1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/kernel.h> 14 #include <linux/skbuff.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/rcupdate.h> 18 #include <net/mac80211.h> 19 #include <net/ieee80211_radiotap.h> 20 21 #include "ieee80211_i.h" 22 #include "led.h" 23 #include "mesh.h" 24 #include "wep.h" 25 #include "wpa.h" 26 #include "tkip.h" 27 #include "wme.h" 28 29 static u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 30 struct tid_ampdu_rx *tid_agg_rx, 31 struct sk_buff *skb, 32 struct ieee80211_rx_status *status, 33 u16 mpdu_seq_num, 34 int bar_req); 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 42 struct sk_buff *skb, 43 int rtap_len) 44 { 45 skb_pull(skb, rtap_len); 46 47 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 48 if (likely(skb->len > FCS_LEN)) 49 skb_trim(skb, skb->len - FCS_LEN); 50 else { 51 /* driver bug */ 52 WARN_ON(1); 53 dev_kfree_skb(skb); 54 skb = NULL; 55 } 56 } 57 58 return skb; 59 } 60 61 static inline int should_drop_frame(struct ieee80211_rx_status *status, 62 struct sk_buff *skb, 63 int present_fcs_len, 64 int radiotap_len) 65 { 66 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 67 68 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 69 return 1; 70 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len)) 71 return 1; 72 if (ieee80211_is_ctl(hdr->frame_control) && 73 !ieee80211_is_pspoll(hdr->frame_control) && 74 !ieee80211_is_back_req(hdr->frame_control)) 75 return 1; 76 return 0; 77 } 78 79 static int 80 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 81 struct ieee80211_rx_status *status) 82 { 83 int len; 84 85 /* always present fields */ 86 len = sizeof(struct ieee80211_radiotap_header) + 9; 87 88 if (status->flag & RX_FLAG_TSFT) 89 len += 8; 90 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 91 len += 1; 92 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) 93 len += 1; 94 95 if (len & 1) /* padding for RX_FLAGS if necessary */ 96 len++; 97 98 /* make sure radiotap starts at a naturally aligned address */ 99 if (len % 8) 100 len = roundup(len, 8); 101 102 return len; 103 } 104 105 /* 106 * ieee80211_add_rx_radiotap_header - add radiotap header 107 * 108 * add a radiotap header containing all the fields which the hardware provided. 109 */ 110 static void 111 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 112 struct sk_buff *skb, 113 struct ieee80211_rx_status *status, 114 struct ieee80211_rate *rate, 115 int rtap_len) 116 { 117 struct ieee80211_radiotap_header *rthdr; 118 unsigned char *pos; 119 120 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 121 memset(rthdr, 0, rtap_len); 122 123 /* radiotap header, set always present flags */ 124 rthdr->it_present = 125 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 126 (1 << IEEE80211_RADIOTAP_CHANNEL) | 127 (1 << IEEE80211_RADIOTAP_ANTENNA) | 128 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 129 rthdr->it_len = cpu_to_le16(rtap_len); 130 131 pos = (unsigned char *)(rthdr+1); 132 133 /* the order of the following fields is important */ 134 135 /* IEEE80211_RADIOTAP_TSFT */ 136 if (status->flag & RX_FLAG_TSFT) { 137 *(__le64 *)pos = cpu_to_le64(status->mactime); 138 rthdr->it_present |= 139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 140 pos += 8; 141 } 142 143 /* IEEE80211_RADIOTAP_FLAGS */ 144 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 145 *pos |= IEEE80211_RADIOTAP_F_FCS; 146 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 147 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 148 if (status->flag & RX_FLAG_SHORTPRE) 149 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 150 pos++; 151 152 /* IEEE80211_RADIOTAP_RATE */ 153 if (status->flag & RX_FLAG_HT) { 154 /* 155 * TODO: add following information into radiotap header once 156 * suitable fields are defined for it: 157 * - MCS index (status->rate_idx) 158 * - HT40 (status->flag & RX_FLAG_40MHZ) 159 * - short-GI (status->flag & RX_FLAG_SHORT_GI) 160 */ 161 *pos = 0; 162 } else { 163 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 164 *pos = rate->bitrate / 5; 165 } 166 pos++; 167 168 /* IEEE80211_RADIOTAP_CHANNEL */ 169 *(__le16 *)pos = cpu_to_le16(status->freq); 170 pos += 2; 171 if (status->band == IEEE80211_BAND_5GHZ) 172 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM | 173 IEEE80211_CHAN_5GHZ); 174 else if (rate->flags & IEEE80211_RATE_ERP_G) 175 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM | 176 IEEE80211_CHAN_2GHZ); 177 else 178 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_CCK | 179 IEEE80211_CHAN_2GHZ); 180 pos += 2; 181 182 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 183 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) { 184 *pos = status->signal; 185 rthdr->it_present |= 186 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 187 pos++; 188 } 189 190 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */ 191 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) { 192 *pos = status->noise; 193 rthdr->it_present |= 194 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE); 195 pos++; 196 } 197 198 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 199 200 /* IEEE80211_RADIOTAP_ANTENNA */ 201 *pos = status->antenna; 202 pos++; 203 204 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 205 206 /* IEEE80211_RADIOTAP_RX_FLAGS */ 207 /* ensure 2 byte alignment for the 2 byte field as required */ 208 if ((pos - (unsigned char *)rthdr) & 1) 209 pos++; 210 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 211 *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADPLCP); 212 pos += 2; 213 } 214 215 /* 216 * This function copies a received frame to all monitor interfaces and 217 * returns a cleaned-up SKB that no longer includes the FCS nor the 218 * radiotap header the driver might have added. 219 */ 220 static struct sk_buff * 221 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 222 struct ieee80211_rx_status *status, 223 struct ieee80211_rate *rate) 224 { 225 struct ieee80211_sub_if_data *sdata; 226 int needed_headroom = 0; 227 struct sk_buff *skb, *skb2; 228 struct net_device *prev_dev = NULL; 229 int present_fcs_len = 0; 230 int rtap_len = 0; 231 232 /* 233 * First, we may need to make a copy of the skb because 234 * (1) we need to modify it for radiotap (if not present), and 235 * (2) the other RX handlers will modify the skb we got. 236 * 237 * We don't need to, of course, if we aren't going to return 238 * the SKB because it has a bad FCS/PLCP checksum. 239 */ 240 if (status->flag & RX_FLAG_RADIOTAP) 241 rtap_len = ieee80211_get_radiotap_len(origskb->data); 242 else 243 /* room for the radiotap header based on driver features */ 244 needed_headroom = ieee80211_rx_radiotap_len(local, status); 245 246 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 247 present_fcs_len = FCS_LEN; 248 249 if (!local->monitors) { 250 if (should_drop_frame(status, origskb, present_fcs_len, 251 rtap_len)) { 252 dev_kfree_skb(origskb); 253 return NULL; 254 } 255 256 return remove_monitor_info(local, origskb, rtap_len); 257 } 258 259 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) { 260 /* only need to expand headroom if necessary */ 261 skb = origskb; 262 origskb = NULL; 263 264 /* 265 * This shouldn't trigger often because most devices have an 266 * RX header they pull before we get here, and that should 267 * be big enough for our radiotap information. We should 268 * probably export the length to drivers so that we can have 269 * them allocate enough headroom to start with. 270 */ 271 if (skb_headroom(skb) < needed_headroom && 272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 273 dev_kfree_skb(skb); 274 return NULL; 275 } 276 } else { 277 /* 278 * Need to make a copy and possibly remove radiotap header 279 * and FCS from the original. 280 */ 281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 282 283 origskb = remove_monitor_info(local, origskb, rtap_len); 284 285 if (!skb) 286 return origskb; 287 } 288 289 /* if necessary, prepend radiotap information */ 290 if (!(status->flag & RX_FLAG_RADIOTAP)) 291 ieee80211_add_rx_radiotap_header(local, skb, status, rate, 292 needed_headroom); 293 294 skb_reset_mac_header(skb); 295 skb->ip_summed = CHECKSUM_UNNECESSARY; 296 skb->pkt_type = PACKET_OTHERHOST; 297 skb->protocol = htons(ETH_P_802_2); 298 299 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 300 if (!netif_running(sdata->dev)) 301 continue; 302 303 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 304 continue; 305 306 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 307 continue; 308 309 if (prev_dev) { 310 skb2 = skb_clone(skb, GFP_ATOMIC); 311 if (skb2) { 312 skb2->dev = prev_dev; 313 netif_rx(skb2); 314 } 315 } 316 317 prev_dev = sdata->dev; 318 sdata->dev->stats.rx_packets++; 319 sdata->dev->stats.rx_bytes += skb->len; 320 } 321 322 if (prev_dev) { 323 skb->dev = prev_dev; 324 netif_rx(skb); 325 } else 326 dev_kfree_skb(skb); 327 328 return origskb; 329 } 330 331 332 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 333 { 334 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 335 int tid; 336 337 /* does the frame have a qos control field? */ 338 if (ieee80211_is_data_qos(hdr->frame_control)) { 339 u8 *qc = ieee80211_get_qos_ctl(hdr); 340 /* frame has qos control */ 341 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 342 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT) 343 rx->flags |= IEEE80211_RX_AMSDU; 344 else 345 rx->flags &= ~IEEE80211_RX_AMSDU; 346 } else { 347 /* 348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 349 * 350 * Sequence numbers for management frames, QoS data 351 * frames with a broadcast/multicast address in the 352 * Address 1 field, and all non-QoS data frames sent 353 * by QoS STAs are assigned using an additional single 354 * modulo-4096 counter, [...] 355 * 356 * We also use that counter for non-QoS STAs. 357 */ 358 tid = NUM_RX_DATA_QUEUES - 1; 359 } 360 361 rx->queue = tid; 362 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 363 * For now, set skb->priority to 0 for other cases. */ 364 rx->skb->priority = (tid > 7) ? 0 : tid; 365 } 366 367 /** 368 * DOC: Packet alignment 369 * 370 * Drivers always need to pass packets that are aligned to two-byte boundaries 371 * to the stack. 372 * 373 * Additionally, should, if possible, align the payload data in a way that 374 * guarantees that the contained IP header is aligned to a four-byte 375 * boundary. In the case of regular frames, this simply means aligning the 376 * payload to a four-byte boundary (because either the IP header is directly 377 * contained, or IV/RFC1042 headers that have a length divisible by four are 378 * in front of it). 379 * 380 * With A-MSDU frames, however, the payload data address must yield two modulo 381 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 382 * push the IP header further back to a multiple of four again. Thankfully, the 383 * specs were sane enough this time around to require padding each A-MSDU 384 * subframe to a length that is a multiple of four. 385 * 386 * Padding like Atheros hardware adds which is inbetween the 802.11 header and 387 * the payload is not supported, the driver is required to move the 802.11 388 * header to be directly in front of the payload in that case. 389 */ 390 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 391 { 392 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 393 int hdrlen; 394 395 #ifndef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT 396 return; 397 #endif 398 399 if (WARN_ONCE((unsigned long)rx->skb->data & 1, 400 "unaligned packet at 0x%p\n", rx->skb->data)) 401 return; 402 403 if (!ieee80211_is_data_present(hdr->frame_control)) 404 return; 405 406 hdrlen = ieee80211_hdrlen(hdr->frame_control); 407 if (rx->flags & IEEE80211_RX_AMSDU) 408 hdrlen += ETH_HLEN; 409 WARN_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3, 410 "unaligned IP payload at 0x%p\n", rx->skb->data + hdrlen); 411 } 412 413 414 /* rx handlers */ 415 416 static ieee80211_rx_result debug_noinline 417 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 418 { 419 struct ieee80211_local *local = rx->local; 420 struct sk_buff *skb = rx->skb; 421 422 if (unlikely(local->hw_scanning)) 423 return ieee80211_scan_rx(rx->sdata, skb, rx->status); 424 425 if (unlikely(local->sw_scanning)) { 426 /* drop all the other packets during a software scan anyway */ 427 if (ieee80211_scan_rx(rx->sdata, skb, rx->status) 428 != RX_QUEUED) 429 dev_kfree_skb(skb); 430 return RX_QUEUED; 431 } 432 433 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) { 434 /* scanning finished during invoking of handlers */ 435 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 436 return RX_DROP_UNUSABLE; 437 } 438 439 return RX_CONTINUE; 440 } 441 442 443 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 444 { 445 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 446 447 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 448 return 0; 449 450 return ieee80211_is_robust_mgmt_frame(hdr); 451 } 452 453 454 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 455 { 456 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 457 458 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 459 return 0; 460 461 return ieee80211_is_robust_mgmt_frame(hdr); 462 } 463 464 465 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 466 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 467 { 468 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 469 struct ieee80211_mmie *mmie; 470 471 if (skb->len < 24 + sizeof(*mmie) || 472 !is_multicast_ether_addr(hdr->da)) 473 return -1; 474 475 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 476 return -1; /* not a robust management frame */ 477 478 mmie = (struct ieee80211_mmie *) 479 (skb->data + skb->len - sizeof(*mmie)); 480 if (mmie->element_id != WLAN_EID_MMIE || 481 mmie->length != sizeof(*mmie) - 2) 482 return -1; 483 484 return le16_to_cpu(mmie->key_id); 485 } 486 487 488 static ieee80211_rx_result 489 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 490 { 491 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 492 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 493 494 if (ieee80211_is_data(hdr->frame_control)) { 495 if (!ieee80211_has_a4(hdr->frame_control)) 496 return RX_DROP_MONITOR; 497 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0) 498 return RX_DROP_MONITOR; 499 } 500 501 /* If there is not an established peer link and this is not a peer link 502 * establisment frame, beacon or probe, drop the frame. 503 */ 504 505 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) { 506 struct ieee80211_mgmt *mgmt; 507 508 if (!ieee80211_is_mgmt(hdr->frame_control)) 509 return RX_DROP_MONITOR; 510 511 if (ieee80211_is_action(hdr->frame_control)) { 512 mgmt = (struct ieee80211_mgmt *)hdr; 513 if (mgmt->u.action.category != PLINK_CATEGORY) 514 return RX_DROP_MONITOR; 515 return RX_CONTINUE; 516 } 517 518 if (ieee80211_is_probe_req(hdr->frame_control) || 519 ieee80211_is_probe_resp(hdr->frame_control) || 520 ieee80211_is_beacon(hdr->frame_control)) 521 return RX_CONTINUE; 522 523 return RX_DROP_MONITOR; 524 525 } 526 527 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l)) 528 529 if (ieee80211_is_data(hdr->frame_control) && 530 is_multicast_ether_addr(hdr->addr1) && 531 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->sdata)) 532 return RX_DROP_MONITOR; 533 #undef msh_h_get 534 535 return RX_CONTINUE; 536 } 537 538 539 static ieee80211_rx_result debug_noinline 540 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 541 { 542 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 543 544 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 545 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 546 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 547 rx->sta->last_seq_ctrl[rx->queue] == 548 hdr->seq_ctrl)) { 549 if (rx->flags & IEEE80211_RX_RA_MATCH) { 550 rx->local->dot11FrameDuplicateCount++; 551 rx->sta->num_duplicates++; 552 } 553 return RX_DROP_MONITOR; 554 } else 555 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl; 556 } 557 558 if (unlikely(rx->skb->len < 16)) { 559 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 560 return RX_DROP_MONITOR; 561 } 562 563 /* Drop disallowed frame classes based on STA auth/assoc state; 564 * IEEE 802.11, Chap 5.5. 565 * 566 * mac80211 filters only based on association state, i.e. it drops 567 * Class 3 frames from not associated stations. hostapd sends 568 * deauth/disassoc frames when needed. In addition, hostapd is 569 * responsible for filtering on both auth and assoc states. 570 */ 571 572 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 573 return ieee80211_rx_mesh_check(rx); 574 575 if (unlikely((ieee80211_is_data(hdr->frame_control) || 576 ieee80211_is_pspoll(hdr->frame_control)) && 577 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 578 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) { 579 if ((!ieee80211_has_fromds(hdr->frame_control) && 580 !ieee80211_has_tods(hdr->frame_control) && 581 ieee80211_is_data(hdr->frame_control)) || 582 !(rx->flags & IEEE80211_RX_RA_MATCH)) { 583 /* Drop IBSS frames and frames for other hosts 584 * silently. */ 585 return RX_DROP_MONITOR; 586 } 587 588 return RX_DROP_MONITOR; 589 } 590 591 return RX_CONTINUE; 592 } 593 594 595 static ieee80211_rx_result debug_noinline 596 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 597 { 598 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 599 int keyidx; 600 int hdrlen; 601 ieee80211_rx_result result = RX_DROP_UNUSABLE; 602 struct ieee80211_key *stakey = NULL; 603 int mmie_keyidx = -1; 604 605 /* 606 * Key selection 101 607 * 608 * There are four types of keys: 609 * - GTK (group keys) 610 * - IGTK (group keys for management frames) 611 * - PTK (pairwise keys) 612 * - STK (station-to-station pairwise keys) 613 * 614 * When selecting a key, we have to distinguish between multicast 615 * (including broadcast) and unicast frames, the latter can only 616 * use PTKs and STKs while the former always use GTKs and IGTKs. 617 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 618 * unicast frames can also use key indices like GTKs. Hence, if we 619 * don't have a PTK/STK we check the key index for a WEP key. 620 * 621 * Note that in a regular BSS, multicast frames are sent by the 622 * AP only, associated stations unicast the frame to the AP first 623 * which then multicasts it on their behalf. 624 * 625 * There is also a slight problem in IBSS mode: GTKs are negotiated 626 * with each station, that is something we don't currently handle. 627 * The spec seems to expect that one negotiates the same key with 628 * every station but there's no such requirement; VLANs could be 629 * possible. 630 */ 631 632 if (!ieee80211_has_protected(hdr->frame_control)) { 633 if (!ieee80211_is_mgmt(hdr->frame_control) || 634 rx->sta == NULL || !test_sta_flags(rx->sta, WLAN_STA_MFP)) 635 return RX_CONTINUE; 636 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 637 if (mmie_keyidx < 0) 638 return RX_CONTINUE; 639 } 640 641 /* 642 * No point in finding a key and decrypting if the frame is neither 643 * addressed to us nor a multicast frame. 644 */ 645 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 646 return RX_CONTINUE; 647 648 if (rx->sta) 649 stakey = rcu_dereference(rx->sta->key); 650 651 if (!is_multicast_ether_addr(hdr->addr1) && stakey) { 652 rx->key = stakey; 653 } else if (mmie_keyidx >= 0) { 654 /* Broadcast/multicast robust management frame / BIP */ 655 if ((rx->status->flag & RX_FLAG_DECRYPTED) && 656 (rx->status->flag & RX_FLAG_IV_STRIPPED)) 657 return RX_CONTINUE; 658 659 if (mmie_keyidx < NUM_DEFAULT_KEYS || 660 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 661 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 662 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 663 } else { 664 /* 665 * The device doesn't give us the IV so we won't be 666 * able to look up the key. That's ok though, we 667 * don't need to decrypt the frame, we just won't 668 * be able to keep statistics accurate. 669 * Except for key threshold notifications, should 670 * we somehow allow the driver to tell us which key 671 * the hardware used if this flag is set? 672 */ 673 if ((rx->status->flag & RX_FLAG_DECRYPTED) && 674 (rx->status->flag & RX_FLAG_IV_STRIPPED)) 675 return RX_CONTINUE; 676 677 hdrlen = ieee80211_hdrlen(hdr->frame_control); 678 679 if (rx->skb->len < 8 + hdrlen) 680 return RX_DROP_UNUSABLE; /* TODO: count this? */ 681 682 /* 683 * no need to call ieee80211_wep_get_keyidx, 684 * it verifies a bunch of things we've done already 685 */ 686 keyidx = rx->skb->data[hdrlen + 3] >> 6; 687 688 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 689 690 /* 691 * RSNA-protected unicast frames should always be sent with 692 * pairwise or station-to-station keys, but for WEP we allow 693 * using a key index as well. 694 */ 695 if (rx->key && rx->key->conf.alg != ALG_WEP && 696 !is_multicast_ether_addr(hdr->addr1)) 697 rx->key = NULL; 698 } 699 700 if (rx->key) { 701 rx->key->tx_rx_count++; 702 /* TODO: add threshold stuff again */ 703 } else { 704 return RX_DROP_MONITOR; 705 } 706 707 /* Check for weak IVs if possible */ 708 if (rx->sta && rx->key->conf.alg == ALG_WEP && 709 ieee80211_is_data(hdr->frame_control) && 710 (!(rx->status->flag & RX_FLAG_IV_STRIPPED) || 711 !(rx->status->flag & RX_FLAG_DECRYPTED)) && 712 ieee80211_wep_is_weak_iv(rx->skb, rx->key)) 713 rx->sta->wep_weak_iv_count++; 714 715 switch (rx->key->conf.alg) { 716 case ALG_WEP: 717 result = ieee80211_crypto_wep_decrypt(rx); 718 break; 719 case ALG_TKIP: 720 result = ieee80211_crypto_tkip_decrypt(rx); 721 break; 722 case ALG_CCMP: 723 result = ieee80211_crypto_ccmp_decrypt(rx); 724 break; 725 case ALG_AES_CMAC: 726 result = ieee80211_crypto_aes_cmac_decrypt(rx); 727 break; 728 } 729 730 /* either the frame has been decrypted or will be dropped */ 731 rx->status->flag |= RX_FLAG_DECRYPTED; 732 733 return result; 734 } 735 736 static ieee80211_rx_result debug_noinline 737 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 738 { 739 struct ieee80211_local *local; 740 struct ieee80211_hdr *hdr; 741 struct sk_buff *skb; 742 743 local = rx->local; 744 skb = rx->skb; 745 hdr = (struct ieee80211_hdr *) skb->data; 746 747 if (!local->pspolling) 748 return RX_CONTINUE; 749 750 if (!ieee80211_has_fromds(hdr->frame_control)) 751 /* this is not from AP */ 752 return RX_CONTINUE; 753 754 if (!ieee80211_is_data(hdr->frame_control)) 755 return RX_CONTINUE; 756 757 if (!ieee80211_has_moredata(hdr->frame_control)) { 758 /* AP has no more frames buffered for us */ 759 local->pspolling = false; 760 return RX_CONTINUE; 761 } 762 763 /* more data bit is set, let's request a new frame from the AP */ 764 ieee80211_send_pspoll(local, rx->sdata); 765 766 return RX_CONTINUE; 767 } 768 769 static void ap_sta_ps_start(struct sta_info *sta) 770 { 771 struct ieee80211_sub_if_data *sdata = sta->sdata; 772 struct ieee80211_local *local = sdata->local; 773 774 atomic_inc(&sdata->bss->num_sta_ps); 775 set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL); 776 if (local->ops->sta_notify) 777 local->ops->sta_notify(local_to_hw(local), &sdata->vif, 778 STA_NOTIFY_SLEEP, &sta->sta); 779 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 780 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 781 sdata->dev->name, sta->sta.addr, sta->sta.aid); 782 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 783 } 784 785 static int ap_sta_ps_end(struct sta_info *sta) 786 { 787 struct ieee80211_sub_if_data *sdata = sta->sdata; 788 struct ieee80211_local *local = sdata->local; 789 struct sk_buff *skb; 790 int sent = 0; 791 792 atomic_dec(&sdata->bss->num_sta_ps); 793 794 clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL); 795 if (local->ops->sta_notify) 796 local->ops->sta_notify(local_to_hw(local), &sdata->vif, 797 STA_NOTIFY_AWAKE, &sta->sta); 798 799 if (!skb_queue_empty(&sta->ps_tx_buf)) 800 sta_info_clear_tim_bit(sta); 801 802 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 803 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 804 sdata->dev->name, sta->sta.addr, sta->sta.aid); 805 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 806 807 /* Send all buffered frames to the station */ 808 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) { 809 sent++; 810 skb->requeue = 1; 811 dev_queue_xmit(skb); 812 } 813 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) { 814 local->total_ps_buffered--; 815 sent++; 816 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 817 printk(KERN_DEBUG "%s: STA %pM aid %d send PS frame " 818 "since STA not sleeping anymore\n", sdata->dev->name, 819 sta->sta.addr, sta->sta.aid); 820 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 821 skb->requeue = 1; 822 dev_queue_xmit(skb); 823 } 824 825 return sent; 826 } 827 828 static ieee80211_rx_result debug_noinline 829 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 830 { 831 struct sta_info *sta = rx->sta; 832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 833 834 if (!sta) 835 return RX_CONTINUE; 836 837 /* Update last_rx only for IBSS packets which are for the current 838 * BSSID to avoid keeping the current IBSS network alive in cases where 839 * other STAs are using different BSSID. */ 840 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 841 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 842 NL80211_IFTYPE_ADHOC); 843 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) 844 sta->last_rx = jiffies; 845 } else 846 if (!is_multicast_ether_addr(hdr->addr1) || 847 rx->sdata->vif.type == NL80211_IFTYPE_STATION) { 848 /* Update last_rx only for unicast frames in order to prevent 849 * the Probe Request frames (the only broadcast frames from a 850 * STA in infrastructure mode) from keeping a connection alive. 851 * Mesh beacons will update last_rx when if they are found to 852 * match the current local configuration when processed. 853 */ 854 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 855 ieee80211_is_beacon(hdr->frame_control)) { 856 rx->sdata->u.mgd.last_beacon = jiffies; 857 } else 858 sta->last_rx = jiffies; 859 } 860 861 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 862 return RX_CONTINUE; 863 864 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 865 ieee80211_sta_rx_notify(rx->sdata, hdr); 866 867 sta->rx_fragments++; 868 sta->rx_bytes += rx->skb->len; 869 sta->last_signal = rx->status->signal; 870 sta->last_qual = rx->status->qual; 871 sta->last_noise = rx->status->noise; 872 873 /* 874 * Change STA power saving mode only at the end of a frame 875 * exchange sequence. 876 */ 877 if (!ieee80211_has_morefrags(hdr->frame_control) && 878 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 879 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 880 if (test_sta_flags(sta, WLAN_STA_PS)) { 881 /* 882 * Ignore doze->wake transitions that are 883 * indicated by non-data frames, the standard 884 * is unclear here, but for example going to 885 * PS mode and then scanning would cause a 886 * doze->wake transition for the probe request, 887 * and that is clearly undesirable. 888 */ 889 if (ieee80211_is_data(hdr->frame_control) && 890 !ieee80211_has_pm(hdr->frame_control)) 891 rx->sent_ps_buffered += ap_sta_ps_end(sta); 892 } else { 893 if (ieee80211_has_pm(hdr->frame_control)) 894 ap_sta_ps_start(sta); 895 } 896 } 897 898 /* Drop data::nullfunc frames silently, since they are used only to 899 * control station power saving mode. */ 900 if (ieee80211_is_nullfunc(hdr->frame_control)) { 901 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 902 /* Update counter and free packet here to avoid counting this 903 * as a dropped packed. */ 904 sta->rx_packets++; 905 dev_kfree_skb(rx->skb); 906 return RX_QUEUED; 907 } 908 909 return RX_CONTINUE; 910 } /* ieee80211_rx_h_sta_process */ 911 912 static inline struct ieee80211_fragment_entry * 913 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 914 unsigned int frag, unsigned int seq, int rx_queue, 915 struct sk_buff **skb) 916 { 917 struct ieee80211_fragment_entry *entry; 918 int idx; 919 920 idx = sdata->fragment_next; 921 entry = &sdata->fragments[sdata->fragment_next++]; 922 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 923 sdata->fragment_next = 0; 924 925 if (!skb_queue_empty(&entry->skb_list)) { 926 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 927 struct ieee80211_hdr *hdr = 928 (struct ieee80211_hdr *) entry->skb_list.next->data; 929 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 930 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 931 "addr1=%pM addr2=%pM\n", 932 sdata->dev->name, idx, 933 jiffies - entry->first_frag_time, entry->seq, 934 entry->last_frag, hdr->addr1, hdr->addr2); 935 #endif 936 __skb_queue_purge(&entry->skb_list); 937 } 938 939 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 940 *skb = NULL; 941 entry->first_frag_time = jiffies; 942 entry->seq = seq; 943 entry->rx_queue = rx_queue; 944 entry->last_frag = frag; 945 entry->ccmp = 0; 946 entry->extra_len = 0; 947 948 return entry; 949 } 950 951 static inline struct ieee80211_fragment_entry * 952 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 953 unsigned int frag, unsigned int seq, 954 int rx_queue, struct ieee80211_hdr *hdr) 955 { 956 struct ieee80211_fragment_entry *entry; 957 int i, idx; 958 959 idx = sdata->fragment_next; 960 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 961 struct ieee80211_hdr *f_hdr; 962 963 idx--; 964 if (idx < 0) 965 idx = IEEE80211_FRAGMENT_MAX - 1; 966 967 entry = &sdata->fragments[idx]; 968 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 969 entry->rx_queue != rx_queue || 970 entry->last_frag + 1 != frag) 971 continue; 972 973 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 974 975 /* 976 * Check ftype and addresses are equal, else check next fragment 977 */ 978 if (((hdr->frame_control ^ f_hdr->frame_control) & 979 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 980 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 981 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 982 continue; 983 984 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 985 __skb_queue_purge(&entry->skb_list); 986 continue; 987 } 988 return entry; 989 } 990 991 return NULL; 992 } 993 994 static ieee80211_rx_result debug_noinline 995 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 996 { 997 struct ieee80211_hdr *hdr; 998 u16 sc; 999 __le16 fc; 1000 unsigned int frag, seq; 1001 struct ieee80211_fragment_entry *entry; 1002 struct sk_buff *skb; 1003 1004 hdr = (struct ieee80211_hdr *)rx->skb->data; 1005 fc = hdr->frame_control; 1006 sc = le16_to_cpu(hdr->seq_ctrl); 1007 frag = sc & IEEE80211_SCTL_FRAG; 1008 1009 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1010 (rx->skb)->len < 24 || 1011 is_multicast_ether_addr(hdr->addr1))) { 1012 /* not fragmented */ 1013 goto out; 1014 } 1015 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1016 1017 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1018 1019 if (frag == 0) { 1020 /* This is the first fragment of a new frame. */ 1021 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1022 rx->queue, &(rx->skb)); 1023 if (rx->key && rx->key->conf.alg == ALG_CCMP && 1024 ieee80211_has_protected(fc)) { 1025 /* Store CCMP PN so that we can verify that the next 1026 * fragment has a sequential PN value. */ 1027 entry->ccmp = 1; 1028 memcpy(entry->last_pn, 1029 rx->key->u.ccmp.rx_pn[rx->queue], 1030 CCMP_PN_LEN); 1031 } 1032 return RX_QUEUED; 1033 } 1034 1035 /* This is a fragment for a frame that should already be pending in 1036 * fragment cache. Add this fragment to the end of the pending entry. 1037 */ 1038 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr); 1039 if (!entry) { 1040 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1041 return RX_DROP_MONITOR; 1042 } 1043 1044 /* Verify that MPDUs within one MSDU have sequential PN values. 1045 * (IEEE 802.11i, 8.3.3.4.5) */ 1046 if (entry->ccmp) { 1047 int i; 1048 u8 pn[CCMP_PN_LEN], *rpn; 1049 if (!rx->key || rx->key->conf.alg != ALG_CCMP) 1050 return RX_DROP_UNUSABLE; 1051 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1052 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1053 pn[i]++; 1054 if (pn[i]) 1055 break; 1056 } 1057 rpn = rx->key->u.ccmp.rx_pn[rx->queue]; 1058 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1059 return RX_DROP_UNUSABLE; 1060 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1061 } 1062 1063 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1064 __skb_queue_tail(&entry->skb_list, rx->skb); 1065 entry->last_frag = frag; 1066 entry->extra_len += rx->skb->len; 1067 if (ieee80211_has_morefrags(fc)) { 1068 rx->skb = NULL; 1069 return RX_QUEUED; 1070 } 1071 1072 rx->skb = __skb_dequeue(&entry->skb_list); 1073 if (skb_tailroom(rx->skb) < entry->extra_len) { 1074 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1075 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1076 GFP_ATOMIC))) { 1077 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1078 __skb_queue_purge(&entry->skb_list); 1079 return RX_DROP_UNUSABLE; 1080 } 1081 } 1082 while ((skb = __skb_dequeue(&entry->skb_list))) { 1083 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1084 dev_kfree_skb(skb); 1085 } 1086 1087 /* Complete frame has been reassembled - process it now */ 1088 rx->flags |= IEEE80211_RX_FRAGMENTED; 1089 1090 out: 1091 if (rx->sta) 1092 rx->sta->rx_packets++; 1093 if (is_multicast_ether_addr(hdr->addr1)) 1094 rx->local->dot11MulticastReceivedFrameCount++; 1095 else 1096 ieee80211_led_rx(rx->local); 1097 return RX_CONTINUE; 1098 } 1099 1100 static ieee80211_rx_result debug_noinline 1101 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx) 1102 { 1103 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 1104 struct sk_buff *skb; 1105 int no_pending_pkts; 1106 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control; 1107 1108 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) || 1109 !(rx->flags & IEEE80211_RX_RA_MATCH))) 1110 return RX_CONTINUE; 1111 1112 if ((sdata->vif.type != NL80211_IFTYPE_AP) && 1113 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 1114 return RX_DROP_UNUSABLE; 1115 1116 skb = skb_dequeue(&rx->sta->tx_filtered); 1117 if (!skb) { 1118 skb = skb_dequeue(&rx->sta->ps_tx_buf); 1119 if (skb) 1120 rx->local->total_ps_buffered--; 1121 } 1122 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) && 1123 skb_queue_empty(&rx->sta->ps_tx_buf); 1124 1125 if (skb) { 1126 struct ieee80211_hdr *hdr = 1127 (struct ieee80211_hdr *) skb->data; 1128 1129 /* 1130 * Tell TX path to send one frame even though the STA may 1131 * still remain is PS mode after this frame exchange. 1132 */ 1133 set_sta_flags(rx->sta, WLAN_STA_PSPOLL); 1134 1135 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1136 printk(KERN_DEBUG "STA %pM aid %d: PS Poll (entries after %d)\n", 1137 rx->sta->sta.addr, rx->sta->sta.aid, 1138 skb_queue_len(&rx->sta->ps_tx_buf)); 1139 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1140 1141 /* Use MoreData flag to indicate whether there are more 1142 * buffered frames for this STA */ 1143 if (no_pending_pkts) 1144 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1145 else 1146 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1147 1148 dev_queue_xmit(skb); 1149 1150 if (no_pending_pkts) 1151 sta_info_clear_tim_bit(rx->sta); 1152 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1153 } else if (!rx->sent_ps_buffered) { 1154 /* 1155 * FIXME: This can be the result of a race condition between 1156 * us expiring a frame and the station polling for it. 1157 * Should we send it a null-func frame indicating we 1158 * have nothing buffered for it? 1159 */ 1160 printk(KERN_DEBUG "%s: STA %pM sent PS Poll even " 1161 "though there are no buffered frames for it\n", 1162 rx->dev->name, rx->sta->sta.addr); 1163 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1164 } 1165 1166 /* Free PS Poll skb here instead of returning RX_DROP that would 1167 * count as an dropped frame. */ 1168 dev_kfree_skb(rx->skb); 1169 1170 return RX_QUEUED; 1171 } 1172 1173 static ieee80211_rx_result debug_noinline 1174 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx) 1175 { 1176 u8 *data = rx->skb->data; 1177 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; 1178 1179 if (!ieee80211_is_data_qos(hdr->frame_control)) 1180 return RX_CONTINUE; 1181 1182 /* remove the qos control field, update frame type and meta-data */ 1183 memmove(data + IEEE80211_QOS_CTL_LEN, data, 1184 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN); 1185 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN); 1186 /* change frame type to non QOS */ 1187 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1188 1189 return RX_CONTINUE; 1190 } 1191 1192 static int 1193 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1194 { 1195 if (unlikely(!rx->sta || 1196 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED))) 1197 return -EACCES; 1198 1199 return 0; 1200 } 1201 1202 static int 1203 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1204 { 1205 /* 1206 * Pass through unencrypted frames if the hardware has 1207 * decrypted them already. 1208 */ 1209 if (rx->status->flag & RX_FLAG_DECRYPTED) 1210 return 0; 1211 1212 /* Drop unencrypted frames if key is set. */ 1213 if (unlikely(!ieee80211_has_protected(fc) && 1214 !ieee80211_is_nullfunc(fc) && 1215 (!ieee80211_is_mgmt(fc) || 1216 (ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1217 rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP))) && 1218 (rx->key || rx->sdata->drop_unencrypted))) 1219 return -EACCES; 1220 /* BIP does not use Protected field, so need to check MMIE */ 1221 if (unlikely(rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP) && 1222 ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1223 ieee80211_get_mmie_keyidx(rx->skb) < 0 && 1224 (rx->key || rx->sdata->drop_unencrypted))) 1225 return -EACCES; 1226 1227 return 0; 1228 } 1229 1230 static int 1231 ieee80211_data_to_8023(struct ieee80211_rx_data *rx) 1232 { 1233 struct net_device *dev = rx->dev; 1234 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; 1235 u16 hdrlen, ethertype; 1236 u8 *payload; 1237 u8 dst[ETH_ALEN]; 1238 u8 src[ETH_ALEN] __aligned(2); 1239 struct sk_buff *skb = rx->skb; 1240 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1241 1242 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1243 return -1; 1244 1245 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1246 1247 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 1248 * header 1249 * IEEE 802.11 address fields: 1250 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 1251 * 0 0 DA SA BSSID n/a 1252 * 0 1 DA BSSID SA n/a 1253 * 1 0 BSSID SA DA n/a 1254 * 1 1 RA TA DA SA 1255 */ 1256 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 1257 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 1258 1259 switch (hdr->frame_control & 1260 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 1261 case cpu_to_le16(IEEE80211_FCTL_TODS): 1262 if (unlikely(sdata->vif.type != NL80211_IFTYPE_AP && 1263 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 1264 return -1; 1265 break; 1266 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 1267 if (unlikely(sdata->vif.type != NL80211_IFTYPE_WDS && 1268 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)) 1269 return -1; 1270 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1271 struct ieee80211s_hdr *meshdr = (struct ieee80211s_hdr *) 1272 (skb->data + hdrlen); 1273 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 1274 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 1275 memcpy(dst, meshdr->eaddr1, ETH_ALEN); 1276 memcpy(src, meshdr->eaddr2, ETH_ALEN); 1277 } 1278 } 1279 break; 1280 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 1281 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1282 (is_multicast_ether_addr(dst) && 1283 !compare_ether_addr(src, dev->dev_addr))) 1284 return -1; 1285 break; 1286 case cpu_to_le16(0): 1287 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 1288 return -1; 1289 break; 1290 } 1291 1292 if (unlikely(skb->len - hdrlen < 8)) 1293 return -1; 1294 1295 payload = skb->data + hdrlen; 1296 ethertype = (payload[6] << 8) | payload[7]; 1297 1298 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 1299 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 1300 compare_ether_addr(payload, bridge_tunnel_header) == 0)) { 1301 /* remove RFC1042 or Bridge-Tunnel encapsulation and 1302 * replace EtherType */ 1303 skb_pull(skb, hdrlen + 6); 1304 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 1305 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 1306 } else { 1307 struct ethhdr *ehdr; 1308 __be16 len; 1309 1310 skb_pull(skb, hdrlen); 1311 len = htons(skb->len); 1312 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 1313 memcpy(ehdr->h_dest, dst, ETH_ALEN); 1314 memcpy(ehdr->h_source, src, ETH_ALEN); 1315 ehdr->h_proto = len; 1316 } 1317 return 0; 1318 } 1319 1320 /* 1321 * requires that rx->skb is a frame with ethernet header 1322 */ 1323 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1324 { 1325 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1326 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1327 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1328 1329 /* 1330 * Allow EAPOL frames to us/the PAE group address regardless 1331 * of whether the frame was encrypted or not. 1332 */ 1333 if (ehdr->h_proto == htons(ETH_P_PAE) && 1334 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 || 1335 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1336 return true; 1337 1338 if (ieee80211_802_1x_port_control(rx) || 1339 ieee80211_drop_unencrypted(rx, fc)) 1340 return false; 1341 1342 return true; 1343 } 1344 1345 /* 1346 * requires that rx->skb is a frame with ethernet header 1347 */ 1348 static void 1349 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1350 { 1351 struct net_device *dev = rx->dev; 1352 struct ieee80211_local *local = rx->local; 1353 struct sk_buff *skb, *xmit_skb; 1354 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1355 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1356 struct sta_info *dsta; 1357 1358 skb = rx->skb; 1359 xmit_skb = NULL; 1360 1361 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1362 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1363 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1364 (rx->flags & IEEE80211_RX_RA_MATCH)) { 1365 if (is_multicast_ether_addr(ehdr->h_dest)) { 1366 /* 1367 * send multicast frames both to higher layers in 1368 * local net stack and back to the wireless medium 1369 */ 1370 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1371 if (!xmit_skb && net_ratelimit()) 1372 printk(KERN_DEBUG "%s: failed to clone " 1373 "multicast frame\n", dev->name); 1374 } else { 1375 dsta = sta_info_get(local, skb->data); 1376 if (dsta && dsta->sdata->dev == dev) { 1377 /* 1378 * The destination station is associated to 1379 * this AP (in this VLAN), so send the frame 1380 * directly to it and do not pass it to local 1381 * net stack. 1382 */ 1383 xmit_skb = skb; 1384 skb = NULL; 1385 } 1386 } 1387 } 1388 1389 if (skb) { 1390 int align __maybe_unused; 1391 1392 #if defined(CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT) || !defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 1393 /* 1394 * 'align' will only take the values 0 or 2 here 1395 * since all frames are required to be aligned 1396 * to 2-byte boundaries when being passed to 1397 * mac80211. That also explains the __skb_push() 1398 * below. 1399 */ 1400 align = (unsigned long)skb->data & 3; 1401 if (align) { 1402 if (WARN_ON(skb_headroom(skb) < 3)) { 1403 dev_kfree_skb(skb); 1404 skb = NULL; 1405 } else { 1406 u8 *data = skb->data; 1407 size_t len = skb->len; 1408 u8 *new = __skb_push(skb, align); 1409 memmove(new, data, len); 1410 __skb_trim(skb, len); 1411 } 1412 } 1413 #endif 1414 1415 if (skb) { 1416 /* deliver to local stack */ 1417 skb->protocol = eth_type_trans(skb, dev); 1418 memset(skb->cb, 0, sizeof(skb->cb)); 1419 netif_rx(skb); 1420 } 1421 } 1422 1423 if (xmit_skb) { 1424 /* send to wireless media */ 1425 xmit_skb->protocol = htons(ETH_P_802_3); 1426 skb_reset_network_header(xmit_skb); 1427 skb_reset_mac_header(xmit_skb); 1428 dev_queue_xmit(xmit_skb); 1429 } 1430 } 1431 1432 static ieee80211_rx_result debug_noinline 1433 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1434 { 1435 struct net_device *dev = rx->dev; 1436 struct ieee80211_local *local = rx->local; 1437 u16 ethertype; 1438 u8 *payload; 1439 struct sk_buff *skb = rx->skb, *frame = NULL; 1440 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1441 __le16 fc = hdr->frame_control; 1442 const struct ethhdr *eth; 1443 int remaining, err; 1444 u8 dst[ETH_ALEN]; 1445 u8 src[ETH_ALEN]; 1446 1447 if (unlikely(!ieee80211_is_data(fc))) 1448 return RX_CONTINUE; 1449 1450 if (unlikely(!ieee80211_is_data_present(fc))) 1451 return RX_DROP_MONITOR; 1452 1453 if (!(rx->flags & IEEE80211_RX_AMSDU)) 1454 return RX_CONTINUE; 1455 1456 err = ieee80211_data_to_8023(rx); 1457 if (unlikely(err)) 1458 return RX_DROP_UNUSABLE; 1459 1460 skb->dev = dev; 1461 1462 dev->stats.rx_packets++; 1463 dev->stats.rx_bytes += skb->len; 1464 1465 /* skip the wrapping header */ 1466 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 1467 if (!eth) 1468 return RX_DROP_UNUSABLE; 1469 1470 while (skb != frame) { 1471 u8 padding; 1472 __be16 len = eth->h_proto; 1473 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 1474 1475 remaining = skb->len; 1476 memcpy(dst, eth->h_dest, ETH_ALEN); 1477 memcpy(src, eth->h_source, ETH_ALEN); 1478 1479 padding = ((4 - subframe_len) & 0x3); 1480 /* the last MSDU has no padding */ 1481 if (subframe_len > remaining) 1482 return RX_DROP_UNUSABLE; 1483 1484 skb_pull(skb, sizeof(struct ethhdr)); 1485 /* if last subframe reuse skb */ 1486 if (remaining <= subframe_len + padding) 1487 frame = skb; 1488 else { 1489 /* 1490 * Allocate and reserve two bytes more for payload 1491 * alignment since sizeof(struct ethhdr) is 14. 1492 */ 1493 frame = dev_alloc_skb( 1494 ALIGN(local->hw.extra_tx_headroom, 4) + 1495 subframe_len + 2); 1496 1497 if (frame == NULL) 1498 return RX_DROP_UNUSABLE; 1499 1500 skb_reserve(frame, 1501 ALIGN(local->hw.extra_tx_headroom, 4) + 1502 sizeof(struct ethhdr) + 2); 1503 memcpy(skb_put(frame, ntohs(len)), skb->data, 1504 ntohs(len)); 1505 1506 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) + 1507 padding); 1508 if (!eth) { 1509 dev_kfree_skb(frame); 1510 return RX_DROP_UNUSABLE; 1511 } 1512 } 1513 1514 skb_reset_network_header(frame); 1515 frame->dev = dev; 1516 frame->priority = skb->priority; 1517 rx->skb = frame; 1518 1519 payload = frame->data; 1520 ethertype = (payload[6] << 8) | payload[7]; 1521 1522 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 1523 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 1524 compare_ether_addr(payload, 1525 bridge_tunnel_header) == 0)) { 1526 /* remove RFC1042 or Bridge-Tunnel 1527 * encapsulation and replace EtherType */ 1528 skb_pull(frame, 6); 1529 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 1530 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 1531 } else { 1532 memcpy(skb_push(frame, sizeof(__be16)), 1533 &len, sizeof(__be16)); 1534 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 1535 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 1536 } 1537 1538 if (!ieee80211_frame_allowed(rx, fc)) { 1539 if (skb == frame) /* last frame */ 1540 return RX_DROP_UNUSABLE; 1541 dev_kfree_skb(frame); 1542 continue; 1543 } 1544 1545 ieee80211_deliver_skb(rx); 1546 } 1547 1548 return RX_QUEUED; 1549 } 1550 1551 #ifdef CONFIG_MAC80211_MESH 1552 static ieee80211_rx_result 1553 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1554 { 1555 struct ieee80211_hdr *hdr; 1556 struct ieee80211s_hdr *mesh_hdr; 1557 unsigned int hdrlen; 1558 struct sk_buff *skb = rx->skb, *fwd_skb; 1559 1560 hdr = (struct ieee80211_hdr *) skb->data; 1561 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1562 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1563 1564 if (!ieee80211_is_data(hdr->frame_control)) 1565 return RX_CONTINUE; 1566 1567 if (!mesh_hdr->ttl) 1568 /* illegal frame */ 1569 return RX_DROP_MONITOR; 1570 1571 if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6){ 1572 struct ieee80211_sub_if_data *sdata; 1573 struct mesh_path *mppath; 1574 1575 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 1576 rcu_read_lock(); 1577 mppath = mpp_path_lookup(mesh_hdr->eaddr2, sdata); 1578 if (!mppath) { 1579 mpp_path_add(mesh_hdr->eaddr2, hdr->addr4, sdata); 1580 } else { 1581 spin_lock_bh(&mppath->state_lock); 1582 mppath->exp_time = jiffies; 1583 if (compare_ether_addr(mppath->mpp, hdr->addr4) != 0) 1584 memcpy(mppath->mpp, hdr->addr4, ETH_ALEN); 1585 spin_unlock_bh(&mppath->state_lock); 1586 } 1587 rcu_read_unlock(); 1588 } 1589 1590 if (compare_ether_addr(rx->dev->dev_addr, hdr->addr3) == 0) 1591 return RX_CONTINUE; 1592 1593 mesh_hdr->ttl--; 1594 1595 if (rx->flags & IEEE80211_RX_RA_MATCH) { 1596 if (!mesh_hdr->ttl) 1597 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh, 1598 dropped_frames_ttl); 1599 else { 1600 struct ieee80211_hdr *fwd_hdr; 1601 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1602 1603 if (!fwd_skb && net_ratelimit()) 1604 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1605 rx->dev->name); 1606 1607 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1608 /* 1609 * Save TA to addr1 to send TA a path error if a 1610 * suitable next hop is not found 1611 */ 1612 memcpy(fwd_hdr->addr1, fwd_hdr->addr2, ETH_ALEN); 1613 memcpy(fwd_hdr->addr2, rx->dev->dev_addr, ETH_ALEN); 1614 fwd_skb->dev = rx->local->mdev; 1615 fwd_skb->iif = rx->dev->ifindex; 1616 dev_queue_xmit(fwd_skb); 1617 } 1618 } 1619 1620 if (is_multicast_ether_addr(hdr->addr3) || 1621 rx->dev->flags & IFF_PROMISC) 1622 return RX_CONTINUE; 1623 else 1624 return RX_DROP_MONITOR; 1625 } 1626 #endif 1627 1628 static ieee80211_rx_result debug_noinline 1629 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1630 { 1631 struct net_device *dev = rx->dev; 1632 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1633 __le16 fc = hdr->frame_control; 1634 int err; 1635 1636 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 1637 return RX_CONTINUE; 1638 1639 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1640 return RX_DROP_MONITOR; 1641 1642 err = ieee80211_data_to_8023(rx); 1643 if (unlikely(err)) 1644 return RX_DROP_UNUSABLE; 1645 1646 if (!ieee80211_frame_allowed(rx, fc)) 1647 return RX_DROP_MONITOR; 1648 1649 rx->skb->dev = dev; 1650 1651 dev->stats.rx_packets++; 1652 dev->stats.rx_bytes += rx->skb->len; 1653 1654 ieee80211_deliver_skb(rx); 1655 1656 return RX_QUEUED; 1657 } 1658 1659 static ieee80211_rx_result debug_noinline 1660 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 1661 { 1662 struct ieee80211_local *local = rx->local; 1663 struct ieee80211_hw *hw = &local->hw; 1664 struct sk_buff *skb = rx->skb; 1665 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 1666 struct tid_ampdu_rx *tid_agg_rx; 1667 u16 start_seq_num; 1668 u16 tid; 1669 1670 if (likely(!ieee80211_is_ctl(bar->frame_control))) 1671 return RX_CONTINUE; 1672 1673 if (ieee80211_is_back_req(bar->frame_control)) { 1674 if (!rx->sta) 1675 return RX_CONTINUE; 1676 tid = le16_to_cpu(bar->control) >> 12; 1677 if (rx->sta->ampdu_mlme.tid_state_rx[tid] 1678 != HT_AGG_STATE_OPERATIONAL) 1679 return RX_CONTINUE; 1680 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid]; 1681 1682 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4; 1683 1684 /* reset session timer */ 1685 if (tid_agg_rx->timeout) 1686 mod_timer(&tid_agg_rx->session_timer, 1687 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 1688 1689 /* manage reordering buffer according to requested */ 1690 /* sequence number */ 1691 rcu_read_lock(); 1692 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL, NULL, 1693 start_seq_num, 1); 1694 rcu_read_unlock(); 1695 return RX_DROP_UNUSABLE; 1696 } 1697 1698 return RX_CONTINUE; 1699 } 1700 1701 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 1702 struct ieee80211_mgmt *mgmt, 1703 size_t len) 1704 { 1705 struct ieee80211_local *local = sdata->local; 1706 struct sk_buff *skb; 1707 struct ieee80211_mgmt *resp; 1708 1709 if (compare_ether_addr(mgmt->da, sdata->dev->dev_addr) != 0) { 1710 /* Not to own unicast address */ 1711 return; 1712 } 1713 1714 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 || 1715 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) { 1716 /* Not from the current AP. */ 1717 return; 1718 } 1719 1720 if (sdata->u.mgd.state == IEEE80211_STA_MLME_ASSOCIATE) { 1721 /* Association in progress; ignore SA Query */ 1722 return; 1723 } 1724 1725 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 1726 /* Too short SA Query request frame */ 1727 return; 1728 } 1729 1730 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 1731 if (skb == NULL) 1732 return; 1733 1734 skb_reserve(skb, local->hw.extra_tx_headroom); 1735 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 1736 memset(resp, 0, 24); 1737 memcpy(resp->da, mgmt->sa, ETH_ALEN); 1738 memcpy(resp->sa, sdata->dev->dev_addr, ETH_ALEN); 1739 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 1740 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1741 IEEE80211_STYPE_ACTION); 1742 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 1743 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 1744 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 1745 memcpy(resp->u.action.u.sa_query.trans_id, 1746 mgmt->u.action.u.sa_query.trans_id, 1747 WLAN_SA_QUERY_TR_ID_LEN); 1748 1749 ieee80211_tx_skb(sdata, skb, 1); 1750 } 1751 1752 static ieee80211_rx_result debug_noinline 1753 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 1754 { 1755 struct ieee80211_local *local = rx->local; 1756 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 1757 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 1758 struct ieee80211_bss *bss; 1759 int len = rx->skb->len; 1760 1761 if (!ieee80211_is_action(mgmt->frame_control)) 1762 return RX_CONTINUE; 1763 1764 if (!rx->sta) 1765 return RX_DROP_MONITOR; 1766 1767 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 1768 return RX_DROP_MONITOR; 1769 1770 if (ieee80211_drop_unencrypted(rx, mgmt->frame_control)) 1771 return RX_DROP_MONITOR; 1772 1773 /* all categories we currently handle have action_code */ 1774 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 1775 return RX_DROP_MONITOR; 1776 1777 switch (mgmt->u.action.category) { 1778 case WLAN_CATEGORY_BACK: 1779 /* 1780 * The aggregation code is not prepared to handle 1781 * anything but STA/AP due to the BSSID handling; 1782 * IBSS could work in the code but isn't supported 1783 * by drivers or the standard. 1784 */ 1785 if (sdata->vif.type != NL80211_IFTYPE_STATION && 1786 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1787 sdata->vif.type != NL80211_IFTYPE_AP) 1788 return RX_DROP_MONITOR; 1789 1790 switch (mgmt->u.action.u.addba_req.action_code) { 1791 case WLAN_ACTION_ADDBA_REQ: 1792 if (len < (IEEE80211_MIN_ACTION_SIZE + 1793 sizeof(mgmt->u.action.u.addba_req))) 1794 return RX_DROP_MONITOR; 1795 ieee80211_process_addba_request(local, rx->sta, mgmt, len); 1796 break; 1797 case WLAN_ACTION_ADDBA_RESP: 1798 if (len < (IEEE80211_MIN_ACTION_SIZE + 1799 sizeof(mgmt->u.action.u.addba_resp))) 1800 return RX_DROP_MONITOR; 1801 ieee80211_process_addba_resp(local, rx->sta, mgmt, len); 1802 break; 1803 case WLAN_ACTION_DELBA: 1804 if (len < (IEEE80211_MIN_ACTION_SIZE + 1805 sizeof(mgmt->u.action.u.delba))) 1806 return RX_DROP_MONITOR; 1807 ieee80211_process_delba(sdata, rx->sta, mgmt, len); 1808 break; 1809 } 1810 break; 1811 case WLAN_CATEGORY_SPECTRUM_MGMT: 1812 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 1813 return RX_DROP_MONITOR; 1814 1815 if (sdata->vif.type != NL80211_IFTYPE_STATION) 1816 return RX_DROP_MONITOR; 1817 1818 switch (mgmt->u.action.u.measurement.action_code) { 1819 case WLAN_ACTION_SPCT_MSR_REQ: 1820 if (len < (IEEE80211_MIN_ACTION_SIZE + 1821 sizeof(mgmt->u.action.u.measurement))) 1822 return RX_DROP_MONITOR; 1823 ieee80211_process_measurement_req(sdata, mgmt, len); 1824 break; 1825 case WLAN_ACTION_SPCT_CHL_SWITCH: 1826 if (len < (IEEE80211_MIN_ACTION_SIZE + 1827 sizeof(mgmt->u.action.u.chan_switch))) 1828 return RX_DROP_MONITOR; 1829 1830 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN)) 1831 return RX_DROP_MONITOR; 1832 1833 bss = ieee80211_rx_bss_get(local, sdata->u.mgd.bssid, 1834 local->hw.conf.channel->center_freq, 1835 sdata->u.mgd.ssid, 1836 sdata->u.mgd.ssid_len); 1837 if (!bss) 1838 return RX_DROP_MONITOR; 1839 1840 ieee80211_process_chanswitch(sdata, 1841 &mgmt->u.action.u.chan_switch.sw_elem, bss); 1842 ieee80211_rx_bss_put(local, bss); 1843 break; 1844 } 1845 break; 1846 case WLAN_CATEGORY_SA_QUERY: 1847 if (len < (IEEE80211_MIN_ACTION_SIZE + 1848 sizeof(mgmt->u.action.u.sa_query))) 1849 return RX_DROP_MONITOR; 1850 switch (mgmt->u.action.u.sa_query.action) { 1851 case WLAN_ACTION_SA_QUERY_REQUEST: 1852 if (sdata->vif.type != NL80211_IFTYPE_STATION) 1853 return RX_DROP_MONITOR; 1854 ieee80211_process_sa_query_req(sdata, mgmt, len); 1855 break; 1856 case WLAN_ACTION_SA_QUERY_RESPONSE: 1857 /* 1858 * SA Query response is currently only used in AP mode 1859 * and it is processed in user space. 1860 */ 1861 return RX_CONTINUE; 1862 } 1863 break; 1864 default: 1865 return RX_CONTINUE; 1866 } 1867 1868 rx->sta->rx_packets++; 1869 dev_kfree_skb(rx->skb); 1870 return RX_QUEUED; 1871 } 1872 1873 static ieee80211_rx_result debug_noinline 1874 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 1875 { 1876 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 1877 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 1878 1879 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 1880 return RX_DROP_MONITOR; 1881 1882 if (ieee80211_drop_unencrypted(rx, mgmt->frame_control)) 1883 return RX_DROP_MONITOR; 1884 1885 if (ieee80211_vif_is_mesh(&sdata->vif)) 1886 return ieee80211_mesh_rx_mgmt(sdata, rx->skb, rx->status); 1887 1888 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 1889 return ieee80211_ibss_rx_mgmt(sdata, rx->skb, rx->status); 1890 1891 if (sdata->vif.type == NL80211_IFTYPE_STATION) 1892 return ieee80211_sta_rx_mgmt(sdata, rx->skb, rx->status); 1893 1894 return RX_DROP_MONITOR; 1895 } 1896 1897 static void ieee80211_rx_michael_mic_report(struct net_device *dev, 1898 struct ieee80211_hdr *hdr, 1899 struct ieee80211_rx_data *rx) 1900 { 1901 int keyidx; 1902 unsigned int hdrlen; 1903 1904 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1905 if (rx->skb->len >= hdrlen + 4) 1906 keyidx = rx->skb->data[hdrlen + 3] >> 6; 1907 else 1908 keyidx = -1; 1909 1910 if (!rx->sta) { 1911 /* 1912 * Some hardware seem to generate incorrect Michael MIC 1913 * reports; ignore them to avoid triggering countermeasures. 1914 */ 1915 goto ignore; 1916 } 1917 1918 if (!ieee80211_has_protected(hdr->frame_control)) 1919 goto ignore; 1920 1921 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) { 1922 /* 1923 * APs with pairwise keys should never receive Michael MIC 1924 * errors for non-zero keyidx because these are reserved for 1925 * group keys and only the AP is sending real multicast 1926 * frames in the BSS. 1927 */ 1928 goto ignore; 1929 } 1930 1931 if (!ieee80211_is_data(hdr->frame_control) && 1932 !ieee80211_is_auth(hdr->frame_control)) 1933 goto ignore; 1934 1935 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr); 1936 ignore: 1937 dev_kfree_skb(rx->skb); 1938 rx->skb = NULL; 1939 } 1940 1941 /* TODO: use IEEE80211_RX_FRAGMENTED */ 1942 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx) 1943 { 1944 struct ieee80211_sub_if_data *sdata; 1945 struct ieee80211_local *local = rx->local; 1946 struct ieee80211_rtap_hdr { 1947 struct ieee80211_radiotap_header hdr; 1948 u8 flags; 1949 u8 rate; 1950 __le16 chan_freq; 1951 __le16 chan_flags; 1952 } __attribute__ ((packed)) *rthdr; 1953 struct sk_buff *skb = rx->skb, *skb2; 1954 struct net_device *prev_dev = NULL; 1955 struct ieee80211_rx_status *status = rx->status; 1956 1957 if (rx->flags & IEEE80211_RX_CMNTR_REPORTED) 1958 goto out_free_skb; 1959 1960 if (skb_headroom(skb) < sizeof(*rthdr) && 1961 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) 1962 goto out_free_skb; 1963 1964 rthdr = (void *)skb_push(skb, sizeof(*rthdr)); 1965 memset(rthdr, 0, sizeof(*rthdr)); 1966 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); 1967 rthdr->hdr.it_present = 1968 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 1969 (1 << IEEE80211_RADIOTAP_RATE) | 1970 (1 << IEEE80211_RADIOTAP_CHANNEL)); 1971 1972 rthdr->rate = rx->rate->bitrate / 5; 1973 rthdr->chan_freq = cpu_to_le16(status->freq); 1974 1975 if (status->band == IEEE80211_BAND_5GHZ) 1976 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | 1977 IEEE80211_CHAN_5GHZ); 1978 else 1979 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | 1980 IEEE80211_CHAN_2GHZ); 1981 1982 skb_set_mac_header(skb, 0); 1983 skb->ip_summed = CHECKSUM_UNNECESSARY; 1984 skb->pkt_type = PACKET_OTHERHOST; 1985 skb->protocol = htons(ETH_P_802_2); 1986 1987 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 1988 if (!netif_running(sdata->dev)) 1989 continue; 1990 1991 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 1992 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 1993 continue; 1994 1995 if (prev_dev) { 1996 skb2 = skb_clone(skb, GFP_ATOMIC); 1997 if (skb2) { 1998 skb2->dev = prev_dev; 1999 netif_rx(skb2); 2000 } 2001 } 2002 2003 prev_dev = sdata->dev; 2004 sdata->dev->stats.rx_packets++; 2005 sdata->dev->stats.rx_bytes += skb->len; 2006 } 2007 2008 if (prev_dev) { 2009 skb->dev = prev_dev; 2010 netif_rx(skb); 2011 skb = NULL; 2012 } else 2013 goto out_free_skb; 2014 2015 rx->flags |= IEEE80211_RX_CMNTR_REPORTED; 2016 return; 2017 2018 out_free_skb: 2019 dev_kfree_skb(skb); 2020 } 2021 2022 2023 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata, 2024 struct ieee80211_rx_data *rx, 2025 struct sk_buff *skb) 2026 { 2027 ieee80211_rx_result res = RX_DROP_MONITOR; 2028 2029 rx->skb = skb; 2030 rx->sdata = sdata; 2031 rx->dev = sdata->dev; 2032 2033 #define CALL_RXH(rxh) \ 2034 do { \ 2035 res = rxh(rx); \ 2036 if (res != RX_CONTINUE) \ 2037 goto rxh_done; \ 2038 } while (0); 2039 2040 CALL_RXH(ieee80211_rx_h_passive_scan) 2041 CALL_RXH(ieee80211_rx_h_check) 2042 CALL_RXH(ieee80211_rx_h_decrypt) 2043 CALL_RXH(ieee80211_rx_h_check_more_data) 2044 CALL_RXH(ieee80211_rx_h_sta_process) 2045 CALL_RXH(ieee80211_rx_h_defragment) 2046 CALL_RXH(ieee80211_rx_h_ps_poll) 2047 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2048 /* must be after MMIC verify so header is counted in MPDU mic */ 2049 CALL_RXH(ieee80211_rx_h_remove_qos_control) 2050 CALL_RXH(ieee80211_rx_h_amsdu) 2051 #ifdef CONFIG_MAC80211_MESH 2052 if (ieee80211_vif_is_mesh(&sdata->vif)) 2053 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2054 #endif 2055 CALL_RXH(ieee80211_rx_h_data) 2056 CALL_RXH(ieee80211_rx_h_ctrl) 2057 CALL_RXH(ieee80211_rx_h_action) 2058 CALL_RXH(ieee80211_rx_h_mgmt) 2059 2060 #undef CALL_RXH 2061 2062 rxh_done: 2063 switch (res) { 2064 case RX_DROP_MONITOR: 2065 I802_DEBUG_INC(sdata->local->rx_handlers_drop); 2066 if (rx->sta) 2067 rx->sta->rx_dropped++; 2068 /* fall through */ 2069 case RX_CONTINUE: 2070 ieee80211_rx_cooked_monitor(rx); 2071 break; 2072 case RX_DROP_UNUSABLE: 2073 I802_DEBUG_INC(sdata->local->rx_handlers_drop); 2074 if (rx->sta) 2075 rx->sta->rx_dropped++; 2076 dev_kfree_skb(rx->skb); 2077 break; 2078 case RX_QUEUED: 2079 I802_DEBUG_INC(sdata->local->rx_handlers_queued); 2080 break; 2081 } 2082 } 2083 2084 /* main receive path */ 2085 2086 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata, 2087 struct ieee80211_rx_data *rx, 2088 struct ieee80211_hdr *hdr) 2089 { 2090 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, sdata->vif.type); 2091 int multicast = is_multicast_ether_addr(hdr->addr1); 2092 2093 switch (sdata->vif.type) { 2094 case NL80211_IFTYPE_STATION: 2095 if (!bssid) 2096 return 0; 2097 if (!ieee80211_bssid_match(bssid, sdata->u.mgd.bssid)) { 2098 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 2099 return 0; 2100 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2101 } else if (!multicast && 2102 compare_ether_addr(sdata->dev->dev_addr, 2103 hdr->addr1) != 0) { 2104 if (!(sdata->dev->flags & IFF_PROMISC)) 2105 return 0; 2106 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2107 } 2108 break; 2109 case NL80211_IFTYPE_ADHOC: 2110 if (!bssid) 2111 return 0; 2112 if (ieee80211_is_beacon(hdr->frame_control)) { 2113 return 1; 2114 } 2115 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2116 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 2117 return 0; 2118 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2119 } else if (!multicast && 2120 compare_ether_addr(sdata->dev->dev_addr, 2121 hdr->addr1) != 0) { 2122 if (!(sdata->dev->flags & IFF_PROMISC)) 2123 return 0; 2124 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2125 } else if (!rx->sta) { 2126 int rate_idx; 2127 if (rx->status->flag & RX_FLAG_HT) 2128 rate_idx = 0; /* TODO: HT rates */ 2129 else 2130 rate_idx = rx->status->rate_idx; 2131 rx->sta = ieee80211_ibss_add_sta(sdata, bssid, hdr->addr2, 2132 BIT(rate_idx)); 2133 } 2134 break; 2135 case NL80211_IFTYPE_MESH_POINT: 2136 if (!multicast && 2137 compare_ether_addr(sdata->dev->dev_addr, 2138 hdr->addr1) != 0) { 2139 if (!(sdata->dev->flags & IFF_PROMISC)) 2140 return 0; 2141 2142 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2143 } 2144 break; 2145 case NL80211_IFTYPE_AP_VLAN: 2146 case NL80211_IFTYPE_AP: 2147 if (!bssid) { 2148 if (compare_ether_addr(sdata->dev->dev_addr, 2149 hdr->addr1)) 2150 return 0; 2151 } else if (!ieee80211_bssid_match(bssid, 2152 sdata->dev->dev_addr)) { 2153 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 2154 return 0; 2155 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2156 } 2157 break; 2158 case NL80211_IFTYPE_WDS: 2159 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2160 return 0; 2161 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 2162 return 0; 2163 break; 2164 case NL80211_IFTYPE_MONITOR: 2165 /* take everything */ 2166 break; 2167 case NL80211_IFTYPE_UNSPECIFIED: 2168 case __NL80211_IFTYPE_AFTER_LAST: 2169 /* should never get here */ 2170 WARN_ON(1); 2171 break; 2172 } 2173 2174 return 1; 2175 } 2176 2177 /* 2178 * This is the actual Rx frames handler. as it blongs to Rx path it must 2179 * be called with rcu_read_lock protection. 2180 */ 2181 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2182 struct sk_buff *skb, 2183 struct ieee80211_rx_status *status, 2184 struct ieee80211_rate *rate) 2185 { 2186 struct ieee80211_local *local = hw_to_local(hw); 2187 struct ieee80211_sub_if_data *sdata; 2188 struct ieee80211_hdr *hdr; 2189 struct ieee80211_rx_data rx; 2190 int prepares; 2191 struct ieee80211_sub_if_data *prev = NULL; 2192 struct sk_buff *skb_new; 2193 2194 hdr = (struct ieee80211_hdr *)skb->data; 2195 memset(&rx, 0, sizeof(rx)); 2196 rx.skb = skb; 2197 rx.local = local; 2198 2199 rx.status = status; 2200 rx.rate = rate; 2201 2202 if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control)) 2203 local->dot11ReceivedFragmentCount++; 2204 2205 rx.sta = sta_info_get(local, hdr->addr2); 2206 if (rx.sta) { 2207 rx.sdata = rx.sta->sdata; 2208 rx.dev = rx.sta->sdata->dev; 2209 } 2210 2211 if ((status->flag & RX_FLAG_MMIC_ERROR)) { 2212 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx); 2213 return; 2214 } 2215 2216 if (unlikely(local->sw_scanning || local->hw_scanning)) 2217 rx.flags |= IEEE80211_RX_IN_SCAN; 2218 2219 ieee80211_parse_qos(&rx); 2220 ieee80211_verify_alignment(&rx); 2221 2222 skb = rx.skb; 2223 2224 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2225 if (!netif_running(sdata->dev)) 2226 continue; 2227 2228 if (sdata->vif.type == NL80211_IFTYPE_MONITOR) 2229 continue; 2230 2231 rx.flags |= IEEE80211_RX_RA_MATCH; 2232 prepares = prepare_for_handlers(sdata, &rx, hdr); 2233 2234 if (!prepares) 2235 continue; 2236 2237 /* 2238 * frame is destined for this interface, but if it's not 2239 * also for the previous one we handle that after the 2240 * loop to avoid copying the SKB once too much 2241 */ 2242 2243 if (!prev) { 2244 prev = sdata; 2245 continue; 2246 } 2247 2248 /* 2249 * frame was destined for the previous interface 2250 * so invoke RX handlers for it 2251 */ 2252 2253 skb_new = skb_copy(skb, GFP_ATOMIC); 2254 if (!skb_new) { 2255 if (net_ratelimit()) 2256 printk(KERN_DEBUG "%s: failed to copy " 2257 "multicast frame for %s\n", 2258 wiphy_name(local->hw.wiphy), 2259 prev->dev->name); 2260 continue; 2261 } 2262 ieee80211_invoke_rx_handlers(prev, &rx, skb_new); 2263 prev = sdata; 2264 } 2265 if (prev) 2266 ieee80211_invoke_rx_handlers(prev, &rx, skb); 2267 else 2268 dev_kfree_skb(skb); 2269 } 2270 2271 #define SEQ_MODULO 0x1000 2272 #define SEQ_MASK 0xfff 2273 2274 static inline int seq_less(u16 sq1, u16 sq2) 2275 { 2276 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 2277 } 2278 2279 static inline u16 seq_inc(u16 sq) 2280 { 2281 return (sq + 1) & SEQ_MASK; 2282 } 2283 2284 static inline u16 seq_sub(u16 sq1, u16 sq2) 2285 { 2286 return (sq1 - sq2) & SEQ_MASK; 2287 } 2288 2289 2290 /* 2291 * As it function blongs to Rx path it must be called with 2292 * the proper rcu_read_lock protection for its flow. 2293 */ 2294 static u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 2295 struct tid_ampdu_rx *tid_agg_rx, 2296 struct sk_buff *skb, 2297 struct ieee80211_rx_status *rxstatus, 2298 u16 mpdu_seq_num, 2299 int bar_req) 2300 { 2301 struct ieee80211_local *local = hw_to_local(hw); 2302 struct ieee80211_rx_status status; 2303 u16 head_seq_num, buf_size; 2304 int index; 2305 struct ieee80211_supported_band *sband; 2306 struct ieee80211_rate *rate; 2307 2308 buf_size = tid_agg_rx->buf_size; 2309 head_seq_num = tid_agg_rx->head_seq_num; 2310 2311 /* frame with out of date sequence number */ 2312 if (seq_less(mpdu_seq_num, head_seq_num)) { 2313 dev_kfree_skb(skb); 2314 return 1; 2315 } 2316 2317 /* if frame sequence number exceeds our buffering window size or 2318 * block Ack Request arrived - release stored frames */ 2319 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) { 2320 /* new head to the ordering buffer */ 2321 if (bar_req) 2322 head_seq_num = mpdu_seq_num; 2323 else 2324 head_seq_num = 2325 seq_inc(seq_sub(mpdu_seq_num, buf_size)); 2326 /* release stored frames up to new head to stack */ 2327 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 2328 index = seq_sub(tid_agg_rx->head_seq_num, 2329 tid_agg_rx->ssn) 2330 % tid_agg_rx->buf_size; 2331 2332 if (tid_agg_rx->reorder_buf[index]) { 2333 /* release the reordered frames to stack */ 2334 memcpy(&status, 2335 tid_agg_rx->reorder_buf[index]->cb, 2336 sizeof(status)); 2337 sband = local->hw.wiphy->bands[status.band]; 2338 if (status.flag & RX_FLAG_HT) { 2339 /* TODO: HT rates */ 2340 rate = sband->bitrates; 2341 } else { 2342 rate = &sband->bitrates 2343 [status.rate_idx]; 2344 } 2345 __ieee80211_rx_handle_packet(hw, 2346 tid_agg_rx->reorder_buf[index], 2347 &status, rate); 2348 tid_agg_rx->stored_mpdu_num--; 2349 tid_agg_rx->reorder_buf[index] = NULL; 2350 } 2351 tid_agg_rx->head_seq_num = 2352 seq_inc(tid_agg_rx->head_seq_num); 2353 } 2354 if (bar_req) 2355 return 1; 2356 } 2357 2358 /* now the new frame is always in the range of the reordering */ 2359 /* buffer window */ 2360 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) 2361 % tid_agg_rx->buf_size; 2362 /* check if we already stored this frame */ 2363 if (tid_agg_rx->reorder_buf[index]) { 2364 dev_kfree_skb(skb); 2365 return 1; 2366 } 2367 2368 /* if arrived mpdu is in the right order and nothing else stored */ 2369 /* release it immediately */ 2370 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 2371 tid_agg_rx->stored_mpdu_num == 0) { 2372 tid_agg_rx->head_seq_num = 2373 seq_inc(tid_agg_rx->head_seq_num); 2374 return 0; 2375 } 2376 2377 /* put the frame in the reordering buffer */ 2378 tid_agg_rx->reorder_buf[index] = skb; 2379 memcpy(tid_agg_rx->reorder_buf[index]->cb, rxstatus, 2380 sizeof(*rxstatus)); 2381 tid_agg_rx->stored_mpdu_num++; 2382 /* release the buffer until next missing frame */ 2383 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) 2384 % tid_agg_rx->buf_size; 2385 while (tid_agg_rx->reorder_buf[index]) { 2386 /* release the reordered frame back to stack */ 2387 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb, 2388 sizeof(status)); 2389 sband = local->hw.wiphy->bands[status.band]; 2390 if (status.flag & RX_FLAG_HT) 2391 rate = sband->bitrates; /* TODO: HT rates */ 2392 else 2393 rate = &sband->bitrates[status.rate_idx]; 2394 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index], 2395 &status, rate); 2396 tid_agg_rx->stored_mpdu_num--; 2397 tid_agg_rx->reorder_buf[index] = NULL; 2398 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 2399 index = seq_sub(tid_agg_rx->head_seq_num, 2400 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 2401 } 2402 return 1; 2403 } 2404 2405 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local, 2406 struct sk_buff *skb, 2407 struct ieee80211_rx_status *status) 2408 { 2409 struct ieee80211_hw *hw = &local->hw; 2410 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2411 struct sta_info *sta; 2412 struct tid_ampdu_rx *tid_agg_rx; 2413 u16 sc; 2414 u16 mpdu_seq_num; 2415 u8 ret = 0; 2416 int tid; 2417 2418 sta = sta_info_get(local, hdr->addr2); 2419 if (!sta) 2420 return ret; 2421 2422 /* filter the QoS data rx stream according to 2423 * STA/TID and check if this STA/TID is on aggregation */ 2424 if (!ieee80211_is_data_qos(hdr->frame_control)) 2425 goto end_reorder; 2426 2427 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 2428 2429 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL) 2430 goto end_reorder; 2431 2432 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid]; 2433 2434 /* qos null data frames are excluded */ 2435 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 2436 goto end_reorder; 2437 2438 /* new un-ordered ampdu frame - process it */ 2439 2440 /* reset session timer */ 2441 if (tid_agg_rx->timeout) 2442 mod_timer(&tid_agg_rx->session_timer, 2443 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2444 2445 /* if this mpdu is fragmented - terminate rx aggregation session */ 2446 sc = le16_to_cpu(hdr->seq_ctrl); 2447 if (sc & IEEE80211_SCTL_FRAG) { 2448 ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr, 2449 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP); 2450 ret = 1; 2451 goto end_reorder; 2452 } 2453 2454 /* according to mpdu sequence number deal with reordering buffer */ 2455 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 2456 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, status, 2457 mpdu_seq_num, 0); 2458 end_reorder: 2459 return ret; 2460 } 2461 2462 /* 2463 * This is the receive path handler. It is called by a low level driver when an 2464 * 802.11 MPDU is received from the hardware. 2465 */ 2466 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 2467 struct ieee80211_rx_status *status) 2468 { 2469 struct ieee80211_local *local = hw_to_local(hw); 2470 struct ieee80211_rate *rate = NULL; 2471 struct ieee80211_supported_band *sband; 2472 2473 if (status->band < 0 || 2474 status->band >= IEEE80211_NUM_BANDS) { 2475 WARN_ON(1); 2476 return; 2477 } 2478 2479 sband = local->hw.wiphy->bands[status->band]; 2480 if (!sband) { 2481 WARN_ON(1); 2482 return; 2483 } 2484 2485 if (status->flag & RX_FLAG_HT) { 2486 /* rate_idx is MCS index */ 2487 if (WARN_ON(status->rate_idx < 0 || 2488 status->rate_idx >= 76)) 2489 return; 2490 /* HT rates are not in the table - use the highest legacy rate 2491 * for now since other parts of mac80211 may not yet be fully 2492 * MCS aware. */ 2493 rate = &sband->bitrates[sband->n_bitrates - 1]; 2494 } else { 2495 if (WARN_ON(status->rate_idx < 0 || 2496 status->rate_idx >= sband->n_bitrates)) 2497 return; 2498 rate = &sband->bitrates[status->rate_idx]; 2499 } 2500 2501 /* 2502 * key references and virtual interfaces are protected using RCU 2503 * and this requires that we are in a read-side RCU section during 2504 * receive processing 2505 */ 2506 rcu_read_lock(); 2507 2508 /* 2509 * Frames with failed FCS/PLCP checksum are not returned, 2510 * all other frames are returned without radiotap header 2511 * if it was previously present. 2512 * Also, frames with less than 16 bytes are dropped. 2513 */ 2514 skb = ieee80211_rx_monitor(local, skb, status, rate); 2515 if (!skb) { 2516 rcu_read_unlock(); 2517 return; 2518 } 2519 2520 if (!ieee80211_rx_reorder_ampdu(local, skb, status)) 2521 __ieee80211_rx_handle_packet(hw, skb, status, rate); 2522 2523 rcu_read_unlock(); 2524 } 2525 EXPORT_SYMBOL(__ieee80211_rx); 2526 2527 /* This is a version of the rx handler that can be called from hard irq 2528 * context. Post the skb on the queue and schedule the tasklet */ 2529 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, 2530 struct ieee80211_rx_status *status) 2531 { 2532 struct ieee80211_local *local = hw_to_local(hw); 2533 2534 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 2535 2536 skb->dev = local->mdev; 2537 /* copy status into skb->cb for use by tasklet */ 2538 memcpy(skb->cb, status, sizeof(*status)); 2539 skb->pkt_type = IEEE80211_RX_MSG; 2540 skb_queue_tail(&local->skb_queue, skb); 2541 tasklet_schedule(&local->tasklet); 2542 } 2543 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 2544