xref: /openbmc/linux/net/mac80211/rx.c (revision bb0eb050)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static void remove_monitor_info(struct sk_buff *skb,
99 				unsigned int present_fcs_len,
100 				unsigned int rtap_vendor_space)
101 {
102 	if (present_fcs_len)
103 		__pskb_trim(skb, skb->len - present_fcs_len);
104 	__pskb_pull(skb, rtap_vendor_space);
105 }
106 
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 				     unsigned int rtap_vendor_space)
109 {
110 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 	struct ieee80211_hdr *hdr;
112 
113 	hdr = (void *)(skb->data + rtap_vendor_space);
114 
115 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 			    RX_FLAG_FAILED_PLCP_CRC |
117 			    RX_FLAG_ONLY_MONITOR))
118 		return true;
119 
120 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 		return true;
122 
123 	if (ieee80211_is_ctl(hdr->frame_control) &&
124 	    !ieee80211_is_pspoll(hdr->frame_control) &&
125 	    !ieee80211_is_back_req(hdr->frame_control))
126 		return true;
127 
128 	return false;
129 }
130 
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 			     struct ieee80211_rx_status *status,
134 			     struct sk_buff *skb)
135 {
136 	int len;
137 
138 	/* always present fields */
139 	len = sizeof(struct ieee80211_radiotap_header) + 8;
140 
141 	/* allocate extra bitmaps */
142 	if (status->chains)
143 		len += 4 * hweight8(status->chains);
144 
145 	if (ieee80211_have_rx_timestamp(status)) {
146 		len = ALIGN(len, 8);
147 		len += 8;
148 	}
149 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 		len += 1;
151 
152 	/* antenna field, if we don't have per-chain info */
153 	if (!status->chains)
154 		len += 1;
155 
156 	/* padding for RX_FLAGS if necessary */
157 	len = ALIGN(len, 2);
158 
159 	if (status->encoding == RX_ENC_HT) /* HT info */
160 		len += 3;
161 
162 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 		len = ALIGN(len, 4);
164 		len += 8;
165 	}
166 
167 	if (status->encoding == RX_ENC_VHT) {
168 		len = ALIGN(len, 2);
169 		len += 12;
170 	}
171 
172 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 		len = ALIGN(len, 8);
174 		len += 12;
175 	}
176 
177 	if (status->chains) {
178 		/* antenna and antenna signal fields */
179 		len += 2 * hweight8(status->chains);
180 	}
181 
182 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
184 
185 		/* vendor presence bitmap */
186 		len += 4;
187 		/* alignment for fixed 6-byte vendor data header */
188 		len = ALIGN(len, 2);
189 		/* vendor data header */
190 		len += 6;
191 		if (WARN_ON(rtap->align == 0))
192 			rtap->align = 1;
193 		len = ALIGN(len, rtap->align);
194 		len += rtap->len + rtap->pad;
195 	}
196 
197 	return len;
198 }
199 
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 					 struct sk_buff *skb,
202 					 int rtap_vendor_space)
203 {
204 	struct {
205 		struct ieee80211_hdr_3addr hdr;
206 		u8 category;
207 		u8 action_code;
208 	} __packed action;
209 
210 	if (!sdata)
211 		return;
212 
213 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
214 
215 	if (skb->len < rtap_vendor_space + sizeof(action) +
216 		       VHT_MUMIMO_GROUPS_DATA_LEN)
217 		return;
218 
219 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 		return;
221 
222 	skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
223 
224 	if (!ieee80211_is_action(action.hdr.frame_control))
225 		return;
226 
227 	if (action.category != WLAN_CATEGORY_VHT)
228 		return;
229 
230 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 		return;
232 
233 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 		return;
235 
236 	skb = skb_copy(skb, GFP_ATOMIC);
237 	if (!skb)
238 		return;
239 
240 	skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
241 	skb_queue_tail(&sdata->skb_queue, skb);
242 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
243 }
244 
245 /*
246  * ieee80211_add_rx_radiotap_header - add radiotap header
247  *
248  * add a radiotap header containing all the fields which the hardware provided.
249  */
250 static void
251 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
252 				 struct sk_buff *skb,
253 				 struct ieee80211_rate *rate,
254 				 int rtap_len, bool has_fcs)
255 {
256 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
257 	struct ieee80211_radiotap_header *rthdr;
258 	unsigned char *pos;
259 	__le32 *it_present;
260 	u32 it_present_val;
261 	u16 rx_flags = 0;
262 	u16 channel_flags = 0;
263 	int mpdulen, chain;
264 	unsigned long chains = status->chains;
265 	struct ieee80211_vendor_radiotap rtap = {};
266 
267 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
268 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
269 		/* rtap.len and rtap.pad are undone immediately */
270 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
271 	}
272 
273 	mpdulen = skb->len;
274 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
275 		mpdulen += FCS_LEN;
276 
277 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
278 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
279 	it_present = &rthdr->it_present;
280 
281 	/* radiotap header, set always present flags */
282 	rthdr->it_len = cpu_to_le16(rtap_len);
283 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
284 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
285 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
286 
287 	if (!status->chains)
288 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
289 
290 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
291 		it_present_val |=
292 			BIT(IEEE80211_RADIOTAP_EXT) |
293 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
294 		put_unaligned_le32(it_present_val, it_present);
295 		it_present++;
296 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
297 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
298 	}
299 
300 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
301 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
302 				  BIT(IEEE80211_RADIOTAP_EXT);
303 		put_unaligned_le32(it_present_val, it_present);
304 		it_present++;
305 		it_present_val = rtap.present;
306 	}
307 
308 	put_unaligned_le32(it_present_val, it_present);
309 
310 	pos = (void *)(it_present + 1);
311 
312 	/* the order of the following fields is important */
313 
314 	/* IEEE80211_RADIOTAP_TSFT */
315 	if (ieee80211_have_rx_timestamp(status)) {
316 		/* padding */
317 		while ((pos - (u8 *)rthdr) & 7)
318 			*pos++ = 0;
319 		put_unaligned_le64(
320 			ieee80211_calculate_rx_timestamp(local, status,
321 							 mpdulen, 0),
322 			pos);
323 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
324 		pos += 8;
325 	}
326 
327 	/* IEEE80211_RADIOTAP_FLAGS */
328 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
329 		*pos |= IEEE80211_RADIOTAP_F_FCS;
330 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
331 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
332 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
333 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
334 	pos++;
335 
336 	/* IEEE80211_RADIOTAP_RATE */
337 	if (!rate || status->encoding != RX_ENC_LEGACY) {
338 		/*
339 		 * Without rate information don't add it. If we have,
340 		 * MCS information is a separate field in radiotap,
341 		 * added below. The byte here is needed as padding
342 		 * for the channel though, so initialise it to 0.
343 		 */
344 		*pos = 0;
345 	} else {
346 		int shift = 0;
347 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
348 		if (status->bw == RATE_INFO_BW_10)
349 			shift = 1;
350 		else if (status->bw == RATE_INFO_BW_5)
351 			shift = 2;
352 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
353 	}
354 	pos++;
355 
356 	/* IEEE80211_RADIOTAP_CHANNEL */
357 	put_unaligned_le16(status->freq, pos);
358 	pos += 2;
359 	if (status->bw == RATE_INFO_BW_10)
360 		channel_flags |= IEEE80211_CHAN_HALF;
361 	else if (status->bw == RATE_INFO_BW_5)
362 		channel_flags |= IEEE80211_CHAN_QUARTER;
363 
364 	if (status->band == NL80211_BAND_5GHZ)
365 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
366 	else if (status->encoding != RX_ENC_LEGACY)
367 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
368 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
369 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
370 	else if (rate)
371 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
372 	else
373 		channel_flags |= IEEE80211_CHAN_2GHZ;
374 	put_unaligned_le16(channel_flags, pos);
375 	pos += 2;
376 
377 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
378 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
379 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
380 		*pos = status->signal;
381 		rthdr->it_present |=
382 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
383 		pos++;
384 	}
385 
386 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
387 
388 	if (!status->chains) {
389 		/* IEEE80211_RADIOTAP_ANTENNA */
390 		*pos = status->antenna;
391 		pos++;
392 	}
393 
394 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
395 
396 	/* IEEE80211_RADIOTAP_RX_FLAGS */
397 	/* ensure 2 byte alignment for the 2 byte field as required */
398 	if ((pos - (u8 *)rthdr) & 1)
399 		*pos++ = 0;
400 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
401 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
402 	put_unaligned_le16(rx_flags, pos);
403 	pos += 2;
404 
405 	if (status->encoding == RX_ENC_HT) {
406 		unsigned int stbc;
407 
408 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
409 		*pos++ = local->hw.radiotap_mcs_details;
410 		*pos = 0;
411 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
412 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
413 		if (status->bw == RATE_INFO_BW_40)
414 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
415 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
416 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
417 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
418 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
419 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
420 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
421 		pos++;
422 		*pos++ = status->rate_idx;
423 	}
424 
425 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
426 		u16 flags = 0;
427 
428 		/* ensure 4 byte alignment */
429 		while ((pos - (u8 *)rthdr) & 3)
430 			pos++;
431 		rthdr->it_present |=
432 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
433 		put_unaligned_le32(status->ampdu_reference, pos);
434 		pos += 4;
435 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
436 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
437 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
438 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
439 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
440 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
441 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
442 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
443 		put_unaligned_le16(flags, pos);
444 		pos += 2;
445 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
446 			*pos++ = status->ampdu_delimiter_crc;
447 		else
448 			*pos++ = 0;
449 		*pos++ = 0;
450 	}
451 
452 	if (status->encoding == RX_ENC_VHT) {
453 		u16 known = local->hw.radiotap_vht_details;
454 
455 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
456 		put_unaligned_le16(known, pos);
457 		pos += 2;
458 		/* flags */
459 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
460 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
461 		/* in VHT, STBC is binary */
462 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
463 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
464 		if (status->enc_flags & RX_ENC_FLAG_BF)
465 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
466 		pos++;
467 		/* bandwidth */
468 		switch (status->bw) {
469 		case RATE_INFO_BW_80:
470 			*pos++ = 4;
471 			break;
472 		case RATE_INFO_BW_160:
473 			*pos++ = 11;
474 			break;
475 		case RATE_INFO_BW_40:
476 			*pos++ = 1;
477 			break;
478 		default:
479 			*pos++ = 0;
480 		}
481 		/* MCS/NSS */
482 		*pos = (status->rate_idx << 4) | status->nss;
483 		pos += 4;
484 		/* coding field */
485 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
486 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
487 		pos++;
488 		/* group ID */
489 		pos++;
490 		/* partial_aid */
491 		pos += 2;
492 	}
493 
494 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
495 		u16 accuracy = 0;
496 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
497 
498 		rthdr->it_present |=
499 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
500 
501 		/* ensure 8 byte alignment */
502 		while ((pos - (u8 *)rthdr) & 7)
503 			pos++;
504 
505 		put_unaligned_le64(status->device_timestamp, pos);
506 		pos += sizeof(u64);
507 
508 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
509 			accuracy = local->hw.radiotap_timestamp.accuracy;
510 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
511 		}
512 		put_unaligned_le16(accuracy, pos);
513 		pos += sizeof(u16);
514 
515 		*pos++ = local->hw.radiotap_timestamp.units_pos;
516 		*pos++ = flags;
517 	}
518 
519 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
520 		*pos++ = status->chain_signal[chain];
521 		*pos++ = chain;
522 	}
523 
524 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
525 		/* ensure 2 byte alignment for the vendor field as required */
526 		if ((pos - (u8 *)rthdr) & 1)
527 			*pos++ = 0;
528 		*pos++ = rtap.oui[0];
529 		*pos++ = rtap.oui[1];
530 		*pos++ = rtap.oui[2];
531 		*pos++ = rtap.subns;
532 		put_unaligned_le16(rtap.len, pos);
533 		pos += 2;
534 		/* align the actual payload as requested */
535 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
536 			*pos++ = 0;
537 		/* data (and possible padding) already follows */
538 	}
539 }
540 
541 static struct sk_buff *
542 ieee80211_make_monitor_skb(struct ieee80211_local *local,
543 			   struct sk_buff **origskb,
544 			   struct ieee80211_rate *rate,
545 			   int rtap_vendor_space, bool use_origskb)
546 {
547 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
548 	int rt_hdrlen, needed_headroom;
549 	struct sk_buff *skb;
550 
551 	/* room for the radiotap header based on driver features */
552 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
553 	needed_headroom = rt_hdrlen - rtap_vendor_space;
554 
555 	if (use_origskb) {
556 		/* only need to expand headroom if necessary */
557 		skb = *origskb;
558 		*origskb = NULL;
559 
560 		/*
561 		 * This shouldn't trigger often because most devices have an
562 		 * RX header they pull before we get here, and that should
563 		 * be big enough for our radiotap information. We should
564 		 * probably export the length to drivers so that we can have
565 		 * them allocate enough headroom to start with.
566 		 */
567 		if (skb_headroom(skb) < needed_headroom &&
568 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
569 			dev_kfree_skb(skb);
570 			return NULL;
571 		}
572 	} else {
573 		/*
574 		 * Need to make a copy and possibly remove radiotap header
575 		 * and FCS from the original.
576 		 */
577 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
578 
579 		if (!skb)
580 			return NULL;
581 	}
582 
583 	/* prepend radiotap information */
584 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
585 
586 	skb_reset_mac_header(skb);
587 	skb->ip_summed = CHECKSUM_UNNECESSARY;
588 	skb->pkt_type = PACKET_OTHERHOST;
589 	skb->protocol = htons(ETH_P_802_2);
590 
591 	return skb;
592 }
593 
594 /*
595  * This function copies a received frame to all monitor interfaces and
596  * returns a cleaned-up SKB that no longer includes the FCS nor the
597  * radiotap header the driver might have added.
598  */
599 static struct sk_buff *
600 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
601 		     struct ieee80211_rate *rate)
602 {
603 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
604 	struct ieee80211_sub_if_data *sdata;
605 	struct sk_buff *monskb = NULL;
606 	int present_fcs_len = 0;
607 	unsigned int rtap_vendor_space = 0;
608 	struct ieee80211_sub_if_data *monitor_sdata =
609 		rcu_dereference(local->monitor_sdata);
610 	bool only_monitor = false;
611 
612 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
613 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
614 
615 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
616 	}
617 
618 	/*
619 	 * First, we may need to make a copy of the skb because
620 	 *  (1) we need to modify it for radiotap (if not present), and
621 	 *  (2) the other RX handlers will modify the skb we got.
622 	 *
623 	 * We don't need to, of course, if we aren't going to return
624 	 * the SKB because it has a bad FCS/PLCP checksum.
625 	 */
626 
627 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
628 		if (unlikely(origskb->len <= FCS_LEN)) {
629 			/* driver bug */
630 			WARN_ON(1);
631 			dev_kfree_skb(origskb);
632 			return NULL;
633 		}
634 		present_fcs_len = FCS_LEN;
635 	}
636 
637 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
638 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
639 		dev_kfree_skb(origskb);
640 		return NULL;
641 	}
642 
643 	only_monitor = should_drop_frame(origskb, present_fcs_len,
644 					 rtap_vendor_space);
645 
646 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
647 		if (only_monitor) {
648 			dev_kfree_skb(origskb);
649 			return NULL;
650 		}
651 
652 		remove_monitor_info(origskb, present_fcs_len,
653 				    rtap_vendor_space);
654 		return origskb;
655 	}
656 
657 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
658 
659 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
660 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
661 						 &local->mon_list);
662 
663 		if (!monskb)
664 			monskb = ieee80211_make_monitor_skb(local, &origskb,
665 							    rate,
666 							    rtap_vendor_space,
667 							    only_monitor &&
668 							    last_monitor);
669 
670 		if (monskb) {
671 			struct sk_buff *skb;
672 
673 			if (last_monitor) {
674 				skb = monskb;
675 				monskb = NULL;
676 			} else {
677 				skb = skb_clone(monskb, GFP_ATOMIC);
678 			}
679 
680 			if (skb) {
681 				skb->dev = sdata->dev;
682 				ieee80211_rx_stats(skb->dev, skb->len);
683 				netif_receive_skb(skb);
684 			}
685 		}
686 
687 		if (last_monitor)
688 			break;
689 	}
690 
691 	/* this happens if last_monitor was erroneously false */
692 	dev_kfree_skb(monskb);
693 
694 	/* ditto */
695 	if (!origskb)
696 		return NULL;
697 
698 	remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
699 	return origskb;
700 }
701 
702 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
703 {
704 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
705 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
706 	int tid, seqno_idx, security_idx;
707 
708 	/* does the frame have a qos control field? */
709 	if (ieee80211_is_data_qos(hdr->frame_control)) {
710 		u8 *qc = ieee80211_get_qos_ctl(hdr);
711 		/* frame has qos control */
712 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
713 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
714 			status->rx_flags |= IEEE80211_RX_AMSDU;
715 
716 		seqno_idx = tid;
717 		security_idx = tid;
718 	} else {
719 		/*
720 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
721 		 *
722 		 *	Sequence numbers for management frames, QoS data
723 		 *	frames with a broadcast/multicast address in the
724 		 *	Address 1 field, and all non-QoS data frames sent
725 		 *	by QoS STAs are assigned using an additional single
726 		 *	modulo-4096 counter, [...]
727 		 *
728 		 * We also use that counter for non-QoS STAs.
729 		 */
730 		seqno_idx = IEEE80211_NUM_TIDS;
731 		security_idx = 0;
732 		if (ieee80211_is_mgmt(hdr->frame_control))
733 			security_idx = IEEE80211_NUM_TIDS;
734 		tid = 0;
735 	}
736 
737 	rx->seqno_idx = seqno_idx;
738 	rx->security_idx = security_idx;
739 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
740 	 * For now, set skb->priority to 0 for other cases. */
741 	rx->skb->priority = (tid > 7) ? 0 : tid;
742 }
743 
744 /**
745  * DOC: Packet alignment
746  *
747  * Drivers always need to pass packets that are aligned to two-byte boundaries
748  * to the stack.
749  *
750  * Additionally, should, if possible, align the payload data in a way that
751  * guarantees that the contained IP header is aligned to a four-byte
752  * boundary. In the case of regular frames, this simply means aligning the
753  * payload to a four-byte boundary (because either the IP header is directly
754  * contained, or IV/RFC1042 headers that have a length divisible by four are
755  * in front of it).  If the payload data is not properly aligned and the
756  * architecture doesn't support efficient unaligned operations, mac80211
757  * will align the data.
758  *
759  * With A-MSDU frames, however, the payload data address must yield two modulo
760  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
761  * push the IP header further back to a multiple of four again. Thankfully, the
762  * specs were sane enough this time around to require padding each A-MSDU
763  * subframe to a length that is a multiple of four.
764  *
765  * Padding like Atheros hardware adds which is between the 802.11 header and
766  * the payload is not supported, the driver is required to move the 802.11
767  * header to be directly in front of the payload in that case.
768  */
769 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
770 {
771 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
772 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
773 #endif
774 }
775 
776 
777 /* rx handlers */
778 
779 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
780 {
781 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
782 
783 	if (is_multicast_ether_addr(hdr->addr1))
784 		return 0;
785 
786 	return ieee80211_is_robust_mgmt_frame(skb);
787 }
788 
789 
790 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
791 {
792 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
793 
794 	if (!is_multicast_ether_addr(hdr->addr1))
795 		return 0;
796 
797 	return ieee80211_is_robust_mgmt_frame(skb);
798 }
799 
800 
801 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
802 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
803 {
804 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
805 	struct ieee80211_mmie *mmie;
806 	struct ieee80211_mmie_16 *mmie16;
807 
808 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
809 		return -1;
810 
811 	if (!ieee80211_is_robust_mgmt_frame(skb))
812 		return -1; /* not a robust management frame */
813 
814 	mmie = (struct ieee80211_mmie *)
815 		(skb->data + skb->len - sizeof(*mmie));
816 	if (mmie->element_id == WLAN_EID_MMIE &&
817 	    mmie->length == sizeof(*mmie) - 2)
818 		return le16_to_cpu(mmie->key_id);
819 
820 	mmie16 = (struct ieee80211_mmie_16 *)
821 		(skb->data + skb->len - sizeof(*mmie16));
822 	if (skb->len >= 24 + sizeof(*mmie16) &&
823 	    mmie16->element_id == WLAN_EID_MMIE &&
824 	    mmie16->length == sizeof(*mmie16) - 2)
825 		return le16_to_cpu(mmie16->key_id);
826 
827 	return -1;
828 }
829 
830 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
831 				  struct sk_buff *skb)
832 {
833 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
834 	__le16 fc;
835 	int hdrlen;
836 	u8 keyid;
837 
838 	fc = hdr->frame_control;
839 	hdrlen = ieee80211_hdrlen(fc);
840 
841 	if (skb->len < hdrlen + cs->hdr_len)
842 		return -EINVAL;
843 
844 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
845 	keyid &= cs->key_idx_mask;
846 	keyid >>= cs->key_idx_shift;
847 
848 	return keyid;
849 }
850 
851 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
852 {
853 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
854 	char *dev_addr = rx->sdata->vif.addr;
855 
856 	if (ieee80211_is_data(hdr->frame_control)) {
857 		if (is_multicast_ether_addr(hdr->addr1)) {
858 			if (ieee80211_has_tods(hdr->frame_control) ||
859 			    !ieee80211_has_fromds(hdr->frame_control))
860 				return RX_DROP_MONITOR;
861 			if (ether_addr_equal(hdr->addr3, dev_addr))
862 				return RX_DROP_MONITOR;
863 		} else {
864 			if (!ieee80211_has_a4(hdr->frame_control))
865 				return RX_DROP_MONITOR;
866 			if (ether_addr_equal(hdr->addr4, dev_addr))
867 				return RX_DROP_MONITOR;
868 		}
869 	}
870 
871 	/* If there is not an established peer link and this is not a peer link
872 	 * establisment frame, beacon or probe, drop the frame.
873 	 */
874 
875 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
876 		struct ieee80211_mgmt *mgmt;
877 
878 		if (!ieee80211_is_mgmt(hdr->frame_control))
879 			return RX_DROP_MONITOR;
880 
881 		if (ieee80211_is_action(hdr->frame_control)) {
882 			u8 category;
883 
884 			/* make sure category field is present */
885 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
886 				return RX_DROP_MONITOR;
887 
888 			mgmt = (struct ieee80211_mgmt *)hdr;
889 			category = mgmt->u.action.category;
890 			if (category != WLAN_CATEGORY_MESH_ACTION &&
891 			    category != WLAN_CATEGORY_SELF_PROTECTED)
892 				return RX_DROP_MONITOR;
893 			return RX_CONTINUE;
894 		}
895 
896 		if (ieee80211_is_probe_req(hdr->frame_control) ||
897 		    ieee80211_is_probe_resp(hdr->frame_control) ||
898 		    ieee80211_is_beacon(hdr->frame_control) ||
899 		    ieee80211_is_auth(hdr->frame_control))
900 			return RX_CONTINUE;
901 
902 		return RX_DROP_MONITOR;
903 	}
904 
905 	return RX_CONTINUE;
906 }
907 
908 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
909 					      int index)
910 {
911 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
912 	struct sk_buff *tail = skb_peek_tail(frames);
913 	struct ieee80211_rx_status *status;
914 
915 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
916 		return true;
917 
918 	if (!tail)
919 		return false;
920 
921 	status = IEEE80211_SKB_RXCB(tail);
922 	if (status->flag & RX_FLAG_AMSDU_MORE)
923 		return false;
924 
925 	return true;
926 }
927 
928 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
929 					    struct tid_ampdu_rx *tid_agg_rx,
930 					    int index,
931 					    struct sk_buff_head *frames)
932 {
933 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
934 	struct sk_buff *skb;
935 	struct ieee80211_rx_status *status;
936 
937 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
938 
939 	if (skb_queue_empty(skb_list))
940 		goto no_frame;
941 
942 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
943 		__skb_queue_purge(skb_list);
944 		goto no_frame;
945 	}
946 
947 	/* release frames from the reorder ring buffer */
948 	tid_agg_rx->stored_mpdu_num--;
949 	while ((skb = __skb_dequeue(skb_list))) {
950 		status = IEEE80211_SKB_RXCB(skb);
951 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
952 		__skb_queue_tail(frames, skb);
953 	}
954 
955 no_frame:
956 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
957 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
958 }
959 
960 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
961 					     struct tid_ampdu_rx *tid_agg_rx,
962 					     u16 head_seq_num,
963 					     struct sk_buff_head *frames)
964 {
965 	int index;
966 
967 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
968 
969 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
970 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
971 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
972 						frames);
973 	}
974 }
975 
976 /*
977  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
978  * the skb was added to the buffer longer than this time ago, the earlier
979  * frames that have not yet been received are assumed to be lost and the skb
980  * can be released for processing. This may also release other skb's from the
981  * reorder buffer if there are no additional gaps between the frames.
982  *
983  * Callers must hold tid_agg_rx->reorder_lock.
984  */
985 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
986 
987 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
988 					  struct tid_ampdu_rx *tid_agg_rx,
989 					  struct sk_buff_head *frames)
990 {
991 	int index, i, j;
992 
993 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
994 
995 	/* release the buffer until next missing frame */
996 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
997 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
998 	    tid_agg_rx->stored_mpdu_num) {
999 		/*
1000 		 * No buffers ready to be released, but check whether any
1001 		 * frames in the reorder buffer have timed out.
1002 		 */
1003 		int skipped = 1;
1004 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1005 		     j = (j + 1) % tid_agg_rx->buf_size) {
1006 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1007 				skipped++;
1008 				continue;
1009 			}
1010 			if (skipped &&
1011 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1012 					HT_RX_REORDER_BUF_TIMEOUT))
1013 				goto set_release_timer;
1014 
1015 			/* don't leave incomplete A-MSDUs around */
1016 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1017 			     i = (i + 1) % tid_agg_rx->buf_size)
1018 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1019 
1020 			ht_dbg_ratelimited(sdata,
1021 					   "release an RX reorder frame due to timeout on earlier frames\n");
1022 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1023 							frames);
1024 
1025 			/*
1026 			 * Increment the head seq# also for the skipped slots.
1027 			 */
1028 			tid_agg_rx->head_seq_num =
1029 				(tid_agg_rx->head_seq_num +
1030 				 skipped) & IEEE80211_SN_MASK;
1031 			skipped = 0;
1032 		}
1033 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1034 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1035 						frames);
1036 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1037 	}
1038 
1039 	if (tid_agg_rx->stored_mpdu_num) {
1040 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1041 
1042 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1043 		     j = (j + 1) % tid_agg_rx->buf_size) {
1044 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1045 				break;
1046 		}
1047 
1048  set_release_timer:
1049 
1050 		if (!tid_agg_rx->removed)
1051 			mod_timer(&tid_agg_rx->reorder_timer,
1052 				  tid_agg_rx->reorder_time[j] + 1 +
1053 				  HT_RX_REORDER_BUF_TIMEOUT);
1054 	} else {
1055 		del_timer(&tid_agg_rx->reorder_timer);
1056 	}
1057 }
1058 
1059 /*
1060  * As this function belongs to the RX path it must be under
1061  * rcu_read_lock protection. It returns false if the frame
1062  * can be processed immediately, true if it was consumed.
1063  */
1064 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1065 					     struct tid_ampdu_rx *tid_agg_rx,
1066 					     struct sk_buff *skb,
1067 					     struct sk_buff_head *frames)
1068 {
1069 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1070 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1071 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1072 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1073 	u16 head_seq_num, buf_size;
1074 	int index;
1075 	bool ret = true;
1076 
1077 	spin_lock(&tid_agg_rx->reorder_lock);
1078 
1079 	/*
1080 	 * Offloaded BA sessions have no known starting sequence number so pick
1081 	 * one from first Rxed frame for this tid after BA was started.
1082 	 */
1083 	if (unlikely(tid_agg_rx->auto_seq)) {
1084 		tid_agg_rx->auto_seq = false;
1085 		tid_agg_rx->ssn = mpdu_seq_num;
1086 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1087 	}
1088 
1089 	buf_size = tid_agg_rx->buf_size;
1090 	head_seq_num = tid_agg_rx->head_seq_num;
1091 
1092 	/*
1093 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1094 	 * be reordered.
1095 	 */
1096 	if (unlikely(!tid_agg_rx->started)) {
1097 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1098 			ret = false;
1099 			goto out;
1100 		}
1101 		tid_agg_rx->started = true;
1102 	}
1103 
1104 	/* frame with out of date sequence number */
1105 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1106 		dev_kfree_skb(skb);
1107 		goto out;
1108 	}
1109 
1110 	/*
1111 	 * If frame the sequence number exceeds our buffering window
1112 	 * size release some previous frames to make room for this one.
1113 	 */
1114 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1115 		head_seq_num = ieee80211_sn_inc(
1116 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1117 		/* release stored frames up to new head to stack */
1118 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1119 						 head_seq_num, frames);
1120 	}
1121 
1122 	/* Now the new frame is always in the range of the reordering buffer */
1123 
1124 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1125 
1126 	/* check if we already stored this frame */
1127 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1128 		dev_kfree_skb(skb);
1129 		goto out;
1130 	}
1131 
1132 	/*
1133 	 * If the current MPDU is in the right order and nothing else
1134 	 * is stored we can process it directly, no need to buffer it.
1135 	 * If it is first but there's something stored, we may be able
1136 	 * to release frames after this one.
1137 	 */
1138 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1139 	    tid_agg_rx->stored_mpdu_num == 0) {
1140 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1141 			tid_agg_rx->head_seq_num =
1142 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1143 		ret = false;
1144 		goto out;
1145 	}
1146 
1147 	/* put the frame in the reordering buffer */
1148 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1149 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1150 		tid_agg_rx->reorder_time[index] = jiffies;
1151 		tid_agg_rx->stored_mpdu_num++;
1152 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1153 	}
1154 
1155  out:
1156 	spin_unlock(&tid_agg_rx->reorder_lock);
1157 	return ret;
1158 }
1159 
1160 /*
1161  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1162  * true if the MPDU was buffered, false if it should be processed.
1163  */
1164 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1165 				       struct sk_buff_head *frames)
1166 {
1167 	struct sk_buff *skb = rx->skb;
1168 	struct ieee80211_local *local = rx->local;
1169 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1170 	struct sta_info *sta = rx->sta;
1171 	struct tid_ampdu_rx *tid_agg_rx;
1172 	u16 sc;
1173 	u8 tid, ack_policy;
1174 
1175 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1176 	    is_multicast_ether_addr(hdr->addr1))
1177 		goto dont_reorder;
1178 
1179 	/*
1180 	 * filter the QoS data rx stream according to
1181 	 * STA/TID and check if this STA/TID is on aggregation
1182 	 */
1183 
1184 	if (!sta)
1185 		goto dont_reorder;
1186 
1187 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1188 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1189 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1190 
1191 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1192 	if (!tid_agg_rx) {
1193 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1194 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1195 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1196 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1197 					     WLAN_BACK_RECIPIENT,
1198 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1199 		goto dont_reorder;
1200 	}
1201 
1202 	/* qos null data frames are excluded */
1203 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1204 		goto dont_reorder;
1205 
1206 	/* not part of a BA session */
1207 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1208 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1209 		goto dont_reorder;
1210 
1211 	/* new, potentially un-ordered, ampdu frame - process it */
1212 
1213 	/* reset session timer */
1214 	if (tid_agg_rx->timeout)
1215 		tid_agg_rx->last_rx = jiffies;
1216 
1217 	/* if this mpdu is fragmented - terminate rx aggregation session */
1218 	sc = le16_to_cpu(hdr->seq_ctrl);
1219 	if (sc & IEEE80211_SCTL_FRAG) {
1220 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1221 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1222 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * No locking needed -- we will only ever process one
1228 	 * RX packet at a time, and thus own tid_agg_rx. All
1229 	 * other code manipulating it needs to (and does) make
1230 	 * sure that we cannot get to it any more before doing
1231 	 * anything with it.
1232 	 */
1233 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1234 					     frames))
1235 		return;
1236 
1237  dont_reorder:
1238 	__skb_queue_tail(frames, skb);
1239 }
1240 
1241 static ieee80211_rx_result debug_noinline
1242 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1243 {
1244 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1245 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1246 
1247 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1248 		return RX_CONTINUE;
1249 
1250 	/*
1251 	 * Drop duplicate 802.11 retransmissions
1252 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1253 	 */
1254 
1255 	if (rx->skb->len < 24)
1256 		return RX_CONTINUE;
1257 
1258 	if (ieee80211_is_ctl(hdr->frame_control) ||
1259 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1260 	    is_multicast_ether_addr(hdr->addr1))
1261 		return RX_CONTINUE;
1262 
1263 	if (!rx->sta)
1264 		return RX_CONTINUE;
1265 
1266 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1267 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1268 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1269 		rx->sta->rx_stats.num_duplicates++;
1270 		return RX_DROP_UNUSABLE;
1271 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1272 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1273 	}
1274 
1275 	return RX_CONTINUE;
1276 }
1277 
1278 static ieee80211_rx_result debug_noinline
1279 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1280 {
1281 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1282 
1283 	/* Drop disallowed frame classes based on STA auth/assoc state;
1284 	 * IEEE 802.11, Chap 5.5.
1285 	 *
1286 	 * mac80211 filters only based on association state, i.e. it drops
1287 	 * Class 3 frames from not associated stations. hostapd sends
1288 	 * deauth/disassoc frames when needed. In addition, hostapd is
1289 	 * responsible for filtering on both auth and assoc states.
1290 	 */
1291 
1292 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1293 		return ieee80211_rx_mesh_check(rx);
1294 
1295 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1296 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1297 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1298 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1299 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1300 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1301 		/*
1302 		 * accept port control frames from the AP even when it's not
1303 		 * yet marked ASSOC to prevent a race where we don't set the
1304 		 * assoc bit quickly enough before it sends the first frame
1305 		 */
1306 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1307 		    ieee80211_is_data_present(hdr->frame_control)) {
1308 			unsigned int hdrlen;
1309 			__be16 ethertype;
1310 
1311 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1312 
1313 			if (rx->skb->len < hdrlen + 8)
1314 				return RX_DROP_MONITOR;
1315 
1316 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1317 			if (ethertype == rx->sdata->control_port_protocol)
1318 				return RX_CONTINUE;
1319 		}
1320 
1321 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1322 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1323 					       hdr->addr2,
1324 					       GFP_ATOMIC))
1325 			return RX_DROP_UNUSABLE;
1326 
1327 		return RX_DROP_MONITOR;
1328 	}
1329 
1330 	return RX_CONTINUE;
1331 }
1332 
1333 
1334 static ieee80211_rx_result debug_noinline
1335 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1336 {
1337 	struct ieee80211_local *local;
1338 	struct ieee80211_hdr *hdr;
1339 	struct sk_buff *skb;
1340 
1341 	local = rx->local;
1342 	skb = rx->skb;
1343 	hdr = (struct ieee80211_hdr *) skb->data;
1344 
1345 	if (!local->pspolling)
1346 		return RX_CONTINUE;
1347 
1348 	if (!ieee80211_has_fromds(hdr->frame_control))
1349 		/* this is not from AP */
1350 		return RX_CONTINUE;
1351 
1352 	if (!ieee80211_is_data(hdr->frame_control))
1353 		return RX_CONTINUE;
1354 
1355 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1356 		/* AP has no more frames buffered for us */
1357 		local->pspolling = false;
1358 		return RX_CONTINUE;
1359 	}
1360 
1361 	/* more data bit is set, let's request a new frame from the AP */
1362 	ieee80211_send_pspoll(local, rx->sdata);
1363 
1364 	return RX_CONTINUE;
1365 }
1366 
1367 static void sta_ps_start(struct sta_info *sta)
1368 {
1369 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1370 	struct ieee80211_local *local = sdata->local;
1371 	struct ps_data *ps;
1372 	int tid;
1373 
1374 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1375 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1376 		ps = &sdata->bss->ps;
1377 	else
1378 		return;
1379 
1380 	atomic_inc(&ps->num_sta_ps);
1381 	set_sta_flag(sta, WLAN_STA_PS_STA);
1382 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1383 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1384 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1385 	       sta->sta.addr, sta->sta.aid);
1386 
1387 	ieee80211_clear_fast_xmit(sta);
1388 
1389 	if (!sta->sta.txq[0])
1390 		return;
1391 
1392 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1393 		if (txq_has_queue(sta->sta.txq[tid]))
1394 			set_bit(tid, &sta->txq_buffered_tids);
1395 		else
1396 			clear_bit(tid, &sta->txq_buffered_tids);
1397 	}
1398 }
1399 
1400 static void sta_ps_end(struct sta_info *sta)
1401 {
1402 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1403 	       sta->sta.addr, sta->sta.aid);
1404 
1405 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1406 		/*
1407 		 * Clear the flag only if the other one is still set
1408 		 * so that the TX path won't start TX'ing new frames
1409 		 * directly ... In the case that the driver flag isn't
1410 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1411 		 */
1412 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1413 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1414 		       sta->sta.addr, sta->sta.aid);
1415 		return;
1416 	}
1417 
1418 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1419 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1420 	ieee80211_sta_ps_deliver_wakeup(sta);
1421 }
1422 
1423 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1424 {
1425 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1426 	bool in_ps;
1427 
1428 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1429 
1430 	/* Don't let the same PS state be set twice */
1431 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1432 	if ((start && in_ps) || (!start && !in_ps))
1433 		return -EINVAL;
1434 
1435 	if (start)
1436 		sta_ps_start(sta);
1437 	else
1438 		sta_ps_end(sta);
1439 
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1443 
1444 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1445 {
1446 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1447 
1448 	if (test_sta_flag(sta, WLAN_STA_SP))
1449 		return;
1450 
1451 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1452 		ieee80211_sta_ps_deliver_poll_response(sta);
1453 	else
1454 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1455 }
1456 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1457 
1458 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1459 {
1460 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1461 	int ac = ieee80211_ac_from_tid(tid);
1462 
1463 	/*
1464 	 * If this AC is not trigger-enabled do nothing unless the
1465 	 * driver is calling us after it already checked.
1466 	 *
1467 	 * NB: This could/should check a separate bitmap of trigger-
1468 	 * enabled queues, but for now we only implement uAPSD w/o
1469 	 * TSPEC changes to the ACs, so they're always the same.
1470 	 */
1471 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1472 	    tid != IEEE80211_NUM_TIDS)
1473 		return;
1474 
1475 	/* if we are in a service period, do nothing */
1476 	if (test_sta_flag(sta, WLAN_STA_SP))
1477 		return;
1478 
1479 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1480 		ieee80211_sta_ps_deliver_uapsd(sta);
1481 	else
1482 		set_sta_flag(sta, WLAN_STA_UAPSD);
1483 }
1484 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1485 
1486 static ieee80211_rx_result debug_noinline
1487 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1488 {
1489 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1490 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1491 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1492 
1493 	if (!rx->sta)
1494 		return RX_CONTINUE;
1495 
1496 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1497 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1498 		return RX_CONTINUE;
1499 
1500 	/*
1501 	 * The device handles station powersave, so don't do anything about
1502 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1503 	 * it to mac80211 since they're handled.)
1504 	 */
1505 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1506 		return RX_CONTINUE;
1507 
1508 	/*
1509 	 * Don't do anything if the station isn't already asleep. In
1510 	 * the uAPSD case, the station will probably be marked asleep,
1511 	 * in the PS-Poll case the station must be confused ...
1512 	 */
1513 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1514 		return RX_CONTINUE;
1515 
1516 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1517 		ieee80211_sta_pspoll(&rx->sta->sta);
1518 
1519 		/* Free PS Poll skb here instead of returning RX_DROP that would
1520 		 * count as an dropped frame. */
1521 		dev_kfree_skb(rx->skb);
1522 
1523 		return RX_QUEUED;
1524 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1525 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1526 		   ieee80211_has_pm(hdr->frame_control) &&
1527 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1528 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1529 		u8 tid;
1530 
1531 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1532 
1533 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1534 	}
1535 
1536 	return RX_CONTINUE;
1537 }
1538 
1539 static ieee80211_rx_result debug_noinline
1540 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1541 {
1542 	struct sta_info *sta = rx->sta;
1543 	struct sk_buff *skb = rx->skb;
1544 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1545 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1546 	int i;
1547 
1548 	if (!sta)
1549 		return RX_CONTINUE;
1550 
1551 	/*
1552 	 * Update last_rx only for IBSS packets which are for the current
1553 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1554 	 * current IBSS network alive in cases where other STAs start
1555 	 * using different BSSID. This will also give the station another
1556 	 * chance to restart the authentication/authorization in case
1557 	 * something went wrong the first time.
1558 	 */
1559 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1560 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1561 						NL80211_IFTYPE_ADHOC);
1562 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1563 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1564 			sta->rx_stats.last_rx = jiffies;
1565 			if (ieee80211_is_data(hdr->frame_control) &&
1566 			    !is_multicast_ether_addr(hdr->addr1))
1567 				sta->rx_stats.last_rate =
1568 					sta_stats_encode_rate(status);
1569 		}
1570 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1571 		sta->rx_stats.last_rx = jiffies;
1572 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1573 		/*
1574 		 * Mesh beacons will update last_rx when if they are found to
1575 		 * match the current local configuration when processed.
1576 		 */
1577 		sta->rx_stats.last_rx = jiffies;
1578 		if (ieee80211_is_data(hdr->frame_control))
1579 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1580 	}
1581 
1582 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1583 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1584 
1585 	sta->rx_stats.fragments++;
1586 
1587 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1588 	sta->rx_stats.bytes += rx->skb->len;
1589 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1590 
1591 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1592 		sta->rx_stats.last_signal = status->signal;
1593 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1594 	}
1595 
1596 	if (status->chains) {
1597 		sta->rx_stats.chains = status->chains;
1598 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1599 			int signal = status->chain_signal[i];
1600 
1601 			if (!(status->chains & BIT(i)))
1602 				continue;
1603 
1604 			sta->rx_stats.chain_signal_last[i] = signal;
1605 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1606 					-signal);
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Change STA power saving mode only at the end of a frame
1612 	 * exchange sequence.
1613 	 */
1614 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1615 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1616 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1617 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1618 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1619 	    /* PM bit is only checked in frames where it isn't reserved,
1620 	     * in AP mode it's reserved in non-bufferable management frames
1621 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1622 	     */
1623 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1624 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1625 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1626 			if (!ieee80211_has_pm(hdr->frame_control))
1627 				sta_ps_end(sta);
1628 		} else {
1629 			if (ieee80211_has_pm(hdr->frame_control))
1630 				sta_ps_start(sta);
1631 		}
1632 	}
1633 
1634 	/* mesh power save support */
1635 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1636 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1637 
1638 	/*
1639 	 * Drop (qos-)data::nullfunc frames silently, since they
1640 	 * are used only to control station power saving mode.
1641 	 */
1642 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1643 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1644 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1645 
1646 		/*
1647 		 * If we receive a 4-addr nullfunc frame from a STA
1648 		 * that was not moved to a 4-addr STA vlan yet send
1649 		 * the event to userspace and for older hostapd drop
1650 		 * the frame to the monitor interface.
1651 		 */
1652 		if (ieee80211_has_a4(hdr->frame_control) &&
1653 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1654 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1655 		      !rx->sdata->u.vlan.sta))) {
1656 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1657 				cfg80211_rx_unexpected_4addr_frame(
1658 					rx->sdata->dev, sta->sta.addr,
1659 					GFP_ATOMIC);
1660 			return RX_DROP_MONITOR;
1661 		}
1662 		/*
1663 		 * Update counter and free packet here to avoid
1664 		 * counting this as a dropped packed.
1665 		 */
1666 		sta->rx_stats.packets++;
1667 		dev_kfree_skb(rx->skb);
1668 		return RX_QUEUED;
1669 	}
1670 
1671 	return RX_CONTINUE;
1672 } /* ieee80211_rx_h_sta_process */
1673 
1674 static ieee80211_rx_result debug_noinline
1675 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1676 {
1677 	struct sk_buff *skb = rx->skb;
1678 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1679 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1680 	int keyidx;
1681 	int hdrlen;
1682 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1683 	struct ieee80211_key *sta_ptk = NULL;
1684 	int mmie_keyidx = -1;
1685 	__le16 fc;
1686 	const struct ieee80211_cipher_scheme *cs = NULL;
1687 
1688 	/*
1689 	 * Key selection 101
1690 	 *
1691 	 * There are four types of keys:
1692 	 *  - GTK (group keys)
1693 	 *  - IGTK (group keys for management frames)
1694 	 *  - PTK (pairwise keys)
1695 	 *  - STK (station-to-station pairwise keys)
1696 	 *
1697 	 * When selecting a key, we have to distinguish between multicast
1698 	 * (including broadcast) and unicast frames, the latter can only
1699 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1700 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1701 	 * unicast frames can also use key indices like GTKs. Hence, if we
1702 	 * don't have a PTK/STK we check the key index for a WEP key.
1703 	 *
1704 	 * Note that in a regular BSS, multicast frames are sent by the
1705 	 * AP only, associated stations unicast the frame to the AP first
1706 	 * which then multicasts it on their behalf.
1707 	 *
1708 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1709 	 * with each station, that is something we don't currently handle.
1710 	 * The spec seems to expect that one negotiates the same key with
1711 	 * every station but there's no such requirement; VLANs could be
1712 	 * possible.
1713 	 */
1714 
1715 	/* start without a key */
1716 	rx->key = NULL;
1717 	fc = hdr->frame_control;
1718 
1719 	if (rx->sta) {
1720 		int keyid = rx->sta->ptk_idx;
1721 
1722 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1723 			cs = rx->sta->cipher_scheme;
1724 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1725 			if (unlikely(keyid < 0))
1726 				return RX_DROP_UNUSABLE;
1727 		}
1728 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1729 	}
1730 
1731 	if (!ieee80211_has_protected(fc))
1732 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1733 
1734 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1735 		rx->key = sta_ptk;
1736 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1737 		    (status->flag & RX_FLAG_IV_STRIPPED))
1738 			return RX_CONTINUE;
1739 		/* Skip decryption if the frame is not protected. */
1740 		if (!ieee80211_has_protected(fc))
1741 			return RX_CONTINUE;
1742 	} else if (mmie_keyidx >= 0) {
1743 		/* Broadcast/multicast robust management frame / BIP */
1744 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1745 		    (status->flag & RX_FLAG_IV_STRIPPED))
1746 			return RX_CONTINUE;
1747 
1748 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1749 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1750 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1751 		if (rx->sta) {
1752 			if (ieee80211_is_group_privacy_action(skb) &&
1753 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1754 				return RX_DROP_MONITOR;
1755 
1756 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1757 		}
1758 		if (!rx->key)
1759 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1760 	} else if (!ieee80211_has_protected(fc)) {
1761 		/*
1762 		 * The frame was not protected, so skip decryption. However, we
1763 		 * need to set rx->key if there is a key that could have been
1764 		 * used so that the frame may be dropped if encryption would
1765 		 * have been expected.
1766 		 */
1767 		struct ieee80211_key *key = NULL;
1768 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1769 		int i;
1770 
1771 		if (ieee80211_is_mgmt(fc) &&
1772 		    is_multicast_ether_addr(hdr->addr1) &&
1773 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1774 			rx->key = key;
1775 		else {
1776 			if (rx->sta) {
1777 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1778 					key = rcu_dereference(rx->sta->gtk[i]);
1779 					if (key)
1780 						break;
1781 				}
1782 			}
1783 			if (!key) {
1784 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1785 					key = rcu_dereference(sdata->keys[i]);
1786 					if (key)
1787 						break;
1788 				}
1789 			}
1790 			if (key)
1791 				rx->key = key;
1792 		}
1793 		return RX_CONTINUE;
1794 	} else {
1795 		u8 keyid;
1796 
1797 		/*
1798 		 * The device doesn't give us the IV so we won't be
1799 		 * able to look up the key. That's ok though, we
1800 		 * don't need to decrypt the frame, we just won't
1801 		 * be able to keep statistics accurate.
1802 		 * Except for key threshold notifications, should
1803 		 * we somehow allow the driver to tell us which key
1804 		 * the hardware used if this flag is set?
1805 		 */
1806 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1807 		    (status->flag & RX_FLAG_IV_STRIPPED))
1808 			return RX_CONTINUE;
1809 
1810 		hdrlen = ieee80211_hdrlen(fc);
1811 
1812 		if (cs) {
1813 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1814 
1815 			if (unlikely(keyidx < 0))
1816 				return RX_DROP_UNUSABLE;
1817 		} else {
1818 			if (rx->skb->len < 8 + hdrlen)
1819 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1820 			/*
1821 			 * no need to call ieee80211_wep_get_keyidx,
1822 			 * it verifies a bunch of things we've done already
1823 			 */
1824 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1825 			keyidx = keyid >> 6;
1826 		}
1827 
1828 		/* check per-station GTK first, if multicast packet */
1829 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1830 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1831 
1832 		/* if not found, try default key */
1833 		if (!rx->key) {
1834 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1835 
1836 			/*
1837 			 * RSNA-protected unicast frames should always be
1838 			 * sent with pairwise or station-to-station keys,
1839 			 * but for WEP we allow using a key index as well.
1840 			 */
1841 			if (rx->key &&
1842 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1843 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1844 			    !is_multicast_ether_addr(hdr->addr1))
1845 				rx->key = NULL;
1846 		}
1847 	}
1848 
1849 	if (rx->key) {
1850 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1851 			return RX_DROP_MONITOR;
1852 
1853 		/* TODO: add threshold stuff again */
1854 	} else {
1855 		return RX_DROP_MONITOR;
1856 	}
1857 
1858 	switch (rx->key->conf.cipher) {
1859 	case WLAN_CIPHER_SUITE_WEP40:
1860 	case WLAN_CIPHER_SUITE_WEP104:
1861 		result = ieee80211_crypto_wep_decrypt(rx);
1862 		break;
1863 	case WLAN_CIPHER_SUITE_TKIP:
1864 		result = ieee80211_crypto_tkip_decrypt(rx);
1865 		break;
1866 	case WLAN_CIPHER_SUITE_CCMP:
1867 		result = ieee80211_crypto_ccmp_decrypt(
1868 			rx, IEEE80211_CCMP_MIC_LEN);
1869 		break;
1870 	case WLAN_CIPHER_SUITE_CCMP_256:
1871 		result = ieee80211_crypto_ccmp_decrypt(
1872 			rx, IEEE80211_CCMP_256_MIC_LEN);
1873 		break;
1874 	case WLAN_CIPHER_SUITE_AES_CMAC:
1875 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1876 		break;
1877 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1878 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1879 		break;
1880 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1881 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1882 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1883 		break;
1884 	case WLAN_CIPHER_SUITE_GCMP:
1885 	case WLAN_CIPHER_SUITE_GCMP_256:
1886 		result = ieee80211_crypto_gcmp_decrypt(rx);
1887 		break;
1888 	default:
1889 		result = ieee80211_crypto_hw_decrypt(rx);
1890 	}
1891 
1892 	/* the hdr variable is invalid after the decrypt handlers */
1893 
1894 	/* either the frame has been decrypted or will be dropped */
1895 	status->flag |= RX_FLAG_DECRYPTED;
1896 
1897 	return result;
1898 }
1899 
1900 static inline struct ieee80211_fragment_entry *
1901 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1902 			 unsigned int frag, unsigned int seq, int rx_queue,
1903 			 struct sk_buff **skb)
1904 {
1905 	struct ieee80211_fragment_entry *entry;
1906 
1907 	entry = &sdata->fragments[sdata->fragment_next++];
1908 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1909 		sdata->fragment_next = 0;
1910 
1911 	if (!skb_queue_empty(&entry->skb_list))
1912 		__skb_queue_purge(&entry->skb_list);
1913 
1914 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1915 	*skb = NULL;
1916 	entry->first_frag_time = jiffies;
1917 	entry->seq = seq;
1918 	entry->rx_queue = rx_queue;
1919 	entry->last_frag = frag;
1920 	entry->check_sequential_pn = false;
1921 	entry->extra_len = 0;
1922 
1923 	return entry;
1924 }
1925 
1926 static inline struct ieee80211_fragment_entry *
1927 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1928 			  unsigned int frag, unsigned int seq,
1929 			  int rx_queue, struct ieee80211_hdr *hdr)
1930 {
1931 	struct ieee80211_fragment_entry *entry;
1932 	int i, idx;
1933 
1934 	idx = sdata->fragment_next;
1935 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1936 		struct ieee80211_hdr *f_hdr;
1937 
1938 		idx--;
1939 		if (idx < 0)
1940 			idx = IEEE80211_FRAGMENT_MAX - 1;
1941 
1942 		entry = &sdata->fragments[idx];
1943 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1944 		    entry->rx_queue != rx_queue ||
1945 		    entry->last_frag + 1 != frag)
1946 			continue;
1947 
1948 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1949 
1950 		/*
1951 		 * Check ftype and addresses are equal, else check next fragment
1952 		 */
1953 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1954 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1955 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1956 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1957 			continue;
1958 
1959 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1960 			__skb_queue_purge(&entry->skb_list);
1961 			continue;
1962 		}
1963 		return entry;
1964 	}
1965 
1966 	return NULL;
1967 }
1968 
1969 static ieee80211_rx_result debug_noinline
1970 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1971 {
1972 	struct ieee80211_hdr *hdr;
1973 	u16 sc;
1974 	__le16 fc;
1975 	unsigned int frag, seq;
1976 	struct ieee80211_fragment_entry *entry;
1977 	struct sk_buff *skb;
1978 
1979 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1980 	fc = hdr->frame_control;
1981 
1982 	if (ieee80211_is_ctl(fc))
1983 		return RX_CONTINUE;
1984 
1985 	sc = le16_to_cpu(hdr->seq_ctrl);
1986 	frag = sc & IEEE80211_SCTL_FRAG;
1987 
1988 	if (is_multicast_ether_addr(hdr->addr1)) {
1989 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1990 		goto out_no_led;
1991 	}
1992 
1993 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1994 		goto out;
1995 
1996 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1997 
1998 	if (skb_linearize(rx->skb))
1999 		return RX_DROP_UNUSABLE;
2000 
2001 	/*
2002 	 *  skb_linearize() might change the skb->data and
2003 	 *  previously cached variables (in this case, hdr) need to
2004 	 *  be refreshed with the new data.
2005 	 */
2006 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2007 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2008 
2009 	if (frag == 0) {
2010 		/* This is the first fragment of a new frame. */
2011 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2012 						 rx->seqno_idx, &(rx->skb));
2013 		if (rx->key &&
2014 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2015 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2016 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2017 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2018 		    ieee80211_has_protected(fc)) {
2019 			int queue = rx->security_idx;
2020 
2021 			/* Store CCMP/GCMP PN so that we can verify that the
2022 			 * next fragment has a sequential PN value.
2023 			 */
2024 			entry->check_sequential_pn = true;
2025 			memcpy(entry->last_pn,
2026 			       rx->key->u.ccmp.rx_pn[queue],
2027 			       IEEE80211_CCMP_PN_LEN);
2028 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2029 					      u.ccmp.rx_pn) !=
2030 				     offsetof(struct ieee80211_key,
2031 					      u.gcmp.rx_pn));
2032 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2033 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2034 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2035 				     IEEE80211_GCMP_PN_LEN);
2036 		}
2037 		return RX_QUEUED;
2038 	}
2039 
2040 	/* This is a fragment for a frame that should already be pending in
2041 	 * fragment cache. Add this fragment to the end of the pending entry.
2042 	 */
2043 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2044 					  rx->seqno_idx, hdr);
2045 	if (!entry) {
2046 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2047 		return RX_DROP_MONITOR;
2048 	}
2049 
2050 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2051 	 *  MPDU PN values are not incrementing in steps of 1."
2052 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2053 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2054 	 */
2055 	if (entry->check_sequential_pn) {
2056 		int i;
2057 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2058 		int queue;
2059 
2060 		if (!rx->key ||
2061 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2062 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2063 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2064 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2065 			return RX_DROP_UNUSABLE;
2066 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2067 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2068 			pn[i]++;
2069 			if (pn[i])
2070 				break;
2071 		}
2072 		queue = rx->security_idx;
2073 		rpn = rx->key->u.ccmp.rx_pn[queue];
2074 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2075 			return RX_DROP_UNUSABLE;
2076 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2077 	}
2078 
2079 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2080 	__skb_queue_tail(&entry->skb_list, rx->skb);
2081 	entry->last_frag = frag;
2082 	entry->extra_len += rx->skb->len;
2083 	if (ieee80211_has_morefrags(fc)) {
2084 		rx->skb = NULL;
2085 		return RX_QUEUED;
2086 	}
2087 
2088 	rx->skb = __skb_dequeue(&entry->skb_list);
2089 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2090 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2091 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2092 					      GFP_ATOMIC))) {
2093 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2094 			__skb_queue_purge(&entry->skb_list);
2095 			return RX_DROP_UNUSABLE;
2096 		}
2097 	}
2098 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2099 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2100 		dev_kfree_skb(skb);
2101 	}
2102 
2103  out:
2104 	ieee80211_led_rx(rx->local);
2105  out_no_led:
2106 	if (rx->sta)
2107 		rx->sta->rx_stats.packets++;
2108 	return RX_CONTINUE;
2109 }
2110 
2111 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2112 {
2113 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2114 		return -EACCES;
2115 
2116 	return 0;
2117 }
2118 
2119 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2120 {
2121 	struct sk_buff *skb = rx->skb;
2122 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2123 
2124 	/*
2125 	 * Pass through unencrypted frames if the hardware has
2126 	 * decrypted them already.
2127 	 */
2128 	if (status->flag & RX_FLAG_DECRYPTED)
2129 		return 0;
2130 
2131 	/* Drop unencrypted frames if key is set. */
2132 	if (unlikely(!ieee80211_has_protected(fc) &&
2133 		     !ieee80211_is_nullfunc(fc) &&
2134 		     ieee80211_is_data(fc) && rx->key))
2135 		return -EACCES;
2136 
2137 	return 0;
2138 }
2139 
2140 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2141 {
2142 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2143 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2144 	__le16 fc = hdr->frame_control;
2145 
2146 	/*
2147 	 * Pass through unencrypted frames if the hardware has
2148 	 * decrypted them already.
2149 	 */
2150 	if (status->flag & RX_FLAG_DECRYPTED)
2151 		return 0;
2152 
2153 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2154 		if (unlikely(!ieee80211_has_protected(fc) &&
2155 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2156 			     rx->key)) {
2157 			if (ieee80211_is_deauth(fc) ||
2158 			    ieee80211_is_disassoc(fc))
2159 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2160 							     rx->skb->data,
2161 							     rx->skb->len);
2162 			return -EACCES;
2163 		}
2164 		/* BIP does not use Protected field, so need to check MMIE */
2165 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2166 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2167 			if (ieee80211_is_deauth(fc) ||
2168 			    ieee80211_is_disassoc(fc))
2169 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2170 							     rx->skb->data,
2171 							     rx->skb->len);
2172 			return -EACCES;
2173 		}
2174 		/*
2175 		 * When using MFP, Action frames are not allowed prior to
2176 		 * having configured keys.
2177 		 */
2178 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2179 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2180 			return -EACCES;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static int
2187 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2188 {
2189 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2190 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2191 	bool check_port_control = false;
2192 	struct ethhdr *ehdr;
2193 	int ret;
2194 
2195 	*port_control = false;
2196 	if (ieee80211_has_a4(hdr->frame_control) &&
2197 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2198 		return -1;
2199 
2200 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2201 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2202 
2203 		if (!sdata->u.mgd.use_4addr)
2204 			return -1;
2205 		else
2206 			check_port_control = true;
2207 	}
2208 
2209 	if (is_multicast_ether_addr(hdr->addr1) &&
2210 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2211 		return -1;
2212 
2213 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2214 	if (ret < 0)
2215 		return ret;
2216 
2217 	ehdr = (struct ethhdr *) rx->skb->data;
2218 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2219 		*port_control = true;
2220 	else if (check_port_control)
2221 		return -1;
2222 
2223 	return 0;
2224 }
2225 
2226 /*
2227  * requires that rx->skb is a frame with ethernet header
2228  */
2229 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2230 {
2231 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2232 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2233 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2234 
2235 	/*
2236 	 * Allow EAPOL frames to us/the PAE group address regardless
2237 	 * of whether the frame was encrypted or not.
2238 	 */
2239 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2240 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2241 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2242 		return true;
2243 
2244 	if (ieee80211_802_1x_port_control(rx) ||
2245 	    ieee80211_drop_unencrypted(rx, fc))
2246 		return false;
2247 
2248 	return true;
2249 }
2250 
2251 /*
2252  * requires that rx->skb is a frame with ethernet header
2253  */
2254 static void
2255 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2256 {
2257 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2258 	struct net_device *dev = sdata->dev;
2259 	struct sk_buff *skb, *xmit_skb;
2260 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2261 	struct sta_info *dsta;
2262 
2263 	skb = rx->skb;
2264 	xmit_skb = NULL;
2265 
2266 	ieee80211_rx_stats(dev, skb->len);
2267 
2268 	if (rx->sta) {
2269 		/* The seqno index has the same property as needed
2270 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2271 		 * for non-QoS-data frames. Here we know it's a data
2272 		 * frame, so count MSDUs.
2273 		 */
2274 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2275 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2276 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2277 	}
2278 
2279 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2280 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2281 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2282 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2283 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2284 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2285 			/*
2286 			 * send multicast frames both to higher layers in
2287 			 * local net stack and back to the wireless medium
2288 			 */
2289 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2290 			if (!xmit_skb)
2291 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2292 						    dev->name);
2293 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2294 			dsta = sta_info_get(sdata, skb->data);
2295 			if (dsta) {
2296 				/*
2297 				 * The destination station is associated to
2298 				 * this AP (in this VLAN), so send the frame
2299 				 * directly to it and do not pass it to local
2300 				 * net stack.
2301 				 */
2302 				xmit_skb = skb;
2303 				skb = NULL;
2304 			}
2305 		}
2306 	}
2307 
2308 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2309 	if (skb) {
2310 		/* 'align' will only take the values 0 or 2 here since all
2311 		 * frames are required to be aligned to 2-byte boundaries
2312 		 * when being passed to mac80211; the code here works just
2313 		 * as well if that isn't true, but mac80211 assumes it can
2314 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2315 		 */
2316 		int align;
2317 
2318 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2319 		if (align) {
2320 			if (WARN_ON(skb_headroom(skb) < 3)) {
2321 				dev_kfree_skb(skb);
2322 				skb = NULL;
2323 			} else {
2324 				u8 *data = skb->data;
2325 				size_t len = skb_headlen(skb);
2326 				skb->data -= align;
2327 				memmove(skb->data, data, len);
2328 				skb_set_tail_pointer(skb, len);
2329 			}
2330 		}
2331 	}
2332 #endif
2333 
2334 	if (skb) {
2335 		/* deliver to local stack */
2336 		skb->protocol = eth_type_trans(skb, dev);
2337 		memset(skb->cb, 0, sizeof(skb->cb));
2338 		if (rx->napi)
2339 			napi_gro_receive(rx->napi, skb);
2340 		else
2341 			netif_receive_skb(skb);
2342 	}
2343 
2344 	if (xmit_skb) {
2345 		/*
2346 		 * Send to wireless media and increase priority by 256 to
2347 		 * keep the received priority instead of reclassifying
2348 		 * the frame (see cfg80211_classify8021d).
2349 		 */
2350 		xmit_skb->priority += 256;
2351 		xmit_skb->protocol = htons(ETH_P_802_3);
2352 		skb_reset_network_header(xmit_skb);
2353 		skb_reset_mac_header(xmit_skb);
2354 		dev_queue_xmit(xmit_skb);
2355 	}
2356 }
2357 
2358 static ieee80211_rx_result debug_noinline
2359 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2360 {
2361 	struct net_device *dev = rx->sdata->dev;
2362 	struct sk_buff *skb = rx->skb;
2363 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2364 	__le16 fc = hdr->frame_control;
2365 	struct sk_buff_head frame_list;
2366 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2367 	struct ethhdr ethhdr;
2368 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2369 
2370 	if (unlikely(!ieee80211_is_data(fc)))
2371 		return RX_CONTINUE;
2372 
2373 	if (unlikely(!ieee80211_is_data_present(fc)))
2374 		return RX_DROP_MONITOR;
2375 
2376 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2377 		return RX_CONTINUE;
2378 
2379 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2380 		switch (rx->sdata->vif.type) {
2381 		case NL80211_IFTYPE_AP_VLAN:
2382 			if (!rx->sdata->u.vlan.sta)
2383 				return RX_DROP_UNUSABLE;
2384 			break;
2385 		case NL80211_IFTYPE_STATION:
2386 			if (!rx->sdata->u.mgd.use_4addr)
2387 				return RX_DROP_UNUSABLE;
2388 			break;
2389 		default:
2390 			return RX_DROP_UNUSABLE;
2391 		}
2392 		check_da = NULL;
2393 		check_sa = NULL;
2394 	} else switch (rx->sdata->vif.type) {
2395 		case NL80211_IFTYPE_AP:
2396 		case NL80211_IFTYPE_AP_VLAN:
2397 			check_da = NULL;
2398 			break;
2399 		case NL80211_IFTYPE_STATION:
2400 			if (!rx->sta ||
2401 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2402 				check_sa = NULL;
2403 			break;
2404 		case NL80211_IFTYPE_MESH_POINT:
2405 			check_sa = NULL;
2406 			break;
2407 		default:
2408 			break;
2409 	}
2410 
2411 	if (is_multicast_ether_addr(hdr->addr1))
2412 		return RX_DROP_UNUSABLE;
2413 
2414 	skb->dev = dev;
2415 	__skb_queue_head_init(&frame_list);
2416 
2417 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2418 					  rx->sdata->vif.addr,
2419 					  rx->sdata->vif.type))
2420 		return RX_DROP_UNUSABLE;
2421 
2422 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2423 				 rx->sdata->vif.type,
2424 				 rx->local->hw.extra_tx_headroom,
2425 				 check_da, check_sa);
2426 
2427 	while (!skb_queue_empty(&frame_list)) {
2428 		rx->skb = __skb_dequeue(&frame_list);
2429 
2430 		if (!ieee80211_frame_allowed(rx, fc)) {
2431 			dev_kfree_skb(rx->skb);
2432 			continue;
2433 		}
2434 
2435 		ieee80211_deliver_skb(rx);
2436 	}
2437 
2438 	return RX_QUEUED;
2439 }
2440 
2441 #ifdef CONFIG_MAC80211_MESH
2442 static ieee80211_rx_result
2443 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2444 {
2445 	struct ieee80211_hdr *fwd_hdr, *hdr;
2446 	struct ieee80211_tx_info *info;
2447 	struct ieee80211s_hdr *mesh_hdr;
2448 	struct sk_buff *skb = rx->skb, *fwd_skb;
2449 	struct ieee80211_local *local = rx->local;
2450 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2451 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2452 	u16 ac, q, hdrlen;
2453 
2454 	hdr = (struct ieee80211_hdr *) skb->data;
2455 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2456 
2457 	/* make sure fixed part of mesh header is there, also checks skb len */
2458 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2459 		return RX_DROP_MONITOR;
2460 
2461 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2462 
2463 	/* make sure full mesh header is there, also checks skb len */
2464 	if (!pskb_may_pull(rx->skb,
2465 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2466 		return RX_DROP_MONITOR;
2467 
2468 	/* reload pointers */
2469 	hdr = (struct ieee80211_hdr *) skb->data;
2470 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2471 
2472 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2473 		return RX_DROP_MONITOR;
2474 
2475 	/* frame is in RMC, don't forward */
2476 	if (ieee80211_is_data(hdr->frame_control) &&
2477 	    is_multicast_ether_addr(hdr->addr1) &&
2478 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2479 		return RX_DROP_MONITOR;
2480 
2481 	if (!ieee80211_is_data(hdr->frame_control))
2482 		return RX_CONTINUE;
2483 
2484 	if (!mesh_hdr->ttl)
2485 		return RX_DROP_MONITOR;
2486 
2487 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2488 		struct mesh_path *mppath;
2489 		char *proxied_addr;
2490 		char *mpp_addr;
2491 
2492 		if (is_multicast_ether_addr(hdr->addr1)) {
2493 			mpp_addr = hdr->addr3;
2494 			proxied_addr = mesh_hdr->eaddr1;
2495 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2496 			    MESH_FLAGS_AE_A5_A6) {
2497 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2498 			mpp_addr = hdr->addr4;
2499 			proxied_addr = mesh_hdr->eaddr2;
2500 		} else {
2501 			return RX_DROP_MONITOR;
2502 		}
2503 
2504 		rcu_read_lock();
2505 		mppath = mpp_path_lookup(sdata, proxied_addr);
2506 		if (!mppath) {
2507 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2508 		} else {
2509 			spin_lock_bh(&mppath->state_lock);
2510 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2511 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2512 			mppath->exp_time = jiffies;
2513 			spin_unlock_bh(&mppath->state_lock);
2514 		}
2515 		rcu_read_unlock();
2516 	}
2517 
2518 	/* Frame has reached destination.  Don't forward */
2519 	if (!is_multicast_ether_addr(hdr->addr1) &&
2520 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2521 		return RX_CONTINUE;
2522 
2523 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2524 	q = sdata->vif.hw_queue[ac];
2525 	if (ieee80211_queue_stopped(&local->hw, q)) {
2526 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2527 		return RX_DROP_MONITOR;
2528 	}
2529 	skb_set_queue_mapping(skb, q);
2530 
2531 	if (!--mesh_hdr->ttl) {
2532 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2533 		goto out;
2534 	}
2535 
2536 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2537 		goto out;
2538 
2539 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2540 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2541 	if (!fwd_skb) {
2542 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2543 				    sdata->name);
2544 		goto out;
2545 	}
2546 
2547 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2548 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2549 	info = IEEE80211_SKB_CB(fwd_skb);
2550 	memset(info, 0, sizeof(*info));
2551 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2552 	info->control.vif = &rx->sdata->vif;
2553 	info->control.jiffies = jiffies;
2554 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2555 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2556 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2557 		/* update power mode indication when forwarding */
2558 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2559 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2560 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2561 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2562 	} else {
2563 		/* unable to resolve next hop */
2564 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2565 				   fwd_hdr->addr3, 0,
2566 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2567 				   fwd_hdr->addr2);
2568 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2569 		kfree_skb(fwd_skb);
2570 		return RX_DROP_MONITOR;
2571 	}
2572 
2573 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2574 	ieee80211_add_pending_skb(local, fwd_skb);
2575  out:
2576 	if (is_multicast_ether_addr(hdr->addr1))
2577 		return RX_CONTINUE;
2578 	return RX_DROP_MONITOR;
2579 }
2580 #endif
2581 
2582 static ieee80211_rx_result debug_noinline
2583 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2584 {
2585 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2586 	struct ieee80211_local *local = rx->local;
2587 	struct net_device *dev = sdata->dev;
2588 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2589 	__le16 fc = hdr->frame_control;
2590 	bool port_control;
2591 	int err;
2592 
2593 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2594 		return RX_CONTINUE;
2595 
2596 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2597 		return RX_DROP_MONITOR;
2598 
2599 	/*
2600 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2601 	 * also drop the frame to cooked monitor interfaces.
2602 	 */
2603 	if (ieee80211_has_a4(hdr->frame_control) &&
2604 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2605 		if (rx->sta &&
2606 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2607 			cfg80211_rx_unexpected_4addr_frame(
2608 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2609 		return RX_DROP_MONITOR;
2610 	}
2611 
2612 	err = __ieee80211_data_to_8023(rx, &port_control);
2613 	if (unlikely(err))
2614 		return RX_DROP_UNUSABLE;
2615 
2616 	if (!ieee80211_frame_allowed(rx, fc))
2617 		return RX_DROP_MONITOR;
2618 
2619 	/* directly handle TDLS channel switch requests/responses */
2620 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2621 						cpu_to_be16(ETH_P_TDLS))) {
2622 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2623 
2624 		if (pskb_may_pull(rx->skb,
2625 				  offsetof(struct ieee80211_tdls_data, u)) &&
2626 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2627 		    tf->category == WLAN_CATEGORY_TDLS &&
2628 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2629 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2630 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2631 			schedule_work(&local->tdls_chsw_work);
2632 			if (rx->sta)
2633 				rx->sta->rx_stats.packets++;
2634 
2635 			return RX_QUEUED;
2636 		}
2637 	}
2638 
2639 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2640 	    unlikely(port_control) && sdata->bss) {
2641 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2642 				     u.ap);
2643 		dev = sdata->dev;
2644 		rx->sdata = sdata;
2645 	}
2646 
2647 	rx->skb->dev = dev;
2648 
2649 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2650 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2651 	    !is_multicast_ether_addr(
2652 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2653 	    (!local->scanning &&
2654 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2655 		mod_timer(&local->dynamic_ps_timer, jiffies +
2656 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2657 
2658 	ieee80211_deliver_skb(rx);
2659 
2660 	return RX_QUEUED;
2661 }
2662 
2663 static ieee80211_rx_result debug_noinline
2664 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2665 {
2666 	struct sk_buff *skb = rx->skb;
2667 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2668 	struct tid_ampdu_rx *tid_agg_rx;
2669 	u16 start_seq_num;
2670 	u16 tid;
2671 
2672 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2673 		return RX_CONTINUE;
2674 
2675 	if (ieee80211_is_back_req(bar->frame_control)) {
2676 		struct {
2677 			__le16 control, start_seq_num;
2678 		} __packed bar_data;
2679 		struct ieee80211_event event = {
2680 			.type = BAR_RX_EVENT,
2681 		};
2682 
2683 		if (!rx->sta)
2684 			return RX_DROP_MONITOR;
2685 
2686 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2687 				  &bar_data, sizeof(bar_data)))
2688 			return RX_DROP_MONITOR;
2689 
2690 		tid = le16_to_cpu(bar_data.control) >> 12;
2691 
2692 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2693 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2694 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2695 					     WLAN_BACK_RECIPIENT,
2696 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2697 
2698 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2699 		if (!tid_agg_rx)
2700 			return RX_DROP_MONITOR;
2701 
2702 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2703 		event.u.ba.tid = tid;
2704 		event.u.ba.ssn = start_seq_num;
2705 		event.u.ba.sta = &rx->sta->sta;
2706 
2707 		/* reset session timer */
2708 		if (tid_agg_rx->timeout)
2709 			mod_timer(&tid_agg_rx->session_timer,
2710 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2711 
2712 		spin_lock(&tid_agg_rx->reorder_lock);
2713 		/* release stored frames up to start of BAR */
2714 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2715 						 start_seq_num, frames);
2716 		spin_unlock(&tid_agg_rx->reorder_lock);
2717 
2718 		drv_event_callback(rx->local, rx->sdata, &event);
2719 
2720 		kfree_skb(skb);
2721 		return RX_QUEUED;
2722 	}
2723 
2724 	/*
2725 	 * After this point, we only want management frames,
2726 	 * so we can drop all remaining control frames to
2727 	 * cooked monitor interfaces.
2728 	 */
2729 	return RX_DROP_MONITOR;
2730 }
2731 
2732 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2733 					   struct ieee80211_mgmt *mgmt,
2734 					   size_t len)
2735 {
2736 	struct ieee80211_local *local = sdata->local;
2737 	struct sk_buff *skb;
2738 	struct ieee80211_mgmt *resp;
2739 
2740 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2741 		/* Not to own unicast address */
2742 		return;
2743 	}
2744 
2745 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2746 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2747 		/* Not from the current AP or not associated yet. */
2748 		return;
2749 	}
2750 
2751 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2752 		/* Too short SA Query request frame */
2753 		return;
2754 	}
2755 
2756 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2757 	if (skb == NULL)
2758 		return;
2759 
2760 	skb_reserve(skb, local->hw.extra_tx_headroom);
2761 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2762 	memset(resp, 0, 24);
2763 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2764 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2765 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2766 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2767 					  IEEE80211_STYPE_ACTION);
2768 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2769 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2770 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2771 	memcpy(resp->u.action.u.sa_query.trans_id,
2772 	       mgmt->u.action.u.sa_query.trans_id,
2773 	       WLAN_SA_QUERY_TR_ID_LEN);
2774 
2775 	ieee80211_tx_skb(sdata, skb);
2776 }
2777 
2778 static ieee80211_rx_result debug_noinline
2779 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2780 {
2781 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2782 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2783 
2784 	/*
2785 	 * From here on, look only at management frames.
2786 	 * Data and control frames are already handled,
2787 	 * and unknown (reserved) frames are useless.
2788 	 */
2789 	if (rx->skb->len < 24)
2790 		return RX_DROP_MONITOR;
2791 
2792 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2793 		return RX_DROP_MONITOR;
2794 
2795 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2796 	    ieee80211_is_beacon(mgmt->frame_control) &&
2797 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2798 		int sig = 0;
2799 
2800 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2801 			sig = status->signal;
2802 
2803 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2804 					    rx->skb->data, rx->skb->len,
2805 					    status->freq, sig);
2806 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2807 	}
2808 
2809 	if (ieee80211_drop_unencrypted_mgmt(rx))
2810 		return RX_DROP_UNUSABLE;
2811 
2812 	return RX_CONTINUE;
2813 }
2814 
2815 static ieee80211_rx_result debug_noinline
2816 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2817 {
2818 	struct ieee80211_local *local = rx->local;
2819 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2820 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2821 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2822 	int len = rx->skb->len;
2823 
2824 	if (!ieee80211_is_action(mgmt->frame_control))
2825 		return RX_CONTINUE;
2826 
2827 	/* drop too small frames */
2828 	if (len < IEEE80211_MIN_ACTION_SIZE)
2829 		return RX_DROP_UNUSABLE;
2830 
2831 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2832 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2833 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2834 		return RX_DROP_UNUSABLE;
2835 
2836 	switch (mgmt->u.action.category) {
2837 	case WLAN_CATEGORY_HT:
2838 		/* reject HT action frames from stations not supporting HT */
2839 		if (!rx->sta->sta.ht_cap.ht_supported)
2840 			goto invalid;
2841 
2842 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2843 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2844 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2845 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2846 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2847 			break;
2848 
2849 		/* verify action & smps_control/chanwidth are present */
2850 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2851 			goto invalid;
2852 
2853 		switch (mgmt->u.action.u.ht_smps.action) {
2854 		case WLAN_HT_ACTION_SMPS: {
2855 			struct ieee80211_supported_band *sband;
2856 			enum ieee80211_smps_mode smps_mode;
2857 
2858 			/* convert to HT capability */
2859 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2860 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2861 				smps_mode = IEEE80211_SMPS_OFF;
2862 				break;
2863 			case WLAN_HT_SMPS_CONTROL_STATIC:
2864 				smps_mode = IEEE80211_SMPS_STATIC;
2865 				break;
2866 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2867 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2868 				break;
2869 			default:
2870 				goto invalid;
2871 			}
2872 
2873 			/* if no change do nothing */
2874 			if (rx->sta->sta.smps_mode == smps_mode)
2875 				goto handled;
2876 			rx->sta->sta.smps_mode = smps_mode;
2877 
2878 			sband = rx->local->hw.wiphy->bands[status->band];
2879 
2880 			rate_control_rate_update(local, sband, rx->sta,
2881 						 IEEE80211_RC_SMPS_CHANGED);
2882 			goto handled;
2883 		}
2884 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2885 			struct ieee80211_supported_band *sband;
2886 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2887 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2888 
2889 			/* If it doesn't support 40 MHz it can't change ... */
2890 			if (!(rx->sta->sta.ht_cap.cap &
2891 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2892 				goto handled;
2893 
2894 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2895 				max_bw = IEEE80211_STA_RX_BW_20;
2896 			else
2897 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2898 
2899 			/* set cur_max_bandwidth and recalc sta bw */
2900 			rx->sta->cur_max_bandwidth = max_bw;
2901 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2902 
2903 			if (rx->sta->sta.bandwidth == new_bw)
2904 				goto handled;
2905 
2906 			rx->sta->sta.bandwidth = new_bw;
2907 			sband = rx->local->hw.wiphy->bands[status->band];
2908 
2909 			rate_control_rate_update(local, sband, rx->sta,
2910 						 IEEE80211_RC_BW_CHANGED);
2911 			goto handled;
2912 		}
2913 		default:
2914 			goto invalid;
2915 		}
2916 
2917 		break;
2918 	case WLAN_CATEGORY_PUBLIC:
2919 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2920 			goto invalid;
2921 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2922 			break;
2923 		if (!rx->sta)
2924 			break;
2925 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2926 			break;
2927 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2928 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2929 			break;
2930 		if (len < offsetof(struct ieee80211_mgmt,
2931 				   u.action.u.ext_chan_switch.variable))
2932 			goto invalid;
2933 		goto queue;
2934 	case WLAN_CATEGORY_VHT:
2935 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2936 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2937 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2938 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2939 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2940 			break;
2941 
2942 		/* verify action code is present */
2943 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2944 			goto invalid;
2945 
2946 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2947 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2948 			/* verify opmode is present */
2949 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2950 				goto invalid;
2951 			goto queue;
2952 		}
2953 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2954 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2955 				goto invalid;
2956 			goto queue;
2957 		}
2958 		default:
2959 			break;
2960 		}
2961 		break;
2962 	case WLAN_CATEGORY_BACK:
2963 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2964 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2965 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2966 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2967 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2968 			break;
2969 
2970 		/* verify action_code is present */
2971 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2972 			break;
2973 
2974 		switch (mgmt->u.action.u.addba_req.action_code) {
2975 		case WLAN_ACTION_ADDBA_REQ:
2976 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2977 				   sizeof(mgmt->u.action.u.addba_req)))
2978 				goto invalid;
2979 			break;
2980 		case WLAN_ACTION_ADDBA_RESP:
2981 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2982 				   sizeof(mgmt->u.action.u.addba_resp)))
2983 				goto invalid;
2984 			break;
2985 		case WLAN_ACTION_DELBA:
2986 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2987 				   sizeof(mgmt->u.action.u.delba)))
2988 				goto invalid;
2989 			break;
2990 		default:
2991 			goto invalid;
2992 		}
2993 
2994 		goto queue;
2995 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2996 		/* verify action_code is present */
2997 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2998 			break;
2999 
3000 		switch (mgmt->u.action.u.measurement.action_code) {
3001 		case WLAN_ACTION_SPCT_MSR_REQ:
3002 			if (status->band != NL80211_BAND_5GHZ)
3003 				break;
3004 
3005 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3006 				   sizeof(mgmt->u.action.u.measurement)))
3007 				break;
3008 
3009 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3010 				break;
3011 
3012 			ieee80211_process_measurement_req(sdata, mgmt, len);
3013 			goto handled;
3014 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3015 			u8 *bssid;
3016 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3017 				   sizeof(mgmt->u.action.u.chan_switch)))
3018 				break;
3019 
3020 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3021 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3022 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3023 				break;
3024 
3025 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3026 				bssid = sdata->u.mgd.bssid;
3027 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3028 				bssid = sdata->u.ibss.bssid;
3029 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3030 				bssid = mgmt->sa;
3031 			else
3032 				break;
3033 
3034 			if (!ether_addr_equal(mgmt->bssid, bssid))
3035 				break;
3036 
3037 			goto queue;
3038 			}
3039 		}
3040 		break;
3041 	case WLAN_CATEGORY_SA_QUERY:
3042 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3043 			   sizeof(mgmt->u.action.u.sa_query)))
3044 			break;
3045 
3046 		switch (mgmt->u.action.u.sa_query.action) {
3047 		case WLAN_ACTION_SA_QUERY_REQUEST:
3048 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3049 				break;
3050 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3051 			goto handled;
3052 		}
3053 		break;
3054 	case WLAN_CATEGORY_SELF_PROTECTED:
3055 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3056 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3057 			break;
3058 
3059 		switch (mgmt->u.action.u.self_prot.action_code) {
3060 		case WLAN_SP_MESH_PEERING_OPEN:
3061 		case WLAN_SP_MESH_PEERING_CLOSE:
3062 		case WLAN_SP_MESH_PEERING_CONFIRM:
3063 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3064 				goto invalid;
3065 			if (sdata->u.mesh.user_mpm)
3066 				/* userspace handles this frame */
3067 				break;
3068 			goto queue;
3069 		case WLAN_SP_MGK_INFORM:
3070 		case WLAN_SP_MGK_ACK:
3071 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3072 				goto invalid;
3073 			break;
3074 		}
3075 		break;
3076 	case WLAN_CATEGORY_MESH_ACTION:
3077 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3078 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3079 			break;
3080 
3081 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3082 			break;
3083 		if (mesh_action_is_path_sel(mgmt) &&
3084 		    !mesh_path_sel_is_hwmp(sdata))
3085 			break;
3086 		goto queue;
3087 	}
3088 
3089 	return RX_CONTINUE;
3090 
3091  invalid:
3092 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3093 	/* will return in the next handlers */
3094 	return RX_CONTINUE;
3095 
3096  handled:
3097 	if (rx->sta)
3098 		rx->sta->rx_stats.packets++;
3099 	dev_kfree_skb(rx->skb);
3100 	return RX_QUEUED;
3101 
3102  queue:
3103 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3104 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3105 	ieee80211_queue_work(&local->hw, &sdata->work);
3106 	if (rx->sta)
3107 		rx->sta->rx_stats.packets++;
3108 	return RX_QUEUED;
3109 }
3110 
3111 static ieee80211_rx_result debug_noinline
3112 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3113 {
3114 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3115 	int sig = 0;
3116 
3117 	/* skip known-bad action frames and return them in the next handler */
3118 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3119 		return RX_CONTINUE;
3120 
3121 	/*
3122 	 * Getting here means the kernel doesn't know how to handle
3123 	 * it, but maybe userspace does ... include returned frames
3124 	 * so userspace can register for those to know whether ones
3125 	 * it transmitted were processed or returned.
3126 	 */
3127 
3128 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3129 		sig = status->signal;
3130 
3131 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3132 			     rx->skb->data, rx->skb->len, 0)) {
3133 		if (rx->sta)
3134 			rx->sta->rx_stats.packets++;
3135 		dev_kfree_skb(rx->skb);
3136 		return RX_QUEUED;
3137 	}
3138 
3139 	return RX_CONTINUE;
3140 }
3141 
3142 static ieee80211_rx_result debug_noinline
3143 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3144 {
3145 	struct ieee80211_local *local = rx->local;
3146 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3147 	struct sk_buff *nskb;
3148 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3149 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3150 
3151 	if (!ieee80211_is_action(mgmt->frame_control))
3152 		return RX_CONTINUE;
3153 
3154 	/*
3155 	 * For AP mode, hostapd is responsible for handling any action
3156 	 * frames that we didn't handle, including returning unknown
3157 	 * ones. For all other modes we will return them to the sender,
3158 	 * setting the 0x80 bit in the action category, as required by
3159 	 * 802.11-2012 9.24.4.
3160 	 * Newer versions of hostapd shall also use the management frame
3161 	 * registration mechanisms, but older ones still use cooked
3162 	 * monitor interfaces so push all frames there.
3163 	 */
3164 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3165 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3166 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3167 		return RX_DROP_MONITOR;
3168 
3169 	if (is_multicast_ether_addr(mgmt->da))
3170 		return RX_DROP_MONITOR;
3171 
3172 	/* do not return rejected action frames */
3173 	if (mgmt->u.action.category & 0x80)
3174 		return RX_DROP_UNUSABLE;
3175 
3176 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3177 			       GFP_ATOMIC);
3178 	if (nskb) {
3179 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3180 
3181 		nmgmt->u.action.category |= 0x80;
3182 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3183 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3184 
3185 		memset(nskb->cb, 0, sizeof(nskb->cb));
3186 
3187 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3188 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3189 
3190 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3191 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3192 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3193 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3194 				info->hw_queue =
3195 					local->hw.offchannel_tx_hw_queue;
3196 		}
3197 
3198 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3199 					    status->band);
3200 	}
3201 	dev_kfree_skb(rx->skb);
3202 	return RX_QUEUED;
3203 }
3204 
3205 static ieee80211_rx_result debug_noinline
3206 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3207 {
3208 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3209 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3210 	__le16 stype;
3211 
3212 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3213 
3214 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3215 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3216 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3217 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3218 		return RX_DROP_MONITOR;
3219 
3220 	switch (stype) {
3221 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3222 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3223 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3224 		/* process for all: mesh, mlme, ibss */
3225 		break;
3226 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3227 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3228 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3229 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3230 		if (is_multicast_ether_addr(mgmt->da) &&
3231 		    !is_broadcast_ether_addr(mgmt->da))
3232 			return RX_DROP_MONITOR;
3233 
3234 		/* process only for station */
3235 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3236 			return RX_DROP_MONITOR;
3237 		break;
3238 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3239 		/* process only for ibss and mesh */
3240 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3241 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3242 			return RX_DROP_MONITOR;
3243 		break;
3244 	default:
3245 		return RX_DROP_MONITOR;
3246 	}
3247 
3248 	/* queue up frame and kick off work to process it */
3249 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3250 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3251 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3252 	if (rx->sta)
3253 		rx->sta->rx_stats.packets++;
3254 
3255 	return RX_QUEUED;
3256 }
3257 
3258 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3259 					struct ieee80211_rate *rate)
3260 {
3261 	struct ieee80211_sub_if_data *sdata;
3262 	struct ieee80211_local *local = rx->local;
3263 	struct sk_buff *skb = rx->skb, *skb2;
3264 	struct net_device *prev_dev = NULL;
3265 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3266 	int needed_headroom;
3267 
3268 	/*
3269 	 * If cooked monitor has been processed already, then
3270 	 * don't do it again. If not, set the flag.
3271 	 */
3272 	if (rx->flags & IEEE80211_RX_CMNTR)
3273 		goto out_free_skb;
3274 	rx->flags |= IEEE80211_RX_CMNTR;
3275 
3276 	/* If there are no cooked monitor interfaces, just free the SKB */
3277 	if (!local->cooked_mntrs)
3278 		goto out_free_skb;
3279 
3280 	/* vendor data is long removed here */
3281 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3282 	/* room for the radiotap header based on driver features */
3283 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3284 
3285 	if (skb_headroom(skb) < needed_headroom &&
3286 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3287 		goto out_free_skb;
3288 
3289 	/* prepend radiotap information */
3290 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3291 					 false);
3292 
3293 	skb_reset_mac_header(skb);
3294 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3295 	skb->pkt_type = PACKET_OTHERHOST;
3296 	skb->protocol = htons(ETH_P_802_2);
3297 
3298 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3299 		if (!ieee80211_sdata_running(sdata))
3300 			continue;
3301 
3302 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3303 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3304 			continue;
3305 
3306 		if (prev_dev) {
3307 			skb2 = skb_clone(skb, GFP_ATOMIC);
3308 			if (skb2) {
3309 				skb2->dev = prev_dev;
3310 				netif_receive_skb(skb2);
3311 			}
3312 		}
3313 
3314 		prev_dev = sdata->dev;
3315 		ieee80211_rx_stats(sdata->dev, skb->len);
3316 	}
3317 
3318 	if (prev_dev) {
3319 		skb->dev = prev_dev;
3320 		netif_receive_skb(skb);
3321 		return;
3322 	}
3323 
3324  out_free_skb:
3325 	dev_kfree_skb(skb);
3326 }
3327 
3328 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3329 					 ieee80211_rx_result res)
3330 {
3331 	switch (res) {
3332 	case RX_DROP_MONITOR:
3333 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3334 		if (rx->sta)
3335 			rx->sta->rx_stats.dropped++;
3336 		/* fall through */
3337 	case RX_CONTINUE: {
3338 		struct ieee80211_rate *rate = NULL;
3339 		struct ieee80211_supported_band *sband;
3340 		struct ieee80211_rx_status *status;
3341 
3342 		status = IEEE80211_SKB_RXCB((rx->skb));
3343 
3344 		sband = rx->local->hw.wiphy->bands[status->band];
3345 		if (!(status->encoding == RX_ENC_HT) &&
3346 		    !(status->encoding == RX_ENC_VHT))
3347 			rate = &sband->bitrates[status->rate_idx];
3348 
3349 		ieee80211_rx_cooked_monitor(rx, rate);
3350 		break;
3351 		}
3352 	case RX_DROP_UNUSABLE:
3353 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3354 		if (rx->sta)
3355 			rx->sta->rx_stats.dropped++;
3356 		dev_kfree_skb(rx->skb);
3357 		break;
3358 	case RX_QUEUED:
3359 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3360 		break;
3361 	}
3362 }
3363 
3364 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3365 				  struct sk_buff_head *frames)
3366 {
3367 	ieee80211_rx_result res = RX_DROP_MONITOR;
3368 	struct sk_buff *skb;
3369 
3370 #define CALL_RXH(rxh)			\
3371 	do {				\
3372 		res = rxh(rx);		\
3373 		if (res != RX_CONTINUE)	\
3374 			goto rxh_next;  \
3375 	} while (0)
3376 
3377 	/* Lock here to avoid hitting all of the data used in the RX
3378 	 * path (e.g. key data, station data, ...) concurrently when
3379 	 * a frame is released from the reorder buffer due to timeout
3380 	 * from the timer, potentially concurrently with RX from the
3381 	 * driver.
3382 	 */
3383 	spin_lock_bh(&rx->local->rx_path_lock);
3384 
3385 	while ((skb = __skb_dequeue(frames))) {
3386 		/*
3387 		 * all the other fields are valid across frames
3388 		 * that belong to an aMPDU since they are on the
3389 		 * same TID from the same station
3390 		 */
3391 		rx->skb = skb;
3392 
3393 		CALL_RXH(ieee80211_rx_h_check_more_data);
3394 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3395 		CALL_RXH(ieee80211_rx_h_sta_process);
3396 		CALL_RXH(ieee80211_rx_h_decrypt);
3397 		CALL_RXH(ieee80211_rx_h_defragment);
3398 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3399 		/* must be after MMIC verify so header is counted in MPDU mic */
3400 #ifdef CONFIG_MAC80211_MESH
3401 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3402 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3403 #endif
3404 		CALL_RXH(ieee80211_rx_h_amsdu);
3405 		CALL_RXH(ieee80211_rx_h_data);
3406 
3407 		/* special treatment -- needs the queue */
3408 		res = ieee80211_rx_h_ctrl(rx, frames);
3409 		if (res != RX_CONTINUE)
3410 			goto rxh_next;
3411 
3412 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3413 		CALL_RXH(ieee80211_rx_h_action);
3414 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3415 		CALL_RXH(ieee80211_rx_h_action_return);
3416 		CALL_RXH(ieee80211_rx_h_mgmt);
3417 
3418  rxh_next:
3419 		ieee80211_rx_handlers_result(rx, res);
3420 
3421 #undef CALL_RXH
3422 	}
3423 
3424 	spin_unlock_bh(&rx->local->rx_path_lock);
3425 }
3426 
3427 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3428 {
3429 	struct sk_buff_head reorder_release;
3430 	ieee80211_rx_result res = RX_DROP_MONITOR;
3431 
3432 	__skb_queue_head_init(&reorder_release);
3433 
3434 #define CALL_RXH(rxh)			\
3435 	do {				\
3436 		res = rxh(rx);		\
3437 		if (res != RX_CONTINUE)	\
3438 			goto rxh_next;  \
3439 	} while (0)
3440 
3441 	CALL_RXH(ieee80211_rx_h_check_dup);
3442 	CALL_RXH(ieee80211_rx_h_check);
3443 
3444 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3445 
3446 	ieee80211_rx_handlers(rx, &reorder_release);
3447 	return;
3448 
3449  rxh_next:
3450 	ieee80211_rx_handlers_result(rx, res);
3451 
3452 #undef CALL_RXH
3453 }
3454 
3455 /*
3456  * This function makes calls into the RX path, therefore
3457  * it has to be invoked under RCU read lock.
3458  */
3459 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3460 {
3461 	struct sk_buff_head frames;
3462 	struct ieee80211_rx_data rx = {
3463 		.sta = sta,
3464 		.sdata = sta->sdata,
3465 		.local = sta->local,
3466 		/* This is OK -- must be QoS data frame */
3467 		.security_idx = tid,
3468 		.seqno_idx = tid,
3469 		.napi = NULL, /* must be NULL to not have races */
3470 	};
3471 	struct tid_ampdu_rx *tid_agg_rx;
3472 
3473 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3474 	if (!tid_agg_rx)
3475 		return;
3476 
3477 	__skb_queue_head_init(&frames);
3478 
3479 	spin_lock(&tid_agg_rx->reorder_lock);
3480 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3481 	spin_unlock(&tid_agg_rx->reorder_lock);
3482 
3483 	if (!skb_queue_empty(&frames)) {
3484 		struct ieee80211_event event = {
3485 			.type = BA_FRAME_TIMEOUT,
3486 			.u.ba.tid = tid,
3487 			.u.ba.sta = &sta->sta,
3488 		};
3489 		drv_event_callback(rx.local, rx.sdata, &event);
3490 	}
3491 
3492 	ieee80211_rx_handlers(&rx, &frames);
3493 }
3494 
3495 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3496 					  u16 ssn, u64 filtered,
3497 					  u16 received_mpdus)
3498 {
3499 	struct sta_info *sta;
3500 	struct tid_ampdu_rx *tid_agg_rx;
3501 	struct sk_buff_head frames;
3502 	struct ieee80211_rx_data rx = {
3503 		/* This is OK -- must be QoS data frame */
3504 		.security_idx = tid,
3505 		.seqno_idx = tid,
3506 	};
3507 	int i, diff;
3508 
3509 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3510 		return;
3511 
3512 	__skb_queue_head_init(&frames);
3513 
3514 	sta = container_of(pubsta, struct sta_info, sta);
3515 
3516 	rx.sta = sta;
3517 	rx.sdata = sta->sdata;
3518 	rx.local = sta->local;
3519 
3520 	rcu_read_lock();
3521 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3522 	if (!tid_agg_rx)
3523 		goto out;
3524 
3525 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3526 
3527 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3528 		int release;
3529 
3530 		/* release all frames in the reorder buffer */
3531 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3532 			   IEEE80211_SN_MODULO;
3533 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3534 						 release, &frames);
3535 		/* update ssn to match received ssn */
3536 		tid_agg_rx->head_seq_num = ssn;
3537 	} else {
3538 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3539 						 &frames);
3540 	}
3541 
3542 	/* handle the case that received ssn is behind the mac ssn.
3543 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3544 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3545 	if (diff >= tid_agg_rx->buf_size) {
3546 		tid_agg_rx->reorder_buf_filtered = 0;
3547 		goto release;
3548 	}
3549 	filtered = filtered >> diff;
3550 	ssn += diff;
3551 
3552 	/* update bitmap */
3553 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3554 		int index = (ssn + i) % tid_agg_rx->buf_size;
3555 
3556 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3557 		if (filtered & BIT_ULL(i))
3558 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3559 	}
3560 
3561 	/* now process also frames that the filter marking released */
3562 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3563 
3564 release:
3565 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3566 
3567 	ieee80211_rx_handlers(&rx, &frames);
3568 
3569  out:
3570 	rcu_read_unlock();
3571 }
3572 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3573 
3574 /* main receive path */
3575 
3576 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3577 {
3578 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3579 	struct sk_buff *skb = rx->skb;
3580 	struct ieee80211_hdr *hdr = (void *)skb->data;
3581 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3582 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3583 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3584 
3585 	switch (sdata->vif.type) {
3586 	case NL80211_IFTYPE_STATION:
3587 		if (!bssid && !sdata->u.mgd.use_4addr)
3588 			return false;
3589 		if (multicast)
3590 			return true;
3591 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3592 	case NL80211_IFTYPE_ADHOC:
3593 		if (!bssid)
3594 			return false;
3595 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3596 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3597 			return false;
3598 		if (ieee80211_is_beacon(hdr->frame_control))
3599 			return true;
3600 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3601 			return false;
3602 		if (!multicast &&
3603 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3604 			return false;
3605 		if (!rx->sta) {
3606 			int rate_idx;
3607 			if (status->encoding != RX_ENC_LEGACY)
3608 				rate_idx = 0; /* TODO: HT/VHT rates */
3609 			else
3610 				rate_idx = status->rate_idx;
3611 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3612 						 BIT(rate_idx));
3613 		}
3614 		return true;
3615 	case NL80211_IFTYPE_OCB:
3616 		if (!bssid)
3617 			return false;
3618 		if (!ieee80211_is_data_present(hdr->frame_control))
3619 			return false;
3620 		if (!is_broadcast_ether_addr(bssid))
3621 			return false;
3622 		if (!multicast &&
3623 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3624 			return false;
3625 		if (!rx->sta) {
3626 			int rate_idx;
3627 			if (status->encoding != RX_ENC_LEGACY)
3628 				rate_idx = 0; /* TODO: HT rates */
3629 			else
3630 				rate_idx = status->rate_idx;
3631 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3632 						BIT(rate_idx));
3633 		}
3634 		return true;
3635 	case NL80211_IFTYPE_MESH_POINT:
3636 		if (multicast)
3637 			return true;
3638 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3639 	case NL80211_IFTYPE_AP_VLAN:
3640 	case NL80211_IFTYPE_AP:
3641 		if (!bssid)
3642 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3643 
3644 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3645 			/*
3646 			 * Accept public action frames even when the
3647 			 * BSSID doesn't match, this is used for P2P
3648 			 * and location updates. Note that mac80211
3649 			 * itself never looks at these frames.
3650 			 */
3651 			if (!multicast &&
3652 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3653 				return false;
3654 			if (ieee80211_is_public_action(hdr, skb->len))
3655 				return true;
3656 			return ieee80211_is_beacon(hdr->frame_control);
3657 		}
3658 
3659 		if (!ieee80211_has_tods(hdr->frame_control)) {
3660 			/* ignore data frames to TDLS-peers */
3661 			if (ieee80211_is_data(hdr->frame_control))
3662 				return false;
3663 			/* ignore action frames to TDLS-peers */
3664 			if (ieee80211_is_action(hdr->frame_control) &&
3665 			    !is_broadcast_ether_addr(bssid) &&
3666 			    !ether_addr_equal(bssid, hdr->addr1))
3667 				return false;
3668 		}
3669 
3670 		/*
3671 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3672 		 * the BSSID - we've checked that already but may have accepted
3673 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3674 		 *
3675 		 * It also says:
3676 		 *	The BSSID of the Data frame is determined as follows:
3677 		 *	a) If the STA is contained within an AP or is associated
3678 		 *	   with an AP, the BSSID is the address currently in use
3679 		 *	   by the STA contained in the AP.
3680 		 *
3681 		 * So we should not accept data frames with an address that's
3682 		 * multicast.
3683 		 *
3684 		 * Accepting it also opens a security problem because stations
3685 		 * could encrypt it with the GTK and inject traffic that way.
3686 		 */
3687 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3688 			return false;
3689 
3690 		return true;
3691 	case NL80211_IFTYPE_WDS:
3692 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3693 			return false;
3694 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3695 	case NL80211_IFTYPE_P2P_DEVICE:
3696 		return ieee80211_is_public_action(hdr, skb->len) ||
3697 		       ieee80211_is_probe_req(hdr->frame_control) ||
3698 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3699 		       ieee80211_is_beacon(hdr->frame_control);
3700 	case NL80211_IFTYPE_NAN:
3701 		/* Currently no frames on NAN interface are allowed */
3702 		return false;
3703 	default:
3704 		break;
3705 	}
3706 
3707 	WARN_ON_ONCE(1);
3708 	return false;
3709 }
3710 
3711 void ieee80211_check_fast_rx(struct sta_info *sta)
3712 {
3713 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3714 	struct ieee80211_local *local = sdata->local;
3715 	struct ieee80211_key *key;
3716 	struct ieee80211_fast_rx fastrx = {
3717 		.dev = sdata->dev,
3718 		.vif_type = sdata->vif.type,
3719 		.control_port_protocol = sdata->control_port_protocol,
3720 	}, *old, *new = NULL;
3721 	bool assign = false;
3722 
3723 	/* use sparse to check that we don't return without updating */
3724 	__acquire(check_fast_rx);
3725 
3726 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3727 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3728 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3729 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3730 
3731 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3732 
3733 	/* fast-rx doesn't do reordering */
3734 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3735 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3736 		goto clear;
3737 
3738 	switch (sdata->vif.type) {
3739 	case NL80211_IFTYPE_STATION:
3740 		/* 4-addr is harder to deal with, later maybe */
3741 		if (sdata->u.mgd.use_4addr)
3742 			goto clear;
3743 		/* software powersave is a huge mess, avoid all of it */
3744 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3745 			goto clear;
3746 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3747 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3748 			goto clear;
3749 		if (sta->sta.tdls) {
3750 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3751 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3752 			fastrx.expected_ds_bits = 0;
3753 		} else {
3754 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3755 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3756 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3757 			fastrx.expected_ds_bits =
3758 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3759 		}
3760 		break;
3761 	case NL80211_IFTYPE_AP_VLAN:
3762 	case NL80211_IFTYPE_AP:
3763 		/* parallel-rx requires this, at least with calls to
3764 		 * ieee80211_sta_ps_transition()
3765 		 */
3766 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3767 			goto clear;
3768 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3769 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3770 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3771 
3772 		fastrx.internal_forward =
3773 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3774 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3775 			 !sdata->u.vlan.sta);
3776 		break;
3777 	default:
3778 		goto clear;
3779 	}
3780 
3781 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3782 		goto clear;
3783 
3784 	rcu_read_lock();
3785 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3786 	if (key) {
3787 		switch (key->conf.cipher) {
3788 		case WLAN_CIPHER_SUITE_TKIP:
3789 			/* we don't want to deal with MMIC in fast-rx */
3790 			goto clear_rcu;
3791 		case WLAN_CIPHER_SUITE_CCMP:
3792 		case WLAN_CIPHER_SUITE_CCMP_256:
3793 		case WLAN_CIPHER_SUITE_GCMP:
3794 		case WLAN_CIPHER_SUITE_GCMP_256:
3795 			break;
3796 		default:
3797 			/* we also don't want to deal with WEP or cipher scheme
3798 			 * since those require looking up the key idx in the
3799 			 * frame, rather than assuming the PTK is used
3800 			 * (we need to revisit this once we implement the real
3801 			 * PTK index, which is now valid in the spec, but we
3802 			 * haven't implemented that part yet)
3803 			 */
3804 			goto clear_rcu;
3805 		}
3806 
3807 		fastrx.key = true;
3808 		fastrx.icv_len = key->conf.icv_len;
3809 	}
3810 
3811 	assign = true;
3812  clear_rcu:
3813 	rcu_read_unlock();
3814  clear:
3815 	__release(check_fast_rx);
3816 
3817 	if (assign)
3818 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3819 
3820 	spin_lock_bh(&sta->lock);
3821 	old = rcu_dereference_protected(sta->fast_rx, true);
3822 	rcu_assign_pointer(sta->fast_rx, new);
3823 	spin_unlock_bh(&sta->lock);
3824 
3825 	if (old)
3826 		kfree_rcu(old, rcu_head);
3827 }
3828 
3829 void ieee80211_clear_fast_rx(struct sta_info *sta)
3830 {
3831 	struct ieee80211_fast_rx *old;
3832 
3833 	spin_lock_bh(&sta->lock);
3834 	old = rcu_dereference_protected(sta->fast_rx, true);
3835 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3836 	spin_unlock_bh(&sta->lock);
3837 
3838 	if (old)
3839 		kfree_rcu(old, rcu_head);
3840 }
3841 
3842 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3843 {
3844 	struct ieee80211_local *local = sdata->local;
3845 	struct sta_info *sta;
3846 
3847 	lockdep_assert_held(&local->sta_mtx);
3848 
3849 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3850 		if (sdata != sta->sdata &&
3851 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3852 			continue;
3853 		ieee80211_check_fast_rx(sta);
3854 	}
3855 }
3856 
3857 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3858 {
3859 	struct ieee80211_local *local = sdata->local;
3860 
3861 	mutex_lock(&local->sta_mtx);
3862 	__ieee80211_check_fast_rx_iface(sdata);
3863 	mutex_unlock(&local->sta_mtx);
3864 }
3865 
3866 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3867 				     struct ieee80211_fast_rx *fast_rx)
3868 {
3869 	struct sk_buff *skb = rx->skb;
3870 	struct ieee80211_hdr *hdr = (void *)skb->data;
3871 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3872 	struct sta_info *sta = rx->sta;
3873 	int orig_len = skb->len;
3874 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3875 	struct {
3876 		u8 snap[sizeof(rfc1042_header)];
3877 		__be16 proto;
3878 	} *payload __aligned(2);
3879 	struct {
3880 		u8 da[ETH_ALEN];
3881 		u8 sa[ETH_ALEN];
3882 	} addrs __aligned(2);
3883 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3884 
3885 	if (fast_rx->uses_rss)
3886 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3887 
3888 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3889 	 * to a common data structure; drivers can implement that per queue
3890 	 * but we don't have that information in mac80211
3891 	 */
3892 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3893 		return false;
3894 
3895 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3896 
3897 	/* If using encryption, we also need to have:
3898 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3899 	 *  - DECRYPTED: necessary for PN_VALIDATED
3900 	 */
3901 	if (fast_rx->key &&
3902 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3903 		return false;
3904 
3905 	/* we don't deal with A-MSDU deaggregation here */
3906 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3907 		return false;
3908 
3909 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3910 		return false;
3911 
3912 	if (unlikely(ieee80211_is_frag(hdr)))
3913 		return false;
3914 
3915 	/* Since our interface address cannot be multicast, this
3916 	 * implicitly also rejects multicast frames without the
3917 	 * explicit check.
3918 	 *
3919 	 * We shouldn't get any *data* frames not addressed to us
3920 	 * (AP mode will accept multicast *management* frames), but
3921 	 * punting here will make it go through the full checks in
3922 	 * ieee80211_accept_frame().
3923 	 */
3924 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3925 		return false;
3926 
3927 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3928 					      IEEE80211_FCTL_TODS)) !=
3929 	    fast_rx->expected_ds_bits)
3930 		goto drop;
3931 
3932 	/* assign the key to drop unencrypted frames (later)
3933 	 * and strip the IV/MIC if necessary
3934 	 */
3935 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3936 		/* GCMP header length is the same */
3937 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3938 	}
3939 
3940 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3941 		goto drop;
3942 	payload = (void *)(skb->data + snap_offs);
3943 
3944 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3945 		return false;
3946 
3947 	/* Don't handle these here since they require special code.
3948 	 * Accept AARP and IPX even though they should come with a
3949 	 * bridge-tunnel header - but if we get them this way then
3950 	 * there's little point in discarding them.
3951 	 */
3952 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3953 		     payload->proto == fast_rx->control_port_protocol))
3954 		return false;
3955 
3956 	/* after this point, don't punt to the slowpath! */
3957 
3958 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3959 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3960 		goto drop;
3961 
3962 	if (unlikely(fast_rx->sta_notify)) {
3963 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3964 		fast_rx->sta_notify = false;
3965 	}
3966 
3967 	/* statistics part of ieee80211_rx_h_sta_process() */
3968 	stats->last_rx = jiffies;
3969 	stats->last_rate = sta_stats_encode_rate(status);
3970 
3971 	stats->fragments++;
3972 	stats->packets++;
3973 
3974 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3975 		stats->last_signal = status->signal;
3976 		if (!fast_rx->uses_rss)
3977 			ewma_signal_add(&sta->rx_stats_avg.signal,
3978 					-status->signal);
3979 	}
3980 
3981 	if (status->chains) {
3982 		int i;
3983 
3984 		stats->chains = status->chains;
3985 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3986 			int signal = status->chain_signal[i];
3987 
3988 			if (!(status->chains & BIT(i)))
3989 				continue;
3990 
3991 			stats->chain_signal_last[i] = signal;
3992 			if (!fast_rx->uses_rss)
3993 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3994 						-signal);
3995 		}
3996 	}
3997 	/* end of statistics */
3998 
3999 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4000 		goto drop;
4001 
4002 	/* do the header conversion - first grab the addresses */
4003 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4004 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4005 	/* remove the SNAP but leave the ethertype */
4006 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4007 	/* push the addresses in front */
4008 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4009 
4010 	skb->dev = fast_rx->dev;
4011 
4012 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4013 
4014 	/* The seqno index has the same property as needed
4015 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4016 	 * for non-QoS-data frames. Here we know it's a data
4017 	 * frame, so count MSDUs.
4018 	 */
4019 	u64_stats_update_begin(&stats->syncp);
4020 	stats->msdu[rx->seqno_idx]++;
4021 	stats->bytes += orig_len;
4022 	u64_stats_update_end(&stats->syncp);
4023 
4024 	if (fast_rx->internal_forward) {
4025 		struct sk_buff *xmit_skb = NULL;
4026 		bool multicast = is_multicast_ether_addr(skb->data);
4027 
4028 		if (multicast) {
4029 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4030 		} else if (sta_info_get(rx->sdata, skb->data)) {
4031 			xmit_skb = skb;
4032 			skb = NULL;
4033 		}
4034 
4035 		if (xmit_skb) {
4036 			/*
4037 			 * Send to wireless media and increase priority by 256
4038 			 * to keep the received priority instead of
4039 			 * reclassifying the frame (see cfg80211_classify8021d).
4040 			 */
4041 			xmit_skb->priority += 256;
4042 			xmit_skb->protocol = htons(ETH_P_802_3);
4043 			skb_reset_network_header(xmit_skb);
4044 			skb_reset_mac_header(xmit_skb);
4045 			dev_queue_xmit(xmit_skb);
4046 		}
4047 
4048 		if (!skb)
4049 			return true;
4050 	}
4051 
4052 	/* deliver to local stack */
4053 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4054 	memset(skb->cb, 0, sizeof(skb->cb));
4055 	if (rx->napi)
4056 		napi_gro_receive(rx->napi, skb);
4057 	else
4058 		netif_receive_skb(skb);
4059 
4060 	return true;
4061  drop:
4062 	dev_kfree_skb(skb);
4063 	stats->dropped++;
4064 	return true;
4065 }
4066 
4067 /*
4068  * This function returns whether or not the SKB
4069  * was destined for RX processing or not, which,
4070  * if consume is true, is equivalent to whether
4071  * or not the skb was consumed.
4072  */
4073 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4074 					    struct sk_buff *skb, bool consume)
4075 {
4076 	struct ieee80211_local *local = rx->local;
4077 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4078 
4079 	rx->skb = skb;
4080 
4081 	/* See if we can do fast-rx; if we have to copy we already lost,
4082 	 * so punt in that case. We should never have to deliver a data
4083 	 * frame to multiple interfaces anyway.
4084 	 *
4085 	 * We skip the ieee80211_accept_frame() call and do the necessary
4086 	 * checking inside ieee80211_invoke_fast_rx().
4087 	 */
4088 	if (consume && rx->sta) {
4089 		struct ieee80211_fast_rx *fast_rx;
4090 
4091 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4092 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4093 			return true;
4094 	}
4095 
4096 	if (!ieee80211_accept_frame(rx))
4097 		return false;
4098 
4099 	if (!consume) {
4100 		skb = skb_copy(skb, GFP_ATOMIC);
4101 		if (!skb) {
4102 			if (net_ratelimit())
4103 				wiphy_debug(local->hw.wiphy,
4104 					"failed to copy skb for %s\n",
4105 					sdata->name);
4106 			return true;
4107 		}
4108 
4109 		rx->skb = skb;
4110 	}
4111 
4112 	ieee80211_invoke_rx_handlers(rx);
4113 	return true;
4114 }
4115 
4116 /*
4117  * This is the actual Rx frames handler. as it belongs to Rx path it must
4118  * be called with rcu_read_lock protection.
4119  */
4120 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4121 					 struct ieee80211_sta *pubsta,
4122 					 struct sk_buff *skb,
4123 					 struct napi_struct *napi)
4124 {
4125 	struct ieee80211_local *local = hw_to_local(hw);
4126 	struct ieee80211_sub_if_data *sdata;
4127 	struct ieee80211_hdr *hdr;
4128 	__le16 fc;
4129 	struct ieee80211_rx_data rx;
4130 	struct ieee80211_sub_if_data *prev;
4131 	struct rhlist_head *tmp;
4132 	int err = 0;
4133 
4134 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4135 	memset(&rx, 0, sizeof(rx));
4136 	rx.skb = skb;
4137 	rx.local = local;
4138 	rx.napi = napi;
4139 
4140 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4141 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4142 
4143 	if (ieee80211_is_mgmt(fc)) {
4144 		/* drop frame if too short for header */
4145 		if (skb->len < ieee80211_hdrlen(fc))
4146 			err = -ENOBUFS;
4147 		else
4148 			err = skb_linearize(skb);
4149 	} else {
4150 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4151 	}
4152 
4153 	if (err) {
4154 		dev_kfree_skb(skb);
4155 		return;
4156 	}
4157 
4158 	hdr = (struct ieee80211_hdr *)skb->data;
4159 	ieee80211_parse_qos(&rx);
4160 	ieee80211_verify_alignment(&rx);
4161 
4162 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4163 		     ieee80211_is_beacon(hdr->frame_control)))
4164 		ieee80211_scan_rx(local, skb);
4165 
4166 	if (ieee80211_is_data(fc)) {
4167 		struct sta_info *sta, *prev_sta;
4168 
4169 		if (pubsta) {
4170 			rx.sta = container_of(pubsta, struct sta_info, sta);
4171 			rx.sdata = rx.sta->sdata;
4172 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4173 				return;
4174 			goto out;
4175 		}
4176 
4177 		prev_sta = NULL;
4178 
4179 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4180 			if (!prev_sta) {
4181 				prev_sta = sta;
4182 				continue;
4183 			}
4184 
4185 			rx.sta = prev_sta;
4186 			rx.sdata = prev_sta->sdata;
4187 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4188 
4189 			prev_sta = sta;
4190 		}
4191 
4192 		if (prev_sta) {
4193 			rx.sta = prev_sta;
4194 			rx.sdata = prev_sta->sdata;
4195 
4196 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4197 				return;
4198 			goto out;
4199 		}
4200 	}
4201 
4202 	prev = NULL;
4203 
4204 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4205 		if (!ieee80211_sdata_running(sdata))
4206 			continue;
4207 
4208 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4209 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4210 			continue;
4211 
4212 		/*
4213 		 * frame is destined for this interface, but if it's
4214 		 * not also for the previous one we handle that after
4215 		 * the loop to avoid copying the SKB once too much
4216 		 */
4217 
4218 		if (!prev) {
4219 			prev = sdata;
4220 			continue;
4221 		}
4222 
4223 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4224 		rx.sdata = prev;
4225 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4226 
4227 		prev = sdata;
4228 	}
4229 
4230 	if (prev) {
4231 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4232 		rx.sdata = prev;
4233 
4234 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4235 			return;
4236 	}
4237 
4238  out:
4239 	dev_kfree_skb(skb);
4240 }
4241 
4242 /*
4243  * This is the receive path handler. It is called by a low level driver when an
4244  * 802.11 MPDU is received from the hardware.
4245  */
4246 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4247 		       struct sk_buff *skb, struct napi_struct *napi)
4248 {
4249 	struct ieee80211_local *local = hw_to_local(hw);
4250 	struct ieee80211_rate *rate = NULL;
4251 	struct ieee80211_supported_band *sband;
4252 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4253 
4254 	WARN_ON_ONCE(softirq_count() == 0);
4255 
4256 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4257 		goto drop;
4258 
4259 	sband = local->hw.wiphy->bands[status->band];
4260 	if (WARN_ON(!sband))
4261 		goto drop;
4262 
4263 	/*
4264 	 * If we're suspending, it is possible although not too likely
4265 	 * that we'd be receiving frames after having already partially
4266 	 * quiesced the stack. We can't process such frames then since
4267 	 * that might, for example, cause stations to be added or other
4268 	 * driver callbacks be invoked.
4269 	 */
4270 	if (unlikely(local->quiescing || local->suspended))
4271 		goto drop;
4272 
4273 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4274 	if (unlikely(local->in_reconfig))
4275 		goto drop;
4276 
4277 	/*
4278 	 * The same happens when we're not even started,
4279 	 * but that's worth a warning.
4280 	 */
4281 	if (WARN_ON(!local->started))
4282 		goto drop;
4283 
4284 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4285 		/*
4286 		 * Validate the rate, unless a PLCP error means that
4287 		 * we probably can't have a valid rate here anyway.
4288 		 */
4289 
4290 		switch (status->encoding) {
4291 		case RX_ENC_HT:
4292 			/*
4293 			 * rate_idx is MCS index, which can be [0-76]
4294 			 * as documented on:
4295 			 *
4296 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4297 			 *
4298 			 * Anything else would be some sort of driver or
4299 			 * hardware error. The driver should catch hardware
4300 			 * errors.
4301 			 */
4302 			if (WARN(status->rate_idx > 76,
4303 				 "Rate marked as an HT rate but passed "
4304 				 "status->rate_idx is not "
4305 				 "an MCS index [0-76]: %d (0x%02x)\n",
4306 				 status->rate_idx,
4307 				 status->rate_idx))
4308 				goto drop;
4309 			break;
4310 		case RX_ENC_VHT:
4311 			if (WARN_ONCE(status->rate_idx > 9 ||
4312 				      !status->nss ||
4313 				      status->nss > 8,
4314 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4315 				      status->rate_idx, status->nss))
4316 				goto drop;
4317 			break;
4318 		default:
4319 			WARN_ON_ONCE(1);
4320 			/* fall through */
4321 		case RX_ENC_LEGACY:
4322 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4323 				goto drop;
4324 			rate = &sband->bitrates[status->rate_idx];
4325 		}
4326 	}
4327 
4328 	status->rx_flags = 0;
4329 
4330 	/*
4331 	 * key references and virtual interfaces are protected using RCU
4332 	 * and this requires that we are in a read-side RCU section during
4333 	 * receive processing
4334 	 */
4335 	rcu_read_lock();
4336 
4337 	/*
4338 	 * Frames with failed FCS/PLCP checksum are not returned,
4339 	 * all other frames are returned without radiotap header
4340 	 * if it was previously present.
4341 	 * Also, frames with less than 16 bytes are dropped.
4342 	 */
4343 	skb = ieee80211_rx_monitor(local, skb, rate);
4344 	if (!skb) {
4345 		rcu_read_unlock();
4346 		return;
4347 	}
4348 
4349 	ieee80211_tpt_led_trig_rx(local,
4350 			((struct ieee80211_hdr *)skb->data)->frame_control,
4351 			skb->len);
4352 
4353 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4354 
4355 	rcu_read_unlock();
4356 
4357 	return;
4358  drop:
4359 	kfree_skb(skb);
4360 }
4361 EXPORT_SYMBOL(ieee80211_rx_napi);
4362 
4363 /* This is a version of the rx handler that can be called from hard irq
4364  * context. Post the skb on the queue and schedule the tasklet */
4365 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4366 {
4367 	struct ieee80211_local *local = hw_to_local(hw);
4368 
4369 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4370 
4371 	skb->pkt_type = IEEE80211_RX_MSG;
4372 	skb_queue_tail(&local->skb_queue, skb);
4373 	tasklet_schedule(&local->tasklet);
4374 }
4375 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4376