone immediately */ 269 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 270 } 271 272 mpdulen = skb->len; 273 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 274 mpdulen += FCS_LEN; 275 276 rthdr = skb_push(skb, rtap_len); 277 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 278 it_present = &rthdr->it_present; 279 280 /* radiotap header, set always present flags */ 281 rthdr->it_len = cpu_to_le16(rtap_len); 282 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 283 BIT(IEEE80211_RADIOTAP_CHANNEL) | 284 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 285 286 if (!status->chains) 287 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 288 289 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 290 it_present_val |= 291 BIT(IEEE80211_RADIOTAP_EXT) | 292 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 293 put_unaligned_le32(it_present_val, it_present); 294 it_present++; 295 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 296 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 297 } 298 299 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 300 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 301 BIT(IEEE80211_RADIOTAP_EXT); 302 put_unaligned_le32(it_present_val, it_present); 303 it_present++; 304 it_present_val = rtap.present; 305 } 306 307 put_unaligned_le32(it_present_val, it_present); 308 309 pos = (void *)(it_present + 1); 310 311 /* the order of the following fields is important */ 312 313 /* IEEE80211_RADIOTAP_TSFT */ 314 if (ieee80211_have_rx_timestamp(status)) { 315 /* padding */ 316 while ((pos - (u8 *)rthdr) & 7) 317 *pos++ = 0; 318 put_unaligned_le64( 319 ieee80211_calculate_rx_timestamp(local, status, 320 mpdulen, 0), 321 pos); 322 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 323 pos += 8; 324 } 325 326 /* IEEE80211_RADIOTAP_FLAGS */ 327 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 328 *pos |= IEEE80211_RADIOTAP_F_FCS; 329 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 330 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 331 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 332 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 333 pos++; 334 335 /* IEEE80211_RADIOTAP_RATE */ 336 if (!rate || status->encoding != RX_ENC_LEGACY) { 337 /* 338 * Without rate information don't add it. If we have, 339 * MCS information is a separate field in radiotap, 340 * added below. The byte here is needed as padding 341 * for the channel though, so initialise it to 0. 342 */ 343 *pos = 0; 344 } else { 345 int shift = 0; 346 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 347 if (status->bw == RATE_INFO_BW_10) 348 shift = 1; 349 else if (status->bw == RATE_INFO_BW_5) 350 shift = 2; 351 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 352 } 353 pos++; 354 355 /* IEEE80211_RADIOTAP_CHANNEL */ 356 put_unaligned_le16(status->freq, pos); 357 pos += 2; 358 if (status->bw == RATE_INFO_BW_10) 359 channel_flags |= IEEE80211_CHAN_HALF; 360 else if (status->bw == RATE_INFO_BW_5) 361 channel_flags |= IEEE80211_CHAN_QUARTER; 362 363 if (status->band == NL80211_BAND_5GHZ) 364 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 365 else if (status->encoding != RX_ENC_LEGACY) 366 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 367 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 368 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 369 else if (rate) 370 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 371 else 372 channel_flags |= IEEE80211_CHAN_2GHZ; 373 put_unaligned_le16(channel_flags, pos); 374 pos += 2; 375 376 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 377 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 378 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 379 *pos = status->signal; 380 rthdr->it_present |= 381 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 382 pos++; 383 } 384 385 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 386 387 if (!status->chains) { 388 /* IEEE80211_RADIOTAP_ANTENNA */ 389 *pos = status->antenna; 390 pos++; 391 } 392 393 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 394 395 /* IEEE80211_RADIOTAP_RX_FLAGS */ 396 /* ensure 2 byte alignment for the 2 byte field as required */ 397 if ((pos - (u8 *)rthdr) & 1) 398 *pos++ = 0; 399 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 400 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 401 put_unaligned_le16(rx_flags, pos); 402 pos += 2; 403 404 if (status->encoding == RX_ENC_HT) { 405 unsigned int stbc; 406 407 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 408 *pos++ = local->hw.radiotap_mcs_details; 409 *pos = 0; 410 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 411 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 412 if (status->bw == RATE_INFO_BW_40) 413 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 414 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 415 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 416 if (status->enc_flags & RX_ENC_FLAG_LDPC) 417 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 418 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 419 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 420 pos++; 421 *pos++ = status->rate_idx; 422 } 423 424 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 425 u16 flags = 0; 426 427 /* ensure 4 byte alignment */ 428 while ((pos - (u8 *)rthdr) & 3) 429 pos++; 430 rthdr->it_present |= 431 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 432 put_unaligned_le32(status->ampdu_reference, pos); 433 pos += 4; 434 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 435 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 436 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 437 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 438 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 439 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 440 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 441 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 442 put_unaligned_le16(flags, pos); 443 pos += 2; 444 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 445 *pos++ = status->ampdu_delimiter_crc; 446 else 447 *pos++ = 0; 448 *pos++ = 0; 449 } 450 451 if (status->encoding == RX_ENC_VHT) { 452 u16 known = local->hw.radiotap_vht_details; 453 454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 455 put_unaligned_le16(known, pos); 456 pos += 2; 457 /* flags */ 458 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 459 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 460 /* in VHT, STBC is binary */ 461 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 462 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 463 if (status->enc_flags & RX_ENC_FLAG_BF) 464 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 465 pos++; 466 /* bandwidth */ 467 switch (status->bw) { 468 case RATE_INFO_BW_80: 469 *pos++ = 4; 470 break; 471 case RATE_INFO_BW_160: 472 *pos++ = 11; 473 break; 474 case RATE_INFO_BW_40: 475 *pos++ = 1; 476 break; 477 default: 478 *pos++ = 0; 479 } 480 /* MCS/NSS */ 481 *pos = (status->rate_idx << 4) | status->nss; 482 pos += 4; 483 /* coding field */ 484 if (status->enc_flags & RX_ENC_FLAG_LDPC) 485 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 486 pos++; 487 /* group ID */ 488 pos++; 489 /* partial_aid */ 490 pos += 2; 491 } 492 493 if (local->hw.radiotap_timestamp.units_pos >= 0) { 494 u16 accuracy = 0; 495 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 496 497 rthdr->it_present |= 498 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 499 500 /* ensure 8 byte alignment */ 501 while ((pos - (u8 *)rthdr) & 7) 502 pos++; 503 504 put_unaligned_le64(status->device_timestamp, pos); 505 pos += sizeof(u64); 506 507 if (local->hw.radiotap_timestamp.accuracy >= 0) { 508 accuracy = local->hw.radiotap_timestamp.accuracy; 509 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 510 } 511 put_unaligned_le16(accuracy, pos); 512 pos += sizeof(u16); 513 514 *pos++ = local->hw.radiotap_timestamp.units_pos; 515 *pos++ = flags; 516 } 517 518 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 519 *pos++ = status->chain_signal[chain]; 520 *pos++ = chain; 521 } 522 523 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 524 /* ensure 2 byte alignment for the vendor field as required */ 525 if ((pos - (u8 *)rthdr) & 1) 526 *pos++ = 0; 527 *pos++ = rtap.oui[0]; 528 *pos++ = rtap.oui[1]; 529 *pos++ = rtap.oui[2]; 530 *pos++ = rtap.subns; 531 put_unaligned_le16(rtap.len, pos); 532 pos += 2; 533 /* align the actual payload as requested */ 534 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 535 *pos++ = 0; 536 /* data (and possible padding) already follows */ 537 } 538 } 539 540 static struct sk_buff * 541 ieee80211_make_monitor_skb(struct ieee80211_local *local, 542 struct sk_buff **origskb, 543 struct ieee80211_rate *rate, 544 int rtap_vendor_space, bool use_origskb) 545 { 546 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 547 int rt_hdrlen, needed_headroom; 548 struct sk_buff *skb; 549 550 /* room for the radiotap header based on driver features */ 551 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 552 needed_headroom = rt_hdrlen - rtap_vendor_space; 553 554 if (use_origskb) { 555 /* only need to expand headroom if necessary */ 556 skb = *origskb; 557 *origskb = NULL; 558 559 /* 560 * This shouldn't trigger often because most devices have an 561 * RX header they pull before we get here, and that should 562 * be big enough for our radiotap information. We should 563 * probably export the length to drivers so that we can have 564 * them allocate enough headroom to start with. 565 */ 566 if (skb_headroom(skb) < needed_headroom && 567 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 568 dev_kfree_skb(skb); 569 return NULL; 570 } 571 } else { 572 /* 573 * Need to make a copy and possibly remove radiotap header 574 * and FCS from the original. 575 */ 576 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 577 578 if (!skb) 579 return NULL; 580 } 581 582 /* prepend radiotap information */ 583 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 584 585 skb_reset_mac_header(skb); 586 skb->ip_summed = CHECKSUM_UNNECESSARY; 587 skb->pkt_type = PACKET_OTHERHOST; 588 skb->protocol = htons(ETH_P_802_2); 589 590 return skb; 591 } 592 593 /* 594 * This function copies a received frame to all monitor interfaces and 595 * returns a cleaned-up SKB that no longer includes the FCS nor the 596 * radiotap header the driver might have added. 597 */ 598 static struct sk_buff * 599 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 600 struct ieee80211_rate *rate) 601 { 602 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 603 struct ieee80211_sub_if_data *sdata; 604 struct sk_buff *monskb = NULL; 605 int present_fcs_len = 0; 606 unsigned int rtap_vendor_space = 0; 607 struct ieee80211_sub_if_data *monitor_sdata = 608 rcu_dereference(local->monitor_sdata); 609 bool only_monitor = false; 610 611 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 612 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 613 614 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 615 } 616 617 /* 618 * First, we may need to make a copy of the skb because 619 * (1) we need to modify it for radiotap (if not present), and 620 * (2) the other RX handlers will modify the skb we got. 621 * 622 * We don't need to, of course, if we aren't going to return 623 * the SKB because it has a bad FCS/PLCP checksum. 624 */ 625 626 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 627 if (unlikely(origskb->len <= FCS_LEN)) { 628 /* driver bug */ 629 WARN_ON(1); 630 dev_kfree_skb(origskb); 631 return NULL; 632 } 633 present_fcs_len = FCS_LEN; 634 } 635 636 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 637 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 638 dev_kfree_skb(origskb); 639 return NULL; 640 } 641 642 only_monitor = should_drop_frame(origskb, present_fcs_len, 643 rtap_vendor_space); 644 645 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 646 if (only_monitor) { 647 dev_kfree_skb(origskb); 648 return NULL; 649 } 650 651 remove_monitor_info(origskb, present_fcs_len, 652 rtap_vendor_space); 653 return origskb; 654 } 655 656 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space); 657 658 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 659 bool last_monitor = list_is_last(&sdata->u.mntr.list, 660 &local->mon_list); 661 662 if (!monskb) 663 monskb = ieee80211_make_monitor_skb(local, &origskb, 664 rate, 665 rtap_vendor_space, 666 only_monitor && 667 last_monitor); 668 669 if (monskb) { 670 struct sk_buff *skb; 671 672 if (last_monitor) { 673 skb = monskb; 674 monskb = NULL; 675 } else { 676 skb = skb_clone(monskb, GFP_ATOMIC); 677 } 678 679 if (skb) { 680 skb->dev = sdata->dev; 681 ieee80211_rx_stats(skb->dev, skb->len); 682 netif_receive_skb(skb); 683 } 684 } 685 686 if (last_monitor) 687 break; 688 } 689 690 /* this happens if last_monitor was erroneously false */ 691 dev_kfree_skb(monskb); 692 693 /* ditto */ 694 if (!origskb) 695 return NULL; 696 697 remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space); 698 return origskb; 699 } 700 701 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 702 { 703 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 704 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 705 int tid, seqno_idx, security_idx; 706 707 /* does the frame have a qos control field? */ 708 if (ieee80211_is_data_qos(hdr->frame_control)) { 709 u8 *qc = ieee80211_get_qos_ctl(hdr); 710 /* frame has qos control */ 711 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 712 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 713 status->rx_flags |= IEEE80211_RX_AMSDU; 714 715 seqno_idx = tid; 716 security_idx = tid; 717 } else { 718 /* 719 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 720 * 721 * Sequence numbers for management frames, QoS data 722 * frames with a broadcast/multicast address in the 723 * Address 1 field, and all non-QoS data frames sent 724 * by QoS STAs are assigned using an additional single 725 * modulo-4096 counter, [...] 726 * 727 * We also use that counter for non-QoS STAs. 728 */ 729 seqno_idx = IEEE80211_NUM_TIDS; 730 security_idx = 0; 731 if (ieee80211_is_mgmt(hdr->frame_control)) 732 security_idx = IEEE80211_NUM_TIDS; 733 tid = 0; 734 } 735 736 rx->seqno_idx = seqno_idx; 737 rx->security_idx = security_idx; 738 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 739 * For now, set skb->priority to 0 for other cases. */ 740 rx->skb->priority = (tid > 7) ? 0 : tid; 741 } 742 743 /** 744 * DOC: Packet alignment 745 * 746 * Drivers always need to pass packets that are aligned to two-byte boundaries 747 * to the stack. 748 * 749 * Additionally, should, if possible, align the payload data in a way that 750 * guarantees that the contained IP header is aligned to a four-byte 751 * boundary. In the case of regular frames, this simply means aligning the 752 * payload to a four-byte boundary (because either the IP header is directly 753 * contained, or IV/RFC1042 headers that have a length divisible by four are 754 * in front of it). If the payload data is not properly aligned and the 755 * architecture doesn't support efficient unaligned operations, mac80211 756 * will align the data. 757 * 758 * With A-MSDU frames, however, the payload data address must yield two modulo 759 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 760 * push the IP header further back to a multiple of four again. Thankfully, the 761 * specs were sane enough this time around to require padding each A-MSDU 762 * subframe to a length that is a multiple of four. 763 * 764 * Padding like Atheros hardware adds which is between the 802.11 header and 765 * the payload is not supported, the driver is required to move the 802.11 766 * header to be directly in front of the payload in that case. 767 */ 768 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 769 { 770 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 771 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 772 #endif 773 } 774 775 776 /* rx handlers */ 777 778 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 779 { 780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 781 782 if (is_multicast_ether_addr(hdr->addr1)) 783 return 0; 784 785 return ieee80211_is_robust_mgmt_frame(skb); 786 } 787 788 789 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 790 { 791 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 792 793 if (!is_multicast_ether_addr(hdr->addr1)) 794 return 0; 795 796 return ieee80211_is_robust_mgmt_frame(skb); 797 } 798 799 800 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 801 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 802 { 803 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 804 struct ieee80211_mmie *mmie; 805 struct ieee80211_mmie_16 *mmie16; 806 807 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 808 return -1; 809 810 if (!ieee80211_is_robust_mgmt_frame(skb)) 811 return -1; /* not a robust management frame */ 812 813 mmie = (struct ieee80211_mmie *) 814 (skb->data + skb->len - sizeof(*mmie)); 815 if (mmie->element_id == WLAN_EID_MMIE && 816 mmie->length == sizeof(*mmie) - 2) 817 return le16_to_cpu(mmie->key_id); 818 819 mmie16 = (struct ieee80211_mmie_16 *) 820 (skb->data + skb->len - sizeof(*mmie16)); 821 if (skb->len >= 24 + sizeof(*mmie16) && 822 mmie16->element_id == WLAN_EID_MMIE && 823 mmie16->length == sizeof(*mmie16) - 2) 824 return le16_to_cpu(mmie16->key_id); 825 826 return -1; 827 } 828 829 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 830 struct sk_buff *skb) 831 { 832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 833 __le16 fc; 834 int hdrlen; 835 u8 keyid; 836 837 fc = hdr->frame_control; 838 hdrlen = ieee80211_hdrlen(fc); 839 840 if (skb->len < hdrlen + cs->hdr_len) 841 return -EINVAL; 842 843 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 844 keyid &= cs->key_idx_mask; 845 keyid >>= cs->key_idx_shift; 846 847 return keyid; 848 } 849 850 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 851 { 852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 853 char *dev_addr = rx->sdata->vif.addr; 854 855 if (ieee80211_is_data(hdr->frame_control)) { 856 if (is_multicast_ether_addr(hdr->addr1)) { 857 if (ieee80211_has_tods(hdr->frame_control) || 858 !ieee80211_has_fromds(hdr->frame_control)) 859 return RX_DROP_MONITOR; 860 if (ether_addr_equal(hdr->addr3, dev_addr)) 861 return RX_DROP_MONITOR; 862 } else { 863 if (!ieee80211_has_a4(hdr->frame_control)) 864 return RX_DROP_MONITOR; 865 if (ether_addr_equal(hdr->addr4, dev_addr)) 866 return RX_DROP_MONITOR; 867 } 868 } 869 870 /* If there is not an established peer link and this is not a peer link 871 * establisment frame, beacon or probe, drop the frame. 872 */ 873 874 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 875 struct ieee80211_mgmt *mgmt; 876 877 if (!ieee80211_is_mgmt(hdr->frame_control)) 878 return RX_DROP_MONITOR; 879 880 if (ieee80211_is_action(hdr->frame_control)) { 881 u8 category; 882 883 /* make sure category field is present */ 884 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 885 return RX_DROP_MONITOR; 886 887 mgmt = (struct ieee80211_mgmt *)hdr; 888 category = mgmt->u.action.category; 889 if (category != WLAN_CATEGORY_MESH_ACTION && 890 category != WLAN_CATEGORY_SELF_PROTECTED) 891 return RX_DROP_MONITOR; 892 return RX_CONTINUE; 893 } 894 895 if (ieee80211_is_probe_req(hdr->frame_control) || 896 ieee80211_is_probe_resp(hdr->frame_control) || 897 ieee80211_is_beacon(hdr->frame_control) || 898 ieee80211_is_auth(hdr->frame_control)) 899 return RX_CONTINUE; 900 901 return RX_DROP_MONITOR; 902 } 903 904 return RX_CONTINUE; 905 } 906 907 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 908 int index) 909 { 910 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 911 struct sk_buff *tail = skb_peek_tail(frames); 912 struct ieee80211_rx_status *status; 913 914 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 915 return true; 916 917 if (!tail) 918 return false; 919 920 status = IEEE80211_SKB_RXCB(tail); 921 if (status->flag & RX_FLAG_AMSDU_MORE) 922 return false; 923 924 return true; 925 } 926 927 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 928 struct tid_ampdu_rx *tid_agg_rx, 929 int index, 930 struct sk_buff_head *frames) 931 { 932 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 933 struct sk_buff *skb; 934 struct ieee80211_rx_status *status; 935 936 lockdep_assert_held(&tid_agg_rx->reorder_lock); 937 938 if (skb_queue_empty(skb_list)) 939 goto no_frame; 940 941 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 942 __skb_queue_purge(skb_list); 943 goto no_frame; 944 } 945 946 /* release frames from the reorder ring buffer */ 947 tid_agg_rx->stored_mpdu_num--; 948 while ((skb = __skb_dequeue(skb_list))) { 949 status = IEEE80211_SKB_RXCB(skb); 950 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 951 __skb_queue_tail(frames, skb); 952 } 953 954 no_frame: 955 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 956 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 957 } 958 959 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 960 struct tid_ampdu_rx *tid_agg_rx, 961 u16 head_seq_num, 962 struct sk_buff_head *frames) 963 { 964 int index; 965 966 lockdep_assert_held(&tid_agg_rx->reorder_lock); 967 968 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 969 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 970 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 971 frames); 972 } 973 } 974 975 /* 976 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 977 * the skb was added to the buffer longer than this time ago, the earlier 978 * frames that have not yet been received are assumed to be lost and the skb 979 * can be released for processing. This may also release other skb's from the 980 * reorder buffer if there are no additional gaps between the frames. 981 * 982 * Callers must hold tid_agg_rx->reorder_lock. 983 */ 984 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 985 986 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 987 struct tid_ampdu_rx *tid_agg_rx, 988 struct sk_buff_head *frames) 989 { 990 int index, i, j; 991 992 lockdep_assert_held(&tid_agg_rx->reorder_lock); 993 994 /* release the buffer until next missing frame */ 995 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 996 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 997 tid_agg_rx->stored_mpdu_num) { 998 /* 999 * No buffers ready to be released, but check whether any 1000 * frames in the reorder buffer have timed out. 1001 */ 1002 int skipped = 1; 1003 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1004 j = (j + 1) % tid_agg_rx->buf_size) { 1005 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1006 skipped++; 1007 continue; 1008 } 1009 if (skipped && 1010 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1011 HT_RX_REORDER_BUF_TIMEOUT)) 1012 goto set_release_timer; 1013 1014 /* don't leave incomplete A-MSDUs around */ 1015 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1016 i = (i + 1) % tid_agg_rx->buf_size) 1017 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1018 1019 ht_dbg_ratelimited(sdata, 1020 "release an RX reorder frame due to timeout on earlier frames\n"); 1021 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1022 frames); 1023 1024 /* 1025 * Increment the head seq# also for the skipped slots. 1026 */ 1027 tid_agg_rx->head_seq_num = 1028 (tid_agg_rx->head_seq_num + 1029 skipped) & IEEE80211_SN_MASK; 1030 skipped = 0; 1031 } 1032 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1033 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1034 frames); 1035 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1036 } 1037 1038 if (tid_agg_rx->stored_mpdu_num) { 1039 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1040 1041 for (; j != (index - 1) % tid_agg_rx->buf_size; 1042 j = (j + 1) % tid_agg_rx->buf_size) { 1043 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1044 break; 1045 } 1046 1047 set_release_timer: 1048 1049 if (!tid_agg_rx->removed) 1050 mod_timer(&tid_agg_rx->reorder_timer, 1051 tid_agg_rx->reorder_time[j] + 1 + 1052 HT_RX_REORDER_BUF_TIMEOUT); 1053 } else { 1054 del_timer(&tid_agg_rx->reorder_timer); 1055 } 1056 } 1057 1058 /* 1059 * As this function belongs to the RX path it must be under 1060 * rcu_read_lock protection. It returns false if the frame 1061 * can be processed immediately, true if it was consumed. 1062 */ 1063 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1064 struct tid_ampdu_rx *tid_agg_rx, 1065 struct sk_buff *skb, 1066 struct sk_buff_head *frames) 1067 { 1068 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1069 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1070 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1071 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1072 u16 head_seq_num, buf_size; 1073 int index; 1074 bool ret = true; 1075 1076 spin_lock(&tid_agg_rx->reorder_lock); 1077 1078 /* 1079 * Offloaded BA sessions have no known starting sequence number so pick 1080 * one from first Rxed frame for this tid after BA was started. 1081 */ 1082 if (unlikely(tid_agg_rx->auto_seq)) { 1083 tid_agg_rx->auto_seq = false; 1084 tid_agg_rx->ssn = mpdu_seq_num; 1085 tid_agg_rx->head_seq_num = mpdu_seq_num; 1086 } 1087 1088 buf_size = tid_agg_rx->buf_size; 1089 head_seq_num = tid_agg_rx->head_seq_num; 1090 1091 /* 1092 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1093 * be reordered. 1094 */ 1095 if (unlikely(!tid_agg_rx->started)) { 1096 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1097 ret = false; 1098 goto out; 1099 } 1100 tid_agg_rx->started = true; 1101 } 1102 1103 /* frame with out of date sequence number */ 1104 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1105 dev_kfree_skb(skb); 1106 goto out; 1107 } 1108 1109 /* 1110 * If frame the sequence number exceeds our buffering window 1111 * size release some previous frames to make room for this one. 1112 */ 1113 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1114 head_seq_num = ieee80211_sn_inc( 1115 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1116 /* release stored frames up to new head to stack */ 1117 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1118 head_seq_num, frames); 1119 } 1120 1121 /* Now the new frame is always in the range of the reordering buffer */ 1122 1123 index = mpdu_seq_num % tid_agg_rx->buf_size; 1124 1125 /* check if we already stored this frame */ 1126 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1127 dev_kfree_skb(skb); 1128 goto out; 1129 } 1130 1131 /* 1132 * If the current MPDU is in the right order and nothing else 1133 * is stored we can process it directly, no need to buffer it. 1134 * If it is first but there's something stored, we may be able 1135 * to release frames after this one. 1136 */ 1137 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1138 tid_agg_rx->stored_mpdu_num == 0) { 1139 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1140 tid_agg_rx->head_seq_num = 1141 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1142 ret = false; 1143 goto out; 1144 } 1145 1146 /* put the frame in the reordering buffer */ 1147 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1148 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1149 tid_agg_rx->reorder_time[index] = jiffies; 1150 tid_agg_rx->stored_mpdu_num++; 1151 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1152 } 1153 1154 out: 1155 spin_unlock(&tid_agg_rx->reorder_lock); 1156 return ret; 1157 } 1158 1159 /* 1160 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1161 * true if the MPDU was buffered, false if it should be processed. 1162 */ 1163 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1164 struct sk_buff_head *frames) 1165 { 1166 struct sk_buff *skb = rx->skb; 1167 struct ieee80211_local *local = rx->local; 1168 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1169 struct sta_info *sta = rx->sta; 1170 struct tid_ampdu_rx *tid_agg_rx; 1171 u16 sc; 1172 u8 tid, ack_policy; 1173 1174 if (!ieee80211_is_data_qos(hdr->frame_control) || 1175 is_multicast_ether_addr(hdr->addr1)) 1176 goto dont_reorder; 1177 1178 /* 1179 * filter the QoS data rx stream according to 1180 * STA/TID and check if this STA/TID is on aggregation 1181 */ 1182 1183 if (!sta) 1184 goto dont_reorder; 1185 1186 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1187 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1188 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1189 1190 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1191 if (!tid_agg_rx) { 1192 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1193 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1194 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1195 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1196 WLAN_BACK_RECIPIENT, 1197 WLAN_REASON_QSTA_REQUIRE_SETUP); 1198 goto dont_reorder; 1199 } 1200 1201 /* qos null data frames are excluded */ 1202 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1203 goto dont_reorder; 1204 1205 /* not part of a BA session */ 1206 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1207 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1208 goto dont_reorder; 1209 1210 /* new, potentially un-ordered, ampdu frame - process it */ 1211 1212 /* reset session timer */ 1213 if (tid_agg_rx->timeout) 1214 tid_agg_rx->last_rx = jiffies; 1215 1216 /* if this mpdu is fragmented - terminate rx aggregation session */ 1217 sc = le16_to_cpu(hdr->seq_ctrl); 1218 if (sc & IEEE80211_SCTL_FRAG) { 1219 skb_queue_tail(&rx->sdata->skb_queue, skb); 1220 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1221 return; 1222 } 1223 1224 /* 1225 * No locking needed -- we will only ever process one 1226 * RX packet at a time, and thus own tid_agg_rx. All 1227 * other code manipulating it needs to (and does) make 1228 * sure that we cannot get to it any more before doing 1229 * anything with it. 1230 */ 1231 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1232 frames)) 1233 return; 1234 1235 dont_reorder: 1236 __skb_queue_tail(frames, skb); 1237 } 1238 1239 static ieee80211_rx_result debug_noinline 1240 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1241 { 1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1244 1245 if (status->flag & RX_FLAG_DUP_VALIDATED) 1246 return RX_CONTINUE; 1247 1248 /* 1249 * Drop duplicate 802.11 retransmissions 1250 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1251 */ 1252 1253 if (rx->skb->len < 24) 1254 return RX_CONTINUE; 1255 1256 if (ieee80211_is_ctl(hdr->frame_control) || 1257 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1258 is_multicast_ether_addr(hdr->addr1)) 1259 return RX_CONTINUE; 1260 1261 if (!rx->sta) 1262 return RX_CONTINUE; 1263 1264 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1265 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1266 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1267 rx->sta->rx_stats.num_duplicates++; 1268 return RX_DROP_UNUSABLE; 1269 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1270 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1271 } 1272 1273 return RX_CONTINUE; 1274 } 1275 1276 static ieee80211_rx_result debug_noinline 1277 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1278 { 1279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1280 1281 /* Drop disallowed frame classes based on STA auth/assoc state; 1282 * IEEE 802.11, Chap 5.5. 1283 * 1284 * mac80211 filters only based on association state, i.e. it drops 1285 * Class 3 frames from not associated stations. hostapd sends 1286 * deauth/disassoc frames when needed. In addition, hostapd is 1287 * responsible for filtering on both auth and assoc states. 1288 */ 1289 1290 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1291 return ieee80211_rx_mesh_check(rx); 1292 1293 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1294 ieee80211_is_pspoll(hdr->frame_control)) && 1295 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1296 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1297 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1298 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1299 /* 1300 * accept port control frames from the AP even when it's not 1301 * yet marked ASSOC to prevent a race where we don't set the 1302 * assoc bit quickly enough before it sends the first frame 1303 */ 1304 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1305 ieee80211_is_data_present(hdr->frame_control)) { 1306 unsigned int hdrlen; 1307 __be16 ethertype; 1308 1309 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1310 1311 if (rx->skb->len < hdrlen + 8) 1312 return RX_DROP_MONITOR; 1313 1314 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1315 if (ethertype == rx->sdata->control_port_protocol) 1316 return RX_CONTINUE; 1317 } 1318 1319 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1320 cfg80211_rx_spurious_frame(rx->sdata->dev, 1321 hdr->addr2, 1322 GFP_ATOMIC)) 1323 return RX_DROP_UNUSABLE; 1324 1325 return RX_DROP_MONITOR; 1326 } 1327 1328 return RX_CONTINUE; 1329 } 1330 1331 1332 static ieee80211_rx_result debug_noinline 1333 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1334 { 1335 struct ieee80211_local *local; 1336 struct ieee80211_hdr *hdr; 1337 struct sk_buff *skb; 1338 1339 local = rx->local; 1340 skb = rx->skb; 1341 hdr = (struct ieee80211_hdr *) skb->data; 1342 1343 if (!local->pspolling) 1344 return RX_CONTINUE; 1345 1346 if (!ieee80211_has_fromds(hdr->frame_control)) 1347 /* this is not from AP */ 1348 return RX_CONTINUE; 1349 1350 if (!ieee80211_is_data(hdr->frame_control)) 1351 return RX_CONTINUE; 1352 1353 if (!ieee80211_has_moredata(hdr->frame_control)) { 1354 /* AP has no more frames buffered for us */ 1355 local->pspolling = false; 1356 return RX_CONTINUE; 1357 } 1358 1359 /* more data bit is set, let's request a new frame from the AP */ 1360 ieee80211_send_pspoll(local, rx->sdata); 1361 1362 return RX_CONTINUE; 1363 } 1364 1365 static void sta_ps_start(struct sta_info *sta) 1366 { 1367 struct ieee80211_sub_if_data *sdata = sta->sdata; 1368 struct ieee80211_local *local = sdata->local; 1369 struct ps_data *ps; 1370 int tid; 1371 1372 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1373 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1374 ps = &sdata->bss->ps; 1375 else 1376 return; 1377 1378 atomic_inc(&ps->num_sta_ps); 1379 set_sta_flag(sta, WLAN_STA_PS_STA); 1380 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1381 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1382 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1383 sta->sta.addr, sta->sta.aid); 1384 1385 ieee80211_clear_fast_xmit(sta); 1386 1387 if (!sta->sta.txq[0]) 1388 return; 1389 1390 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1391 if (txq_has_queue(sta->sta.txq[tid])) 1392 set_bit(tid, &sta->txq_buffered_tids); 1393 else 1394 clear_bit(tid, &sta->txq_buffered_tids); 1395 } 1396 } 1397 1398 static void sta_ps_end(struct sta_info *sta) 1399 { 1400 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1401 sta->sta.addr, sta->sta.aid); 1402 1403 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1404 /* 1405 * Clear the flag only if the other one is still set 1406 * so that the TX path won't start TX'ing new frames 1407 * directly ... In the case that the driver flag isn't 1408 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1409 */ 1410 clear_sta_flag(sta, WLAN_STA_PS_STA); 1411 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1412 sta->sta.addr, sta->sta.aid); 1413 return; 1414 } 1415 1416 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1417 clear_sta_flag(sta, WLAN_STA_PS_STA); 1418 ieee80211_sta_ps_deliver_wakeup(sta); 1419 } 1420 1421 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1422 { 1423 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1424 bool in_ps; 1425 1426 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1427 1428 /* Don't let the same PS state be set twice */ 1429 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1430 if ((start && in_ps) || (!start && !in_ps)) 1431 return -EINVAL; 1432 1433 if (start) 1434 sta_ps_start(sta); 1435 else 1436 sta_ps_end(sta); 1437 1438 return 0; 1439 } 1440 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1441 1442 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1443 { 1444 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1445 1446 if (test_sta_flag(sta, WLAN_STA_SP)) 1447 return; 1448 1449 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1450 ieee80211_sta_ps_deliver_poll_response(sta); 1451 else 1452 set_sta_flag(sta, WLAN_STA_PSPOLL); 1453 } 1454 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1455 1456 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1457 { 1458 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1459 int ac = ieee80211_ac_from_tid(tid); 1460 1461 /* 1462 * If this AC is not trigger-enabled do nothing unless the 1463 * driver is calling us after it already checked. 1464 * 1465 * NB: This could/should check a separate bitmap of trigger- 1466 * enabled queues, but for now we only implement uAPSD w/o 1467 * TSPEC changes to the ACs, so they're always the same. 1468 */ 1469 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1470 tid != IEEE80211_NUM_TIDS) 1471 return; 1472 1473 /* if we are in a service period, do nothing */ 1474 if (test_sta_flag(sta, WLAN_STA_SP)) 1475 return; 1476 1477 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1478 ieee80211_sta_ps_deliver_uapsd(sta); 1479 else 1480 set_sta_flag(sta, WLAN_STA_UAPSD); 1481 } 1482 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1483 1484 static ieee80211_rx_result debug_noinline 1485 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1486 { 1487 struct ieee80211_sub_if_data *sdata = rx->sdata; 1488 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1490 1491 if (!rx->sta) 1492 return RX_CONTINUE; 1493 1494 if (sdata->vif.type != NL80211_IFTYPE_AP && 1495 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1496 return RX_CONTINUE; 1497 1498 /* 1499 * The device handles station powersave, so don't do anything about 1500 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1501 * it to mac80211 since they're handled.) 1502 */ 1503 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1504 return RX_CONTINUE; 1505 1506 /* 1507 * Don't do anything if the station isn't already asleep. In 1508 * the uAPSD case, the station will probably be marked asleep, 1509 * in the PS-Poll case the station must be confused ... 1510 */ 1511 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1512 return RX_CONTINUE; 1513 1514 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1515 ieee80211_sta_pspoll(&rx->sta->sta); 1516 1517 /* Free PS Poll skb here instead of returning RX_DROP that would 1518 * count as an dropped frame. */ 1519 dev_kfree_skb(rx->skb); 1520 1521 return RX_QUEUED; 1522 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1523 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1524 ieee80211_has_pm(hdr->frame_control) && 1525 (ieee80211_is_data_qos(hdr->frame_control) || 1526 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1527 u8 tid; 1528 1529 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1530 1531 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1532 } 1533 1534 return RX_CONTINUE; 1535 } 1536 1537 static ieee80211_rx_result debug_noinline 1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1539 { 1540 struct sta_info *sta = rx->sta; 1541 struct sk_buff *skb = rx->skb; 1542 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1544 int i; 1545 1546 if (!sta) 1547 return RX_CONTINUE; 1548 1549 /* 1550 * Update last_rx only for IBSS packets which are for the current 1551 * BSSID and for station already AUTHORIZED to avoid keeping the 1552 * current IBSS network alive in cases where other STAs start 1553 * using different BSSID. This will also give the station another 1554 * chance to restart the authentication/authorization in case 1555 * something went wrong the first time. 1556 */ 1557 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1558 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1559 NL80211_IFTYPE_ADHOC); 1560 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1561 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1562 sta->rx_stats.last_rx = jiffies; 1563 if (ieee80211_is_data(hdr->frame_control) && 1564 !is_multicast_ether_addr(hdr->addr1)) 1565 sta->rx_stats.last_rate = 1566 sta_stats_encode_rate(status); 1567 } 1568 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1569 sta->rx_stats.last_rx = jiffies; 1570 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1571 /* 1572 * Mesh beacons will update last_rx when if they are found to 1573 * match the current local configuration when processed. 1574 */ 1575 sta->rx_stats.last_rx = jiffies; 1576 if (ieee80211_is_data(hdr->frame_control)) 1577 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1578 } 1579 1580 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1581 ieee80211_sta_rx_notify(rx->sdata, hdr); 1582 1583 sta->rx_stats.fragments++; 1584 1585 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1586 sta->rx_stats.bytes += rx->skb->len; 1587 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1588 1589 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1590 sta->rx_stats.last_signal = status->signal; 1591 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1592 } 1593 1594 if (status->chains) { 1595 sta->rx_stats.chains = status->chains; 1596 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1597 int signal = status->chain_signal[i]; 1598 1599 if (!(status->chains & BIT(i))) 1600 continue; 1601 1602 sta->rx_stats.chain_signal_last[i] = signal; 1603 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1604 -signal); 1605 } 1606 } 1607 1608 /* 1609 * Change STA power saving mode only at the end of a frame 1610 * exchange sequence. 1611 */ 1612 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1613 !ieee80211_has_morefrags(hdr->frame_control) && 1614 !ieee80211_is_back_req(hdr->frame_control) && 1615 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1616 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1617 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1618 /* 1619 * PM bit is only checked in frames where it isn't reserved, 1620 * in AP mode it's reserved in non-bufferable management frames 1621 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1622 * BAR frames should be ignored as specified in 1623 * IEEE 802.11-2012 10.2.1.2. 1624 */ 1625 (!ieee80211_is_mgmt(hdr->frame_control) || 1626 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1627 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1628 if (!ieee80211_has_pm(hdr->frame_control)) 1629 sta_ps_end(sta); 1630 } else { 1631 if (ieee80211_has_pm(hdr->frame_control)) 1632 sta_ps_start(sta); 1633 } 1634 } 1635 1636 /* mesh power save support */ 1637 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1638 ieee80211_mps_rx_h_sta_process(sta, hdr); 1639 1640 /* 1641 * Drop (qos-)data::nullfunc frames silently, since they 1642 * are used only to control station power saving mode. 1643 */ 1644 if (ieee80211_is_nullfunc(hdr->frame_control) || 1645 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1646 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1647 1648 /* 1649 * If we receive a 4-addr nullfunc frame from a STA 1650 * that was not moved to a 4-addr STA vlan yet send 1651 * the event to userspace and for older hostapd drop 1652 * the frame to the monitor interface. 1653 */ 1654 if (ieee80211_has_a4(hdr->frame_control) && 1655 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1656 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1657 !rx->sdata->u.vlan.sta))) { 1658 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1659 cfg80211_rx_unexpected_4addr_frame( 1660 rx->sdata->dev, sta->sta.addr, 1661 GFP_ATOMIC); 1662 return RX_DROP_MONITOR; 1663 } 1664 /* 1665 * Update counter and free packet here to avoid 1666 * counting this as a dropped packed. 1667 */ 1668 sta->rx_stats.packets++; 1669 dev_kfree_skb(rx->skb); 1670 return RX_QUEUED; 1671 } 1672 1673 return RX_CONTINUE; 1674 } /* ieee80211_rx_h_sta_process */ 1675 1676 static ieee80211_rx_result debug_noinline 1677 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1678 { 1679 struct sk_buff *skb = rx->skb; 1680 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1681 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1682 int keyidx; 1683 int hdrlen; 1684 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1685 struct ieee80211_key *sta_ptk = NULL; 1686 int mmie_keyidx = -1; 1687 __le16 fc; 1688 const struct ieee80211_cipher_scheme *cs = NULL; 1689 1690 /* 1691 * Key selection 101 1692 * 1693 * There are four types of keys: 1694 * - GTK (group keys) 1695 * - IGTK (group keys for management frames) 1696 * - PTK (pairwise keys) 1697 * - STK (station-to-station pairwise keys) 1698 * 1699 * When selecting a key, we have to distinguish between multicast 1700 * (including broadcast) and unicast frames, the latter can only 1701 * use PTKs and STKs while the former always use GTKs and IGTKs. 1702 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1703 * unicast frames can also use key indices like GTKs. Hence, if we 1704 * don't have a PTK/STK we check the key index for a WEP key. 1705 * 1706 * Note that in a regular BSS, multicast frames are sent by the 1707 * AP only, associated stations unicast the frame to the AP first 1708 * which then multicasts it on their behalf. 1709 * 1710 * There is also a slight problem in IBSS mode: GTKs are negotiated 1711 * with each station, that is something we don't currently handle. 1712 * The spec seems to expect that one negotiates the same key with 1713 * every station but there's no such requirement; VLANs could be 1714 * possible. 1715 */ 1716 1717 /* start without a key */ 1718 rx->key = NULL; 1719 fc = hdr->frame_control; 1720 1721 if (rx->sta) { 1722 int keyid = rx->sta->ptk_idx; 1723 1724 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1725 cs = rx->sta->cipher_scheme; 1726 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1727 if (unlikely(keyid < 0)) 1728 return RX_DROP_UNUSABLE; 1729 } 1730 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1731 } 1732 1733 if (!ieee80211_has_protected(fc)) 1734 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1735 1736 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1737 rx->key = sta_ptk; 1738 if ((status->flag & RX_FLAG_DECRYPTED) && 1739 (status->flag & RX_FLAG_IV_STRIPPED)) 1740 return RX_CONTINUE; 1741 /* Skip decryption if the frame is not protected. */ 1742 if (!ieee80211_has_protected(fc)) 1743 return RX_CONTINUE; 1744 } else if (mmie_keyidx >= 0) { 1745 /* Broadcast/multicast robust management frame / BIP */ 1746 if ((status->flag & RX_FLAG_DECRYPTED) && 1747 (status->flag & RX_FLAG_IV_STRIPPED)) 1748 return RX_CONTINUE; 1749 1750 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1751 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1752 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1753 if (rx->sta) { 1754 if (ieee80211_is_group_privacy_action(skb) && 1755 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1756 return RX_DROP_MONITOR; 1757 1758 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1759 } 1760 if (!rx->key) 1761 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1762 } else if (!ieee80211_has_protected(fc)) { 1763 /* 1764 * The frame was not protected, so skip decryption. However, we 1765 * need to set rx->key if there is a key that could have been 1766 * used so that the frame may be dropped if encryption would 1767 * have been expected. 1768 */ 1769 struct ieee80211_key *key = NULL; 1770 struct ieee80211_sub_if_data *sdata = rx->sdata; 1771 int i; 1772 1773 if (ieee80211_is_mgmt(fc) && 1774 is_multicast_ether_addr(hdr->addr1) && 1775 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1776 rx->key = key; 1777 else { 1778 if (rx->sta) { 1779 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1780 key = rcu_dereference(rx->sta->gtk[i]); 1781 if (key) 1782 break; 1783 } 1784 } 1785 if (!key) { 1786 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1787 key = rcu_dereference(sdata->keys[i]); 1788 if (key) 1789 break; 1790 } 1791 } 1792 if (key) 1793 rx->key = key; 1794 } 1795 return RX_CONTINUE; 1796 } else { 1797 u8 keyid; 1798 1799 /* 1800 * The device doesn't give us the IV so we won't be 1801 * able to look up the key. That's ok though, we 1802 * don't need to decrypt the frame, we just won't 1803 * be able to keep statistics accurate. 1804 * Except for key threshold notifications, should 1805 * we somehow allow the driver to tell us which key 1806 * the hardware used if this flag is set? 1807 */ 1808 if ((status->flag & RX_FLAG_DECRYPTED) && 1809 (status->flag & RX_FLAG_IV_STRIPPED)) 1810 return RX_CONTINUE; 1811 1812 hdrlen = ieee80211_hdrlen(fc); 1813 1814 if (cs) { 1815 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1816 1817 if (unlikely(keyidx < 0)) 1818 return RX_DROP_UNUSABLE; 1819 } else { 1820 if (rx->skb->len < 8 + hdrlen) 1821 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1822 /* 1823 * no need to call ieee80211_wep_get_keyidx, 1824 * it verifies a bunch of things we've done already 1825 */ 1826 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1827 keyidx = keyid >> 6; 1828 } 1829 1830 /* check per-station GTK first, if multicast packet */ 1831 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1832 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1833 1834 /* if not found, try default key */ 1835 if (!rx->key) { 1836 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1837 1838 /* 1839 * RSNA-protected unicast frames should always be 1840 * sent with pairwise or station-to-station keys, 1841 * but for WEP we allow using a key index as well. 1842 */ 1843 if (rx->key && 1844 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1845 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1846 !is_multicast_ether_addr(hdr->addr1)) 1847 rx->key = NULL; 1848 } 1849 } 1850 1851 if (rx->key) { 1852 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1853 return RX_DROP_MONITOR; 1854 1855 /* TODO: add threshold stuff again */ 1856 } else { 1857 return RX_DROP_MONITOR; 1858 } 1859 1860 switch (rx->key->conf.cipher) { 1861 case WLAN_CIPHER_SUITE_WEP40: 1862 case WLAN_CIPHER_SUITE_WEP104: 1863 result = ieee80211_crypto_wep_decrypt(rx); 1864 break; 1865 case WLAN_CIPHER_SUITE_TKIP: 1866 result = ieee80211_crypto_tkip_decrypt(rx); 1867 break; 1868 case WLAN_CIPHER_SUITE_CCMP: 1869 result = ieee80211_crypto_ccmp_decrypt( 1870 rx, IEEE80211_CCMP_MIC_LEN); 1871 break; 1872 case WLAN_CIPHER_SUITE_CCMP_256: 1873 result = ieee80211_crypto_ccmp_decrypt( 1874 rx, IEEE80211_CCMP_256_MIC_LEN); 1875 break; 1876 case WLAN_CIPHER_SUITE_AES_CMAC: 1877 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1878 break; 1879 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1880 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1881 break; 1882 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1883 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1884 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1885 break; 1886 case WLAN_CIPHER_SUITE_GCMP: 1887 case WLAN_CIPHER_SUITE_GCMP_256: 1888 result = ieee80211_crypto_gcmp_decrypt(rx); 1889 break; 1890 default: 1891 result = ieee80211_crypto_hw_decrypt(rx); 1892 } 1893 1894 /* the hdr variable is invalid after the decrypt handlers */ 1895 1896 /* either the frame has been decrypted or will be dropped */ 1897 status->flag |= RX_FLAG_DECRYPTED; 1898 1899 return result; 1900 } 1901 1902 static inline struct ieee80211_fragment_entry * 1903 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1904 unsigned int frag, unsigned int seq, int rx_queue, 1905 struct sk_buff **skb) 1906 { 1907 struct ieee80211_fragment_entry *entry; 1908 1909 entry = &sdata->fragments[sdata->fragment_next++]; 1910 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1911 sdata->fragment_next = 0; 1912 1913 if (!skb_queue_empty(&entry->skb_list)) 1914 __skb_queue_purge(&entry->skb_list); 1915 1916 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1917 *skb = NULL; 1918 entry->first_frag_time = jiffies; 1919 entry->seq = seq; 1920 entry->rx_queue = rx_queue; 1921 entry->last_frag = frag; 1922 entry->check_sequential_pn = false; 1923 entry->extra_len = 0; 1924 1925 return entry; 1926 } 1927 1928 static inline struct ieee80211_fragment_entry * 1929 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1930 unsigned int frag, unsigned int seq, 1931 int rx_queue, struct ieee80211_hdr *hdr) 1932 { 1933 struct ieee80211_fragment_entry *entry; 1934 int i, idx; 1935 1936 idx = sdata->fragment_next; 1937 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1938 struct ieee80211_hdr *f_hdr; 1939 1940 idx--; 1941 if (idx < 0) 1942 idx = IEEE80211_FRAGMENT_MAX - 1; 1943 1944 entry = &sdata->fragments[idx]; 1945 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1946 entry->rx_queue != rx_queue || 1947 entry->last_frag + 1 != frag) 1948 continue; 1949 1950 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1951 1952 /* 1953 * Check ftype and addresses are equal, else check next fragment 1954 */ 1955 if (((hdr->frame_control ^ f_hdr->frame_control) & 1956 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1957 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1958 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1959 continue; 1960 1961 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1962 __skb_queue_purge(&entry->skb_list); 1963 continue; 1964 } 1965 return entry; 1966 } 1967 1968 return NULL; 1969 } 1970 1971 static ieee80211_rx_result debug_noinline 1972 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1973 { 1974 struct ieee80211_hdr *hdr; 1975 u16 sc; 1976 __le16 fc; 1977 unsigned int frag, seq; 1978 struct ieee80211_fragment_entry *entry; 1979 struct sk_buff *skb; 1980 1981 hdr = (struct ieee80211_hdr *)rx->skb->data; 1982 fc = hdr->frame_control; 1983 1984 if (ieee80211_is_ctl(fc)) 1985 return RX_CONTINUE; 1986 1987 sc = le16_to_cpu(hdr->seq_ctrl); 1988 frag = sc & IEEE80211_SCTL_FRAG; 1989 1990 if (is_multicast_ether_addr(hdr->addr1)) { 1991 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1992 goto out_no_led; 1993 } 1994 1995 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1996 goto out; 1997 1998 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1999 2000 if (skb_linearize(rx->skb)) 2001 return RX_DROP_UNUSABLE; 2002 2003 /* 2004 * skb_linearize() might change the skb->data and 2005 * previously cached variables (in this case, hdr) need to 2006 * be refreshed with the new data. 2007 */ 2008 hdr = (struct ieee80211_hdr *)rx->skb->data; 2009 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2010 2011 if (frag == 0) { 2012 /* This is the first fragment of a new frame. */ 2013 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2014 rx->seqno_idx, &(rx->skb)); 2015 if (rx->key && 2016 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2017 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2018 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2019 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2020 ieee80211_has_protected(fc)) { 2021 int queue = rx->security_idx; 2022 2023 /* Store CCMP/GCMP PN so that we can verify that the 2024 * next fragment has a sequential PN value. 2025 */ 2026 entry->check_sequential_pn = true; 2027 memcpy(entry->last_pn, 2028 rx->key->u.ccmp.rx_pn[queue], 2029 IEEE80211_CCMP_PN_LEN); 2030 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2031 u.ccmp.rx_pn) != 2032 offsetof(struct ieee80211_key, 2033 u.gcmp.rx_pn)); 2034 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2035 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2036 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2037 IEEE80211_GCMP_PN_LEN); 2038 } 2039 return RX_QUEUED; 2040 } 2041 2042 /* This is a fragment for a frame that should already be pending in 2043 * fragment cache. Add this fragment to the end of the pending entry. 2044 */ 2045 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2046 rx->seqno_idx, hdr); 2047 if (!entry) { 2048 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2049 return RX_DROP_MONITOR; 2050 } 2051 2052 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2053 * MPDU PN values are not incrementing in steps of 1." 2054 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2055 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2056 */ 2057 if (entry->check_sequential_pn) { 2058 int i; 2059 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2060 int queue; 2061 2062 if (!rx->key || 2063 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2064 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2065 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2066 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2067 return RX_DROP_UNUSABLE; 2068 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2069 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2070 pn[i]++; 2071 if (pn[i]) 2072 break; 2073 } 2074 queue = rx->security_idx; 2075 rpn = rx->key->u.ccmp.rx_pn[queue]; 2076 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2077 return RX_DROP_UNUSABLE; 2078 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2079 } 2080 2081 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2082 __skb_queue_tail(&entry->skb_list, rx->skb); 2083 entry->last_frag = frag; 2084 entry->extra_len += rx->skb->len; 2085 if (ieee80211_has_morefrags(fc)) { 2086 rx->skb = NULL; 2087 return RX_QUEUED; 2088 } 2089 2090 rx->skb = __skb_dequeue(&entry->skb_list); 2091 if (skb_tailroom(rx->skb) < entry->extra_len) { 2092 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2093 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2094 GFP_ATOMIC))) { 2095 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2096 __skb_queue_purge(&entry->skb_list); 2097 return RX_DROP_UNUSABLE; 2098 } 2099 } 2100 while ((skb = __skb_dequeue(&entry->skb_list))) { 2101 skb_put_data(rx->skb, skb->data, skb->len); 2102 dev_kfree_skb(skb); 2103 } 2104 2105 out: 2106 ieee80211_led_rx(rx->local); 2107 out_no_led: 2108 if (rx->sta) 2109 rx->sta->rx_stats.packets++; 2110 return RX_CONTINUE; 2111 } 2112 2113 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2114 { 2115 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2116 return -EACCES; 2117 2118 return 0; 2119 } 2120 2121 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2122 { 2123 struct sk_buff *skb = rx->skb; 2124 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2125 2126 /* 2127 * Pass through unencrypted frames if the hardware has 2128 * decrypted them already. 2129 */ 2130 if (status->flag & RX_FLAG_DECRYPTED) 2131 return 0; 2132 2133 /* Drop unencrypted frames if key is set. */ 2134 if (unlikely(!ieee80211_has_protected(fc) && 2135 !ieee80211_is_nullfunc(fc) && 2136 ieee80211_is_data(fc) && rx->key)) 2137 return -EACCES; 2138 2139 return 0; 2140 } 2141 2142 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2143 { 2144 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2146 __le16 fc = hdr->frame_control; 2147 2148 /* 2149 * Pass through unencrypted frames if the hardware has 2150 * decrypted them already. 2151 */ 2152 if (status->flag & RX_FLAG_DECRYPTED) 2153 return 0; 2154 2155 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2156 if (unlikely(!ieee80211_has_protected(fc) && 2157 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2158 rx->key)) { 2159 if (ieee80211_is_deauth(fc) || 2160 ieee80211_is_disassoc(fc)) 2161 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2162 rx->skb->data, 2163 rx->skb->len); 2164 return -EACCES; 2165 } 2166 /* BIP does not use Protected field, so need to check MMIE */ 2167 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2168 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2169 if (ieee80211_is_deauth(fc) || 2170 ieee80211_is_disassoc(fc)) 2171 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2172 rx->skb->data, 2173 rx->skb->len); 2174 return -EACCES; 2175 } 2176 /* 2177 * When using MFP, Action frames are not allowed prior to 2178 * having configured keys. 2179 */ 2180 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2181 ieee80211_is_robust_mgmt_frame(rx->skb))) 2182 return -EACCES; 2183 } 2184 2185 return 0; 2186 } 2187 2188 static int 2189 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2190 { 2191 struct ieee80211_sub_if_data *sdata = rx->sdata; 2192 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2193 bool check_port_control = false; 2194 struct ethhdr *ehdr; 2195 int ret; 2196 2197 *port_control = false; 2198 if (ieee80211_has_a4(hdr->frame_control) && 2199 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2200 return -1; 2201 2202 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2203 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2204 2205 if (!sdata->u.mgd.use_4addr) 2206 return -1; 2207 else 2208 check_port_control = true; 2209 } 2210 2211 if (is_multicast_ether_addr(hdr->addr1) && 2212 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2213 return -1; 2214 2215 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2216 if (ret < 0) 2217 return ret; 2218 2219 ehdr = (struct ethhdr *) rx->skb->data; 2220 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2221 *port_control = true; 2222 else if (check_port_control) 2223 return -1; 2224 2225 return 0; 2226 } 2227 2228 /* 2229 * requires that rx->skb is a frame with ethernet header 2230 */ 2231 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2232 { 2233 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2234 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2235 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2236 2237 /* 2238 * Allow EAPOL frames to us/the PAE group address regardless 2239 * of whether the frame was encrypted or not. 2240 */ 2241 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2242 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2243 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2244 return true; 2245 2246 if (ieee80211_802_1x_port_control(rx) || 2247 ieee80211_drop_unencrypted(rx, fc)) 2248 return false; 2249 2250 return true; 2251 } 2252 2253 /* 2254 * requires that rx->skb is a frame with ethernet header 2255 */ 2256 static void 2257 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2258 { 2259 struct ieee80211_sub_if_data *sdata = rx->sdata; 2260 struct net_device *dev = sdata->dev; 2261 struct sk_buff *skb, *xmit_skb; 2262 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2263 struct sta_info *dsta; 2264 2265 skb = rx->skb; 2266 xmit_skb = NULL; 2267 2268 ieee80211_rx_stats(dev, skb->len); 2269 2270 if (rx->sta) { 2271 /* The seqno index has the same property as needed 2272 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2273 * for non-QoS-data frames. Here we know it's a data 2274 * frame, so count MSDUs. 2275 */ 2276 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2277 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2278 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2279 } 2280 2281 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2282 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2283 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2284 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2285 if (is_multicast_ether_addr(ehdr->h_dest) && 2286 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2287 /* 2288 * send multicast frames both to higher layers in 2289 * local net stack and back to the wireless medium 2290 */ 2291 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2292 if (!xmit_skb) 2293 net_info_ratelimited("%s: failed to clone multicast frame\n", 2294 dev->name); 2295 } else if (!is_multicast_ether_addr(ehdr->h_dest)) { 2296 dsta = sta_info_get(sdata, skb->data); 2297 if (dsta) { 2298 /* 2299 * The destination station is associated to 2300 * this AP (in this VLAN), so send the frame 2301 * directly to it and do not pass it to local 2302 * net stack. 2303 */ 2304 xmit_skb = skb; 2305 skb = NULL; 2306 } 2307 } 2308 } 2309 2310 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2311 if (skb) { 2312 /* 'align' will only take the values 0 or 2 here since all 2313 * frames are required to be aligned to 2-byte boundaries 2314 * when being passed to mac80211; the code here works just 2315 * as well if that isn't true, but mac80211 assumes it can 2316 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2317 */ 2318 int align; 2319 2320 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2321 if (align) { 2322 if (WARN_ON(skb_headroom(skb) < 3)) { 2323 dev_kfree_skb(skb); 2324 skb = NULL; 2325 } else { 2326 u8 *data = skb->data; 2327 size_t len = skb_headlen(skb); 2328 skb->data -= align; 2329 memmove(skb->data, data, len); 2330 skb_set_tail_pointer(skb, len); 2331 } 2332 } 2333 } 2334 #endif 2335 2336 if (skb) { 2337 /* deliver to local stack */ 2338 skb->protocol = eth_type_trans(skb, dev); 2339 memset(skb->cb, 0, sizeof(skb->cb)); 2340 if (rx->napi) 2341 napi_gro_receive(rx->napi, skb); 2342 else 2343 netif_receive_skb(skb); 2344 } 2345 2346 if (xmit_skb) { 2347 /* 2348 * Send to wireless media and increase priority by 256 to 2349 * keep the received priority instead of reclassifying 2350 * the frame (see cfg80211_classify8021d). 2351 */ 2352 xmit_skb->priority += 256; 2353 xmit_skb->protocol = htons(ETH_P_802_3); 2354 skb_reset_network_header(xmit_skb); 2355 skb_reset_mac_header(xmit_skb); 2356 dev_queue_xmit(xmit_skb); 2357 } 2358 } 2359 2360 static ieee80211_rx_result debug_noinline 2361 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2362 { 2363 struct net_device *dev = rx->sdata->dev; 2364 struct sk_buff *skb = rx->skb; 2365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2366 __le16 fc = hdr->frame_control; 2367 struct sk_buff_head frame_list; 2368 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2369 struct ethhdr ethhdr; 2370 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2371 2372 if (unlikely(!ieee80211_is_data(fc))) 2373 return RX_CONTINUE; 2374 2375 if (unlikely(!ieee80211_is_data_present(fc))) 2376 return RX_DROP_MONITOR; 2377 2378 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2379 return RX_CONTINUE; 2380 2381 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2382 switch (rx->sdata->vif.type) { 2383 case NL80211_IFTYPE_AP_VLAN: 2384 if (!rx->sdata->u.vlan.sta) 2385 return RX_DROP_UNUSABLE; 2386 break; 2387 case NL80211_IFTYPE_STATION: 2388 if (!rx->sdata->u.mgd.use_4addr) 2389 return RX_DROP_UNUSABLE; 2390 break; 2391 default: 2392 return RX_DROP_UNUSABLE; 2393 } 2394 check_da = NULL; 2395 check_sa = NULL; 2396 } else switch (rx->sdata->vif.type) { 2397 case NL80211_IFTYPE_AP: 2398 case NL80211_IFTYPE_AP_VLAN: 2399 check_da = NULL; 2400 break; 2401 case NL80211_IFTYPE_STATION: 2402 if (!rx->sta || 2403 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2404 check_sa = NULL; 2405 break; 2406 case NL80211_IFTYPE_MESH_POINT: 2407 check_sa = NULL; 2408 break; 2409 default: 2410 break; 2411 } 2412 2413 if (is_multicast_ether_addr(hdr->addr1)) 2414 return RX_DROP_UNUSABLE; 2415 2416 skb->dev = dev; 2417 __skb_queue_head_init(&frame_list); 2418 2419 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2420 rx->sdata->vif.addr, 2421 rx->sdata->vif.type)) 2422 return RX_DROP_UNUSABLE; 2423 2424 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2425 rx->sdata->vif.type, 2426 rx->local->hw.extra_tx_headroom, 2427 check_da, check_sa); 2428 2429 while (!skb_queue_empty(&frame_list)) { 2430 rx->skb = __skb_dequeue(&frame_list); 2431 2432 if (!ieee80211_frame_allowed(rx, fc)) { 2433 dev_kfree_skb(rx->skb); 2434 continue; 2435 } 2436 2437 ieee80211_deliver_skb(rx); 2438 } 2439 2440 return RX_QUEUED; 2441 } 2442 2443 #ifdef CONFIG_MAC80211_MESH 2444 static ieee80211_rx_result 2445 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2446 { 2447 struct ieee80211_hdr *fwd_hdr, *hdr; 2448 struct ieee80211_tx_info *info; 2449 struct ieee80211s_hdr *mesh_hdr; 2450 struct sk_buff *skb = rx->skb, *fwd_skb; 2451 struct ieee80211_local *local = rx->local; 2452 struct ieee80211_sub_if_data *sdata = rx->sdata; 2453 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2454 u16 ac, q, hdrlen; 2455 2456 hdr = (struct ieee80211_hdr *) skb->data; 2457 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2458 2459 /* make sure fixed part of mesh header is there, also checks skb len */ 2460 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2461 return RX_DROP_MONITOR; 2462 2463 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2464 2465 /* make sure full mesh header is there, also checks skb len */ 2466 if (!pskb_may_pull(rx->skb, 2467 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2468 return RX_DROP_MONITOR; 2469 2470 /* reload pointers */ 2471 hdr = (struct ieee80211_hdr *) skb->data; 2472 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2473 2474 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2475 return RX_DROP_MONITOR; 2476 2477 /* frame is in RMC, don't forward */ 2478 if (ieee80211_is_data(hdr->frame_control) && 2479 is_multicast_ether_addr(hdr->addr1) && 2480 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2481 return RX_DROP_MONITOR; 2482 2483 if (!ieee80211_is_data(hdr->frame_control)) 2484 return RX_CONTINUE; 2485 2486 if (!mesh_hdr->ttl) 2487 return RX_DROP_MONITOR; 2488 2489 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2490 struct mesh_path *mppath; 2491 char *proxied_addr; 2492 char *mpp_addr; 2493 2494 if (is_multicast_ether_addr(hdr->addr1)) { 2495 mpp_addr = hdr->addr3; 2496 proxied_addr = mesh_hdr->eaddr1; 2497 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2498 MESH_FLAGS_AE_A5_A6) { 2499 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2500 mpp_addr = hdr->addr4; 2501 proxied_addr = mesh_hdr->eaddr2; 2502 } else { 2503 return RX_DROP_MONITOR; 2504 } 2505 2506 rcu_read_lock(); 2507 mppath = mpp_path_lookup(sdata, proxied_addr); 2508 if (!mppath) { 2509 mpp_path_add(sdata, proxied_addr, mpp_addr); 2510 } else { 2511 spin_lock_bh(&mppath->state_lock); 2512 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2513 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2514 mppath->exp_time = jiffies; 2515 spin_unlock_bh(&mppath->state_lock); 2516 } 2517 rcu_read_unlock(); 2518 } 2519 2520 /* Frame has reached destination. Don't forward */ 2521 if (!is_multicast_ether_addr(hdr->addr1) && 2522 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2523 return RX_CONTINUE; 2524 2525 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2526 q = sdata->vif.hw_queue[ac]; 2527 if (ieee80211_queue_stopped(&local->hw, q)) { 2528 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2529 return RX_DROP_MONITOR; 2530 } 2531 skb_set_queue_mapping(skb, q); 2532 2533 if (!--mesh_hdr->ttl) { 2534 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2535 goto out; 2536 } 2537 2538 if (!ifmsh->mshcfg.dot11MeshForwarding) 2539 goto out; 2540 2541 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2542 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2543 if (!fwd_skb) { 2544 net_info_ratelimited("%s: failed to clone mesh frame\n", 2545 sdata->name); 2546 goto out; 2547 } 2548 2549 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2550 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2551 info = IEEE80211_SKB_CB(fwd_skb); 2552 memset(info, 0, sizeof(*info)); 2553 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2554 info->control.vif = &rx->sdata->vif; 2555 info->control.jiffies = jiffies; 2556 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2557 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2558 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2559 /* update power mode indication when forwarding */ 2560 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2561 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2562 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2563 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2564 } else { 2565 /* unable to resolve next hop */ 2566 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2567 fwd_hdr->addr3, 0, 2568 WLAN_REASON_MESH_PATH_NOFORWARD, 2569 fwd_hdr->addr2); 2570 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2571 kfree_skb(fwd_skb); 2572 return RX_DROP_MONITOR; 2573 } 2574 2575 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2576 ieee80211_add_pending_skb(local, fwd_skb); 2577 out: 2578 if (is_multicast_ether_addr(hdr->addr1)) 2579 return RX_CONTINUE; 2580 return RX_DROP_MONITOR; 2581 } 2582 #endif 2583 2584 static ieee80211_rx_result debug_noinline 2585 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2586 { 2587 struct ieee80211_sub_if_data *sdata = rx->sdata; 2588 struct ieee80211_local *local = rx->local; 2589 struct net_device *dev = sdata->dev; 2590 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2591 __le16 fc = hdr->frame_control; 2592 bool port_control; 2593 int err; 2594 2595 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2596 return RX_CONTINUE; 2597 2598 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2599 return RX_DROP_MONITOR; 2600 2601 /* 2602 * Send unexpected-4addr-frame event to hostapd. For older versions, 2603 * also drop the frame to cooked monitor interfaces. 2604 */ 2605 if (ieee80211_has_a4(hdr->frame_control) && 2606 sdata->vif.type == NL80211_IFTYPE_AP) { 2607 if (rx->sta && 2608 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2609 cfg80211_rx_unexpected_4addr_frame( 2610 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2611 return RX_DROP_MONITOR; 2612 } 2613 2614 err = __ieee80211_data_to_8023(rx, &port_control); 2615 if (unlikely(err)) 2616 return RX_DROP_UNUSABLE; 2617 2618 if (!ieee80211_frame_allowed(rx, fc)) 2619 return RX_DROP_MONITOR; 2620 2621 /* directly handle TDLS channel switch requests/responses */ 2622 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2623 cpu_to_be16(ETH_P_TDLS))) { 2624 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2625 2626 if (pskb_may_pull(rx->skb, 2627 offsetof(struct ieee80211_tdls_data, u)) && 2628 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2629 tf->category == WLAN_CATEGORY_TDLS && 2630 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2631 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2632 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2633 schedule_work(&local->tdls_chsw_work); 2634 if (rx->sta) 2635 rx->sta->rx_stats.packets++; 2636 2637 return RX_QUEUED; 2638 } 2639 } 2640 2641 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2642 unlikely(port_control) && sdata->bss) { 2643 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2644 u.ap); 2645 dev = sdata->dev; 2646 rx->sdata = sdata; 2647 } 2648 2649 rx->skb->dev = dev; 2650 2651 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2652 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2653 !is_multicast_ether_addr( 2654 ((struct ethhdr *)rx->skb->data)->h_dest) && 2655 (!local->scanning && 2656 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2657 mod_timer(&local->dynamic_ps_timer, jiffies + 2658 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2659 2660 ieee80211_deliver_skb(rx); 2661 2662 return RX_QUEUED; 2663 } 2664 2665 static ieee80211_rx_result debug_noinline 2666 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2667 { 2668 struct sk_buff *skb = rx->skb; 2669 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2670 struct tid_ampdu_rx *tid_agg_rx; 2671 u16 start_seq_num; 2672 u16 tid; 2673 2674 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2675 return RX_CONTINUE; 2676 2677 if (ieee80211_is_back_req(bar->frame_control)) { 2678 struct { 2679 __le16 control, start_seq_num; 2680 } __packed bar_data; 2681 struct ieee80211_event event = { 2682 .type = BAR_RX_EVENT, 2683 }; 2684 2685 if (!rx->sta) 2686 return RX_DROP_MONITOR; 2687 2688 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2689 &bar_data, sizeof(bar_data))) 2690 return RX_DROP_MONITOR; 2691 2692 tid = le16_to_cpu(bar_data.control) >> 12; 2693 2694 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2695 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2696 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2697 WLAN_BACK_RECIPIENT, 2698 WLAN_REASON_QSTA_REQUIRE_SETUP); 2699 2700 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2701 if (!tid_agg_rx) 2702 return RX_DROP_MONITOR; 2703 2704 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2705 event.u.ba.tid = tid; 2706 event.u.ba.ssn = start_seq_num; 2707 event.u.ba.sta = &rx->sta->sta; 2708 2709 /* reset session timer */ 2710 if (tid_agg_rx->timeout) 2711 mod_timer(&tid_agg_rx->session_timer, 2712 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2713 2714 spin_lock(&tid_agg_rx->reorder_lock); 2715 /* release stored frames up to start of BAR */ 2716 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2717 start_seq_num, frames); 2718 spin_unlock(&tid_agg_rx->reorder_lock); 2719 2720 drv_event_callback(rx->local, rx->sdata, &event); 2721 2722 kfree_skb(skb); 2723 return RX_QUEUED; 2724 } 2725 2726 /* 2727 * After this point, we only want management frames, 2728 * so we can drop all remaining control frames to 2729 * cooked monitor interfaces. 2730 */ 2731 return RX_DROP_MONITOR; 2732 } 2733 2734 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2735 struct ieee80211_mgmt *mgmt, 2736 size_t len) 2737 { 2738 struct ieee80211_local *local = sdata->local; 2739 struct sk_buff *skb; 2740 struct ieee80211_mgmt *resp; 2741 2742 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2743 /* Not to own unicast address */ 2744 return; 2745 } 2746 2747 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2748 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2749 /* Not from the current AP or not associated yet. */ 2750 return; 2751 } 2752 2753 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2754 /* Too short SA Query request frame */ 2755 return; 2756 } 2757 2758 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2759 if (skb == NULL) 2760 return; 2761 2762 skb_reserve(skb, local->hw.extra_tx_headroom); 2763 resp = skb_put_zero(skb, 24); 2764 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2765 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2766 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2767 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2768 IEEE80211_STYPE_ACTION); 2769 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2770 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2771 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2772 memcpy(resp->u.action.u.sa_query.trans_id, 2773 mgmt->u.action.u.sa_query.trans_id, 2774 WLAN_SA_QUERY_TR_ID_LEN); 2775 2776 ieee80211_tx_skb(sdata, skb); 2777 } 2778 2779 static ieee80211_rx_result debug_noinline 2780 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2781 { 2782 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2783 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2784 2785 /* 2786 * From here on, look only at management frames. 2787 * Data and control frames are already handled, 2788 * and unknown (reserved) frames are useless. 2789 */ 2790 if (rx->skb->len < 24) 2791 return RX_DROP_MONITOR; 2792 2793 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2794 return RX_DROP_MONITOR; 2795 2796 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2797 ieee80211_is_beacon(mgmt->frame_control) && 2798 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2799 int sig = 0; 2800 2801 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2802 sig = status->signal; 2803 2804 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2805 rx->skb->data, rx->skb->len, 2806 status->freq, sig); 2807 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2808 } 2809 2810 if (ieee80211_drop_unencrypted_mgmt(rx)) 2811 return RX_DROP_UNUSABLE; 2812 2813 return RX_CONTINUE; 2814 } 2815 2816 static ieee80211_rx_result debug_noinline 2817 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2818 { 2819 struct ieee80211_local *local = rx->local; 2820 struct ieee80211_sub_if_data *sdata = rx->sdata; 2821 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2822 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2823 int len = rx->skb->len; 2824 2825 if (!ieee80211_is_action(mgmt->frame_control)) 2826 return RX_CONTINUE; 2827 2828 /* drop too small frames */ 2829 if (len < IEEE80211_MIN_ACTION_SIZE) 2830 return RX_DROP_UNUSABLE; 2831 2832 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2833 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2834 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2835 return RX_DROP_UNUSABLE; 2836 2837 switch (mgmt->u.action.category) { 2838 case WLAN_CATEGORY_HT: 2839 /* reject HT action frames from stations not supporting HT */ 2840 if (!rx->sta->sta.ht_cap.ht_supported) 2841 goto invalid; 2842 2843 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2844 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2845 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2846 sdata->vif.type != NL80211_IFTYPE_AP && 2847 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2848 break; 2849 2850 /* verify action & smps_control/chanwidth are present */ 2851 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2852 goto invalid; 2853 2854 switch (mgmt->u.action.u.ht_smps.action) { 2855 case WLAN_HT_ACTION_SMPS: { 2856 struct ieee80211_supported_band *sband; 2857 enum ieee80211_smps_mode smps_mode; 2858 2859 /* convert to HT capability */ 2860 switch (mgmt->u.action.u.ht_smps.smps_control) { 2861 case WLAN_HT_SMPS_CONTROL_DISABLED: 2862 smps_mode = IEEE80211_SMPS_OFF; 2863 break; 2864 case WLAN_HT_SMPS_CONTROL_STATIC: 2865 smps_mode = IEEE80211_SMPS_STATIC; 2866 break; 2867 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2868 smps_mode = IEEE80211_SMPS_DYNAMIC; 2869 break; 2870 default: 2871 goto invalid; 2872 } 2873 2874 /* if no change do nothing */ 2875 if (rx->sta->sta.smps_mode == smps_mode) 2876 goto handled; 2877 rx->sta->sta.smps_mode = smps_mode; 2878 2879 sband = rx->local->hw.wiphy->bands[status->band]; 2880 2881 rate_control_rate_update(local, sband, rx->sta, 2882 IEEE80211_RC_SMPS_CHANGED); 2883 goto handled; 2884 } 2885 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2886 struct ieee80211_supported_band *sband; 2887 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2888 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2889 2890 /* If it doesn't support 40 MHz it can't change ... */ 2891 if (!(rx->sta->sta.ht_cap.cap & 2892 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2893 goto handled; 2894 2895 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2896 max_bw = IEEE80211_STA_RX_BW_20; 2897 else 2898 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2899 2900 /* set cur_max_bandwidth and recalc sta bw */ 2901 rx->sta->cur_max_bandwidth = max_bw; 2902 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2903 2904 if (rx->sta->sta.bandwidth == new_bw) 2905 goto handled; 2906 2907 rx->sta->sta.bandwidth = new_bw; 2908 sband = rx->local->hw.wiphy->bands[status->band]; 2909 2910 rate_control_rate_update(local, sband, rx->sta, 2911 IEEE80211_RC_BW_CHANGED); 2912 goto handled; 2913 } 2914 default: 2915 goto invalid; 2916 } 2917 2918 break; 2919 case WLAN_CATEGORY_PUBLIC: 2920 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2921 goto invalid; 2922 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2923 break; 2924 if (!rx->sta) 2925 break; 2926 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2927 break; 2928 if (mgmt->u.action.u.ext_chan_switch.action_code != 2929 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2930 break; 2931 if (len < offsetof(struct ieee80211_mgmt, 2932 u.action.u.ext_chan_switch.variable)) 2933 goto invalid; 2934 goto queue; 2935 case WLAN_CATEGORY_VHT: 2936 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2937 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2938 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2939 sdata->vif.type != NL80211_IFTYPE_AP && 2940 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2941 break; 2942 2943 /* verify action code is present */ 2944 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2945 goto invalid; 2946 2947 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2948 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2949 /* verify opmode is present */ 2950 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2951 goto invalid; 2952 goto queue; 2953 } 2954 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2955 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2956 goto invalid; 2957 goto queue; 2958 } 2959 default: 2960 break; 2961 } 2962 break; 2963 case WLAN_CATEGORY_BACK: 2964 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2965 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2966 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2967 sdata->vif.type != NL80211_IFTYPE_AP && 2968 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2969 break; 2970 2971 /* verify action_code is present */ 2972 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2973 break; 2974 2975 switch (mgmt->u.action.u.addba_req.action_code) { 2976 case WLAN_ACTION_ADDBA_REQ: 2977 if (len < (IEEE80211_MIN_ACTION_SIZE + 2978 sizeof(mgmt->u.action.u.addba_req))) 2979 goto invalid; 2980 break; 2981 case WLAN_ACTION_ADDBA_RESP: 2982 if (len < (IEEE80211_MIN_ACTION_SIZE + 2983 sizeof(mgmt->u.action.u.addba_resp))) 2984 goto invalid; 2985 break; 2986 case WLAN_ACTION_DELBA: 2987 if (len < (IEEE80211_MIN_ACTION_SIZE + 2988 sizeof(mgmt->u.action.u.delba))) 2989 goto invalid; 2990 break; 2991 default: 2992 goto invalid; 2993 } 2994 2995 goto queue; 2996 case WLAN_CATEGORY_SPECTRUM_MGMT: 2997 /* verify action_code is present */ 2998 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2999 break; 3000 3001 switch (mgmt->u.action.u.measurement.action_code) { 3002 case WLAN_ACTION_SPCT_MSR_REQ: 3003 if (status->band != NL80211_BAND_5GHZ) 3004 break; 3005 3006 if (len < (IEEE80211_MIN_ACTION_SIZE + 3007 sizeof(mgmt->u.action.u.measurement))) 3008 break; 3009 3010 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3011 break; 3012 3013 ieee80211_process_measurement_req(sdata, mgmt, len); 3014 goto handled; 3015 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3016 u8 *bssid; 3017 if (len < (IEEE80211_MIN_ACTION_SIZE + 3018 sizeof(mgmt->u.action.u.chan_switch))) 3019 break; 3020 3021 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3022 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3023 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3024 break; 3025 3026 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3027 bssid = sdata->u.mgd.bssid; 3028 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3029 bssid = sdata->u.ibss.bssid; 3030 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3031 bssid = mgmt->sa; 3032 else 3033 break; 3034 3035 if (!ether_addr_equal(mgmt->bssid, bssid)) 3036 break; 3037 3038 goto queue; 3039 } 3040 } 3041 break; 3042 case WLAN_CATEGORY_SA_QUERY: 3043 if (len < (IEEE80211_MIN_ACTION_SIZE + 3044 sizeof(mgmt->u.action.u.sa_query))) 3045 break; 3046 3047 switch (mgmt->u.action.u.sa_query.action) { 3048 case WLAN_ACTION_SA_QUERY_REQUEST: 3049 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3050 break; 3051 ieee80211_process_sa_query_req(sdata, mgmt, len); 3052 goto handled; 3053 } 3054 break; 3055 case WLAN_CATEGORY_SELF_PROTECTED: 3056 if (len < (IEEE80211_MIN_ACTION_SIZE + 3057 sizeof(mgmt->u.action.u.self_prot.action_code))) 3058 break; 3059 3060 switch (mgmt->u.action.u.self_prot.action_code) { 3061 case WLAN_SP_MESH_PEERING_OPEN: 3062 case WLAN_SP_MESH_PEERING_CLOSE: 3063 case WLAN_SP_MESH_PEERING_CONFIRM: 3064 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3065 goto invalid; 3066 if (sdata->u.mesh.user_mpm) 3067 /* userspace handles this frame */ 3068 break; 3069 goto queue; 3070 case WLAN_SP_MGK_INFORM: 3071 case WLAN_SP_MGK_ACK: 3072 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3073 goto invalid; 3074 break; 3075 } 3076 break; 3077 case WLAN_CATEGORY_MESH_ACTION: 3078 if (len < (IEEE80211_MIN_ACTION_SIZE + 3079 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3080 break; 3081 3082 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3083 break; 3084 if (mesh_action_is_path_sel(mgmt) && 3085 !mesh_path_sel_is_hwmp(sdata)) 3086 break; 3087 goto queue; 3088 } 3089 3090 return RX_CONTINUE; 3091 3092 invalid: 3093 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3094 /* will return in the next handlers */ 3095 return RX_CONTINUE; 3096 3097 handled: 3098 if (rx->sta) 3099 rx->sta->rx_stats.packets++; 3100 dev_kfree_skb(rx->skb); 3101 return RX_QUEUED; 3102 3103 queue: 3104 skb_queue_tail(&sdata->skb_queue, rx->skb); 3105 ieee80211_queue_work(&local->hw, &sdata->work); 3106 if (rx->sta) 3107 rx->sta->rx_stats.packets++; 3108 return RX_QUEUED; 3109 } 3110 3111 static ieee80211_rx_result debug_noinline 3112 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3113 { 3114 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3115 int sig = 0; 3116 3117 /* skip known-bad action frames and return them in the next handler */ 3118 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3119 return RX_CONTINUE; 3120 3121 /* 3122 * Getting here means the kernel doesn't know how to handle 3123 * it, but maybe userspace does ... include returned frames 3124 * so userspace can register for those to know whether ones 3125 * it transmitted were processed or returned. 3126 */ 3127 3128 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 3129 sig = status->signal; 3130 3131 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3132 rx->skb->data, rx->skb->len, 0)) { 3133 if (rx->sta) 3134 rx->sta->rx_stats.packets++; 3135 dev_kfree_skb(rx->skb); 3136 return RX_QUEUED; 3137 } 3138 3139 return RX_CONTINUE; 3140 } 3141 3142 static ieee80211_rx_result debug_noinline 3143 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3144 { 3145 struct ieee80211_local *local = rx->local; 3146 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3147 struct sk_buff *nskb; 3148 struct ieee80211_sub_if_data *sdata = rx->sdata; 3149 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3150 3151 if (!ieee80211_is_action(mgmt->frame_control)) 3152 return RX_CONTINUE; 3153 3154 /* 3155 * For AP mode, hostapd is responsible for handling any action 3156 * frames that we didn't handle, including returning unknown 3157 * ones. For all other modes we will return them to the sender, 3158 * setting the 0x80 bit in the action category, as required by 3159 * 802.11-2012 9.24.4. 3160 * Newer versions of hostapd shall also use the management frame 3161 * registration mechanisms, but older ones still use cooked 3162 * monitor interfaces so push all frames there. 3163 */ 3164 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3165 (sdata->vif.type == NL80211_IFTYPE_AP || 3166 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3167 return RX_DROP_MONITOR; 3168 3169 if (is_multicast_ether_addr(mgmt->da)) 3170 return RX_DROP_MONITOR; 3171 3172 /* do not return rejected action frames */ 3173 if (mgmt->u.action.category & 0x80) 3174 return RX_DROP_UNUSABLE; 3175 3176 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3177 GFP_ATOMIC); 3178 if (nskb) { 3179 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3180 3181 nmgmt->u.action.category |= 0x80; 3182 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3183 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3184 3185 memset(nskb->cb, 0, sizeof(nskb->cb)); 3186 3187 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3189 3190 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3191 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3192 IEEE80211_TX_CTL_NO_CCK_RATE; 3193 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3194 info->hw_queue = 3195 local->hw.offchannel_tx_hw_queue; 3196 } 3197 3198 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3199 status->band); 3200 } 3201 dev_kfree_skb(rx->skb); 3202 return RX_QUEUED; 3203 } 3204 3205 static ieee80211_rx_result debug_noinline 3206 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3207 { 3208 struct ieee80211_sub_if_data *sdata = rx->sdata; 3209 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3210 __le16 stype; 3211 3212 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3213 3214 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3215 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3216 sdata->vif.type != NL80211_IFTYPE_OCB && 3217 sdata->vif.type != NL80211_IFTYPE_STATION) 3218 return RX_DROP_MONITOR; 3219 3220 switch (stype) { 3221 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3222 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3223 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3224 /* process for all: mesh, mlme, ibss */ 3225 break; 3226 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3227 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3228 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3229 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3230 if (is_multicast_ether_addr(mgmt->da) && 3231 !is_broadcast_ether_addr(mgmt->da)) 3232 return RX_DROP_MONITOR; 3233 3234 /* process only for station */ 3235 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3236 return RX_DROP_MONITOR; 3237 break; 3238 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3239 /* process only for ibss and mesh */ 3240 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3241 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3242 return RX_DROP_MONITOR; 3243 break; 3244 default: 3245 return RX_DROP_MONITOR; 3246 } 3247 3248 /* queue up frame and kick off work to process it */ 3249 skb_queue_tail(&sdata->skb_queue, rx->skb); 3250 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3251 if (rx->sta) 3252 rx->sta->rx_stats.packets++; 3253 3254 return RX_QUEUED; 3255 } 3256 3257 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3258 struct ieee80211_rate *rate) 3259 { 3260 struct ieee80211_sub_if_data *sdata; 3261 struct ieee80211_local *local = rx->local; 3262 struct sk_buff *skb = rx->skb, *skb2; 3263 struct net_device *prev_dev = NULL; 3264 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3265 int needed_headroom; 3266 3267 /* 3268 * If cooked monitor has been processed already, then 3269 * don't do it again. If not, set the flag. 3270 */ 3271 if (rx->flags & IEEE80211_RX_CMNTR) 3272 goto out_free_skb; 3273 rx->flags |= IEEE80211_RX_CMNTR; 3274 3275 /* If there are no cooked monitor interfaces, just free the SKB */ 3276 if (!local->cooked_mntrs) 3277 goto out_free_skb; 3278 3279 /* vendor data is long removed here */ 3280 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3281 /* room for the radiotap header based on driver features */ 3282 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3283 3284 if (skb_headroom(skb) < needed_headroom && 3285 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3286 goto out_free_skb; 3287 3288 /* prepend radiotap information */ 3289 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3290 false); 3291 3292 skb_reset_mac_header(skb); 3293 skb->ip_summed = CHECKSUM_UNNECESSARY; 3294 skb->pkt_type = PACKET_OTHERHOST; 3295 skb->protocol = htons(ETH_P_802_2); 3296 3297 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3298 if (!ieee80211_sdata_running(sdata)) 3299 continue; 3300 3301 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3302 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3303 continue; 3304 3305 if (prev_dev) { 3306 skb2 = skb_clone(skb, GFP_ATOMIC); 3307 if (skb2) { 3308 skb2->dev = prev_dev; 3309 netif_receive_skb(skb2); 3310 } 3311 } 3312 3313 prev_dev = sdata->dev; 3314 ieee80211_rx_stats(sdata->dev, skb->len); 3315 } 3316 3317 if (prev_dev) { 3318 skb->dev = prev_dev; 3319 netif_receive_skb(skb); 3320 return; 3321 } 3322 3323 out_free_skb: 3324 dev_kfree_skb(skb); 3325 } 3326 3327 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3328 ieee80211_rx_result res) 3329 { 3330 switch (res) { 3331 case RX_DROP_MONITOR: 3332 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3333 if (rx->sta) 3334 rx->sta->rx_stats.dropped++; 3335 /* fall through */ 3336 case RX_CONTINUE: { 3337 struct ieee80211_rate *rate = NULL; 3338 struct ieee80211_supported_band *sband; 3339 struct ieee80211_rx_status *status; 3340 3341 status = IEEE80211_SKB_RXCB((rx->skb)); 3342 3343 sband = rx->local->hw.wiphy->bands[status->band]; 3344 if (!(status->encoding == RX_ENC_HT) && 3345 !(status->encoding == RX_ENC_VHT)) 3346 rate = &sband->bitrates[status->rate_idx]; 3347 3348 ieee80211_rx_cooked_monitor(rx, rate); 3349 break; 3350 } 3351 case RX_DROP_UNUSABLE: 3352 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3353 if (rx->sta) 3354 rx->sta->rx_stats.dropped++; 3355 dev_kfree_skb(rx->skb); 3356 break; 3357 case RX_QUEUED: 3358 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3359 break; 3360 } 3361 } 3362 3363 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3364 struct sk_buff_head *frames) 3365 { 3366 ieee80211_rx_result res = RX_DROP_MONITOR; 3367 struct sk_buff *skb; 3368 3369 #define CALL_RXH(rxh) \ 3370 do { \ 3371 res = rxh(rx); \ 3372 if (res != RX_CONTINUE) \ 3373 goto rxh_next; \ 3374 } while (0) 3375 3376 /* Lock here to avoid hitting all of the data used in the RX 3377 * path (e.g. key data, station data, ...) concurrently when 3378 * a frame is released from the reorder buffer due to timeout 3379 * from the timer, potentially concurrently with RX from the 3380 * driver. 3381 */ 3382 spin_lock_bh(&rx->local->rx_path_lock); 3383 3384 while ((skb = __skb_dequeue(frames))) { 3385 /* 3386 * all the other fields are valid across frames 3387 * that belong to an aMPDU since they are on the 3388 * same TID from the same station 3389 */ 3390 rx->skb = skb; 3391 3392 CALL_RXH(ieee80211_rx_h_check_more_data); 3393 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3394 CALL_RXH(ieee80211_rx_h_sta_process); 3395 CALL_RXH(ieee80211_rx_h_decrypt); 3396 CALL_RXH(ieee80211_rx_h_defragment); 3397 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3398 /* must be after MMIC verify so header is counted in MPDU mic */ 3399 #ifdef CONFIG_MAC80211_MESH 3400 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3401 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3402 #endif 3403 CALL_RXH(ieee80211_rx_h_amsdu); 3404 CALL_RXH(ieee80211_rx_h_data); 3405 3406 /* special treatment -- needs the queue */ 3407 res = ieee80211_rx_h_ctrl(rx, frames); 3408 if (res != RX_CONTINUE) 3409 goto rxh_next; 3410 3411 CALL_RXH(ieee80211_rx_h_mgmt_check); 3412 CALL_RXH(ieee80211_rx_h_action); 3413 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3414 CALL_RXH(ieee80211_rx_h_action_return); 3415 CALL_RXH(ieee80211_rx_h_mgmt); 3416 3417 rxh_next: 3418 ieee80211_rx_handlers_result(rx, res); 3419 3420 #undef CALL_RXH 3421 } 3422 3423 spin_unlock_bh(&rx->local->rx_path_lock); 3424 } 3425 3426 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3427 { 3428 struct sk_buff_head reorder_release; 3429 ieee80211_rx_result res = RX_DROP_MONITOR; 3430 3431 __skb_queue_head_init(&reorder_release); 3432 3433 #define CALL_RXH(rxh) \ 3434 do { \ 3435 res = rxh(rx); \ 3436 if (res != RX_CONTINUE) \ 3437 goto rxh_next; \ 3438 } while (0) 3439 3440 CALL_RXH(ieee80211_rx_h_check_dup); 3441 CALL_RXH(ieee80211_rx_h_check); 3442 3443 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3444 3445 ieee80211_rx_handlers(rx, &reorder_release); 3446 return; 3447 3448 rxh_next: 3449 ieee80211_rx_handlers_result(rx, res); 3450 3451 #undef CALL_RXH 3452 } 3453 3454 /* 3455 * This function makes calls into the RX path, therefore 3456 * it has to be invoked under RCU read lock. 3457 */ 3458 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3459 { 3460 struct sk_buff_head frames; 3461 struct ieee80211_rx_data rx = { 3462 .sta = sta, 3463 .sdata = sta->sdata, 3464 .local = sta->local, 3465 /* This is OK -- must be QoS data frame */ 3466 .security_idx = tid, 3467 .seqno_idx = tid, 3468 .napi = NULL, /* must be NULL to not have races */ 3469 }; 3470 struct tid_ampdu_rx *tid_agg_rx; 3471 3472 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3473 if (!tid_agg_rx) 3474 return; 3475 3476 __skb_queue_head_init(&frames); 3477 3478 spin_lock(&tid_agg_rx->reorder_lock); 3479 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3480 spin_unlock(&tid_agg_rx->reorder_lock); 3481 3482 if (!skb_queue_empty(&frames)) { 3483 struct ieee80211_event event = { 3484 .type = BA_FRAME_TIMEOUT, 3485 .u.ba.tid = tid, 3486 .u.ba.sta = &sta->sta, 3487 }; 3488 drv_event_callback(rx.local, rx.sdata, &event); 3489 } 3490 3491 ieee80211_rx_handlers(&rx, &frames); 3492 } 3493 3494 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3495 u16 ssn, u64 filtered, 3496 u16 received_mpdus) 3497 { 3498 struct sta_info *sta; 3499 struct tid_ampdu_rx *tid_agg_rx; 3500 struct sk_buff_head frames; 3501 struct ieee80211_rx_data rx = { 3502 /* This is OK -- must be QoS data frame */ 3503 .security_idx = tid, 3504 .seqno_idx = tid, 3505 }; 3506 int i, diff; 3507 3508 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3509 return; 3510 3511 __skb_queue_head_init(&frames); 3512 3513 sta = container_of(pubsta, struct sta_info, sta); 3514 3515 rx.sta = sta; 3516 rx.sdata = sta->sdata; 3517 rx.local = sta->local; 3518 3519 rcu_read_lock(); 3520 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3521 if (!tid_agg_rx) 3522 goto out; 3523 3524 spin_lock_bh(&tid_agg_rx->reorder_lock); 3525 3526 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3527 int release; 3528 3529 /* release all frames in the reorder buffer */ 3530 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3531 IEEE80211_SN_MODULO; 3532 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3533 release, &frames); 3534 /* update ssn to match received ssn */ 3535 tid_agg_rx->head_seq_num = ssn; 3536 } else { 3537 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3538 &frames); 3539 } 3540 3541 /* handle the case that received ssn is behind the mac ssn. 3542 * it can be tid_agg_rx->buf_size behind and still be valid */ 3543 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3544 if (diff >= tid_agg_rx->buf_size) { 3545 tid_agg_rx->reorder_buf_filtered = 0; 3546 goto release; 3547 } 3548 filtered = filtered >> diff; 3549 ssn += diff; 3550 3551 /* update bitmap */ 3552 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3553 int index = (ssn + i) % tid_agg_rx->buf_size; 3554 3555 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3556 if (filtered & BIT_ULL(i)) 3557 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3558 } 3559 3560 /* now process also frames that the filter marking released */ 3561 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3562 3563 release: 3564 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3565 3566 ieee80211_rx_handlers(&rx, &frames); 3567 3568 out: 3569 rcu_read_unlock(); 3570 } 3571 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3572 3573 /* main receive path */ 3574 3575 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3576 { 3577 struct ieee80211_sub_if_data *sdata = rx->sdata; 3578 struct sk_buff *skb = rx->skb; 3579 struct ieee80211_hdr *hdr = (void *)skb->data; 3580 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3581 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3582 bool multicast = is_multicast_ether_addr(hdr->addr1); 3583 3584 switch (sdata->vif.type) { 3585 case NL80211_IFTYPE_STATION: 3586 if (!bssid && !sdata->u.mgd.use_4addr) 3587 return false; 3588 if (multicast) 3589 return true; 3590 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3591 case NL80211_IFTYPE_ADHOC: 3592 if (!bssid) 3593 return false; 3594 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3595 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3596 return false; 3597 if (ieee80211_is_beacon(hdr->frame_control)) 3598 return true; 3599 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3600 return false; 3601 if (!multicast && 3602 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3603 return false; 3604 if (!rx->sta) { 3605 int rate_idx; 3606 if (status->encoding != RX_ENC_LEGACY) 3607 rate_idx = 0; /* TODO: HT/VHT rates */ 3608 else 3609 rate_idx = status->rate_idx; 3610 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3611 BIT(rate_idx)); 3612 } 3613 return true; 3614 case NL80211_IFTYPE_OCB: 3615 if (!bssid) 3616 return false; 3617 if (!ieee80211_is_data_present(hdr->frame_control)) 3618 return false; 3619 if (!is_broadcast_ether_addr(bssid)) 3620 return false; 3621 if (!multicast && 3622 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3623 return false; 3624 if (!rx->sta) { 3625 int rate_idx; 3626 if (status->encoding != RX_ENC_LEGACY) 3627 rate_idx = 0; /* TODO: HT rates */ 3628 else 3629 rate_idx = status->rate_idx; 3630 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3631 BIT(rate_idx)); 3632 } 3633 return true; 3634 case NL80211_IFTYPE_MESH_POINT: 3635 if (multicast) 3636 return true; 3637 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3638 case NL80211_IFTYPE_AP_VLAN: 3639 case NL80211_IFTYPE_AP: 3640 if (!bssid) 3641 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3642 3643 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3644 /* 3645 * Accept public action frames even when the 3646 * BSSID doesn't match, this is used for P2P 3647 * and location updates. Note that mac80211 3648 * itself never looks at these frames. 3649 */ 3650 if (!multicast && 3651 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3652 return false; 3653 if (ieee80211_is_public_action(hdr, skb->len)) 3654 return true; 3655 return ieee80211_is_beacon(hdr->frame_control); 3656 } 3657 3658 if (!ieee80211_has_tods(hdr->frame_control)) { 3659 /* ignore data frames to TDLS-peers */ 3660 if (ieee80211_is_data(hdr->frame_control)) 3661 return false; 3662 /* ignore action frames to TDLS-peers */ 3663 if (ieee80211_is_action(hdr->frame_control) && 3664 !is_broadcast_ether_addr(bssid) && 3665 !ether_addr_equal(bssid, hdr->addr1)) 3666 return false; 3667 } 3668 3669 /* 3670 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3671 * the BSSID - we've checked that already but may have accepted 3672 * the wildcard (ff:ff:ff:ff:ff:ff). 3673 * 3674 * It also says: 3675 * The BSSID of the Data frame is determined as follows: 3676 * a) If the STA is contained within an AP or is associated 3677 * with an AP, the BSSID is the address currently in use 3678 * by the STA contained in the AP. 3679 * 3680 * So we should not accept data frames with an address that's 3681 * multicast. 3682 * 3683 * Accepting it also opens a security problem because stations 3684 * could encrypt it with the GTK and inject traffic that way. 3685 */ 3686 if (ieee80211_is_data(hdr->frame_control) && multicast) 3687 return false; 3688 3689 return true; 3690 case NL80211_IFTYPE_WDS: 3691 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3692 return false; 3693 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3694 case NL80211_IFTYPE_P2P_DEVICE: 3695 return ieee80211_is_public_action(hdr, skb->len) || 3696 ieee80211_is_probe_req(hdr->frame_control) || 3697 ieee80211_is_probe_resp(hdr->frame_control) || 3698 ieee80211_is_beacon(hdr->frame_control); 3699 case NL80211_IFTYPE_NAN: 3700 /* Currently no frames on NAN interface are allowed */ 3701 return false; 3702 default: 3703 break; 3704 } 3705 3706 WARN_ON_ONCE(1); 3707 return false; 3708 } 3709 3710 void ieee80211_check_fast_rx(struct sta_info *sta) 3711 { 3712 struct ieee80211_sub_if_data *sdata = sta->sdata; 3713 struct ieee80211_local *local = sdata->local; 3714 struct ieee80211_key *key; 3715 struct ieee80211_fast_rx fastrx = { 3716 .dev = sdata->dev, 3717 .vif_type = sdata->vif.type, 3718 .control_port_protocol = sdata->control_port_protocol, 3719 }, *old, *new = NULL; 3720 bool assign = false; 3721 3722 /* use sparse to check that we don't return without updating */ 3723 __acquire(check_fast_rx); 3724 3725 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3726 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3727 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3728 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3729 3730 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3731 3732 /* fast-rx doesn't do reordering */ 3733 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3734 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3735 goto clear; 3736 3737 switch (sdata->vif.type) { 3738 case NL80211_IFTYPE_STATION: 3739 /* 4-addr is harder to deal with, later maybe */ 3740 if (sdata->u.mgd.use_4addr) 3741 goto clear; 3742 /* software powersave is a huge mess, avoid all of it */ 3743 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3744 goto clear; 3745 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3746 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3747 goto clear; 3748 if (sta->sta.tdls) { 3749 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3750 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3751 fastrx.expected_ds_bits = 0; 3752 } else { 3753 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3754 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3755 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3756 fastrx.expected_ds_bits = 3757 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3758 } 3759 break; 3760 case NL80211_IFTYPE_AP_VLAN: 3761 case NL80211_IFTYPE_AP: 3762 /* parallel-rx requires this, at least with calls to 3763 * ieee80211_sta_ps_transition() 3764 */ 3765 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3766 goto clear; 3767 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3768 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3769 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3770 3771 fastrx.internal_forward = 3772 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3773 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3774 !sdata->u.vlan.sta); 3775 break; 3776 default: 3777 goto clear; 3778 } 3779 3780 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3781 goto clear; 3782 3783 rcu_read_lock(); 3784 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3785 if (key) { 3786 switch (key->conf.cipher) { 3787 case WLAN_CIPHER_SUITE_TKIP: 3788 /* we don't want to deal with MMIC in fast-rx */ 3789 goto clear_rcu; 3790 case WLAN_CIPHER_SUITE_CCMP: 3791 case WLAN_CIPHER_SUITE_CCMP_256: 3792 case WLAN_CIPHER_SUITE_GCMP: 3793 case WLAN_CIPHER_SUITE_GCMP_256: 3794 break; 3795 default: 3796 /* we also don't want to deal with WEP or cipher scheme 3797 * since those require looking up the key idx in the 3798 * frame, rather than assuming the PTK is used 3799 * (we need to revisit this once we implement the real 3800 * PTK index, which is now valid in the spec, but we 3801 * haven't implemented that part yet) 3802 */ 3803 goto clear_rcu; 3804 } 3805 3806 fastrx.key = true; 3807 fastrx.icv_len = key->conf.icv_len; 3808 } 3809 3810 assign = true; 3811 clear_rcu: 3812 rcu_read_unlock(); 3813 clear: 3814 __release(check_fast_rx); 3815 3816 if (assign) 3817 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3818 3819 spin_lock_bh(&sta->lock); 3820 old = rcu_dereference_protected(sta->fast_rx, true); 3821 rcu_assign_pointer(sta->fast_rx, new); 3822 spin_unlock_bh(&sta->lock); 3823 3824 if (old) 3825 kfree_rcu(old, rcu_head); 3826 } 3827 3828 void ieee80211_clear_fast_rx(struct sta_info *sta) 3829 { 3830 struct ieee80211_fast_rx *old; 3831 3832 spin_lock_bh(&sta->lock); 3833 old = rcu_dereference_protected(sta->fast_rx, true); 3834 RCU_INIT_POINTER(sta->fast_rx, NULL); 3835 spin_unlock_bh(&sta->lock); 3836 3837 if (old) 3838 kfree_rcu(old, rcu_head); 3839 } 3840 3841 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3842 { 3843 struct ieee80211_local *local = sdata->local; 3844 struct sta_info *sta; 3845 3846 lockdep_assert_held(&local->sta_mtx); 3847 3848 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3849 if (sdata != sta->sdata && 3850 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3851 continue; 3852 ieee80211_check_fast_rx(sta); 3853 } 3854 } 3855 3856 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3857 { 3858 struct ieee80211_local *local = sdata->local; 3859 3860 mutex_lock(&local->sta_mtx); 3861 __ieee80211_check_fast_rx_iface(sdata); 3862 mutex_unlock(&local->sta_mtx); 3863 } 3864 3865 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3866 struct ieee80211_fast_rx *fast_rx) 3867 { 3868 struct sk_buff *skb = rx->skb; 3869 struct ieee80211_hdr *hdr = (void *)skb->data; 3870 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3871 struct sta_info *sta = rx->sta; 3872 int orig_len = skb->len; 3873 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3874 struct { 3875 u8 snap[sizeof(rfc1042_header)]; 3876 __be16 proto; 3877 } *payload __aligned(2); 3878 struct { 3879 u8 da[ETH_ALEN]; 3880 u8 sa[ETH_ALEN]; 3881 } addrs __aligned(2); 3882 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3883 3884 if (fast_rx->uses_rss) 3885 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3886 3887 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3888 * to a common data structure; drivers can implement that per queue 3889 * but we don't have that information in mac80211 3890 */ 3891 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3892 return false; 3893 3894 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3895 3896 /* If using encryption, we also need to have: 3897 * - PN_VALIDATED: similar, but the implementation is tricky 3898 * - DECRYPTED: necessary for PN_VALIDATED 3899 */ 3900 if (fast_rx->key && 3901 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3902 return false; 3903 3904 /* we don't deal with A-MSDU deaggregation here */ 3905 if (status->rx_flags & IEEE80211_RX_AMSDU) 3906 return false; 3907 3908 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3909 return false; 3910 3911 if (unlikely(ieee80211_is_frag(hdr))) 3912 return false; 3913 3914 /* Since our interface address cannot be multicast, this 3915 * implicitly also rejects multicast frames without the 3916 * explicit check. 3917 * 3918 * We shouldn't get any *data* frames not addressed to us 3919 * (AP mode will accept multicast *management* frames), but 3920 * punting here will make it go through the full checks in 3921 * ieee80211_accept_frame(). 3922 */ 3923 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3924 return false; 3925 3926 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3927 IEEE80211_FCTL_TODS)) != 3928 fast_rx->expected_ds_bits) 3929 goto drop; 3930 3931 /* assign the key to drop unencrypted frames (later) 3932 * and strip the IV/MIC if necessary 3933 */ 3934 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3935 /* GCMP header length is the same */ 3936 snap_offs += IEEE80211_CCMP_HDR_LEN; 3937 } 3938 3939 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3940 goto drop; 3941 payload = (void *)(skb->data + snap_offs); 3942 3943 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3944 return false; 3945 3946 /* Don't handle these here since they require special code. 3947 * Accept AARP and IPX even though they should come with a 3948 * bridge-tunnel header - but if we get them this way then 3949 * there's little point in discarding them. 3950 */ 3951 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3952 payload->proto == fast_rx->control_port_protocol)) 3953 return false; 3954 3955 /* after this point, don't punt to the slowpath! */ 3956 3957 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3958 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3959 goto drop; 3960 3961 if (unlikely(fast_rx->sta_notify)) { 3962 ieee80211_sta_rx_notify(rx->sdata, hdr); 3963 fast_rx->sta_notify = false; 3964 } 3965 3966 /* statistics part of ieee80211_rx_h_sta_process() */ 3967 stats->last_rx = jiffies; 3968 stats->last_rate = sta_stats_encode_rate(status); 3969 3970 stats->fragments++; 3971 stats->packets++; 3972 3973 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3974 stats->last_signal = status->signal; 3975 if (!fast_rx->uses_rss) 3976 ewma_signal_add(&sta->rx_stats_avg.signal, 3977 -status->signal); 3978 } 3979 3980 if (status->chains) { 3981 int i; 3982 3983 stats->chains = status->chains; 3984 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3985 int signal = status->chain_signal[i]; 3986 3987 if (!(status->chains & BIT(i))) 3988 continue; 3989 3990 stats->chain_signal_last[i] = signal; 3991 if (!fast_rx->uses_rss) 3992 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3993 -signal); 3994 } 3995 } 3996 /* end of statistics */ 3997 3998 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 3999 goto drop; 4000 4001 /* do the header conversion - first grab the addresses */ 4002 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4003 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4004 /* remove the SNAP but leave the ethertype */ 4005 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4006 /* push the addresses in front */ 4007 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4008 4009 skb->dev = fast_rx->dev; 4010 4011 ieee80211_rx_stats(fast_rx->dev, skb->len); 4012 4013 /* The seqno index has the same property as needed 4014 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4015 * for non-QoS-data frames. Here we know it's a data 4016 * frame, so count MSDUs. 4017 */ 4018 u64_stats_update_begin(&stats->syncp); 4019 stats->msdu[rx->seqno_idx]++; 4020 stats->bytes += orig_len; 4021 u64_stats_update_end(&stats->syncp); 4022 4023 if (fast_rx->internal_forward) { 4024 struct sk_buff *xmit_skb = NULL; 4025 bool multicast = is_multicast_ether_addr(skb->data); 4026 4027 if (multicast) { 4028 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4029 } else if (sta_info_get(rx->sdata, skb->data)) { 4030 xmit_skb = skb; 4031 skb = NULL; 4032 } 4033 4034 if (xmit_skb) { 4035 /* 4036 * Send to wireless media and increase priority by 256 4037 * to keep the received priority instead of 4038 * reclassifying the frame (see cfg80211_classify8021d). 4039 */ 4040 xmit_skb->priority += 256; 4041 xmit_skb->protocol = htons(ETH_P_802_3); 4042 skb_reset_network_header(xmit_skb); 4043 skb_reset_mac_header(xmit_skb); 4044 dev_queue_xmit(xmit_skb); 4045 } 4046 4047 if (!skb) 4048 return true; 4049 } 4050 4051 /* deliver to local stack */ 4052 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4053 memset(skb->cb, 0, sizeof(skb->cb)); 4054 if (rx->napi) 4055 napi_gro_receive(rx->napi, skb); 4056 else 4057 netif_receive_skb(skb); 4058 4059 return true; 4060 drop: 4061 dev_kfree_skb(skb); 4062 stats->dropped++; 4063 return true; 4064 } 4065 4066 /* 4067 * This function returns whether or not the SKB 4068 * was destined for RX processing or not, which, 4069 * if consume is true, is equivalent to whether 4070 * or not the skb was consumed. 4071 */ 4072 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4073 struct sk_buff *skb, bool consume) 4074 { 4075 struct ieee80211_local *local = rx->local; 4076 struct ieee80211_sub_if_data *sdata = rx->sdata; 4077 4078 rx->skb = skb; 4079 4080 /* See if we can do fast-rx; if we have to copy we already lost, 4081 * so punt in that case. We should never have to deliver a data 4082 * frame to multiple interfaces anyway. 4083 * 4084 * We skip the ieee80211_accept_frame() call and do the necessary 4085 * checking inside ieee80211_invoke_fast_rx(). 4086 */ 4087 if (consume && rx->sta) { 4088 struct ieee80211_fast_rx *fast_rx; 4089 4090 fast_rx = rcu_dereference(rx->sta->fast_rx); 4091 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4092 return true; 4093 } 4094 4095 if (!ieee80211_accept_frame(rx)) 4096 return false; 4097 4098 if (!consume) { 4099 skb = skb_copy(skb, GFP_ATOMIC); 4100 if (!skb) { 4101 if (net_ratelimit()) 4102 wiphy_debug(local->hw.wiphy, 4103 "failed to copy skb for %s\n", 4104 sdata->name); 4105 return true; 4106 } 4107 4108 rx->skb = skb; 4109 } 4110 4111 ieee80211_invoke_rx_handlers(rx); 4112 return true; 4113 } 4114 4115 /* 4116 * This is the actual Rx frames handler. as it belongs to Rx path it must 4117 * be called with rcu_read_lock protection. 4118 */ 4119 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4120 struct ieee80211_sta *pubsta, 4121 struct sk_buff *skb, 4122 struct napi_struct *napi) 4123 { 4124 struct ieee80211_local *local = hw_to_local(hw); 4125 struct ieee80211_sub_if_data *sdata; 4126 struct ieee80211_hdr *hdr; 4127 __le16 fc; 4128 struct ieee80211_rx_data rx; 4129 struct ieee80211_sub_if_data *prev; 4130 struct rhlist_head *tmp; 4131 int err = 0; 4132 4133 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4134 memset(&rx, 0, sizeof(rx)); 4135 rx.skb = skb; 4136 rx.local = local; 4137 rx.napi = napi; 4138 4139 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4140 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4141 4142 if (ieee80211_is_mgmt(fc)) { 4143 /* drop frame if too short for header */ 4144 if (skb->len < ieee80211_hdrlen(fc)) 4145 err = -ENOBUFS; 4146 else 4147 err = skb_linearize(skb); 4148 } else { 4149 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4150 } 4151 4152 if (err) { 4153 dev_kfree_skb(skb); 4154 return; 4155 } 4156 4157 hdr = (struct ieee80211_hdr *)skb->data; 4158 ieee80211_parse_qos(&rx); 4159 ieee80211_verify_alignment(&rx); 4160 4161 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4162 ieee80211_is_beacon(hdr->frame_control))) 4163 ieee80211_scan_rx(local, skb); 4164 4165 if (ieee80211_is_data(fc)) { 4166 struct sta_info *sta, *prev_sta; 4167 4168 if (pubsta) { 4169 rx.sta = container_of(pubsta, struct sta_info, sta); 4170 rx.sdata = rx.sta->sdata; 4171 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4172 return; 4173 goto out; 4174 } 4175 4176 prev_sta = NULL; 4177 4178 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4179 if (!prev_sta) { 4180 prev_sta = sta; 4181 continue; 4182 } 4183 4184 rx.sta = prev_sta; 4185 rx.sdata = prev_sta->sdata; 4186 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4187 4188 prev_sta = sta; 4189 } 4190 4191 if (prev_sta) { 4192 rx.sta = prev_sta; 4193 rx.sdata = prev_sta->sdata; 4194 4195 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4196 return; 4197 goto out; 4198 } 4199 } 4200 4201 prev = NULL; 4202 4203 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4204 if (!ieee80211_sdata_running(sdata)) 4205 continue; 4206 4207 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4208 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4209 continue; 4210 4211 /* 4212 * frame is destined for this interface, but if it's 4213 * not also for the previous one we handle that after 4214 * the loop to avoid copying the SKB once too much 4215 */ 4216 4217 if (!prev) { 4218 prev = sdata; 4219 continue; 4220 } 4221 4222 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4223 rx.sdata = prev; 4224 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4225 4226 prev = sdata; 4227 } 4228 4229 if (prev) { 4230 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4231 rx.sdata = prev; 4232 4233 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4234 return; 4235 } 4236 4237 out: 4238 dev_kfree_skb(skb); 4239 } 4240 4241 /* 4242 * This is the receive path handler. It is called by a low level driver when an 4243 * 802.11 MPDU is received from the hardware. 4244 */ 4245 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4246 struct sk_buff *skb, struct napi_struct *napi) 4247 { 4248 struct ieee80211_local *local = hw_to_local(hw); 4249 struct ieee80211_rate *rate = NULL; 4250 struct ieee80211_supported_band *sband; 4251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4252 4253 WARN_ON_ONCE(softirq_count() == 0); 4254 4255 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4256 goto drop; 4257 4258 sband = local->hw.wiphy->bands[status->band]; 4259 if (WARN_ON(!sband)) 4260 goto drop; 4261 4262 /* 4263 * If we're suspending, it is possible although not too likely 4264 * that we'd be receiving frames after having already partially 4265 * quiesced the stack. We can't process such frames then since 4266 * that might, for example, cause stations to be added or other 4267 * driver callbacks be invoked. 4268 */ 4269 if (unlikely(local->quiescing || local->suspended)) 4270 goto drop; 4271 4272 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4273 if (unlikely(local->in_reconfig)) 4274 goto drop; 4275 4276 /* 4277 * The same happens when we're not even started, 4278 * but that's worth a warning. 4279 */ 4280 if (WARN_ON(!local->started)) 4281 goto drop; 4282 4283 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4284 /* 4285 * Validate the rate, unless a PLCP error means that 4286 * we probably can't have a valid rate here anyway. 4287 */ 4288 4289 switch (status->encoding) { 4290 case RX_ENC_HT: 4291 /* 4292 * rate_idx is MCS index, which can be [0-76] 4293 * as documented on: 4294 * 4295 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4296 * 4297 * Anything else would be some sort of driver or 4298 * hardware error. The driver should catch hardware 4299 * errors. 4300 */ 4301 if (WARN(status->rate_idx > 76, 4302 "Rate marked as an HT rate but passed " 4303 "status->rate_idx is not " 4304 "an MCS index [0-76]: %d (0x%02x)\n", 4305 status->rate_idx, 4306 status->rate_idx)) 4307 goto drop; 4308 break; 4309 case RX_ENC_VHT: 4310 if (WARN_ONCE(status->rate_idx > 9 || 4311 !status->nss || 4312 status->nss > 8, 4313 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4314 status->rate_idx, status->nss)) 4315 goto drop; 4316 break; 4317 default: 4318 WARN_ON_ONCE(1); 4319 /* fall through */ 4320 case RX_ENC_LEGACY: 4321 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4322 goto drop; 4323 rate = &sband->bitrates[status->rate_idx]; 4324 } 4325 } 4326 4327 status->rx_flags = 0; 4328 4329 /* 4330 * key references and virtual interfaces are protected using RCU 4331 * and this requires that we are in a read-side RCU section during 4332 * receive processing 4333 */ 4334 rcu_read_lock(); 4335 4336 /* 4337 * Frames with failed FCS/PLCP checksum are not returned, 4338 * all other frames are returned without radiotap header 4339 * if it was previously present. 4340 * Also, frames with less than 16 bytes are dropped. 4341 */ 4342 skb = ieee80211_rx_monitor(local, skb, rate); 4343 if (!skb) { 4344 rcu_read_unlock(); 4345 return; 4346 } 4347 4348 ieee80211_tpt_led_trig_rx(local, 4349 ((struct ieee80211_hdr *)skb->data)->frame_control, 4350 skb->len); 4351 4352 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4353 4354 rcu_read_unlock(); 4355 4356 return; 4357 drop: 4358 kfree_skb(skb); 4359 } 4360 EXPORT_SYMBOL(ieee80211_rx_napi); 4361 4362 /* This is a version of the rx handler that can be called from hard irq 4363 * context. Post the skb on the queue and schedule the tasklet */ 4364 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4365 { 4366 struct ieee80211_local *local = hw_to_local(hw); 4367 4368 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4369 4370 skb->pkt_type = IEEE80211_RX_MSG; 4371 skb_queue_tail(&local->skb_queue, skb); 4372 tasklet_schedule(&local->tasklet); 4373 } 4374 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4375