1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 struct sta_info *sta, 219 struct sk_buff *skb) 220 { 221 skb_queue_tail(&sdata->skb_queue, skb); 222 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 223 if (sta) 224 sta->deflink.rx_stats.packets++; 225 } 226 227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 228 struct sta_info *sta, 229 struct sk_buff *skb) 230 { 231 skb->protocol = 0; 232 __ieee80211_queue_skb_to_iface(sdata, sta, skb); 233 } 234 235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 236 struct sk_buff *skb, 237 int rtap_space) 238 { 239 struct { 240 struct ieee80211_hdr_3addr hdr; 241 u8 category; 242 u8 action_code; 243 } __packed __aligned(2) action; 244 245 if (!sdata) 246 return; 247 248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 249 250 if (skb->len < rtap_space + sizeof(action) + 251 VHT_MUMIMO_GROUPS_DATA_LEN) 252 return; 253 254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 255 return; 256 257 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 258 259 if (!ieee80211_is_action(action.hdr.frame_control)) 260 return; 261 262 if (action.category != WLAN_CATEGORY_VHT) 263 return; 264 265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 266 return; 267 268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 269 return; 270 271 skb = skb_copy(skb, GFP_ATOMIC); 272 if (!skb) 273 return; 274 275 ieee80211_queue_skb_to_iface(sdata, NULL, skb); 276 } 277 278 /* 279 * ieee80211_add_rx_radiotap_header - add radiotap header 280 * 281 * add a radiotap header containing all the fields which the hardware provided. 282 */ 283 static void 284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 285 struct sk_buff *skb, 286 struct ieee80211_rate *rate, 287 int rtap_len, bool has_fcs) 288 { 289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 290 struct ieee80211_radiotap_header *rthdr; 291 unsigned char *pos; 292 __le32 *it_present; 293 u32 it_present_val; 294 u16 rx_flags = 0; 295 u16 channel_flags = 0; 296 int mpdulen, chain; 297 unsigned long chains = status->chains; 298 struct ieee80211_vendor_radiotap rtap = {}; 299 struct ieee80211_radiotap_he he = {}; 300 struct ieee80211_radiotap_he_mu he_mu = {}; 301 struct ieee80211_radiotap_lsig lsig = {}; 302 303 if (status->flag & RX_FLAG_RADIOTAP_HE) { 304 he = *(struct ieee80211_radiotap_he *)skb->data; 305 skb_pull(skb, sizeof(he)); 306 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 307 } 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 311 skb_pull(skb, sizeof(he_mu)); 312 } 313 314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 316 skb_pull(skb, sizeof(lsig)); 317 } 318 319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 321 /* rtap.len and rtap.pad are undone immediately */ 322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 323 } 324 325 mpdulen = skb->len; 326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 327 mpdulen += FCS_LEN; 328 329 rthdr = skb_push(skb, rtap_len); 330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 331 it_present = &rthdr->it_present; 332 333 /* radiotap header, set always present flags */ 334 rthdr->it_len = cpu_to_le16(rtap_len); 335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 336 BIT(IEEE80211_RADIOTAP_CHANNEL) | 337 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 338 339 if (!status->chains) 340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 341 342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 343 it_present_val |= 344 BIT(IEEE80211_RADIOTAP_EXT) | 345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 350 } 351 352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 354 BIT(IEEE80211_RADIOTAP_EXT); 355 put_unaligned_le32(it_present_val, it_present); 356 it_present++; 357 it_present_val = rtap.present; 358 } 359 360 put_unaligned_le32(it_present_val, it_present); 361 362 /* This references through an offset into it_optional[] rather 363 * than via it_present otherwise later uses of pos will cause 364 * the compiler to think we have walked past the end of the 365 * struct member. 366 */ 367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 368 369 /* the order of the following fields is important */ 370 371 /* IEEE80211_RADIOTAP_TSFT */ 372 if (ieee80211_have_rx_timestamp(status)) { 373 /* padding */ 374 while ((pos - (u8 *)rthdr) & 7) 375 *pos++ = 0; 376 put_unaligned_le64( 377 ieee80211_calculate_rx_timestamp(local, status, 378 mpdulen, 0), 379 pos); 380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 381 pos += 8; 382 } 383 384 /* IEEE80211_RADIOTAP_FLAGS */ 385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 386 *pos |= IEEE80211_RADIOTAP_F_FCS; 387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 388 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 391 pos++; 392 393 /* IEEE80211_RADIOTAP_RATE */ 394 if (!rate || status->encoding != RX_ENC_LEGACY) { 395 /* 396 * Without rate information don't add it. If we have, 397 * MCS information is a separate field in radiotap, 398 * added below. The byte here is needed as padding 399 * for the channel though, so initialise it to 0. 400 */ 401 *pos = 0; 402 } else { 403 int shift = 0; 404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 405 if (status->bw == RATE_INFO_BW_10) 406 shift = 1; 407 else if (status->bw == RATE_INFO_BW_5) 408 shift = 2; 409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 410 } 411 pos++; 412 413 /* IEEE80211_RADIOTAP_CHANNEL */ 414 /* TODO: frequency offset in KHz */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ || 423 status->band == NL80211_BAND_6GHZ) 424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 425 else if (status->encoding != RX_ENC_LEGACY) 426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 429 else if (rate) 430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 431 else 432 channel_flags |= IEEE80211_CHAN_2GHZ; 433 put_unaligned_le16(channel_flags, pos); 434 pos += 2; 435 436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 439 *pos = status->signal; 440 rthdr->it_present |= 441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 442 pos++; 443 } 444 445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 446 447 if (!status->chains) { 448 /* IEEE80211_RADIOTAP_ANTENNA */ 449 *pos = status->antenna; 450 pos++; 451 } 452 453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 454 455 /* IEEE80211_RADIOTAP_RX_FLAGS */ 456 /* ensure 2 byte alignment for the 2 byte field as required */ 457 if ((pos - (u8 *)rthdr) & 1) 458 *pos++ = 0; 459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 461 put_unaligned_le16(rx_flags, pos); 462 pos += 2; 463 464 if (status->encoding == RX_ENC_HT) { 465 unsigned int stbc; 466 467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 468 *pos = local->hw.radiotap_mcs_details; 469 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 470 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 471 if (status->enc_flags & RX_ENC_FLAG_LDPC) 472 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 473 pos++; 474 *pos = 0; 475 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 476 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 477 if (status->bw == RATE_INFO_BW_40) 478 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 479 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 480 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 481 if (status->enc_flags & RX_ENC_FLAG_LDPC) 482 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 483 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 484 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 485 pos++; 486 *pos++ = status->rate_idx; 487 } 488 489 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 490 u16 flags = 0; 491 492 /* ensure 4 byte alignment */ 493 while ((pos - (u8 *)rthdr) & 3) 494 pos++; 495 rthdr->it_present |= 496 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 497 put_unaligned_le32(status->ampdu_reference, pos); 498 pos += 4; 499 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 502 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 503 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 504 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 505 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 506 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 507 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 508 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 509 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 510 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 511 put_unaligned_le16(flags, pos); 512 pos += 2; 513 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 514 *pos++ = status->ampdu_delimiter_crc; 515 else 516 *pos++ = 0; 517 *pos++ = 0; 518 } 519 520 if (status->encoding == RX_ENC_VHT) { 521 u16 known = local->hw.radiotap_vht_details; 522 523 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 524 put_unaligned_le16(known, pos); 525 pos += 2; 526 /* flags */ 527 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 529 /* in VHT, STBC is binary */ 530 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 531 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 532 if (status->enc_flags & RX_ENC_FLAG_BF) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 534 pos++; 535 /* bandwidth */ 536 switch (status->bw) { 537 case RATE_INFO_BW_80: 538 *pos++ = 4; 539 break; 540 case RATE_INFO_BW_160: 541 *pos++ = 11; 542 break; 543 case RATE_INFO_BW_40: 544 *pos++ = 1; 545 break; 546 default: 547 *pos++ = 0; 548 } 549 /* MCS/NSS */ 550 *pos = (status->rate_idx << 4) | status->nss; 551 pos += 4; 552 /* coding field */ 553 if (status->enc_flags & RX_ENC_FLAG_LDPC) 554 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 555 pos++; 556 /* group ID */ 557 pos++; 558 /* partial_aid */ 559 pos += 2; 560 } 561 562 if (local->hw.radiotap_timestamp.units_pos >= 0) { 563 u16 accuracy = 0; 564 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 565 566 rthdr->it_present |= 567 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 568 569 /* ensure 8 byte alignment */ 570 while ((pos - (u8 *)rthdr) & 7) 571 pos++; 572 573 put_unaligned_le64(status->device_timestamp, pos); 574 pos += sizeof(u64); 575 576 if (local->hw.radiotap_timestamp.accuracy >= 0) { 577 accuracy = local->hw.radiotap_timestamp.accuracy; 578 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 579 } 580 put_unaligned_le16(accuracy, pos); 581 pos += sizeof(u16); 582 583 *pos++ = local->hw.radiotap_timestamp.units_pos; 584 *pos++ = flags; 585 } 586 587 if (status->encoding == RX_ENC_HE && 588 status->flag & RX_FLAG_RADIOTAP_HE) { 589 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 590 591 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 592 he.data6 |= HE_PREP(DATA6_NSTS, 593 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 594 status->enc_flags)); 595 he.data3 |= HE_PREP(DATA3_STBC, 1); 596 } else { 597 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 598 } 599 600 #define CHECK_GI(s) \ 601 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 602 (int)NL80211_RATE_INFO_HE_GI_##s) 603 604 CHECK_GI(0_8); 605 CHECK_GI(1_6); 606 CHECK_GI(3_2); 607 608 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 609 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 610 he.data3 |= HE_PREP(DATA3_CODING, 611 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 612 613 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 614 615 switch (status->bw) { 616 case RATE_INFO_BW_20: 617 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 618 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 619 break; 620 case RATE_INFO_BW_40: 621 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 622 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 623 break; 624 case RATE_INFO_BW_80: 625 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 626 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 627 break; 628 case RATE_INFO_BW_160: 629 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 630 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 631 break; 632 case RATE_INFO_BW_HE_RU: 633 #define CHECK_RU_ALLOC(s) \ 634 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 635 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 636 637 CHECK_RU_ALLOC(26); 638 CHECK_RU_ALLOC(52); 639 CHECK_RU_ALLOC(106); 640 CHECK_RU_ALLOC(242); 641 CHECK_RU_ALLOC(484); 642 CHECK_RU_ALLOC(996); 643 CHECK_RU_ALLOC(2x996); 644 645 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 646 status->he_ru + 4); 647 break; 648 default: 649 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 650 } 651 652 /* ensure 2 byte alignment */ 653 while ((pos - (u8 *)rthdr) & 1) 654 pos++; 655 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 656 memcpy(pos, &he, sizeof(he)); 657 pos += sizeof(he); 658 } 659 660 if (status->encoding == RX_ENC_HE && 661 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 662 /* ensure 2 byte alignment */ 663 while ((pos - (u8 *)rthdr) & 1) 664 pos++; 665 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 666 memcpy(pos, &he_mu, sizeof(he_mu)); 667 pos += sizeof(he_mu); 668 } 669 670 if (status->flag & RX_FLAG_NO_PSDU) { 671 rthdr->it_present |= 672 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 673 *pos++ = status->zero_length_psdu_type; 674 } 675 676 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 677 /* ensure 2 byte alignment */ 678 while ((pos - (u8 *)rthdr) & 1) 679 pos++; 680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 681 memcpy(pos, &lsig, sizeof(lsig)); 682 pos += sizeof(lsig); 683 } 684 685 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 686 *pos++ = status->chain_signal[chain]; 687 *pos++ = chain; 688 } 689 690 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 691 /* ensure 2 byte alignment for the vendor field as required */ 692 if ((pos - (u8 *)rthdr) & 1) 693 *pos++ = 0; 694 *pos++ = rtap.oui[0]; 695 *pos++ = rtap.oui[1]; 696 *pos++ = rtap.oui[2]; 697 *pos++ = rtap.subns; 698 put_unaligned_le16(rtap.len, pos); 699 pos += 2; 700 /* align the actual payload as requested */ 701 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 702 *pos++ = 0; 703 /* data (and possible padding) already follows */ 704 } 705 } 706 707 static struct sk_buff * 708 ieee80211_make_monitor_skb(struct ieee80211_local *local, 709 struct sk_buff **origskb, 710 struct ieee80211_rate *rate, 711 int rtap_space, bool use_origskb) 712 { 713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 714 int rt_hdrlen, needed_headroom; 715 struct sk_buff *skb; 716 717 /* room for the radiotap header based on driver features */ 718 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 719 needed_headroom = rt_hdrlen - rtap_space; 720 721 if (use_origskb) { 722 /* only need to expand headroom if necessary */ 723 skb = *origskb; 724 *origskb = NULL; 725 726 /* 727 * This shouldn't trigger often because most devices have an 728 * RX header they pull before we get here, and that should 729 * be big enough for our radiotap information. We should 730 * probably export the length to drivers so that we can have 731 * them allocate enough headroom to start with. 732 */ 733 if (skb_headroom(skb) < needed_headroom && 734 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 735 dev_kfree_skb(skb); 736 return NULL; 737 } 738 } else { 739 /* 740 * Need to make a copy and possibly remove radiotap header 741 * and FCS from the original. 742 */ 743 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 744 0, GFP_ATOMIC); 745 746 if (!skb) 747 return NULL; 748 } 749 750 /* prepend radiotap information */ 751 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 752 753 skb_reset_mac_header(skb); 754 skb->ip_summed = CHECKSUM_UNNECESSARY; 755 skb->pkt_type = PACKET_OTHERHOST; 756 skb->protocol = htons(ETH_P_802_2); 757 758 return skb; 759 } 760 761 /* 762 * This function copies a received frame to all monitor interfaces and 763 * returns a cleaned-up SKB that no longer includes the FCS nor the 764 * radiotap header the driver might have added. 765 */ 766 static struct sk_buff * 767 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 768 struct ieee80211_rate *rate) 769 { 770 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 771 struct ieee80211_sub_if_data *sdata; 772 struct sk_buff *monskb = NULL; 773 int present_fcs_len = 0; 774 unsigned int rtap_space = 0; 775 struct ieee80211_sub_if_data *monitor_sdata = 776 rcu_dereference(local->monitor_sdata); 777 bool only_monitor = false; 778 unsigned int min_head_len; 779 780 if (status->flag & RX_FLAG_RADIOTAP_HE) 781 rtap_space += sizeof(struct ieee80211_radiotap_he); 782 783 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 784 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 785 786 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 787 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 788 789 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 790 struct ieee80211_vendor_radiotap *rtap = 791 (void *)(origskb->data + rtap_space); 792 793 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 794 } 795 796 min_head_len = rtap_space; 797 798 /* 799 * First, we may need to make a copy of the skb because 800 * (1) we need to modify it for radiotap (if not present), and 801 * (2) the other RX handlers will modify the skb we got. 802 * 803 * We don't need to, of course, if we aren't going to return 804 * the SKB because it has a bad FCS/PLCP checksum. 805 */ 806 807 if (!(status->flag & RX_FLAG_NO_PSDU)) { 808 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 809 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 810 /* driver bug */ 811 WARN_ON(1); 812 dev_kfree_skb(origskb); 813 return NULL; 814 } 815 present_fcs_len = FCS_LEN; 816 } 817 818 /* also consider the hdr->frame_control */ 819 min_head_len += 2; 820 } 821 822 /* ensure that the expected data elements are in skb head */ 823 if (!pskb_may_pull(origskb, min_head_len)) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 829 830 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 831 if (only_monitor) { 832 dev_kfree_skb(origskb); 833 return NULL; 834 } 835 836 return ieee80211_clean_skb(origskb, present_fcs_len, 837 rtap_space); 838 } 839 840 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 841 842 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 843 bool last_monitor = list_is_last(&sdata->u.mntr.list, 844 &local->mon_list); 845 846 if (!monskb) 847 monskb = ieee80211_make_monitor_skb(local, &origskb, 848 rate, rtap_space, 849 only_monitor && 850 last_monitor); 851 852 if (monskb) { 853 struct sk_buff *skb; 854 855 if (last_monitor) { 856 skb = monskb; 857 monskb = NULL; 858 } else { 859 skb = skb_clone(monskb, GFP_ATOMIC); 860 } 861 862 if (skb) { 863 skb->dev = sdata->dev; 864 dev_sw_netstats_rx_add(skb->dev, skb->len); 865 netif_receive_skb(skb); 866 } 867 } 868 869 if (last_monitor) 870 break; 871 } 872 873 /* this happens if last_monitor was erroneously false */ 874 dev_kfree_skb(monskb); 875 876 /* ditto */ 877 if (!origskb) 878 return NULL; 879 880 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 881 } 882 883 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 884 { 885 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 886 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 887 int tid, seqno_idx, security_idx; 888 889 /* does the frame have a qos control field? */ 890 if (ieee80211_is_data_qos(hdr->frame_control)) { 891 u8 *qc = ieee80211_get_qos_ctl(hdr); 892 /* frame has qos control */ 893 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 894 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 895 status->rx_flags |= IEEE80211_RX_AMSDU; 896 897 seqno_idx = tid; 898 security_idx = tid; 899 } else { 900 /* 901 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 902 * 903 * Sequence numbers for management frames, QoS data 904 * frames with a broadcast/multicast address in the 905 * Address 1 field, and all non-QoS data frames sent 906 * by QoS STAs are assigned using an additional single 907 * modulo-4096 counter, [...] 908 * 909 * We also use that counter for non-QoS STAs. 910 */ 911 seqno_idx = IEEE80211_NUM_TIDS; 912 security_idx = 0; 913 if (ieee80211_is_mgmt(hdr->frame_control)) 914 security_idx = IEEE80211_NUM_TIDS; 915 tid = 0; 916 } 917 918 rx->seqno_idx = seqno_idx; 919 rx->security_idx = security_idx; 920 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 921 * For now, set skb->priority to 0 for other cases. */ 922 rx->skb->priority = (tid > 7) ? 0 : tid; 923 } 924 925 /** 926 * DOC: Packet alignment 927 * 928 * Drivers always need to pass packets that are aligned to two-byte boundaries 929 * to the stack. 930 * 931 * Additionally, should, if possible, align the payload data in a way that 932 * guarantees that the contained IP header is aligned to a four-byte 933 * boundary. In the case of regular frames, this simply means aligning the 934 * payload to a four-byte boundary (because either the IP header is directly 935 * contained, or IV/RFC1042 headers that have a length divisible by four are 936 * in front of it). If the payload data is not properly aligned and the 937 * architecture doesn't support efficient unaligned operations, mac80211 938 * will align the data. 939 * 940 * With A-MSDU frames, however, the payload data address must yield two modulo 941 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 942 * push the IP header further back to a multiple of four again. Thankfully, the 943 * specs were sane enough this time around to require padding each A-MSDU 944 * subframe to a length that is a multiple of four. 945 * 946 * Padding like Atheros hardware adds which is between the 802.11 header and 947 * the payload is not supported, the driver is required to move the 802.11 948 * header to be directly in front of the payload in that case. 949 */ 950 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 951 { 952 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 953 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 954 #endif 955 } 956 957 958 /* rx handlers */ 959 960 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 961 { 962 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 963 964 if (is_multicast_ether_addr(hdr->addr1)) 965 return 0; 966 967 return ieee80211_is_robust_mgmt_frame(skb); 968 } 969 970 971 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 972 { 973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 974 975 if (!is_multicast_ether_addr(hdr->addr1)) 976 return 0; 977 978 return ieee80211_is_robust_mgmt_frame(skb); 979 } 980 981 982 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 983 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 984 { 985 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 986 struct ieee80211_mmie *mmie; 987 struct ieee80211_mmie_16 *mmie16; 988 989 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 990 return -1; 991 992 if (!ieee80211_is_robust_mgmt_frame(skb) && 993 !ieee80211_is_beacon(hdr->frame_control)) 994 return -1; /* not a robust management frame */ 995 996 mmie = (struct ieee80211_mmie *) 997 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id == WLAN_EID_MMIE && 999 mmie->length == sizeof(*mmie) - 2) 1000 return le16_to_cpu(mmie->key_id); 1001 1002 mmie16 = (struct ieee80211_mmie_16 *) 1003 (skb->data + skb->len - sizeof(*mmie16)); 1004 if (skb->len >= 24 + sizeof(*mmie16) && 1005 mmie16->element_id == WLAN_EID_MMIE && 1006 mmie16->length == sizeof(*mmie16) - 2) 1007 return le16_to_cpu(mmie16->key_id); 1008 1009 return -1; 1010 } 1011 1012 static int ieee80211_get_keyid(struct sk_buff *skb) 1013 { 1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1015 __le16 fc = hdr->frame_control; 1016 int hdrlen = ieee80211_hdrlen(fc); 1017 u8 keyid; 1018 1019 /* WEP, TKIP, CCMP and GCMP */ 1020 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1021 return -EINVAL; 1022 1023 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1024 1025 keyid >>= 6; 1026 1027 return keyid; 1028 } 1029 1030 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1031 { 1032 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1033 char *dev_addr = rx->sdata->vif.addr; 1034 1035 if (ieee80211_is_data(hdr->frame_control)) { 1036 if (is_multicast_ether_addr(hdr->addr1)) { 1037 if (ieee80211_has_tods(hdr->frame_control) || 1038 !ieee80211_has_fromds(hdr->frame_control)) 1039 return RX_DROP_MONITOR; 1040 if (ether_addr_equal(hdr->addr3, dev_addr)) 1041 return RX_DROP_MONITOR; 1042 } else { 1043 if (!ieee80211_has_a4(hdr->frame_control)) 1044 return RX_DROP_MONITOR; 1045 if (ether_addr_equal(hdr->addr4, dev_addr)) 1046 return RX_DROP_MONITOR; 1047 } 1048 } 1049 1050 /* If there is not an established peer link and this is not a peer link 1051 * establisment frame, beacon or probe, drop the frame. 1052 */ 1053 1054 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1055 struct ieee80211_mgmt *mgmt; 1056 1057 if (!ieee80211_is_mgmt(hdr->frame_control)) 1058 return RX_DROP_MONITOR; 1059 1060 if (ieee80211_is_action(hdr->frame_control)) { 1061 u8 category; 1062 1063 /* make sure category field is present */ 1064 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1065 return RX_DROP_MONITOR; 1066 1067 mgmt = (struct ieee80211_mgmt *)hdr; 1068 category = mgmt->u.action.category; 1069 if (category != WLAN_CATEGORY_MESH_ACTION && 1070 category != WLAN_CATEGORY_SELF_PROTECTED) 1071 return RX_DROP_MONITOR; 1072 return RX_CONTINUE; 1073 } 1074 1075 if (ieee80211_is_probe_req(hdr->frame_control) || 1076 ieee80211_is_probe_resp(hdr->frame_control) || 1077 ieee80211_is_beacon(hdr->frame_control) || 1078 ieee80211_is_auth(hdr->frame_control)) 1079 return RX_CONTINUE; 1080 1081 return RX_DROP_MONITOR; 1082 } 1083 1084 return RX_CONTINUE; 1085 } 1086 1087 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1088 int index) 1089 { 1090 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1091 struct sk_buff *tail = skb_peek_tail(frames); 1092 struct ieee80211_rx_status *status; 1093 1094 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1095 return true; 1096 1097 if (!tail) 1098 return false; 1099 1100 status = IEEE80211_SKB_RXCB(tail); 1101 if (status->flag & RX_FLAG_AMSDU_MORE) 1102 return false; 1103 1104 return true; 1105 } 1106 1107 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1108 struct tid_ampdu_rx *tid_agg_rx, 1109 int index, 1110 struct sk_buff_head *frames) 1111 { 1112 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1113 struct sk_buff *skb; 1114 struct ieee80211_rx_status *status; 1115 1116 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1117 1118 if (skb_queue_empty(skb_list)) 1119 goto no_frame; 1120 1121 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1122 __skb_queue_purge(skb_list); 1123 goto no_frame; 1124 } 1125 1126 /* release frames from the reorder ring buffer */ 1127 tid_agg_rx->stored_mpdu_num--; 1128 while ((skb = __skb_dequeue(skb_list))) { 1129 status = IEEE80211_SKB_RXCB(skb); 1130 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1131 __skb_queue_tail(frames, skb); 1132 } 1133 1134 no_frame: 1135 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1136 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1137 } 1138 1139 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1140 struct tid_ampdu_rx *tid_agg_rx, 1141 u16 head_seq_num, 1142 struct sk_buff_head *frames) 1143 { 1144 int index; 1145 1146 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1147 1148 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1149 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1150 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1151 frames); 1152 } 1153 } 1154 1155 /* 1156 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1157 * the skb was added to the buffer longer than this time ago, the earlier 1158 * frames that have not yet been received are assumed to be lost and the skb 1159 * can be released for processing. This may also release other skb's from the 1160 * reorder buffer if there are no additional gaps between the frames. 1161 * 1162 * Callers must hold tid_agg_rx->reorder_lock. 1163 */ 1164 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1165 1166 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1167 struct tid_ampdu_rx *tid_agg_rx, 1168 struct sk_buff_head *frames) 1169 { 1170 int index, i, j; 1171 1172 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1173 1174 /* release the buffer until next missing frame */ 1175 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1176 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1177 tid_agg_rx->stored_mpdu_num) { 1178 /* 1179 * No buffers ready to be released, but check whether any 1180 * frames in the reorder buffer have timed out. 1181 */ 1182 int skipped = 1; 1183 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1184 j = (j + 1) % tid_agg_rx->buf_size) { 1185 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1186 skipped++; 1187 continue; 1188 } 1189 if (skipped && 1190 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1191 HT_RX_REORDER_BUF_TIMEOUT)) 1192 goto set_release_timer; 1193 1194 /* don't leave incomplete A-MSDUs around */ 1195 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1196 i = (i + 1) % tid_agg_rx->buf_size) 1197 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1198 1199 ht_dbg_ratelimited(sdata, 1200 "release an RX reorder frame due to timeout on earlier frames\n"); 1201 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1202 frames); 1203 1204 /* 1205 * Increment the head seq# also for the skipped slots. 1206 */ 1207 tid_agg_rx->head_seq_num = 1208 (tid_agg_rx->head_seq_num + 1209 skipped) & IEEE80211_SN_MASK; 1210 skipped = 0; 1211 } 1212 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1213 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1214 frames); 1215 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1216 } 1217 1218 if (tid_agg_rx->stored_mpdu_num) { 1219 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1220 1221 for (; j != (index - 1) % tid_agg_rx->buf_size; 1222 j = (j + 1) % tid_agg_rx->buf_size) { 1223 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1224 break; 1225 } 1226 1227 set_release_timer: 1228 1229 if (!tid_agg_rx->removed) 1230 mod_timer(&tid_agg_rx->reorder_timer, 1231 tid_agg_rx->reorder_time[j] + 1 + 1232 HT_RX_REORDER_BUF_TIMEOUT); 1233 } else { 1234 del_timer(&tid_agg_rx->reorder_timer); 1235 } 1236 } 1237 1238 /* 1239 * As this function belongs to the RX path it must be under 1240 * rcu_read_lock protection. It returns false if the frame 1241 * can be processed immediately, true if it was consumed. 1242 */ 1243 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1244 struct tid_ampdu_rx *tid_agg_rx, 1245 struct sk_buff *skb, 1246 struct sk_buff_head *frames) 1247 { 1248 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1249 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1250 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1251 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1252 u16 head_seq_num, buf_size; 1253 int index; 1254 bool ret = true; 1255 1256 spin_lock(&tid_agg_rx->reorder_lock); 1257 1258 /* 1259 * Offloaded BA sessions have no known starting sequence number so pick 1260 * one from first Rxed frame for this tid after BA was started. 1261 */ 1262 if (unlikely(tid_agg_rx->auto_seq)) { 1263 tid_agg_rx->auto_seq = false; 1264 tid_agg_rx->ssn = mpdu_seq_num; 1265 tid_agg_rx->head_seq_num = mpdu_seq_num; 1266 } 1267 1268 buf_size = tid_agg_rx->buf_size; 1269 head_seq_num = tid_agg_rx->head_seq_num; 1270 1271 /* 1272 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1273 * be reordered. 1274 */ 1275 if (unlikely(!tid_agg_rx->started)) { 1276 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1277 ret = false; 1278 goto out; 1279 } 1280 tid_agg_rx->started = true; 1281 } 1282 1283 /* frame with out of date sequence number */ 1284 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1285 dev_kfree_skb(skb); 1286 goto out; 1287 } 1288 1289 /* 1290 * If frame the sequence number exceeds our buffering window 1291 * size release some previous frames to make room for this one. 1292 */ 1293 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1294 head_seq_num = ieee80211_sn_inc( 1295 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1296 /* release stored frames up to new head to stack */ 1297 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1298 head_seq_num, frames); 1299 } 1300 1301 /* Now the new frame is always in the range of the reordering buffer */ 1302 1303 index = mpdu_seq_num % tid_agg_rx->buf_size; 1304 1305 /* check if we already stored this frame */ 1306 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1307 dev_kfree_skb(skb); 1308 goto out; 1309 } 1310 1311 /* 1312 * If the current MPDU is in the right order and nothing else 1313 * is stored we can process it directly, no need to buffer it. 1314 * If it is first but there's something stored, we may be able 1315 * to release frames after this one. 1316 */ 1317 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1318 tid_agg_rx->stored_mpdu_num == 0) { 1319 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1320 tid_agg_rx->head_seq_num = 1321 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1322 ret = false; 1323 goto out; 1324 } 1325 1326 /* put the frame in the reordering buffer */ 1327 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1328 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1329 tid_agg_rx->reorder_time[index] = jiffies; 1330 tid_agg_rx->stored_mpdu_num++; 1331 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1332 } 1333 1334 out: 1335 spin_unlock(&tid_agg_rx->reorder_lock); 1336 return ret; 1337 } 1338 1339 /* 1340 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1341 * true if the MPDU was buffered, false if it should be processed. 1342 */ 1343 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1344 struct sk_buff_head *frames) 1345 { 1346 struct sk_buff *skb = rx->skb; 1347 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1348 struct sta_info *sta = rx->sta; 1349 struct tid_ampdu_rx *tid_agg_rx; 1350 u16 sc; 1351 u8 tid, ack_policy; 1352 1353 if (!ieee80211_is_data_qos(hdr->frame_control) || 1354 is_multicast_ether_addr(hdr->addr1)) 1355 goto dont_reorder; 1356 1357 /* 1358 * filter the QoS data rx stream according to 1359 * STA/TID and check if this STA/TID is on aggregation 1360 */ 1361 1362 if (!sta) 1363 goto dont_reorder; 1364 1365 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1366 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1367 tid = ieee80211_get_tid(hdr); 1368 1369 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1370 if (!tid_agg_rx) { 1371 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1372 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1373 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1374 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1375 WLAN_BACK_RECIPIENT, 1376 WLAN_REASON_QSTA_REQUIRE_SETUP); 1377 goto dont_reorder; 1378 } 1379 1380 /* qos null data frames are excluded */ 1381 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1382 goto dont_reorder; 1383 1384 /* not part of a BA session */ 1385 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1386 goto dont_reorder; 1387 1388 /* new, potentially un-ordered, ampdu frame - process it */ 1389 1390 /* reset session timer */ 1391 if (tid_agg_rx->timeout) 1392 tid_agg_rx->last_rx = jiffies; 1393 1394 /* if this mpdu is fragmented - terminate rx aggregation session */ 1395 sc = le16_to_cpu(hdr->seq_ctrl); 1396 if (sc & IEEE80211_SCTL_FRAG) { 1397 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); 1398 return; 1399 } 1400 1401 /* 1402 * No locking needed -- we will only ever process one 1403 * RX packet at a time, and thus own tid_agg_rx. All 1404 * other code manipulating it needs to (and does) make 1405 * sure that we cannot get to it any more before doing 1406 * anything with it. 1407 */ 1408 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1409 frames)) 1410 return; 1411 1412 dont_reorder: 1413 __skb_queue_tail(frames, skb); 1414 } 1415 1416 static ieee80211_rx_result debug_noinline 1417 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1418 { 1419 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1421 1422 if (status->flag & RX_FLAG_DUP_VALIDATED) 1423 return RX_CONTINUE; 1424 1425 /* 1426 * Drop duplicate 802.11 retransmissions 1427 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1428 */ 1429 1430 if (rx->skb->len < 24) 1431 return RX_CONTINUE; 1432 1433 if (ieee80211_is_ctl(hdr->frame_control) || 1434 ieee80211_is_any_nullfunc(hdr->frame_control) || 1435 is_multicast_ether_addr(hdr->addr1)) 1436 return RX_CONTINUE; 1437 1438 if (!rx->sta) 1439 return RX_CONTINUE; 1440 1441 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1442 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1443 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1444 rx->sta->deflink.rx_stats.num_duplicates++; 1445 return RX_DROP_UNUSABLE; 1446 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1447 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1448 } 1449 1450 return RX_CONTINUE; 1451 } 1452 1453 static ieee80211_rx_result debug_noinline 1454 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1455 { 1456 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1457 1458 /* Drop disallowed frame classes based on STA auth/assoc state; 1459 * IEEE 802.11, Chap 5.5. 1460 * 1461 * mac80211 filters only based on association state, i.e. it drops 1462 * Class 3 frames from not associated stations. hostapd sends 1463 * deauth/disassoc frames when needed. In addition, hostapd is 1464 * responsible for filtering on both auth and assoc states. 1465 */ 1466 1467 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1468 return ieee80211_rx_mesh_check(rx); 1469 1470 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1471 ieee80211_is_pspoll(hdr->frame_control)) && 1472 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1473 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1474 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1475 /* 1476 * accept port control frames from the AP even when it's not 1477 * yet marked ASSOC to prevent a race where we don't set the 1478 * assoc bit quickly enough before it sends the first frame 1479 */ 1480 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1481 ieee80211_is_data_present(hdr->frame_control)) { 1482 unsigned int hdrlen; 1483 __be16 ethertype; 1484 1485 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1486 1487 if (rx->skb->len < hdrlen + 8) 1488 return RX_DROP_MONITOR; 1489 1490 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1491 if (ethertype == rx->sdata->control_port_protocol) 1492 return RX_CONTINUE; 1493 } 1494 1495 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1496 cfg80211_rx_spurious_frame(rx->sdata->dev, 1497 hdr->addr2, 1498 GFP_ATOMIC)) 1499 return RX_DROP_UNUSABLE; 1500 1501 return RX_DROP_MONITOR; 1502 } 1503 1504 return RX_CONTINUE; 1505 } 1506 1507 1508 static ieee80211_rx_result debug_noinline 1509 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1510 { 1511 struct ieee80211_local *local; 1512 struct ieee80211_hdr *hdr; 1513 struct sk_buff *skb; 1514 1515 local = rx->local; 1516 skb = rx->skb; 1517 hdr = (struct ieee80211_hdr *) skb->data; 1518 1519 if (!local->pspolling) 1520 return RX_CONTINUE; 1521 1522 if (!ieee80211_has_fromds(hdr->frame_control)) 1523 /* this is not from AP */ 1524 return RX_CONTINUE; 1525 1526 if (!ieee80211_is_data(hdr->frame_control)) 1527 return RX_CONTINUE; 1528 1529 if (!ieee80211_has_moredata(hdr->frame_control)) { 1530 /* AP has no more frames buffered for us */ 1531 local->pspolling = false; 1532 return RX_CONTINUE; 1533 } 1534 1535 /* more data bit is set, let's request a new frame from the AP */ 1536 ieee80211_send_pspoll(local, rx->sdata); 1537 1538 return RX_CONTINUE; 1539 } 1540 1541 static void sta_ps_start(struct sta_info *sta) 1542 { 1543 struct ieee80211_sub_if_data *sdata = sta->sdata; 1544 struct ieee80211_local *local = sdata->local; 1545 struct ps_data *ps; 1546 int tid; 1547 1548 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1549 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1550 ps = &sdata->bss->ps; 1551 else 1552 return; 1553 1554 atomic_inc(&ps->num_sta_ps); 1555 set_sta_flag(sta, WLAN_STA_PS_STA); 1556 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1557 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1558 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1559 sta->sta.addr, sta->sta.aid); 1560 1561 ieee80211_clear_fast_xmit(sta); 1562 1563 if (!sta->sta.txq[0]) 1564 return; 1565 1566 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1567 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1568 struct txq_info *txqi = to_txq_info(txq); 1569 1570 spin_lock(&local->active_txq_lock[txq->ac]); 1571 if (!list_empty(&txqi->schedule_order)) 1572 list_del_init(&txqi->schedule_order); 1573 spin_unlock(&local->active_txq_lock[txq->ac]); 1574 1575 if (txq_has_queue(txq)) 1576 set_bit(tid, &sta->txq_buffered_tids); 1577 else 1578 clear_bit(tid, &sta->txq_buffered_tids); 1579 } 1580 } 1581 1582 static void sta_ps_end(struct sta_info *sta) 1583 { 1584 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1585 sta->sta.addr, sta->sta.aid); 1586 1587 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1588 /* 1589 * Clear the flag only if the other one is still set 1590 * so that the TX path won't start TX'ing new frames 1591 * directly ... In the case that the driver flag isn't 1592 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1593 */ 1594 clear_sta_flag(sta, WLAN_STA_PS_STA); 1595 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1596 sta->sta.addr, sta->sta.aid); 1597 return; 1598 } 1599 1600 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1601 clear_sta_flag(sta, WLAN_STA_PS_STA); 1602 ieee80211_sta_ps_deliver_wakeup(sta); 1603 } 1604 1605 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1606 { 1607 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1608 bool in_ps; 1609 1610 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1611 1612 /* Don't let the same PS state be set twice */ 1613 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1614 if ((start && in_ps) || (!start && !in_ps)) 1615 return -EINVAL; 1616 1617 if (start) 1618 sta_ps_start(sta); 1619 else 1620 sta_ps_end(sta); 1621 1622 return 0; 1623 } 1624 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1625 1626 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1627 { 1628 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1629 1630 if (test_sta_flag(sta, WLAN_STA_SP)) 1631 return; 1632 1633 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1634 ieee80211_sta_ps_deliver_poll_response(sta); 1635 else 1636 set_sta_flag(sta, WLAN_STA_PSPOLL); 1637 } 1638 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1639 1640 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1641 { 1642 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1643 int ac = ieee80211_ac_from_tid(tid); 1644 1645 /* 1646 * If this AC is not trigger-enabled do nothing unless the 1647 * driver is calling us after it already checked. 1648 * 1649 * NB: This could/should check a separate bitmap of trigger- 1650 * enabled queues, but for now we only implement uAPSD w/o 1651 * TSPEC changes to the ACs, so they're always the same. 1652 */ 1653 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1654 tid != IEEE80211_NUM_TIDS) 1655 return; 1656 1657 /* if we are in a service period, do nothing */ 1658 if (test_sta_flag(sta, WLAN_STA_SP)) 1659 return; 1660 1661 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1662 ieee80211_sta_ps_deliver_uapsd(sta); 1663 else 1664 set_sta_flag(sta, WLAN_STA_UAPSD); 1665 } 1666 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1667 1668 static ieee80211_rx_result debug_noinline 1669 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1670 { 1671 struct ieee80211_sub_if_data *sdata = rx->sdata; 1672 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1673 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1674 1675 if (!rx->sta) 1676 return RX_CONTINUE; 1677 1678 if (sdata->vif.type != NL80211_IFTYPE_AP && 1679 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1680 return RX_CONTINUE; 1681 1682 /* 1683 * The device handles station powersave, so don't do anything about 1684 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1685 * it to mac80211 since they're handled.) 1686 */ 1687 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1688 return RX_CONTINUE; 1689 1690 /* 1691 * Don't do anything if the station isn't already asleep. In 1692 * the uAPSD case, the station will probably be marked asleep, 1693 * in the PS-Poll case the station must be confused ... 1694 */ 1695 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1696 return RX_CONTINUE; 1697 1698 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1699 ieee80211_sta_pspoll(&rx->sta->sta); 1700 1701 /* Free PS Poll skb here instead of returning RX_DROP that would 1702 * count as an dropped frame. */ 1703 dev_kfree_skb(rx->skb); 1704 1705 return RX_QUEUED; 1706 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1707 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1708 ieee80211_has_pm(hdr->frame_control) && 1709 (ieee80211_is_data_qos(hdr->frame_control) || 1710 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1711 u8 tid = ieee80211_get_tid(hdr); 1712 1713 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1714 } 1715 1716 return RX_CONTINUE; 1717 } 1718 1719 static ieee80211_rx_result debug_noinline 1720 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1721 { 1722 struct sta_info *sta = rx->sta; 1723 struct sk_buff *skb = rx->skb; 1724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1725 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1726 int i; 1727 1728 if (!sta) 1729 return RX_CONTINUE; 1730 1731 /* 1732 * Update last_rx only for IBSS packets which are for the current 1733 * BSSID and for station already AUTHORIZED to avoid keeping the 1734 * current IBSS network alive in cases where other STAs start 1735 * using different BSSID. This will also give the station another 1736 * chance to restart the authentication/authorization in case 1737 * something went wrong the first time. 1738 */ 1739 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1740 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1741 NL80211_IFTYPE_ADHOC); 1742 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1743 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1744 sta->deflink.rx_stats.last_rx = jiffies; 1745 if (ieee80211_is_data(hdr->frame_control) && 1746 !is_multicast_ether_addr(hdr->addr1)) 1747 sta->deflink.rx_stats.last_rate = 1748 sta_stats_encode_rate(status); 1749 } 1750 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1751 sta->deflink.rx_stats.last_rx = jiffies; 1752 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1753 !is_multicast_ether_addr(hdr->addr1)) { 1754 /* 1755 * Mesh beacons will update last_rx when if they are found to 1756 * match the current local configuration when processed. 1757 */ 1758 sta->deflink.rx_stats.last_rx = jiffies; 1759 if (ieee80211_is_data(hdr->frame_control)) 1760 sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status); 1761 } 1762 1763 sta->deflink.rx_stats.fragments++; 1764 1765 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); 1766 sta->deflink.rx_stats.bytes += rx->skb->len; 1767 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); 1768 1769 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1770 sta->deflink.rx_stats.last_signal = status->signal; 1771 ewma_signal_add(&sta->deflink.rx_stats_avg.signal, 1772 -status->signal); 1773 } 1774 1775 if (status->chains) { 1776 sta->deflink.rx_stats.chains = status->chains; 1777 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1778 int signal = status->chain_signal[i]; 1779 1780 if (!(status->chains & BIT(i))) 1781 continue; 1782 1783 sta->deflink.rx_stats.chain_signal_last[i] = signal; 1784 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i], 1785 -signal); 1786 } 1787 } 1788 1789 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1790 return RX_CONTINUE; 1791 1792 /* 1793 * Change STA power saving mode only at the end of a frame 1794 * exchange sequence, and only for a data or management 1795 * frame as specified in IEEE 802.11-2016 11.2.3.2 1796 */ 1797 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1798 !ieee80211_has_morefrags(hdr->frame_control) && 1799 !is_multicast_ether_addr(hdr->addr1) && 1800 (ieee80211_is_mgmt(hdr->frame_control) || 1801 ieee80211_is_data(hdr->frame_control)) && 1802 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1803 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1804 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1805 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1806 if (!ieee80211_has_pm(hdr->frame_control)) 1807 sta_ps_end(sta); 1808 } else { 1809 if (ieee80211_has_pm(hdr->frame_control)) 1810 sta_ps_start(sta); 1811 } 1812 } 1813 1814 /* mesh power save support */ 1815 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1816 ieee80211_mps_rx_h_sta_process(sta, hdr); 1817 1818 /* 1819 * Drop (qos-)data::nullfunc frames silently, since they 1820 * are used only to control station power saving mode. 1821 */ 1822 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1823 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1824 1825 /* 1826 * If we receive a 4-addr nullfunc frame from a STA 1827 * that was not moved to a 4-addr STA vlan yet send 1828 * the event to userspace and for older hostapd drop 1829 * the frame to the monitor interface. 1830 */ 1831 if (ieee80211_has_a4(hdr->frame_control) && 1832 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1833 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1834 !rx->sdata->u.vlan.sta))) { 1835 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1836 cfg80211_rx_unexpected_4addr_frame( 1837 rx->sdata->dev, sta->sta.addr, 1838 GFP_ATOMIC); 1839 return RX_DROP_MONITOR; 1840 } 1841 /* 1842 * Update counter and free packet here to avoid 1843 * counting this as a dropped packed. 1844 */ 1845 sta->deflink.rx_stats.packets++; 1846 dev_kfree_skb(rx->skb); 1847 return RX_QUEUED; 1848 } 1849 1850 return RX_CONTINUE; 1851 } /* ieee80211_rx_h_sta_process */ 1852 1853 static struct ieee80211_key * 1854 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1855 { 1856 struct ieee80211_key *key = NULL; 1857 struct ieee80211_sub_if_data *sdata = rx->sdata; 1858 int idx2; 1859 1860 /* Make sure key gets set if either BIGTK key index is set so that 1861 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1862 * Beacon frames and Beacon frames that claim to use another BIGTK key 1863 * index (i.e., a key that we do not have). 1864 */ 1865 1866 if (idx < 0) { 1867 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1868 idx2 = idx + 1; 1869 } else { 1870 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1871 idx2 = idx + 1; 1872 else 1873 idx2 = idx - 1; 1874 } 1875 1876 if (rx->sta) 1877 key = rcu_dereference(rx->sta->deflink.gtk[idx]); 1878 if (!key) 1879 key = rcu_dereference(sdata->deflink.gtk[idx]); 1880 if (!key && rx->sta) 1881 key = rcu_dereference(rx->sta->deflink.gtk[idx2]); 1882 if (!key) 1883 key = rcu_dereference(sdata->deflink.gtk[idx2]); 1884 1885 return key; 1886 } 1887 1888 static ieee80211_rx_result debug_noinline 1889 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1890 { 1891 struct sk_buff *skb = rx->skb; 1892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1893 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1894 int keyidx; 1895 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1896 struct ieee80211_key *sta_ptk = NULL; 1897 struct ieee80211_key *ptk_idx = NULL; 1898 int mmie_keyidx = -1; 1899 __le16 fc; 1900 1901 if (ieee80211_is_ext(hdr->frame_control)) 1902 return RX_CONTINUE; 1903 1904 /* 1905 * Key selection 101 1906 * 1907 * There are five types of keys: 1908 * - GTK (group keys) 1909 * - IGTK (group keys for management frames) 1910 * - BIGTK (group keys for Beacon frames) 1911 * - PTK (pairwise keys) 1912 * - STK (station-to-station pairwise keys) 1913 * 1914 * When selecting a key, we have to distinguish between multicast 1915 * (including broadcast) and unicast frames, the latter can only 1916 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1917 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1918 * then unicast frames can also use key indices like GTKs. Hence, if we 1919 * don't have a PTK/STK we check the key index for a WEP key. 1920 * 1921 * Note that in a regular BSS, multicast frames are sent by the 1922 * AP only, associated stations unicast the frame to the AP first 1923 * which then multicasts it on their behalf. 1924 * 1925 * There is also a slight problem in IBSS mode: GTKs are negotiated 1926 * with each station, that is something we don't currently handle. 1927 * The spec seems to expect that one negotiates the same key with 1928 * every station but there's no such requirement; VLANs could be 1929 * possible. 1930 */ 1931 1932 /* start without a key */ 1933 rx->key = NULL; 1934 fc = hdr->frame_control; 1935 1936 if (rx->sta) { 1937 int keyid = rx->sta->ptk_idx; 1938 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1939 1940 if (ieee80211_has_protected(fc) && 1941 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1942 keyid = ieee80211_get_keyid(rx->skb); 1943 1944 if (unlikely(keyid < 0)) 1945 return RX_DROP_UNUSABLE; 1946 1947 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1948 } 1949 } 1950 1951 if (!ieee80211_has_protected(fc)) 1952 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1953 1954 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1955 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1956 if ((status->flag & RX_FLAG_DECRYPTED) && 1957 (status->flag & RX_FLAG_IV_STRIPPED)) 1958 return RX_CONTINUE; 1959 /* Skip decryption if the frame is not protected. */ 1960 if (!ieee80211_has_protected(fc)) 1961 return RX_CONTINUE; 1962 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1963 /* Broadcast/multicast robust management frame / BIP */ 1964 if ((status->flag & RX_FLAG_DECRYPTED) && 1965 (status->flag & RX_FLAG_IV_STRIPPED)) 1966 return RX_CONTINUE; 1967 1968 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1969 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1970 NUM_DEFAULT_BEACON_KEYS) { 1971 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1972 skb->data, 1973 skb->len); 1974 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1975 } 1976 1977 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1978 if (!rx->key) 1979 return RX_CONTINUE; /* Beacon protection not in use */ 1980 } else if (mmie_keyidx >= 0) { 1981 /* Broadcast/multicast robust management frame / BIP */ 1982 if ((status->flag & RX_FLAG_DECRYPTED) && 1983 (status->flag & RX_FLAG_IV_STRIPPED)) 1984 return RX_CONTINUE; 1985 1986 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1987 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1988 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1989 if (rx->sta) { 1990 if (ieee80211_is_group_privacy_action(skb) && 1991 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1992 return RX_DROP_MONITOR; 1993 1994 rx->key = rcu_dereference(rx->sta->deflink.gtk[mmie_keyidx]); 1995 } 1996 if (!rx->key) 1997 rx->key = rcu_dereference(rx->sdata->deflink.gtk[mmie_keyidx]); 1998 } else if (!ieee80211_has_protected(fc)) { 1999 /* 2000 * The frame was not protected, so skip decryption. However, we 2001 * need to set rx->key if there is a key that could have been 2002 * used so that the frame may be dropped if encryption would 2003 * have been expected. 2004 */ 2005 struct ieee80211_key *key = NULL; 2006 struct ieee80211_sub_if_data *sdata = rx->sdata; 2007 int i; 2008 2009 if (ieee80211_is_beacon(fc)) { 2010 key = ieee80211_rx_get_bigtk(rx, -1); 2011 } else if (ieee80211_is_mgmt(fc) && 2012 is_multicast_ether_addr(hdr->addr1)) { 2013 key = rcu_dereference(rx->sdata->deflink.default_mgmt_key); 2014 } else { 2015 if (rx->sta) { 2016 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2017 key = rcu_dereference(rx->sta->deflink.gtk[i]); 2018 if (key) 2019 break; 2020 } 2021 } 2022 if (!key) { 2023 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2024 key = rcu_dereference(sdata->deflink.gtk[i]); 2025 if (key) 2026 break; 2027 } 2028 } 2029 } 2030 if (key) 2031 rx->key = key; 2032 return RX_CONTINUE; 2033 } else { 2034 /* 2035 * The device doesn't give us the IV so we won't be 2036 * able to look up the key. That's ok though, we 2037 * don't need to decrypt the frame, we just won't 2038 * be able to keep statistics accurate. 2039 * Except for key threshold notifications, should 2040 * we somehow allow the driver to tell us which key 2041 * the hardware used if this flag is set? 2042 */ 2043 if ((status->flag & RX_FLAG_DECRYPTED) && 2044 (status->flag & RX_FLAG_IV_STRIPPED)) 2045 return RX_CONTINUE; 2046 2047 keyidx = ieee80211_get_keyid(rx->skb); 2048 2049 if (unlikely(keyidx < 0)) 2050 return RX_DROP_UNUSABLE; 2051 2052 /* check per-station GTK first, if multicast packet */ 2053 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2054 rx->key = rcu_dereference(rx->sta->deflink.gtk[keyidx]); 2055 2056 /* if not found, try default key */ 2057 if (!rx->key) { 2058 if (is_multicast_ether_addr(hdr->addr1)) 2059 rx->key = rcu_dereference(rx->sdata->deflink.gtk[keyidx]); 2060 if (!rx->key) 2061 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2062 2063 /* 2064 * RSNA-protected unicast frames should always be 2065 * sent with pairwise or station-to-station keys, 2066 * but for WEP we allow using a key index as well. 2067 */ 2068 if (rx->key && 2069 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2070 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2071 !is_multicast_ether_addr(hdr->addr1)) 2072 rx->key = NULL; 2073 } 2074 } 2075 2076 if (rx->key) { 2077 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2078 return RX_DROP_MONITOR; 2079 2080 /* TODO: add threshold stuff again */ 2081 } else { 2082 return RX_DROP_MONITOR; 2083 } 2084 2085 switch (rx->key->conf.cipher) { 2086 case WLAN_CIPHER_SUITE_WEP40: 2087 case WLAN_CIPHER_SUITE_WEP104: 2088 result = ieee80211_crypto_wep_decrypt(rx); 2089 break; 2090 case WLAN_CIPHER_SUITE_TKIP: 2091 result = ieee80211_crypto_tkip_decrypt(rx); 2092 break; 2093 case WLAN_CIPHER_SUITE_CCMP: 2094 result = ieee80211_crypto_ccmp_decrypt( 2095 rx, IEEE80211_CCMP_MIC_LEN); 2096 break; 2097 case WLAN_CIPHER_SUITE_CCMP_256: 2098 result = ieee80211_crypto_ccmp_decrypt( 2099 rx, IEEE80211_CCMP_256_MIC_LEN); 2100 break; 2101 case WLAN_CIPHER_SUITE_AES_CMAC: 2102 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2103 break; 2104 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2105 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2106 break; 2107 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2108 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2109 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2110 break; 2111 case WLAN_CIPHER_SUITE_GCMP: 2112 case WLAN_CIPHER_SUITE_GCMP_256: 2113 result = ieee80211_crypto_gcmp_decrypt(rx); 2114 break; 2115 default: 2116 result = RX_DROP_UNUSABLE; 2117 } 2118 2119 /* the hdr variable is invalid after the decrypt handlers */ 2120 2121 /* either the frame has been decrypted or will be dropped */ 2122 status->flag |= RX_FLAG_DECRYPTED; 2123 2124 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2125 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2126 skb->data, skb->len); 2127 2128 return result; 2129 } 2130 2131 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2132 { 2133 int i; 2134 2135 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2136 skb_queue_head_init(&cache->entries[i].skb_list); 2137 } 2138 2139 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2140 { 2141 int i; 2142 2143 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2144 __skb_queue_purge(&cache->entries[i].skb_list); 2145 } 2146 2147 static inline struct ieee80211_fragment_entry * 2148 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2149 unsigned int frag, unsigned int seq, int rx_queue, 2150 struct sk_buff **skb) 2151 { 2152 struct ieee80211_fragment_entry *entry; 2153 2154 entry = &cache->entries[cache->next++]; 2155 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2156 cache->next = 0; 2157 2158 __skb_queue_purge(&entry->skb_list); 2159 2160 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2161 *skb = NULL; 2162 entry->first_frag_time = jiffies; 2163 entry->seq = seq; 2164 entry->rx_queue = rx_queue; 2165 entry->last_frag = frag; 2166 entry->check_sequential_pn = false; 2167 entry->extra_len = 0; 2168 2169 return entry; 2170 } 2171 2172 static inline struct ieee80211_fragment_entry * 2173 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2174 unsigned int frag, unsigned int seq, 2175 int rx_queue, struct ieee80211_hdr *hdr) 2176 { 2177 struct ieee80211_fragment_entry *entry; 2178 int i, idx; 2179 2180 idx = cache->next; 2181 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2182 struct ieee80211_hdr *f_hdr; 2183 struct sk_buff *f_skb; 2184 2185 idx--; 2186 if (idx < 0) 2187 idx = IEEE80211_FRAGMENT_MAX - 1; 2188 2189 entry = &cache->entries[idx]; 2190 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2191 entry->rx_queue != rx_queue || 2192 entry->last_frag + 1 != frag) 2193 continue; 2194 2195 f_skb = __skb_peek(&entry->skb_list); 2196 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2197 2198 /* 2199 * Check ftype and addresses are equal, else check next fragment 2200 */ 2201 if (((hdr->frame_control ^ f_hdr->frame_control) & 2202 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2203 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2204 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2205 continue; 2206 2207 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2208 __skb_queue_purge(&entry->skb_list); 2209 continue; 2210 } 2211 return entry; 2212 } 2213 2214 return NULL; 2215 } 2216 2217 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2218 { 2219 return rx->key && 2220 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2221 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2222 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2223 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2224 ieee80211_has_protected(fc); 2225 } 2226 2227 static ieee80211_rx_result debug_noinline 2228 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2229 { 2230 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2231 struct ieee80211_hdr *hdr; 2232 u16 sc; 2233 __le16 fc; 2234 unsigned int frag, seq; 2235 struct ieee80211_fragment_entry *entry; 2236 struct sk_buff *skb; 2237 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2238 2239 hdr = (struct ieee80211_hdr *)rx->skb->data; 2240 fc = hdr->frame_control; 2241 2242 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2243 return RX_CONTINUE; 2244 2245 sc = le16_to_cpu(hdr->seq_ctrl); 2246 frag = sc & IEEE80211_SCTL_FRAG; 2247 2248 if (rx->sta) 2249 cache = &rx->sta->frags; 2250 2251 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2252 goto out; 2253 2254 if (is_multicast_ether_addr(hdr->addr1)) 2255 return RX_DROP_MONITOR; 2256 2257 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2258 2259 if (skb_linearize(rx->skb)) 2260 return RX_DROP_UNUSABLE; 2261 2262 /* 2263 * skb_linearize() might change the skb->data and 2264 * previously cached variables (in this case, hdr) need to 2265 * be refreshed with the new data. 2266 */ 2267 hdr = (struct ieee80211_hdr *)rx->skb->data; 2268 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2269 2270 if (frag == 0) { 2271 /* This is the first fragment of a new frame. */ 2272 entry = ieee80211_reassemble_add(cache, frag, seq, 2273 rx->seqno_idx, &(rx->skb)); 2274 if (requires_sequential_pn(rx, fc)) { 2275 int queue = rx->security_idx; 2276 2277 /* Store CCMP/GCMP PN so that we can verify that the 2278 * next fragment has a sequential PN value. 2279 */ 2280 entry->check_sequential_pn = true; 2281 entry->is_protected = true; 2282 entry->key_color = rx->key->color; 2283 memcpy(entry->last_pn, 2284 rx->key->u.ccmp.rx_pn[queue], 2285 IEEE80211_CCMP_PN_LEN); 2286 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2287 u.ccmp.rx_pn) != 2288 offsetof(struct ieee80211_key, 2289 u.gcmp.rx_pn)); 2290 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2291 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2292 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2293 IEEE80211_GCMP_PN_LEN); 2294 } else if (rx->key && 2295 (ieee80211_has_protected(fc) || 2296 (status->flag & RX_FLAG_DECRYPTED))) { 2297 entry->is_protected = true; 2298 entry->key_color = rx->key->color; 2299 } 2300 return RX_QUEUED; 2301 } 2302 2303 /* This is a fragment for a frame that should already be pending in 2304 * fragment cache. Add this fragment to the end of the pending entry. 2305 */ 2306 entry = ieee80211_reassemble_find(cache, frag, seq, 2307 rx->seqno_idx, hdr); 2308 if (!entry) { 2309 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2310 return RX_DROP_MONITOR; 2311 } 2312 2313 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2314 * MPDU PN values are not incrementing in steps of 1." 2315 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2316 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2317 */ 2318 if (entry->check_sequential_pn) { 2319 int i; 2320 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2321 2322 if (!requires_sequential_pn(rx, fc)) 2323 return RX_DROP_UNUSABLE; 2324 2325 /* Prevent mixed key and fragment cache attacks */ 2326 if (entry->key_color != rx->key->color) 2327 return RX_DROP_UNUSABLE; 2328 2329 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2330 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2331 pn[i]++; 2332 if (pn[i]) 2333 break; 2334 } 2335 2336 rpn = rx->ccm_gcm.pn; 2337 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2338 return RX_DROP_UNUSABLE; 2339 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2340 } else if (entry->is_protected && 2341 (!rx->key || 2342 (!ieee80211_has_protected(fc) && 2343 !(status->flag & RX_FLAG_DECRYPTED)) || 2344 rx->key->color != entry->key_color)) { 2345 /* Drop this as a mixed key or fragment cache attack, even 2346 * if for TKIP Michael MIC should protect us, and WEP is a 2347 * lost cause anyway. 2348 */ 2349 return RX_DROP_UNUSABLE; 2350 } else if (entry->is_protected && rx->key && 2351 entry->key_color != rx->key->color && 2352 (status->flag & RX_FLAG_DECRYPTED)) { 2353 return RX_DROP_UNUSABLE; 2354 } 2355 2356 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2357 __skb_queue_tail(&entry->skb_list, rx->skb); 2358 entry->last_frag = frag; 2359 entry->extra_len += rx->skb->len; 2360 if (ieee80211_has_morefrags(fc)) { 2361 rx->skb = NULL; 2362 return RX_QUEUED; 2363 } 2364 2365 rx->skb = __skb_dequeue(&entry->skb_list); 2366 if (skb_tailroom(rx->skb) < entry->extra_len) { 2367 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2368 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2369 GFP_ATOMIC))) { 2370 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2371 __skb_queue_purge(&entry->skb_list); 2372 return RX_DROP_UNUSABLE; 2373 } 2374 } 2375 while ((skb = __skb_dequeue(&entry->skb_list))) { 2376 skb_put_data(rx->skb, skb->data, skb->len); 2377 dev_kfree_skb(skb); 2378 } 2379 2380 out: 2381 ieee80211_led_rx(rx->local); 2382 if (rx->sta) 2383 rx->sta->deflink.rx_stats.packets++; 2384 return RX_CONTINUE; 2385 } 2386 2387 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2388 { 2389 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2390 return -EACCES; 2391 2392 return 0; 2393 } 2394 2395 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2396 { 2397 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2398 struct sk_buff *skb = rx->skb; 2399 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2400 2401 /* 2402 * Pass through unencrypted frames if the hardware has 2403 * decrypted them already. 2404 */ 2405 if (status->flag & RX_FLAG_DECRYPTED) 2406 return 0; 2407 2408 /* check mesh EAPOL frames first */ 2409 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2410 ieee80211_is_data(fc))) { 2411 struct ieee80211s_hdr *mesh_hdr; 2412 u16 hdr_len = ieee80211_hdrlen(fc); 2413 u16 ethertype_offset; 2414 __be16 ethertype; 2415 2416 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2417 goto drop_check; 2418 2419 /* make sure fixed part of mesh header is there, also checks skb len */ 2420 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2421 goto drop_check; 2422 2423 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2424 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2425 sizeof(rfc1042_header); 2426 2427 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2428 ethertype == rx->sdata->control_port_protocol) 2429 return 0; 2430 } 2431 2432 drop_check: 2433 /* Drop unencrypted frames if key is set. */ 2434 if (unlikely(!ieee80211_has_protected(fc) && 2435 !ieee80211_is_any_nullfunc(fc) && 2436 ieee80211_is_data(fc) && rx->key)) 2437 return -EACCES; 2438 2439 return 0; 2440 } 2441 2442 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2443 { 2444 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2445 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2446 __le16 fc = hdr->frame_control; 2447 2448 /* 2449 * Pass through unencrypted frames if the hardware has 2450 * decrypted them already. 2451 */ 2452 if (status->flag & RX_FLAG_DECRYPTED) 2453 return 0; 2454 2455 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2456 if (unlikely(!ieee80211_has_protected(fc) && 2457 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2458 rx->key)) { 2459 if (ieee80211_is_deauth(fc) || 2460 ieee80211_is_disassoc(fc)) 2461 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2462 rx->skb->data, 2463 rx->skb->len); 2464 return -EACCES; 2465 } 2466 /* BIP does not use Protected field, so need to check MMIE */ 2467 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2468 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2469 if (ieee80211_is_deauth(fc) || 2470 ieee80211_is_disassoc(fc)) 2471 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2472 rx->skb->data, 2473 rx->skb->len); 2474 return -EACCES; 2475 } 2476 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2477 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2478 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2479 rx->skb->data, 2480 rx->skb->len); 2481 return -EACCES; 2482 } 2483 /* 2484 * When using MFP, Action frames are not allowed prior to 2485 * having configured keys. 2486 */ 2487 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2488 ieee80211_is_robust_mgmt_frame(rx->skb))) 2489 return -EACCES; 2490 } 2491 2492 return 0; 2493 } 2494 2495 static int 2496 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2497 { 2498 struct ieee80211_sub_if_data *sdata = rx->sdata; 2499 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2500 bool check_port_control = false; 2501 struct ethhdr *ehdr; 2502 int ret; 2503 2504 *port_control = false; 2505 if (ieee80211_has_a4(hdr->frame_control) && 2506 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2507 return -1; 2508 2509 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2510 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2511 2512 if (!sdata->u.mgd.use_4addr) 2513 return -1; 2514 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2515 check_port_control = true; 2516 } 2517 2518 if (is_multicast_ether_addr(hdr->addr1) && 2519 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2520 return -1; 2521 2522 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2523 if (ret < 0) 2524 return ret; 2525 2526 ehdr = (struct ethhdr *) rx->skb->data; 2527 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2528 *port_control = true; 2529 else if (check_port_control) 2530 return -1; 2531 2532 return 0; 2533 } 2534 2535 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2536 const u8 *addr, int *out_link_id) 2537 { 2538 unsigned int link_id; 2539 2540 /* non-MLO, or MLD address replaced by hardware */ 2541 if (ether_addr_equal(sdata->vif.addr, addr)) 2542 return true; 2543 2544 if (!sdata->vif.valid_links) 2545 return false; 2546 2547 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2548 struct ieee80211_bss_conf *conf; 2549 2550 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2551 2552 if (!conf) 2553 continue; 2554 if (ether_addr_equal(conf->addr, addr)) { 2555 if (out_link_id) 2556 *out_link_id = link_id; 2557 return true; 2558 } 2559 } 2560 2561 return false; 2562 } 2563 2564 /* 2565 * requires that rx->skb is a frame with ethernet header 2566 */ 2567 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2568 { 2569 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2570 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2571 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2572 2573 /* 2574 * Allow EAPOL frames to us/the PAE group address regardless of 2575 * whether the frame was encrypted or not, and always disallow 2576 * all other destination addresses for them. 2577 */ 2578 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2579 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2580 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2581 2582 if (ieee80211_802_1x_port_control(rx) || 2583 ieee80211_drop_unencrypted(rx, fc)) 2584 return false; 2585 2586 return true; 2587 } 2588 2589 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2590 struct ieee80211_rx_data *rx) 2591 { 2592 struct ieee80211_sub_if_data *sdata = rx->sdata; 2593 struct net_device *dev = sdata->dev; 2594 2595 if (unlikely((skb->protocol == sdata->control_port_protocol || 2596 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2597 !sdata->control_port_no_preauth)) && 2598 sdata->control_port_over_nl80211)) { 2599 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2600 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2601 2602 cfg80211_rx_control_port(dev, skb, noencrypt); 2603 dev_kfree_skb(skb); 2604 } else { 2605 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2606 2607 memset(skb->cb, 0, sizeof(skb->cb)); 2608 2609 /* 2610 * 802.1X over 802.11 requires that the authenticator address 2611 * be used for EAPOL frames. However, 802.1X allows the use of 2612 * the PAE group address instead. If the interface is part of 2613 * a bridge and we pass the frame with the PAE group address, 2614 * then the bridge will forward it to the network (even if the 2615 * client was not associated yet), which isn't supposed to 2616 * happen. 2617 * To avoid that, rewrite the destination address to our own 2618 * address, so that the authenticator (e.g. hostapd) will see 2619 * the frame, but bridge won't forward it anywhere else. Note 2620 * that due to earlier filtering, the only other address can 2621 * be the PAE group address, unless the hardware allowed them 2622 * through in 802.3 offloaded mode. 2623 */ 2624 if (unlikely(skb->protocol == sdata->control_port_protocol && 2625 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2626 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2627 2628 /* deliver to local stack */ 2629 if (rx->list) 2630 list_add_tail(&skb->list, rx->list); 2631 else 2632 netif_receive_skb(skb); 2633 } 2634 } 2635 2636 /* 2637 * requires that rx->skb is a frame with ethernet header 2638 */ 2639 static void 2640 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2641 { 2642 struct ieee80211_sub_if_data *sdata = rx->sdata; 2643 struct net_device *dev = sdata->dev; 2644 struct sk_buff *skb, *xmit_skb; 2645 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2646 struct sta_info *dsta; 2647 2648 skb = rx->skb; 2649 xmit_skb = NULL; 2650 2651 dev_sw_netstats_rx_add(dev, skb->len); 2652 2653 if (rx->sta) { 2654 /* The seqno index has the same property as needed 2655 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2656 * for non-QoS-data frames. Here we know it's a data 2657 * frame, so count MSDUs. 2658 */ 2659 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); 2660 rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++; 2661 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); 2662 } 2663 2664 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2665 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2666 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2667 ehdr->h_proto != rx->sdata->control_port_protocol && 2668 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2669 if (is_multicast_ether_addr(ehdr->h_dest) && 2670 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2671 /* 2672 * send multicast frames both to higher layers in 2673 * local net stack and back to the wireless medium 2674 */ 2675 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2676 if (!xmit_skb) 2677 net_info_ratelimited("%s: failed to clone multicast frame\n", 2678 dev->name); 2679 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2680 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2681 dsta = sta_info_get(sdata, ehdr->h_dest); 2682 if (dsta) { 2683 /* 2684 * The destination station is associated to 2685 * this AP (in this VLAN), so send the frame 2686 * directly to it and do not pass it to local 2687 * net stack. 2688 */ 2689 xmit_skb = skb; 2690 skb = NULL; 2691 } 2692 } 2693 } 2694 2695 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2696 if (skb) { 2697 /* 'align' will only take the values 0 or 2 here since all 2698 * frames are required to be aligned to 2-byte boundaries 2699 * when being passed to mac80211; the code here works just 2700 * as well if that isn't true, but mac80211 assumes it can 2701 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2702 */ 2703 int align; 2704 2705 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2706 if (align) { 2707 if (WARN_ON(skb_headroom(skb) < 3)) { 2708 dev_kfree_skb(skb); 2709 skb = NULL; 2710 } else { 2711 u8 *data = skb->data; 2712 size_t len = skb_headlen(skb); 2713 skb->data -= align; 2714 memmove(skb->data, data, len); 2715 skb_set_tail_pointer(skb, len); 2716 } 2717 } 2718 } 2719 #endif 2720 2721 if (skb) { 2722 skb->protocol = eth_type_trans(skb, dev); 2723 ieee80211_deliver_skb_to_local_stack(skb, rx); 2724 } 2725 2726 if (xmit_skb) { 2727 /* 2728 * Send to wireless media and increase priority by 256 to 2729 * keep the received priority instead of reclassifying 2730 * the frame (see cfg80211_classify8021d). 2731 */ 2732 xmit_skb->priority += 256; 2733 xmit_skb->protocol = htons(ETH_P_802_3); 2734 skb_reset_network_header(xmit_skb); 2735 skb_reset_mac_header(xmit_skb); 2736 dev_queue_xmit(xmit_skb); 2737 } 2738 } 2739 2740 static ieee80211_rx_result debug_noinline 2741 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2742 { 2743 struct net_device *dev = rx->sdata->dev; 2744 struct sk_buff *skb = rx->skb; 2745 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2746 __le16 fc = hdr->frame_control; 2747 struct sk_buff_head frame_list; 2748 struct ethhdr ethhdr; 2749 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2750 2751 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2752 check_da = NULL; 2753 check_sa = NULL; 2754 } else switch (rx->sdata->vif.type) { 2755 case NL80211_IFTYPE_AP: 2756 case NL80211_IFTYPE_AP_VLAN: 2757 check_da = NULL; 2758 break; 2759 case NL80211_IFTYPE_STATION: 2760 if (!rx->sta || 2761 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2762 check_sa = NULL; 2763 break; 2764 case NL80211_IFTYPE_MESH_POINT: 2765 check_sa = NULL; 2766 break; 2767 default: 2768 break; 2769 } 2770 2771 skb->dev = dev; 2772 __skb_queue_head_init(&frame_list); 2773 2774 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2775 rx->sdata->vif.addr, 2776 rx->sdata->vif.type, 2777 data_offset, true)) 2778 return RX_DROP_UNUSABLE; 2779 2780 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2781 rx->sdata->vif.type, 2782 rx->local->hw.extra_tx_headroom, 2783 check_da, check_sa); 2784 2785 while (!skb_queue_empty(&frame_list)) { 2786 rx->skb = __skb_dequeue(&frame_list); 2787 2788 if (!ieee80211_frame_allowed(rx, fc)) { 2789 dev_kfree_skb(rx->skb); 2790 continue; 2791 } 2792 2793 ieee80211_deliver_skb(rx); 2794 } 2795 2796 return RX_QUEUED; 2797 } 2798 2799 static ieee80211_rx_result debug_noinline 2800 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2801 { 2802 struct sk_buff *skb = rx->skb; 2803 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2804 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2805 __le16 fc = hdr->frame_control; 2806 2807 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2808 return RX_CONTINUE; 2809 2810 if (unlikely(!ieee80211_is_data(fc))) 2811 return RX_CONTINUE; 2812 2813 if (unlikely(!ieee80211_is_data_present(fc))) 2814 return RX_DROP_MONITOR; 2815 2816 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2817 switch (rx->sdata->vif.type) { 2818 case NL80211_IFTYPE_AP_VLAN: 2819 if (!rx->sdata->u.vlan.sta) 2820 return RX_DROP_UNUSABLE; 2821 break; 2822 case NL80211_IFTYPE_STATION: 2823 if (!rx->sdata->u.mgd.use_4addr) 2824 return RX_DROP_UNUSABLE; 2825 break; 2826 default: 2827 return RX_DROP_UNUSABLE; 2828 } 2829 } 2830 2831 if (is_multicast_ether_addr(hdr->addr1)) 2832 return RX_DROP_UNUSABLE; 2833 2834 if (rx->key) { 2835 /* 2836 * We should not receive A-MSDUs on pre-HT connections, 2837 * and HT connections cannot use old ciphers. Thus drop 2838 * them, as in those cases we couldn't even have SPP 2839 * A-MSDUs or such. 2840 */ 2841 switch (rx->key->conf.cipher) { 2842 case WLAN_CIPHER_SUITE_WEP40: 2843 case WLAN_CIPHER_SUITE_WEP104: 2844 case WLAN_CIPHER_SUITE_TKIP: 2845 return RX_DROP_UNUSABLE; 2846 default: 2847 break; 2848 } 2849 } 2850 2851 return __ieee80211_rx_h_amsdu(rx, 0); 2852 } 2853 2854 #ifdef CONFIG_MAC80211_MESH 2855 static ieee80211_rx_result 2856 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2857 { 2858 struct ieee80211_hdr *fwd_hdr, *hdr; 2859 struct ieee80211_tx_info *info; 2860 struct ieee80211s_hdr *mesh_hdr; 2861 struct sk_buff *skb = rx->skb, *fwd_skb; 2862 struct ieee80211_local *local = rx->local; 2863 struct ieee80211_sub_if_data *sdata = rx->sdata; 2864 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2865 u16 ac, q, hdrlen; 2866 int tailroom = 0; 2867 2868 hdr = (struct ieee80211_hdr *) skb->data; 2869 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2870 2871 /* make sure fixed part of mesh header is there, also checks skb len */ 2872 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2873 return RX_DROP_MONITOR; 2874 2875 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2876 2877 /* make sure full mesh header is there, also checks skb len */ 2878 if (!pskb_may_pull(rx->skb, 2879 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2880 return RX_DROP_MONITOR; 2881 2882 /* reload pointers */ 2883 hdr = (struct ieee80211_hdr *) skb->data; 2884 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2885 2886 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2887 return RX_DROP_MONITOR; 2888 2889 /* frame is in RMC, don't forward */ 2890 if (ieee80211_is_data(hdr->frame_control) && 2891 is_multicast_ether_addr(hdr->addr1) && 2892 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2893 return RX_DROP_MONITOR; 2894 2895 if (!ieee80211_is_data(hdr->frame_control)) 2896 return RX_CONTINUE; 2897 2898 if (!mesh_hdr->ttl) 2899 return RX_DROP_MONITOR; 2900 2901 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2902 struct mesh_path *mppath; 2903 char *proxied_addr; 2904 char *mpp_addr; 2905 2906 if (is_multicast_ether_addr(hdr->addr1)) { 2907 mpp_addr = hdr->addr3; 2908 proxied_addr = mesh_hdr->eaddr1; 2909 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2910 MESH_FLAGS_AE_A5_A6) { 2911 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2912 mpp_addr = hdr->addr4; 2913 proxied_addr = mesh_hdr->eaddr2; 2914 } else { 2915 return RX_DROP_MONITOR; 2916 } 2917 2918 rcu_read_lock(); 2919 mppath = mpp_path_lookup(sdata, proxied_addr); 2920 if (!mppath) { 2921 mpp_path_add(sdata, proxied_addr, mpp_addr); 2922 } else { 2923 spin_lock_bh(&mppath->state_lock); 2924 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2925 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2926 mppath->exp_time = jiffies; 2927 spin_unlock_bh(&mppath->state_lock); 2928 } 2929 rcu_read_unlock(); 2930 } 2931 2932 /* Frame has reached destination. Don't forward */ 2933 if (!is_multicast_ether_addr(hdr->addr1) && 2934 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2935 return RX_CONTINUE; 2936 2937 ac = ieee802_1d_to_ac[skb->priority]; 2938 q = sdata->vif.hw_queue[ac]; 2939 if (ieee80211_queue_stopped(&local->hw, q)) { 2940 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2941 return RX_DROP_MONITOR; 2942 } 2943 skb_set_queue_mapping(skb, ac); 2944 2945 if (!--mesh_hdr->ttl) { 2946 if (!is_multicast_ether_addr(hdr->addr1)) 2947 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2948 dropped_frames_ttl); 2949 goto out; 2950 } 2951 2952 if (!ifmsh->mshcfg.dot11MeshForwarding) 2953 goto out; 2954 2955 if (sdata->crypto_tx_tailroom_needed_cnt) 2956 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2957 2958 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2959 IEEE80211_ENCRYPT_HEADROOM, 2960 tailroom, GFP_ATOMIC); 2961 if (!fwd_skb) 2962 goto out; 2963 2964 fwd_skb->dev = sdata->dev; 2965 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2966 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2967 info = IEEE80211_SKB_CB(fwd_skb); 2968 memset(info, 0, sizeof(*info)); 2969 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2970 info->control.vif = &rx->sdata->vif; 2971 info->control.jiffies = jiffies; 2972 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2973 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2974 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2975 /* update power mode indication when forwarding */ 2976 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2977 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2978 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2979 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2980 } else { 2981 /* unable to resolve next hop */ 2982 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2983 fwd_hdr->addr3, 0, 2984 WLAN_REASON_MESH_PATH_NOFORWARD, 2985 fwd_hdr->addr2); 2986 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2987 kfree_skb(fwd_skb); 2988 return RX_DROP_MONITOR; 2989 } 2990 2991 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2992 ieee80211_add_pending_skb(local, fwd_skb); 2993 out: 2994 if (is_multicast_ether_addr(hdr->addr1)) 2995 return RX_CONTINUE; 2996 return RX_DROP_MONITOR; 2997 } 2998 #endif 2999 3000 static ieee80211_rx_result debug_noinline 3001 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3002 { 3003 struct ieee80211_sub_if_data *sdata = rx->sdata; 3004 struct ieee80211_local *local = rx->local; 3005 struct net_device *dev = sdata->dev; 3006 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3007 __le16 fc = hdr->frame_control; 3008 bool port_control; 3009 int err; 3010 3011 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3012 return RX_CONTINUE; 3013 3014 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3015 return RX_DROP_MONITOR; 3016 3017 /* 3018 * Send unexpected-4addr-frame event to hostapd. For older versions, 3019 * also drop the frame to cooked monitor interfaces. 3020 */ 3021 if (ieee80211_has_a4(hdr->frame_control) && 3022 sdata->vif.type == NL80211_IFTYPE_AP) { 3023 if (rx->sta && 3024 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3025 cfg80211_rx_unexpected_4addr_frame( 3026 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3027 return RX_DROP_MONITOR; 3028 } 3029 3030 err = __ieee80211_data_to_8023(rx, &port_control); 3031 if (unlikely(err)) 3032 return RX_DROP_UNUSABLE; 3033 3034 if (!ieee80211_frame_allowed(rx, fc)) 3035 return RX_DROP_MONITOR; 3036 3037 /* directly handle TDLS channel switch requests/responses */ 3038 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3039 cpu_to_be16(ETH_P_TDLS))) { 3040 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3041 3042 if (pskb_may_pull(rx->skb, 3043 offsetof(struct ieee80211_tdls_data, u)) && 3044 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3045 tf->category == WLAN_CATEGORY_TDLS && 3046 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3047 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3048 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3049 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3050 return RX_QUEUED; 3051 } 3052 } 3053 3054 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3055 unlikely(port_control) && sdata->bss) { 3056 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3057 u.ap); 3058 dev = sdata->dev; 3059 rx->sdata = sdata; 3060 } 3061 3062 rx->skb->dev = dev; 3063 3064 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3065 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3066 !is_multicast_ether_addr( 3067 ((struct ethhdr *)rx->skb->data)->h_dest) && 3068 (!local->scanning && 3069 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3070 mod_timer(&local->dynamic_ps_timer, jiffies + 3071 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3072 3073 ieee80211_deliver_skb(rx); 3074 3075 return RX_QUEUED; 3076 } 3077 3078 static ieee80211_rx_result debug_noinline 3079 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3080 { 3081 struct sk_buff *skb = rx->skb; 3082 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3083 struct tid_ampdu_rx *tid_agg_rx; 3084 u16 start_seq_num; 3085 u16 tid; 3086 3087 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3088 return RX_CONTINUE; 3089 3090 if (ieee80211_is_back_req(bar->frame_control)) { 3091 struct { 3092 __le16 control, start_seq_num; 3093 } __packed bar_data; 3094 struct ieee80211_event event = { 3095 .type = BAR_RX_EVENT, 3096 }; 3097 3098 if (!rx->sta) 3099 return RX_DROP_MONITOR; 3100 3101 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3102 &bar_data, sizeof(bar_data))) 3103 return RX_DROP_MONITOR; 3104 3105 tid = le16_to_cpu(bar_data.control) >> 12; 3106 3107 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3108 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3109 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3110 WLAN_BACK_RECIPIENT, 3111 WLAN_REASON_QSTA_REQUIRE_SETUP); 3112 3113 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3114 if (!tid_agg_rx) 3115 return RX_DROP_MONITOR; 3116 3117 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3118 event.u.ba.tid = tid; 3119 event.u.ba.ssn = start_seq_num; 3120 event.u.ba.sta = &rx->sta->sta; 3121 3122 /* reset session timer */ 3123 if (tid_agg_rx->timeout) 3124 mod_timer(&tid_agg_rx->session_timer, 3125 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3126 3127 spin_lock(&tid_agg_rx->reorder_lock); 3128 /* release stored frames up to start of BAR */ 3129 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3130 start_seq_num, frames); 3131 spin_unlock(&tid_agg_rx->reorder_lock); 3132 3133 drv_event_callback(rx->local, rx->sdata, &event); 3134 3135 kfree_skb(skb); 3136 return RX_QUEUED; 3137 } 3138 3139 /* 3140 * After this point, we only want management frames, 3141 * so we can drop all remaining control frames to 3142 * cooked monitor interfaces. 3143 */ 3144 return RX_DROP_MONITOR; 3145 } 3146 3147 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3148 struct ieee80211_mgmt *mgmt, 3149 size_t len) 3150 { 3151 struct ieee80211_local *local = sdata->local; 3152 struct sk_buff *skb; 3153 struct ieee80211_mgmt *resp; 3154 3155 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3156 /* Not to own unicast address */ 3157 return; 3158 } 3159 3160 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3161 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3162 /* Not from the current AP or not associated yet. */ 3163 return; 3164 } 3165 3166 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3167 /* Too short SA Query request frame */ 3168 return; 3169 } 3170 3171 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3172 if (skb == NULL) 3173 return; 3174 3175 skb_reserve(skb, local->hw.extra_tx_headroom); 3176 resp = skb_put_zero(skb, 24); 3177 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3178 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3179 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3180 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3181 IEEE80211_STYPE_ACTION); 3182 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3183 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3184 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3185 memcpy(resp->u.action.u.sa_query.trans_id, 3186 mgmt->u.action.u.sa_query.trans_id, 3187 WLAN_SA_QUERY_TR_ID_LEN); 3188 3189 ieee80211_tx_skb(sdata, skb); 3190 } 3191 3192 static void 3193 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3194 { 3195 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3196 const struct element *ie; 3197 size_t baselen; 3198 3199 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3200 NL80211_EXT_FEATURE_BSS_COLOR)) 3201 return; 3202 3203 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3204 return; 3205 3206 if (rx->sdata->vif.bss_conf.csa_active) 3207 return; 3208 3209 baselen = mgmt->u.beacon.variable - rx->skb->data; 3210 if (baselen > rx->skb->len) 3211 return; 3212 3213 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3214 mgmt->u.beacon.variable, 3215 rx->skb->len - baselen); 3216 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3217 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3218 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3219 const struct ieee80211_he_operation *he_oper; 3220 u8 color; 3221 3222 he_oper = (void *)(ie->data + 1); 3223 if (le32_get_bits(he_oper->he_oper_params, 3224 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3225 return; 3226 3227 color = le32_get_bits(he_oper->he_oper_params, 3228 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3229 if (color == bss_conf->he_bss_color.color) 3230 ieeee80211_obss_color_collision_notify(&rx->sdata->vif, 3231 BIT_ULL(color), 3232 GFP_ATOMIC); 3233 } 3234 } 3235 3236 static ieee80211_rx_result debug_noinline 3237 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3238 { 3239 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3240 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3241 3242 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3243 return RX_CONTINUE; 3244 3245 /* 3246 * From here on, look only at management frames. 3247 * Data and control frames are already handled, 3248 * and unknown (reserved) frames are useless. 3249 */ 3250 if (rx->skb->len < 24) 3251 return RX_DROP_MONITOR; 3252 3253 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3254 return RX_DROP_MONITOR; 3255 3256 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3257 ieee80211_is_beacon(mgmt->frame_control) && 3258 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3259 int sig = 0; 3260 3261 /* sw bss color collision detection */ 3262 ieee80211_rx_check_bss_color_collision(rx); 3263 3264 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3265 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3266 sig = status->signal; 3267 3268 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3269 rx->skb->data, rx->skb->len, 3270 ieee80211_rx_status_to_khz(status), 3271 sig); 3272 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3273 } 3274 3275 if (ieee80211_drop_unencrypted_mgmt(rx)) 3276 return RX_DROP_UNUSABLE; 3277 3278 return RX_CONTINUE; 3279 } 3280 3281 static bool 3282 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3283 { 3284 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3285 struct ieee80211_sub_if_data *sdata = rx->sdata; 3286 3287 /* TWT actions are only supported in AP for the moment */ 3288 if (sdata->vif.type != NL80211_IFTYPE_AP) 3289 return false; 3290 3291 if (!rx->local->ops->add_twt_setup) 3292 return false; 3293 3294 if (!sdata->vif.bss_conf.twt_responder) 3295 return false; 3296 3297 if (!rx->sta) 3298 return false; 3299 3300 switch (mgmt->u.action.u.s1g.action_code) { 3301 case WLAN_S1G_TWT_SETUP: { 3302 struct ieee80211_twt_setup *twt; 3303 3304 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3305 1 + /* action code */ 3306 sizeof(struct ieee80211_twt_setup) + 3307 2 /* TWT req_type agrt */) 3308 break; 3309 3310 twt = (void *)mgmt->u.action.u.s1g.variable; 3311 if (twt->element_id != WLAN_EID_S1G_TWT) 3312 break; 3313 3314 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3315 4 + /* action code + token + tlv */ 3316 twt->length) 3317 break; 3318 3319 return true; /* queue the frame */ 3320 } 3321 case WLAN_S1G_TWT_TEARDOWN: 3322 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3323 break; 3324 3325 return true; /* queue the frame */ 3326 default: 3327 break; 3328 } 3329 3330 return false; 3331 } 3332 3333 static ieee80211_rx_result debug_noinline 3334 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3335 { 3336 struct ieee80211_local *local = rx->local; 3337 struct ieee80211_sub_if_data *sdata = rx->sdata; 3338 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3339 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3340 int len = rx->skb->len; 3341 3342 if (!ieee80211_is_action(mgmt->frame_control)) 3343 return RX_CONTINUE; 3344 3345 /* drop too small frames */ 3346 if (len < IEEE80211_MIN_ACTION_SIZE) 3347 return RX_DROP_UNUSABLE; 3348 3349 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3350 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3351 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3352 return RX_DROP_UNUSABLE; 3353 3354 switch (mgmt->u.action.category) { 3355 case WLAN_CATEGORY_HT: 3356 /* reject HT action frames from stations not supporting HT */ 3357 if (!rx->sta->sta.deflink.ht_cap.ht_supported) 3358 goto invalid; 3359 3360 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3361 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3362 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3363 sdata->vif.type != NL80211_IFTYPE_AP && 3364 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3365 break; 3366 3367 /* verify action & smps_control/chanwidth are present */ 3368 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3369 goto invalid; 3370 3371 switch (mgmt->u.action.u.ht_smps.action) { 3372 case WLAN_HT_ACTION_SMPS: { 3373 struct ieee80211_supported_band *sband; 3374 enum ieee80211_smps_mode smps_mode; 3375 struct sta_opmode_info sta_opmode = {}; 3376 3377 if (sdata->vif.type != NL80211_IFTYPE_AP && 3378 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3379 goto handled; 3380 3381 /* convert to HT capability */ 3382 switch (mgmt->u.action.u.ht_smps.smps_control) { 3383 case WLAN_HT_SMPS_CONTROL_DISABLED: 3384 smps_mode = IEEE80211_SMPS_OFF; 3385 break; 3386 case WLAN_HT_SMPS_CONTROL_STATIC: 3387 smps_mode = IEEE80211_SMPS_STATIC; 3388 break; 3389 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3390 smps_mode = IEEE80211_SMPS_DYNAMIC; 3391 break; 3392 default: 3393 goto invalid; 3394 } 3395 3396 /* if no change do nothing */ 3397 if (rx->sta->sta.smps_mode == smps_mode) 3398 goto handled; 3399 rx->sta->sta.smps_mode = smps_mode; 3400 sta_opmode.smps_mode = 3401 ieee80211_smps_mode_to_smps_mode(smps_mode); 3402 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3403 3404 sband = rx->local->hw.wiphy->bands[status->band]; 3405 3406 rate_control_rate_update(local, sband, rx->sta, 0, 3407 IEEE80211_RC_SMPS_CHANGED); 3408 cfg80211_sta_opmode_change_notify(sdata->dev, 3409 rx->sta->addr, 3410 &sta_opmode, 3411 GFP_ATOMIC); 3412 goto handled; 3413 } 3414 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3415 struct ieee80211_supported_band *sband; 3416 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3417 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3418 struct sta_opmode_info sta_opmode = {}; 3419 3420 /* If it doesn't support 40 MHz it can't change ... */ 3421 if (!(rx->sta->sta.deflink.ht_cap.cap & 3422 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3423 goto handled; 3424 3425 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3426 max_bw = IEEE80211_STA_RX_BW_20; 3427 else 3428 max_bw = ieee80211_sta_cap_rx_bw(&rx->sta->deflink); 3429 3430 /* set cur_max_bandwidth and recalc sta bw */ 3431 rx->sta->deflink.cur_max_bandwidth = max_bw; 3432 new_bw = ieee80211_sta_cur_vht_bw(&rx->sta->deflink); 3433 3434 if (rx->sta->sta.deflink.bandwidth == new_bw) 3435 goto handled; 3436 3437 rx->sta->sta.deflink.bandwidth = new_bw; 3438 sband = rx->local->hw.wiphy->bands[status->band]; 3439 sta_opmode.bw = 3440 ieee80211_sta_rx_bw_to_chan_width(&rx->sta->deflink); 3441 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3442 3443 rate_control_rate_update(local, sband, rx->sta, 0, 3444 IEEE80211_RC_BW_CHANGED); 3445 cfg80211_sta_opmode_change_notify(sdata->dev, 3446 rx->sta->addr, 3447 &sta_opmode, 3448 GFP_ATOMIC); 3449 goto handled; 3450 } 3451 default: 3452 goto invalid; 3453 } 3454 3455 break; 3456 case WLAN_CATEGORY_PUBLIC: 3457 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3458 goto invalid; 3459 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3460 break; 3461 if (!rx->sta) 3462 break; 3463 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3464 break; 3465 if (mgmt->u.action.u.ext_chan_switch.action_code != 3466 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3467 break; 3468 if (len < offsetof(struct ieee80211_mgmt, 3469 u.action.u.ext_chan_switch.variable)) 3470 goto invalid; 3471 goto queue; 3472 case WLAN_CATEGORY_VHT: 3473 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3474 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3475 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3476 sdata->vif.type != NL80211_IFTYPE_AP && 3477 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3478 break; 3479 3480 /* verify action code is present */ 3481 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3482 goto invalid; 3483 3484 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3485 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3486 /* verify opmode is present */ 3487 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3488 goto invalid; 3489 goto queue; 3490 } 3491 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3492 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3493 goto invalid; 3494 goto queue; 3495 } 3496 default: 3497 break; 3498 } 3499 break; 3500 case WLAN_CATEGORY_BACK: 3501 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3502 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3503 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3504 sdata->vif.type != NL80211_IFTYPE_AP && 3505 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3506 break; 3507 3508 /* verify action_code is present */ 3509 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3510 break; 3511 3512 switch (mgmt->u.action.u.addba_req.action_code) { 3513 case WLAN_ACTION_ADDBA_REQ: 3514 if (len < (IEEE80211_MIN_ACTION_SIZE + 3515 sizeof(mgmt->u.action.u.addba_req))) 3516 goto invalid; 3517 break; 3518 case WLAN_ACTION_ADDBA_RESP: 3519 if (len < (IEEE80211_MIN_ACTION_SIZE + 3520 sizeof(mgmt->u.action.u.addba_resp))) 3521 goto invalid; 3522 break; 3523 case WLAN_ACTION_DELBA: 3524 if (len < (IEEE80211_MIN_ACTION_SIZE + 3525 sizeof(mgmt->u.action.u.delba))) 3526 goto invalid; 3527 break; 3528 default: 3529 goto invalid; 3530 } 3531 3532 goto queue; 3533 case WLAN_CATEGORY_SPECTRUM_MGMT: 3534 /* verify action_code is present */ 3535 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3536 break; 3537 3538 switch (mgmt->u.action.u.measurement.action_code) { 3539 case WLAN_ACTION_SPCT_MSR_REQ: 3540 if (status->band != NL80211_BAND_5GHZ) 3541 break; 3542 3543 if (len < (IEEE80211_MIN_ACTION_SIZE + 3544 sizeof(mgmt->u.action.u.measurement))) 3545 break; 3546 3547 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3548 break; 3549 3550 ieee80211_process_measurement_req(sdata, mgmt, len); 3551 goto handled; 3552 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3553 u8 *bssid; 3554 if (len < (IEEE80211_MIN_ACTION_SIZE + 3555 sizeof(mgmt->u.action.u.chan_switch))) 3556 break; 3557 3558 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3559 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3560 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3561 break; 3562 3563 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3564 bssid = sdata->deflink.u.mgd.bssid; 3565 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3566 bssid = sdata->u.ibss.bssid; 3567 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3568 bssid = mgmt->sa; 3569 else 3570 break; 3571 3572 if (!ether_addr_equal(mgmt->bssid, bssid)) 3573 break; 3574 3575 goto queue; 3576 } 3577 } 3578 break; 3579 case WLAN_CATEGORY_SELF_PROTECTED: 3580 if (len < (IEEE80211_MIN_ACTION_SIZE + 3581 sizeof(mgmt->u.action.u.self_prot.action_code))) 3582 break; 3583 3584 switch (mgmt->u.action.u.self_prot.action_code) { 3585 case WLAN_SP_MESH_PEERING_OPEN: 3586 case WLAN_SP_MESH_PEERING_CLOSE: 3587 case WLAN_SP_MESH_PEERING_CONFIRM: 3588 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3589 goto invalid; 3590 if (sdata->u.mesh.user_mpm) 3591 /* userspace handles this frame */ 3592 break; 3593 goto queue; 3594 case WLAN_SP_MGK_INFORM: 3595 case WLAN_SP_MGK_ACK: 3596 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3597 goto invalid; 3598 break; 3599 } 3600 break; 3601 case WLAN_CATEGORY_MESH_ACTION: 3602 if (len < (IEEE80211_MIN_ACTION_SIZE + 3603 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3604 break; 3605 3606 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3607 break; 3608 if (mesh_action_is_path_sel(mgmt) && 3609 !mesh_path_sel_is_hwmp(sdata)) 3610 break; 3611 goto queue; 3612 case WLAN_CATEGORY_S1G: 3613 switch (mgmt->u.action.u.s1g.action_code) { 3614 case WLAN_S1G_TWT_SETUP: 3615 case WLAN_S1G_TWT_TEARDOWN: 3616 if (ieee80211_process_rx_twt_action(rx)) 3617 goto queue; 3618 break; 3619 default: 3620 break; 3621 } 3622 break; 3623 } 3624 3625 return RX_CONTINUE; 3626 3627 invalid: 3628 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3629 /* will return in the next handlers */ 3630 return RX_CONTINUE; 3631 3632 handled: 3633 if (rx->sta) 3634 rx->sta->deflink.rx_stats.packets++; 3635 dev_kfree_skb(rx->skb); 3636 return RX_QUEUED; 3637 3638 queue: 3639 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3640 return RX_QUEUED; 3641 } 3642 3643 static ieee80211_rx_result debug_noinline 3644 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3645 { 3646 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3647 struct cfg80211_rx_info info = { 3648 .freq = ieee80211_rx_status_to_khz(status), 3649 .buf = rx->skb->data, 3650 .len = rx->skb->len, 3651 .link_id = rx->link_id, 3652 .have_link_id = rx->link_id >= 0, 3653 }; 3654 3655 /* skip known-bad action frames and return them in the next handler */ 3656 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3657 return RX_CONTINUE; 3658 3659 /* 3660 * Getting here means the kernel doesn't know how to handle 3661 * it, but maybe userspace does ... include returned frames 3662 * so userspace can register for those to know whether ones 3663 * it transmitted were processed or returned. 3664 */ 3665 3666 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3667 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3668 info.sig_dbm = status->signal; 3669 3670 if (ieee80211_is_timing_measurement(rx->skb) || 3671 ieee80211_is_ftm(rx->skb)) { 3672 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3673 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3674 } 3675 3676 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3677 if (rx->sta) 3678 rx->sta->deflink.rx_stats.packets++; 3679 dev_kfree_skb(rx->skb); 3680 return RX_QUEUED; 3681 } 3682 3683 return RX_CONTINUE; 3684 } 3685 3686 static ieee80211_rx_result debug_noinline 3687 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3688 { 3689 struct ieee80211_sub_if_data *sdata = rx->sdata; 3690 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3691 int len = rx->skb->len; 3692 3693 if (!ieee80211_is_action(mgmt->frame_control)) 3694 return RX_CONTINUE; 3695 3696 switch (mgmt->u.action.category) { 3697 case WLAN_CATEGORY_SA_QUERY: 3698 if (len < (IEEE80211_MIN_ACTION_SIZE + 3699 sizeof(mgmt->u.action.u.sa_query))) 3700 break; 3701 3702 switch (mgmt->u.action.u.sa_query.action) { 3703 case WLAN_ACTION_SA_QUERY_REQUEST: 3704 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3705 break; 3706 ieee80211_process_sa_query_req(sdata, mgmt, len); 3707 goto handled; 3708 } 3709 break; 3710 } 3711 3712 return RX_CONTINUE; 3713 3714 handled: 3715 if (rx->sta) 3716 rx->sta->deflink.rx_stats.packets++; 3717 dev_kfree_skb(rx->skb); 3718 return RX_QUEUED; 3719 } 3720 3721 static ieee80211_rx_result debug_noinline 3722 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3723 { 3724 struct ieee80211_local *local = rx->local; 3725 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3726 struct sk_buff *nskb; 3727 struct ieee80211_sub_if_data *sdata = rx->sdata; 3728 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3729 3730 if (!ieee80211_is_action(mgmt->frame_control)) 3731 return RX_CONTINUE; 3732 3733 /* 3734 * For AP mode, hostapd is responsible for handling any action 3735 * frames that we didn't handle, including returning unknown 3736 * ones. For all other modes we will return them to the sender, 3737 * setting the 0x80 bit in the action category, as required by 3738 * 802.11-2012 9.24.4. 3739 * Newer versions of hostapd shall also use the management frame 3740 * registration mechanisms, but older ones still use cooked 3741 * monitor interfaces so push all frames there. 3742 */ 3743 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3744 (sdata->vif.type == NL80211_IFTYPE_AP || 3745 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3746 return RX_DROP_MONITOR; 3747 3748 if (is_multicast_ether_addr(mgmt->da)) 3749 return RX_DROP_MONITOR; 3750 3751 /* do not return rejected action frames */ 3752 if (mgmt->u.action.category & 0x80) 3753 return RX_DROP_UNUSABLE; 3754 3755 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3756 GFP_ATOMIC); 3757 if (nskb) { 3758 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3759 3760 nmgmt->u.action.category |= 0x80; 3761 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3762 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3763 3764 memset(nskb->cb, 0, sizeof(nskb->cb)); 3765 3766 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3767 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3768 3769 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3770 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3771 IEEE80211_TX_CTL_NO_CCK_RATE; 3772 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3773 info->hw_queue = 3774 local->hw.offchannel_tx_hw_queue; 3775 } 3776 3777 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3778 status->band); 3779 } 3780 dev_kfree_skb(rx->skb); 3781 return RX_QUEUED; 3782 } 3783 3784 static ieee80211_rx_result debug_noinline 3785 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3786 { 3787 struct ieee80211_sub_if_data *sdata = rx->sdata; 3788 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3789 3790 if (!ieee80211_is_ext(hdr->frame_control)) 3791 return RX_CONTINUE; 3792 3793 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3794 return RX_DROP_MONITOR; 3795 3796 /* for now only beacons are ext, so queue them */ 3797 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3798 3799 return RX_QUEUED; 3800 } 3801 3802 static ieee80211_rx_result debug_noinline 3803 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3804 { 3805 struct ieee80211_sub_if_data *sdata = rx->sdata; 3806 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3807 __le16 stype; 3808 3809 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3810 3811 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3812 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3813 sdata->vif.type != NL80211_IFTYPE_OCB && 3814 sdata->vif.type != NL80211_IFTYPE_STATION) 3815 return RX_DROP_MONITOR; 3816 3817 switch (stype) { 3818 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3819 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3820 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3821 /* process for all: mesh, mlme, ibss */ 3822 break; 3823 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3824 if (is_multicast_ether_addr(mgmt->da) && 3825 !is_broadcast_ether_addr(mgmt->da)) 3826 return RX_DROP_MONITOR; 3827 3828 /* process only for station/IBSS */ 3829 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3830 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3831 return RX_DROP_MONITOR; 3832 break; 3833 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3834 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3835 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3836 if (is_multicast_ether_addr(mgmt->da) && 3837 !is_broadcast_ether_addr(mgmt->da)) 3838 return RX_DROP_MONITOR; 3839 3840 /* process only for station */ 3841 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3842 return RX_DROP_MONITOR; 3843 break; 3844 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3845 /* process only for ibss and mesh */ 3846 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3847 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3848 return RX_DROP_MONITOR; 3849 break; 3850 default: 3851 return RX_DROP_MONITOR; 3852 } 3853 3854 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3855 3856 return RX_QUEUED; 3857 } 3858 3859 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3860 struct ieee80211_rate *rate) 3861 { 3862 struct ieee80211_sub_if_data *sdata; 3863 struct ieee80211_local *local = rx->local; 3864 struct sk_buff *skb = rx->skb, *skb2; 3865 struct net_device *prev_dev = NULL; 3866 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3867 int needed_headroom; 3868 3869 /* 3870 * If cooked monitor has been processed already, then 3871 * don't do it again. If not, set the flag. 3872 */ 3873 if (rx->flags & IEEE80211_RX_CMNTR) 3874 goto out_free_skb; 3875 rx->flags |= IEEE80211_RX_CMNTR; 3876 3877 /* If there are no cooked monitor interfaces, just free the SKB */ 3878 if (!local->cooked_mntrs) 3879 goto out_free_skb; 3880 3881 /* vendor data is long removed here */ 3882 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3883 /* room for the radiotap header based on driver features */ 3884 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3885 3886 if (skb_headroom(skb) < needed_headroom && 3887 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3888 goto out_free_skb; 3889 3890 /* prepend radiotap information */ 3891 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3892 false); 3893 3894 skb_reset_mac_header(skb); 3895 skb->ip_summed = CHECKSUM_UNNECESSARY; 3896 skb->pkt_type = PACKET_OTHERHOST; 3897 skb->protocol = htons(ETH_P_802_2); 3898 3899 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3900 if (!ieee80211_sdata_running(sdata)) 3901 continue; 3902 3903 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3904 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3905 continue; 3906 3907 if (prev_dev) { 3908 skb2 = skb_clone(skb, GFP_ATOMIC); 3909 if (skb2) { 3910 skb2->dev = prev_dev; 3911 netif_receive_skb(skb2); 3912 } 3913 } 3914 3915 prev_dev = sdata->dev; 3916 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3917 } 3918 3919 if (prev_dev) { 3920 skb->dev = prev_dev; 3921 netif_receive_skb(skb); 3922 return; 3923 } 3924 3925 out_free_skb: 3926 dev_kfree_skb(skb); 3927 } 3928 3929 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3930 ieee80211_rx_result res) 3931 { 3932 switch (res) { 3933 case RX_DROP_MONITOR: 3934 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3935 if (rx->sta) 3936 rx->sta->deflink.rx_stats.dropped++; 3937 fallthrough; 3938 case RX_CONTINUE: { 3939 struct ieee80211_rate *rate = NULL; 3940 struct ieee80211_supported_band *sband; 3941 struct ieee80211_rx_status *status; 3942 3943 status = IEEE80211_SKB_RXCB((rx->skb)); 3944 3945 sband = rx->local->hw.wiphy->bands[status->band]; 3946 if (status->encoding == RX_ENC_LEGACY) 3947 rate = &sband->bitrates[status->rate_idx]; 3948 3949 ieee80211_rx_cooked_monitor(rx, rate); 3950 break; 3951 } 3952 case RX_DROP_UNUSABLE: 3953 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3954 if (rx->sta) 3955 rx->sta->deflink.rx_stats.dropped++; 3956 dev_kfree_skb(rx->skb); 3957 break; 3958 case RX_QUEUED: 3959 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3960 break; 3961 } 3962 } 3963 3964 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3965 struct sk_buff_head *frames) 3966 { 3967 ieee80211_rx_result res = RX_DROP_MONITOR; 3968 struct sk_buff *skb; 3969 3970 #define CALL_RXH(rxh) \ 3971 do { \ 3972 res = rxh(rx); \ 3973 if (res != RX_CONTINUE) \ 3974 goto rxh_next; \ 3975 } while (0) 3976 3977 /* Lock here to avoid hitting all of the data used in the RX 3978 * path (e.g. key data, station data, ...) concurrently when 3979 * a frame is released from the reorder buffer due to timeout 3980 * from the timer, potentially concurrently with RX from the 3981 * driver. 3982 */ 3983 spin_lock_bh(&rx->local->rx_path_lock); 3984 3985 while ((skb = __skb_dequeue(frames))) { 3986 /* 3987 * all the other fields are valid across frames 3988 * that belong to an aMPDU since they are on the 3989 * same TID from the same station 3990 */ 3991 rx->skb = skb; 3992 3993 if (WARN_ON_ONCE(!rx->link)) 3994 goto rxh_next; 3995 3996 CALL_RXH(ieee80211_rx_h_check_more_data); 3997 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3998 CALL_RXH(ieee80211_rx_h_sta_process); 3999 CALL_RXH(ieee80211_rx_h_decrypt); 4000 CALL_RXH(ieee80211_rx_h_defragment); 4001 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4002 /* must be after MMIC verify so header is counted in MPDU mic */ 4003 #ifdef CONFIG_MAC80211_MESH 4004 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 4005 CALL_RXH(ieee80211_rx_h_mesh_fwding); 4006 #endif 4007 CALL_RXH(ieee80211_rx_h_amsdu); 4008 CALL_RXH(ieee80211_rx_h_data); 4009 4010 /* special treatment -- needs the queue */ 4011 res = ieee80211_rx_h_ctrl(rx, frames); 4012 if (res != RX_CONTINUE) 4013 goto rxh_next; 4014 4015 CALL_RXH(ieee80211_rx_h_mgmt_check); 4016 CALL_RXH(ieee80211_rx_h_action); 4017 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4018 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4019 CALL_RXH(ieee80211_rx_h_action_return); 4020 CALL_RXH(ieee80211_rx_h_ext); 4021 CALL_RXH(ieee80211_rx_h_mgmt); 4022 4023 rxh_next: 4024 ieee80211_rx_handlers_result(rx, res); 4025 4026 #undef CALL_RXH 4027 } 4028 4029 spin_unlock_bh(&rx->local->rx_path_lock); 4030 } 4031 4032 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4033 { 4034 struct sk_buff_head reorder_release; 4035 ieee80211_rx_result res = RX_DROP_MONITOR; 4036 4037 __skb_queue_head_init(&reorder_release); 4038 4039 #define CALL_RXH(rxh) \ 4040 do { \ 4041 res = rxh(rx); \ 4042 if (res != RX_CONTINUE) \ 4043 goto rxh_next; \ 4044 } while (0) 4045 4046 CALL_RXH(ieee80211_rx_h_check_dup); 4047 CALL_RXH(ieee80211_rx_h_check); 4048 4049 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4050 4051 ieee80211_rx_handlers(rx, &reorder_release); 4052 return; 4053 4054 rxh_next: 4055 ieee80211_rx_handlers_result(rx, res); 4056 4057 #undef CALL_RXH 4058 } 4059 4060 /* 4061 * This function makes calls into the RX path, therefore 4062 * it has to be invoked under RCU read lock. 4063 */ 4064 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4065 { 4066 struct sk_buff_head frames; 4067 struct ieee80211_rx_data rx = { 4068 .sta = sta, 4069 .sdata = sta->sdata, 4070 .local = sta->local, 4071 /* This is OK -- must be QoS data frame */ 4072 .security_idx = tid, 4073 .seqno_idx = tid, 4074 .link_id = -1, 4075 }; 4076 struct tid_ampdu_rx *tid_agg_rx; 4077 u8 link_id; 4078 4079 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4080 if (!tid_agg_rx) 4081 return; 4082 4083 __skb_queue_head_init(&frames); 4084 4085 spin_lock(&tid_agg_rx->reorder_lock); 4086 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4087 spin_unlock(&tid_agg_rx->reorder_lock); 4088 4089 if (!skb_queue_empty(&frames)) { 4090 struct ieee80211_event event = { 4091 .type = BA_FRAME_TIMEOUT, 4092 .u.ba.tid = tid, 4093 .u.ba.sta = &sta->sta, 4094 }; 4095 drv_event_callback(rx.local, rx.sdata, &event); 4096 } 4097 /* FIXME: statistics won't be right with this */ 4098 link_id = sta->sta.valid_links ? ffs(sta->sta.valid_links) - 1 : 0; 4099 rx.link = rcu_dereference(sta->sdata->link[link_id]); 4100 4101 ieee80211_rx_handlers(&rx, &frames); 4102 } 4103 4104 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4105 u16 ssn, u64 filtered, 4106 u16 received_mpdus) 4107 { 4108 struct sta_info *sta; 4109 struct tid_ampdu_rx *tid_agg_rx; 4110 struct sk_buff_head frames; 4111 struct ieee80211_rx_data rx = { 4112 /* This is OK -- must be QoS data frame */ 4113 .security_idx = tid, 4114 .seqno_idx = tid, 4115 .link_id = -1, 4116 }; 4117 int i, diff; 4118 4119 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4120 return; 4121 4122 __skb_queue_head_init(&frames); 4123 4124 sta = container_of(pubsta, struct sta_info, sta); 4125 4126 rx.sta = sta; 4127 rx.sdata = sta->sdata; 4128 rx.link = &rx.sdata->deflink; 4129 rx.local = sta->local; 4130 4131 rcu_read_lock(); 4132 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4133 if (!tid_agg_rx) 4134 goto out; 4135 4136 spin_lock_bh(&tid_agg_rx->reorder_lock); 4137 4138 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4139 int release; 4140 4141 /* release all frames in the reorder buffer */ 4142 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4143 IEEE80211_SN_MODULO; 4144 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4145 release, &frames); 4146 /* update ssn to match received ssn */ 4147 tid_agg_rx->head_seq_num = ssn; 4148 } else { 4149 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4150 &frames); 4151 } 4152 4153 /* handle the case that received ssn is behind the mac ssn. 4154 * it can be tid_agg_rx->buf_size behind and still be valid */ 4155 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4156 if (diff >= tid_agg_rx->buf_size) { 4157 tid_agg_rx->reorder_buf_filtered = 0; 4158 goto release; 4159 } 4160 filtered = filtered >> diff; 4161 ssn += diff; 4162 4163 /* update bitmap */ 4164 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4165 int index = (ssn + i) % tid_agg_rx->buf_size; 4166 4167 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4168 if (filtered & BIT_ULL(i)) 4169 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4170 } 4171 4172 /* now process also frames that the filter marking released */ 4173 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4174 4175 release: 4176 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4177 4178 ieee80211_rx_handlers(&rx, &frames); 4179 4180 out: 4181 rcu_read_unlock(); 4182 } 4183 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4184 4185 /* main receive path */ 4186 4187 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4188 { 4189 return ether_addr_equal(raddr, addr) || 4190 is_broadcast_ether_addr(raddr); 4191 } 4192 4193 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4194 { 4195 struct ieee80211_sub_if_data *sdata = rx->sdata; 4196 struct sk_buff *skb = rx->skb; 4197 struct ieee80211_hdr *hdr = (void *)skb->data; 4198 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4199 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4200 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4201 ieee80211_is_s1g_beacon(hdr->frame_control); 4202 4203 switch (sdata->vif.type) { 4204 case NL80211_IFTYPE_STATION: 4205 if (!bssid && !sdata->u.mgd.use_4addr) 4206 return false; 4207 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4208 return false; 4209 if (multicast) 4210 return true; 4211 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4212 case NL80211_IFTYPE_ADHOC: 4213 if (!bssid) 4214 return false; 4215 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4216 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4217 !is_valid_ether_addr(hdr->addr2)) 4218 return false; 4219 if (ieee80211_is_beacon(hdr->frame_control)) 4220 return true; 4221 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4222 return false; 4223 if (!multicast && 4224 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4225 return false; 4226 if (!rx->sta) { 4227 int rate_idx; 4228 if (status->encoding != RX_ENC_LEGACY) 4229 rate_idx = 0; /* TODO: HT/VHT rates */ 4230 else 4231 rate_idx = status->rate_idx; 4232 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4233 BIT(rate_idx)); 4234 } 4235 return true; 4236 case NL80211_IFTYPE_OCB: 4237 if (!bssid) 4238 return false; 4239 if (!ieee80211_is_data_present(hdr->frame_control)) 4240 return false; 4241 if (!is_broadcast_ether_addr(bssid)) 4242 return false; 4243 if (!multicast && 4244 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4245 return false; 4246 if (!rx->sta) { 4247 int rate_idx; 4248 if (status->encoding != RX_ENC_LEGACY) 4249 rate_idx = 0; /* TODO: HT rates */ 4250 else 4251 rate_idx = status->rate_idx; 4252 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4253 BIT(rate_idx)); 4254 } 4255 return true; 4256 case NL80211_IFTYPE_MESH_POINT: 4257 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4258 return false; 4259 if (multicast) 4260 return true; 4261 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4262 case NL80211_IFTYPE_AP_VLAN: 4263 case NL80211_IFTYPE_AP: 4264 if (!bssid) 4265 return ieee80211_is_our_addr(sdata, hdr->addr1, 4266 &rx->link_id); 4267 4268 if (!is_broadcast_ether_addr(bssid) && 4269 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4270 /* 4271 * Accept public action frames even when the 4272 * BSSID doesn't match, this is used for P2P 4273 * and location updates. Note that mac80211 4274 * itself never looks at these frames. 4275 */ 4276 if (!multicast && 4277 !ieee80211_is_our_addr(sdata, hdr->addr1, 4278 &rx->link_id)) 4279 return false; 4280 if (ieee80211_is_public_action(hdr, skb->len)) 4281 return true; 4282 return ieee80211_is_beacon(hdr->frame_control); 4283 } 4284 4285 if (!ieee80211_has_tods(hdr->frame_control)) { 4286 /* ignore data frames to TDLS-peers */ 4287 if (ieee80211_is_data(hdr->frame_control)) 4288 return false; 4289 /* ignore action frames to TDLS-peers */ 4290 if (ieee80211_is_action(hdr->frame_control) && 4291 !is_broadcast_ether_addr(bssid) && 4292 !ether_addr_equal(bssid, hdr->addr1)) 4293 return false; 4294 } 4295 4296 /* 4297 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4298 * the BSSID - we've checked that already but may have accepted 4299 * the wildcard (ff:ff:ff:ff:ff:ff). 4300 * 4301 * It also says: 4302 * The BSSID of the Data frame is determined as follows: 4303 * a) If the STA is contained within an AP or is associated 4304 * with an AP, the BSSID is the address currently in use 4305 * by the STA contained in the AP. 4306 * 4307 * So we should not accept data frames with an address that's 4308 * multicast. 4309 * 4310 * Accepting it also opens a security problem because stations 4311 * could encrypt it with the GTK and inject traffic that way. 4312 */ 4313 if (ieee80211_is_data(hdr->frame_control) && multicast) 4314 return false; 4315 4316 return true; 4317 case NL80211_IFTYPE_P2P_DEVICE: 4318 return ieee80211_is_public_action(hdr, skb->len) || 4319 ieee80211_is_probe_req(hdr->frame_control) || 4320 ieee80211_is_probe_resp(hdr->frame_control) || 4321 ieee80211_is_beacon(hdr->frame_control); 4322 case NL80211_IFTYPE_NAN: 4323 /* Currently no frames on NAN interface are allowed */ 4324 return false; 4325 default: 4326 break; 4327 } 4328 4329 WARN_ON_ONCE(1); 4330 return false; 4331 } 4332 4333 void ieee80211_check_fast_rx(struct sta_info *sta) 4334 { 4335 struct ieee80211_sub_if_data *sdata = sta->sdata; 4336 struct ieee80211_local *local = sdata->local; 4337 struct ieee80211_key *key; 4338 struct ieee80211_fast_rx fastrx = { 4339 .dev = sdata->dev, 4340 .vif_type = sdata->vif.type, 4341 .control_port_protocol = sdata->control_port_protocol, 4342 }, *old, *new = NULL; 4343 bool set_offload = false; 4344 bool assign = false; 4345 bool offload; 4346 4347 /* use sparse to check that we don't return without updating */ 4348 __acquire(check_fast_rx); 4349 4350 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4351 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4352 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4353 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4354 4355 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4356 4357 /* fast-rx doesn't do reordering */ 4358 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4359 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4360 goto clear; 4361 4362 switch (sdata->vif.type) { 4363 case NL80211_IFTYPE_STATION: 4364 if (sta->sta.tdls) { 4365 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4366 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4367 fastrx.expected_ds_bits = 0; 4368 } else { 4369 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4370 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4371 fastrx.expected_ds_bits = 4372 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4373 } 4374 4375 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4376 fastrx.expected_ds_bits |= 4377 cpu_to_le16(IEEE80211_FCTL_TODS); 4378 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4379 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4380 } 4381 4382 if (!sdata->u.mgd.powersave) 4383 break; 4384 4385 /* software powersave is a huge mess, avoid all of it */ 4386 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4387 goto clear; 4388 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4389 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4390 goto clear; 4391 break; 4392 case NL80211_IFTYPE_AP_VLAN: 4393 case NL80211_IFTYPE_AP: 4394 /* parallel-rx requires this, at least with calls to 4395 * ieee80211_sta_ps_transition() 4396 */ 4397 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4398 goto clear; 4399 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4400 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4401 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4402 4403 fastrx.internal_forward = 4404 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4405 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4406 !sdata->u.vlan.sta); 4407 4408 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4409 sdata->u.vlan.sta) { 4410 fastrx.expected_ds_bits |= 4411 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4412 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4413 fastrx.internal_forward = 0; 4414 } 4415 4416 break; 4417 default: 4418 goto clear; 4419 } 4420 4421 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4422 goto clear; 4423 4424 rcu_read_lock(); 4425 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4426 if (!key) 4427 key = rcu_dereference(sdata->default_unicast_key); 4428 if (key) { 4429 switch (key->conf.cipher) { 4430 case WLAN_CIPHER_SUITE_TKIP: 4431 /* we don't want to deal with MMIC in fast-rx */ 4432 goto clear_rcu; 4433 case WLAN_CIPHER_SUITE_CCMP: 4434 case WLAN_CIPHER_SUITE_CCMP_256: 4435 case WLAN_CIPHER_SUITE_GCMP: 4436 case WLAN_CIPHER_SUITE_GCMP_256: 4437 break; 4438 default: 4439 /* We also don't want to deal with 4440 * WEP or cipher scheme. 4441 */ 4442 goto clear_rcu; 4443 } 4444 4445 fastrx.key = true; 4446 fastrx.icv_len = key->conf.icv_len; 4447 } 4448 4449 assign = true; 4450 clear_rcu: 4451 rcu_read_unlock(); 4452 clear: 4453 __release(check_fast_rx); 4454 4455 if (assign) 4456 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4457 4458 offload = assign && 4459 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4460 4461 if (offload) 4462 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4463 else 4464 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4465 4466 if (set_offload) 4467 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4468 4469 spin_lock_bh(&sta->lock); 4470 old = rcu_dereference_protected(sta->fast_rx, true); 4471 rcu_assign_pointer(sta->fast_rx, new); 4472 spin_unlock_bh(&sta->lock); 4473 4474 if (old) 4475 kfree_rcu(old, rcu_head); 4476 } 4477 4478 void ieee80211_clear_fast_rx(struct sta_info *sta) 4479 { 4480 struct ieee80211_fast_rx *old; 4481 4482 spin_lock_bh(&sta->lock); 4483 old = rcu_dereference_protected(sta->fast_rx, true); 4484 RCU_INIT_POINTER(sta->fast_rx, NULL); 4485 spin_unlock_bh(&sta->lock); 4486 4487 if (old) 4488 kfree_rcu(old, rcu_head); 4489 } 4490 4491 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4492 { 4493 struct ieee80211_local *local = sdata->local; 4494 struct sta_info *sta; 4495 4496 lockdep_assert_held(&local->sta_mtx); 4497 4498 list_for_each_entry(sta, &local->sta_list, list) { 4499 if (sdata != sta->sdata && 4500 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4501 continue; 4502 ieee80211_check_fast_rx(sta); 4503 } 4504 } 4505 4506 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4507 { 4508 struct ieee80211_local *local = sdata->local; 4509 4510 mutex_lock(&local->sta_mtx); 4511 __ieee80211_check_fast_rx_iface(sdata); 4512 mutex_unlock(&local->sta_mtx); 4513 } 4514 4515 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4516 struct ieee80211_fast_rx *fast_rx, 4517 int orig_len) 4518 { 4519 struct ieee80211_sta_rx_stats *stats; 4520 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4521 struct sta_info *sta = rx->sta; 4522 struct sk_buff *skb = rx->skb; 4523 void *sa = skb->data + ETH_ALEN; 4524 void *da = skb->data; 4525 4526 stats = &sta->deflink.rx_stats; 4527 if (fast_rx->uses_rss) 4528 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats); 4529 4530 /* statistics part of ieee80211_rx_h_sta_process() */ 4531 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4532 stats->last_signal = status->signal; 4533 if (!fast_rx->uses_rss) 4534 ewma_signal_add(&sta->deflink.rx_stats_avg.signal, 4535 -status->signal); 4536 } 4537 4538 if (status->chains) { 4539 int i; 4540 4541 stats->chains = status->chains; 4542 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4543 int signal = status->chain_signal[i]; 4544 4545 if (!(status->chains & BIT(i))) 4546 continue; 4547 4548 stats->chain_signal_last[i] = signal; 4549 if (!fast_rx->uses_rss) 4550 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i], 4551 -signal); 4552 } 4553 } 4554 /* end of statistics */ 4555 4556 stats->last_rx = jiffies; 4557 stats->last_rate = sta_stats_encode_rate(status); 4558 4559 stats->fragments++; 4560 stats->packets++; 4561 4562 skb->dev = fast_rx->dev; 4563 4564 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4565 4566 /* The seqno index has the same property as needed 4567 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4568 * for non-QoS-data frames. Here we know it's a data 4569 * frame, so count MSDUs. 4570 */ 4571 u64_stats_update_begin(&stats->syncp); 4572 stats->msdu[rx->seqno_idx]++; 4573 stats->bytes += orig_len; 4574 u64_stats_update_end(&stats->syncp); 4575 4576 if (fast_rx->internal_forward) { 4577 struct sk_buff *xmit_skb = NULL; 4578 if (is_multicast_ether_addr(da)) { 4579 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4580 } else if (!ether_addr_equal(da, sa) && 4581 sta_info_get(rx->sdata, da)) { 4582 xmit_skb = skb; 4583 skb = NULL; 4584 } 4585 4586 if (xmit_skb) { 4587 /* 4588 * Send to wireless media and increase priority by 256 4589 * to keep the received priority instead of 4590 * reclassifying the frame (see cfg80211_classify8021d). 4591 */ 4592 xmit_skb->priority += 256; 4593 xmit_skb->protocol = htons(ETH_P_802_3); 4594 skb_reset_network_header(xmit_skb); 4595 skb_reset_mac_header(xmit_skb); 4596 dev_queue_xmit(xmit_skb); 4597 } 4598 4599 if (!skb) 4600 return; 4601 } 4602 4603 /* deliver to local stack */ 4604 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4605 ieee80211_deliver_skb_to_local_stack(skb, rx); 4606 } 4607 4608 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4609 struct ieee80211_fast_rx *fast_rx) 4610 { 4611 struct sk_buff *skb = rx->skb; 4612 struct ieee80211_hdr *hdr = (void *)skb->data; 4613 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4614 struct sta_info *sta = rx->sta; 4615 int orig_len = skb->len; 4616 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4617 int snap_offs = hdrlen; 4618 struct { 4619 u8 snap[sizeof(rfc1042_header)]; 4620 __be16 proto; 4621 } *payload __aligned(2); 4622 struct { 4623 u8 da[ETH_ALEN]; 4624 u8 sa[ETH_ALEN]; 4625 } addrs __aligned(2); 4626 struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats; 4627 4628 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4629 * to a common data structure; drivers can implement that per queue 4630 * but we don't have that information in mac80211 4631 */ 4632 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4633 return false; 4634 4635 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4636 4637 /* If using encryption, we also need to have: 4638 * - PN_VALIDATED: similar, but the implementation is tricky 4639 * - DECRYPTED: necessary for PN_VALIDATED 4640 */ 4641 if (fast_rx->key && 4642 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4643 return false; 4644 4645 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4646 return false; 4647 4648 if (unlikely(ieee80211_is_frag(hdr))) 4649 return false; 4650 4651 /* Since our interface address cannot be multicast, this 4652 * implicitly also rejects multicast frames without the 4653 * explicit check. 4654 * 4655 * We shouldn't get any *data* frames not addressed to us 4656 * (AP mode will accept multicast *management* frames), but 4657 * punting here will make it go through the full checks in 4658 * ieee80211_accept_frame(). 4659 */ 4660 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4661 return false; 4662 4663 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4664 IEEE80211_FCTL_TODS)) != 4665 fast_rx->expected_ds_bits) 4666 return false; 4667 4668 /* assign the key to drop unencrypted frames (later) 4669 * and strip the IV/MIC if necessary 4670 */ 4671 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4672 /* GCMP header length is the same */ 4673 snap_offs += IEEE80211_CCMP_HDR_LEN; 4674 } 4675 4676 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4677 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4678 goto drop; 4679 4680 payload = (void *)(skb->data + snap_offs); 4681 4682 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4683 return false; 4684 4685 /* Don't handle these here since they require special code. 4686 * Accept AARP and IPX even though they should come with a 4687 * bridge-tunnel header - but if we get them this way then 4688 * there's little point in discarding them. 4689 */ 4690 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4691 payload->proto == fast_rx->control_port_protocol)) 4692 return false; 4693 } 4694 4695 /* after this point, don't punt to the slowpath! */ 4696 4697 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4698 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4699 goto drop; 4700 4701 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4702 goto drop; 4703 4704 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4705 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4706 RX_QUEUED) 4707 goto drop; 4708 4709 return true; 4710 } 4711 4712 /* do the header conversion - first grab the addresses */ 4713 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4714 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4715 skb_postpull_rcsum(skb, skb->data + snap_offs, 4716 sizeof(rfc1042_header) + 2); 4717 /* remove the SNAP but leave the ethertype */ 4718 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4719 /* push the addresses in front */ 4720 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4721 4722 ieee80211_rx_8023(rx, fast_rx, orig_len); 4723 4724 return true; 4725 drop: 4726 dev_kfree_skb(skb); 4727 if (fast_rx->uses_rss) 4728 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats); 4729 4730 stats->dropped++; 4731 return true; 4732 } 4733 4734 /* 4735 * This function returns whether or not the SKB 4736 * was destined for RX processing or not, which, 4737 * if consume is true, is equivalent to whether 4738 * or not the skb was consumed. 4739 */ 4740 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4741 struct sk_buff *skb, bool consume) 4742 { 4743 struct ieee80211_local *local = rx->local; 4744 struct ieee80211_sub_if_data *sdata = rx->sdata; 4745 struct ieee80211_hdr *hdr = (void *)skb->data; 4746 struct link_sta_info *link_sta = NULL; 4747 struct ieee80211_link_data *link; 4748 4749 rx->skb = skb; 4750 4751 /* See if we can do fast-rx; if we have to copy we already lost, 4752 * so punt in that case. We should never have to deliver a data 4753 * frame to multiple interfaces anyway. 4754 * 4755 * We skip the ieee80211_accept_frame() call and do the necessary 4756 * checking inside ieee80211_invoke_fast_rx(). 4757 */ 4758 if (consume && rx->sta) { 4759 struct ieee80211_fast_rx *fast_rx; 4760 4761 fast_rx = rcu_dereference(rx->sta->fast_rx); 4762 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4763 return true; 4764 } 4765 4766 if (!ieee80211_accept_frame(rx)) 4767 return false; 4768 4769 if (rx->link_id >= 0) { 4770 link = rcu_dereference(rx->sdata->link[rx->link_id]); 4771 4772 /* we might race link removal */ 4773 if (!link) 4774 return true; 4775 rx->link = link; 4776 } else { 4777 rx->link = &sdata->deflink; 4778 } 4779 4780 if (unlikely(!is_multicast_ether_addr(hdr->addr1) && 4781 rx->link_id >= 0 && rx->sta && rx->sta->sta.mlo)) { 4782 link_sta = rcu_dereference(rx->sta->link[rx->link_id]); 4783 4784 if (WARN_ON_ONCE(!link_sta)) 4785 return true; 4786 } 4787 4788 if (!consume) { 4789 struct skb_shared_hwtstamps *shwt; 4790 4791 rx->skb = skb_copy(skb, GFP_ATOMIC); 4792 if (!rx->skb) { 4793 if (net_ratelimit()) 4794 wiphy_debug(local->hw.wiphy, 4795 "failed to copy skb for %s\n", 4796 sdata->name); 4797 return true; 4798 } 4799 4800 /* skb_copy() does not copy the hw timestamps, so copy it 4801 * explicitly 4802 */ 4803 shwt = skb_hwtstamps(rx->skb); 4804 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 4805 } 4806 4807 if (unlikely(link_sta)) { 4808 /* translate to MLD addresses */ 4809 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 4810 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 4811 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 4812 ether_addr_copy(hdr->addr2, rx->sta->addr); 4813 /* translate A3 only if it's the BSSID */ 4814 if (!ieee80211_has_tods(hdr->frame_control) && 4815 !ieee80211_has_fromds(hdr->frame_control)) { 4816 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 4817 ether_addr_copy(hdr->addr3, rx->sta->addr); 4818 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 4819 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 4820 } 4821 /* not needed for A4 since it can only carry the SA */ 4822 } 4823 4824 ieee80211_invoke_rx_handlers(rx); 4825 return true; 4826 } 4827 4828 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4829 struct ieee80211_sta *pubsta, 4830 struct sk_buff *skb, 4831 struct list_head *list) 4832 { 4833 struct ieee80211_local *local = hw_to_local(hw); 4834 struct ieee80211_fast_rx *fast_rx; 4835 struct ieee80211_rx_data rx; 4836 4837 memset(&rx, 0, sizeof(rx)); 4838 rx.skb = skb; 4839 rx.local = local; 4840 rx.list = list; 4841 rx.link_id = -1; 4842 4843 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4844 4845 /* drop frame if too short for header */ 4846 if (skb->len < sizeof(struct ethhdr)) 4847 goto drop; 4848 4849 if (!pubsta) 4850 goto drop; 4851 4852 rx.sta = container_of(pubsta, struct sta_info, sta); 4853 rx.sdata = rx.sta->sdata; 4854 rx.link = &rx.sdata->deflink; 4855 4856 fast_rx = rcu_dereference(rx.sta->fast_rx); 4857 if (!fast_rx) 4858 goto drop; 4859 4860 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4861 return; 4862 4863 drop: 4864 dev_kfree_skb(skb); 4865 } 4866 4867 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 4868 struct sk_buff *skb, bool consume) 4869 { 4870 struct link_sta_info *link_sta; 4871 struct ieee80211_hdr *hdr = (void *)skb->data; 4872 4873 /* 4874 * Look up link station first, in case there's a 4875 * chance that they might have a link address that 4876 * is identical to the MLD address, that way we'll 4877 * have the link information if needed. 4878 */ 4879 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 4880 if (link_sta) { 4881 rx->sta = link_sta->sta; 4882 rx->link_id = link_sta->link_id; 4883 } else { 4884 rx->sta = sta_info_get_bss(rx->sdata, hdr->addr2); 4885 } 4886 4887 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 4888 } 4889 4890 /* 4891 * This is the actual Rx frames handler. as it belongs to Rx path it must 4892 * be called with rcu_read_lock protection. 4893 */ 4894 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4895 struct ieee80211_sta *pubsta, 4896 struct sk_buff *skb, 4897 struct list_head *list) 4898 { 4899 struct ieee80211_local *local = hw_to_local(hw); 4900 struct ieee80211_sub_if_data *sdata; 4901 struct ieee80211_hdr *hdr; 4902 __le16 fc; 4903 struct ieee80211_rx_data rx; 4904 struct ieee80211_sub_if_data *prev; 4905 struct rhlist_head *tmp; 4906 int err = 0; 4907 4908 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4909 memset(&rx, 0, sizeof(rx)); 4910 rx.skb = skb; 4911 rx.local = local; 4912 rx.list = list; 4913 rx.link_id = -1; 4914 4915 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4916 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4917 4918 if (ieee80211_is_mgmt(fc)) { 4919 /* drop frame if too short for header */ 4920 if (skb->len < ieee80211_hdrlen(fc)) 4921 err = -ENOBUFS; 4922 else 4923 err = skb_linearize(skb); 4924 } else { 4925 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4926 } 4927 4928 if (err) { 4929 dev_kfree_skb(skb); 4930 return; 4931 } 4932 4933 hdr = (struct ieee80211_hdr *)skb->data; 4934 ieee80211_parse_qos(&rx); 4935 ieee80211_verify_alignment(&rx); 4936 4937 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4938 ieee80211_is_beacon(hdr->frame_control) || 4939 ieee80211_is_s1g_beacon(hdr->frame_control))) 4940 ieee80211_scan_rx(local, skb); 4941 4942 if (ieee80211_is_data(fc)) { 4943 struct sta_info *sta, *prev_sta; 4944 4945 if (pubsta) { 4946 rx.sta = container_of(pubsta, struct sta_info, sta); 4947 rx.sdata = rx.sta->sdata; 4948 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4949 return; 4950 goto out; 4951 } 4952 4953 prev_sta = NULL; 4954 4955 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4956 if (!prev_sta) { 4957 prev_sta = sta; 4958 continue; 4959 } 4960 4961 rx.sta = prev_sta; 4962 rx.sdata = prev_sta->sdata; 4963 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4964 4965 prev_sta = sta; 4966 } 4967 4968 if (prev_sta) { 4969 rx.sta = prev_sta; 4970 rx.sdata = prev_sta->sdata; 4971 4972 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4973 return; 4974 goto out; 4975 } 4976 } 4977 4978 prev = NULL; 4979 4980 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4981 if (!ieee80211_sdata_running(sdata)) 4982 continue; 4983 4984 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4985 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4986 continue; 4987 4988 /* 4989 * frame is destined for this interface, but if it's 4990 * not also for the previous one we handle that after 4991 * the loop to avoid copying the SKB once too much 4992 */ 4993 4994 if (!prev) { 4995 prev = sdata; 4996 continue; 4997 } 4998 4999 rx.sdata = prev; 5000 ieee80211_rx_for_interface(&rx, skb, false); 5001 5002 prev = sdata; 5003 } 5004 5005 if (prev) { 5006 rx.sdata = prev; 5007 5008 if (ieee80211_rx_for_interface(&rx, skb, true)) 5009 return; 5010 } 5011 5012 out: 5013 dev_kfree_skb(skb); 5014 } 5015 5016 /* 5017 * This is the receive path handler. It is called by a low level driver when an 5018 * 802.11 MPDU is received from the hardware. 5019 */ 5020 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5021 struct sk_buff *skb, struct list_head *list) 5022 { 5023 struct ieee80211_local *local = hw_to_local(hw); 5024 struct ieee80211_rate *rate = NULL; 5025 struct ieee80211_supported_band *sband; 5026 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5027 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5028 5029 WARN_ON_ONCE(softirq_count() == 0); 5030 5031 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5032 goto drop; 5033 5034 sband = local->hw.wiphy->bands[status->band]; 5035 if (WARN_ON(!sband)) 5036 goto drop; 5037 5038 /* 5039 * If we're suspending, it is possible although not too likely 5040 * that we'd be receiving frames after having already partially 5041 * quiesced the stack. We can't process such frames then since 5042 * that might, for example, cause stations to be added or other 5043 * driver callbacks be invoked. 5044 */ 5045 if (unlikely(local->quiescing || local->suspended)) 5046 goto drop; 5047 5048 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5049 if (unlikely(local->in_reconfig)) 5050 goto drop; 5051 5052 /* 5053 * The same happens when we're not even started, 5054 * but that's worth a warning. 5055 */ 5056 if (WARN_ON(!local->started)) 5057 goto drop; 5058 5059 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5060 /* 5061 * Validate the rate, unless a PLCP error means that 5062 * we probably can't have a valid rate here anyway. 5063 */ 5064 5065 switch (status->encoding) { 5066 case RX_ENC_HT: 5067 /* 5068 * rate_idx is MCS index, which can be [0-76] 5069 * as documented on: 5070 * 5071 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5072 * 5073 * Anything else would be some sort of driver or 5074 * hardware error. The driver should catch hardware 5075 * errors. 5076 */ 5077 if (WARN(status->rate_idx > 76, 5078 "Rate marked as an HT rate but passed " 5079 "status->rate_idx is not " 5080 "an MCS index [0-76]: %d (0x%02x)\n", 5081 status->rate_idx, 5082 status->rate_idx)) 5083 goto drop; 5084 break; 5085 case RX_ENC_VHT: 5086 if (WARN_ONCE(status->rate_idx > 11 || 5087 !status->nss || 5088 status->nss > 8, 5089 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5090 status->rate_idx, status->nss)) 5091 goto drop; 5092 break; 5093 case RX_ENC_HE: 5094 if (WARN_ONCE(status->rate_idx > 11 || 5095 !status->nss || 5096 status->nss > 8, 5097 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5098 status->rate_idx, status->nss)) 5099 goto drop; 5100 break; 5101 default: 5102 WARN_ON_ONCE(1); 5103 fallthrough; 5104 case RX_ENC_LEGACY: 5105 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5106 goto drop; 5107 rate = &sband->bitrates[status->rate_idx]; 5108 } 5109 } 5110 5111 status->rx_flags = 0; 5112 5113 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5114 5115 /* 5116 * Frames with failed FCS/PLCP checksum are not returned, 5117 * all other frames are returned without radiotap header 5118 * if it was previously present. 5119 * Also, frames with less than 16 bytes are dropped. 5120 */ 5121 if (!(status->flag & RX_FLAG_8023)) 5122 skb = ieee80211_rx_monitor(local, skb, rate); 5123 if (skb) { 5124 if ((status->flag & RX_FLAG_8023) || 5125 ieee80211_is_data_present(hdr->frame_control)) 5126 ieee80211_tpt_led_trig_rx(local, skb->len); 5127 5128 if (status->flag & RX_FLAG_8023) 5129 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5130 else 5131 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5132 } 5133 5134 kcov_remote_stop(); 5135 return; 5136 drop: 5137 kfree_skb(skb); 5138 } 5139 EXPORT_SYMBOL(ieee80211_rx_list); 5140 5141 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5142 struct sk_buff *skb, struct napi_struct *napi) 5143 { 5144 struct sk_buff *tmp; 5145 LIST_HEAD(list); 5146 5147 5148 /* 5149 * key references and virtual interfaces are protected using RCU 5150 * and this requires that we are in a read-side RCU section during 5151 * receive processing 5152 */ 5153 rcu_read_lock(); 5154 ieee80211_rx_list(hw, pubsta, skb, &list); 5155 rcu_read_unlock(); 5156 5157 if (!napi) { 5158 netif_receive_skb_list(&list); 5159 return; 5160 } 5161 5162 list_for_each_entry_safe(skb, tmp, &list, list) { 5163 skb_list_del_init(skb); 5164 napi_gro_receive(napi, skb); 5165 } 5166 } 5167 EXPORT_SYMBOL(ieee80211_rx_napi); 5168 5169 /* This is a version of the rx handler that can be called from hard irq 5170 * context. Post the skb on the queue and schedule the tasklet */ 5171 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5172 { 5173 struct ieee80211_local *local = hw_to_local(hw); 5174 5175 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5176 5177 skb->pkt_type = IEEE80211_RX_MSG; 5178 skb_queue_tail(&local->skb_queue, skb); 5179 tasklet_schedule(&local->tasklet); 5180 } 5181 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5182