1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 47 struct ieee80211_hdr *hdr; 48 unsigned int hdrlen; 49 __le16 fc; 50 51 if (present_fcs_len) 52 __pskb_trim(skb, skb->len - present_fcs_len); 53 pskb_pull(skb, rtap_space); 54 55 /* After pulling radiotap header, clear all flags that indicate 56 * info in skb->data. 57 */ 58 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 59 RX_FLAG_RADIOTAP_LSIG | 60 RX_FLAG_RADIOTAP_HE_MU | 61 RX_FLAG_RADIOTAP_HE); 62 63 hdr = (void *)skb->data; 64 fc = hdr->frame_control; 65 66 /* 67 * Remove the HT-Control field (if present) on management 68 * frames after we've sent the frame to monitoring. We 69 * (currently) don't need it, and don't properly parse 70 * frames with it present, due to the assumption of a 71 * fixed management header length. 72 */ 73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 74 return skb; 75 76 hdrlen = ieee80211_hdrlen(fc); 77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 78 79 if (!pskb_may_pull(skb, hdrlen)) { 80 dev_kfree_skb(skb); 81 return NULL; 82 } 83 84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 85 hdrlen - IEEE80211_HT_CTL_LEN); 86 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 87 88 return skb; 89 } 90 91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 92 unsigned int rtap_space) 93 { 94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 95 struct ieee80211_hdr *hdr; 96 97 hdr = (void *)(skb->data + rtap_space); 98 99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 100 RX_FLAG_FAILED_PLCP_CRC | 101 RX_FLAG_ONLY_MONITOR | 102 RX_FLAG_NO_PSDU)) 103 return true; 104 105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 106 return true; 107 108 if (ieee80211_is_ctl(hdr->frame_control) && 109 !ieee80211_is_pspoll(hdr->frame_control) && 110 !ieee80211_is_back_req(hdr->frame_control)) 111 return true; 112 113 return false; 114 } 115 116 static int 117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 118 struct ieee80211_rx_status *status, 119 struct sk_buff *skb) 120 { 121 int len; 122 123 /* always present fields */ 124 len = sizeof(struct ieee80211_radiotap_header) + 8; 125 126 /* allocate extra bitmaps */ 127 if (status->chains) 128 len += 4 * hweight8(status->chains); 129 130 if (ieee80211_have_rx_timestamp(status)) { 131 len = ALIGN(len, 8); 132 len += 8; 133 } 134 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 135 len += 1; 136 137 /* antenna field, if we don't have per-chain info */ 138 if (!status->chains) 139 len += 1; 140 141 /* padding for RX_FLAGS if necessary */ 142 len = ALIGN(len, 2); 143 144 if (status->encoding == RX_ENC_HT) /* HT info */ 145 len += 3; 146 147 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 148 len = ALIGN(len, 4); 149 len += 8; 150 } 151 152 if (status->encoding == RX_ENC_VHT) { 153 len = ALIGN(len, 2); 154 len += 12; 155 } 156 157 if (local->hw.radiotap_timestamp.units_pos >= 0) { 158 len = ALIGN(len, 8); 159 len += 12; 160 } 161 162 if (status->encoding == RX_ENC_HE && 163 status->flag & RX_FLAG_RADIOTAP_HE) { 164 len = ALIGN(len, 2); 165 len += 12; 166 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 167 } 168 169 if (status->encoding == RX_ENC_HE && 170 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 171 len = ALIGN(len, 2); 172 len += 12; 173 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 174 } 175 176 if (status->flag & RX_FLAG_NO_PSDU) 177 len += 1; 178 179 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 180 len = ALIGN(len, 2); 181 len += 4; 182 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 183 } 184 185 if (status->chains) { 186 /* antenna and antenna signal fields */ 187 len += 2 * hweight8(status->chains); 188 } 189 190 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 191 int tlv_offset = 0; 192 193 /* 194 * The position to look at depends on the existence (or non- 195 * existence) of other elements, so take that into account... 196 */ 197 if (status->flag & RX_FLAG_RADIOTAP_HE) 198 tlv_offset += 199 sizeof(struct ieee80211_radiotap_he); 200 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 201 tlv_offset += 202 sizeof(struct ieee80211_radiotap_he_mu); 203 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 204 tlv_offset += 205 sizeof(struct ieee80211_radiotap_lsig); 206 207 /* ensure 4 byte alignment for TLV */ 208 len = ALIGN(len, 4); 209 210 /* TLVs until the mac header */ 211 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 u32 tlvs_len = 0; 308 int mpdulen, chain; 309 unsigned long chains = status->chains; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 331 /* data is pointer at tlv all other info was pulled off */ 332 tlvs_len = skb_mac_header(skb) - skb->data; 333 } 334 335 mpdulen = skb->len; 336 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 337 mpdulen += FCS_LEN; 338 339 rthdr = skb_push(skb, rtap_len - tlvs_len); 340 memset(rthdr, 0, rtap_len - tlvs_len); 341 it_present = &rthdr->it_present; 342 343 /* radiotap header, set always present flags */ 344 rthdr->it_len = cpu_to_le16(rtap_len); 345 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 346 BIT(IEEE80211_RADIOTAP_CHANNEL) | 347 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 348 349 if (!status->chains) 350 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 351 352 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 353 it_present_val |= 354 BIT(IEEE80211_RADIOTAP_EXT) | 355 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 356 put_unaligned_le32(it_present_val, it_present); 357 it_present++; 358 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 359 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 360 } 361 362 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 363 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 364 365 put_unaligned_le32(it_present_val, it_present); 366 367 /* This references through an offset into it_optional[] rather 368 * than via it_present otherwise later uses of pos will cause 369 * the compiler to think we have walked past the end of the 370 * struct member. 371 */ 372 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 373 374 /* the order of the following fields is important */ 375 376 /* IEEE80211_RADIOTAP_TSFT */ 377 if (ieee80211_have_rx_timestamp(status)) { 378 /* padding */ 379 while ((pos - (u8 *)rthdr) & 7) 380 *pos++ = 0; 381 put_unaligned_le64( 382 ieee80211_calculate_rx_timestamp(local, status, 383 mpdulen, 0), 384 pos); 385 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 386 pos += 8; 387 } 388 389 /* IEEE80211_RADIOTAP_FLAGS */ 390 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 391 *pos |= IEEE80211_RADIOTAP_F_FCS; 392 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 393 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 394 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 395 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 396 pos++; 397 398 /* IEEE80211_RADIOTAP_RATE */ 399 if (!rate || status->encoding != RX_ENC_LEGACY) { 400 /* 401 * Without rate information don't add it. If we have, 402 * MCS information is a separate field in radiotap, 403 * added below. The byte here is needed as padding 404 * for the channel though, so initialise it to 0. 405 */ 406 *pos = 0; 407 } else { 408 int shift = 0; 409 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 410 if (status->bw == RATE_INFO_BW_10) 411 shift = 1; 412 else if (status->bw == RATE_INFO_BW_5) 413 shift = 2; 414 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 415 } 416 pos++; 417 418 /* IEEE80211_RADIOTAP_CHANNEL */ 419 /* TODO: frequency offset in KHz */ 420 put_unaligned_le16(status->freq, pos); 421 pos += 2; 422 if (status->bw == RATE_INFO_BW_10) 423 channel_flags |= IEEE80211_CHAN_HALF; 424 else if (status->bw == RATE_INFO_BW_5) 425 channel_flags |= IEEE80211_CHAN_QUARTER; 426 427 if (status->band == NL80211_BAND_5GHZ || 428 status->band == NL80211_BAND_6GHZ) 429 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 430 else if (status->encoding != RX_ENC_LEGACY) 431 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 432 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 433 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 434 else if (rate) 435 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 436 else 437 channel_flags |= IEEE80211_CHAN_2GHZ; 438 put_unaligned_le16(channel_flags, pos); 439 pos += 2; 440 441 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 442 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 443 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 444 *pos = status->signal; 445 rthdr->it_present |= 446 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 447 pos++; 448 } 449 450 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 451 452 if (!status->chains) { 453 /* IEEE80211_RADIOTAP_ANTENNA */ 454 *pos = status->antenna; 455 pos++; 456 } 457 458 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 459 460 /* IEEE80211_RADIOTAP_RX_FLAGS */ 461 /* ensure 2 byte alignment for the 2 byte field as required */ 462 if ((pos - (u8 *)rthdr) & 1) 463 *pos++ = 0; 464 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 465 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 466 put_unaligned_le16(rx_flags, pos); 467 pos += 2; 468 469 if (status->encoding == RX_ENC_HT) { 470 unsigned int stbc; 471 472 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 473 *pos = local->hw.radiotap_mcs_details; 474 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 475 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 476 if (status->enc_flags & RX_ENC_FLAG_LDPC) 477 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 478 pos++; 479 *pos = 0; 480 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 481 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 482 if (status->bw == RATE_INFO_BW_40) 483 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 484 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 485 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 486 if (status->enc_flags & RX_ENC_FLAG_LDPC) 487 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 488 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 489 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 490 pos++; 491 *pos++ = status->rate_idx; 492 } 493 494 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 495 u16 flags = 0; 496 497 /* ensure 4 byte alignment */ 498 while ((pos - (u8 *)rthdr) & 3) 499 pos++; 500 rthdr->it_present |= 501 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 502 put_unaligned_le32(status->ampdu_reference, pos); 503 pos += 4; 504 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 505 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 506 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 507 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 509 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 510 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 513 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 514 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 515 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 516 put_unaligned_le16(flags, pos); 517 pos += 2; 518 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 519 *pos++ = status->ampdu_delimiter_crc; 520 else 521 *pos++ = 0; 522 *pos++ = 0; 523 } 524 525 if (status->encoding == RX_ENC_VHT) { 526 u16 known = local->hw.radiotap_vht_details; 527 528 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 529 put_unaligned_le16(known, pos); 530 pos += 2; 531 /* flags */ 532 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 534 /* in VHT, STBC is binary */ 535 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 536 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 537 if (status->enc_flags & RX_ENC_FLAG_BF) 538 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 539 pos++; 540 /* bandwidth */ 541 switch (status->bw) { 542 case RATE_INFO_BW_80: 543 *pos++ = 4; 544 break; 545 case RATE_INFO_BW_160: 546 *pos++ = 11; 547 break; 548 case RATE_INFO_BW_40: 549 *pos++ = 1; 550 break; 551 default: 552 *pos++ = 0; 553 } 554 /* MCS/NSS */ 555 *pos = (status->rate_idx << 4) | status->nss; 556 pos += 4; 557 /* coding field */ 558 if (status->enc_flags & RX_ENC_FLAG_LDPC) 559 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 560 pos++; 561 /* group ID */ 562 pos++; 563 /* partial_aid */ 564 pos += 2; 565 } 566 567 if (local->hw.radiotap_timestamp.units_pos >= 0) { 568 u16 accuracy = 0; 569 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 570 571 rthdr->it_present |= 572 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 573 574 /* ensure 8 byte alignment */ 575 while ((pos - (u8 *)rthdr) & 7) 576 pos++; 577 578 put_unaligned_le64(status->device_timestamp, pos); 579 pos += sizeof(u64); 580 581 if (local->hw.radiotap_timestamp.accuracy >= 0) { 582 accuracy = local->hw.radiotap_timestamp.accuracy; 583 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 584 } 585 put_unaligned_le16(accuracy, pos); 586 pos += sizeof(u16); 587 588 *pos++ = local->hw.radiotap_timestamp.units_pos; 589 *pos++ = flags; 590 } 591 592 if (status->encoding == RX_ENC_HE && 593 status->flag & RX_FLAG_RADIOTAP_HE) { 594 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 595 596 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 597 he.data6 |= HE_PREP(DATA6_NSTS, 598 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 599 status->enc_flags)); 600 he.data3 |= HE_PREP(DATA3_STBC, 1); 601 } else { 602 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 603 } 604 605 #define CHECK_GI(s) \ 606 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 607 (int)NL80211_RATE_INFO_HE_GI_##s) 608 609 CHECK_GI(0_8); 610 CHECK_GI(1_6); 611 CHECK_GI(3_2); 612 613 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 614 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 615 he.data3 |= HE_PREP(DATA3_CODING, 616 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 617 618 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 619 620 switch (status->bw) { 621 case RATE_INFO_BW_20: 622 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 623 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 624 break; 625 case RATE_INFO_BW_40: 626 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 627 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 628 break; 629 case RATE_INFO_BW_80: 630 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 631 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 632 break; 633 case RATE_INFO_BW_160: 634 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 635 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 636 break; 637 case RATE_INFO_BW_HE_RU: 638 #define CHECK_RU_ALLOC(s) \ 639 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 640 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 641 642 CHECK_RU_ALLOC(26); 643 CHECK_RU_ALLOC(52); 644 CHECK_RU_ALLOC(106); 645 CHECK_RU_ALLOC(242); 646 CHECK_RU_ALLOC(484); 647 CHECK_RU_ALLOC(996); 648 CHECK_RU_ALLOC(2x996); 649 650 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 651 status->he_ru + 4); 652 break; 653 default: 654 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 655 } 656 657 /* ensure 2 byte alignment */ 658 while ((pos - (u8 *)rthdr) & 1) 659 pos++; 660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 661 memcpy(pos, &he, sizeof(he)); 662 pos += sizeof(he); 663 } 664 665 if (status->encoding == RX_ENC_HE && 666 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 667 /* ensure 2 byte alignment */ 668 while ((pos - (u8 *)rthdr) & 1) 669 pos++; 670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 671 memcpy(pos, &he_mu, sizeof(he_mu)); 672 pos += sizeof(he_mu); 673 } 674 675 if (status->flag & RX_FLAG_NO_PSDU) { 676 rthdr->it_present |= 677 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 678 *pos++ = status->zero_length_psdu_type; 679 } 680 681 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 682 /* ensure 2 byte alignment */ 683 while ((pos - (u8 *)rthdr) & 1) 684 pos++; 685 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 686 memcpy(pos, &lsig, sizeof(lsig)); 687 pos += sizeof(lsig); 688 } 689 690 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 691 *pos++ = status->chain_signal[chain]; 692 *pos++ = chain; 693 } 694 } 695 696 static struct sk_buff * 697 ieee80211_make_monitor_skb(struct ieee80211_local *local, 698 struct sk_buff **origskb, 699 struct ieee80211_rate *rate, 700 int rtap_space, bool use_origskb) 701 { 702 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 703 int rt_hdrlen, needed_headroom; 704 struct sk_buff *skb; 705 706 /* room for the radiotap header based on driver features */ 707 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 708 needed_headroom = rt_hdrlen - rtap_space; 709 710 if (use_origskb) { 711 /* only need to expand headroom if necessary */ 712 skb = *origskb; 713 *origskb = NULL; 714 715 /* 716 * This shouldn't trigger often because most devices have an 717 * RX header they pull before we get here, and that should 718 * be big enough for our radiotap information. We should 719 * probably export the length to drivers so that we can have 720 * them allocate enough headroom to start with. 721 */ 722 if (skb_headroom(skb) < needed_headroom && 723 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 724 dev_kfree_skb(skb); 725 return NULL; 726 } 727 } else { 728 /* 729 * Need to make a copy and possibly remove radiotap header 730 * and FCS from the original. 731 */ 732 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 733 0, GFP_ATOMIC); 734 735 if (!skb) 736 return NULL; 737 } 738 739 /* prepend radiotap information */ 740 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 741 742 skb_reset_mac_header(skb); 743 skb->ip_summed = CHECKSUM_UNNECESSARY; 744 skb->pkt_type = PACKET_OTHERHOST; 745 skb->protocol = htons(ETH_P_802_2); 746 747 return skb; 748 } 749 750 /* 751 * This function copies a received frame to all monitor interfaces and 752 * returns a cleaned-up SKB that no longer includes the FCS nor the 753 * radiotap header the driver might have added. 754 */ 755 static struct sk_buff * 756 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 757 struct ieee80211_rate *rate) 758 { 759 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 760 struct ieee80211_sub_if_data *sdata; 761 struct sk_buff *monskb = NULL; 762 int present_fcs_len = 0; 763 unsigned int rtap_space = 0; 764 struct ieee80211_sub_if_data *monitor_sdata = 765 rcu_dereference(local->monitor_sdata); 766 bool only_monitor = false; 767 unsigned int min_head_len; 768 769 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 770 !skb_mac_header_was_set(origskb))) { 771 /* with this skb no way to know where frame payload starts */ 772 dev_kfree_skb(origskb); 773 return NULL; 774 } 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE) 777 rtap_space += sizeof(struct ieee80211_radiotap_he); 778 779 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 780 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 781 782 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 783 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 784 785 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 786 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 787 788 min_head_len = rtap_space; 789 790 /* 791 * First, we may need to make a copy of the skb because 792 * (1) we need to modify it for radiotap (if not present), and 793 * (2) the other RX handlers will modify the skb we got. 794 * 795 * We don't need to, of course, if we aren't going to return 796 * the SKB because it has a bad FCS/PLCP checksum. 797 */ 798 799 if (!(status->flag & RX_FLAG_NO_PSDU)) { 800 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 801 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 802 /* driver bug */ 803 WARN_ON(1); 804 dev_kfree_skb(origskb); 805 return NULL; 806 } 807 present_fcs_len = FCS_LEN; 808 } 809 810 /* also consider the hdr->frame_control */ 811 min_head_len += 2; 812 } 813 814 /* ensure that the expected data elements are in skb head */ 815 if (!pskb_may_pull(origskb, min_head_len)) { 816 dev_kfree_skb(origskb); 817 return NULL; 818 } 819 820 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 821 822 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 823 if (only_monitor) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 return ieee80211_clean_skb(origskb, present_fcs_len, 829 rtap_space); 830 } 831 832 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 833 834 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 835 bool last_monitor = list_is_last(&sdata->u.mntr.list, 836 &local->mon_list); 837 838 if (!monskb) 839 monskb = ieee80211_make_monitor_skb(local, &origskb, 840 rate, rtap_space, 841 only_monitor && 842 last_monitor); 843 844 if (monskb) { 845 struct sk_buff *skb; 846 847 if (last_monitor) { 848 skb = monskb; 849 monskb = NULL; 850 } else { 851 skb = skb_clone(monskb, GFP_ATOMIC); 852 } 853 854 if (skb) { 855 skb->dev = sdata->dev; 856 dev_sw_netstats_rx_add(skb->dev, skb->len); 857 netif_receive_skb(skb); 858 } 859 } 860 861 if (last_monitor) 862 break; 863 } 864 865 /* this happens if last_monitor was erroneously false */ 866 dev_kfree_skb(monskb); 867 868 /* ditto */ 869 if (!origskb) 870 return NULL; 871 872 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 873 } 874 875 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 876 { 877 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 879 int tid, seqno_idx, security_idx; 880 881 /* does the frame have a qos control field? */ 882 if (ieee80211_is_data_qos(hdr->frame_control)) { 883 u8 *qc = ieee80211_get_qos_ctl(hdr); 884 /* frame has qos control */ 885 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 886 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 887 status->rx_flags |= IEEE80211_RX_AMSDU; 888 889 seqno_idx = tid; 890 security_idx = tid; 891 } else { 892 /* 893 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 894 * 895 * Sequence numbers for management frames, QoS data 896 * frames with a broadcast/multicast address in the 897 * Address 1 field, and all non-QoS data frames sent 898 * by QoS STAs are assigned using an additional single 899 * modulo-4096 counter, [...] 900 * 901 * We also use that counter for non-QoS STAs. 902 */ 903 seqno_idx = IEEE80211_NUM_TIDS; 904 security_idx = 0; 905 if (ieee80211_is_mgmt(hdr->frame_control)) 906 security_idx = IEEE80211_NUM_TIDS; 907 tid = 0; 908 } 909 910 rx->seqno_idx = seqno_idx; 911 rx->security_idx = security_idx; 912 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 913 * For now, set skb->priority to 0 for other cases. */ 914 rx->skb->priority = (tid > 7) ? 0 : tid; 915 } 916 917 /** 918 * DOC: Packet alignment 919 * 920 * Drivers always need to pass packets that are aligned to two-byte boundaries 921 * to the stack. 922 * 923 * Additionally, should, if possible, align the payload data in a way that 924 * guarantees that the contained IP header is aligned to a four-byte 925 * boundary. In the case of regular frames, this simply means aligning the 926 * payload to a four-byte boundary (because either the IP header is directly 927 * contained, or IV/RFC1042 headers that have a length divisible by four are 928 * in front of it). If the payload data is not properly aligned and the 929 * architecture doesn't support efficient unaligned operations, mac80211 930 * will align the data. 931 * 932 * With A-MSDU frames, however, the payload data address must yield two modulo 933 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 934 * push the IP header further back to a multiple of four again. Thankfully, the 935 * specs were sane enough this time around to require padding each A-MSDU 936 * subframe to a length that is a multiple of four. 937 * 938 * Padding like Atheros hardware adds which is between the 802.11 header and 939 * the payload is not supported, the driver is required to move the 802.11 940 * header to be directly in front of the payload in that case. 941 */ 942 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 943 { 944 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 945 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 946 #endif 947 } 948 949 950 /* rx handlers */ 951 952 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 953 { 954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 955 956 if (is_multicast_ether_addr(hdr->addr1)) 957 return 0; 958 959 return ieee80211_is_robust_mgmt_frame(skb); 960 } 961 962 963 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 964 { 965 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 966 967 if (!is_multicast_ether_addr(hdr->addr1)) 968 return 0; 969 970 return ieee80211_is_robust_mgmt_frame(skb); 971 } 972 973 974 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 975 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 976 { 977 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 978 struct ieee80211_mmie *mmie; 979 struct ieee80211_mmie_16 *mmie16; 980 981 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 982 return -1; 983 984 if (!ieee80211_is_robust_mgmt_frame(skb) && 985 !ieee80211_is_beacon(hdr->frame_control)) 986 return -1; /* not a robust management frame */ 987 988 mmie = (struct ieee80211_mmie *) 989 (skb->data + skb->len - sizeof(*mmie)); 990 if (mmie->element_id == WLAN_EID_MMIE && 991 mmie->length == sizeof(*mmie) - 2) 992 return le16_to_cpu(mmie->key_id); 993 994 mmie16 = (struct ieee80211_mmie_16 *) 995 (skb->data + skb->len - sizeof(*mmie16)); 996 if (skb->len >= 24 + sizeof(*mmie16) && 997 mmie16->element_id == WLAN_EID_MMIE && 998 mmie16->length == sizeof(*mmie16) - 2) 999 return le16_to_cpu(mmie16->key_id); 1000 1001 return -1; 1002 } 1003 1004 static int ieee80211_get_keyid(struct sk_buff *skb) 1005 { 1006 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1007 __le16 fc = hdr->frame_control; 1008 int hdrlen = ieee80211_hdrlen(fc); 1009 u8 keyid; 1010 1011 /* WEP, TKIP, CCMP and GCMP */ 1012 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1013 return -EINVAL; 1014 1015 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1016 1017 keyid >>= 6; 1018 1019 return keyid; 1020 } 1021 1022 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1023 { 1024 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1025 char *dev_addr = rx->sdata->vif.addr; 1026 1027 if (ieee80211_is_data(hdr->frame_control)) { 1028 if (is_multicast_ether_addr(hdr->addr1)) { 1029 if (ieee80211_has_tods(hdr->frame_control) || 1030 !ieee80211_has_fromds(hdr->frame_control)) 1031 return RX_DROP_MONITOR; 1032 if (ether_addr_equal(hdr->addr3, dev_addr)) 1033 return RX_DROP_MONITOR; 1034 } else { 1035 if (!ieee80211_has_a4(hdr->frame_control)) 1036 return RX_DROP_MONITOR; 1037 if (ether_addr_equal(hdr->addr4, dev_addr)) 1038 return RX_DROP_MONITOR; 1039 } 1040 } 1041 1042 /* If there is not an established peer link and this is not a peer link 1043 * establisment frame, beacon or probe, drop the frame. 1044 */ 1045 1046 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1047 struct ieee80211_mgmt *mgmt; 1048 1049 if (!ieee80211_is_mgmt(hdr->frame_control)) 1050 return RX_DROP_MONITOR; 1051 1052 if (ieee80211_is_action(hdr->frame_control)) { 1053 u8 category; 1054 1055 /* make sure category field is present */ 1056 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1057 return RX_DROP_MONITOR; 1058 1059 mgmt = (struct ieee80211_mgmt *)hdr; 1060 category = mgmt->u.action.category; 1061 if (category != WLAN_CATEGORY_MESH_ACTION && 1062 category != WLAN_CATEGORY_SELF_PROTECTED) 1063 return RX_DROP_MONITOR; 1064 return RX_CONTINUE; 1065 } 1066 1067 if (ieee80211_is_probe_req(hdr->frame_control) || 1068 ieee80211_is_probe_resp(hdr->frame_control) || 1069 ieee80211_is_beacon(hdr->frame_control) || 1070 ieee80211_is_auth(hdr->frame_control)) 1071 return RX_CONTINUE; 1072 1073 return RX_DROP_MONITOR; 1074 } 1075 1076 return RX_CONTINUE; 1077 } 1078 1079 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1080 int index) 1081 { 1082 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1083 struct sk_buff *tail = skb_peek_tail(frames); 1084 struct ieee80211_rx_status *status; 1085 1086 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1087 return true; 1088 1089 if (!tail) 1090 return false; 1091 1092 status = IEEE80211_SKB_RXCB(tail); 1093 if (status->flag & RX_FLAG_AMSDU_MORE) 1094 return false; 1095 1096 return true; 1097 } 1098 1099 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1100 struct tid_ampdu_rx *tid_agg_rx, 1101 int index, 1102 struct sk_buff_head *frames) 1103 { 1104 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1105 struct sk_buff *skb; 1106 struct ieee80211_rx_status *status; 1107 1108 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1109 1110 if (skb_queue_empty(skb_list)) 1111 goto no_frame; 1112 1113 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1114 __skb_queue_purge(skb_list); 1115 goto no_frame; 1116 } 1117 1118 /* release frames from the reorder ring buffer */ 1119 tid_agg_rx->stored_mpdu_num--; 1120 while ((skb = __skb_dequeue(skb_list))) { 1121 status = IEEE80211_SKB_RXCB(skb); 1122 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1123 __skb_queue_tail(frames, skb); 1124 } 1125 1126 no_frame: 1127 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1128 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1129 } 1130 1131 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1132 struct tid_ampdu_rx *tid_agg_rx, 1133 u16 head_seq_num, 1134 struct sk_buff_head *frames) 1135 { 1136 int index; 1137 1138 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1139 1140 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1141 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1142 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1143 frames); 1144 } 1145 } 1146 1147 /* 1148 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1149 * the skb was added to the buffer longer than this time ago, the earlier 1150 * frames that have not yet been received are assumed to be lost and the skb 1151 * can be released for processing. This may also release other skb's from the 1152 * reorder buffer if there are no additional gaps between the frames. 1153 * 1154 * Callers must hold tid_agg_rx->reorder_lock. 1155 */ 1156 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1157 1158 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1159 struct tid_ampdu_rx *tid_agg_rx, 1160 struct sk_buff_head *frames) 1161 { 1162 int index, i, j; 1163 1164 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1165 1166 /* release the buffer until next missing frame */ 1167 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1168 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1169 tid_agg_rx->stored_mpdu_num) { 1170 /* 1171 * No buffers ready to be released, but check whether any 1172 * frames in the reorder buffer have timed out. 1173 */ 1174 int skipped = 1; 1175 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1176 j = (j + 1) % tid_agg_rx->buf_size) { 1177 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1178 skipped++; 1179 continue; 1180 } 1181 if (skipped && 1182 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1183 HT_RX_REORDER_BUF_TIMEOUT)) 1184 goto set_release_timer; 1185 1186 /* don't leave incomplete A-MSDUs around */ 1187 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1188 i = (i + 1) % tid_agg_rx->buf_size) 1189 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1190 1191 ht_dbg_ratelimited(sdata, 1192 "release an RX reorder frame due to timeout on earlier frames\n"); 1193 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1194 frames); 1195 1196 /* 1197 * Increment the head seq# also for the skipped slots. 1198 */ 1199 tid_agg_rx->head_seq_num = 1200 (tid_agg_rx->head_seq_num + 1201 skipped) & IEEE80211_SN_MASK; 1202 skipped = 0; 1203 } 1204 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1206 frames); 1207 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1208 } 1209 1210 if (tid_agg_rx->stored_mpdu_num) { 1211 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1212 1213 for (; j != (index - 1) % tid_agg_rx->buf_size; 1214 j = (j + 1) % tid_agg_rx->buf_size) { 1215 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1216 break; 1217 } 1218 1219 set_release_timer: 1220 1221 if (!tid_agg_rx->removed) 1222 mod_timer(&tid_agg_rx->reorder_timer, 1223 tid_agg_rx->reorder_time[j] + 1 + 1224 HT_RX_REORDER_BUF_TIMEOUT); 1225 } else { 1226 del_timer(&tid_agg_rx->reorder_timer); 1227 } 1228 } 1229 1230 /* 1231 * As this function belongs to the RX path it must be under 1232 * rcu_read_lock protection. It returns false if the frame 1233 * can be processed immediately, true if it was consumed. 1234 */ 1235 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1236 struct tid_ampdu_rx *tid_agg_rx, 1237 struct sk_buff *skb, 1238 struct sk_buff_head *frames) 1239 { 1240 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1241 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1242 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1243 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1244 u16 head_seq_num, buf_size; 1245 int index; 1246 bool ret = true; 1247 1248 spin_lock(&tid_agg_rx->reorder_lock); 1249 1250 /* 1251 * Offloaded BA sessions have no known starting sequence number so pick 1252 * one from first Rxed frame for this tid after BA was started. 1253 */ 1254 if (unlikely(tid_agg_rx->auto_seq)) { 1255 tid_agg_rx->auto_seq = false; 1256 tid_agg_rx->ssn = mpdu_seq_num; 1257 tid_agg_rx->head_seq_num = mpdu_seq_num; 1258 } 1259 1260 buf_size = tid_agg_rx->buf_size; 1261 head_seq_num = tid_agg_rx->head_seq_num; 1262 1263 /* 1264 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1265 * be reordered. 1266 */ 1267 if (unlikely(!tid_agg_rx->started)) { 1268 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1269 ret = false; 1270 goto out; 1271 } 1272 tid_agg_rx->started = true; 1273 } 1274 1275 /* frame with out of date sequence number */ 1276 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1277 dev_kfree_skb(skb); 1278 goto out; 1279 } 1280 1281 /* 1282 * If frame the sequence number exceeds our buffering window 1283 * size release some previous frames to make room for this one. 1284 */ 1285 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1286 head_seq_num = ieee80211_sn_inc( 1287 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1288 /* release stored frames up to new head to stack */ 1289 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1290 head_seq_num, frames); 1291 } 1292 1293 /* Now the new frame is always in the range of the reordering buffer */ 1294 1295 index = mpdu_seq_num % tid_agg_rx->buf_size; 1296 1297 /* check if we already stored this frame */ 1298 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1299 dev_kfree_skb(skb); 1300 goto out; 1301 } 1302 1303 /* 1304 * If the current MPDU is in the right order and nothing else 1305 * is stored we can process it directly, no need to buffer it. 1306 * If it is first but there's something stored, we may be able 1307 * to release frames after this one. 1308 */ 1309 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1310 tid_agg_rx->stored_mpdu_num == 0) { 1311 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1312 tid_agg_rx->head_seq_num = 1313 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1314 ret = false; 1315 goto out; 1316 } 1317 1318 /* put the frame in the reordering buffer */ 1319 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1320 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1321 tid_agg_rx->reorder_time[index] = jiffies; 1322 tid_agg_rx->stored_mpdu_num++; 1323 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1324 } 1325 1326 out: 1327 spin_unlock(&tid_agg_rx->reorder_lock); 1328 return ret; 1329 } 1330 1331 /* 1332 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1333 * true if the MPDU was buffered, false if it should be processed. 1334 */ 1335 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1336 struct sk_buff_head *frames) 1337 { 1338 struct sk_buff *skb = rx->skb; 1339 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1340 struct sta_info *sta = rx->sta; 1341 struct tid_ampdu_rx *tid_agg_rx; 1342 u16 sc; 1343 u8 tid, ack_policy; 1344 1345 if (!ieee80211_is_data_qos(hdr->frame_control) || 1346 is_multicast_ether_addr(hdr->addr1)) 1347 goto dont_reorder; 1348 1349 /* 1350 * filter the QoS data rx stream according to 1351 * STA/TID and check if this STA/TID is on aggregation 1352 */ 1353 1354 if (!sta) 1355 goto dont_reorder; 1356 1357 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1358 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1359 tid = ieee80211_get_tid(hdr); 1360 1361 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1362 if (!tid_agg_rx) { 1363 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1364 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1365 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1366 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1367 WLAN_BACK_RECIPIENT, 1368 WLAN_REASON_QSTA_REQUIRE_SETUP); 1369 goto dont_reorder; 1370 } 1371 1372 /* qos null data frames are excluded */ 1373 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1374 goto dont_reorder; 1375 1376 /* not part of a BA session */ 1377 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1378 goto dont_reorder; 1379 1380 /* new, potentially un-ordered, ampdu frame - process it */ 1381 1382 /* reset session timer */ 1383 if (tid_agg_rx->timeout) 1384 tid_agg_rx->last_rx = jiffies; 1385 1386 /* if this mpdu is fragmented - terminate rx aggregation session */ 1387 sc = le16_to_cpu(hdr->seq_ctrl); 1388 if (sc & IEEE80211_SCTL_FRAG) { 1389 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1390 return; 1391 } 1392 1393 /* 1394 * No locking needed -- we will only ever process one 1395 * RX packet at a time, and thus own tid_agg_rx. All 1396 * other code manipulating it needs to (and does) make 1397 * sure that we cannot get to it any more before doing 1398 * anything with it. 1399 */ 1400 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1401 frames)) 1402 return; 1403 1404 dont_reorder: 1405 __skb_queue_tail(frames, skb); 1406 } 1407 1408 static ieee80211_rx_result debug_noinline 1409 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1410 { 1411 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1413 1414 if (status->flag & RX_FLAG_DUP_VALIDATED) 1415 return RX_CONTINUE; 1416 1417 /* 1418 * Drop duplicate 802.11 retransmissions 1419 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1420 */ 1421 1422 if (rx->skb->len < 24) 1423 return RX_CONTINUE; 1424 1425 if (ieee80211_is_ctl(hdr->frame_control) || 1426 ieee80211_is_any_nullfunc(hdr->frame_control) || 1427 is_multicast_ether_addr(hdr->addr1)) 1428 return RX_CONTINUE; 1429 1430 if (!rx->sta) 1431 return RX_CONTINUE; 1432 1433 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1434 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1435 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1436 rx->link_sta->rx_stats.num_duplicates++; 1437 return RX_DROP_UNUSABLE; 1438 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1439 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1440 } 1441 1442 return RX_CONTINUE; 1443 } 1444 1445 static ieee80211_rx_result debug_noinline 1446 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1447 { 1448 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1449 1450 /* Drop disallowed frame classes based on STA auth/assoc state; 1451 * IEEE 802.11, Chap 5.5. 1452 * 1453 * mac80211 filters only based on association state, i.e. it drops 1454 * Class 3 frames from not associated stations. hostapd sends 1455 * deauth/disassoc frames when needed. In addition, hostapd is 1456 * responsible for filtering on both auth and assoc states. 1457 */ 1458 1459 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1460 return ieee80211_rx_mesh_check(rx); 1461 1462 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1463 ieee80211_is_pspoll(hdr->frame_control)) && 1464 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1465 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1466 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1467 /* 1468 * accept port control frames from the AP even when it's not 1469 * yet marked ASSOC to prevent a race where we don't set the 1470 * assoc bit quickly enough before it sends the first frame 1471 */ 1472 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1473 ieee80211_is_data_present(hdr->frame_control)) { 1474 unsigned int hdrlen; 1475 __be16 ethertype; 1476 1477 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1478 1479 if (rx->skb->len < hdrlen + 8) 1480 return RX_DROP_MONITOR; 1481 1482 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1483 if (ethertype == rx->sdata->control_port_protocol) 1484 return RX_CONTINUE; 1485 } 1486 1487 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1488 cfg80211_rx_spurious_frame(rx->sdata->dev, 1489 hdr->addr2, 1490 GFP_ATOMIC)) 1491 return RX_DROP_UNUSABLE; 1492 1493 return RX_DROP_MONITOR; 1494 } 1495 1496 return RX_CONTINUE; 1497 } 1498 1499 1500 static ieee80211_rx_result debug_noinline 1501 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1502 { 1503 struct ieee80211_local *local; 1504 struct ieee80211_hdr *hdr; 1505 struct sk_buff *skb; 1506 1507 local = rx->local; 1508 skb = rx->skb; 1509 hdr = (struct ieee80211_hdr *) skb->data; 1510 1511 if (!local->pspolling) 1512 return RX_CONTINUE; 1513 1514 if (!ieee80211_has_fromds(hdr->frame_control)) 1515 /* this is not from AP */ 1516 return RX_CONTINUE; 1517 1518 if (!ieee80211_is_data(hdr->frame_control)) 1519 return RX_CONTINUE; 1520 1521 if (!ieee80211_has_moredata(hdr->frame_control)) { 1522 /* AP has no more frames buffered for us */ 1523 local->pspolling = false; 1524 return RX_CONTINUE; 1525 } 1526 1527 /* more data bit is set, let's request a new frame from the AP */ 1528 ieee80211_send_pspoll(local, rx->sdata); 1529 1530 return RX_CONTINUE; 1531 } 1532 1533 static void sta_ps_start(struct sta_info *sta) 1534 { 1535 struct ieee80211_sub_if_data *sdata = sta->sdata; 1536 struct ieee80211_local *local = sdata->local; 1537 struct ps_data *ps; 1538 int tid; 1539 1540 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1541 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1542 ps = &sdata->bss->ps; 1543 else 1544 return; 1545 1546 atomic_inc(&ps->num_sta_ps); 1547 set_sta_flag(sta, WLAN_STA_PS_STA); 1548 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1549 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1550 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1551 sta->sta.addr, sta->sta.aid); 1552 1553 ieee80211_clear_fast_xmit(sta); 1554 1555 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1556 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1557 struct txq_info *txqi = to_txq_info(txq); 1558 1559 spin_lock(&local->active_txq_lock[txq->ac]); 1560 if (!list_empty(&txqi->schedule_order)) 1561 list_del_init(&txqi->schedule_order); 1562 spin_unlock(&local->active_txq_lock[txq->ac]); 1563 1564 if (txq_has_queue(txq)) 1565 set_bit(tid, &sta->txq_buffered_tids); 1566 else 1567 clear_bit(tid, &sta->txq_buffered_tids); 1568 } 1569 } 1570 1571 static void sta_ps_end(struct sta_info *sta) 1572 { 1573 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1574 sta->sta.addr, sta->sta.aid); 1575 1576 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1577 /* 1578 * Clear the flag only if the other one is still set 1579 * so that the TX path won't start TX'ing new frames 1580 * directly ... In the case that the driver flag isn't 1581 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1582 */ 1583 clear_sta_flag(sta, WLAN_STA_PS_STA); 1584 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1585 sta->sta.addr, sta->sta.aid); 1586 return; 1587 } 1588 1589 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1590 clear_sta_flag(sta, WLAN_STA_PS_STA); 1591 ieee80211_sta_ps_deliver_wakeup(sta); 1592 } 1593 1594 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1595 { 1596 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1597 bool in_ps; 1598 1599 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1600 1601 /* Don't let the same PS state be set twice */ 1602 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1603 if ((start && in_ps) || (!start && !in_ps)) 1604 return -EINVAL; 1605 1606 if (start) 1607 sta_ps_start(sta); 1608 else 1609 sta_ps_end(sta); 1610 1611 return 0; 1612 } 1613 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1614 1615 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1616 { 1617 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1618 1619 if (test_sta_flag(sta, WLAN_STA_SP)) 1620 return; 1621 1622 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1623 ieee80211_sta_ps_deliver_poll_response(sta); 1624 else 1625 set_sta_flag(sta, WLAN_STA_PSPOLL); 1626 } 1627 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1628 1629 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1630 { 1631 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1632 int ac = ieee80211_ac_from_tid(tid); 1633 1634 /* 1635 * If this AC is not trigger-enabled do nothing unless the 1636 * driver is calling us after it already checked. 1637 * 1638 * NB: This could/should check a separate bitmap of trigger- 1639 * enabled queues, but for now we only implement uAPSD w/o 1640 * TSPEC changes to the ACs, so they're always the same. 1641 */ 1642 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1643 tid != IEEE80211_NUM_TIDS) 1644 return; 1645 1646 /* if we are in a service period, do nothing */ 1647 if (test_sta_flag(sta, WLAN_STA_SP)) 1648 return; 1649 1650 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1651 ieee80211_sta_ps_deliver_uapsd(sta); 1652 else 1653 set_sta_flag(sta, WLAN_STA_UAPSD); 1654 } 1655 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1656 1657 static ieee80211_rx_result debug_noinline 1658 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1659 { 1660 struct ieee80211_sub_if_data *sdata = rx->sdata; 1661 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1662 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1663 1664 if (!rx->sta) 1665 return RX_CONTINUE; 1666 1667 if (sdata->vif.type != NL80211_IFTYPE_AP && 1668 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1669 return RX_CONTINUE; 1670 1671 /* 1672 * The device handles station powersave, so don't do anything about 1673 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1674 * it to mac80211 since they're handled.) 1675 */ 1676 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1677 return RX_CONTINUE; 1678 1679 /* 1680 * Don't do anything if the station isn't already asleep. In 1681 * the uAPSD case, the station will probably be marked asleep, 1682 * in the PS-Poll case the station must be confused ... 1683 */ 1684 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1685 return RX_CONTINUE; 1686 1687 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1688 ieee80211_sta_pspoll(&rx->sta->sta); 1689 1690 /* Free PS Poll skb here instead of returning RX_DROP that would 1691 * count as an dropped frame. */ 1692 dev_kfree_skb(rx->skb); 1693 1694 return RX_QUEUED; 1695 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1696 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1697 ieee80211_has_pm(hdr->frame_control) && 1698 (ieee80211_is_data_qos(hdr->frame_control) || 1699 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1700 u8 tid = ieee80211_get_tid(hdr); 1701 1702 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1703 } 1704 1705 return RX_CONTINUE; 1706 } 1707 1708 static ieee80211_rx_result debug_noinline 1709 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1710 { 1711 struct sta_info *sta = rx->sta; 1712 struct link_sta_info *link_sta = rx->link_sta; 1713 struct sk_buff *skb = rx->skb; 1714 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1715 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1716 int i; 1717 1718 if (!sta || !link_sta) 1719 return RX_CONTINUE; 1720 1721 /* 1722 * Update last_rx only for IBSS packets which are for the current 1723 * BSSID and for station already AUTHORIZED to avoid keeping the 1724 * current IBSS network alive in cases where other STAs start 1725 * using different BSSID. This will also give the station another 1726 * chance to restart the authentication/authorization in case 1727 * something went wrong the first time. 1728 */ 1729 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1730 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1731 NL80211_IFTYPE_ADHOC); 1732 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1733 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1734 link_sta->rx_stats.last_rx = jiffies; 1735 if (ieee80211_is_data_present(hdr->frame_control) && 1736 !is_multicast_ether_addr(hdr->addr1)) 1737 link_sta->rx_stats.last_rate = 1738 sta_stats_encode_rate(status); 1739 } 1740 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1741 link_sta->rx_stats.last_rx = jiffies; 1742 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1743 !is_multicast_ether_addr(hdr->addr1)) { 1744 /* 1745 * Mesh beacons will update last_rx when if they are found to 1746 * match the current local configuration when processed. 1747 */ 1748 link_sta->rx_stats.last_rx = jiffies; 1749 if (ieee80211_is_data_present(hdr->frame_control)) 1750 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1751 } 1752 1753 link_sta->rx_stats.fragments++; 1754 1755 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1756 link_sta->rx_stats.bytes += rx->skb->len; 1757 u64_stats_update_end(&link_sta->rx_stats.syncp); 1758 1759 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1760 link_sta->rx_stats.last_signal = status->signal; 1761 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1762 -status->signal); 1763 } 1764 1765 if (status->chains) { 1766 link_sta->rx_stats.chains = status->chains; 1767 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1768 int signal = status->chain_signal[i]; 1769 1770 if (!(status->chains & BIT(i))) 1771 continue; 1772 1773 link_sta->rx_stats.chain_signal_last[i] = signal; 1774 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1775 -signal); 1776 } 1777 } 1778 1779 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1780 return RX_CONTINUE; 1781 1782 /* 1783 * Change STA power saving mode only at the end of a frame 1784 * exchange sequence, and only for a data or management 1785 * frame as specified in IEEE 802.11-2016 11.2.3.2 1786 */ 1787 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1788 !ieee80211_has_morefrags(hdr->frame_control) && 1789 !is_multicast_ether_addr(hdr->addr1) && 1790 (ieee80211_is_mgmt(hdr->frame_control) || 1791 ieee80211_is_data(hdr->frame_control)) && 1792 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1793 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1794 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1795 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1796 if (!ieee80211_has_pm(hdr->frame_control)) 1797 sta_ps_end(sta); 1798 } else { 1799 if (ieee80211_has_pm(hdr->frame_control)) 1800 sta_ps_start(sta); 1801 } 1802 } 1803 1804 /* mesh power save support */ 1805 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1806 ieee80211_mps_rx_h_sta_process(sta, hdr); 1807 1808 /* 1809 * Drop (qos-)data::nullfunc frames silently, since they 1810 * are used only to control station power saving mode. 1811 */ 1812 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1813 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1814 1815 /* 1816 * If we receive a 4-addr nullfunc frame from a STA 1817 * that was not moved to a 4-addr STA vlan yet send 1818 * the event to userspace and for older hostapd drop 1819 * the frame to the monitor interface. 1820 */ 1821 if (ieee80211_has_a4(hdr->frame_control) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1824 !rx->sdata->u.vlan.sta))) { 1825 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1826 cfg80211_rx_unexpected_4addr_frame( 1827 rx->sdata->dev, sta->sta.addr, 1828 GFP_ATOMIC); 1829 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME; 1830 } 1831 /* 1832 * Update counter and free packet here to avoid 1833 * counting this as a dropped packed. 1834 */ 1835 link_sta->rx_stats.packets++; 1836 dev_kfree_skb(rx->skb); 1837 return RX_QUEUED; 1838 } 1839 1840 return RX_CONTINUE; 1841 } /* ieee80211_rx_h_sta_process */ 1842 1843 static struct ieee80211_key * 1844 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1845 { 1846 struct ieee80211_key *key = NULL; 1847 int idx2; 1848 1849 /* Make sure key gets set if either BIGTK key index is set so that 1850 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1851 * Beacon frames and Beacon frames that claim to use another BIGTK key 1852 * index (i.e., a key that we do not have). 1853 */ 1854 1855 if (idx < 0) { 1856 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1857 idx2 = idx + 1; 1858 } else { 1859 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1860 idx2 = idx + 1; 1861 else 1862 idx2 = idx - 1; 1863 } 1864 1865 if (rx->link_sta) 1866 key = rcu_dereference(rx->link_sta->gtk[idx]); 1867 if (!key) 1868 key = rcu_dereference(rx->link->gtk[idx]); 1869 if (!key && rx->link_sta) 1870 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1871 if (!key) 1872 key = rcu_dereference(rx->link->gtk[idx2]); 1873 1874 return key; 1875 } 1876 1877 static ieee80211_rx_result debug_noinline 1878 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1879 { 1880 struct sk_buff *skb = rx->skb; 1881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1882 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1883 int keyidx; 1884 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1885 struct ieee80211_key *sta_ptk = NULL; 1886 struct ieee80211_key *ptk_idx = NULL; 1887 int mmie_keyidx = -1; 1888 __le16 fc; 1889 1890 if (ieee80211_is_ext(hdr->frame_control)) 1891 return RX_CONTINUE; 1892 1893 /* 1894 * Key selection 101 1895 * 1896 * There are five types of keys: 1897 * - GTK (group keys) 1898 * - IGTK (group keys for management frames) 1899 * - BIGTK (group keys for Beacon frames) 1900 * - PTK (pairwise keys) 1901 * - STK (station-to-station pairwise keys) 1902 * 1903 * When selecting a key, we have to distinguish between multicast 1904 * (including broadcast) and unicast frames, the latter can only 1905 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1906 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1907 * then unicast frames can also use key indices like GTKs. Hence, if we 1908 * don't have a PTK/STK we check the key index for a WEP key. 1909 * 1910 * Note that in a regular BSS, multicast frames are sent by the 1911 * AP only, associated stations unicast the frame to the AP first 1912 * which then multicasts it on their behalf. 1913 * 1914 * There is also a slight problem in IBSS mode: GTKs are negotiated 1915 * with each station, that is something we don't currently handle. 1916 * The spec seems to expect that one negotiates the same key with 1917 * every station but there's no such requirement; VLANs could be 1918 * possible. 1919 */ 1920 1921 /* start without a key */ 1922 rx->key = NULL; 1923 fc = hdr->frame_control; 1924 1925 if (rx->sta) { 1926 int keyid = rx->sta->ptk_idx; 1927 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1928 1929 if (ieee80211_has_protected(fc) && 1930 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1931 keyid = ieee80211_get_keyid(rx->skb); 1932 1933 if (unlikely(keyid < 0)) 1934 return RX_DROP_UNUSABLE; 1935 1936 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1937 } 1938 } 1939 1940 if (!ieee80211_has_protected(fc)) 1941 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1942 1943 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1944 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1945 if ((status->flag & RX_FLAG_DECRYPTED) && 1946 (status->flag & RX_FLAG_IV_STRIPPED)) 1947 return RX_CONTINUE; 1948 /* Skip decryption if the frame is not protected. */ 1949 if (!ieee80211_has_protected(fc)) 1950 return RX_CONTINUE; 1951 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1952 /* Broadcast/multicast robust management frame / BIP */ 1953 if ((status->flag & RX_FLAG_DECRYPTED) && 1954 (status->flag & RX_FLAG_IV_STRIPPED)) 1955 return RX_CONTINUE; 1956 1957 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1958 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1959 NUM_DEFAULT_BEACON_KEYS) { 1960 if (rx->sdata->dev) 1961 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1962 skb->data, 1963 skb->len); 1964 return RX_DROP_M_BAD_BCN_KEYIDX; 1965 } 1966 1967 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1968 if (!rx->key) 1969 return RX_CONTINUE; /* Beacon protection not in use */ 1970 } else if (mmie_keyidx >= 0) { 1971 /* Broadcast/multicast robust management frame / BIP */ 1972 if ((status->flag & RX_FLAG_DECRYPTED) && 1973 (status->flag & RX_FLAG_IV_STRIPPED)) 1974 return RX_CONTINUE; 1975 1976 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1977 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1978 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ 1979 if (rx->link_sta) { 1980 if (ieee80211_is_group_privacy_action(skb) && 1981 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1982 return RX_DROP_MONITOR; 1983 1984 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 1985 } 1986 if (!rx->key) 1987 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 1988 } else if (!ieee80211_has_protected(fc)) { 1989 /* 1990 * The frame was not protected, so skip decryption. However, we 1991 * need to set rx->key if there is a key that could have been 1992 * used so that the frame may be dropped if encryption would 1993 * have been expected. 1994 */ 1995 struct ieee80211_key *key = NULL; 1996 int i; 1997 1998 if (ieee80211_is_beacon(fc)) { 1999 key = ieee80211_rx_get_bigtk(rx, -1); 2000 } else if (ieee80211_is_mgmt(fc) && 2001 is_multicast_ether_addr(hdr->addr1)) { 2002 key = rcu_dereference(rx->link->default_mgmt_key); 2003 } else { 2004 if (rx->link_sta) { 2005 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2006 key = rcu_dereference(rx->link_sta->gtk[i]); 2007 if (key) 2008 break; 2009 } 2010 } 2011 if (!key) { 2012 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2013 key = rcu_dereference(rx->link->gtk[i]); 2014 if (key) 2015 break; 2016 } 2017 } 2018 } 2019 if (key) 2020 rx->key = key; 2021 return RX_CONTINUE; 2022 } else { 2023 /* 2024 * The device doesn't give us the IV so we won't be 2025 * able to look up the key. That's ok though, we 2026 * don't need to decrypt the frame, we just won't 2027 * be able to keep statistics accurate. 2028 * Except for key threshold notifications, should 2029 * we somehow allow the driver to tell us which key 2030 * the hardware used if this flag is set? 2031 */ 2032 if ((status->flag & RX_FLAG_DECRYPTED) && 2033 (status->flag & RX_FLAG_IV_STRIPPED)) 2034 return RX_CONTINUE; 2035 2036 keyidx = ieee80211_get_keyid(rx->skb); 2037 2038 if (unlikely(keyidx < 0)) 2039 return RX_DROP_UNUSABLE; 2040 2041 /* check per-station GTK first, if multicast packet */ 2042 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2043 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2044 2045 /* if not found, try default key */ 2046 if (!rx->key) { 2047 if (is_multicast_ether_addr(hdr->addr1)) 2048 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2049 if (!rx->key) 2050 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2051 2052 /* 2053 * RSNA-protected unicast frames should always be 2054 * sent with pairwise or station-to-station keys, 2055 * but for WEP we allow using a key index as well. 2056 */ 2057 if (rx->key && 2058 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2059 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2060 !is_multicast_ether_addr(hdr->addr1)) 2061 rx->key = NULL; 2062 } 2063 } 2064 2065 if (rx->key) { 2066 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2067 return RX_DROP_MONITOR; 2068 2069 /* TODO: add threshold stuff again */ 2070 } else { 2071 return RX_DROP_MONITOR; 2072 } 2073 2074 switch (rx->key->conf.cipher) { 2075 case WLAN_CIPHER_SUITE_WEP40: 2076 case WLAN_CIPHER_SUITE_WEP104: 2077 result = ieee80211_crypto_wep_decrypt(rx); 2078 break; 2079 case WLAN_CIPHER_SUITE_TKIP: 2080 result = ieee80211_crypto_tkip_decrypt(rx); 2081 break; 2082 case WLAN_CIPHER_SUITE_CCMP: 2083 result = ieee80211_crypto_ccmp_decrypt( 2084 rx, IEEE80211_CCMP_MIC_LEN); 2085 break; 2086 case WLAN_CIPHER_SUITE_CCMP_256: 2087 result = ieee80211_crypto_ccmp_decrypt( 2088 rx, IEEE80211_CCMP_256_MIC_LEN); 2089 break; 2090 case WLAN_CIPHER_SUITE_AES_CMAC: 2091 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2092 break; 2093 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2094 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2095 break; 2096 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2097 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2098 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2099 break; 2100 case WLAN_CIPHER_SUITE_GCMP: 2101 case WLAN_CIPHER_SUITE_GCMP_256: 2102 result = ieee80211_crypto_gcmp_decrypt(rx); 2103 break; 2104 default: 2105 result = RX_DROP_UNUSABLE; 2106 } 2107 2108 /* the hdr variable is invalid after the decrypt handlers */ 2109 2110 /* either the frame has been decrypted or will be dropped */ 2111 status->flag |= RX_FLAG_DECRYPTED; 2112 2113 if (unlikely(ieee80211_is_beacon(fc) && (result & RX_DROP_UNUSABLE) && 2114 rx->sdata->dev)) 2115 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2116 skb->data, skb->len); 2117 2118 return result; 2119 } 2120 2121 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2122 { 2123 int i; 2124 2125 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2126 skb_queue_head_init(&cache->entries[i].skb_list); 2127 } 2128 2129 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2130 { 2131 int i; 2132 2133 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2134 __skb_queue_purge(&cache->entries[i].skb_list); 2135 } 2136 2137 static inline struct ieee80211_fragment_entry * 2138 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2139 unsigned int frag, unsigned int seq, int rx_queue, 2140 struct sk_buff **skb) 2141 { 2142 struct ieee80211_fragment_entry *entry; 2143 2144 entry = &cache->entries[cache->next++]; 2145 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2146 cache->next = 0; 2147 2148 __skb_queue_purge(&entry->skb_list); 2149 2150 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2151 *skb = NULL; 2152 entry->first_frag_time = jiffies; 2153 entry->seq = seq; 2154 entry->rx_queue = rx_queue; 2155 entry->last_frag = frag; 2156 entry->check_sequential_pn = false; 2157 entry->extra_len = 0; 2158 2159 return entry; 2160 } 2161 2162 static inline struct ieee80211_fragment_entry * 2163 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2164 unsigned int frag, unsigned int seq, 2165 int rx_queue, struct ieee80211_hdr *hdr) 2166 { 2167 struct ieee80211_fragment_entry *entry; 2168 int i, idx; 2169 2170 idx = cache->next; 2171 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2172 struct ieee80211_hdr *f_hdr; 2173 struct sk_buff *f_skb; 2174 2175 idx--; 2176 if (idx < 0) 2177 idx = IEEE80211_FRAGMENT_MAX - 1; 2178 2179 entry = &cache->entries[idx]; 2180 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2181 entry->rx_queue != rx_queue || 2182 entry->last_frag + 1 != frag) 2183 continue; 2184 2185 f_skb = __skb_peek(&entry->skb_list); 2186 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2187 2188 /* 2189 * Check ftype and addresses are equal, else check next fragment 2190 */ 2191 if (((hdr->frame_control ^ f_hdr->frame_control) & 2192 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2193 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2194 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2195 continue; 2196 2197 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2198 __skb_queue_purge(&entry->skb_list); 2199 continue; 2200 } 2201 return entry; 2202 } 2203 2204 return NULL; 2205 } 2206 2207 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2208 { 2209 return rx->key && 2210 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2211 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2212 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2213 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2214 ieee80211_has_protected(fc); 2215 } 2216 2217 static ieee80211_rx_result debug_noinline 2218 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2219 { 2220 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2221 struct ieee80211_hdr *hdr; 2222 u16 sc; 2223 __le16 fc; 2224 unsigned int frag, seq; 2225 struct ieee80211_fragment_entry *entry; 2226 struct sk_buff *skb; 2227 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2228 2229 hdr = (struct ieee80211_hdr *)rx->skb->data; 2230 fc = hdr->frame_control; 2231 2232 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2233 return RX_CONTINUE; 2234 2235 sc = le16_to_cpu(hdr->seq_ctrl); 2236 frag = sc & IEEE80211_SCTL_FRAG; 2237 2238 if (rx->sta) 2239 cache = &rx->sta->frags; 2240 2241 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2242 goto out; 2243 2244 if (is_multicast_ether_addr(hdr->addr1)) 2245 return RX_DROP_MONITOR; 2246 2247 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2248 2249 if (skb_linearize(rx->skb)) 2250 return RX_DROP_UNUSABLE; 2251 2252 /* 2253 * skb_linearize() might change the skb->data and 2254 * previously cached variables (in this case, hdr) need to 2255 * be refreshed with the new data. 2256 */ 2257 hdr = (struct ieee80211_hdr *)rx->skb->data; 2258 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2259 2260 if (frag == 0) { 2261 /* This is the first fragment of a new frame. */ 2262 entry = ieee80211_reassemble_add(cache, frag, seq, 2263 rx->seqno_idx, &(rx->skb)); 2264 if (requires_sequential_pn(rx, fc)) { 2265 int queue = rx->security_idx; 2266 2267 /* Store CCMP/GCMP PN so that we can verify that the 2268 * next fragment has a sequential PN value. 2269 */ 2270 entry->check_sequential_pn = true; 2271 entry->is_protected = true; 2272 entry->key_color = rx->key->color; 2273 memcpy(entry->last_pn, 2274 rx->key->u.ccmp.rx_pn[queue], 2275 IEEE80211_CCMP_PN_LEN); 2276 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2277 u.ccmp.rx_pn) != 2278 offsetof(struct ieee80211_key, 2279 u.gcmp.rx_pn)); 2280 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2281 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2282 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2283 IEEE80211_GCMP_PN_LEN); 2284 } else if (rx->key && 2285 (ieee80211_has_protected(fc) || 2286 (status->flag & RX_FLAG_DECRYPTED))) { 2287 entry->is_protected = true; 2288 entry->key_color = rx->key->color; 2289 } 2290 return RX_QUEUED; 2291 } 2292 2293 /* This is a fragment for a frame that should already be pending in 2294 * fragment cache. Add this fragment to the end of the pending entry. 2295 */ 2296 entry = ieee80211_reassemble_find(cache, frag, seq, 2297 rx->seqno_idx, hdr); 2298 if (!entry) { 2299 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2300 return RX_DROP_MONITOR; 2301 } 2302 2303 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2304 * MPDU PN values are not incrementing in steps of 1." 2305 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2306 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2307 */ 2308 if (entry->check_sequential_pn) { 2309 int i; 2310 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2311 2312 if (!requires_sequential_pn(rx, fc)) 2313 return RX_DROP_UNUSABLE; 2314 2315 /* Prevent mixed key and fragment cache attacks */ 2316 if (entry->key_color != rx->key->color) 2317 return RX_DROP_UNUSABLE; 2318 2319 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2320 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2321 pn[i]++; 2322 if (pn[i]) 2323 break; 2324 } 2325 2326 rpn = rx->ccm_gcm.pn; 2327 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2328 return RX_DROP_UNUSABLE; 2329 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2330 } else if (entry->is_protected && 2331 (!rx->key || 2332 (!ieee80211_has_protected(fc) && 2333 !(status->flag & RX_FLAG_DECRYPTED)) || 2334 rx->key->color != entry->key_color)) { 2335 /* Drop this as a mixed key or fragment cache attack, even 2336 * if for TKIP Michael MIC should protect us, and WEP is a 2337 * lost cause anyway. 2338 */ 2339 return RX_DROP_UNUSABLE; 2340 } else if (entry->is_protected && rx->key && 2341 entry->key_color != rx->key->color && 2342 (status->flag & RX_FLAG_DECRYPTED)) { 2343 return RX_DROP_UNUSABLE; 2344 } 2345 2346 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2347 __skb_queue_tail(&entry->skb_list, rx->skb); 2348 entry->last_frag = frag; 2349 entry->extra_len += rx->skb->len; 2350 if (ieee80211_has_morefrags(fc)) { 2351 rx->skb = NULL; 2352 return RX_QUEUED; 2353 } 2354 2355 rx->skb = __skb_dequeue(&entry->skb_list); 2356 if (skb_tailroom(rx->skb) < entry->extra_len) { 2357 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2358 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2359 GFP_ATOMIC))) { 2360 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2361 __skb_queue_purge(&entry->skb_list); 2362 return RX_DROP_UNUSABLE; 2363 } 2364 } 2365 while ((skb = __skb_dequeue(&entry->skb_list))) { 2366 skb_put_data(rx->skb, skb->data, skb->len); 2367 dev_kfree_skb(skb); 2368 } 2369 2370 out: 2371 ieee80211_led_rx(rx->local); 2372 if (rx->sta) 2373 rx->link_sta->rx_stats.packets++; 2374 return RX_CONTINUE; 2375 } 2376 2377 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2378 { 2379 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2380 return -EACCES; 2381 2382 return 0; 2383 } 2384 2385 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2386 { 2387 struct sk_buff *skb = rx->skb; 2388 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2389 2390 /* 2391 * Pass through unencrypted frames if the hardware has 2392 * decrypted them already. 2393 */ 2394 if (status->flag & RX_FLAG_DECRYPTED) 2395 return 0; 2396 2397 /* Drop unencrypted frames if key is set. */ 2398 if (unlikely(!ieee80211_has_protected(fc) && 2399 !ieee80211_is_any_nullfunc(fc) && 2400 ieee80211_is_data(fc) && rx->key)) 2401 return -EACCES; 2402 2403 return 0; 2404 } 2405 2406 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2407 { 2408 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2409 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2410 __le16 fc = mgmt->frame_control; 2411 2412 /* 2413 * Pass through unencrypted frames if the hardware has 2414 * decrypted them already. 2415 */ 2416 if (status->flag & RX_FLAG_DECRYPTED) 2417 return 0; 2418 2419 /* drop unicast protected dual (that wasn't protected) */ 2420 if (ieee80211_is_action(fc) && 2421 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 2422 return -EACCES; 2423 2424 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2425 if (unlikely(!ieee80211_has_protected(fc) && 2426 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { 2427 if (ieee80211_is_deauth(fc) || 2428 ieee80211_is_disassoc(fc)) { 2429 /* 2430 * Permit unprotected deauth/disassoc frames 2431 * during 4-way-HS (key is installed after HS). 2432 */ 2433 if (!rx->key) 2434 return 0; 2435 2436 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2437 rx->skb->data, 2438 rx->skb->len); 2439 } 2440 return -EACCES; 2441 } 2442 /* BIP does not use Protected field, so need to check MMIE */ 2443 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2444 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2445 if (ieee80211_is_deauth(fc) || 2446 ieee80211_is_disassoc(fc)) 2447 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2448 rx->skb->data, 2449 rx->skb->len); 2450 return -EACCES; 2451 } 2452 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2453 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2454 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2455 rx->skb->data, 2456 rx->skb->len); 2457 return -EACCES; 2458 } 2459 /* 2460 * When using MFP, Action frames are not allowed prior to 2461 * having configured keys. 2462 */ 2463 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2464 ieee80211_is_robust_mgmt_frame(rx->skb))) 2465 return -EACCES; 2466 2467 /* drop unicast public action frames when using MPF */ 2468 if (is_unicast_ether_addr(mgmt->da) && 2469 ieee80211_is_public_action((void *)rx->skb->data, 2470 rx->skb->len)) 2471 return -EACCES; 2472 } 2473 2474 return 0; 2475 } 2476 2477 static int 2478 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2479 { 2480 struct ieee80211_sub_if_data *sdata = rx->sdata; 2481 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2482 bool check_port_control = false; 2483 struct ethhdr *ehdr; 2484 int ret; 2485 2486 *port_control = false; 2487 if (ieee80211_has_a4(hdr->frame_control) && 2488 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2489 return -1; 2490 2491 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2492 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2493 2494 if (!sdata->u.mgd.use_4addr) 2495 return -1; 2496 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2497 check_port_control = true; 2498 } 2499 2500 if (is_multicast_ether_addr(hdr->addr1) && 2501 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2502 return -1; 2503 2504 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2505 if (ret < 0) 2506 return ret; 2507 2508 ehdr = (struct ethhdr *) rx->skb->data; 2509 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2510 *port_control = true; 2511 else if (check_port_control) 2512 return -1; 2513 2514 return 0; 2515 } 2516 2517 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2518 const u8 *addr, int *out_link_id) 2519 { 2520 unsigned int link_id; 2521 2522 /* non-MLO, or MLD address replaced by hardware */ 2523 if (ether_addr_equal(sdata->vif.addr, addr)) 2524 return true; 2525 2526 if (!ieee80211_vif_is_mld(&sdata->vif)) 2527 return false; 2528 2529 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2530 struct ieee80211_bss_conf *conf; 2531 2532 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2533 2534 if (!conf) 2535 continue; 2536 if (ether_addr_equal(conf->addr, addr)) { 2537 if (out_link_id) 2538 *out_link_id = link_id; 2539 return true; 2540 } 2541 } 2542 2543 return false; 2544 } 2545 2546 /* 2547 * requires that rx->skb is a frame with ethernet header 2548 */ 2549 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2550 { 2551 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2552 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2553 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2554 2555 /* 2556 * Allow EAPOL frames to us/the PAE group address regardless of 2557 * whether the frame was encrypted or not, and always disallow 2558 * all other destination addresses for them. 2559 */ 2560 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2561 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2562 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2563 2564 if (ieee80211_802_1x_port_control(rx) || 2565 ieee80211_drop_unencrypted(rx, fc)) 2566 return false; 2567 2568 return true; 2569 } 2570 2571 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2572 struct ieee80211_rx_data *rx) 2573 { 2574 struct ieee80211_sub_if_data *sdata = rx->sdata; 2575 struct net_device *dev = sdata->dev; 2576 2577 if (unlikely((skb->protocol == sdata->control_port_protocol || 2578 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2579 !sdata->control_port_no_preauth)) && 2580 sdata->control_port_over_nl80211)) { 2581 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2582 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2583 2584 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2585 dev_kfree_skb(skb); 2586 } else { 2587 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2588 2589 memset(skb->cb, 0, sizeof(skb->cb)); 2590 2591 /* 2592 * 802.1X over 802.11 requires that the authenticator address 2593 * be used for EAPOL frames. However, 802.1X allows the use of 2594 * the PAE group address instead. If the interface is part of 2595 * a bridge and we pass the frame with the PAE group address, 2596 * then the bridge will forward it to the network (even if the 2597 * client was not associated yet), which isn't supposed to 2598 * happen. 2599 * To avoid that, rewrite the destination address to our own 2600 * address, so that the authenticator (e.g. hostapd) will see 2601 * the frame, but bridge won't forward it anywhere else. Note 2602 * that due to earlier filtering, the only other address can 2603 * be the PAE group address, unless the hardware allowed them 2604 * through in 802.3 offloaded mode. 2605 */ 2606 if (unlikely(skb->protocol == sdata->control_port_protocol && 2607 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2608 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2609 2610 /* deliver to local stack */ 2611 if (rx->list) 2612 list_add_tail(&skb->list, rx->list); 2613 else 2614 netif_receive_skb(skb); 2615 } 2616 } 2617 2618 /* 2619 * requires that rx->skb is a frame with ethernet header 2620 */ 2621 static void 2622 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2623 { 2624 struct ieee80211_sub_if_data *sdata = rx->sdata; 2625 struct net_device *dev = sdata->dev; 2626 struct sk_buff *skb, *xmit_skb; 2627 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2628 struct sta_info *dsta; 2629 2630 skb = rx->skb; 2631 xmit_skb = NULL; 2632 2633 dev_sw_netstats_rx_add(dev, skb->len); 2634 2635 if (rx->sta) { 2636 /* The seqno index has the same property as needed 2637 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2638 * for non-QoS-data frames. Here we know it's a data 2639 * frame, so count MSDUs. 2640 */ 2641 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2642 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2643 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2644 } 2645 2646 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2647 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2648 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2649 ehdr->h_proto != rx->sdata->control_port_protocol && 2650 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2651 if (is_multicast_ether_addr(ehdr->h_dest) && 2652 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2653 /* 2654 * send multicast frames both to higher layers in 2655 * local net stack and back to the wireless medium 2656 */ 2657 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2658 if (!xmit_skb) 2659 net_info_ratelimited("%s: failed to clone multicast frame\n", 2660 dev->name); 2661 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2662 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2663 dsta = sta_info_get(sdata, ehdr->h_dest); 2664 if (dsta) { 2665 /* 2666 * The destination station is associated to 2667 * this AP (in this VLAN), so send the frame 2668 * directly to it and do not pass it to local 2669 * net stack. 2670 */ 2671 xmit_skb = skb; 2672 skb = NULL; 2673 } 2674 } 2675 } 2676 2677 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2678 if (skb) { 2679 /* 'align' will only take the values 0 or 2 here since all 2680 * frames are required to be aligned to 2-byte boundaries 2681 * when being passed to mac80211; the code here works just 2682 * as well if that isn't true, but mac80211 assumes it can 2683 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2684 */ 2685 int align; 2686 2687 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2688 if (align) { 2689 if (WARN_ON(skb_headroom(skb) < 3)) { 2690 dev_kfree_skb(skb); 2691 skb = NULL; 2692 } else { 2693 u8 *data = skb->data; 2694 size_t len = skb_headlen(skb); 2695 skb->data -= align; 2696 memmove(skb->data, data, len); 2697 skb_set_tail_pointer(skb, len); 2698 } 2699 } 2700 } 2701 #endif 2702 2703 if (skb) { 2704 skb->protocol = eth_type_trans(skb, dev); 2705 ieee80211_deliver_skb_to_local_stack(skb, rx); 2706 } 2707 2708 if (xmit_skb) { 2709 /* 2710 * Send to wireless media and increase priority by 256 to 2711 * keep the received priority instead of reclassifying 2712 * the frame (see cfg80211_classify8021d). 2713 */ 2714 xmit_skb->priority += 256; 2715 xmit_skb->protocol = htons(ETH_P_802_3); 2716 skb_reset_network_header(xmit_skb); 2717 skb_reset_mac_header(xmit_skb); 2718 dev_queue_xmit(xmit_skb); 2719 } 2720 } 2721 2722 #ifdef CONFIG_MAC80211_MESH 2723 static bool 2724 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, 2725 struct sk_buff *skb, int hdrlen) 2726 { 2727 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2728 struct ieee80211_mesh_fast_tx *entry = NULL; 2729 struct ieee80211s_hdr *mesh_hdr; 2730 struct tid_ampdu_tx *tid_tx; 2731 struct sta_info *sta; 2732 struct ethhdr eth; 2733 u8 tid; 2734 2735 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); 2736 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2737 entry = mesh_fast_tx_get(sdata, mesh_hdr->eaddr1); 2738 else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) 2739 entry = mesh_fast_tx_get(sdata, skb->data); 2740 if (!entry) 2741 return false; 2742 2743 sta = rcu_dereference(entry->mpath->next_hop); 2744 if (!sta) 2745 return false; 2746 2747 if (skb_linearize(skb)) 2748 return false; 2749 2750 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; 2751 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); 2752 if (tid_tx) { 2753 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) 2754 return false; 2755 2756 if (tid_tx->timeout) 2757 tid_tx->last_tx = jiffies; 2758 } 2759 2760 ieee80211_aggr_check(sdata, sta, skb); 2761 2762 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 2763 &skb->protocol)) 2764 hdrlen += ETH_ALEN; 2765 else 2766 skb->protocol = htons(skb->len - hdrlen); 2767 skb_set_network_header(skb, hdrlen + 2); 2768 2769 skb->dev = sdata->dev; 2770 memcpy(ð, skb->data, ETH_HLEN - 2); 2771 skb_pull(skb, 2); 2772 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, 2773 eth.h_dest, eth.h_source); 2774 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2775 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2776 2777 return true; 2778 } 2779 #endif 2780 2781 static ieee80211_rx_result 2782 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2783 struct sk_buff *skb) 2784 { 2785 #ifdef CONFIG_MAC80211_MESH 2786 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2787 struct ieee80211_local *local = sdata->local; 2788 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2789 struct ieee80211_hdr hdr = { 2790 .frame_control = cpu_to_le16(fc) 2791 }; 2792 struct ieee80211_hdr *fwd_hdr; 2793 struct ieee80211s_hdr *mesh_hdr; 2794 struct ieee80211_tx_info *info; 2795 struct sk_buff *fwd_skb; 2796 struct ethhdr *eth; 2797 bool multicast; 2798 int tailroom = 0; 2799 int hdrlen, mesh_hdrlen; 2800 u8 *qos; 2801 2802 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2803 return RX_CONTINUE; 2804 2805 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2806 return RX_DROP_MONITOR; 2807 2808 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2809 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2810 2811 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2812 return RX_DROP_MONITOR; 2813 2814 eth = (struct ethhdr *)skb->data; 2815 multicast = is_multicast_ether_addr(eth->h_dest); 2816 2817 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2818 if (!mesh_hdr->ttl) 2819 return RX_DROP_MONITOR; 2820 2821 /* frame is in RMC, don't forward */ 2822 if (is_multicast_ether_addr(eth->h_dest) && 2823 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2824 return RX_DROP_MONITOR; 2825 2826 /* forward packet */ 2827 if (sdata->crypto_tx_tailroom_needed_cnt) 2828 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2829 2830 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2831 struct mesh_path *mppath; 2832 char *proxied_addr; 2833 bool update = false; 2834 2835 if (multicast) 2836 proxied_addr = mesh_hdr->eaddr1; 2837 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2838 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2839 proxied_addr = mesh_hdr->eaddr2; 2840 else 2841 return RX_DROP_MONITOR; 2842 2843 rcu_read_lock(); 2844 mppath = mpp_path_lookup(sdata, proxied_addr); 2845 if (!mppath) { 2846 mpp_path_add(sdata, proxied_addr, eth->h_source); 2847 } else { 2848 spin_lock_bh(&mppath->state_lock); 2849 if (!ether_addr_equal(mppath->mpp, eth->h_source)) { 2850 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2851 update = true; 2852 } 2853 mppath->exp_time = jiffies; 2854 spin_unlock_bh(&mppath->state_lock); 2855 } 2856 2857 /* flush fast xmit cache if the address path changed */ 2858 if (update) 2859 mesh_fast_tx_flush_addr(sdata, proxied_addr); 2860 2861 rcu_read_unlock(); 2862 } 2863 2864 /* Frame has reached destination. Don't forward */ 2865 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2866 goto rx_accept; 2867 2868 if (!--mesh_hdr->ttl) { 2869 if (multicast) 2870 goto rx_accept; 2871 2872 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2873 return RX_DROP_MONITOR; 2874 } 2875 2876 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2877 if (is_multicast_ether_addr(eth->h_dest)) 2878 goto rx_accept; 2879 2880 return RX_DROP_MONITOR; 2881 } 2882 2883 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2884 2885 if (!multicast && 2886 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) 2887 return RX_QUEUED; 2888 2889 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2890 eth->h_dest, eth->h_source); 2891 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2892 if (multicast) { 2893 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2894 2895 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2896 IEEE80211_ENCRYPT_HEADROOM, 2897 tailroom, GFP_ATOMIC); 2898 if (!fwd_skb) 2899 goto rx_accept; 2900 } else { 2901 fwd_skb = skb; 2902 skb = NULL; 2903 2904 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2905 return RX_DROP_UNUSABLE; 2906 2907 if (skb_linearize(fwd_skb)) 2908 return RX_DROP_UNUSABLE; 2909 } 2910 2911 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2912 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2913 qos = ieee80211_get_qos_ctl(fwd_hdr); 2914 qos[0] = qos[1] = 0; 2915 2916 skb_reset_mac_header(fwd_skb); 2917 hdrlen += mesh_hdrlen; 2918 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2919 &fwd_skb->protocol)) 2920 hdrlen += ETH_ALEN; 2921 else 2922 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2923 skb_set_network_header(fwd_skb, hdrlen + 2); 2924 2925 info = IEEE80211_SKB_CB(fwd_skb); 2926 memset(info, 0, sizeof(*info)); 2927 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2928 info->control.vif = &sdata->vif; 2929 info->control.jiffies = jiffies; 2930 fwd_skb->dev = sdata->dev; 2931 if (multicast) { 2932 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2933 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2934 /* update power mode indication when forwarding */ 2935 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2936 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2937 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2938 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2939 } else { 2940 /* unable to resolve next hop */ 2941 if (sta) 2942 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2943 hdr.addr3, 0, 2944 WLAN_REASON_MESH_PATH_NOFORWARD, 2945 sta->sta.addr); 2946 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2947 kfree_skb(fwd_skb); 2948 goto rx_accept; 2949 } 2950 2951 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2952 ieee80211_add_pending_skb(local, fwd_skb); 2953 2954 rx_accept: 2955 if (!skb) 2956 return RX_QUEUED; 2957 2958 ieee80211_strip_8023_mesh_hdr(skb); 2959 #endif 2960 2961 return RX_CONTINUE; 2962 } 2963 2964 static ieee80211_rx_result debug_noinline 2965 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2966 { 2967 struct net_device *dev = rx->sdata->dev; 2968 struct sk_buff *skb = rx->skb; 2969 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2970 __le16 fc = hdr->frame_control; 2971 struct sk_buff_head frame_list; 2972 ieee80211_rx_result res; 2973 struct ethhdr ethhdr; 2974 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2975 2976 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2977 check_da = NULL; 2978 check_sa = NULL; 2979 } else switch (rx->sdata->vif.type) { 2980 case NL80211_IFTYPE_AP: 2981 case NL80211_IFTYPE_AP_VLAN: 2982 check_da = NULL; 2983 break; 2984 case NL80211_IFTYPE_STATION: 2985 if (!rx->sta || 2986 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2987 check_sa = NULL; 2988 break; 2989 case NL80211_IFTYPE_MESH_POINT: 2990 check_sa = NULL; 2991 check_da = NULL; 2992 break; 2993 default: 2994 break; 2995 } 2996 2997 skb->dev = dev; 2998 __skb_queue_head_init(&frame_list); 2999 3000 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 3001 rx->sdata->vif.addr, 3002 rx->sdata->vif.type, 3003 data_offset, true)) 3004 return RX_DROP_UNUSABLE; 3005 3006 if (rx->sta->amsdu_mesh_control < 0) { 3007 s8 valid = -1; 3008 int i; 3009 3010 for (i = 0; i <= 2; i++) { 3011 if (!ieee80211_is_valid_amsdu(skb, i)) 3012 continue; 3013 3014 if (valid >= 0) { 3015 /* ambiguous */ 3016 valid = -1; 3017 break; 3018 } 3019 3020 valid = i; 3021 } 3022 3023 rx->sta->amsdu_mesh_control = valid; 3024 } 3025 3026 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 3027 rx->sdata->vif.type, 3028 rx->local->hw.extra_tx_headroom, 3029 check_da, check_sa, 3030 rx->sta->amsdu_mesh_control); 3031 3032 while (!skb_queue_empty(&frame_list)) { 3033 rx->skb = __skb_dequeue(&frame_list); 3034 3035 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3036 switch (res) { 3037 case RX_QUEUED: 3038 continue; 3039 case RX_CONTINUE: 3040 break; 3041 default: 3042 goto free; 3043 } 3044 3045 if (!ieee80211_frame_allowed(rx, fc)) 3046 goto free; 3047 3048 ieee80211_deliver_skb(rx); 3049 continue; 3050 3051 free: 3052 dev_kfree_skb(rx->skb); 3053 } 3054 3055 return RX_QUEUED; 3056 } 3057 3058 static ieee80211_rx_result debug_noinline 3059 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 3060 { 3061 struct sk_buff *skb = rx->skb; 3062 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3063 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3064 __le16 fc = hdr->frame_control; 3065 3066 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 3067 return RX_CONTINUE; 3068 3069 if (unlikely(!ieee80211_is_data(fc))) 3070 return RX_CONTINUE; 3071 3072 if (unlikely(!ieee80211_is_data_present(fc))) 3073 return RX_DROP_MONITOR; 3074 3075 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3076 switch (rx->sdata->vif.type) { 3077 case NL80211_IFTYPE_AP_VLAN: 3078 if (!rx->sdata->u.vlan.sta) 3079 return RX_DROP_UNUSABLE; 3080 break; 3081 case NL80211_IFTYPE_STATION: 3082 if (!rx->sdata->u.mgd.use_4addr) 3083 return RX_DROP_UNUSABLE; 3084 break; 3085 case NL80211_IFTYPE_MESH_POINT: 3086 break; 3087 default: 3088 return RX_DROP_UNUSABLE; 3089 } 3090 } 3091 3092 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) 3093 return RX_DROP_UNUSABLE; 3094 3095 if (rx->key) { 3096 /* 3097 * We should not receive A-MSDUs on pre-HT connections, 3098 * and HT connections cannot use old ciphers. Thus drop 3099 * them, as in those cases we couldn't even have SPP 3100 * A-MSDUs or such. 3101 */ 3102 switch (rx->key->conf.cipher) { 3103 case WLAN_CIPHER_SUITE_WEP40: 3104 case WLAN_CIPHER_SUITE_WEP104: 3105 case WLAN_CIPHER_SUITE_TKIP: 3106 return RX_DROP_UNUSABLE; 3107 default: 3108 break; 3109 } 3110 } 3111 3112 return __ieee80211_rx_h_amsdu(rx, 0); 3113 } 3114 3115 static ieee80211_rx_result debug_noinline 3116 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3117 { 3118 struct ieee80211_sub_if_data *sdata = rx->sdata; 3119 struct ieee80211_local *local = rx->local; 3120 struct net_device *dev = sdata->dev; 3121 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3122 __le16 fc = hdr->frame_control; 3123 ieee80211_rx_result res; 3124 bool port_control; 3125 int err; 3126 3127 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3128 return RX_CONTINUE; 3129 3130 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3131 return RX_DROP_MONITOR; 3132 3133 /* 3134 * Send unexpected-4addr-frame event to hostapd. For older versions, 3135 * also drop the frame to cooked monitor interfaces. 3136 */ 3137 if (ieee80211_has_a4(hdr->frame_control) && 3138 sdata->vif.type == NL80211_IFTYPE_AP) { 3139 if (rx->sta && 3140 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3141 cfg80211_rx_unexpected_4addr_frame( 3142 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3143 return RX_DROP_MONITOR; 3144 } 3145 3146 err = __ieee80211_data_to_8023(rx, &port_control); 3147 if (unlikely(err)) 3148 return RX_DROP_UNUSABLE; 3149 3150 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3151 if (res != RX_CONTINUE) 3152 return res; 3153 3154 if (!ieee80211_frame_allowed(rx, fc)) 3155 return RX_DROP_MONITOR; 3156 3157 /* directly handle TDLS channel switch requests/responses */ 3158 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3159 cpu_to_be16(ETH_P_TDLS))) { 3160 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3161 3162 if (pskb_may_pull(rx->skb, 3163 offsetof(struct ieee80211_tdls_data, u)) && 3164 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3165 tf->category == WLAN_CATEGORY_TDLS && 3166 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3167 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3168 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3169 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3170 rx->sta, rx->skb); 3171 return RX_QUEUED; 3172 } 3173 } 3174 3175 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3176 unlikely(port_control) && sdata->bss) { 3177 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3178 u.ap); 3179 dev = sdata->dev; 3180 rx->sdata = sdata; 3181 } 3182 3183 rx->skb->dev = dev; 3184 3185 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3186 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3187 !is_multicast_ether_addr( 3188 ((struct ethhdr *)rx->skb->data)->h_dest) && 3189 (!local->scanning && 3190 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3191 mod_timer(&local->dynamic_ps_timer, jiffies + 3192 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3193 3194 ieee80211_deliver_skb(rx); 3195 3196 return RX_QUEUED; 3197 } 3198 3199 static ieee80211_rx_result debug_noinline 3200 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3201 { 3202 struct sk_buff *skb = rx->skb; 3203 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3204 struct tid_ampdu_rx *tid_agg_rx; 3205 u16 start_seq_num; 3206 u16 tid; 3207 3208 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3209 return RX_CONTINUE; 3210 3211 if (ieee80211_is_back_req(bar->frame_control)) { 3212 struct { 3213 __le16 control, start_seq_num; 3214 } __packed bar_data; 3215 struct ieee80211_event event = { 3216 .type = BAR_RX_EVENT, 3217 }; 3218 3219 if (!rx->sta) 3220 return RX_DROP_MONITOR; 3221 3222 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3223 &bar_data, sizeof(bar_data))) 3224 return RX_DROP_MONITOR; 3225 3226 tid = le16_to_cpu(bar_data.control) >> 12; 3227 3228 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3229 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3230 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3231 WLAN_BACK_RECIPIENT, 3232 WLAN_REASON_QSTA_REQUIRE_SETUP); 3233 3234 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3235 if (!tid_agg_rx) 3236 return RX_DROP_MONITOR; 3237 3238 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3239 event.u.ba.tid = tid; 3240 event.u.ba.ssn = start_seq_num; 3241 event.u.ba.sta = &rx->sta->sta; 3242 3243 /* reset session timer */ 3244 if (tid_agg_rx->timeout) 3245 mod_timer(&tid_agg_rx->session_timer, 3246 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3247 3248 spin_lock(&tid_agg_rx->reorder_lock); 3249 /* release stored frames up to start of BAR */ 3250 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3251 start_seq_num, frames); 3252 spin_unlock(&tid_agg_rx->reorder_lock); 3253 3254 drv_event_callback(rx->local, rx->sdata, &event); 3255 3256 kfree_skb(skb); 3257 return RX_QUEUED; 3258 } 3259 3260 /* 3261 * After this point, we only want management frames, 3262 * so we can drop all remaining control frames to 3263 * cooked monitor interfaces. 3264 */ 3265 return RX_DROP_MONITOR; 3266 } 3267 3268 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3269 struct ieee80211_mgmt *mgmt, 3270 size_t len) 3271 { 3272 struct ieee80211_local *local = sdata->local; 3273 struct sk_buff *skb; 3274 struct ieee80211_mgmt *resp; 3275 3276 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3277 /* Not to own unicast address */ 3278 return; 3279 } 3280 3281 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3282 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3283 /* Not from the current AP or not associated yet. */ 3284 return; 3285 } 3286 3287 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3288 /* Too short SA Query request frame */ 3289 return; 3290 } 3291 3292 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3293 if (skb == NULL) 3294 return; 3295 3296 skb_reserve(skb, local->hw.extra_tx_headroom); 3297 resp = skb_put_zero(skb, 24); 3298 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3299 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3300 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3301 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3302 IEEE80211_STYPE_ACTION); 3303 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3304 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3305 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3306 memcpy(resp->u.action.u.sa_query.trans_id, 3307 mgmt->u.action.u.sa_query.trans_id, 3308 WLAN_SA_QUERY_TR_ID_LEN); 3309 3310 ieee80211_tx_skb(sdata, skb); 3311 } 3312 3313 static void 3314 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3315 { 3316 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3317 const struct element *ie; 3318 size_t baselen; 3319 3320 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3321 NL80211_EXT_FEATURE_BSS_COLOR)) 3322 return; 3323 3324 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3325 return; 3326 3327 if (rx->sdata->vif.bss_conf.csa_active) 3328 return; 3329 3330 baselen = mgmt->u.beacon.variable - rx->skb->data; 3331 if (baselen > rx->skb->len) 3332 return; 3333 3334 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3335 mgmt->u.beacon.variable, 3336 rx->skb->len - baselen); 3337 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3338 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3339 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3340 const struct ieee80211_he_operation *he_oper; 3341 u8 color; 3342 3343 he_oper = (void *)(ie->data + 1); 3344 if (le32_get_bits(he_oper->he_oper_params, 3345 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3346 return; 3347 3348 color = le32_get_bits(he_oper->he_oper_params, 3349 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3350 if (color == bss_conf->he_bss_color.color) 3351 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3352 BIT_ULL(color), 3353 GFP_ATOMIC); 3354 } 3355 } 3356 3357 static ieee80211_rx_result debug_noinline 3358 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3359 { 3360 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3362 3363 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3364 return RX_CONTINUE; 3365 3366 /* 3367 * From here on, look only at management frames. 3368 * Data and control frames are already handled, 3369 * and unknown (reserved) frames are useless. 3370 */ 3371 if (rx->skb->len < 24) 3372 return RX_DROP_MONITOR; 3373 3374 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3375 return RX_DROP_MONITOR; 3376 3377 /* drop too small action frames */ 3378 if (ieee80211_is_action(mgmt->frame_control) && 3379 rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 3380 return RX_DROP_UNUSABLE; 3381 3382 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3383 ieee80211_is_beacon(mgmt->frame_control) && 3384 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3385 int sig = 0; 3386 3387 /* sw bss color collision detection */ 3388 ieee80211_rx_check_bss_color_collision(rx); 3389 3390 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3391 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3392 sig = status->signal; 3393 3394 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3395 rx->skb->data, rx->skb->len, 3396 ieee80211_rx_status_to_khz(status), 3397 sig); 3398 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3399 } 3400 3401 if (ieee80211_drop_unencrypted_mgmt(rx)) 3402 return RX_DROP_UNUSABLE; 3403 3404 return RX_CONTINUE; 3405 } 3406 3407 static bool 3408 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3409 { 3410 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3411 struct ieee80211_sub_if_data *sdata = rx->sdata; 3412 3413 /* TWT actions are only supported in AP for the moment */ 3414 if (sdata->vif.type != NL80211_IFTYPE_AP) 3415 return false; 3416 3417 if (!rx->local->ops->add_twt_setup) 3418 return false; 3419 3420 if (!sdata->vif.bss_conf.twt_responder) 3421 return false; 3422 3423 if (!rx->sta) 3424 return false; 3425 3426 switch (mgmt->u.action.u.s1g.action_code) { 3427 case WLAN_S1G_TWT_SETUP: { 3428 struct ieee80211_twt_setup *twt; 3429 3430 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3431 1 + /* action code */ 3432 sizeof(struct ieee80211_twt_setup) + 3433 2 /* TWT req_type agrt */) 3434 break; 3435 3436 twt = (void *)mgmt->u.action.u.s1g.variable; 3437 if (twt->element_id != WLAN_EID_S1G_TWT) 3438 break; 3439 3440 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3441 4 + /* action code + token + tlv */ 3442 twt->length) 3443 break; 3444 3445 return true; /* queue the frame */ 3446 } 3447 case WLAN_S1G_TWT_TEARDOWN: 3448 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3449 break; 3450 3451 return true; /* queue the frame */ 3452 default: 3453 break; 3454 } 3455 3456 return false; 3457 } 3458 3459 static ieee80211_rx_result debug_noinline 3460 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3461 { 3462 struct ieee80211_local *local = rx->local; 3463 struct ieee80211_sub_if_data *sdata = rx->sdata; 3464 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3465 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3466 int len = rx->skb->len; 3467 3468 if (!ieee80211_is_action(mgmt->frame_control)) 3469 return RX_CONTINUE; 3470 3471 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3472 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3473 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3474 return RX_DROP_UNUSABLE; 3475 3476 switch (mgmt->u.action.category) { 3477 case WLAN_CATEGORY_HT: 3478 /* reject HT action frames from stations not supporting HT */ 3479 if (!rx->link_sta->pub->ht_cap.ht_supported) 3480 goto invalid; 3481 3482 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3483 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3484 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3485 sdata->vif.type != NL80211_IFTYPE_AP && 3486 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3487 break; 3488 3489 /* verify action & smps_control/chanwidth are present */ 3490 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3491 goto invalid; 3492 3493 switch (mgmt->u.action.u.ht_smps.action) { 3494 case WLAN_HT_ACTION_SMPS: { 3495 struct ieee80211_supported_band *sband; 3496 enum ieee80211_smps_mode smps_mode; 3497 struct sta_opmode_info sta_opmode = {}; 3498 3499 if (sdata->vif.type != NL80211_IFTYPE_AP && 3500 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3501 goto handled; 3502 3503 /* convert to HT capability */ 3504 switch (mgmt->u.action.u.ht_smps.smps_control) { 3505 case WLAN_HT_SMPS_CONTROL_DISABLED: 3506 smps_mode = IEEE80211_SMPS_OFF; 3507 break; 3508 case WLAN_HT_SMPS_CONTROL_STATIC: 3509 smps_mode = IEEE80211_SMPS_STATIC; 3510 break; 3511 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3512 smps_mode = IEEE80211_SMPS_DYNAMIC; 3513 break; 3514 default: 3515 goto invalid; 3516 } 3517 3518 /* if no change do nothing */ 3519 if (rx->link_sta->pub->smps_mode == smps_mode) 3520 goto handled; 3521 rx->link_sta->pub->smps_mode = smps_mode; 3522 sta_opmode.smps_mode = 3523 ieee80211_smps_mode_to_smps_mode(smps_mode); 3524 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3525 3526 sband = rx->local->hw.wiphy->bands[status->band]; 3527 3528 rate_control_rate_update(local, sband, rx->sta, 0, 3529 IEEE80211_RC_SMPS_CHANGED); 3530 cfg80211_sta_opmode_change_notify(sdata->dev, 3531 rx->sta->addr, 3532 &sta_opmode, 3533 GFP_ATOMIC); 3534 goto handled; 3535 } 3536 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3537 struct ieee80211_supported_band *sband; 3538 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3539 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3540 struct sta_opmode_info sta_opmode = {}; 3541 3542 /* If it doesn't support 40 MHz it can't change ... */ 3543 if (!(rx->link_sta->pub->ht_cap.cap & 3544 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3545 goto handled; 3546 3547 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3548 max_bw = IEEE80211_STA_RX_BW_20; 3549 else 3550 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3551 3552 /* set cur_max_bandwidth and recalc sta bw */ 3553 rx->link_sta->cur_max_bandwidth = max_bw; 3554 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3555 3556 if (rx->link_sta->pub->bandwidth == new_bw) 3557 goto handled; 3558 3559 rx->link_sta->pub->bandwidth = new_bw; 3560 sband = rx->local->hw.wiphy->bands[status->band]; 3561 sta_opmode.bw = 3562 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3563 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3564 3565 rate_control_rate_update(local, sband, rx->sta, 0, 3566 IEEE80211_RC_BW_CHANGED); 3567 cfg80211_sta_opmode_change_notify(sdata->dev, 3568 rx->sta->addr, 3569 &sta_opmode, 3570 GFP_ATOMIC); 3571 goto handled; 3572 } 3573 default: 3574 goto invalid; 3575 } 3576 3577 break; 3578 case WLAN_CATEGORY_PUBLIC: 3579 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3580 goto invalid; 3581 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3582 break; 3583 if (!rx->sta) 3584 break; 3585 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3586 break; 3587 if (mgmt->u.action.u.ext_chan_switch.action_code != 3588 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3589 break; 3590 if (len < offsetof(struct ieee80211_mgmt, 3591 u.action.u.ext_chan_switch.variable)) 3592 goto invalid; 3593 goto queue; 3594 case WLAN_CATEGORY_VHT: 3595 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3596 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3597 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3598 sdata->vif.type != NL80211_IFTYPE_AP && 3599 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3600 break; 3601 3602 /* verify action code is present */ 3603 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3604 goto invalid; 3605 3606 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3607 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3608 /* verify opmode is present */ 3609 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3610 goto invalid; 3611 goto queue; 3612 } 3613 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3614 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3615 goto invalid; 3616 goto queue; 3617 } 3618 default: 3619 break; 3620 } 3621 break; 3622 case WLAN_CATEGORY_BACK: 3623 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3624 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3625 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3626 sdata->vif.type != NL80211_IFTYPE_AP && 3627 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3628 break; 3629 3630 /* verify action_code is present */ 3631 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3632 break; 3633 3634 switch (mgmt->u.action.u.addba_req.action_code) { 3635 case WLAN_ACTION_ADDBA_REQ: 3636 if (len < (IEEE80211_MIN_ACTION_SIZE + 3637 sizeof(mgmt->u.action.u.addba_req))) 3638 goto invalid; 3639 break; 3640 case WLAN_ACTION_ADDBA_RESP: 3641 if (len < (IEEE80211_MIN_ACTION_SIZE + 3642 sizeof(mgmt->u.action.u.addba_resp))) 3643 goto invalid; 3644 break; 3645 case WLAN_ACTION_DELBA: 3646 if (len < (IEEE80211_MIN_ACTION_SIZE + 3647 sizeof(mgmt->u.action.u.delba))) 3648 goto invalid; 3649 break; 3650 default: 3651 goto invalid; 3652 } 3653 3654 goto queue; 3655 case WLAN_CATEGORY_SPECTRUM_MGMT: 3656 /* verify action_code is present */ 3657 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3658 break; 3659 3660 switch (mgmt->u.action.u.measurement.action_code) { 3661 case WLAN_ACTION_SPCT_MSR_REQ: 3662 if (status->band != NL80211_BAND_5GHZ) 3663 break; 3664 3665 if (len < (IEEE80211_MIN_ACTION_SIZE + 3666 sizeof(mgmt->u.action.u.measurement))) 3667 break; 3668 3669 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3670 break; 3671 3672 ieee80211_process_measurement_req(sdata, mgmt, len); 3673 goto handled; 3674 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3675 u8 *bssid; 3676 if (len < (IEEE80211_MIN_ACTION_SIZE + 3677 sizeof(mgmt->u.action.u.chan_switch))) 3678 break; 3679 3680 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3681 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3682 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3683 break; 3684 3685 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3686 bssid = sdata->deflink.u.mgd.bssid; 3687 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3688 bssid = sdata->u.ibss.bssid; 3689 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3690 bssid = mgmt->sa; 3691 else 3692 break; 3693 3694 if (!ether_addr_equal(mgmt->bssid, bssid)) 3695 break; 3696 3697 goto queue; 3698 } 3699 } 3700 break; 3701 case WLAN_CATEGORY_SELF_PROTECTED: 3702 if (len < (IEEE80211_MIN_ACTION_SIZE + 3703 sizeof(mgmt->u.action.u.self_prot.action_code))) 3704 break; 3705 3706 switch (mgmt->u.action.u.self_prot.action_code) { 3707 case WLAN_SP_MESH_PEERING_OPEN: 3708 case WLAN_SP_MESH_PEERING_CLOSE: 3709 case WLAN_SP_MESH_PEERING_CONFIRM: 3710 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3711 goto invalid; 3712 if (sdata->u.mesh.user_mpm) 3713 /* userspace handles this frame */ 3714 break; 3715 goto queue; 3716 case WLAN_SP_MGK_INFORM: 3717 case WLAN_SP_MGK_ACK: 3718 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3719 goto invalid; 3720 break; 3721 } 3722 break; 3723 case WLAN_CATEGORY_MESH_ACTION: 3724 if (len < (IEEE80211_MIN_ACTION_SIZE + 3725 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3726 break; 3727 3728 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3729 break; 3730 if (mesh_action_is_path_sel(mgmt) && 3731 !mesh_path_sel_is_hwmp(sdata)) 3732 break; 3733 goto queue; 3734 case WLAN_CATEGORY_S1G: 3735 switch (mgmt->u.action.u.s1g.action_code) { 3736 case WLAN_S1G_TWT_SETUP: 3737 case WLAN_S1G_TWT_TEARDOWN: 3738 if (ieee80211_process_rx_twt_action(rx)) 3739 goto queue; 3740 break; 3741 default: 3742 break; 3743 } 3744 break; 3745 } 3746 3747 return RX_CONTINUE; 3748 3749 invalid: 3750 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3751 /* will return in the next handlers */ 3752 return RX_CONTINUE; 3753 3754 handled: 3755 if (rx->sta) 3756 rx->link_sta->rx_stats.packets++; 3757 dev_kfree_skb(rx->skb); 3758 return RX_QUEUED; 3759 3760 queue: 3761 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3762 return RX_QUEUED; 3763 } 3764 3765 static ieee80211_rx_result debug_noinline 3766 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3767 { 3768 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3769 struct cfg80211_rx_info info = { 3770 .freq = ieee80211_rx_status_to_khz(status), 3771 .buf = rx->skb->data, 3772 .len = rx->skb->len, 3773 .link_id = rx->link_id, 3774 .have_link_id = rx->link_id >= 0, 3775 }; 3776 3777 /* skip known-bad action frames and return them in the next handler */ 3778 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3779 return RX_CONTINUE; 3780 3781 /* 3782 * Getting here means the kernel doesn't know how to handle 3783 * it, but maybe userspace does ... include returned frames 3784 * so userspace can register for those to know whether ones 3785 * it transmitted were processed or returned. 3786 */ 3787 3788 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3789 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3790 info.sig_dbm = status->signal; 3791 3792 if (ieee80211_is_timing_measurement(rx->skb) || 3793 ieee80211_is_ftm(rx->skb)) { 3794 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3795 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3796 } 3797 3798 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3799 if (rx->sta) 3800 rx->link_sta->rx_stats.packets++; 3801 dev_kfree_skb(rx->skb); 3802 return RX_QUEUED; 3803 } 3804 3805 return RX_CONTINUE; 3806 } 3807 3808 static ieee80211_rx_result debug_noinline 3809 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3810 { 3811 struct ieee80211_sub_if_data *sdata = rx->sdata; 3812 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3813 int len = rx->skb->len; 3814 3815 if (!ieee80211_is_action(mgmt->frame_control)) 3816 return RX_CONTINUE; 3817 3818 switch (mgmt->u.action.category) { 3819 case WLAN_CATEGORY_SA_QUERY: 3820 if (len < (IEEE80211_MIN_ACTION_SIZE + 3821 sizeof(mgmt->u.action.u.sa_query))) 3822 break; 3823 3824 switch (mgmt->u.action.u.sa_query.action) { 3825 case WLAN_ACTION_SA_QUERY_REQUEST: 3826 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3827 break; 3828 ieee80211_process_sa_query_req(sdata, mgmt, len); 3829 goto handled; 3830 } 3831 break; 3832 } 3833 3834 return RX_CONTINUE; 3835 3836 handled: 3837 if (rx->sta) 3838 rx->link_sta->rx_stats.packets++; 3839 dev_kfree_skb(rx->skb); 3840 return RX_QUEUED; 3841 } 3842 3843 static ieee80211_rx_result debug_noinline 3844 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3845 { 3846 struct ieee80211_local *local = rx->local; 3847 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3848 struct sk_buff *nskb; 3849 struct ieee80211_sub_if_data *sdata = rx->sdata; 3850 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3851 3852 if (!ieee80211_is_action(mgmt->frame_control)) 3853 return RX_CONTINUE; 3854 3855 /* 3856 * For AP mode, hostapd is responsible for handling any action 3857 * frames that we didn't handle, including returning unknown 3858 * ones. For all other modes we will return them to the sender, 3859 * setting the 0x80 bit in the action category, as required by 3860 * 802.11-2012 9.24.4. 3861 * Newer versions of hostapd shall also use the management frame 3862 * registration mechanisms, but older ones still use cooked 3863 * monitor interfaces so push all frames there. 3864 */ 3865 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3866 (sdata->vif.type == NL80211_IFTYPE_AP || 3867 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3868 return RX_DROP_MONITOR; 3869 3870 if (is_multicast_ether_addr(mgmt->da)) 3871 return RX_DROP_MONITOR; 3872 3873 /* do not return rejected action frames */ 3874 if (mgmt->u.action.category & 0x80) 3875 return RX_DROP_UNUSABLE; 3876 3877 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3878 GFP_ATOMIC); 3879 if (nskb) { 3880 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3881 3882 nmgmt->u.action.category |= 0x80; 3883 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3884 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3885 3886 memset(nskb->cb, 0, sizeof(nskb->cb)); 3887 3888 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3889 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3890 3891 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3892 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3893 IEEE80211_TX_CTL_NO_CCK_RATE; 3894 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3895 info->hw_queue = 3896 local->hw.offchannel_tx_hw_queue; 3897 } 3898 3899 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3900 status->band); 3901 } 3902 dev_kfree_skb(rx->skb); 3903 return RX_QUEUED; 3904 } 3905 3906 static ieee80211_rx_result debug_noinline 3907 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3908 { 3909 struct ieee80211_sub_if_data *sdata = rx->sdata; 3910 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3911 3912 if (!ieee80211_is_ext(hdr->frame_control)) 3913 return RX_CONTINUE; 3914 3915 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3916 return RX_DROP_MONITOR; 3917 3918 /* for now only beacons are ext, so queue them */ 3919 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3920 3921 return RX_QUEUED; 3922 } 3923 3924 static ieee80211_rx_result debug_noinline 3925 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3926 { 3927 struct ieee80211_sub_if_data *sdata = rx->sdata; 3928 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3929 __le16 stype; 3930 3931 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3932 3933 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3934 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3935 sdata->vif.type != NL80211_IFTYPE_OCB && 3936 sdata->vif.type != NL80211_IFTYPE_STATION) 3937 return RX_DROP_MONITOR; 3938 3939 switch (stype) { 3940 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3941 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3942 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3943 /* process for all: mesh, mlme, ibss */ 3944 break; 3945 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3946 if (is_multicast_ether_addr(mgmt->da) && 3947 !is_broadcast_ether_addr(mgmt->da)) 3948 return RX_DROP_MONITOR; 3949 3950 /* process only for station/IBSS */ 3951 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3952 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3953 return RX_DROP_MONITOR; 3954 break; 3955 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3956 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3957 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3958 if (is_multicast_ether_addr(mgmt->da) && 3959 !is_broadcast_ether_addr(mgmt->da)) 3960 return RX_DROP_MONITOR; 3961 3962 /* process only for station */ 3963 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3964 return RX_DROP_MONITOR; 3965 break; 3966 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3967 /* process only for ibss and mesh */ 3968 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3969 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3970 return RX_DROP_MONITOR; 3971 break; 3972 default: 3973 return RX_DROP_MONITOR; 3974 } 3975 3976 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3977 3978 return RX_QUEUED; 3979 } 3980 3981 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3982 struct ieee80211_rate *rate, 3983 ieee80211_rx_result reason) 3984 { 3985 struct ieee80211_sub_if_data *sdata; 3986 struct ieee80211_local *local = rx->local; 3987 struct sk_buff *skb = rx->skb, *skb2; 3988 struct net_device *prev_dev = NULL; 3989 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3990 int needed_headroom; 3991 3992 /* 3993 * If cooked monitor has been processed already, then 3994 * don't do it again. If not, set the flag. 3995 */ 3996 if (rx->flags & IEEE80211_RX_CMNTR) 3997 goto out_free_skb; 3998 rx->flags |= IEEE80211_RX_CMNTR; 3999 4000 /* If there are no cooked monitor interfaces, just free the SKB */ 4001 if (!local->cooked_mntrs) 4002 goto out_free_skb; 4003 4004 /* room for the radiotap header based on driver features */ 4005 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 4006 4007 if (skb_headroom(skb) < needed_headroom && 4008 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 4009 goto out_free_skb; 4010 4011 /* prepend radiotap information */ 4012 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 4013 false); 4014 4015 skb_reset_mac_header(skb); 4016 skb->ip_summed = CHECKSUM_UNNECESSARY; 4017 skb->pkt_type = PACKET_OTHERHOST; 4018 skb->protocol = htons(ETH_P_802_2); 4019 4020 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4021 if (!ieee80211_sdata_running(sdata)) 4022 continue; 4023 4024 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 4025 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 4026 continue; 4027 4028 if (prev_dev) { 4029 skb2 = skb_clone(skb, GFP_ATOMIC); 4030 if (skb2) { 4031 skb2->dev = prev_dev; 4032 netif_receive_skb(skb2); 4033 } 4034 } 4035 4036 prev_dev = sdata->dev; 4037 dev_sw_netstats_rx_add(sdata->dev, skb->len); 4038 } 4039 4040 if (prev_dev) { 4041 skb->dev = prev_dev; 4042 netif_receive_skb(skb); 4043 return; 4044 } 4045 4046 out_free_skb: 4047 kfree_skb_reason(skb, (__force u32)reason); 4048 } 4049 4050 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 4051 ieee80211_rx_result res) 4052 { 4053 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4054 struct ieee80211_supported_band *sband; 4055 struct ieee80211_rate *rate = NULL; 4056 4057 if (res == RX_QUEUED) { 4058 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 4059 return; 4060 } 4061 4062 if (res != RX_CONTINUE) { 4063 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 4064 if (rx->sta) 4065 rx->link_sta->rx_stats.dropped++; 4066 } 4067 4068 if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) == 4069 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) { 4070 kfree_skb_reason(rx->skb, (__force u32)res); 4071 return; 4072 } 4073 4074 sband = rx->local->hw.wiphy->bands[status->band]; 4075 if (status->encoding == RX_ENC_LEGACY) 4076 rate = &sband->bitrates[status->rate_idx]; 4077 4078 ieee80211_rx_cooked_monitor(rx, rate, res); 4079 } 4080 4081 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4082 struct sk_buff_head *frames) 4083 { 4084 ieee80211_rx_result res = RX_DROP_MONITOR; 4085 struct sk_buff *skb; 4086 4087 #define CALL_RXH(rxh) \ 4088 do { \ 4089 res = rxh(rx); \ 4090 if (res != RX_CONTINUE) \ 4091 goto rxh_next; \ 4092 } while (0) 4093 4094 /* Lock here to avoid hitting all of the data used in the RX 4095 * path (e.g. key data, station data, ...) concurrently when 4096 * a frame is released from the reorder buffer due to timeout 4097 * from the timer, potentially concurrently with RX from the 4098 * driver. 4099 */ 4100 spin_lock_bh(&rx->local->rx_path_lock); 4101 4102 while ((skb = __skb_dequeue(frames))) { 4103 /* 4104 * all the other fields are valid across frames 4105 * that belong to an aMPDU since they are on the 4106 * same TID from the same station 4107 */ 4108 rx->skb = skb; 4109 4110 if (WARN_ON_ONCE(!rx->link)) 4111 goto rxh_next; 4112 4113 CALL_RXH(ieee80211_rx_h_check_more_data); 4114 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4115 CALL_RXH(ieee80211_rx_h_sta_process); 4116 CALL_RXH(ieee80211_rx_h_decrypt); 4117 CALL_RXH(ieee80211_rx_h_defragment); 4118 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4119 /* must be after MMIC verify so header is counted in MPDU mic */ 4120 CALL_RXH(ieee80211_rx_h_amsdu); 4121 CALL_RXH(ieee80211_rx_h_data); 4122 4123 /* special treatment -- needs the queue */ 4124 res = ieee80211_rx_h_ctrl(rx, frames); 4125 if (res != RX_CONTINUE) 4126 goto rxh_next; 4127 4128 CALL_RXH(ieee80211_rx_h_mgmt_check); 4129 CALL_RXH(ieee80211_rx_h_action); 4130 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4131 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4132 CALL_RXH(ieee80211_rx_h_action_return); 4133 CALL_RXH(ieee80211_rx_h_ext); 4134 CALL_RXH(ieee80211_rx_h_mgmt); 4135 4136 rxh_next: 4137 ieee80211_rx_handlers_result(rx, res); 4138 4139 #undef CALL_RXH 4140 } 4141 4142 spin_unlock_bh(&rx->local->rx_path_lock); 4143 } 4144 4145 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4146 { 4147 struct sk_buff_head reorder_release; 4148 ieee80211_rx_result res = RX_DROP_MONITOR; 4149 4150 __skb_queue_head_init(&reorder_release); 4151 4152 #define CALL_RXH(rxh) \ 4153 do { \ 4154 res = rxh(rx); \ 4155 if (res != RX_CONTINUE) \ 4156 goto rxh_next; \ 4157 } while (0) 4158 4159 CALL_RXH(ieee80211_rx_h_check_dup); 4160 CALL_RXH(ieee80211_rx_h_check); 4161 4162 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4163 4164 ieee80211_rx_handlers(rx, &reorder_release); 4165 return; 4166 4167 rxh_next: 4168 ieee80211_rx_handlers_result(rx, res); 4169 4170 #undef CALL_RXH 4171 } 4172 4173 static bool 4174 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4175 { 4176 return !!(sta->valid_links & BIT(link_id)); 4177 } 4178 4179 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4180 u8 link_id) 4181 { 4182 rx->link_id = link_id; 4183 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4184 4185 if (!rx->sta) 4186 return rx->link; 4187 4188 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4189 return false; 4190 4191 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4192 4193 return rx->link && rx->link_sta; 4194 } 4195 4196 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4197 struct sta_info *sta, int link_id) 4198 { 4199 rx->link_id = link_id; 4200 rx->sta = sta; 4201 4202 if (sta) { 4203 rx->local = sta->sdata->local; 4204 if (!rx->sdata) 4205 rx->sdata = sta->sdata; 4206 rx->link_sta = &sta->deflink; 4207 } else { 4208 rx->link_sta = NULL; 4209 } 4210 4211 if (link_id < 0) 4212 rx->link = &rx->sdata->deflink; 4213 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4214 return false; 4215 4216 return true; 4217 } 4218 4219 /* 4220 * This function makes calls into the RX path, therefore 4221 * it has to be invoked under RCU read lock. 4222 */ 4223 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4224 { 4225 struct sk_buff_head frames; 4226 struct ieee80211_rx_data rx = { 4227 /* This is OK -- must be QoS data frame */ 4228 .security_idx = tid, 4229 .seqno_idx = tid, 4230 }; 4231 struct tid_ampdu_rx *tid_agg_rx; 4232 int link_id = -1; 4233 4234 /* FIXME: statistics won't be right with this */ 4235 if (sta->sta.valid_links) 4236 link_id = ffs(sta->sta.valid_links) - 1; 4237 4238 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4239 return; 4240 4241 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4242 if (!tid_agg_rx) 4243 return; 4244 4245 __skb_queue_head_init(&frames); 4246 4247 spin_lock(&tid_agg_rx->reorder_lock); 4248 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4249 spin_unlock(&tid_agg_rx->reorder_lock); 4250 4251 if (!skb_queue_empty(&frames)) { 4252 struct ieee80211_event event = { 4253 .type = BA_FRAME_TIMEOUT, 4254 .u.ba.tid = tid, 4255 .u.ba.sta = &sta->sta, 4256 }; 4257 drv_event_callback(rx.local, rx.sdata, &event); 4258 } 4259 4260 ieee80211_rx_handlers(&rx, &frames); 4261 } 4262 4263 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4264 u16 ssn, u64 filtered, 4265 u16 received_mpdus) 4266 { 4267 struct sta_info *sta; 4268 struct tid_ampdu_rx *tid_agg_rx; 4269 struct sk_buff_head frames; 4270 struct ieee80211_rx_data rx = { 4271 /* This is OK -- must be QoS data frame */ 4272 .security_idx = tid, 4273 .seqno_idx = tid, 4274 }; 4275 int i, diff; 4276 4277 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4278 return; 4279 4280 __skb_queue_head_init(&frames); 4281 4282 sta = container_of(pubsta, struct sta_info, sta); 4283 4284 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4285 return; 4286 4287 rcu_read_lock(); 4288 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4289 if (!tid_agg_rx) 4290 goto out; 4291 4292 spin_lock_bh(&tid_agg_rx->reorder_lock); 4293 4294 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4295 int release; 4296 4297 /* release all frames in the reorder buffer */ 4298 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4299 IEEE80211_SN_MODULO; 4300 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4301 release, &frames); 4302 /* update ssn to match received ssn */ 4303 tid_agg_rx->head_seq_num = ssn; 4304 } else { 4305 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4306 &frames); 4307 } 4308 4309 /* handle the case that received ssn is behind the mac ssn. 4310 * it can be tid_agg_rx->buf_size behind and still be valid */ 4311 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4312 if (diff >= tid_agg_rx->buf_size) { 4313 tid_agg_rx->reorder_buf_filtered = 0; 4314 goto release; 4315 } 4316 filtered = filtered >> diff; 4317 ssn += diff; 4318 4319 /* update bitmap */ 4320 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4321 int index = (ssn + i) % tid_agg_rx->buf_size; 4322 4323 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4324 if (filtered & BIT_ULL(i)) 4325 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4326 } 4327 4328 /* now process also frames that the filter marking released */ 4329 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4330 4331 release: 4332 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4333 4334 ieee80211_rx_handlers(&rx, &frames); 4335 4336 out: 4337 rcu_read_unlock(); 4338 } 4339 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4340 4341 /* main receive path */ 4342 4343 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4344 { 4345 return ether_addr_equal(raddr, addr) || 4346 is_broadcast_ether_addr(raddr); 4347 } 4348 4349 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4350 { 4351 struct ieee80211_sub_if_data *sdata = rx->sdata; 4352 struct sk_buff *skb = rx->skb; 4353 struct ieee80211_hdr *hdr = (void *)skb->data; 4354 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4355 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4356 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4357 ieee80211_is_s1g_beacon(hdr->frame_control); 4358 4359 switch (sdata->vif.type) { 4360 case NL80211_IFTYPE_STATION: 4361 if (!bssid && !sdata->u.mgd.use_4addr) 4362 return false; 4363 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4364 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4365 return false; 4366 if (multicast) 4367 return true; 4368 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4369 case NL80211_IFTYPE_ADHOC: 4370 if (!bssid) 4371 return false; 4372 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4373 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4374 !is_valid_ether_addr(hdr->addr2)) 4375 return false; 4376 if (ieee80211_is_beacon(hdr->frame_control)) 4377 return true; 4378 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4379 return false; 4380 if (!multicast && 4381 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4382 return false; 4383 if (!rx->sta) { 4384 int rate_idx; 4385 if (status->encoding != RX_ENC_LEGACY) 4386 rate_idx = 0; /* TODO: HT/VHT rates */ 4387 else 4388 rate_idx = status->rate_idx; 4389 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4390 BIT(rate_idx)); 4391 } 4392 return true; 4393 case NL80211_IFTYPE_OCB: 4394 if (!bssid) 4395 return false; 4396 if (!ieee80211_is_data_present(hdr->frame_control)) 4397 return false; 4398 if (!is_broadcast_ether_addr(bssid)) 4399 return false; 4400 if (!multicast && 4401 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4402 return false; 4403 if (!rx->sta) { 4404 int rate_idx; 4405 if (status->encoding != RX_ENC_LEGACY) 4406 rate_idx = 0; /* TODO: HT rates */ 4407 else 4408 rate_idx = status->rate_idx; 4409 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4410 BIT(rate_idx)); 4411 } 4412 return true; 4413 case NL80211_IFTYPE_MESH_POINT: 4414 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4415 return false; 4416 if (multicast) 4417 return true; 4418 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4419 case NL80211_IFTYPE_AP_VLAN: 4420 case NL80211_IFTYPE_AP: 4421 if (!bssid) 4422 return ieee80211_is_our_addr(sdata, hdr->addr1, 4423 &rx->link_id); 4424 4425 if (!is_broadcast_ether_addr(bssid) && 4426 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4427 /* 4428 * Accept public action frames even when the 4429 * BSSID doesn't match, this is used for P2P 4430 * and location updates. Note that mac80211 4431 * itself never looks at these frames. 4432 */ 4433 if (!multicast && 4434 !ieee80211_is_our_addr(sdata, hdr->addr1, 4435 &rx->link_id)) 4436 return false; 4437 if (ieee80211_is_public_action(hdr, skb->len)) 4438 return true; 4439 return ieee80211_is_beacon(hdr->frame_control); 4440 } 4441 4442 if (!ieee80211_has_tods(hdr->frame_control)) { 4443 /* ignore data frames to TDLS-peers */ 4444 if (ieee80211_is_data(hdr->frame_control)) 4445 return false; 4446 /* ignore action frames to TDLS-peers */ 4447 if (ieee80211_is_action(hdr->frame_control) && 4448 !is_broadcast_ether_addr(bssid) && 4449 !ether_addr_equal(bssid, hdr->addr1)) 4450 return false; 4451 } 4452 4453 /* 4454 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4455 * the BSSID - we've checked that already but may have accepted 4456 * the wildcard (ff:ff:ff:ff:ff:ff). 4457 * 4458 * It also says: 4459 * The BSSID of the Data frame is determined as follows: 4460 * a) If the STA is contained within an AP or is associated 4461 * with an AP, the BSSID is the address currently in use 4462 * by the STA contained in the AP. 4463 * 4464 * So we should not accept data frames with an address that's 4465 * multicast. 4466 * 4467 * Accepting it also opens a security problem because stations 4468 * could encrypt it with the GTK and inject traffic that way. 4469 */ 4470 if (ieee80211_is_data(hdr->frame_control) && multicast) 4471 return false; 4472 4473 return true; 4474 case NL80211_IFTYPE_P2P_DEVICE: 4475 return ieee80211_is_public_action(hdr, skb->len) || 4476 ieee80211_is_probe_req(hdr->frame_control) || 4477 ieee80211_is_probe_resp(hdr->frame_control) || 4478 ieee80211_is_beacon(hdr->frame_control); 4479 case NL80211_IFTYPE_NAN: 4480 /* Currently no frames on NAN interface are allowed */ 4481 return false; 4482 default: 4483 break; 4484 } 4485 4486 WARN_ON_ONCE(1); 4487 return false; 4488 } 4489 4490 void ieee80211_check_fast_rx(struct sta_info *sta) 4491 { 4492 struct ieee80211_sub_if_data *sdata = sta->sdata; 4493 struct ieee80211_local *local = sdata->local; 4494 struct ieee80211_key *key; 4495 struct ieee80211_fast_rx fastrx = { 4496 .dev = sdata->dev, 4497 .vif_type = sdata->vif.type, 4498 .control_port_protocol = sdata->control_port_protocol, 4499 }, *old, *new = NULL; 4500 u32 offload_flags; 4501 bool set_offload = false; 4502 bool assign = false; 4503 bool offload; 4504 4505 /* use sparse to check that we don't return without updating */ 4506 __acquire(check_fast_rx); 4507 4508 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4509 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4510 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4511 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4512 4513 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4514 4515 /* fast-rx doesn't do reordering */ 4516 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4517 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4518 goto clear; 4519 4520 switch (sdata->vif.type) { 4521 case NL80211_IFTYPE_STATION: 4522 if (sta->sta.tdls) { 4523 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4524 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4525 fastrx.expected_ds_bits = 0; 4526 } else { 4527 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4528 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4529 fastrx.expected_ds_bits = 4530 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4531 } 4532 4533 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4534 fastrx.expected_ds_bits |= 4535 cpu_to_le16(IEEE80211_FCTL_TODS); 4536 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4537 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4538 } 4539 4540 if (!sdata->u.mgd.powersave) 4541 break; 4542 4543 /* software powersave is a huge mess, avoid all of it */ 4544 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4545 goto clear; 4546 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4547 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4548 goto clear; 4549 break; 4550 case NL80211_IFTYPE_AP_VLAN: 4551 case NL80211_IFTYPE_AP: 4552 /* parallel-rx requires this, at least with calls to 4553 * ieee80211_sta_ps_transition() 4554 */ 4555 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4556 goto clear; 4557 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4558 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4559 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4560 4561 fastrx.internal_forward = 4562 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4563 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4564 !sdata->u.vlan.sta); 4565 4566 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4567 sdata->u.vlan.sta) { 4568 fastrx.expected_ds_bits |= 4569 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4570 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4571 fastrx.internal_forward = 0; 4572 } 4573 4574 break; 4575 case NL80211_IFTYPE_MESH_POINT: 4576 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | 4577 IEEE80211_FCTL_TODS); 4578 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4579 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4580 break; 4581 default: 4582 goto clear; 4583 } 4584 4585 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4586 goto clear; 4587 4588 rcu_read_lock(); 4589 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4590 if (!key) 4591 key = rcu_dereference(sdata->default_unicast_key); 4592 if (key) { 4593 switch (key->conf.cipher) { 4594 case WLAN_CIPHER_SUITE_TKIP: 4595 /* we don't want to deal with MMIC in fast-rx */ 4596 goto clear_rcu; 4597 case WLAN_CIPHER_SUITE_CCMP: 4598 case WLAN_CIPHER_SUITE_CCMP_256: 4599 case WLAN_CIPHER_SUITE_GCMP: 4600 case WLAN_CIPHER_SUITE_GCMP_256: 4601 break; 4602 default: 4603 /* We also don't want to deal with 4604 * WEP or cipher scheme. 4605 */ 4606 goto clear_rcu; 4607 } 4608 4609 fastrx.key = true; 4610 fastrx.icv_len = key->conf.icv_len; 4611 } 4612 4613 assign = true; 4614 clear_rcu: 4615 rcu_read_unlock(); 4616 clear: 4617 __release(check_fast_rx); 4618 4619 if (assign) 4620 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4621 4622 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4623 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4624 4625 if (assign && offload) 4626 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4627 else 4628 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4629 4630 if (set_offload) 4631 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4632 4633 spin_lock_bh(&sta->lock); 4634 old = rcu_dereference_protected(sta->fast_rx, true); 4635 rcu_assign_pointer(sta->fast_rx, new); 4636 spin_unlock_bh(&sta->lock); 4637 4638 if (old) 4639 kfree_rcu(old, rcu_head); 4640 } 4641 4642 void ieee80211_clear_fast_rx(struct sta_info *sta) 4643 { 4644 struct ieee80211_fast_rx *old; 4645 4646 spin_lock_bh(&sta->lock); 4647 old = rcu_dereference_protected(sta->fast_rx, true); 4648 RCU_INIT_POINTER(sta->fast_rx, NULL); 4649 spin_unlock_bh(&sta->lock); 4650 4651 if (old) 4652 kfree_rcu(old, rcu_head); 4653 } 4654 4655 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4656 { 4657 struct ieee80211_local *local = sdata->local; 4658 struct sta_info *sta; 4659 4660 lockdep_assert_held(&local->sta_mtx); 4661 4662 list_for_each_entry(sta, &local->sta_list, list) { 4663 if (sdata != sta->sdata && 4664 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4665 continue; 4666 ieee80211_check_fast_rx(sta); 4667 } 4668 } 4669 4670 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4671 { 4672 struct ieee80211_local *local = sdata->local; 4673 4674 mutex_lock(&local->sta_mtx); 4675 __ieee80211_check_fast_rx_iface(sdata); 4676 mutex_unlock(&local->sta_mtx); 4677 } 4678 4679 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4680 struct ieee80211_fast_rx *fast_rx, 4681 int orig_len) 4682 { 4683 struct ieee80211_sta_rx_stats *stats; 4684 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4685 struct sta_info *sta = rx->sta; 4686 struct link_sta_info *link_sta; 4687 struct sk_buff *skb = rx->skb; 4688 void *sa = skb->data + ETH_ALEN; 4689 void *da = skb->data; 4690 4691 if (rx->link_id >= 0) { 4692 link_sta = rcu_dereference(sta->link[rx->link_id]); 4693 if (WARN_ON_ONCE(!link_sta)) { 4694 dev_kfree_skb(rx->skb); 4695 return; 4696 } 4697 } else { 4698 link_sta = &sta->deflink; 4699 } 4700 4701 stats = &link_sta->rx_stats; 4702 if (fast_rx->uses_rss) 4703 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4704 4705 /* statistics part of ieee80211_rx_h_sta_process() */ 4706 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4707 stats->last_signal = status->signal; 4708 if (!fast_rx->uses_rss) 4709 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4710 -status->signal); 4711 } 4712 4713 if (status->chains) { 4714 int i; 4715 4716 stats->chains = status->chains; 4717 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4718 int signal = status->chain_signal[i]; 4719 4720 if (!(status->chains & BIT(i))) 4721 continue; 4722 4723 stats->chain_signal_last[i] = signal; 4724 if (!fast_rx->uses_rss) 4725 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4726 -signal); 4727 } 4728 } 4729 /* end of statistics */ 4730 4731 stats->last_rx = jiffies; 4732 stats->last_rate = sta_stats_encode_rate(status); 4733 4734 stats->fragments++; 4735 stats->packets++; 4736 4737 skb->dev = fast_rx->dev; 4738 4739 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4740 4741 /* The seqno index has the same property as needed 4742 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4743 * for non-QoS-data frames. Here we know it's a data 4744 * frame, so count MSDUs. 4745 */ 4746 u64_stats_update_begin(&stats->syncp); 4747 stats->msdu[rx->seqno_idx]++; 4748 stats->bytes += orig_len; 4749 u64_stats_update_end(&stats->syncp); 4750 4751 if (fast_rx->internal_forward) { 4752 struct sk_buff *xmit_skb = NULL; 4753 if (is_multicast_ether_addr(da)) { 4754 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4755 } else if (!ether_addr_equal(da, sa) && 4756 sta_info_get(rx->sdata, da)) { 4757 xmit_skb = skb; 4758 skb = NULL; 4759 } 4760 4761 if (xmit_skb) { 4762 /* 4763 * Send to wireless media and increase priority by 256 4764 * to keep the received priority instead of 4765 * reclassifying the frame (see cfg80211_classify8021d). 4766 */ 4767 xmit_skb->priority += 256; 4768 xmit_skb->protocol = htons(ETH_P_802_3); 4769 skb_reset_network_header(xmit_skb); 4770 skb_reset_mac_header(xmit_skb); 4771 dev_queue_xmit(xmit_skb); 4772 } 4773 4774 if (!skb) 4775 return; 4776 } 4777 4778 /* deliver to local stack */ 4779 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4780 ieee80211_deliver_skb_to_local_stack(skb, rx); 4781 } 4782 4783 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4784 struct ieee80211_fast_rx *fast_rx) 4785 { 4786 struct sk_buff *skb = rx->skb; 4787 struct ieee80211_hdr *hdr = (void *)skb->data; 4788 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4789 static ieee80211_rx_result res; 4790 int orig_len = skb->len; 4791 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4792 int snap_offs = hdrlen; 4793 struct { 4794 u8 snap[sizeof(rfc1042_header)]; 4795 __be16 proto; 4796 } *payload __aligned(2); 4797 struct { 4798 u8 da[ETH_ALEN]; 4799 u8 sa[ETH_ALEN]; 4800 } addrs __aligned(2); 4801 struct ieee80211_sta_rx_stats *stats; 4802 4803 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4804 * to a common data structure; drivers can implement that per queue 4805 * but we don't have that information in mac80211 4806 */ 4807 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4808 return false; 4809 4810 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4811 4812 /* If using encryption, we also need to have: 4813 * - PN_VALIDATED: similar, but the implementation is tricky 4814 * - DECRYPTED: necessary for PN_VALIDATED 4815 */ 4816 if (fast_rx->key && 4817 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4818 return false; 4819 4820 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4821 return false; 4822 4823 if (unlikely(ieee80211_is_frag(hdr))) 4824 return false; 4825 4826 /* Since our interface address cannot be multicast, this 4827 * implicitly also rejects multicast frames without the 4828 * explicit check. 4829 * 4830 * We shouldn't get any *data* frames not addressed to us 4831 * (AP mode will accept multicast *management* frames), but 4832 * punting here will make it go through the full checks in 4833 * ieee80211_accept_frame(). 4834 */ 4835 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4836 return false; 4837 4838 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4839 IEEE80211_FCTL_TODS)) != 4840 fast_rx->expected_ds_bits) 4841 return false; 4842 4843 /* assign the key to drop unencrypted frames (later) 4844 * and strip the IV/MIC if necessary 4845 */ 4846 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4847 /* GCMP header length is the same */ 4848 snap_offs += IEEE80211_CCMP_HDR_LEN; 4849 } 4850 4851 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && 4852 !(status->rx_flags & IEEE80211_RX_AMSDU)) { 4853 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4854 return false; 4855 4856 payload = (void *)(skb->data + snap_offs); 4857 4858 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4859 return false; 4860 4861 /* Don't handle these here since they require special code. 4862 * Accept AARP and IPX even though they should come with a 4863 * bridge-tunnel header - but if we get them this way then 4864 * there's little point in discarding them. 4865 */ 4866 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4867 payload->proto == fast_rx->control_port_protocol)) 4868 return false; 4869 } 4870 4871 /* after this point, don't punt to the slowpath! */ 4872 4873 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4874 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4875 goto drop; 4876 4877 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4878 goto drop; 4879 4880 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4881 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4882 RX_QUEUED) 4883 goto drop; 4884 4885 return true; 4886 } 4887 4888 /* do the header conversion - first grab the addresses */ 4889 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4890 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4891 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { 4892 skb_pull(skb, snap_offs - 2); 4893 put_unaligned_be16(skb->len - 2, skb->data); 4894 } else { 4895 skb_postpull_rcsum(skb, skb->data + snap_offs, 4896 sizeof(rfc1042_header) + 2); 4897 4898 /* remove the SNAP but leave the ethertype */ 4899 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4900 } 4901 /* push the addresses in front */ 4902 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4903 4904 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 4905 switch (res) { 4906 case RX_QUEUED: 4907 return true; 4908 case RX_CONTINUE: 4909 break; 4910 default: 4911 goto drop; 4912 } 4913 4914 ieee80211_rx_8023(rx, fast_rx, orig_len); 4915 4916 return true; 4917 drop: 4918 dev_kfree_skb(skb); 4919 4920 if (fast_rx->uses_rss) 4921 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4922 else 4923 stats = &rx->link_sta->rx_stats; 4924 4925 stats->dropped++; 4926 return true; 4927 } 4928 4929 /* 4930 * This function returns whether or not the SKB 4931 * was destined for RX processing or not, which, 4932 * if consume is true, is equivalent to whether 4933 * or not the skb was consumed. 4934 */ 4935 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4936 struct sk_buff *skb, bool consume) 4937 { 4938 struct ieee80211_local *local = rx->local; 4939 struct ieee80211_sub_if_data *sdata = rx->sdata; 4940 struct ieee80211_hdr *hdr = (void *)skb->data; 4941 struct link_sta_info *link_sta = rx->link_sta; 4942 struct ieee80211_link_data *link = rx->link; 4943 4944 rx->skb = skb; 4945 4946 /* See if we can do fast-rx; if we have to copy we already lost, 4947 * so punt in that case. We should never have to deliver a data 4948 * frame to multiple interfaces anyway. 4949 * 4950 * We skip the ieee80211_accept_frame() call and do the necessary 4951 * checking inside ieee80211_invoke_fast_rx(). 4952 */ 4953 if (consume && rx->sta) { 4954 struct ieee80211_fast_rx *fast_rx; 4955 4956 fast_rx = rcu_dereference(rx->sta->fast_rx); 4957 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4958 return true; 4959 } 4960 4961 if (!ieee80211_accept_frame(rx)) 4962 return false; 4963 4964 if (!consume) { 4965 struct skb_shared_hwtstamps *shwt; 4966 4967 rx->skb = skb_copy(skb, GFP_ATOMIC); 4968 if (!rx->skb) { 4969 if (net_ratelimit()) 4970 wiphy_debug(local->hw.wiphy, 4971 "failed to copy skb for %s\n", 4972 sdata->name); 4973 return true; 4974 } 4975 4976 /* skb_copy() does not copy the hw timestamps, so copy it 4977 * explicitly 4978 */ 4979 shwt = skb_hwtstamps(rx->skb); 4980 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 4981 4982 /* Update the hdr pointer to the new skb for translation below */ 4983 hdr = (struct ieee80211_hdr *)rx->skb->data; 4984 } 4985 4986 if (unlikely(rx->sta && rx->sta->sta.mlo) && 4987 is_unicast_ether_addr(hdr->addr1) && 4988 !ieee80211_is_probe_resp(hdr->frame_control) && 4989 !ieee80211_is_beacon(hdr->frame_control)) { 4990 /* translate to MLD addresses */ 4991 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 4992 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 4993 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 4994 ether_addr_copy(hdr->addr2, rx->sta->addr); 4995 /* translate A3 only if it's the BSSID */ 4996 if (!ieee80211_has_tods(hdr->frame_control) && 4997 !ieee80211_has_fromds(hdr->frame_control)) { 4998 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 4999 ether_addr_copy(hdr->addr3, rx->sta->addr); 5000 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 5001 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 5002 } 5003 /* not needed for A4 since it can only carry the SA */ 5004 } 5005 5006 ieee80211_invoke_rx_handlers(rx); 5007 return true; 5008 } 5009 5010 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 5011 struct ieee80211_sta *pubsta, 5012 struct sk_buff *skb, 5013 struct list_head *list) 5014 { 5015 struct ieee80211_local *local = hw_to_local(hw); 5016 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5017 struct ieee80211_fast_rx *fast_rx; 5018 struct ieee80211_rx_data rx; 5019 struct sta_info *sta; 5020 int link_id = -1; 5021 5022 memset(&rx, 0, sizeof(rx)); 5023 rx.skb = skb; 5024 rx.local = local; 5025 rx.list = list; 5026 rx.link_id = -1; 5027 5028 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5029 5030 /* drop frame if too short for header */ 5031 if (skb->len < sizeof(struct ethhdr)) 5032 goto drop; 5033 5034 if (!pubsta) 5035 goto drop; 5036 5037 if (status->link_valid) 5038 link_id = status->link_id; 5039 5040 /* 5041 * TODO: Should the frame be dropped if the right link_id is not 5042 * available? Or may be it is fine in the current form to proceed with 5043 * the frame processing because with frame being in 802.3 format, 5044 * link_id is used only for stats purpose and updating the stats on 5045 * the deflink is fine? 5046 */ 5047 sta = container_of(pubsta, struct sta_info, sta); 5048 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5049 goto drop; 5050 5051 fast_rx = rcu_dereference(rx.sta->fast_rx); 5052 if (!fast_rx) 5053 goto drop; 5054 5055 ieee80211_rx_8023(&rx, fast_rx, skb->len); 5056 return; 5057 5058 drop: 5059 dev_kfree_skb(skb); 5060 } 5061 5062 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 5063 struct sk_buff *skb, bool consume) 5064 { 5065 struct link_sta_info *link_sta; 5066 struct ieee80211_hdr *hdr = (void *)skb->data; 5067 struct sta_info *sta; 5068 int link_id = -1; 5069 5070 /* 5071 * Look up link station first, in case there's a 5072 * chance that they might have a link address that 5073 * is identical to the MLD address, that way we'll 5074 * have the link information if needed. 5075 */ 5076 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 5077 if (link_sta) { 5078 sta = link_sta->sta; 5079 link_id = link_sta->link_id; 5080 } else { 5081 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5082 5083 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 5084 if (status->link_valid) 5085 link_id = status->link_id; 5086 } 5087 5088 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 5089 return false; 5090 5091 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 5092 } 5093 5094 /* 5095 * This is the actual Rx frames handler. as it belongs to Rx path it must 5096 * be called with rcu_read_lock protection. 5097 */ 5098 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 5099 struct ieee80211_sta *pubsta, 5100 struct sk_buff *skb, 5101 struct list_head *list) 5102 { 5103 struct ieee80211_local *local = hw_to_local(hw); 5104 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5105 struct ieee80211_sub_if_data *sdata; 5106 struct ieee80211_hdr *hdr; 5107 __le16 fc; 5108 struct ieee80211_rx_data rx; 5109 struct ieee80211_sub_if_data *prev; 5110 struct rhlist_head *tmp; 5111 int err = 0; 5112 5113 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5114 memset(&rx, 0, sizeof(rx)); 5115 rx.skb = skb; 5116 rx.local = local; 5117 rx.list = list; 5118 rx.link_id = -1; 5119 5120 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5121 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5122 5123 if (ieee80211_is_mgmt(fc)) { 5124 /* drop frame if too short for header */ 5125 if (skb->len < ieee80211_hdrlen(fc)) 5126 err = -ENOBUFS; 5127 else 5128 err = skb_linearize(skb); 5129 } else { 5130 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5131 } 5132 5133 if (err) { 5134 dev_kfree_skb(skb); 5135 return; 5136 } 5137 5138 hdr = (struct ieee80211_hdr *)skb->data; 5139 ieee80211_parse_qos(&rx); 5140 ieee80211_verify_alignment(&rx); 5141 5142 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5143 ieee80211_is_beacon(hdr->frame_control) || 5144 ieee80211_is_s1g_beacon(hdr->frame_control))) 5145 ieee80211_scan_rx(local, skb); 5146 5147 if (ieee80211_is_data(fc)) { 5148 struct sta_info *sta, *prev_sta; 5149 int link_id = -1; 5150 5151 if (status->link_valid) 5152 link_id = status->link_id; 5153 5154 if (pubsta) { 5155 sta = container_of(pubsta, struct sta_info, sta); 5156 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5157 goto out; 5158 5159 /* 5160 * In MLO connection, fetch the link_id using addr2 5161 * when the driver does not pass link_id in status. 5162 * When the address translation is already performed by 5163 * driver/hw, the valid link_id must be passed in 5164 * status. 5165 */ 5166 5167 if (!status->link_valid && pubsta->mlo) { 5168 struct ieee80211_hdr *hdr = (void *)skb->data; 5169 struct link_sta_info *link_sta; 5170 5171 link_sta = link_sta_info_get_bss(rx.sdata, 5172 hdr->addr2); 5173 if (!link_sta) 5174 goto out; 5175 5176 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5177 } 5178 5179 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5180 return; 5181 goto out; 5182 } 5183 5184 prev_sta = NULL; 5185 5186 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5187 if (!prev_sta) { 5188 prev_sta = sta; 5189 continue; 5190 } 5191 5192 rx.sdata = prev_sta->sdata; 5193 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5194 goto out; 5195 5196 if (!status->link_valid && prev_sta->sta.mlo) 5197 continue; 5198 5199 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5200 5201 prev_sta = sta; 5202 } 5203 5204 if (prev_sta) { 5205 rx.sdata = prev_sta->sdata; 5206 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5207 goto out; 5208 5209 if (!status->link_valid && prev_sta->sta.mlo) 5210 goto out; 5211 5212 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5213 return; 5214 goto out; 5215 } 5216 } 5217 5218 prev = NULL; 5219 5220 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5221 if (!ieee80211_sdata_running(sdata)) 5222 continue; 5223 5224 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5225 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5226 continue; 5227 5228 /* 5229 * frame is destined for this interface, but if it's 5230 * not also for the previous one we handle that after 5231 * the loop to avoid copying the SKB once too much 5232 */ 5233 5234 if (!prev) { 5235 prev = sdata; 5236 continue; 5237 } 5238 5239 rx.sdata = prev; 5240 ieee80211_rx_for_interface(&rx, skb, false); 5241 5242 prev = sdata; 5243 } 5244 5245 if (prev) { 5246 rx.sdata = prev; 5247 5248 if (ieee80211_rx_for_interface(&rx, skb, true)) 5249 return; 5250 } 5251 5252 out: 5253 dev_kfree_skb(skb); 5254 } 5255 5256 /* 5257 * This is the receive path handler. It is called by a low level driver when an 5258 * 802.11 MPDU is received from the hardware. 5259 */ 5260 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5261 struct sk_buff *skb, struct list_head *list) 5262 { 5263 struct ieee80211_local *local = hw_to_local(hw); 5264 struct ieee80211_rate *rate = NULL; 5265 struct ieee80211_supported_band *sband; 5266 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5267 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5268 5269 WARN_ON_ONCE(softirq_count() == 0); 5270 5271 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5272 goto drop; 5273 5274 sband = local->hw.wiphy->bands[status->band]; 5275 if (WARN_ON(!sband)) 5276 goto drop; 5277 5278 /* 5279 * If we're suspending, it is possible although not too likely 5280 * that we'd be receiving frames after having already partially 5281 * quiesced the stack. We can't process such frames then since 5282 * that might, for example, cause stations to be added or other 5283 * driver callbacks be invoked. 5284 */ 5285 if (unlikely(local->quiescing || local->suspended)) 5286 goto drop; 5287 5288 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5289 if (unlikely(local->in_reconfig)) 5290 goto drop; 5291 5292 /* 5293 * The same happens when we're not even started, 5294 * but that's worth a warning. 5295 */ 5296 if (WARN_ON(!local->started)) 5297 goto drop; 5298 5299 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5300 /* 5301 * Validate the rate, unless a PLCP error means that 5302 * we probably can't have a valid rate here anyway. 5303 */ 5304 5305 switch (status->encoding) { 5306 case RX_ENC_HT: 5307 /* 5308 * rate_idx is MCS index, which can be [0-76] 5309 * as documented on: 5310 * 5311 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5312 * 5313 * Anything else would be some sort of driver or 5314 * hardware error. The driver should catch hardware 5315 * errors. 5316 */ 5317 if (WARN(status->rate_idx > 76, 5318 "Rate marked as an HT rate but passed " 5319 "status->rate_idx is not " 5320 "an MCS index [0-76]: %d (0x%02x)\n", 5321 status->rate_idx, 5322 status->rate_idx)) 5323 goto drop; 5324 break; 5325 case RX_ENC_VHT: 5326 if (WARN_ONCE(status->rate_idx > 11 || 5327 !status->nss || 5328 status->nss > 8, 5329 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5330 status->rate_idx, status->nss)) 5331 goto drop; 5332 break; 5333 case RX_ENC_HE: 5334 if (WARN_ONCE(status->rate_idx > 11 || 5335 !status->nss || 5336 status->nss > 8, 5337 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5338 status->rate_idx, status->nss)) 5339 goto drop; 5340 break; 5341 case RX_ENC_EHT: 5342 if (WARN_ONCE(status->rate_idx > 15 || 5343 !status->nss || 5344 status->nss > 8 || 5345 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5346 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5347 status->rate_idx, status->nss, status->eht.gi)) 5348 goto drop; 5349 break; 5350 default: 5351 WARN_ON_ONCE(1); 5352 fallthrough; 5353 case RX_ENC_LEGACY: 5354 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5355 goto drop; 5356 rate = &sband->bitrates[status->rate_idx]; 5357 } 5358 } 5359 5360 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5361 goto drop; 5362 5363 status->rx_flags = 0; 5364 5365 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5366 5367 /* 5368 * Frames with failed FCS/PLCP checksum are not returned, 5369 * all other frames are returned without radiotap header 5370 * if it was previously present. 5371 * Also, frames with less than 16 bytes are dropped. 5372 */ 5373 if (!(status->flag & RX_FLAG_8023)) 5374 skb = ieee80211_rx_monitor(local, skb, rate); 5375 if (skb) { 5376 if ((status->flag & RX_FLAG_8023) || 5377 ieee80211_is_data_present(hdr->frame_control)) 5378 ieee80211_tpt_led_trig_rx(local, skb->len); 5379 5380 if (status->flag & RX_FLAG_8023) 5381 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5382 else 5383 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5384 } 5385 5386 kcov_remote_stop(); 5387 return; 5388 drop: 5389 kfree_skb(skb); 5390 } 5391 EXPORT_SYMBOL(ieee80211_rx_list); 5392 5393 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5394 struct sk_buff *skb, struct napi_struct *napi) 5395 { 5396 struct sk_buff *tmp; 5397 LIST_HEAD(list); 5398 5399 5400 /* 5401 * key references and virtual interfaces are protected using RCU 5402 * and this requires that we are in a read-side RCU section during 5403 * receive processing 5404 */ 5405 rcu_read_lock(); 5406 ieee80211_rx_list(hw, pubsta, skb, &list); 5407 rcu_read_unlock(); 5408 5409 if (!napi) { 5410 netif_receive_skb_list(&list); 5411 return; 5412 } 5413 5414 list_for_each_entry_safe(skb, tmp, &list, list) { 5415 skb_list_del_init(skb); 5416 napi_gro_receive(napi, skb); 5417 } 5418 } 5419 EXPORT_SYMBOL(ieee80211_rx_napi); 5420 5421 /* This is a version of the rx handler that can be called from hard irq 5422 * context. Post the skb on the queue and schedule the tasklet */ 5423 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5424 { 5425 struct ieee80211_local *local = hw_to_local(hw); 5426 5427 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5428 5429 skb->pkt_type = IEEE80211_RX_MSG; 5430 skb_queue_tail(&local->skb_queue, skb); 5431 tasklet_schedule(&local->tasklet); 5432 } 5433 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5434