1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 47 struct ieee80211_hdr *hdr; 48 unsigned int hdrlen; 49 __le16 fc; 50 51 if (present_fcs_len) 52 __pskb_trim(skb, skb->len - present_fcs_len); 53 pskb_pull(skb, rtap_space); 54 55 /* After pulling radiotap header, clear all flags that indicate 56 * info in skb->data. 57 */ 58 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 59 RX_FLAG_RADIOTAP_LSIG | 60 RX_FLAG_RADIOTAP_HE_MU | 61 RX_FLAG_RADIOTAP_HE); 62 63 hdr = (void *)skb->data; 64 fc = hdr->frame_control; 65 66 /* 67 * Remove the HT-Control field (if present) on management 68 * frames after we've sent the frame to monitoring. We 69 * (currently) don't need it, and don't properly parse 70 * frames with it present, due to the assumption of a 71 * fixed management header length. 72 */ 73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 74 return skb; 75 76 hdrlen = ieee80211_hdrlen(fc); 77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 78 79 if (!pskb_may_pull(skb, hdrlen)) { 80 dev_kfree_skb(skb); 81 return NULL; 82 } 83 84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 85 hdrlen - IEEE80211_HT_CTL_LEN); 86 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 87 88 return skb; 89 } 90 91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 92 unsigned int rtap_space) 93 { 94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 95 struct ieee80211_hdr *hdr; 96 97 hdr = (void *)(skb->data + rtap_space); 98 99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 100 RX_FLAG_FAILED_PLCP_CRC | 101 RX_FLAG_ONLY_MONITOR | 102 RX_FLAG_NO_PSDU)) 103 return true; 104 105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 106 return true; 107 108 if (ieee80211_is_ctl(hdr->frame_control) && 109 !ieee80211_is_pspoll(hdr->frame_control) && 110 !ieee80211_is_back_req(hdr->frame_control)) 111 return true; 112 113 return false; 114 } 115 116 static int 117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 118 struct ieee80211_rx_status *status, 119 struct sk_buff *skb) 120 { 121 int len; 122 123 /* always present fields */ 124 len = sizeof(struct ieee80211_radiotap_header) + 8; 125 126 /* allocate extra bitmaps */ 127 if (status->chains) 128 len += 4 * hweight8(status->chains); 129 130 if (ieee80211_have_rx_timestamp(status)) { 131 len = ALIGN(len, 8); 132 len += 8; 133 } 134 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 135 len += 1; 136 137 /* antenna field, if we don't have per-chain info */ 138 if (!status->chains) 139 len += 1; 140 141 /* padding for RX_FLAGS if necessary */ 142 len = ALIGN(len, 2); 143 144 if (status->encoding == RX_ENC_HT) /* HT info */ 145 len += 3; 146 147 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 148 len = ALIGN(len, 4); 149 len += 8; 150 } 151 152 if (status->encoding == RX_ENC_VHT) { 153 len = ALIGN(len, 2); 154 len += 12; 155 } 156 157 if (local->hw.radiotap_timestamp.units_pos >= 0) { 158 len = ALIGN(len, 8); 159 len += 12; 160 } 161 162 if (status->encoding == RX_ENC_HE && 163 status->flag & RX_FLAG_RADIOTAP_HE) { 164 len = ALIGN(len, 2); 165 len += 12; 166 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 167 } 168 169 if (status->encoding == RX_ENC_HE && 170 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 171 len = ALIGN(len, 2); 172 len += 12; 173 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 174 } 175 176 if (status->flag & RX_FLAG_NO_PSDU) 177 len += 1; 178 179 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 180 len = ALIGN(len, 2); 181 len += 4; 182 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 183 } 184 185 if (status->chains) { 186 /* antenna and antenna signal fields */ 187 len += 2 * hweight8(status->chains); 188 } 189 190 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 191 int tlv_offset = 0; 192 193 /* 194 * The position to look at depends on the existence (or non- 195 * existence) of other elements, so take that into account... 196 */ 197 if (status->flag & RX_FLAG_RADIOTAP_HE) 198 tlv_offset += 199 sizeof(struct ieee80211_radiotap_he); 200 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 201 tlv_offset += 202 sizeof(struct ieee80211_radiotap_he_mu); 203 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 204 tlv_offset += 205 sizeof(struct ieee80211_radiotap_lsig); 206 207 /* ensure 4 byte alignment for TLV */ 208 len = ALIGN(len, 4); 209 210 /* TLVs until the mac header */ 211 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 u32 tlvs_len = 0; 308 int mpdulen, chain; 309 unsigned long chains = status->chains; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 331 /* data is pointer at tlv all other info was pulled off */ 332 tlvs_len = skb_mac_header(skb) - skb->data; 333 } 334 335 mpdulen = skb->len; 336 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 337 mpdulen += FCS_LEN; 338 339 rthdr = skb_push(skb, rtap_len - tlvs_len); 340 memset(rthdr, 0, rtap_len - tlvs_len); 341 it_present = &rthdr->it_present; 342 343 /* radiotap header, set always present flags */ 344 rthdr->it_len = cpu_to_le16(rtap_len); 345 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 346 BIT(IEEE80211_RADIOTAP_CHANNEL) | 347 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 348 349 if (!status->chains) 350 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 351 352 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 353 it_present_val |= 354 BIT(IEEE80211_RADIOTAP_EXT) | 355 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 356 put_unaligned_le32(it_present_val, it_present); 357 it_present++; 358 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 359 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 360 } 361 362 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 363 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 364 365 put_unaligned_le32(it_present_val, it_present); 366 367 /* This references through an offset into it_optional[] rather 368 * than via it_present otherwise later uses of pos will cause 369 * the compiler to think we have walked past the end of the 370 * struct member. 371 */ 372 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 373 374 /* the order of the following fields is important */ 375 376 /* IEEE80211_RADIOTAP_TSFT */ 377 if (ieee80211_have_rx_timestamp(status)) { 378 /* padding */ 379 while ((pos - (u8 *)rthdr) & 7) 380 *pos++ = 0; 381 put_unaligned_le64( 382 ieee80211_calculate_rx_timestamp(local, status, 383 mpdulen, 0), 384 pos); 385 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 386 pos += 8; 387 } 388 389 /* IEEE80211_RADIOTAP_FLAGS */ 390 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 391 *pos |= IEEE80211_RADIOTAP_F_FCS; 392 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 393 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 394 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 395 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 396 pos++; 397 398 /* IEEE80211_RADIOTAP_RATE */ 399 if (!rate || status->encoding != RX_ENC_LEGACY) { 400 /* 401 * Without rate information don't add it. If we have, 402 * MCS information is a separate field in radiotap, 403 * added below. The byte here is needed as padding 404 * for the channel though, so initialise it to 0. 405 */ 406 *pos = 0; 407 } else { 408 int shift = 0; 409 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 410 if (status->bw == RATE_INFO_BW_10) 411 shift = 1; 412 else if (status->bw == RATE_INFO_BW_5) 413 shift = 2; 414 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 415 } 416 pos++; 417 418 /* IEEE80211_RADIOTAP_CHANNEL */ 419 /* TODO: frequency offset in KHz */ 420 put_unaligned_le16(status->freq, pos); 421 pos += 2; 422 if (status->bw == RATE_INFO_BW_10) 423 channel_flags |= IEEE80211_CHAN_HALF; 424 else if (status->bw == RATE_INFO_BW_5) 425 channel_flags |= IEEE80211_CHAN_QUARTER; 426 427 if (status->band == NL80211_BAND_5GHZ || 428 status->band == NL80211_BAND_6GHZ) 429 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 430 else if (status->encoding != RX_ENC_LEGACY) 431 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 432 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 433 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 434 else if (rate) 435 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 436 else 437 channel_flags |= IEEE80211_CHAN_2GHZ; 438 put_unaligned_le16(channel_flags, pos); 439 pos += 2; 440 441 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 442 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 443 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 444 *pos = status->signal; 445 rthdr->it_present |= 446 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 447 pos++; 448 } 449 450 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 451 452 if (!status->chains) { 453 /* IEEE80211_RADIOTAP_ANTENNA */ 454 *pos = status->antenna; 455 pos++; 456 } 457 458 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 459 460 /* IEEE80211_RADIOTAP_RX_FLAGS */ 461 /* ensure 2 byte alignment for the 2 byte field as required */ 462 if ((pos - (u8 *)rthdr) & 1) 463 *pos++ = 0; 464 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 465 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 466 put_unaligned_le16(rx_flags, pos); 467 pos += 2; 468 469 if (status->encoding == RX_ENC_HT) { 470 unsigned int stbc; 471 472 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 473 *pos = local->hw.radiotap_mcs_details; 474 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 475 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 476 if (status->enc_flags & RX_ENC_FLAG_LDPC) 477 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 478 pos++; 479 *pos = 0; 480 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 481 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 482 if (status->bw == RATE_INFO_BW_40) 483 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 484 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 485 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 486 if (status->enc_flags & RX_ENC_FLAG_LDPC) 487 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 488 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 489 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 490 pos++; 491 *pos++ = status->rate_idx; 492 } 493 494 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 495 u16 flags = 0; 496 497 /* ensure 4 byte alignment */ 498 while ((pos - (u8 *)rthdr) & 3) 499 pos++; 500 rthdr->it_present |= 501 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 502 put_unaligned_le32(status->ampdu_reference, pos); 503 pos += 4; 504 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 505 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 506 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 507 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 509 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 510 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 513 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 514 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 515 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 516 put_unaligned_le16(flags, pos); 517 pos += 2; 518 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 519 *pos++ = status->ampdu_delimiter_crc; 520 else 521 *pos++ = 0; 522 *pos++ = 0; 523 } 524 525 if (status->encoding == RX_ENC_VHT) { 526 u16 known = local->hw.radiotap_vht_details; 527 528 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 529 put_unaligned_le16(known, pos); 530 pos += 2; 531 /* flags */ 532 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 534 /* in VHT, STBC is binary */ 535 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 536 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 537 if (status->enc_flags & RX_ENC_FLAG_BF) 538 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 539 pos++; 540 /* bandwidth */ 541 switch (status->bw) { 542 case RATE_INFO_BW_80: 543 *pos++ = 4; 544 break; 545 case RATE_INFO_BW_160: 546 *pos++ = 11; 547 break; 548 case RATE_INFO_BW_40: 549 *pos++ = 1; 550 break; 551 default: 552 *pos++ = 0; 553 } 554 /* MCS/NSS */ 555 *pos = (status->rate_idx << 4) | status->nss; 556 pos += 4; 557 /* coding field */ 558 if (status->enc_flags & RX_ENC_FLAG_LDPC) 559 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 560 pos++; 561 /* group ID */ 562 pos++; 563 /* partial_aid */ 564 pos += 2; 565 } 566 567 if (local->hw.radiotap_timestamp.units_pos >= 0) { 568 u16 accuracy = 0; 569 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 570 571 rthdr->it_present |= 572 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 573 574 /* ensure 8 byte alignment */ 575 while ((pos - (u8 *)rthdr) & 7) 576 pos++; 577 578 put_unaligned_le64(status->device_timestamp, pos); 579 pos += sizeof(u64); 580 581 if (local->hw.radiotap_timestamp.accuracy >= 0) { 582 accuracy = local->hw.radiotap_timestamp.accuracy; 583 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 584 } 585 put_unaligned_le16(accuracy, pos); 586 pos += sizeof(u16); 587 588 *pos++ = local->hw.radiotap_timestamp.units_pos; 589 *pos++ = flags; 590 } 591 592 if (status->encoding == RX_ENC_HE && 593 status->flag & RX_FLAG_RADIOTAP_HE) { 594 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 595 596 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 597 he.data6 |= HE_PREP(DATA6_NSTS, 598 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 599 status->enc_flags)); 600 he.data3 |= HE_PREP(DATA3_STBC, 1); 601 } else { 602 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 603 } 604 605 #define CHECK_GI(s) \ 606 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 607 (int)NL80211_RATE_INFO_HE_GI_##s) 608 609 CHECK_GI(0_8); 610 CHECK_GI(1_6); 611 CHECK_GI(3_2); 612 613 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 614 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 615 he.data3 |= HE_PREP(DATA3_CODING, 616 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 617 618 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 619 620 switch (status->bw) { 621 case RATE_INFO_BW_20: 622 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 623 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 624 break; 625 case RATE_INFO_BW_40: 626 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 627 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 628 break; 629 case RATE_INFO_BW_80: 630 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 631 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 632 break; 633 case RATE_INFO_BW_160: 634 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 635 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 636 break; 637 case RATE_INFO_BW_HE_RU: 638 #define CHECK_RU_ALLOC(s) \ 639 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 640 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 641 642 CHECK_RU_ALLOC(26); 643 CHECK_RU_ALLOC(52); 644 CHECK_RU_ALLOC(106); 645 CHECK_RU_ALLOC(242); 646 CHECK_RU_ALLOC(484); 647 CHECK_RU_ALLOC(996); 648 CHECK_RU_ALLOC(2x996); 649 650 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 651 status->he_ru + 4); 652 break; 653 default: 654 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 655 } 656 657 /* ensure 2 byte alignment */ 658 while ((pos - (u8 *)rthdr) & 1) 659 pos++; 660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 661 memcpy(pos, &he, sizeof(he)); 662 pos += sizeof(he); 663 } 664 665 if (status->encoding == RX_ENC_HE && 666 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 667 /* ensure 2 byte alignment */ 668 while ((pos - (u8 *)rthdr) & 1) 669 pos++; 670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 671 memcpy(pos, &he_mu, sizeof(he_mu)); 672 pos += sizeof(he_mu); 673 } 674 675 if (status->flag & RX_FLAG_NO_PSDU) { 676 rthdr->it_present |= 677 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 678 *pos++ = status->zero_length_psdu_type; 679 } 680 681 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 682 /* ensure 2 byte alignment */ 683 while ((pos - (u8 *)rthdr) & 1) 684 pos++; 685 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 686 memcpy(pos, &lsig, sizeof(lsig)); 687 pos += sizeof(lsig); 688 } 689 690 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 691 *pos++ = status->chain_signal[chain]; 692 *pos++ = chain; 693 } 694 } 695 696 static struct sk_buff * 697 ieee80211_make_monitor_skb(struct ieee80211_local *local, 698 struct sk_buff **origskb, 699 struct ieee80211_rate *rate, 700 int rtap_space, bool use_origskb) 701 { 702 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 703 int rt_hdrlen, needed_headroom; 704 struct sk_buff *skb; 705 706 /* room for the radiotap header based on driver features */ 707 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 708 needed_headroom = rt_hdrlen - rtap_space; 709 710 if (use_origskb) { 711 /* only need to expand headroom if necessary */ 712 skb = *origskb; 713 *origskb = NULL; 714 715 /* 716 * This shouldn't trigger often because most devices have an 717 * RX header they pull before we get here, and that should 718 * be big enough for our radiotap information. We should 719 * probably export the length to drivers so that we can have 720 * them allocate enough headroom to start with. 721 */ 722 if (skb_headroom(skb) < needed_headroom && 723 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 724 dev_kfree_skb(skb); 725 return NULL; 726 } 727 } else { 728 /* 729 * Need to make a copy and possibly remove radiotap header 730 * and FCS from the original. 731 */ 732 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 733 0, GFP_ATOMIC); 734 735 if (!skb) 736 return NULL; 737 } 738 739 /* prepend radiotap information */ 740 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 741 742 skb_reset_mac_header(skb); 743 skb->ip_summed = CHECKSUM_UNNECESSARY; 744 skb->pkt_type = PACKET_OTHERHOST; 745 skb->protocol = htons(ETH_P_802_2); 746 747 return skb; 748 } 749 750 /* 751 * This function copies a received frame to all monitor interfaces and 752 * returns a cleaned-up SKB that no longer includes the FCS nor the 753 * radiotap header the driver might have added. 754 */ 755 static struct sk_buff * 756 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 757 struct ieee80211_rate *rate) 758 { 759 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 760 struct ieee80211_sub_if_data *sdata; 761 struct sk_buff *monskb = NULL; 762 int present_fcs_len = 0; 763 unsigned int rtap_space = 0; 764 struct ieee80211_sub_if_data *monitor_sdata = 765 rcu_dereference(local->monitor_sdata); 766 bool only_monitor = false; 767 unsigned int min_head_len; 768 769 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 770 !skb_mac_header_was_set(origskb))) { 771 /* with this skb no way to know where frame payload starts */ 772 dev_kfree_skb(origskb); 773 return NULL; 774 } 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE) 777 rtap_space += sizeof(struct ieee80211_radiotap_he); 778 779 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 780 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 781 782 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 783 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 784 785 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 786 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 787 788 min_head_len = rtap_space; 789 790 /* 791 * First, we may need to make a copy of the skb because 792 * (1) we need to modify it for radiotap (if not present), and 793 * (2) the other RX handlers will modify the skb we got. 794 * 795 * We don't need to, of course, if we aren't going to return 796 * the SKB because it has a bad FCS/PLCP checksum. 797 */ 798 799 if (!(status->flag & RX_FLAG_NO_PSDU)) { 800 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 801 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 802 /* driver bug */ 803 WARN_ON(1); 804 dev_kfree_skb(origskb); 805 return NULL; 806 } 807 present_fcs_len = FCS_LEN; 808 } 809 810 /* also consider the hdr->frame_control */ 811 min_head_len += 2; 812 } 813 814 /* ensure that the expected data elements are in skb head */ 815 if (!pskb_may_pull(origskb, min_head_len)) { 816 dev_kfree_skb(origskb); 817 return NULL; 818 } 819 820 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 821 822 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 823 if (only_monitor) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 return ieee80211_clean_skb(origskb, present_fcs_len, 829 rtap_space); 830 } 831 832 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 833 834 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 835 bool last_monitor = list_is_last(&sdata->u.mntr.list, 836 &local->mon_list); 837 838 if (!monskb) 839 monskb = ieee80211_make_monitor_skb(local, &origskb, 840 rate, rtap_space, 841 only_monitor && 842 last_monitor); 843 844 if (monskb) { 845 struct sk_buff *skb; 846 847 if (last_monitor) { 848 skb = monskb; 849 monskb = NULL; 850 } else { 851 skb = skb_clone(monskb, GFP_ATOMIC); 852 } 853 854 if (skb) { 855 skb->dev = sdata->dev; 856 dev_sw_netstats_rx_add(skb->dev, skb->len); 857 netif_receive_skb(skb); 858 } 859 } 860 861 if (last_monitor) 862 break; 863 } 864 865 /* this happens if last_monitor was erroneously false */ 866 dev_kfree_skb(monskb); 867 868 /* ditto */ 869 if (!origskb) 870 return NULL; 871 872 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 873 } 874 875 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 876 { 877 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 879 int tid, seqno_idx, security_idx; 880 881 /* does the frame have a qos control field? */ 882 if (ieee80211_is_data_qos(hdr->frame_control)) { 883 u8 *qc = ieee80211_get_qos_ctl(hdr); 884 /* frame has qos control */ 885 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 886 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 887 status->rx_flags |= IEEE80211_RX_AMSDU; 888 889 seqno_idx = tid; 890 security_idx = tid; 891 } else { 892 /* 893 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 894 * 895 * Sequence numbers for management frames, QoS data 896 * frames with a broadcast/multicast address in the 897 * Address 1 field, and all non-QoS data frames sent 898 * by QoS STAs are assigned using an additional single 899 * modulo-4096 counter, [...] 900 * 901 * We also use that counter for non-QoS STAs. 902 */ 903 seqno_idx = IEEE80211_NUM_TIDS; 904 security_idx = 0; 905 if (ieee80211_is_mgmt(hdr->frame_control)) 906 security_idx = IEEE80211_NUM_TIDS; 907 tid = 0; 908 } 909 910 rx->seqno_idx = seqno_idx; 911 rx->security_idx = security_idx; 912 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 913 * For now, set skb->priority to 0 for other cases. */ 914 rx->skb->priority = (tid > 7) ? 0 : tid; 915 } 916 917 /** 918 * DOC: Packet alignment 919 * 920 * Drivers always need to pass packets that are aligned to two-byte boundaries 921 * to the stack. 922 * 923 * Additionally, should, if possible, align the payload data in a way that 924 * guarantees that the contained IP header is aligned to a four-byte 925 * boundary. In the case of regular frames, this simply means aligning the 926 * payload to a four-byte boundary (because either the IP header is directly 927 * contained, or IV/RFC1042 headers that have a length divisible by four are 928 * in front of it). If the payload data is not properly aligned and the 929 * architecture doesn't support efficient unaligned operations, mac80211 930 * will align the data. 931 * 932 * With A-MSDU frames, however, the payload data address must yield two modulo 933 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 934 * push the IP header further back to a multiple of four again. Thankfully, the 935 * specs were sane enough this time around to require padding each A-MSDU 936 * subframe to a length that is a multiple of four. 937 * 938 * Padding like Atheros hardware adds which is between the 802.11 header and 939 * the payload is not supported, the driver is required to move the 802.11 940 * header to be directly in front of the payload in that case. 941 */ 942 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 943 { 944 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 945 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 946 #endif 947 } 948 949 950 /* rx handlers */ 951 952 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 953 { 954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 955 956 if (is_multicast_ether_addr(hdr->addr1)) 957 return 0; 958 959 return ieee80211_is_robust_mgmt_frame(skb); 960 } 961 962 963 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 964 { 965 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 966 967 if (!is_multicast_ether_addr(hdr->addr1)) 968 return 0; 969 970 return ieee80211_is_robust_mgmt_frame(skb); 971 } 972 973 974 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 975 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 976 { 977 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 978 struct ieee80211_mmie *mmie; 979 struct ieee80211_mmie_16 *mmie16; 980 981 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 982 return -1; 983 984 if (!ieee80211_is_robust_mgmt_frame(skb) && 985 !ieee80211_is_beacon(hdr->frame_control)) 986 return -1; /* not a robust management frame */ 987 988 mmie = (struct ieee80211_mmie *) 989 (skb->data + skb->len - sizeof(*mmie)); 990 if (mmie->element_id == WLAN_EID_MMIE && 991 mmie->length == sizeof(*mmie) - 2) 992 return le16_to_cpu(mmie->key_id); 993 994 mmie16 = (struct ieee80211_mmie_16 *) 995 (skb->data + skb->len - sizeof(*mmie16)); 996 if (skb->len >= 24 + sizeof(*mmie16) && 997 mmie16->element_id == WLAN_EID_MMIE && 998 mmie16->length == sizeof(*mmie16) - 2) 999 return le16_to_cpu(mmie16->key_id); 1000 1001 return -1; 1002 } 1003 1004 static int ieee80211_get_keyid(struct sk_buff *skb) 1005 { 1006 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1007 __le16 fc = hdr->frame_control; 1008 int hdrlen = ieee80211_hdrlen(fc); 1009 u8 keyid; 1010 1011 /* WEP, TKIP, CCMP and GCMP */ 1012 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1013 return -EINVAL; 1014 1015 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1016 1017 keyid >>= 6; 1018 1019 return keyid; 1020 } 1021 1022 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1023 { 1024 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1025 char *dev_addr = rx->sdata->vif.addr; 1026 1027 if (ieee80211_is_data(hdr->frame_control)) { 1028 if (is_multicast_ether_addr(hdr->addr1)) { 1029 if (ieee80211_has_tods(hdr->frame_control) || 1030 !ieee80211_has_fromds(hdr->frame_control)) 1031 return RX_DROP_MONITOR; 1032 if (ether_addr_equal(hdr->addr3, dev_addr)) 1033 return RX_DROP_MONITOR; 1034 } else { 1035 if (!ieee80211_has_a4(hdr->frame_control)) 1036 return RX_DROP_MONITOR; 1037 if (ether_addr_equal(hdr->addr4, dev_addr)) 1038 return RX_DROP_MONITOR; 1039 } 1040 } 1041 1042 /* If there is not an established peer link and this is not a peer link 1043 * establisment frame, beacon or probe, drop the frame. 1044 */ 1045 1046 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1047 struct ieee80211_mgmt *mgmt; 1048 1049 if (!ieee80211_is_mgmt(hdr->frame_control)) 1050 return RX_DROP_MONITOR; 1051 1052 if (ieee80211_is_action(hdr->frame_control)) { 1053 u8 category; 1054 1055 /* make sure category field is present */ 1056 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1057 return RX_DROP_MONITOR; 1058 1059 mgmt = (struct ieee80211_mgmt *)hdr; 1060 category = mgmt->u.action.category; 1061 if (category != WLAN_CATEGORY_MESH_ACTION && 1062 category != WLAN_CATEGORY_SELF_PROTECTED) 1063 return RX_DROP_MONITOR; 1064 return RX_CONTINUE; 1065 } 1066 1067 if (ieee80211_is_probe_req(hdr->frame_control) || 1068 ieee80211_is_probe_resp(hdr->frame_control) || 1069 ieee80211_is_beacon(hdr->frame_control) || 1070 ieee80211_is_auth(hdr->frame_control)) 1071 return RX_CONTINUE; 1072 1073 return RX_DROP_MONITOR; 1074 } 1075 1076 return RX_CONTINUE; 1077 } 1078 1079 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1080 int index) 1081 { 1082 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1083 struct sk_buff *tail = skb_peek_tail(frames); 1084 struct ieee80211_rx_status *status; 1085 1086 if (tid_agg_rx->reorder_buf_filtered && 1087 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1088 return true; 1089 1090 if (!tail) 1091 return false; 1092 1093 status = IEEE80211_SKB_RXCB(tail); 1094 if (status->flag & RX_FLAG_AMSDU_MORE) 1095 return false; 1096 1097 return true; 1098 } 1099 1100 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1101 struct tid_ampdu_rx *tid_agg_rx, 1102 int index, 1103 struct sk_buff_head *frames) 1104 { 1105 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1106 struct sk_buff *skb; 1107 struct ieee80211_rx_status *status; 1108 1109 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1110 1111 if (skb_queue_empty(skb_list)) 1112 goto no_frame; 1113 1114 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1115 __skb_queue_purge(skb_list); 1116 goto no_frame; 1117 } 1118 1119 /* release frames from the reorder ring buffer */ 1120 tid_agg_rx->stored_mpdu_num--; 1121 while ((skb = __skb_dequeue(skb_list))) { 1122 status = IEEE80211_SKB_RXCB(skb); 1123 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1124 __skb_queue_tail(frames, skb); 1125 } 1126 1127 no_frame: 1128 if (tid_agg_rx->reorder_buf_filtered) 1129 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1130 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1131 } 1132 1133 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1134 struct tid_ampdu_rx *tid_agg_rx, 1135 u16 head_seq_num, 1136 struct sk_buff_head *frames) 1137 { 1138 int index; 1139 1140 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1141 1142 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1143 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1144 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1145 frames); 1146 } 1147 } 1148 1149 /* 1150 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1151 * the skb was added to the buffer longer than this time ago, the earlier 1152 * frames that have not yet been received are assumed to be lost and the skb 1153 * can be released for processing. This may also release other skb's from the 1154 * reorder buffer if there are no additional gaps between the frames. 1155 * 1156 * Callers must hold tid_agg_rx->reorder_lock. 1157 */ 1158 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1159 1160 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1161 struct tid_ampdu_rx *tid_agg_rx, 1162 struct sk_buff_head *frames) 1163 { 1164 int index, i, j; 1165 1166 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1167 1168 /* release the buffer until next missing frame */ 1169 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1170 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1171 tid_agg_rx->stored_mpdu_num) { 1172 /* 1173 * No buffers ready to be released, but check whether any 1174 * frames in the reorder buffer have timed out. 1175 */ 1176 int skipped = 1; 1177 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1178 j = (j + 1) % tid_agg_rx->buf_size) { 1179 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1180 skipped++; 1181 continue; 1182 } 1183 if (skipped && 1184 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1185 HT_RX_REORDER_BUF_TIMEOUT)) 1186 goto set_release_timer; 1187 1188 /* don't leave incomplete A-MSDUs around */ 1189 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1190 i = (i + 1) % tid_agg_rx->buf_size) 1191 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1192 1193 ht_dbg_ratelimited(sdata, 1194 "release an RX reorder frame due to timeout on earlier frames\n"); 1195 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1196 frames); 1197 1198 /* 1199 * Increment the head seq# also for the skipped slots. 1200 */ 1201 tid_agg_rx->head_seq_num = 1202 (tid_agg_rx->head_seq_num + 1203 skipped) & IEEE80211_SN_MASK; 1204 skipped = 0; 1205 } 1206 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1207 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1208 frames); 1209 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1210 } 1211 1212 if (tid_agg_rx->stored_mpdu_num) { 1213 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1214 1215 for (; j != (index - 1) % tid_agg_rx->buf_size; 1216 j = (j + 1) % tid_agg_rx->buf_size) { 1217 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1218 break; 1219 } 1220 1221 set_release_timer: 1222 1223 if (!tid_agg_rx->removed) 1224 mod_timer(&tid_agg_rx->reorder_timer, 1225 tid_agg_rx->reorder_time[j] + 1 + 1226 HT_RX_REORDER_BUF_TIMEOUT); 1227 } else { 1228 del_timer(&tid_agg_rx->reorder_timer); 1229 } 1230 } 1231 1232 /* 1233 * As this function belongs to the RX path it must be under 1234 * rcu_read_lock protection. It returns false if the frame 1235 * can be processed immediately, true if it was consumed. 1236 */ 1237 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1238 struct tid_ampdu_rx *tid_agg_rx, 1239 struct sk_buff *skb, 1240 struct sk_buff_head *frames) 1241 { 1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1244 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1245 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1246 u16 head_seq_num, buf_size; 1247 int index; 1248 bool ret = true; 1249 1250 spin_lock(&tid_agg_rx->reorder_lock); 1251 1252 /* 1253 * Offloaded BA sessions have no known starting sequence number so pick 1254 * one from first Rxed frame for this tid after BA was started. 1255 */ 1256 if (unlikely(tid_agg_rx->auto_seq)) { 1257 tid_agg_rx->auto_seq = false; 1258 tid_agg_rx->ssn = mpdu_seq_num; 1259 tid_agg_rx->head_seq_num = mpdu_seq_num; 1260 } 1261 1262 buf_size = tid_agg_rx->buf_size; 1263 head_seq_num = tid_agg_rx->head_seq_num; 1264 1265 /* 1266 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1267 * be reordered. 1268 */ 1269 if (unlikely(!tid_agg_rx->started)) { 1270 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1271 ret = false; 1272 goto out; 1273 } 1274 tid_agg_rx->started = true; 1275 } 1276 1277 /* frame with out of date sequence number */ 1278 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1279 dev_kfree_skb(skb); 1280 goto out; 1281 } 1282 1283 /* 1284 * If frame the sequence number exceeds our buffering window 1285 * size release some previous frames to make room for this one. 1286 */ 1287 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1288 head_seq_num = ieee80211_sn_inc( 1289 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1290 /* release stored frames up to new head to stack */ 1291 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1292 head_seq_num, frames); 1293 } 1294 1295 /* Now the new frame is always in the range of the reordering buffer */ 1296 1297 index = mpdu_seq_num % tid_agg_rx->buf_size; 1298 1299 /* check if we already stored this frame */ 1300 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1301 dev_kfree_skb(skb); 1302 goto out; 1303 } 1304 1305 /* 1306 * If the current MPDU is in the right order and nothing else 1307 * is stored we can process it directly, no need to buffer it. 1308 * If it is first but there's something stored, we may be able 1309 * to release frames after this one. 1310 */ 1311 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1312 tid_agg_rx->stored_mpdu_num == 0) { 1313 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1314 tid_agg_rx->head_seq_num = 1315 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1316 ret = false; 1317 goto out; 1318 } 1319 1320 /* put the frame in the reordering buffer */ 1321 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1322 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1323 tid_agg_rx->reorder_time[index] = jiffies; 1324 tid_agg_rx->stored_mpdu_num++; 1325 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1326 } 1327 1328 out: 1329 spin_unlock(&tid_agg_rx->reorder_lock); 1330 return ret; 1331 } 1332 1333 /* 1334 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1335 * true if the MPDU was buffered, false if it should be processed. 1336 */ 1337 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1338 struct sk_buff_head *frames) 1339 { 1340 struct sk_buff *skb = rx->skb; 1341 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1342 struct sta_info *sta = rx->sta; 1343 struct tid_ampdu_rx *tid_agg_rx; 1344 u16 sc; 1345 u8 tid, ack_policy; 1346 1347 if (!ieee80211_is_data_qos(hdr->frame_control) || 1348 is_multicast_ether_addr(hdr->addr1)) 1349 goto dont_reorder; 1350 1351 /* 1352 * filter the QoS data rx stream according to 1353 * STA/TID and check if this STA/TID is on aggregation 1354 */ 1355 1356 if (!sta) 1357 goto dont_reorder; 1358 1359 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1360 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1361 tid = ieee80211_get_tid(hdr); 1362 1363 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1364 if (!tid_agg_rx) { 1365 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1366 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1367 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1368 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1369 WLAN_BACK_RECIPIENT, 1370 WLAN_REASON_QSTA_REQUIRE_SETUP); 1371 goto dont_reorder; 1372 } 1373 1374 /* qos null data frames are excluded */ 1375 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1376 goto dont_reorder; 1377 1378 /* not part of a BA session */ 1379 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1380 goto dont_reorder; 1381 1382 /* new, potentially un-ordered, ampdu frame - process it */ 1383 1384 /* reset session timer */ 1385 if (tid_agg_rx->timeout) 1386 tid_agg_rx->last_rx = jiffies; 1387 1388 /* if this mpdu is fragmented - terminate rx aggregation session */ 1389 sc = le16_to_cpu(hdr->seq_ctrl); 1390 if (sc & IEEE80211_SCTL_FRAG) { 1391 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1392 return; 1393 } 1394 1395 /* 1396 * No locking needed -- we will only ever process one 1397 * RX packet at a time, and thus own tid_agg_rx. All 1398 * other code manipulating it needs to (and does) make 1399 * sure that we cannot get to it any more before doing 1400 * anything with it. 1401 */ 1402 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1403 frames)) 1404 return; 1405 1406 dont_reorder: 1407 __skb_queue_tail(frames, skb); 1408 } 1409 1410 static ieee80211_rx_result debug_noinline 1411 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1412 { 1413 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1414 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1415 1416 if (status->flag & RX_FLAG_DUP_VALIDATED) 1417 return RX_CONTINUE; 1418 1419 /* 1420 * Drop duplicate 802.11 retransmissions 1421 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1422 */ 1423 1424 if (rx->skb->len < 24) 1425 return RX_CONTINUE; 1426 1427 if (ieee80211_is_ctl(hdr->frame_control) || 1428 ieee80211_is_any_nullfunc(hdr->frame_control) || 1429 is_multicast_ether_addr(hdr->addr1)) 1430 return RX_CONTINUE; 1431 1432 if (!rx->sta) 1433 return RX_CONTINUE; 1434 1435 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1436 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1437 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1438 rx->link_sta->rx_stats.num_duplicates++; 1439 return RX_DROP_UNUSABLE; 1440 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1441 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1442 } 1443 1444 return RX_CONTINUE; 1445 } 1446 1447 static ieee80211_rx_result debug_noinline 1448 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1449 { 1450 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1451 1452 /* Drop disallowed frame classes based on STA auth/assoc state; 1453 * IEEE 802.11, Chap 5.5. 1454 * 1455 * mac80211 filters only based on association state, i.e. it drops 1456 * Class 3 frames from not associated stations. hostapd sends 1457 * deauth/disassoc frames when needed. In addition, hostapd is 1458 * responsible for filtering on both auth and assoc states. 1459 */ 1460 1461 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1462 return ieee80211_rx_mesh_check(rx); 1463 1464 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1465 ieee80211_is_pspoll(hdr->frame_control)) && 1466 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1467 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1468 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1469 /* 1470 * accept port control frames from the AP even when it's not 1471 * yet marked ASSOC to prevent a race where we don't set the 1472 * assoc bit quickly enough before it sends the first frame 1473 */ 1474 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1475 ieee80211_is_data_present(hdr->frame_control)) { 1476 unsigned int hdrlen; 1477 __be16 ethertype; 1478 1479 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1480 1481 if (rx->skb->len < hdrlen + 8) 1482 return RX_DROP_MONITOR; 1483 1484 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1485 if (ethertype == rx->sdata->control_port_protocol) 1486 return RX_CONTINUE; 1487 } 1488 1489 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1490 cfg80211_rx_spurious_frame(rx->sdata->dev, 1491 hdr->addr2, 1492 GFP_ATOMIC)) 1493 return RX_DROP_UNUSABLE; 1494 1495 return RX_DROP_MONITOR; 1496 } 1497 1498 return RX_CONTINUE; 1499 } 1500 1501 1502 static ieee80211_rx_result debug_noinline 1503 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1504 { 1505 struct ieee80211_local *local; 1506 struct ieee80211_hdr *hdr; 1507 struct sk_buff *skb; 1508 1509 local = rx->local; 1510 skb = rx->skb; 1511 hdr = (struct ieee80211_hdr *) skb->data; 1512 1513 if (!local->pspolling) 1514 return RX_CONTINUE; 1515 1516 if (!ieee80211_has_fromds(hdr->frame_control)) 1517 /* this is not from AP */ 1518 return RX_CONTINUE; 1519 1520 if (!ieee80211_is_data(hdr->frame_control)) 1521 return RX_CONTINUE; 1522 1523 if (!ieee80211_has_moredata(hdr->frame_control)) { 1524 /* AP has no more frames buffered for us */ 1525 local->pspolling = false; 1526 return RX_CONTINUE; 1527 } 1528 1529 /* more data bit is set, let's request a new frame from the AP */ 1530 ieee80211_send_pspoll(local, rx->sdata); 1531 1532 return RX_CONTINUE; 1533 } 1534 1535 static void sta_ps_start(struct sta_info *sta) 1536 { 1537 struct ieee80211_sub_if_data *sdata = sta->sdata; 1538 struct ieee80211_local *local = sdata->local; 1539 struct ps_data *ps; 1540 int tid; 1541 1542 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1543 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1544 ps = &sdata->bss->ps; 1545 else 1546 return; 1547 1548 atomic_inc(&ps->num_sta_ps); 1549 set_sta_flag(sta, WLAN_STA_PS_STA); 1550 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1551 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1552 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1553 sta->sta.addr, sta->sta.aid); 1554 1555 ieee80211_clear_fast_xmit(sta); 1556 1557 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1558 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1559 struct txq_info *txqi = to_txq_info(txq); 1560 1561 spin_lock(&local->active_txq_lock[txq->ac]); 1562 if (!list_empty(&txqi->schedule_order)) 1563 list_del_init(&txqi->schedule_order); 1564 spin_unlock(&local->active_txq_lock[txq->ac]); 1565 1566 if (txq_has_queue(txq)) 1567 set_bit(tid, &sta->txq_buffered_tids); 1568 else 1569 clear_bit(tid, &sta->txq_buffered_tids); 1570 } 1571 } 1572 1573 static void sta_ps_end(struct sta_info *sta) 1574 { 1575 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1576 sta->sta.addr, sta->sta.aid); 1577 1578 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1579 /* 1580 * Clear the flag only if the other one is still set 1581 * so that the TX path won't start TX'ing new frames 1582 * directly ... In the case that the driver flag isn't 1583 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1584 */ 1585 clear_sta_flag(sta, WLAN_STA_PS_STA); 1586 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1587 sta->sta.addr, sta->sta.aid); 1588 return; 1589 } 1590 1591 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1592 clear_sta_flag(sta, WLAN_STA_PS_STA); 1593 ieee80211_sta_ps_deliver_wakeup(sta); 1594 } 1595 1596 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1597 { 1598 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1599 bool in_ps; 1600 1601 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1602 1603 /* Don't let the same PS state be set twice */ 1604 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1605 if ((start && in_ps) || (!start && !in_ps)) 1606 return -EINVAL; 1607 1608 if (start) 1609 sta_ps_start(sta); 1610 else 1611 sta_ps_end(sta); 1612 1613 return 0; 1614 } 1615 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1616 1617 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1618 { 1619 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1620 1621 if (test_sta_flag(sta, WLAN_STA_SP)) 1622 return; 1623 1624 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1625 ieee80211_sta_ps_deliver_poll_response(sta); 1626 else 1627 set_sta_flag(sta, WLAN_STA_PSPOLL); 1628 } 1629 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1630 1631 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1632 { 1633 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1634 int ac = ieee80211_ac_from_tid(tid); 1635 1636 /* 1637 * If this AC is not trigger-enabled do nothing unless the 1638 * driver is calling us after it already checked. 1639 * 1640 * NB: This could/should check a separate bitmap of trigger- 1641 * enabled queues, but for now we only implement uAPSD w/o 1642 * TSPEC changes to the ACs, so they're always the same. 1643 */ 1644 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1645 tid != IEEE80211_NUM_TIDS) 1646 return; 1647 1648 /* if we are in a service period, do nothing */ 1649 if (test_sta_flag(sta, WLAN_STA_SP)) 1650 return; 1651 1652 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1653 ieee80211_sta_ps_deliver_uapsd(sta); 1654 else 1655 set_sta_flag(sta, WLAN_STA_UAPSD); 1656 } 1657 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1658 1659 static ieee80211_rx_result debug_noinline 1660 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1661 { 1662 struct ieee80211_sub_if_data *sdata = rx->sdata; 1663 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1664 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1665 1666 if (!rx->sta) 1667 return RX_CONTINUE; 1668 1669 if (sdata->vif.type != NL80211_IFTYPE_AP && 1670 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1671 return RX_CONTINUE; 1672 1673 /* 1674 * The device handles station powersave, so don't do anything about 1675 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1676 * it to mac80211 since they're handled.) 1677 */ 1678 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1679 return RX_CONTINUE; 1680 1681 /* 1682 * Don't do anything if the station isn't already asleep. In 1683 * the uAPSD case, the station will probably be marked asleep, 1684 * in the PS-Poll case the station must be confused ... 1685 */ 1686 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1687 return RX_CONTINUE; 1688 1689 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1690 ieee80211_sta_pspoll(&rx->sta->sta); 1691 1692 /* Free PS Poll skb here instead of returning RX_DROP that would 1693 * count as an dropped frame. */ 1694 dev_kfree_skb(rx->skb); 1695 1696 return RX_QUEUED; 1697 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1698 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1699 ieee80211_has_pm(hdr->frame_control) && 1700 (ieee80211_is_data_qos(hdr->frame_control) || 1701 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1702 u8 tid = ieee80211_get_tid(hdr); 1703 1704 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1705 } 1706 1707 return RX_CONTINUE; 1708 } 1709 1710 static ieee80211_rx_result debug_noinline 1711 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1712 { 1713 struct sta_info *sta = rx->sta; 1714 struct link_sta_info *link_sta = rx->link_sta; 1715 struct sk_buff *skb = rx->skb; 1716 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1717 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1718 int i; 1719 1720 if (!sta || !link_sta) 1721 return RX_CONTINUE; 1722 1723 /* 1724 * Update last_rx only for IBSS packets which are for the current 1725 * BSSID and for station already AUTHORIZED to avoid keeping the 1726 * current IBSS network alive in cases where other STAs start 1727 * using different BSSID. This will also give the station another 1728 * chance to restart the authentication/authorization in case 1729 * something went wrong the first time. 1730 */ 1731 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1732 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1733 NL80211_IFTYPE_ADHOC); 1734 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1735 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1736 link_sta->rx_stats.last_rx = jiffies; 1737 if (ieee80211_is_data_present(hdr->frame_control) && 1738 !is_multicast_ether_addr(hdr->addr1)) 1739 link_sta->rx_stats.last_rate = 1740 sta_stats_encode_rate(status); 1741 } 1742 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1743 link_sta->rx_stats.last_rx = jiffies; 1744 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1745 !is_multicast_ether_addr(hdr->addr1)) { 1746 /* 1747 * Mesh beacons will update last_rx when if they are found to 1748 * match the current local configuration when processed. 1749 */ 1750 link_sta->rx_stats.last_rx = jiffies; 1751 if (ieee80211_is_data_present(hdr->frame_control)) 1752 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1753 } 1754 1755 link_sta->rx_stats.fragments++; 1756 1757 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1758 link_sta->rx_stats.bytes += rx->skb->len; 1759 u64_stats_update_end(&link_sta->rx_stats.syncp); 1760 1761 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1762 link_sta->rx_stats.last_signal = status->signal; 1763 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1764 -status->signal); 1765 } 1766 1767 if (status->chains) { 1768 link_sta->rx_stats.chains = status->chains; 1769 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1770 int signal = status->chain_signal[i]; 1771 1772 if (!(status->chains & BIT(i))) 1773 continue; 1774 1775 link_sta->rx_stats.chain_signal_last[i] = signal; 1776 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1777 -signal); 1778 } 1779 } 1780 1781 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1782 return RX_CONTINUE; 1783 1784 /* 1785 * Change STA power saving mode only at the end of a frame 1786 * exchange sequence, and only for a data or management 1787 * frame as specified in IEEE 802.11-2016 11.2.3.2 1788 */ 1789 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1790 !ieee80211_has_morefrags(hdr->frame_control) && 1791 !is_multicast_ether_addr(hdr->addr1) && 1792 (ieee80211_is_mgmt(hdr->frame_control) || 1793 ieee80211_is_data(hdr->frame_control)) && 1794 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1795 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1796 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1797 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1798 if (!ieee80211_has_pm(hdr->frame_control)) 1799 sta_ps_end(sta); 1800 } else { 1801 if (ieee80211_has_pm(hdr->frame_control)) 1802 sta_ps_start(sta); 1803 } 1804 } 1805 1806 /* mesh power save support */ 1807 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1808 ieee80211_mps_rx_h_sta_process(sta, hdr); 1809 1810 /* 1811 * Drop (qos-)data::nullfunc frames silently, since they 1812 * are used only to control station power saving mode. 1813 */ 1814 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1815 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1816 1817 /* 1818 * If we receive a 4-addr nullfunc frame from a STA 1819 * that was not moved to a 4-addr STA vlan yet send 1820 * the event to userspace and for older hostapd drop 1821 * the frame to the monitor interface. 1822 */ 1823 if (ieee80211_has_a4(hdr->frame_control) && 1824 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1825 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1826 !rx->sdata->u.vlan.sta))) { 1827 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1828 cfg80211_rx_unexpected_4addr_frame( 1829 rx->sdata->dev, sta->sta.addr, 1830 GFP_ATOMIC); 1831 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME; 1832 } 1833 /* 1834 * Update counter and free packet here to avoid 1835 * counting this as a dropped packed. 1836 */ 1837 link_sta->rx_stats.packets++; 1838 dev_kfree_skb(rx->skb); 1839 return RX_QUEUED; 1840 } 1841 1842 return RX_CONTINUE; 1843 } /* ieee80211_rx_h_sta_process */ 1844 1845 static struct ieee80211_key * 1846 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1847 { 1848 struct ieee80211_key *key = NULL; 1849 int idx2; 1850 1851 /* Make sure key gets set if either BIGTK key index is set so that 1852 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1853 * Beacon frames and Beacon frames that claim to use another BIGTK key 1854 * index (i.e., a key that we do not have). 1855 */ 1856 1857 if (idx < 0) { 1858 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1859 idx2 = idx + 1; 1860 } else { 1861 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1862 idx2 = idx + 1; 1863 else 1864 idx2 = idx - 1; 1865 } 1866 1867 if (rx->link_sta) 1868 key = rcu_dereference(rx->link_sta->gtk[idx]); 1869 if (!key) 1870 key = rcu_dereference(rx->link->gtk[idx]); 1871 if (!key && rx->link_sta) 1872 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1873 if (!key) 1874 key = rcu_dereference(rx->link->gtk[idx2]); 1875 1876 return key; 1877 } 1878 1879 static ieee80211_rx_result debug_noinline 1880 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1881 { 1882 struct sk_buff *skb = rx->skb; 1883 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1884 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1885 int keyidx; 1886 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1887 struct ieee80211_key *sta_ptk = NULL; 1888 struct ieee80211_key *ptk_idx = NULL; 1889 int mmie_keyidx = -1; 1890 __le16 fc; 1891 1892 if (ieee80211_is_ext(hdr->frame_control)) 1893 return RX_CONTINUE; 1894 1895 /* 1896 * Key selection 101 1897 * 1898 * There are five types of keys: 1899 * - GTK (group keys) 1900 * - IGTK (group keys for management frames) 1901 * - BIGTK (group keys for Beacon frames) 1902 * - PTK (pairwise keys) 1903 * - STK (station-to-station pairwise keys) 1904 * 1905 * When selecting a key, we have to distinguish between multicast 1906 * (including broadcast) and unicast frames, the latter can only 1907 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1908 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1909 * then unicast frames can also use key indices like GTKs. Hence, if we 1910 * don't have a PTK/STK we check the key index for a WEP key. 1911 * 1912 * Note that in a regular BSS, multicast frames are sent by the 1913 * AP only, associated stations unicast the frame to the AP first 1914 * which then multicasts it on their behalf. 1915 * 1916 * There is also a slight problem in IBSS mode: GTKs are negotiated 1917 * with each station, that is something we don't currently handle. 1918 * The spec seems to expect that one negotiates the same key with 1919 * every station but there's no such requirement; VLANs could be 1920 * possible. 1921 */ 1922 1923 /* start without a key */ 1924 rx->key = NULL; 1925 fc = hdr->frame_control; 1926 1927 if (rx->sta) { 1928 int keyid = rx->sta->ptk_idx; 1929 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1930 1931 if (ieee80211_has_protected(fc) && 1932 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1933 keyid = ieee80211_get_keyid(rx->skb); 1934 1935 if (unlikely(keyid < 0)) 1936 return RX_DROP_UNUSABLE; 1937 1938 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1939 } 1940 } 1941 1942 if (!ieee80211_has_protected(fc)) 1943 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1944 1945 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1946 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1947 if ((status->flag & RX_FLAG_DECRYPTED) && 1948 (status->flag & RX_FLAG_IV_STRIPPED)) 1949 return RX_CONTINUE; 1950 /* Skip decryption if the frame is not protected. */ 1951 if (!ieee80211_has_protected(fc)) 1952 return RX_CONTINUE; 1953 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1954 /* Broadcast/multicast robust management frame / BIP */ 1955 if ((status->flag & RX_FLAG_DECRYPTED) && 1956 (status->flag & RX_FLAG_IV_STRIPPED)) 1957 return RX_CONTINUE; 1958 1959 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1960 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1961 NUM_DEFAULT_BEACON_KEYS) { 1962 if (rx->sdata->dev) 1963 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1964 skb->data, 1965 skb->len); 1966 return RX_DROP_M_BAD_BCN_KEYIDX; 1967 } 1968 1969 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1970 if (!rx->key) 1971 return RX_CONTINUE; /* Beacon protection not in use */ 1972 } else if (mmie_keyidx >= 0) { 1973 /* Broadcast/multicast robust management frame / BIP */ 1974 if ((status->flag & RX_FLAG_DECRYPTED) && 1975 (status->flag & RX_FLAG_IV_STRIPPED)) 1976 return RX_CONTINUE; 1977 1978 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1979 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1980 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ 1981 if (rx->link_sta) { 1982 if (ieee80211_is_group_privacy_action(skb) && 1983 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1984 return RX_DROP_MONITOR; 1985 1986 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 1987 } 1988 if (!rx->key) 1989 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 1990 } else if (!ieee80211_has_protected(fc)) { 1991 /* 1992 * The frame was not protected, so skip decryption. However, we 1993 * need to set rx->key if there is a key that could have been 1994 * used so that the frame may be dropped if encryption would 1995 * have been expected. 1996 */ 1997 struct ieee80211_key *key = NULL; 1998 int i; 1999 2000 if (ieee80211_is_beacon(fc)) { 2001 key = ieee80211_rx_get_bigtk(rx, -1); 2002 } else if (ieee80211_is_mgmt(fc) && 2003 is_multicast_ether_addr(hdr->addr1)) { 2004 key = rcu_dereference(rx->link->default_mgmt_key); 2005 } else { 2006 if (rx->link_sta) { 2007 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2008 key = rcu_dereference(rx->link_sta->gtk[i]); 2009 if (key) 2010 break; 2011 } 2012 } 2013 if (!key) { 2014 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2015 key = rcu_dereference(rx->link->gtk[i]); 2016 if (key) 2017 break; 2018 } 2019 } 2020 } 2021 if (key) 2022 rx->key = key; 2023 return RX_CONTINUE; 2024 } else { 2025 /* 2026 * The device doesn't give us the IV so we won't be 2027 * able to look up the key. That's ok though, we 2028 * don't need to decrypt the frame, we just won't 2029 * be able to keep statistics accurate. 2030 * Except for key threshold notifications, should 2031 * we somehow allow the driver to tell us which key 2032 * the hardware used if this flag is set? 2033 */ 2034 if ((status->flag & RX_FLAG_DECRYPTED) && 2035 (status->flag & RX_FLAG_IV_STRIPPED)) 2036 return RX_CONTINUE; 2037 2038 keyidx = ieee80211_get_keyid(rx->skb); 2039 2040 if (unlikely(keyidx < 0)) 2041 return RX_DROP_UNUSABLE; 2042 2043 /* check per-station GTK first, if multicast packet */ 2044 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2045 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2046 2047 /* if not found, try default key */ 2048 if (!rx->key) { 2049 if (is_multicast_ether_addr(hdr->addr1)) 2050 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2051 if (!rx->key) 2052 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2053 2054 /* 2055 * RSNA-protected unicast frames should always be 2056 * sent with pairwise or station-to-station keys, 2057 * but for WEP we allow using a key index as well. 2058 */ 2059 if (rx->key && 2060 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2061 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2062 !is_multicast_ether_addr(hdr->addr1)) 2063 rx->key = NULL; 2064 } 2065 } 2066 2067 if (rx->key) { 2068 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2069 return RX_DROP_MONITOR; 2070 2071 /* TODO: add threshold stuff again */ 2072 } else { 2073 return RX_DROP_MONITOR; 2074 } 2075 2076 switch (rx->key->conf.cipher) { 2077 case WLAN_CIPHER_SUITE_WEP40: 2078 case WLAN_CIPHER_SUITE_WEP104: 2079 result = ieee80211_crypto_wep_decrypt(rx); 2080 break; 2081 case WLAN_CIPHER_SUITE_TKIP: 2082 result = ieee80211_crypto_tkip_decrypt(rx); 2083 break; 2084 case WLAN_CIPHER_SUITE_CCMP: 2085 result = ieee80211_crypto_ccmp_decrypt( 2086 rx, IEEE80211_CCMP_MIC_LEN); 2087 break; 2088 case WLAN_CIPHER_SUITE_CCMP_256: 2089 result = ieee80211_crypto_ccmp_decrypt( 2090 rx, IEEE80211_CCMP_256_MIC_LEN); 2091 break; 2092 case WLAN_CIPHER_SUITE_AES_CMAC: 2093 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2094 break; 2095 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2096 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2097 break; 2098 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2099 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2100 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2101 break; 2102 case WLAN_CIPHER_SUITE_GCMP: 2103 case WLAN_CIPHER_SUITE_GCMP_256: 2104 result = ieee80211_crypto_gcmp_decrypt(rx); 2105 break; 2106 default: 2107 result = RX_DROP_UNUSABLE; 2108 } 2109 2110 /* the hdr variable is invalid after the decrypt handlers */ 2111 2112 /* either the frame has been decrypted or will be dropped */ 2113 status->flag |= RX_FLAG_DECRYPTED; 2114 2115 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) && 2116 rx->sdata->dev)) 2117 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2118 skb->data, skb->len); 2119 2120 return result; 2121 } 2122 2123 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2124 { 2125 int i; 2126 2127 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2128 skb_queue_head_init(&cache->entries[i].skb_list); 2129 } 2130 2131 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2132 { 2133 int i; 2134 2135 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2136 __skb_queue_purge(&cache->entries[i].skb_list); 2137 } 2138 2139 static inline struct ieee80211_fragment_entry * 2140 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2141 unsigned int frag, unsigned int seq, int rx_queue, 2142 struct sk_buff **skb) 2143 { 2144 struct ieee80211_fragment_entry *entry; 2145 2146 entry = &cache->entries[cache->next++]; 2147 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2148 cache->next = 0; 2149 2150 __skb_queue_purge(&entry->skb_list); 2151 2152 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2153 *skb = NULL; 2154 entry->first_frag_time = jiffies; 2155 entry->seq = seq; 2156 entry->rx_queue = rx_queue; 2157 entry->last_frag = frag; 2158 entry->check_sequential_pn = false; 2159 entry->extra_len = 0; 2160 2161 return entry; 2162 } 2163 2164 static inline struct ieee80211_fragment_entry * 2165 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2166 unsigned int frag, unsigned int seq, 2167 int rx_queue, struct ieee80211_hdr *hdr) 2168 { 2169 struct ieee80211_fragment_entry *entry; 2170 int i, idx; 2171 2172 idx = cache->next; 2173 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2174 struct ieee80211_hdr *f_hdr; 2175 struct sk_buff *f_skb; 2176 2177 idx--; 2178 if (idx < 0) 2179 idx = IEEE80211_FRAGMENT_MAX - 1; 2180 2181 entry = &cache->entries[idx]; 2182 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2183 entry->rx_queue != rx_queue || 2184 entry->last_frag + 1 != frag) 2185 continue; 2186 2187 f_skb = __skb_peek(&entry->skb_list); 2188 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2189 2190 /* 2191 * Check ftype and addresses are equal, else check next fragment 2192 */ 2193 if (((hdr->frame_control ^ f_hdr->frame_control) & 2194 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2195 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2196 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2197 continue; 2198 2199 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2200 __skb_queue_purge(&entry->skb_list); 2201 continue; 2202 } 2203 return entry; 2204 } 2205 2206 return NULL; 2207 } 2208 2209 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2210 { 2211 return rx->key && 2212 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2213 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2214 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2215 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2216 ieee80211_has_protected(fc); 2217 } 2218 2219 static ieee80211_rx_result debug_noinline 2220 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2221 { 2222 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2223 struct ieee80211_hdr *hdr; 2224 u16 sc; 2225 __le16 fc; 2226 unsigned int frag, seq; 2227 struct ieee80211_fragment_entry *entry; 2228 struct sk_buff *skb; 2229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2230 2231 hdr = (struct ieee80211_hdr *)rx->skb->data; 2232 fc = hdr->frame_control; 2233 2234 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2235 return RX_CONTINUE; 2236 2237 sc = le16_to_cpu(hdr->seq_ctrl); 2238 frag = sc & IEEE80211_SCTL_FRAG; 2239 2240 if (rx->sta) 2241 cache = &rx->sta->frags; 2242 2243 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2244 goto out; 2245 2246 if (is_multicast_ether_addr(hdr->addr1)) 2247 return RX_DROP_MONITOR; 2248 2249 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2250 2251 if (skb_linearize(rx->skb)) 2252 return RX_DROP_UNUSABLE; 2253 2254 /* 2255 * skb_linearize() might change the skb->data and 2256 * previously cached variables (in this case, hdr) need to 2257 * be refreshed with the new data. 2258 */ 2259 hdr = (struct ieee80211_hdr *)rx->skb->data; 2260 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2261 2262 if (frag == 0) { 2263 /* This is the first fragment of a new frame. */ 2264 entry = ieee80211_reassemble_add(cache, frag, seq, 2265 rx->seqno_idx, &(rx->skb)); 2266 if (requires_sequential_pn(rx, fc)) { 2267 int queue = rx->security_idx; 2268 2269 /* Store CCMP/GCMP PN so that we can verify that the 2270 * next fragment has a sequential PN value. 2271 */ 2272 entry->check_sequential_pn = true; 2273 entry->is_protected = true; 2274 entry->key_color = rx->key->color; 2275 memcpy(entry->last_pn, 2276 rx->key->u.ccmp.rx_pn[queue], 2277 IEEE80211_CCMP_PN_LEN); 2278 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2279 u.ccmp.rx_pn) != 2280 offsetof(struct ieee80211_key, 2281 u.gcmp.rx_pn)); 2282 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2283 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2284 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2285 IEEE80211_GCMP_PN_LEN); 2286 } else if (rx->key && 2287 (ieee80211_has_protected(fc) || 2288 (status->flag & RX_FLAG_DECRYPTED))) { 2289 entry->is_protected = true; 2290 entry->key_color = rx->key->color; 2291 } 2292 return RX_QUEUED; 2293 } 2294 2295 /* This is a fragment for a frame that should already be pending in 2296 * fragment cache. Add this fragment to the end of the pending entry. 2297 */ 2298 entry = ieee80211_reassemble_find(cache, frag, seq, 2299 rx->seqno_idx, hdr); 2300 if (!entry) { 2301 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2302 return RX_DROP_MONITOR; 2303 } 2304 2305 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2306 * MPDU PN values are not incrementing in steps of 1." 2307 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2308 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2309 */ 2310 if (entry->check_sequential_pn) { 2311 int i; 2312 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2313 2314 if (!requires_sequential_pn(rx, fc)) 2315 return RX_DROP_UNUSABLE; 2316 2317 /* Prevent mixed key and fragment cache attacks */ 2318 if (entry->key_color != rx->key->color) 2319 return RX_DROP_UNUSABLE; 2320 2321 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2322 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2323 pn[i]++; 2324 if (pn[i]) 2325 break; 2326 } 2327 2328 rpn = rx->ccm_gcm.pn; 2329 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2330 return RX_DROP_UNUSABLE; 2331 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2332 } else if (entry->is_protected && 2333 (!rx->key || 2334 (!ieee80211_has_protected(fc) && 2335 !(status->flag & RX_FLAG_DECRYPTED)) || 2336 rx->key->color != entry->key_color)) { 2337 /* Drop this as a mixed key or fragment cache attack, even 2338 * if for TKIP Michael MIC should protect us, and WEP is a 2339 * lost cause anyway. 2340 */ 2341 return RX_DROP_UNUSABLE; 2342 } else if (entry->is_protected && rx->key && 2343 entry->key_color != rx->key->color && 2344 (status->flag & RX_FLAG_DECRYPTED)) { 2345 return RX_DROP_UNUSABLE; 2346 } 2347 2348 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2349 __skb_queue_tail(&entry->skb_list, rx->skb); 2350 entry->last_frag = frag; 2351 entry->extra_len += rx->skb->len; 2352 if (ieee80211_has_morefrags(fc)) { 2353 rx->skb = NULL; 2354 return RX_QUEUED; 2355 } 2356 2357 rx->skb = __skb_dequeue(&entry->skb_list); 2358 if (skb_tailroom(rx->skb) < entry->extra_len) { 2359 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2360 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2361 GFP_ATOMIC))) { 2362 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2363 __skb_queue_purge(&entry->skb_list); 2364 return RX_DROP_UNUSABLE; 2365 } 2366 } 2367 while ((skb = __skb_dequeue(&entry->skb_list))) { 2368 skb_put_data(rx->skb, skb->data, skb->len); 2369 dev_kfree_skb(skb); 2370 } 2371 2372 out: 2373 ieee80211_led_rx(rx->local); 2374 if (rx->sta) 2375 rx->link_sta->rx_stats.packets++; 2376 return RX_CONTINUE; 2377 } 2378 2379 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2380 { 2381 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2382 return -EACCES; 2383 2384 return 0; 2385 } 2386 2387 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2388 { 2389 struct sk_buff *skb = rx->skb; 2390 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2391 2392 /* 2393 * Pass through unencrypted frames if the hardware has 2394 * decrypted them already. 2395 */ 2396 if (status->flag & RX_FLAG_DECRYPTED) 2397 return 0; 2398 2399 /* Drop unencrypted frames if key is set. */ 2400 if (unlikely(!ieee80211_has_protected(fc) && 2401 !ieee80211_is_any_nullfunc(fc) && 2402 ieee80211_is_data(fc) && rx->key)) 2403 return -EACCES; 2404 2405 return 0; 2406 } 2407 2408 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2409 { 2410 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2411 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2412 __le16 fc = mgmt->frame_control; 2413 2414 /* 2415 * Pass through unencrypted frames if the hardware has 2416 * decrypted them already. 2417 */ 2418 if (status->flag & RX_FLAG_DECRYPTED) 2419 return 0; 2420 2421 /* drop unicast protected dual (that wasn't protected) */ 2422 if (ieee80211_is_action(fc) && 2423 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 2424 return -EACCES; 2425 2426 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2427 if (unlikely(!ieee80211_has_protected(fc) && 2428 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { 2429 if (ieee80211_is_deauth(fc) || 2430 ieee80211_is_disassoc(fc)) { 2431 /* 2432 * Permit unprotected deauth/disassoc frames 2433 * during 4-way-HS (key is installed after HS). 2434 */ 2435 if (!rx->key) 2436 return 0; 2437 2438 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2439 rx->skb->data, 2440 rx->skb->len); 2441 } 2442 return -EACCES; 2443 } 2444 /* BIP does not use Protected field, so need to check MMIE */ 2445 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2446 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2447 if (ieee80211_is_deauth(fc) || 2448 ieee80211_is_disassoc(fc)) 2449 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2450 rx->skb->data, 2451 rx->skb->len); 2452 return -EACCES; 2453 } 2454 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2455 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2456 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2457 rx->skb->data, 2458 rx->skb->len); 2459 return -EACCES; 2460 } 2461 /* 2462 * When using MFP, Action frames are not allowed prior to 2463 * having configured keys. 2464 */ 2465 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2466 ieee80211_is_robust_mgmt_frame(rx->skb))) 2467 return -EACCES; 2468 2469 /* drop unicast public action frames when using MPF */ 2470 if (is_unicast_ether_addr(mgmt->da) && 2471 ieee80211_is_protected_dual_of_public_action(rx->skb)) 2472 return -EACCES; 2473 } 2474 2475 return 0; 2476 } 2477 2478 static int 2479 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2480 { 2481 struct ieee80211_sub_if_data *sdata = rx->sdata; 2482 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2483 bool check_port_control = false; 2484 struct ethhdr *ehdr; 2485 int ret; 2486 2487 *port_control = false; 2488 if (ieee80211_has_a4(hdr->frame_control) && 2489 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2490 return -1; 2491 2492 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2493 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2494 2495 if (!sdata->u.mgd.use_4addr) 2496 return -1; 2497 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2498 check_port_control = true; 2499 } 2500 2501 if (is_multicast_ether_addr(hdr->addr1) && 2502 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2503 return -1; 2504 2505 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2506 if (ret < 0) 2507 return ret; 2508 2509 ehdr = (struct ethhdr *) rx->skb->data; 2510 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2511 *port_control = true; 2512 else if (check_port_control) 2513 return -1; 2514 2515 return 0; 2516 } 2517 2518 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2519 const u8 *addr, int *out_link_id) 2520 { 2521 unsigned int link_id; 2522 2523 /* non-MLO, or MLD address replaced by hardware */ 2524 if (ether_addr_equal(sdata->vif.addr, addr)) 2525 return true; 2526 2527 if (!ieee80211_vif_is_mld(&sdata->vif)) 2528 return false; 2529 2530 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2531 struct ieee80211_bss_conf *conf; 2532 2533 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2534 2535 if (!conf) 2536 continue; 2537 if (ether_addr_equal(conf->addr, addr)) { 2538 if (out_link_id) 2539 *out_link_id = link_id; 2540 return true; 2541 } 2542 } 2543 2544 return false; 2545 } 2546 2547 /* 2548 * requires that rx->skb is a frame with ethernet header 2549 */ 2550 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2551 { 2552 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2553 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2554 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2555 2556 /* 2557 * Allow EAPOL frames to us/the PAE group address regardless of 2558 * whether the frame was encrypted or not, and always disallow 2559 * all other destination addresses for them. 2560 */ 2561 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2562 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2563 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2564 2565 if (ieee80211_802_1x_port_control(rx) || 2566 ieee80211_drop_unencrypted(rx, fc)) 2567 return false; 2568 2569 return true; 2570 } 2571 2572 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2573 struct ieee80211_rx_data *rx) 2574 { 2575 struct ieee80211_sub_if_data *sdata = rx->sdata; 2576 struct net_device *dev = sdata->dev; 2577 2578 if (unlikely((skb->protocol == sdata->control_port_protocol || 2579 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2580 !sdata->control_port_no_preauth)) && 2581 sdata->control_port_over_nl80211)) { 2582 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2583 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2584 2585 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2586 dev_kfree_skb(skb); 2587 } else { 2588 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2589 2590 memset(skb->cb, 0, sizeof(skb->cb)); 2591 2592 /* 2593 * 802.1X over 802.11 requires that the authenticator address 2594 * be used for EAPOL frames. However, 802.1X allows the use of 2595 * the PAE group address instead. If the interface is part of 2596 * a bridge and we pass the frame with the PAE group address, 2597 * then the bridge will forward it to the network (even if the 2598 * client was not associated yet), which isn't supposed to 2599 * happen. 2600 * To avoid that, rewrite the destination address to our own 2601 * address, so that the authenticator (e.g. hostapd) will see 2602 * the frame, but bridge won't forward it anywhere else. Note 2603 * that due to earlier filtering, the only other address can 2604 * be the PAE group address, unless the hardware allowed them 2605 * through in 802.3 offloaded mode. 2606 */ 2607 if (unlikely(skb->protocol == sdata->control_port_protocol && 2608 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2609 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2610 2611 /* deliver to local stack */ 2612 if (rx->list) 2613 list_add_tail(&skb->list, rx->list); 2614 else 2615 netif_receive_skb(skb); 2616 } 2617 } 2618 2619 /* 2620 * requires that rx->skb is a frame with ethernet header 2621 */ 2622 static void 2623 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2624 { 2625 struct ieee80211_sub_if_data *sdata = rx->sdata; 2626 struct net_device *dev = sdata->dev; 2627 struct sk_buff *skb, *xmit_skb; 2628 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2629 struct sta_info *dsta; 2630 2631 skb = rx->skb; 2632 xmit_skb = NULL; 2633 2634 dev_sw_netstats_rx_add(dev, skb->len); 2635 2636 if (rx->sta) { 2637 /* The seqno index has the same property as needed 2638 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2639 * for non-QoS-data frames. Here we know it's a data 2640 * frame, so count MSDUs. 2641 */ 2642 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2643 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2644 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2645 } 2646 2647 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2648 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2649 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2650 ehdr->h_proto != rx->sdata->control_port_protocol && 2651 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2652 if (is_multicast_ether_addr(ehdr->h_dest) && 2653 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2654 /* 2655 * send multicast frames both to higher layers in 2656 * local net stack and back to the wireless medium 2657 */ 2658 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2659 if (!xmit_skb) 2660 net_info_ratelimited("%s: failed to clone multicast frame\n", 2661 dev->name); 2662 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2663 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2664 dsta = sta_info_get(sdata, ehdr->h_dest); 2665 if (dsta) { 2666 /* 2667 * The destination station is associated to 2668 * this AP (in this VLAN), so send the frame 2669 * directly to it and do not pass it to local 2670 * net stack. 2671 */ 2672 xmit_skb = skb; 2673 skb = NULL; 2674 } 2675 } 2676 } 2677 2678 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2679 if (skb) { 2680 /* 'align' will only take the values 0 or 2 here since all 2681 * frames are required to be aligned to 2-byte boundaries 2682 * when being passed to mac80211; the code here works just 2683 * as well if that isn't true, but mac80211 assumes it can 2684 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2685 */ 2686 int align; 2687 2688 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2689 if (align) { 2690 if (WARN_ON(skb_headroom(skb) < 3)) { 2691 dev_kfree_skb(skb); 2692 skb = NULL; 2693 } else { 2694 u8 *data = skb->data; 2695 size_t len = skb_headlen(skb); 2696 skb->data -= align; 2697 memmove(skb->data, data, len); 2698 skb_set_tail_pointer(skb, len); 2699 } 2700 } 2701 } 2702 #endif 2703 2704 if (skb) { 2705 skb->protocol = eth_type_trans(skb, dev); 2706 ieee80211_deliver_skb_to_local_stack(skb, rx); 2707 } 2708 2709 if (xmit_skb) { 2710 /* 2711 * Send to wireless media and increase priority by 256 to 2712 * keep the received priority instead of reclassifying 2713 * the frame (see cfg80211_classify8021d). 2714 */ 2715 xmit_skb->priority += 256; 2716 xmit_skb->protocol = htons(ETH_P_802_3); 2717 skb_reset_network_header(xmit_skb); 2718 skb_reset_mac_header(xmit_skb); 2719 dev_queue_xmit(xmit_skb); 2720 } 2721 } 2722 2723 #ifdef CONFIG_MAC80211_MESH 2724 static bool 2725 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, 2726 struct sk_buff *skb, int hdrlen) 2727 { 2728 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2729 struct ieee80211_mesh_fast_tx *entry = NULL; 2730 struct ieee80211s_hdr *mesh_hdr; 2731 struct tid_ampdu_tx *tid_tx; 2732 struct sta_info *sta; 2733 struct ethhdr eth; 2734 u8 tid; 2735 2736 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); 2737 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2738 entry = mesh_fast_tx_get(sdata, mesh_hdr->eaddr1); 2739 else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) 2740 entry = mesh_fast_tx_get(sdata, skb->data); 2741 if (!entry) 2742 return false; 2743 2744 sta = rcu_dereference(entry->mpath->next_hop); 2745 if (!sta) 2746 return false; 2747 2748 if (skb_linearize(skb)) 2749 return false; 2750 2751 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; 2752 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); 2753 if (tid_tx) { 2754 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) 2755 return false; 2756 2757 if (tid_tx->timeout) 2758 tid_tx->last_tx = jiffies; 2759 } 2760 2761 ieee80211_aggr_check(sdata, sta, skb); 2762 2763 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 2764 &skb->protocol)) 2765 hdrlen += ETH_ALEN; 2766 else 2767 skb->protocol = htons(skb->len - hdrlen); 2768 skb_set_network_header(skb, hdrlen + 2); 2769 2770 skb->dev = sdata->dev; 2771 memcpy(ð, skb->data, ETH_HLEN - 2); 2772 skb_pull(skb, 2); 2773 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, 2774 eth.h_dest, eth.h_source); 2775 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2776 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2777 2778 return true; 2779 } 2780 #endif 2781 2782 static ieee80211_rx_result 2783 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2784 struct sk_buff *skb) 2785 { 2786 #ifdef CONFIG_MAC80211_MESH 2787 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2788 struct ieee80211_local *local = sdata->local; 2789 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2790 struct ieee80211_hdr hdr = { 2791 .frame_control = cpu_to_le16(fc) 2792 }; 2793 struct ieee80211_hdr *fwd_hdr; 2794 struct ieee80211s_hdr *mesh_hdr; 2795 struct ieee80211_tx_info *info; 2796 struct sk_buff *fwd_skb; 2797 struct ethhdr *eth; 2798 bool multicast; 2799 int tailroom = 0; 2800 int hdrlen, mesh_hdrlen; 2801 u8 *qos; 2802 2803 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2804 return RX_CONTINUE; 2805 2806 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2807 return RX_DROP_MONITOR; 2808 2809 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2810 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2811 2812 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2813 return RX_DROP_MONITOR; 2814 2815 eth = (struct ethhdr *)skb->data; 2816 multicast = is_multicast_ether_addr(eth->h_dest); 2817 2818 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2819 if (!mesh_hdr->ttl) 2820 return RX_DROP_MONITOR; 2821 2822 /* frame is in RMC, don't forward */ 2823 if (is_multicast_ether_addr(eth->h_dest) && 2824 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2825 return RX_DROP_MONITOR; 2826 2827 /* forward packet */ 2828 if (sdata->crypto_tx_tailroom_needed_cnt) 2829 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2830 2831 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2832 struct mesh_path *mppath; 2833 char *proxied_addr; 2834 bool update = false; 2835 2836 if (multicast) 2837 proxied_addr = mesh_hdr->eaddr1; 2838 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2839 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2840 proxied_addr = mesh_hdr->eaddr2; 2841 else 2842 return RX_DROP_MONITOR; 2843 2844 rcu_read_lock(); 2845 mppath = mpp_path_lookup(sdata, proxied_addr); 2846 if (!mppath) { 2847 mpp_path_add(sdata, proxied_addr, eth->h_source); 2848 } else { 2849 spin_lock_bh(&mppath->state_lock); 2850 if (!ether_addr_equal(mppath->mpp, eth->h_source)) { 2851 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2852 update = true; 2853 } 2854 mppath->exp_time = jiffies; 2855 spin_unlock_bh(&mppath->state_lock); 2856 } 2857 2858 /* flush fast xmit cache if the address path changed */ 2859 if (update) 2860 mesh_fast_tx_flush_addr(sdata, proxied_addr); 2861 2862 rcu_read_unlock(); 2863 } 2864 2865 /* Frame has reached destination. Don't forward */ 2866 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2867 goto rx_accept; 2868 2869 if (!--mesh_hdr->ttl) { 2870 if (multicast) 2871 goto rx_accept; 2872 2873 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2874 return RX_DROP_MONITOR; 2875 } 2876 2877 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2878 if (is_multicast_ether_addr(eth->h_dest)) 2879 goto rx_accept; 2880 2881 return RX_DROP_MONITOR; 2882 } 2883 2884 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2885 2886 if (!multicast && 2887 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) 2888 return RX_QUEUED; 2889 2890 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2891 eth->h_dest, eth->h_source); 2892 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2893 if (multicast) { 2894 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2895 2896 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2897 IEEE80211_ENCRYPT_HEADROOM, 2898 tailroom, GFP_ATOMIC); 2899 if (!fwd_skb) 2900 goto rx_accept; 2901 } else { 2902 fwd_skb = skb; 2903 skb = NULL; 2904 2905 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2906 return RX_DROP_UNUSABLE; 2907 2908 if (skb_linearize(fwd_skb)) 2909 return RX_DROP_UNUSABLE; 2910 } 2911 2912 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2913 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2914 qos = ieee80211_get_qos_ctl(fwd_hdr); 2915 qos[0] = qos[1] = 0; 2916 2917 skb_reset_mac_header(fwd_skb); 2918 hdrlen += mesh_hdrlen; 2919 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2920 &fwd_skb->protocol)) 2921 hdrlen += ETH_ALEN; 2922 else 2923 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2924 skb_set_network_header(fwd_skb, hdrlen + 2); 2925 2926 info = IEEE80211_SKB_CB(fwd_skb); 2927 memset(info, 0, sizeof(*info)); 2928 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2929 info->control.vif = &sdata->vif; 2930 info->control.jiffies = jiffies; 2931 fwd_skb->dev = sdata->dev; 2932 if (multicast) { 2933 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2934 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2935 /* update power mode indication when forwarding */ 2936 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2937 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2938 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2939 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2940 } else { 2941 /* unable to resolve next hop */ 2942 if (sta) 2943 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2944 hdr.addr3, 0, 2945 WLAN_REASON_MESH_PATH_NOFORWARD, 2946 sta->sta.addr); 2947 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2948 kfree_skb(fwd_skb); 2949 goto rx_accept; 2950 } 2951 2952 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2953 ieee80211_add_pending_skb(local, fwd_skb); 2954 2955 rx_accept: 2956 if (!skb) 2957 return RX_QUEUED; 2958 2959 ieee80211_strip_8023_mesh_hdr(skb); 2960 #endif 2961 2962 return RX_CONTINUE; 2963 } 2964 2965 static ieee80211_rx_result debug_noinline 2966 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2967 { 2968 struct net_device *dev = rx->sdata->dev; 2969 struct sk_buff *skb = rx->skb; 2970 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2971 __le16 fc = hdr->frame_control; 2972 struct sk_buff_head frame_list; 2973 ieee80211_rx_result res; 2974 struct ethhdr ethhdr; 2975 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2976 2977 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2978 check_da = NULL; 2979 check_sa = NULL; 2980 } else switch (rx->sdata->vif.type) { 2981 case NL80211_IFTYPE_AP: 2982 case NL80211_IFTYPE_AP_VLAN: 2983 check_da = NULL; 2984 break; 2985 case NL80211_IFTYPE_STATION: 2986 if (!rx->sta || 2987 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2988 check_sa = NULL; 2989 break; 2990 case NL80211_IFTYPE_MESH_POINT: 2991 check_sa = NULL; 2992 check_da = NULL; 2993 break; 2994 default: 2995 break; 2996 } 2997 2998 skb->dev = dev; 2999 __skb_queue_head_init(&frame_list); 3000 3001 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 3002 rx->sdata->vif.addr, 3003 rx->sdata->vif.type, 3004 data_offset, true)) 3005 return RX_DROP_UNUSABLE; 3006 3007 if (rx->sta->amsdu_mesh_control < 0) { 3008 s8 valid = -1; 3009 int i; 3010 3011 for (i = 0; i <= 2; i++) { 3012 if (!ieee80211_is_valid_amsdu(skb, i)) 3013 continue; 3014 3015 if (valid >= 0) { 3016 /* ambiguous */ 3017 valid = -1; 3018 break; 3019 } 3020 3021 valid = i; 3022 } 3023 3024 rx->sta->amsdu_mesh_control = valid; 3025 } 3026 3027 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 3028 rx->sdata->vif.type, 3029 rx->local->hw.extra_tx_headroom, 3030 check_da, check_sa, 3031 rx->sta->amsdu_mesh_control); 3032 3033 while (!skb_queue_empty(&frame_list)) { 3034 rx->skb = __skb_dequeue(&frame_list); 3035 3036 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3037 switch (res) { 3038 case RX_QUEUED: 3039 continue; 3040 case RX_CONTINUE: 3041 break; 3042 default: 3043 goto free; 3044 } 3045 3046 if (!ieee80211_frame_allowed(rx, fc)) 3047 goto free; 3048 3049 ieee80211_deliver_skb(rx); 3050 continue; 3051 3052 free: 3053 dev_kfree_skb(rx->skb); 3054 } 3055 3056 return RX_QUEUED; 3057 } 3058 3059 static ieee80211_rx_result debug_noinline 3060 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 3061 { 3062 struct sk_buff *skb = rx->skb; 3063 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3064 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3065 __le16 fc = hdr->frame_control; 3066 3067 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 3068 return RX_CONTINUE; 3069 3070 if (unlikely(!ieee80211_is_data(fc))) 3071 return RX_CONTINUE; 3072 3073 if (unlikely(!ieee80211_is_data_present(fc))) 3074 return RX_DROP_MONITOR; 3075 3076 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3077 switch (rx->sdata->vif.type) { 3078 case NL80211_IFTYPE_AP_VLAN: 3079 if (!rx->sdata->u.vlan.sta) 3080 return RX_DROP_UNUSABLE; 3081 break; 3082 case NL80211_IFTYPE_STATION: 3083 if (!rx->sdata->u.mgd.use_4addr) 3084 return RX_DROP_UNUSABLE; 3085 break; 3086 case NL80211_IFTYPE_MESH_POINT: 3087 break; 3088 default: 3089 return RX_DROP_UNUSABLE; 3090 } 3091 } 3092 3093 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) 3094 return RX_DROP_UNUSABLE; 3095 3096 if (rx->key) { 3097 /* 3098 * We should not receive A-MSDUs on pre-HT connections, 3099 * and HT connections cannot use old ciphers. Thus drop 3100 * them, as in those cases we couldn't even have SPP 3101 * A-MSDUs or such. 3102 */ 3103 switch (rx->key->conf.cipher) { 3104 case WLAN_CIPHER_SUITE_WEP40: 3105 case WLAN_CIPHER_SUITE_WEP104: 3106 case WLAN_CIPHER_SUITE_TKIP: 3107 return RX_DROP_UNUSABLE; 3108 default: 3109 break; 3110 } 3111 } 3112 3113 return __ieee80211_rx_h_amsdu(rx, 0); 3114 } 3115 3116 static ieee80211_rx_result debug_noinline 3117 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3118 { 3119 struct ieee80211_sub_if_data *sdata = rx->sdata; 3120 struct ieee80211_local *local = rx->local; 3121 struct net_device *dev = sdata->dev; 3122 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3123 __le16 fc = hdr->frame_control; 3124 ieee80211_rx_result res; 3125 bool port_control; 3126 int err; 3127 3128 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3129 return RX_CONTINUE; 3130 3131 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3132 return RX_DROP_MONITOR; 3133 3134 /* 3135 * Send unexpected-4addr-frame event to hostapd. For older versions, 3136 * also drop the frame to cooked monitor interfaces. 3137 */ 3138 if (ieee80211_has_a4(hdr->frame_control) && 3139 sdata->vif.type == NL80211_IFTYPE_AP) { 3140 if (rx->sta && 3141 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3142 cfg80211_rx_unexpected_4addr_frame( 3143 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3144 return RX_DROP_MONITOR; 3145 } 3146 3147 err = __ieee80211_data_to_8023(rx, &port_control); 3148 if (unlikely(err)) 3149 return RX_DROP_UNUSABLE; 3150 3151 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3152 if (res != RX_CONTINUE) 3153 return res; 3154 3155 if (!ieee80211_frame_allowed(rx, fc)) 3156 return RX_DROP_MONITOR; 3157 3158 /* directly handle TDLS channel switch requests/responses */ 3159 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3160 cpu_to_be16(ETH_P_TDLS))) { 3161 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3162 3163 if (pskb_may_pull(rx->skb, 3164 offsetof(struct ieee80211_tdls_data, u)) && 3165 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3166 tf->category == WLAN_CATEGORY_TDLS && 3167 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3168 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3169 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3170 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3171 rx->sta, rx->skb); 3172 return RX_QUEUED; 3173 } 3174 } 3175 3176 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3177 unlikely(port_control) && sdata->bss) { 3178 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3179 u.ap); 3180 dev = sdata->dev; 3181 rx->sdata = sdata; 3182 } 3183 3184 rx->skb->dev = dev; 3185 3186 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3187 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3188 !is_multicast_ether_addr( 3189 ((struct ethhdr *)rx->skb->data)->h_dest) && 3190 (!local->scanning && 3191 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3192 mod_timer(&local->dynamic_ps_timer, jiffies + 3193 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3194 3195 ieee80211_deliver_skb(rx); 3196 3197 return RX_QUEUED; 3198 } 3199 3200 static ieee80211_rx_result debug_noinline 3201 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3202 { 3203 struct sk_buff *skb = rx->skb; 3204 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3205 struct tid_ampdu_rx *tid_agg_rx; 3206 u16 start_seq_num; 3207 u16 tid; 3208 3209 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3210 return RX_CONTINUE; 3211 3212 if (ieee80211_is_back_req(bar->frame_control)) { 3213 struct { 3214 __le16 control, start_seq_num; 3215 } __packed bar_data; 3216 struct ieee80211_event event = { 3217 .type = BAR_RX_EVENT, 3218 }; 3219 3220 if (!rx->sta) 3221 return RX_DROP_MONITOR; 3222 3223 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3224 &bar_data, sizeof(bar_data))) 3225 return RX_DROP_MONITOR; 3226 3227 tid = le16_to_cpu(bar_data.control) >> 12; 3228 3229 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3230 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3231 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3232 WLAN_BACK_RECIPIENT, 3233 WLAN_REASON_QSTA_REQUIRE_SETUP); 3234 3235 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3236 if (!tid_agg_rx) 3237 return RX_DROP_MONITOR; 3238 3239 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3240 event.u.ba.tid = tid; 3241 event.u.ba.ssn = start_seq_num; 3242 event.u.ba.sta = &rx->sta->sta; 3243 3244 /* reset session timer */ 3245 if (tid_agg_rx->timeout) 3246 mod_timer(&tid_agg_rx->session_timer, 3247 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3248 3249 spin_lock(&tid_agg_rx->reorder_lock); 3250 /* release stored frames up to start of BAR */ 3251 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3252 start_seq_num, frames); 3253 spin_unlock(&tid_agg_rx->reorder_lock); 3254 3255 drv_event_callback(rx->local, rx->sdata, &event); 3256 3257 kfree_skb(skb); 3258 return RX_QUEUED; 3259 } 3260 3261 /* 3262 * After this point, we only want management frames, 3263 * so we can drop all remaining control frames to 3264 * cooked monitor interfaces. 3265 */ 3266 return RX_DROP_MONITOR; 3267 } 3268 3269 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3270 struct ieee80211_mgmt *mgmt, 3271 size_t len) 3272 { 3273 struct ieee80211_local *local = sdata->local; 3274 struct sk_buff *skb; 3275 struct ieee80211_mgmt *resp; 3276 3277 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3278 /* Not to own unicast address */ 3279 return; 3280 } 3281 3282 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3283 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3284 /* Not from the current AP or not associated yet. */ 3285 return; 3286 } 3287 3288 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3289 /* Too short SA Query request frame */ 3290 return; 3291 } 3292 3293 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3294 if (skb == NULL) 3295 return; 3296 3297 skb_reserve(skb, local->hw.extra_tx_headroom); 3298 resp = skb_put_zero(skb, 24); 3299 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3300 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3301 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3302 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3303 IEEE80211_STYPE_ACTION); 3304 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3305 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3306 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3307 memcpy(resp->u.action.u.sa_query.trans_id, 3308 mgmt->u.action.u.sa_query.trans_id, 3309 WLAN_SA_QUERY_TR_ID_LEN); 3310 3311 ieee80211_tx_skb(sdata, skb); 3312 } 3313 3314 static void 3315 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3316 { 3317 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3318 const struct element *ie; 3319 size_t baselen; 3320 3321 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3322 NL80211_EXT_FEATURE_BSS_COLOR)) 3323 return; 3324 3325 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3326 return; 3327 3328 if (rx->sdata->vif.bss_conf.csa_active) 3329 return; 3330 3331 baselen = mgmt->u.beacon.variable - rx->skb->data; 3332 if (baselen > rx->skb->len) 3333 return; 3334 3335 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3336 mgmt->u.beacon.variable, 3337 rx->skb->len - baselen); 3338 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3339 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3340 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3341 const struct ieee80211_he_operation *he_oper; 3342 u8 color; 3343 3344 he_oper = (void *)(ie->data + 1); 3345 if (le32_get_bits(he_oper->he_oper_params, 3346 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3347 return; 3348 3349 color = le32_get_bits(he_oper->he_oper_params, 3350 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3351 if (color == bss_conf->he_bss_color.color) 3352 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3353 BIT_ULL(color), 3354 GFP_ATOMIC); 3355 } 3356 } 3357 3358 static ieee80211_rx_result debug_noinline 3359 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3360 { 3361 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3362 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3363 3364 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3365 return RX_CONTINUE; 3366 3367 /* 3368 * From here on, look only at management frames. 3369 * Data and control frames are already handled, 3370 * and unknown (reserved) frames are useless. 3371 */ 3372 if (rx->skb->len < 24) 3373 return RX_DROP_MONITOR; 3374 3375 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3376 return RX_DROP_MONITOR; 3377 3378 /* drop too small action frames */ 3379 if (ieee80211_is_action(mgmt->frame_control) && 3380 rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 3381 return RX_DROP_UNUSABLE; 3382 3383 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3384 ieee80211_is_beacon(mgmt->frame_control) && 3385 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3386 int sig = 0; 3387 3388 /* sw bss color collision detection */ 3389 ieee80211_rx_check_bss_color_collision(rx); 3390 3391 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3392 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3393 sig = status->signal; 3394 3395 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3396 rx->skb->data, rx->skb->len, 3397 ieee80211_rx_status_to_khz(status), 3398 sig); 3399 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3400 } 3401 3402 if (ieee80211_drop_unencrypted_mgmt(rx)) 3403 return RX_DROP_UNUSABLE; 3404 3405 return RX_CONTINUE; 3406 } 3407 3408 static bool 3409 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3410 { 3411 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3412 struct ieee80211_sub_if_data *sdata = rx->sdata; 3413 3414 /* TWT actions are only supported in AP for the moment */ 3415 if (sdata->vif.type != NL80211_IFTYPE_AP) 3416 return false; 3417 3418 if (!rx->local->ops->add_twt_setup) 3419 return false; 3420 3421 if (!sdata->vif.bss_conf.twt_responder) 3422 return false; 3423 3424 if (!rx->sta) 3425 return false; 3426 3427 switch (mgmt->u.action.u.s1g.action_code) { 3428 case WLAN_S1G_TWT_SETUP: { 3429 struct ieee80211_twt_setup *twt; 3430 3431 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3432 1 + /* action code */ 3433 sizeof(struct ieee80211_twt_setup) + 3434 2 /* TWT req_type agrt */) 3435 break; 3436 3437 twt = (void *)mgmt->u.action.u.s1g.variable; 3438 if (twt->element_id != WLAN_EID_S1G_TWT) 3439 break; 3440 3441 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3442 4 + /* action code + token + tlv */ 3443 twt->length) 3444 break; 3445 3446 return true; /* queue the frame */ 3447 } 3448 case WLAN_S1G_TWT_TEARDOWN: 3449 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3450 break; 3451 3452 return true; /* queue the frame */ 3453 default: 3454 break; 3455 } 3456 3457 return false; 3458 } 3459 3460 static ieee80211_rx_result debug_noinline 3461 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3462 { 3463 struct ieee80211_local *local = rx->local; 3464 struct ieee80211_sub_if_data *sdata = rx->sdata; 3465 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3466 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3467 int len = rx->skb->len; 3468 3469 if (!ieee80211_is_action(mgmt->frame_control)) 3470 return RX_CONTINUE; 3471 3472 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3473 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3474 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3475 return RX_DROP_UNUSABLE; 3476 3477 switch (mgmt->u.action.category) { 3478 case WLAN_CATEGORY_HT: 3479 /* reject HT action frames from stations not supporting HT */ 3480 if (!rx->link_sta->pub->ht_cap.ht_supported) 3481 goto invalid; 3482 3483 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3484 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3485 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3486 sdata->vif.type != NL80211_IFTYPE_AP && 3487 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3488 break; 3489 3490 /* verify action & smps_control/chanwidth are present */ 3491 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3492 goto invalid; 3493 3494 switch (mgmt->u.action.u.ht_smps.action) { 3495 case WLAN_HT_ACTION_SMPS: { 3496 struct ieee80211_supported_band *sband; 3497 enum ieee80211_smps_mode smps_mode; 3498 struct sta_opmode_info sta_opmode = {}; 3499 3500 if (sdata->vif.type != NL80211_IFTYPE_AP && 3501 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3502 goto handled; 3503 3504 /* convert to HT capability */ 3505 switch (mgmt->u.action.u.ht_smps.smps_control) { 3506 case WLAN_HT_SMPS_CONTROL_DISABLED: 3507 smps_mode = IEEE80211_SMPS_OFF; 3508 break; 3509 case WLAN_HT_SMPS_CONTROL_STATIC: 3510 smps_mode = IEEE80211_SMPS_STATIC; 3511 break; 3512 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3513 smps_mode = IEEE80211_SMPS_DYNAMIC; 3514 break; 3515 default: 3516 goto invalid; 3517 } 3518 3519 /* if no change do nothing */ 3520 if (rx->link_sta->pub->smps_mode == smps_mode) 3521 goto handled; 3522 rx->link_sta->pub->smps_mode = smps_mode; 3523 sta_opmode.smps_mode = 3524 ieee80211_smps_mode_to_smps_mode(smps_mode); 3525 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3526 3527 sband = rx->local->hw.wiphy->bands[status->band]; 3528 3529 rate_control_rate_update(local, sband, rx->sta, 0, 3530 IEEE80211_RC_SMPS_CHANGED); 3531 cfg80211_sta_opmode_change_notify(sdata->dev, 3532 rx->sta->addr, 3533 &sta_opmode, 3534 GFP_ATOMIC); 3535 goto handled; 3536 } 3537 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3538 struct ieee80211_supported_band *sband; 3539 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3540 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3541 struct sta_opmode_info sta_opmode = {}; 3542 3543 /* If it doesn't support 40 MHz it can't change ... */ 3544 if (!(rx->link_sta->pub->ht_cap.cap & 3545 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3546 goto handled; 3547 3548 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3549 max_bw = IEEE80211_STA_RX_BW_20; 3550 else 3551 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3552 3553 /* set cur_max_bandwidth and recalc sta bw */ 3554 rx->link_sta->cur_max_bandwidth = max_bw; 3555 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3556 3557 if (rx->link_sta->pub->bandwidth == new_bw) 3558 goto handled; 3559 3560 rx->link_sta->pub->bandwidth = new_bw; 3561 sband = rx->local->hw.wiphy->bands[status->band]; 3562 sta_opmode.bw = 3563 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3564 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3565 3566 rate_control_rate_update(local, sband, rx->sta, 0, 3567 IEEE80211_RC_BW_CHANGED); 3568 cfg80211_sta_opmode_change_notify(sdata->dev, 3569 rx->sta->addr, 3570 &sta_opmode, 3571 GFP_ATOMIC); 3572 goto handled; 3573 } 3574 default: 3575 goto invalid; 3576 } 3577 3578 break; 3579 case WLAN_CATEGORY_PUBLIC: 3580 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3581 goto invalid; 3582 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3583 break; 3584 if (!rx->sta) 3585 break; 3586 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3587 break; 3588 if (mgmt->u.action.u.ext_chan_switch.action_code != 3589 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3590 break; 3591 if (len < offsetof(struct ieee80211_mgmt, 3592 u.action.u.ext_chan_switch.variable)) 3593 goto invalid; 3594 goto queue; 3595 case WLAN_CATEGORY_VHT: 3596 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3597 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3598 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3599 sdata->vif.type != NL80211_IFTYPE_AP && 3600 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3601 break; 3602 3603 /* verify action code is present */ 3604 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3605 goto invalid; 3606 3607 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3608 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3609 /* verify opmode is present */ 3610 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3611 goto invalid; 3612 goto queue; 3613 } 3614 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3615 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3616 goto invalid; 3617 goto queue; 3618 } 3619 default: 3620 break; 3621 } 3622 break; 3623 case WLAN_CATEGORY_BACK: 3624 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3625 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3626 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3627 sdata->vif.type != NL80211_IFTYPE_AP && 3628 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3629 break; 3630 3631 /* verify action_code is present */ 3632 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3633 break; 3634 3635 switch (mgmt->u.action.u.addba_req.action_code) { 3636 case WLAN_ACTION_ADDBA_REQ: 3637 if (len < (IEEE80211_MIN_ACTION_SIZE + 3638 sizeof(mgmt->u.action.u.addba_req))) 3639 goto invalid; 3640 break; 3641 case WLAN_ACTION_ADDBA_RESP: 3642 if (len < (IEEE80211_MIN_ACTION_SIZE + 3643 sizeof(mgmt->u.action.u.addba_resp))) 3644 goto invalid; 3645 break; 3646 case WLAN_ACTION_DELBA: 3647 if (len < (IEEE80211_MIN_ACTION_SIZE + 3648 sizeof(mgmt->u.action.u.delba))) 3649 goto invalid; 3650 break; 3651 default: 3652 goto invalid; 3653 } 3654 3655 goto queue; 3656 case WLAN_CATEGORY_SPECTRUM_MGMT: 3657 /* verify action_code is present */ 3658 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3659 break; 3660 3661 switch (mgmt->u.action.u.measurement.action_code) { 3662 case WLAN_ACTION_SPCT_MSR_REQ: 3663 if (status->band != NL80211_BAND_5GHZ) 3664 break; 3665 3666 if (len < (IEEE80211_MIN_ACTION_SIZE + 3667 sizeof(mgmt->u.action.u.measurement))) 3668 break; 3669 3670 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3671 break; 3672 3673 ieee80211_process_measurement_req(sdata, mgmt, len); 3674 goto handled; 3675 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3676 u8 *bssid; 3677 if (len < (IEEE80211_MIN_ACTION_SIZE + 3678 sizeof(mgmt->u.action.u.chan_switch))) 3679 break; 3680 3681 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3682 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3683 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3684 break; 3685 3686 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3687 bssid = sdata->deflink.u.mgd.bssid; 3688 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3689 bssid = sdata->u.ibss.bssid; 3690 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3691 bssid = mgmt->sa; 3692 else 3693 break; 3694 3695 if (!ether_addr_equal(mgmt->bssid, bssid)) 3696 break; 3697 3698 goto queue; 3699 } 3700 } 3701 break; 3702 case WLAN_CATEGORY_SELF_PROTECTED: 3703 if (len < (IEEE80211_MIN_ACTION_SIZE + 3704 sizeof(mgmt->u.action.u.self_prot.action_code))) 3705 break; 3706 3707 switch (mgmt->u.action.u.self_prot.action_code) { 3708 case WLAN_SP_MESH_PEERING_OPEN: 3709 case WLAN_SP_MESH_PEERING_CLOSE: 3710 case WLAN_SP_MESH_PEERING_CONFIRM: 3711 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3712 goto invalid; 3713 if (sdata->u.mesh.user_mpm) 3714 /* userspace handles this frame */ 3715 break; 3716 goto queue; 3717 case WLAN_SP_MGK_INFORM: 3718 case WLAN_SP_MGK_ACK: 3719 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3720 goto invalid; 3721 break; 3722 } 3723 break; 3724 case WLAN_CATEGORY_MESH_ACTION: 3725 if (len < (IEEE80211_MIN_ACTION_SIZE + 3726 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3727 break; 3728 3729 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3730 break; 3731 if (mesh_action_is_path_sel(mgmt) && 3732 !mesh_path_sel_is_hwmp(sdata)) 3733 break; 3734 goto queue; 3735 case WLAN_CATEGORY_S1G: 3736 if (len < offsetofend(typeof(*mgmt), 3737 u.action.u.s1g.action_code)) 3738 break; 3739 3740 switch (mgmt->u.action.u.s1g.action_code) { 3741 case WLAN_S1G_TWT_SETUP: 3742 case WLAN_S1G_TWT_TEARDOWN: 3743 if (ieee80211_process_rx_twt_action(rx)) 3744 goto queue; 3745 break; 3746 default: 3747 break; 3748 } 3749 break; 3750 } 3751 3752 return RX_CONTINUE; 3753 3754 invalid: 3755 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3756 /* will return in the next handlers */ 3757 return RX_CONTINUE; 3758 3759 handled: 3760 if (rx->sta) 3761 rx->link_sta->rx_stats.packets++; 3762 dev_kfree_skb(rx->skb); 3763 return RX_QUEUED; 3764 3765 queue: 3766 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3767 return RX_QUEUED; 3768 } 3769 3770 static ieee80211_rx_result debug_noinline 3771 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3772 { 3773 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3774 struct cfg80211_rx_info info = { 3775 .freq = ieee80211_rx_status_to_khz(status), 3776 .buf = rx->skb->data, 3777 .len = rx->skb->len, 3778 .link_id = rx->link_id, 3779 .have_link_id = rx->link_id >= 0, 3780 }; 3781 3782 /* skip known-bad action frames and return them in the next handler */ 3783 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3784 return RX_CONTINUE; 3785 3786 /* 3787 * Getting here means the kernel doesn't know how to handle 3788 * it, but maybe userspace does ... include returned frames 3789 * so userspace can register for those to know whether ones 3790 * it transmitted were processed or returned. 3791 */ 3792 3793 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3794 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3795 info.sig_dbm = status->signal; 3796 3797 if (ieee80211_is_timing_measurement(rx->skb) || 3798 ieee80211_is_ftm(rx->skb)) { 3799 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3800 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3801 } 3802 3803 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3804 if (rx->sta) 3805 rx->link_sta->rx_stats.packets++; 3806 dev_kfree_skb(rx->skb); 3807 return RX_QUEUED; 3808 } 3809 3810 return RX_CONTINUE; 3811 } 3812 3813 static ieee80211_rx_result debug_noinline 3814 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3815 { 3816 struct ieee80211_sub_if_data *sdata = rx->sdata; 3817 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3818 int len = rx->skb->len; 3819 3820 if (!ieee80211_is_action(mgmt->frame_control)) 3821 return RX_CONTINUE; 3822 3823 switch (mgmt->u.action.category) { 3824 case WLAN_CATEGORY_SA_QUERY: 3825 if (len < (IEEE80211_MIN_ACTION_SIZE + 3826 sizeof(mgmt->u.action.u.sa_query))) 3827 break; 3828 3829 switch (mgmt->u.action.u.sa_query.action) { 3830 case WLAN_ACTION_SA_QUERY_REQUEST: 3831 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3832 break; 3833 ieee80211_process_sa_query_req(sdata, mgmt, len); 3834 goto handled; 3835 } 3836 break; 3837 } 3838 3839 return RX_CONTINUE; 3840 3841 handled: 3842 if (rx->sta) 3843 rx->link_sta->rx_stats.packets++; 3844 dev_kfree_skb(rx->skb); 3845 return RX_QUEUED; 3846 } 3847 3848 static ieee80211_rx_result debug_noinline 3849 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3850 { 3851 struct ieee80211_local *local = rx->local; 3852 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3853 struct sk_buff *nskb; 3854 struct ieee80211_sub_if_data *sdata = rx->sdata; 3855 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3856 3857 if (!ieee80211_is_action(mgmt->frame_control)) 3858 return RX_CONTINUE; 3859 3860 /* 3861 * For AP mode, hostapd is responsible for handling any action 3862 * frames that we didn't handle, including returning unknown 3863 * ones. For all other modes we will return them to the sender, 3864 * setting the 0x80 bit in the action category, as required by 3865 * 802.11-2012 9.24.4. 3866 * Newer versions of hostapd shall also use the management frame 3867 * registration mechanisms, but older ones still use cooked 3868 * monitor interfaces so push all frames there. 3869 */ 3870 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3871 (sdata->vif.type == NL80211_IFTYPE_AP || 3872 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3873 return RX_DROP_MONITOR; 3874 3875 if (is_multicast_ether_addr(mgmt->da)) 3876 return RX_DROP_MONITOR; 3877 3878 /* do not return rejected action frames */ 3879 if (mgmt->u.action.category & 0x80) 3880 return RX_DROP_UNUSABLE; 3881 3882 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3883 GFP_ATOMIC); 3884 if (nskb) { 3885 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3886 3887 nmgmt->u.action.category |= 0x80; 3888 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3889 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3890 3891 memset(nskb->cb, 0, sizeof(nskb->cb)); 3892 3893 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3894 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3895 3896 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3897 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3898 IEEE80211_TX_CTL_NO_CCK_RATE; 3899 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3900 info->hw_queue = 3901 local->hw.offchannel_tx_hw_queue; 3902 } 3903 3904 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3905 status->band); 3906 } 3907 dev_kfree_skb(rx->skb); 3908 return RX_QUEUED; 3909 } 3910 3911 static ieee80211_rx_result debug_noinline 3912 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3913 { 3914 struct ieee80211_sub_if_data *sdata = rx->sdata; 3915 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3916 3917 if (!ieee80211_is_ext(hdr->frame_control)) 3918 return RX_CONTINUE; 3919 3920 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3921 return RX_DROP_MONITOR; 3922 3923 /* for now only beacons are ext, so queue them */ 3924 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3925 3926 return RX_QUEUED; 3927 } 3928 3929 static ieee80211_rx_result debug_noinline 3930 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3931 { 3932 struct ieee80211_sub_if_data *sdata = rx->sdata; 3933 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3934 __le16 stype; 3935 3936 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3937 3938 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3939 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3940 sdata->vif.type != NL80211_IFTYPE_OCB && 3941 sdata->vif.type != NL80211_IFTYPE_STATION) 3942 return RX_DROP_MONITOR; 3943 3944 switch (stype) { 3945 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3946 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3947 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3948 /* process for all: mesh, mlme, ibss */ 3949 break; 3950 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3951 if (is_multicast_ether_addr(mgmt->da) && 3952 !is_broadcast_ether_addr(mgmt->da)) 3953 return RX_DROP_MONITOR; 3954 3955 /* process only for station/IBSS */ 3956 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3957 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3958 return RX_DROP_MONITOR; 3959 break; 3960 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3961 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3962 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3963 if (is_multicast_ether_addr(mgmt->da) && 3964 !is_broadcast_ether_addr(mgmt->da)) 3965 return RX_DROP_MONITOR; 3966 3967 /* process only for station */ 3968 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3969 return RX_DROP_MONITOR; 3970 break; 3971 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3972 /* process only for ibss and mesh */ 3973 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3974 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3975 return RX_DROP_MONITOR; 3976 break; 3977 default: 3978 return RX_DROP_MONITOR; 3979 } 3980 3981 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3982 3983 return RX_QUEUED; 3984 } 3985 3986 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3987 struct ieee80211_rate *rate, 3988 ieee80211_rx_result reason) 3989 { 3990 struct ieee80211_sub_if_data *sdata; 3991 struct ieee80211_local *local = rx->local; 3992 struct sk_buff *skb = rx->skb, *skb2; 3993 struct net_device *prev_dev = NULL; 3994 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3995 int needed_headroom; 3996 3997 /* 3998 * If cooked monitor has been processed already, then 3999 * don't do it again. If not, set the flag. 4000 */ 4001 if (rx->flags & IEEE80211_RX_CMNTR) 4002 goto out_free_skb; 4003 rx->flags |= IEEE80211_RX_CMNTR; 4004 4005 /* If there are no cooked monitor interfaces, just free the SKB */ 4006 if (!local->cooked_mntrs) 4007 goto out_free_skb; 4008 4009 /* room for the radiotap header based on driver features */ 4010 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 4011 4012 if (skb_headroom(skb) < needed_headroom && 4013 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 4014 goto out_free_skb; 4015 4016 /* prepend radiotap information */ 4017 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 4018 false); 4019 4020 skb_reset_mac_header(skb); 4021 skb->ip_summed = CHECKSUM_UNNECESSARY; 4022 skb->pkt_type = PACKET_OTHERHOST; 4023 skb->protocol = htons(ETH_P_802_2); 4024 4025 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4026 if (!ieee80211_sdata_running(sdata)) 4027 continue; 4028 4029 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 4030 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 4031 continue; 4032 4033 if (prev_dev) { 4034 skb2 = skb_clone(skb, GFP_ATOMIC); 4035 if (skb2) { 4036 skb2->dev = prev_dev; 4037 netif_receive_skb(skb2); 4038 } 4039 } 4040 4041 prev_dev = sdata->dev; 4042 dev_sw_netstats_rx_add(sdata->dev, skb->len); 4043 } 4044 4045 if (prev_dev) { 4046 skb->dev = prev_dev; 4047 netif_receive_skb(skb); 4048 return; 4049 } 4050 4051 out_free_skb: 4052 kfree_skb_reason(skb, (__force u32)reason); 4053 } 4054 4055 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 4056 ieee80211_rx_result res) 4057 { 4058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4059 struct ieee80211_supported_band *sband; 4060 struct ieee80211_rate *rate = NULL; 4061 4062 if (res == RX_QUEUED) { 4063 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 4064 return; 4065 } 4066 4067 if (res != RX_CONTINUE) { 4068 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 4069 if (rx->sta) 4070 rx->link_sta->rx_stats.dropped++; 4071 } 4072 4073 if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) == 4074 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) { 4075 kfree_skb_reason(rx->skb, (__force u32)res); 4076 return; 4077 } 4078 4079 sband = rx->local->hw.wiphy->bands[status->band]; 4080 if (status->encoding == RX_ENC_LEGACY) 4081 rate = &sband->bitrates[status->rate_idx]; 4082 4083 ieee80211_rx_cooked_monitor(rx, rate, res); 4084 } 4085 4086 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4087 struct sk_buff_head *frames) 4088 { 4089 ieee80211_rx_result res = RX_DROP_MONITOR; 4090 struct sk_buff *skb; 4091 4092 #define CALL_RXH(rxh) \ 4093 do { \ 4094 res = rxh(rx); \ 4095 if (res != RX_CONTINUE) \ 4096 goto rxh_next; \ 4097 } while (0) 4098 4099 /* Lock here to avoid hitting all of the data used in the RX 4100 * path (e.g. key data, station data, ...) concurrently when 4101 * a frame is released from the reorder buffer due to timeout 4102 * from the timer, potentially concurrently with RX from the 4103 * driver. 4104 */ 4105 spin_lock_bh(&rx->local->rx_path_lock); 4106 4107 while ((skb = __skb_dequeue(frames))) { 4108 /* 4109 * all the other fields are valid across frames 4110 * that belong to an aMPDU since they are on the 4111 * same TID from the same station 4112 */ 4113 rx->skb = skb; 4114 4115 if (WARN_ON_ONCE(!rx->link)) 4116 goto rxh_next; 4117 4118 CALL_RXH(ieee80211_rx_h_check_more_data); 4119 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4120 CALL_RXH(ieee80211_rx_h_sta_process); 4121 CALL_RXH(ieee80211_rx_h_decrypt); 4122 CALL_RXH(ieee80211_rx_h_defragment); 4123 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4124 /* must be after MMIC verify so header is counted in MPDU mic */ 4125 CALL_RXH(ieee80211_rx_h_amsdu); 4126 CALL_RXH(ieee80211_rx_h_data); 4127 4128 /* special treatment -- needs the queue */ 4129 res = ieee80211_rx_h_ctrl(rx, frames); 4130 if (res != RX_CONTINUE) 4131 goto rxh_next; 4132 4133 CALL_RXH(ieee80211_rx_h_mgmt_check); 4134 CALL_RXH(ieee80211_rx_h_action); 4135 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4136 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4137 CALL_RXH(ieee80211_rx_h_action_return); 4138 CALL_RXH(ieee80211_rx_h_ext); 4139 CALL_RXH(ieee80211_rx_h_mgmt); 4140 4141 rxh_next: 4142 ieee80211_rx_handlers_result(rx, res); 4143 4144 #undef CALL_RXH 4145 } 4146 4147 spin_unlock_bh(&rx->local->rx_path_lock); 4148 } 4149 4150 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4151 { 4152 struct sk_buff_head reorder_release; 4153 ieee80211_rx_result res = RX_DROP_MONITOR; 4154 4155 __skb_queue_head_init(&reorder_release); 4156 4157 #define CALL_RXH(rxh) \ 4158 do { \ 4159 res = rxh(rx); \ 4160 if (res != RX_CONTINUE) \ 4161 goto rxh_next; \ 4162 } while (0) 4163 4164 CALL_RXH(ieee80211_rx_h_check_dup); 4165 CALL_RXH(ieee80211_rx_h_check); 4166 4167 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4168 4169 ieee80211_rx_handlers(rx, &reorder_release); 4170 return; 4171 4172 rxh_next: 4173 ieee80211_rx_handlers_result(rx, res); 4174 4175 #undef CALL_RXH 4176 } 4177 4178 static bool 4179 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4180 { 4181 return !!(sta->valid_links & BIT(link_id)); 4182 } 4183 4184 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4185 u8 link_id) 4186 { 4187 rx->link_id = link_id; 4188 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4189 4190 if (!rx->sta) 4191 return rx->link; 4192 4193 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4194 return false; 4195 4196 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4197 4198 return rx->link && rx->link_sta; 4199 } 4200 4201 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4202 struct sta_info *sta, int link_id) 4203 { 4204 rx->link_id = link_id; 4205 rx->sta = sta; 4206 4207 if (sta) { 4208 rx->local = sta->sdata->local; 4209 if (!rx->sdata) 4210 rx->sdata = sta->sdata; 4211 rx->link_sta = &sta->deflink; 4212 } else { 4213 rx->link_sta = NULL; 4214 } 4215 4216 if (link_id < 0) 4217 rx->link = &rx->sdata->deflink; 4218 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4219 return false; 4220 4221 return true; 4222 } 4223 4224 /* 4225 * This function makes calls into the RX path, therefore 4226 * it has to be invoked under RCU read lock. 4227 */ 4228 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4229 { 4230 struct sk_buff_head frames; 4231 struct ieee80211_rx_data rx = { 4232 /* This is OK -- must be QoS data frame */ 4233 .security_idx = tid, 4234 .seqno_idx = tid, 4235 }; 4236 struct tid_ampdu_rx *tid_agg_rx; 4237 int link_id = -1; 4238 4239 /* FIXME: statistics won't be right with this */ 4240 if (sta->sta.valid_links) 4241 link_id = ffs(sta->sta.valid_links) - 1; 4242 4243 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4244 return; 4245 4246 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4247 if (!tid_agg_rx) 4248 return; 4249 4250 __skb_queue_head_init(&frames); 4251 4252 spin_lock(&tid_agg_rx->reorder_lock); 4253 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4254 spin_unlock(&tid_agg_rx->reorder_lock); 4255 4256 if (!skb_queue_empty(&frames)) { 4257 struct ieee80211_event event = { 4258 .type = BA_FRAME_TIMEOUT, 4259 .u.ba.tid = tid, 4260 .u.ba.sta = &sta->sta, 4261 }; 4262 drv_event_callback(rx.local, rx.sdata, &event); 4263 } 4264 4265 ieee80211_rx_handlers(&rx, &frames); 4266 } 4267 4268 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4269 u16 ssn, u64 filtered, 4270 u16 received_mpdus) 4271 { 4272 struct ieee80211_local *local; 4273 struct sta_info *sta; 4274 struct tid_ampdu_rx *tid_agg_rx; 4275 struct sk_buff_head frames; 4276 struct ieee80211_rx_data rx = { 4277 /* This is OK -- must be QoS data frame */ 4278 .security_idx = tid, 4279 .seqno_idx = tid, 4280 }; 4281 int i, diff; 4282 4283 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4284 return; 4285 4286 __skb_queue_head_init(&frames); 4287 4288 sta = container_of(pubsta, struct sta_info, sta); 4289 4290 local = sta->sdata->local; 4291 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64, 4292 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n", 4293 local->hw.max_rx_aggregation_subframes); 4294 4295 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4296 return; 4297 4298 rcu_read_lock(); 4299 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4300 if (!tid_agg_rx) 4301 goto out; 4302 4303 spin_lock_bh(&tid_agg_rx->reorder_lock); 4304 4305 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4306 int release; 4307 4308 /* release all frames in the reorder buffer */ 4309 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4310 IEEE80211_SN_MODULO; 4311 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4312 release, &frames); 4313 /* update ssn to match received ssn */ 4314 tid_agg_rx->head_seq_num = ssn; 4315 } else { 4316 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4317 &frames); 4318 } 4319 4320 /* handle the case that received ssn is behind the mac ssn. 4321 * it can be tid_agg_rx->buf_size behind and still be valid */ 4322 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4323 if (diff >= tid_agg_rx->buf_size) { 4324 tid_agg_rx->reorder_buf_filtered = 0; 4325 goto release; 4326 } 4327 filtered = filtered >> diff; 4328 ssn += diff; 4329 4330 /* update bitmap */ 4331 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4332 int index = (ssn + i) % tid_agg_rx->buf_size; 4333 4334 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4335 if (filtered & BIT_ULL(i)) 4336 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4337 } 4338 4339 /* now process also frames that the filter marking released */ 4340 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4341 4342 release: 4343 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4344 4345 ieee80211_rx_handlers(&rx, &frames); 4346 4347 out: 4348 rcu_read_unlock(); 4349 } 4350 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4351 4352 /* main receive path */ 4353 4354 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4355 { 4356 return ether_addr_equal(raddr, addr) || 4357 is_broadcast_ether_addr(raddr); 4358 } 4359 4360 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4361 { 4362 struct ieee80211_sub_if_data *sdata = rx->sdata; 4363 struct sk_buff *skb = rx->skb; 4364 struct ieee80211_hdr *hdr = (void *)skb->data; 4365 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4366 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4367 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4368 ieee80211_is_s1g_beacon(hdr->frame_control); 4369 4370 switch (sdata->vif.type) { 4371 case NL80211_IFTYPE_STATION: 4372 if (!bssid && !sdata->u.mgd.use_4addr) 4373 return false; 4374 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4375 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4376 return false; 4377 if (multicast) 4378 return true; 4379 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4380 case NL80211_IFTYPE_ADHOC: 4381 if (!bssid) 4382 return false; 4383 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4384 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4385 !is_valid_ether_addr(hdr->addr2)) 4386 return false; 4387 if (ieee80211_is_beacon(hdr->frame_control)) 4388 return true; 4389 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4390 return false; 4391 if (!multicast && 4392 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4393 return false; 4394 if (!rx->sta) { 4395 int rate_idx; 4396 if (status->encoding != RX_ENC_LEGACY) 4397 rate_idx = 0; /* TODO: HT/VHT rates */ 4398 else 4399 rate_idx = status->rate_idx; 4400 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4401 BIT(rate_idx)); 4402 } 4403 return true; 4404 case NL80211_IFTYPE_OCB: 4405 if (!bssid) 4406 return false; 4407 if (!ieee80211_is_data_present(hdr->frame_control)) 4408 return false; 4409 if (!is_broadcast_ether_addr(bssid)) 4410 return false; 4411 if (!multicast && 4412 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4413 return false; 4414 if (!rx->sta) { 4415 int rate_idx; 4416 if (status->encoding != RX_ENC_LEGACY) 4417 rate_idx = 0; /* TODO: HT rates */ 4418 else 4419 rate_idx = status->rate_idx; 4420 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4421 BIT(rate_idx)); 4422 } 4423 return true; 4424 case NL80211_IFTYPE_MESH_POINT: 4425 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4426 return false; 4427 if (multicast) 4428 return true; 4429 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4430 case NL80211_IFTYPE_AP_VLAN: 4431 case NL80211_IFTYPE_AP: 4432 if (!bssid) 4433 return ieee80211_is_our_addr(sdata, hdr->addr1, 4434 &rx->link_id); 4435 4436 if (!is_broadcast_ether_addr(bssid) && 4437 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4438 /* 4439 * Accept public action frames even when the 4440 * BSSID doesn't match, this is used for P2P 4441 * and location updates. Note that mac80211 4442 * itself never looks at these frames. 4443 */ 4444 if (!multicast && 4445 !ieee80211_is_our_addr(sdata, hdr->addr1, 4446 &rx->link_id)) 4447 return false; 4448 if (ieee80211_is_public_action(hdr, skb->len)) 4449 return true; 4450 return ieee80211_is_beacon(hdr->frame_control); 4451 } 4452 4453 if (!ieee80211_has_tods(hdr->frame_control)) { 4454 /* ignore data frames to TDLS-peers */ 4455 if (ieee80211_is_data(hdr->frame_control)) 4456 return false; 4457 /* ignore action frames to TDLS-peers */ 4458 if (ieee80211_is_action(hdr->frame_control) && 4459 !is_broadcast_ether_addr(bssid) && 4460 !ether_addr_equal(bssid, hdr->addr1)) 4461 return false; 4462 } 4463 4464 /* 4465 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4466 * the BSSID - we've checked that already but may have accepted 4467 * the wildcard (ff:ff:ff:ff:ff:ff). 4468 * 4469 * It also says: 4470 * The BSSID of the Data frame is determined as follows: 4471 * a) If the STA is contained within an AP or is associated 4472 * with an AP, the BSSID is the address currently in use 4473 * by the STA contained in the AP. 4474 * 4475 * So we should not accept data frames with an address that's 4476 * multicast. 4477 * 4478 * Accepting it also opens a security problem because stations 4479 * could encrypt it with the GTK and inject traffic that way. 4480 */ 4481 if (ieee80211_is_data(hdr->frame_control) && multicast) 4482 return false; 4483 4484 return true; 4485 case NL80211_IFTYPE_P2P_DEVICE: 4486 return ieee80211_is_public_action(hdr, skb->len) || 4487 ieee80211_is_probe_req(hdr->frame_control) || 4488 ieee80211_is_probe_resp(hdr->frame_control) || 4489 ieee80211_is_beacon(hdr->frame_control); 4490 case NL80211_IFTYPE_NAN: 4491 /* Currently no frames on NAN interface are allowed */ 4492 return false; 4493 default: 4494 break; 4495 } 4496 4497 WARN_ON_ONCE(1); 4498 return false; 4499 } 4500 4501 void ieee80211_check_fast_rx(struct sta_info *sta) 4502 { 4503 struct ieee80211_sub_if_data *sdata = sta->sdata; 4504 struct ieee80211_local *local = sdata->local; 4505 struct ieee80211_key *key; 4506 struct ieee80211_fast_rx fastrx = { 4507 .dev = sdata->dev, 4508 .vif_type = sdata->vif.type, 4509 .control_port_protocol = sdata->control_port_protocol, 4510 }, *old, *new = NULL; 4511 u32 offload_flags; 4512 bool set_offload = false; 4513 bool assign = false; 4514 bool offload; 4515 4516 /* use sparse to check that we don't return without updating */ 4517 __acquire(check_fast_rx); 4518 4519 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4520 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4521 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4522 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4523 4524 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4525 4526 /* fast-rx doesn't do reordering */ 4527 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4528 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4529 goto clear; 4530 4531 switch (sdata->vif.type) { 4532 case NL80211_IFTYPE_STATION: 4533 if (sta->sta.tdls) { 4534 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4535 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4536 fastrx.expected_ds_bits = 0; 4537 } else { 4538 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4539 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4540 fastrx.expected_ds_bits = 4541 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4542 } 4543 4544 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4545 fastrx.expected_ds_bits |= 4546 cpu_to_le16(IEEE80211_FCTL_TODS); 4547 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4548 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4549 } 4550 4551 if (!sdata->u.mgd.powersave) 4552 break; 4553 4554 /* software powersave is a huge mess, avoid all of it */ 4555 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4556 goto clear; 4557 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4558 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4559 goto clear; 4560 break; 4561 case NL80211_IFTYPE_AP_VLAN: 4562 case NL80211_IFTYPE_AP: 4563 /* parallel-rx requires this, at least with calls to 4564 * ieee80211_sta_ps_transition() 4565 */ 4566 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4567 goto clear; 4568 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4569 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4570 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4571 4572 fastrx.internal_forward = 4573 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4574 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4575 !sdata->u.vlan.sta); 4576 4577 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4578 sdata->u.vlan.sta) { 4579 fastrx.expected_ds_bits |= 4580 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4581 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4582 fastrx.internal_forward = 0; 4583 } 4584 4585 break; 4586 case NL80211_IFTYPE_MESH_POINT: 4587 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | 4588 IEEE80211_FCTL_TODS); 4589 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4590 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4591 break; 4592 default: 4593 goto clear; 4594 } 4595 4596 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4597 goto clear; 4598 4599 rcu_read_lock(); 4600 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4601 if (!key) 4602 key = rcu_dereference(sdata->default_unicast_key); 4603 if (key) { 4604 switch (key->conf.cipher) { 4605 case WLAN_CIPHER_SUITE_TKIP: 4606 /* we don't want to deal with MMIC in fast-rx */ 4607 goto clear_rcu; 4608 case WLAN_CIPHER_SUITE_CCMP: 4609 case WLAN_CIPHER_SUITE_CCMP_256: 4610 case WLAN_CIPHER_SUITE_GCMP: 4611 case WLAN_CIPHER_SUITE_GCMP_256: 4612 break; 4613 default: 4614 /* We also don't want to deal with 4615 * WEP or cipher scheme. 4616 */ 4617 goto clear_rcu; 4618 } 4619 4620 fastrx.key = true; 4621 fastrx.icv_len = key->conf.icv_len; 4622 } 4623 4624 assign = true; 4625 clear_rcu: 4626 rcu_read_unlock(); 4627 clear: 4628 __release(check_fast_rx); 4629 4630 if (assign) 4631 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4632 4633 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4634 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4635 4636 if (assign && offload) 4637 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4638 else 4639 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4640 4641 if (set_offload) 4642 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4643 4644 spin_lock_bh(&sta->lock); 4645 old = rcu_dereference_protected(sta->fast_rx, true); 4646 rcu_assign_pointer(sta->fast_rx, new); 4647 spin_unlock_bh(&sta->lock); 4648 4649 if (old) 4650 kfree_rcu(old, rcu_head); 4651 } 4652 4653 void ieee80211_clear_fast_rx(struct sta_info *sta) 4654 { 4655 struct ieee80211_fast_rx *old; 4656 4657 spin_lock_bh(&sta->lock); 4658 old = rcu_dereference_protected(sta->fast_rx, true); 4659 RCU_INIT_POINTER(sta->fast_rx, NULL); 4660 spin_unlock_bh(&sta->lock); 4661 4662 if (old) 4663 kfree_rcu(old, rcu_head); 4664 } 4665 4666 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4667 { 4668 struct ieee80211_local *local = sdata->local; 4669 struct sta_info *sta; 4670 4671 lockdep_assert_held(&local->sta_mtx); 4672 4673 list_for_each_entry(sta, &local->sta_list, list) { 4674 if (sdata != sta->sdata && 4675 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4676 continue; 4677 ieee80211_check_fast_rx(sta); 4678 } 4679 } 4680 4681 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4682 { 4683 struct ieee80211_local *local = sdata->local; 4684 4685 mutex_lock(&local->sta_mtx); 4686 __ieee80211_check_fast_rx_iface(sdata); 4687 mutex_unlock(&local->sta_mtx); 4688 } 4689 4690 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4691 struct ieee80211_fast_rx *fast_rx, 4692 int orig_len) 4693 { 4694 struct ieee80211_sta_rx_stats *stats; 4695 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4696 struct sta_info *sta = rx->sta; 4697 struct link_sta_info *link_sta; 4698 struct sk_buff *skb = rx->skb; 4699 void *sa = skb->data + ETH_ALEN; 4700 void *da = skb->data; 4701 4702 if (rx->link_id >= 0) { 4703 link_sta = rcu_dereference(sta->link[rx->link_id]); 4704 if (WARN_ON_ONCE(!link_sta)) { 4705 dev_kfree_skb(rx->skb); 4706 return; 4707 } 4708 } else { 4709 link_sta = &sta->deflink; 4710 } 4711 4712 stats = &link_sta->rx_stats; 4713 if (fast_rx->uses_rss) 4714 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4715 4716 /* statistics part of ieee80211_rx_h_sta_process() */ 4717 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4718 stats->last_signal = status->signal; 4719 if (!fast_rx->uses_rss) 4720 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4721 -status->signal); 4722 } 4723 4724 if (status->chains) { 4725 int i; 4726 4727 stats->chains = status->chains; 4728 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4729 int signal = status->chain_signal[i]; 4730 4731 if (!(status->chains & BIT(i))) 4732 continue; 4733 4734 stats->chain_signal_last[i] = signal; 4735 if (!fast_rx->uses_rss) 4736 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4737 -signal); 4738 } 4739 } 4740 /* end of statistics */ 4741 4742 stats->last_rx = jiffies; 4743 stats->last_rate = sta_stats_encode_rate(status); 4744 4745 stats->fragments++; 4746 stats->packets++; 4747 4748 skb->dev = fast_rx->dev; 4749 4750 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4751 4752 /* The seqno index has the same property as needed 4753 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4754 * for non-QoS-data frames. Here we know it's a data 4755 * frame, so count MSDUs. 4756 */ 4757 u64_stats_update_begin(&stats->syncp); 4758 stats->msdu[rx->seqno_idx]++; 4759 stats->bytes += orig_len; 4760 u64_stats_update_end(&stats->syncp); 4761 4762 if (fast_rx->internal_forward) { 4763 struct sk_buff *xmit_skb = NULL; 4764 if (is_multicast_ether_addr(da)) { 4765 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4766 } else if (!ether_addr_equal(da, sa) && 4767 sta_info_get(rx->sdata, da)) { 4768 xmit_skb = skb; 4769 skb = NULL; 4770 } 4771 4772 if (xmit_skb) { 4773 /* 4774 * Send to wireless media and increase priority by 256 4775 * to keep the received priority instead of 4776 * reclassifying the frame (see cfg80211_classify8021d). 4777 */ 4778 xmit_skb->priority += 256; 4779 xmit_skb->protocol = htons(ETH_P_802_3); 4780 skb_reset_network_header(xmit_skb); 4781 skb_reset_mac_header(xmit_skb); 4782 dev_queue_xmit(xmit_skb); 4783 } 4784 4785 if (!skb) 4786 return; 4787 } 4788 4789 /* deliver to local stack */ 4790 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4791 ieee80211_deliver_skb_to_local_stack(skb, rx); 4792 } 4793 4794 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4795 struct ieee80211_fast_rx *fast_rx) 4796 { 4797 struct sk_buff *skb = rx->skb; 4798 struct ieee80211_hdr *hdr = (void *)skb->data; 4799 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4800 static ieee80211_rx_result res; 4801 int orig_len = skb->len; 4802 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4803 int snap_offs = hdrlen; 4804 struct { 4805 u8 snap[sizeof(rfc1042_header)]; 4806 __be16 proto; 4807 } *payload __aligned(2); 4808 struct { 4809 u8 da[ETH_ALEN]; 4810 u8 sa[ETH_ALEN]; 4811 } addrs __aligned(2); 4812 struct ieee80211_sta_rx_stats *stats; 4813 4814 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4815 * to a common data structure; drivers can implement that per queue 4816 * but we don't have that information in mac80211 4817 */ 4818 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4819 return false; 4820 4821 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4822 4823 /* If using encryption, we also need to have: 4824 * - PN_VALIDATED: similar, but the implementation is tricky 4825 * - DECRYPTED: necessary for PN_VALIDATED 4826 */ 4827 if (fast_rx->key && 4828 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4829 return false; 4830 4831 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4832 return false; 4833 4834 if (unlikely(ieee80211_is_frag(hdr))) 4835 return false; 4836 4837 /* Since our interface address cannot be multicast, this 4838 * implicitly also rejects multicast frames without the 4839 * explicit check. 4840 * 4841 * We shouldn't get any *data* frames not addressed to us 4842 * (AP mode will accept multicast *management* frames), but 4843 * punting here will make it go through the full checks in 4844 * ieee80211_accept_frame(). 4845 */ 4846 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4847 return false; 4848 4849 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4850 IEEE80211_FCTL_TODS)) != 4851 fast_rx->expected_ds_bits) 4852 return false; 4853 4854 /* assign the key to drop unencrypted frames (later) 4855 * and strip the IV/MIC if necessary 4856 */ 4857 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4858 /* GCMP header length is the same */ 4859 snap_offs += IEEE80211_CCMP_HDR_LEN; 4860 } 4861 4862 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && 4863 !(status->rx_flags & IEEE80211_RX_AMSDU)) { 4864 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4865 return false; 4866 4867 payload = (void *)(skb->data + snap_offs); 4868 4869 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4870 return false; 4871 4872 /* Don't handle these here since they require special code. 4873 * Accept AARP and IPX even though they should come with a 4874 * bridge-tunnel header - but if we get them this way then 4875 * there's little point in discarding them. 4876 */ 4877 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4878 payload->proto == fast_rx->control_port_protocol)) 4879 return false; 4880 } 4881 4882 /* after this point, don't punt to the slowpath! */ 4883 4884 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4885 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4886 goto drop; 4887 4888 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4889 goto drop; 4890 4891 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4892 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4893 RX_QUEUED) 4894 goto drop; 4895 4896 return true; 4897 } 4898 4899 /* do the header conversion - first grab the addresses */ 4900 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4901 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4902 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { 4903 skb_pull(skb, snap_offs - 2); 4904 put_unaligned_be16(skb->len - 2, skb->data); 4905 } else { 4906 skb_postpull_rcsum(skb, skb->data + snap_offs, 4907 sizeof(rfc1042_header) + 2); 4908 4909 /* remove the SNAP but leave the ethertype */ 4910 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4911 } 4912 /* push the addresses in front */ 4913 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4914 4915 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 4916 switch (res) { 4917 case RX_QUEUED: 4918 return true; 4919 case RX_CONTINUE: 4920 break; 4921 default: 4922 goto drop; 4923 } 4924 4925 ieee80211_rx_8023(rx, fast_rx, orig_len); 4926 4927 return true; 4928 drop: 4929 dev_kfree_skb(skb); 4930 4931 if (fast_rx->uses_rss) 4932 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4933 else 4934 stats = &rx->link_sta->rx_stats; 4935 4936 stats->dropped++; 4937 return true; 4938 } 4939 4940 /* 4941 * This function returns whether or not the SKB 4942 * was destined for RX processing or not, which, 4943 * if consume is true, is equivalent to whether 4944 * or not the skb was consumed. 4945 */ 4946 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4947 struct sk_buff *skb, bool consume) 4948 { 4949 struct ieee80211_local *local = rx->local; 4950 struct ieee80211_sub_if_data *sdata = rx->sdata; 4951 struct ieee80211_hdr *hdr = (void *)skb->data; 4952 struct link_sta_info *link_sta = rx->link_sta; 4953 struct ieee80211_link_data *link = rx->link; 4954 4955 rx->skb = skb; 4956 4957 /* See if we can do fast-rx; if we have to copy we already lost, 4958 * so punt in that case. We should never have to deliver a data 4959 * frame to multiple interfaces anyway. 4960 * 4961 * We skip the ieee80211_accept_frame() call and do the necessary 4962 * checking inside ieee80211_invoke_fast_rx(). 4963 */ 4964 if (consume && rx->sta) { 4965 struct ieee80211_fast_rx *fast_rx; 4966 4967 fast_rx = rcu_dereference(rx->sta->fast_rx); 4968 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4969 return true; 4970 } 4971 4972 if (!ieee80211_accept_frame(rx)) 4973 return false; 4974 4975 if (!consume) { 4976 struct skb_shared_hwtstamps *shwt; 4977 4978 rx->skb = skb_copy(skb, GFP_ATOMIC); 4979 if (!rx->skb) { 4980 if (net_ratelimit()) 4981 wiphy_debug(local->hw.wiphy, 4982 "failed to copy skb for %s\n", 4983 sdata->name); 4984 return true; 4985 } 4986 4987 /* skb_copy() does not copy the hw timestamps, so copy it 4988 * explicitly 4989 */ 4990 shwt = skb_hwtstamps(rx->skb); 4991 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 4992 4993 /* Update the hdr pointer to the new skb for translation below */ 4994 hdr = (struct ieee80211_hdr *)rx->skb->data; 4995 } 4996 4997 if (unlikely(rx->sta && rx->sta->sta.mlo) && 4998 is_unicast_ether_addr(hdr->addr1) && 4999 !ieee80211_is_probe_resp(hdr->frame_control) && 5000 !ieee80211_is_beacon(hdr->frame_control)) { 5001 /* translate to MLD addresses */ 5002 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 5003 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 5004 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 5005 ether_addr_copy(hdr->addr2, rx->sta->addr); 5006 /* translate A3 only if it's the BSSID */ 5007 if (!ieee80211_has_tods(hdr->frame_control) && 5008 !ieee80211_has_fromds(hdr->frame_control)) { 5009 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 5010 ether_addr_copy(hdr->addr3, rx->sta->addr); 5011 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 5012 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 5013 } 5014 /* not needed for A4 since it can only carry the SA */ 5015 } 5016 5017 ieee80211_invoke_rx_handlers(rx); 5018 return true; 5019 } 5020 5021 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 5022 struct ieee80211_sta *pubsta, 5023 struct sk_buff *skb, 5024 struct list_head *list) 5025 { 5026 struct ieee80211_local *local = hw_to_local(hw); 5027 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5028 struct ieee80211_fast_rx *fast_rx; 5029 struct ieee80211_rx_data rx; 5030 struct sta_info *sta; 5031 int link_id = -1; 5032 5033 memset(&rx, 0, sizeof(rx)); 5034 rx.skb = skb; 5035 rx.local = local; 5036 rx.list = list; 5037 rx.link_id = -1; 5038 5039 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5040 5041 /* drop frame if too short for header */ 5042 if (skb->len < sizeof(struct ethhdr)) 5043 goto drop; 5044 5045 if (!pubsta) 5046 goto drop; 5047 5048 if (status->link_valid) 5049 link_id = status->link_id; 5050 5051 /* 5052 * TODO: Should the frame be dropped if the right link_id is not 5053 * available? Or may be it is fine in the current form to proceed with 5054 * the frame processing because with frame being in 802.3 format, 5055 * link_id is used only for stats purpose and updating the stats on 5056 * the deflink is fine? 5057 */ 5058 sta = container_of(pubsta, struct sta_info, sta); 5059 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5060 goto drop; 5061 5062 fast_rx = rcu_dereference(rx.sta->fast_rx); 5063 if (!fast_rx) 5064 goto drop; 5065 5066 ieee80211_rx_8023(&rx, fast_rx, skb->len); 5067 return; 5068 5069 drop: 5070 dev_kfree_skb(skb); 5071 } 5072 5073 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 5074 struct sk_buff *skb, bool consume) 5075 { 5076 struct link_sta_info *link_sta; 5077 struct ieee80211_hdr *hdr = (void *)skb->data; 5078 struct sta_info *sta; 5079 int link_id = -1; 5080 5081 /* 5082 * Look up link station first, in case there's a 5083 * chance that they might have a link address that 5084 * is identical to the MLD address, that way we'll 5085 * have the link information if needed. 5086 */ 5087 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 5088 if (link_sta) { 5089 sta = link_sta->sta; 5090 link_id = link_sta->link_id; 5091 } else { 5092 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5093 5094 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 5095 if (status->link_valid) 5096 link_id = status->link_id; 5097 } 5098 5099 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 5100 return false; 5101 5102 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 5103 } 5104 5105 /* 5106 * This is the actual Rx frames handler. as it belongs to Rx path it must 5107 * be called with rcu_read_lock protection. 5108 */ 5109 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 5110 struct ieee80211_sta *pubsta, 5111 struct sk_buff *skb, 5112 struct list_head *list) 5113 { 5114 struct ieee80211_local *local = hw_to_local(hw); 5115 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5116 struct ieee80211_sub_if_data *sdata; 5117 struct ieee80211_hdr *hdr; 5118 __le16 fc; 5119 struct ieee80211_rx_data rx; 5120 struct ieee80211_sub_if_data *prev; 5121 struct rhlist_head *tmp; 5122 int err = 0; 5123 5124 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5125 memset(&rx, 0, sizeof(rx)); 5126 rx.skb = skb; 5127 rx.local = local; 5128 rx.list = list; 5129 rx.link_id = -1; 5130 5131 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5132 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5133 5134 if (ieee80211_is_mgmt(fc)) { 5135 /* drop frame if too short for header */ 5136 if (skb->len < ieee80211_hdrlen(fc)) 5137 err = -ENOBUFS; 5138 else 5139 err = skb_linearize(skb); 5140 } else { 5141 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5142 } 5143 5144 if (err) { 5145 dev_kfree_skb(skb); 5146 return; 5147 } 5148 5149 hdr = (struct ieee80211_hdr *)skb->data; 5150 ieee80211_parse_qos(&rx); 5151 ieee80211_verify_alignment(&rx); 5152 5153 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5154 ieee80211_is_beacon(hdr->frame_control) || 5155 ieee80211_is_s1g_beacon(hdr->frame_control))) 5156 ieee80211_scan_rx(local, skb); 5157 5158 if (ieee80211_is_data(fc)) { 5159 struct sta_info *sta, *prev_sta; 5160 int link_id = -1; 5161 5162 if (status->link_valid) 5163 link_id = status->link_id; 5164 5165 if (pubsta) { 5166 sta = container_of(pubsta, struct sta_info, sta); 5167 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5168 goto out; 5169 5170 /* 5171 * In MLO connection, fetch the link_id using addr2 5172 * when the driver does not pass link_id in status. 5173 * When the address translation is already performed by 5174 * driver/hw, the valid link_id must be passed in 5175 * status. 5176 */ 5177 5178 if (!status->link_valid && pubsta->mlo) { 5179 struct ieee80211_hdr *hdr = (void *)skb->data; 5180 struct link_sta_info *link_sta; 5181 5182 link_sta = link_sta_info_get_bss(rx.sdata, 5183 hdr->addr2); 5184 if (!link_sta) 5185 goto out; 5186 5187 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5188 } 5189 5190 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5191 return; 5192 goto out; 5193 } 5194 5195 prev_sta = NULL; 5196 5197 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5198 if (!prev_sta) { 5199 prev_sta = sta; 5200 continue; 5201 } 5202 5203 rx.sdata = prev_sta->sdata; 5204 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5205 goto out; 5206 5207 if (!status->link_valid && prev_sta->sta.mlo) 5208 continue; 5209 5210 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5211 5212 prev_sta = sta; 5213 } 5214 5215 if (prev_sta) { 5216 rx.sdata = prev_sta->sdata; 5217 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5218 goto out; 5219 5220 if (!status->link_valid && prev_sta->sta.mlo) 5221 goto out; 5222 5223 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5224 return; 5225 goto out; 5226 } 5227 } 5228 5229 prev = NULL; 5230 5231 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5232 if (!ieee80211_sdata_running(sdata)) 5233 continue; 5234 5235 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5236 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5237 continue; 5238 5239 /* 5240 * frame is destined for this interface, but if it's 5241 * not also for the previous one we handle that after 5242 * the loop to avoid copying the SKB once too much 5243 */ 5244 5245 if (!prev) { 5246 prev = sdata; 5247 continue; 5248 } 5249 5250 rx.sdata = prev; 5251 ieee80211_rx_for_interface(&rx, skb, false); 5252 5253 prev = sdata; 5254 } 5255 5256 if (prev) { 5257 rx.sdata = prev; 5258 5259 if (ieee80211_rx_for_interface(&rx, skb, true)) 5260 return; 5261 } 5262 5263 out: 5264 dev_kfree_skb(skb); 5265 } 5266 5267 /* 5268 * This is the receive path handler. It is called by a low level driver when an 5269 * 802.11 MPDU is received from the hardware. 5270 */ 5271 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5272 struct sk_buff *skb, struct list_head *list) 5273 { 5274 struct ieee80211_local *local = hw_to_local(hw); 5275 struct ieee80211_rate *rate = NULL; 5276 struct ieee80211_supported_band *sband; 5277 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5278 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5279 5280 WARN_ON_ONCE(softirq_count() == 0); 5281 5282 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5283 goto drop; 5284 5285 sband = local->hw.wiphy->bands[status->band]; 5286 if (WARN_ON(!sband)) 5287 goto drop; 5288 5289 /* 5290 * If we're suspending, it is possible although not too likely 5291 * that we'd be receiving frames after having already partially 5292 * quiesced the stack. We can't process such frames then since 5293 * that might, for example, cause stations to be added or other 5294 * driver callbacks be invoked. 5295 */ 5296 if (unlikely(local->quiescing || local->suspended)) 5297 goto drop; 5298 5299 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5300 if (unlikely(local->in_reconfig)) 5301 goto drop; 5302 5303 /* 5304 * The same happens when we're not even started, 5305 * but that's worth a warning. 5306 */ 5307 if (WARN_ON(!local->started)) 5308 goto drop; 5309 5310 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5311 /* 5312 * Validate the rate, unless a PLCP error means that 5313 * we probably can't have a valid rate here anyway. 5314 */ 5315 5316 switch (status->encoding) { 5317 case RX_ENC_HT: 5318 /* 5319 * rate_idx is MCS index, which can be [0-76] 5320 * as documented on: 5321 * 5322 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5323 * 5324 * Anything else would be some sort of driver or 5325 * hardware error. The driver should catch hardware 5326 * errors. 5327 */ 5328 if (WARN(status->rate_idx > 76, 5329 "Rate marked as an HT rate but passed " 5330 "status->rate_idx is not " 5331 "an MCS index [0-76]: %d (0x%02x)\n", 5332 status->rate_idx, 5333 status->rate_idx)) 5334 goto drop; 5335 break; 5336 case RX_ENC_VHT: 5337 if (WARN_ONCE(status->rate_idx > 11 || 5338 !status->nss || 5339 status->nss > 8, 5340 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5341 status->rate_idx, status->nss)) 5342 goto drop; 5343 break; 5344 case RX_ENC_HE: 5345 if (WARN_ONCE(status->rate_idx > 11 || 5346 !status->nss || 5347 status->nss > 8, 5348 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5349 status->rate_idx, status->nss)) 5350 goto drop; 5351 break; 5352 case RX_ENC_EHT: 5353 if (WARN_ONCE(status->rate_idx > 15 || 5354 !status->nss || 5355 status->nss > 8 || 5356 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5357 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5358 status->rate_idx, status->nss, status->eht.gi)) 5359 goto drop; 5360 break; 5361 default: 5362 WARN_ON_ONCE(1); 5363 fallthrough; 5364 case RX_ENC_LEGACY: 5365 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5366 goto drop; 5367 rate = &sband->bitrates[status->rate_idx]; 5368 } 5369 } 5370 5371 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5372 goto drop; 5373 5374 status->rx_flags = 0; 5375 5376 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5377 5378 /* 5379 * Frames with failed FCS/PLCP checksum are not returned, 5380 * all other frames are returned without radiotap header 5381 * if it was previously present. 5382 * Also, frames with less than 16 bytes are dropped. 5383 */ 5384 if (!(status->flag & RX_FLAG_8023)) 5385 skb = ieee80211_rx_monitor(local, skb, rate); 5386 if (skb) { 5387 if ((status->flag & RX_FLAG_8023) || 5388 ieee80211_is_data_present(hdr->frame_control)) 5389 ieee80211_tpt_led_trig_rx(local, skb->len); 5390 5391 if (status->flag & RX_FLAG_8023) 5392 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5393 else 5394 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5395 } 5396 5397 kcov_remote_stop(); 5398 return; 5399 drop: 5400 kfree_skb(skb); 5401 } 5402 EXPORT_SYMBOL(ieee80211_rx_list); 5403 5404 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5405 struct sk_buff *skb, struct napi_struct *napi) 5406 { 5407 struct sk_buff *tmp; 5408 LIST_HEAD(list); 5409 5410 5411 /* 5412 * key references and virtual interfaces are protected using RCU 5413 * and this requires that we are in a read-side RCU section during 5414 * receive processing 5415 */ 5416 rcu_read_lock(); 5417 ieee80211_rx_list(hw, pubsta, skb, &list); 5418 rcu_read_unlock(); 5419 5420 if (!napi) { 5421 netif_receive_skb_list(&list); 5422 return; 5423 } 5424 5425 list_for_each_entry_safe(skb, tmp, &list, list) { 5426 skb_list_del_init(skb); 5427 napi_gro_receive(napi, skb); 5428 } 5429 } 5430 EXPORT_SYMBOL(ieee80211_rx_napi); 5431 5432 /* This is a version of the rx handler that can be called from hard irq 5433 * context. Post the skb on the queue and schedule the tasklet */ 5434 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5435 { 5436 struct ieee80211_local *local = hw_to_local(hw); 5437 5438 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5439 5440 skb->pkt_type = IEEE80211_RX_MSG; 5441 skb_queue_tail(&local->skb_queue, skb); 5442 tasklet_schedule(&local->tasklet); 5443 } 5444 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5445