1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 44 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 if (status->vendor_radiotap_len) 57 __pskb_pull(skb, status->vendor_radiotap_len); 58 59 return skb; 60 } 61 62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + status->vendor_radiotap_len); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return 1; 73 if (unlikely(skb->len < 16 + present_fcs_len + 74 status->vendor_radiotap_len)) 75 return 1; 76 if (ieee80211_is_ctl(hdr->frame_control) && 77 !ieee80211_is_pspoll(hdr->frame_control) && 78 !ieee80211_is_back_req(hdr->frame_control)) 79 return 1; 80 return 0; 81 } 82 83 static int 84 ieee80211_rx_radiotap_space(struct ieee80211_local *local, 85 struct ieee80211_rx_status *status) 86 { 87 int len; 88 89 /* always present fields */ 90 len = sizeof(struct ieee80211_radiotap_header) + 8; 91 92 /* allocate extra bitmaps */ 93 if (status->vendor_radiotap_len) 94 len += 4; 95 if (status->chains) 96 len += 4 * hweight8(status->chains); 97 98 if (ieee80211_have_rx_timestamp(status)) { 99 len = ALIGN(len, 8); 100 len += 8; 101 } 102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 103 len += 1; 104 105 /* antenna field, if we don't have per-chain info */ 106 if (!status->chains) 107 len += 1; 108 109 /* padding for RX_FLAGS if necessary */ 110 len = ALIGN(len, 2); 111 112 if (status->flag & RX_FLAG_HT) /* HT info */ 113 len += 3; 114 115 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 116 len = ALIGN(len, 4); 117 len += 8; 118 } 119 120 if (status->flag & RX_FLAG_VHT) { 121 len = ALIGN(len, 2); 122 len += 12; 123 } 124 125 if (status->chains) { 126 /* antenna and antenna signal fields */ 127 len += 2 * hweight8(status->chains); 128 } 129 130 if (status->vendor_radiotap_len) { 131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0)) 132 status->vendor_radiotap_align = 1; 133 /* align standard part of vendor namespace */ 134 len = ALIGN(len, 2); 135 /* allocate standard part of vendor namespace */ 136 len += 6; 137 /* align vendor-defined part */ 138 len = ALIGN(len, status->vendor_radiotap_align); 139 /* vendor-defined part is already in skb */ 140 } 141 142 return len; 143 } 144 145 /* 146 * ieee80211_add_rx_radiotap_header - add radiotap header 147 * 148 * add a radiotap header containing all the fields which the hardware provided. 149 */ 150 static void 151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 152 struct sk_buff *skb, 153 struct ieee80211_rate *rate, 154 int rtap_len, bool has_fcs) 155 { 156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 157 struct ieee80211_radiotap_header *rthdr; 158 unsigned char *pos; 159 __le32 *it_present; 160 u32 it_present_val; 161 u16 rx_flags = 0; 162 u16 channel_flags = 0; 163 int mpdulen, chain; 164 unsigned long chains = status->chains; 165 166 mpdulen = skb->len; 167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 168 mpdulen += FCS_LEN; 169 170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 171 memset(rthdr, 0, rtap_len); 172 it_present = &rthdr->it_present; 173 174 /* radiotap header, set always present flags */ 175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len); 176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 177 BIT(IEEE80211_RADIOTAP_CHANNEL) | 178 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 179 180 if (!status->chains) 181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 182 183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 184 it_present_val |= 185 BIT(IEEE80211_RADIOTAP_EXT) | 186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 187 put_unaligned_le32(it_present_val, it_present); 188 it_present++; 189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 191 } 192 193 if (status->vendor_radiotap_len) { 194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 195 BIT(IEEE80211_RADIOTAP_EXT); 196 put_unaligned_le32(it_present_val, it_present); 197 it_present++; 198 it_present_val = status->vendor_radiotap_bitmap; 199 } 200 201 put_unaligned_le32(it_present_val, it_present); 202 203 pos = (void *)(it_present + 1); 204 205 /* the order of the following fields is important */ 206 207 /* IEEE80211_RADIOTAP_TSFT */ 208 if (ieee80211_have_rx_timestamp(status)) { 209 /* padding */ 210 while ((pos - (u8 *)rthdr) & 7) 211 *pos++ = 0; 212 put_unaligned_le64( 213 ieee80211_calculate_rx_timestamp(local, status, 214 mpdulen, 0), 215 pos); 216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 217 pos += 8; 218 } 219 220 /* IEEE80211_RADIOTAP_FLAGS */ 221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 222 *pos |= IEEE80211_RADIOTAP_F_FCS; 223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 224 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 225 if (status->flag & RX_FLAG_SHORTPRE) 226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 227 pos++; 228 229 /* IEEE80211_RADIOTAP_RATE */ 230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 231 /* 232 * Without rate information don't add it. If we have, 233 * MCS information is a separate field in radiotap, 234 * added below. The byte here is needed as padding 235 * for the channel though, so initialise it to 0. 236 */ 237 *pos = 0; 238 } else { 239 int shift = 0; 240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 241 if (status->flag & RX_FLAG_10MHZ) 242 shift = 1; 243 else if (status->flag & RX_FLAG_5MHZ) 244 shift = 2; 245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 246 } 247 pos++; 248 249 /* IEEE80211_RADIOTAP_CHANNEL */ 250 put_unaligned_le16(status->freq, pos); 251 pos += 2; 252 if (status->flag & RX_FLAG_10MHZ) 253 channel_flags |= IEEE80211_CHAN_HALF; 254 else if (status->flag & RX_FLAG_5MHZ) 255 channel_flags |= IEEE80211_CHAN_QUARTER; 256 257 if (status->band == IEEE80211_BAND_5GHZ) 258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 263 else if (rate) 264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 265 else 266 channel_flags |= IEEE80211_CHAN_2GHZ; 267 put_unaligned_le16(channel_flags, pos); 268 pos += 2; 269 270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 273 *pos = status->signal; 274 rthdr->it_present |= 275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 276 pos++; 277 } 278 279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 280 281 if (!status->chains) { 282 /* IEEE80211_RADIOTAP_ANTENNA */ 283 *pos = status->antenna; 284 pos++; 285 } 286 287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 288 289 /* IEEE80211_RADIOTAP_RX_FLAGS */ 290 /* ensure 2 byte alignment for the 2 byte field as required */ 291 if ((pos - (u8 *)rthdr) & 1) 292 *pos++ = 0; 293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 295 put_unaligned_le16(rx_flags, pos); 296 pos += 2; 297 298 if (status->flag & RX_FLAG_HT) { 299 unsigned int stbc; 300 301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 302 *pos++ = local->hw.radiotap_mcs_details; 303 *pos = 0; 304 if (status->flag & RX_FLAG_SHORT_GI) 305 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 306 if (status->flag & RX_FLAG_40MHZ) 307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 308 if (status->flag & RX_FLAG_HT_GF) 309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 312 pos++; 313 *pos++ = status->rate_idx; 314 } 315 316 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 317 u16 flags = 0; 318 319 /* ensure 4 byte alignment */ 320 while ((pos - (u8 *)rthdr) & 3) 321 pos++; 322 rthdr->it_present |= 323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 324 put_unaligned_le32(status->ampdu_reference, pos); 325 pos += 4; 326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 332 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 338 put_unaligned_le16(flags, pos); 339 pos += 2; 340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 341 *pos++ = status->ampdu_delimiter_crc; 342 else 343 *pos++ = 0; 344 *pos++ = 0; 345 } 346 347 if (status->flag & RX_FLAG_VHT) { 348 u16 known = local->hw.radiotap_vht_details; 349 350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 351 /* known field - how to handle 80+80? */ 352 if (status->flag & RX_FLAG_80P80MHZ) 353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 354 put_unaligned_le16(known, pos); 355 pos += 2; 356 /* flags */ 357 if (status->flag & RX_FLAG_SHORT_GI) 358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 359 pos++; 360 /* bandwidth */ 361 if (status->flag & RX_FLAG_80MHZ) 362 *pos++ = 4; 363 else if (status->flag & RX_FLAG_80P80MHZ) 364 *pos++ = 0; /* marked not known above */ 365 else if (status->flag & RX_FLAG_160MHZ) 366 *pos++ = 11; 367 else if (status->flag & RX_FLAG_40MHZ) 368 *pos++ = 1; 369 else /* 20 MHz */ 370 *pos++ = 0; 371 /* MCS/NSS */ 372 *pos = (status->rate_idx << 4) | status->vht_nss; 373 pos += 4; 374 /* coding field */ 375 pos++; 376 /* group ID */ 377 pos++; 378 /* partial_aid */ 379 pos += 2; 380 } 381 382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 383 *pos++ = status->chain_signal[chain]; 384 *pos++ = chain; 385 } 386 387 if (status->vendor_radiotap_len) { 388 /* ensure 2 byte alignment for the vendor field as required */ 389 if ((pos - (u8 *)rthdr) & 1) 390 *pos++ = 0; 391 *pos++ = status->vendor_radiotap_oui[0]; 392 *pos++ = status->vendor_radiotap_oui[1]; 393 *pos++ = status->vendor_radiotap_oui[2]; 394 *pos++ = status->vendor_radiotap_subns; 395 put_unaligned_le16(status->vendor_radiotap_len, pos); 396 pos += 2; 397 /* align the actual payload as requested */ 398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1)) 399 *pos++ = 0; 400 } 401 } 402 403 /* 404 * This function copies a received frame to all monitor interfaces and 405 * returns a cleaned-up SKB that no longer includes the FCS nor the 406 * radiotap header the driver might have added. 407 */ 408 static struct sk_buff * 409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 410 struct ieee80211_rate *rate) 411 { 412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 413 struct ieee80211_sub_if_data *sdata; 414 int needed_headroom; 415 struct sk_buff *skb, *skb2; 416 struct net_device *prev_dev = NULL; 417 int present_fcs_len = 0; 418 419 /* 420 * First, we may need to make a copy of the skb because 421 * (1) we need to modify it for radiotap (if not present), and 422 * (2) the other RX handlers will modify the skb we got. 423 * 424 * We don't need to, of course, if we aren't going to return 425 * the SKB because it has a bad FCS/PLCP checksum. 426 */ 427 428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 429 present_fcs_len = FCS_LEN; 430 431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) { 433 dev_kfree_skb(origskb); 434 return NULL; 435 } 436 437 if (!local->monitors) { 438 if (should_drop_frame(origskb, present_fcs_len)) { 439 dev_kfree_skb(origskb); 440 return NULL; 441 } 442 443 return remove_monitor_info(local, origskb); 444 } 445 446 /* room for the radiotap header based on driver features */ 447 needed_headroom = ieee80211_rx_radiotap_space(local, status); 448 449 if (should_drop_frame(origskb, present_fcs_len)) { 450 /* only need to expand headroom if necessary */ 451 skb = origskb; 452 origskb = NULL; 453 454 /* 455 * This shouldn't trigger often because most devices have an 456 * RX header they pull before we get here, and that should 457 * be big enough for our radiotap information. We should 458 * probably export the length to drivers so that we can have 459 * them allocate enough headroom to start with. 460 */ 461 if (skb_headroom(skb) < needed_headroom && 462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 463 dev_kfree_skb(skb); 464 return NULL; 465 } 466 } else { 467 /* 468 * Need to make a copy and possibly remove radiotap header 469 * and FCS from the original. 470 */ 471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 472 473 origskb = remove_monitor_info(local, origskb); 474 475 if (!skb) 476 return origskb; 477 } 478 479 /* prepend radiotap information */ 480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 481 true); 482 483 skb_reset_mac_header(skb); 484 skb->ip_summed = CHECKSUM_UNNECESSARY; 485 skb->pkt_type = PACKET_OTHERHOST; 486 skb->protocol = htons(ETH_P_802_2); 487 488 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 490 continue; 491 492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 493 continue; 494 495 if (!ieee80211_sdata_running(sdata)) 496 continue; 497 498 if (prev_dev) { 499 skb2 = skb_clone(skb, GFP_ATOMIC); 500 if (skb2) { 501 skb2->dev = prev_dev; 502 netif_receive_skb(skb2); 503 } 504 } 505 506 prev_dev = sdata->dev; 507 sdata->dev->stats.rx_packets++; 508 sdata->dev->stats.rx_bytes += skb->len; 509 } 510 511 if (prev_dev) { 512 skb->dev = prev_dev; 513 netif_receive_skb(skb); 514 } else 515 dev_kfree_skb(skb); 516 517 return origskb; 518 } 519 520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 521 { 522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 524 int tid, seqno_idx, security_idx; 525 526 /* does the frame have a qos control field? */ 527 if (ieee80211_is_data_qos(hdr->frame_control)) { 528 u8 *qc = ieee80211_get_qos_ctl(hdr); 529 /* frame has qos control */ 530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 532 status->rx_flags |= IEEE80211_RX_AMSDU; 533 534 seqno_idx = tid; 535 security_idx = tid; 536 } else { 537 /* 538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 539 * 540 * Sequence numbers for management frames, QoS data 541 * frames with a broadcast/multicast address in the 542 * Address 1 field, and all non-QoS data frames sent 543 * by QoS STAs are assigned using an additional single 544 * modulo-4096 counter, [...] 545 * 546 * We also use that counter for non-QoS STAs. 547 */ 548 seqno_idx = IEEE80211_NUM_TIDS; 549 security_idx = 0; 550 if (ieee80211_is_mgmt(hdr->frame_control)) 551 security_idx = IEEE80211_NUM_TIDS; 552 tid = 0; 553 } 554 555 rx->seqno_idx = seqno_idx; 556 rx->security_idx = security_idx; 557 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 558 * For now, set skb->priority to 0 for other cases. */ 559 rx->skb->priority = (tid > 7) ? 0 : tid; 560 } 561 562 /** 563 * DOC: Packet alignment 564 * 565 * Drivers always need to pass packets that are aligned to two-byte boundaries 566 * to the stack. 567 * 568 * Additionally, should, if possible, align the payload data in a way that 569 * guarantees that the contained IP header is aligned to a four-byte 570 * boundary. In the case of regular frames, this simply means aligning the 571 * payload to a four-byte boundary (because either the IP header is directly 572 * contained, or IV/RFC1042 headers that have a length divisible by four are 573 * in front of it). If the payload data is not properly aligned and the 574 * architecture doesn't support efficient unaligned operations, mac80211 575 * will align the data. 576 * 577 * With A-MSDU frames, however, the payload data address must yield two modulo 578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 579 * push the IP header further back to a multiple of four again. Thankfully, the 580 * specs were sane enough this time around to require padding each A-MSDU 581 * subframe to a length that is a multiple of four. 582 * 583 * Padding like Atheros hardware adds which is between the 802.11 header and 584 * the payload is not supported, the driver is required to move the 802.11 585 * header to be directly in front of the payload in that case. 586 */ 587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 588 { 589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 590 WARN_ONCE((unsigned long)rx->skb->data & 1, 591 "unaligned packet at 0x%p\n", rx->skb->data); 592 #endif 593 } 594 595 596 /* rx handlers */ 597 598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 599 { 600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 601 602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 603 return 0; 604 605 return ieee80211_is_robust_mgmt_frame(hdr); 606 } 607 608 609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 610 { 611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 612 613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 614 return 0; 615 616 return ieee80211_is_robust_mgmt_frame(hdr); 617 } 618 619 620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 622 { 623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 624 struct ieee80211_mmie *mmie; 625 626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 627 return -1; 628 629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 630 return -1; /* not a robust management frame */ 631 632 mmie = (struct ieee80211_mmie *) 633 (skb->data + skb->len - sizeof(*mmie)); 634 if (mmie->element_id != WLAN_EID_MMIE || 635 mmie->length != sizeof(*mmie) - 2) 636 return -1; 637 638 return le16_to_cpu(mmie->key_id); 639 } 640 641 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 642 struct sk_buff *skb) 643 { 644 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 645 __le16 fc; 646 int hdrlen; 647 u8 keyid; 648 649 fc = hdr->frame_control; 650 hdrlen = ieee80211_hdrlen(fc); 651 652 if (skb->len < hdrlen + cs->hdr_len) 653 return -EINVAL; 654 655 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 656 keyid &= cs->key_idx_mask; 657 keyid >>= cs->key_idx_shift; 658 659 return keyid; 660 } 661 662 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 663 { 664 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 665 char *dev_addr = rx->sdata->vif.addr; 666 667 if (ieee80211_is_data(hdr->frame_control)) { 668 if (is_multicast_ether_addr(hdr->addr1)) { 669 if (ieee80211_has_tods(hdr->frame_control) || 670 !ieee80211_has_fromds(hdr->frame_control)) 671 return RX_DROP_MONITOR; 672 if (ether_addr_equal(hdr->addr3, dev_addr)) 673 return RX_DROP_MONITOR; 674 } else { 675 if (!ieee80211_has_a4(hdr->frame_control)) 676 return RX_DROP_MONITOR; 677 if (ether_addr_equal(hdr->addr4, dev_addr)) 678 return RX_DROP_MONITOR; 679 } 680 } 681 682 /* If there is not an established peer link and this is not a peer link 683 * establisment frame, beacon or probe, drop the frame. 684 */ 685 686 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 687 struct ieee80211_mgmt *mgmt; 688 689 if (!ieee80211_is_mgmt(hdr->frame_control)) 690 return RX_DROP_MONITOR; 691 692 if (ieee80211_is_action(hdr->frame_control)) { 693 u8 category; 694 695 /* make sure category field is present */ 696 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 697 return RX_DROP_MONITOR; 698 699 mgmt = (struct ieee80211_mgmt *)hdr; 700 category = mgmt->u.action.category; 701 if (category != WLAN_CATEGORY_MESH_ACTION && 702 category != WLAN_CATEGORY_SELF_PROTECTED) 703 return RX_DROP_MONITOR; 704 return RX_CONTINUE; 705 } 706 707 if (ieee80211_is_probe_req(hdr->frame_control) || 708 ieee80211_is_probe_resp(hdr->frame_control) || 709 ieee80211_is_beacon(hdr->frame_control) || 710 ieee80211_is_auth(hdr->frame_control)) 711 return RX_CONTINUE; 712 713 return RX_DROP_MONITOR; 714 } 715 716 return RX_CONTINUE; 717 } 718 719 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 720 struct tid_ampdu_rx *tid_agg_rx, 721 int index, 722 struct sk_buff_head *frames) 723 { 724 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 725 struct ieee80211_rx_status *status; 726 727 lockdep_assert_held(&tid_agg_rx->reorder_lock); 728 729 if (!skb) 730 goto no_frame; 731 732 /* release the frame from the reorder ring buffer */ 733 tid_agg_rx->stored_mpdu_num--; 734 tid_agg_rx->reorder_buf[index] = NULL; 735 status = IEEE80211_SKB_RXCB(skb); 736 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 737 __skb_queue_tail(frames, skb); 738 739 no_frame: 740 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 741 } 742 743 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 744 struct tid_ampdu_rx *tid_agg_rx, 745 u16 head_seq_num, 746 struct sk_buff_head *frames) 747 { 748 int index; 749 750 lockdep_assert_held(&tid_agg_rx->reorder_lock); 751 752 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 753 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 754 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 755 frames); 756 } 757 } 758 759 /* 760 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 761 * the skb was added to the buffer longer than this time ago, the earlier 762 * frames that have not yet been received are assumed to be lost and the skb 763 * can be released for processing. This may also release other skb's from the 764 * reorder buffer if there are no additional gaps between the frames. 765 * 766 * Callers must hold tid_agg_rx->reorder_lock. 767 */ 768 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 769 770 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 771 struct tid_ampdu_rx *tid_agg_rx, 772 struct sk_buff_head *frames) 773 { 774 int index, j; 775 776 lockdep_assert_held(&tid_agg_rx->reorder_lock); 777 778 /* release the buffer until next missing frame */ 779 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 780 if (!tid_agg_rx->reorder_buf[index] && 781 tid_agg_rx->stored_mpdu_num) { 782 /* 783 * No buffers ready to be released, but check whether any 784 * frames in the reorder buffer have timed out. 785 */ 786 int skipped = 1; 787 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 788 j = (j + 1) % tid_agg_rx->buf_size) { 789 if (!tid_agg_rx->reorder_buf[j]) { 790 skipped++; 791 continue; 792 } 793 if (skipped && 794 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 795 HT_RX_REORDER_BUF_TIMEOUT)) 796 goto set_release_timer; 797 798 ht_dbg_ratelimited(sdata, 799 "release an RX reorder frame due to timeout on earlier frames\n"); 800 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 801 frames); 802 803 /* 804 * Increment the head seq# also for the skipped slots. 805 */ 806 tid_agg_rx->head_seq_num = 807 (tid_agg_rx->head_seq_num + 808 skipped) & IEEE80211_SN_MASK; 809 skipped = 0; 810 } 811 } else while (tid_agg_rx->reorder_buf[index]) { 812 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 813 frames); 814 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 815 } 816 817 if (tid_agg_rx->stored_mpdu_num) { 818 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 819 820 for (; j != (index - 1) % tid_agg_rx->buf_size; 821 j = (j + 1) % tid_agg_rx->buf_size) { 822 if (tid_agg_rx->reorder_buf[j]) 823 break; 824 } 825 826 set_release_timer: 827 828 mod_timer(&tid_agg_rx->reorder_timer, 829 tid_agg_rx->reorder_time[j] + 1 + 830 HT_RX_REORDER_BUF_TIMEOUT); 831 } else { 832 del_timer(&tid_agg_rx->reorder_timer); 833 } 834 } 835 836 /* 837 * As this function belongs to the RX path it must be under 838 * rcu_read_lock protection. It returns false if the frame 839 * can be processed immediately, true if it was consumed. 840 */ 841 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 842 struct tid_ampdu_rx *tid_agg_rx, 843 struct sk_buff *skb, 844 struct sk_buff_head *frames) 845 { 846 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 847 u16 sc = le16_to_cpu(hdr->seq_ctrl); 848 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 849 u16 head_seq_num, buf_size; 850 int index; 851 bool ret = true; 852 853 spin_lock(&tid_agg_rx->reorder_lock); 854 855 buf_size = tid_agg_rx->buf_size; 856 head_seq_num = tid_agg_rx->head_seq_num; 857 858 /* frame with out of date sequence number */ 859 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 860 dev_kfree_skb(skb); 861 goto out; 862 } 863 864 /* 865 * If frame the sequence number exceeds our buffering window 866 * size release some previous frames to make room for this one. 867 */ 868 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 869 head_seq_num = ieee80211_sn_inc( 870 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 871 /* release stored frames up to new head to stack */ 872 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 873 head_seq_num, frames); 874 } 875 876 /* Now the new frame is always in the range of the reordering buffer */ 877 878 index = mpdu_seq_num % tid_agg_rx->buf_size; 879 880 /* check if we already stored this frame */ 881 if (tid_agg_rx->reorder_buf[index]) { 882 dev_kfree_skb(skb); 883 goto out; 884 } 885 886 /* 887 * If the current MPDU is in the right order and nothing else 888 * is stored we can process it directly, no need to buffer it. 889 * If it is first but there's something stored, we may be able 890 * to release frames after this one. 891 */ 892 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 893 tid_agg_rx->stored_mpdu_num == 0) { 894 tid_agg_rx->head_seq_num = 895 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 896 ret = false; 897 goto out; 898 } 899 900 /* put the frame in the reordering buffer */ 901 tid_agg_rx->reorder_buf[index] = skb; 902 tid_agg_rx->reorder_time[index] = jiffies; 903 tid_agg_rx->stored_mpdu_num++; 904 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 905 906 out: 907 spin_unlock(&tid_agg_rx->reorder_lock); 908 return ret; 909 } 910 911 /* 912 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 913 * true if the MPDU was buffered, false if it should be processed. 914 */ 915 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 916 struct sk_buff_head *frames) 917 { 918 struct sk_buff *skb = rx->skb; 919 struct ieee80211_local *local = rx->local; 920 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 921 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 922 struct sta_info *sta = rx->sta; 923 struct tid_ampdu_rx *tid_agg_rx; 924 u16 sc; 925 u8 tid, ack_policy; 926 927 if (!ieee80211_is_data_qos(hdr->frame_control) || 928 is_multicast_ether_addr(hdr->addr1)) 929 goto dont_reorder; 930 931 /* 932 * filter the QoS data rx stream according to 933 * STA/TID and check if this STA/TID is on aggregation 934 */ 935 936 if (!sta) 937 goto dont_reorder; 938 939 ack_policy = *ieee80211_get_qos_ctl(hdr) & 940 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 941 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 942 943 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 944 if (!tid_agg_rx) 945 goto dont_reorder; 946 947 /* qos null data frames are excluded */ 948 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 949 goto dont_reorder; 950 951 /* not part of a BA session */ 952 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 953 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 954 goto dont_reorder; 955 956 /* not actually part of this BA session */ 957 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 958 goto dont_reorder; 959 960 /* new, potentially un-ordered, ampdu frame - process it */ 961 962 /* reset session timer */ 963 if (tid_agg_rx->timeout) 964 tid_agg_rx->last_rx = jiffies; 965 966 /* if this mpdu is fragmented - terminate rx aggregation session */ 967 sc = le16_to_cpu(hdr->seq_ctrl); 968 if (sc & IEEE80211_SCTL_FRAG) { 969 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 970 skb_queue_tail(&rx->sdata->skb_queue, skb); 971 ieee80211_queue_work(&local->hw, &rx->sdata->work); 972 return; 973 } 974 975 /* 976 * No locking needed -- we will only ever process one 977 * RX packet at a time, and thus own tid_agg_rx. All 978 * other code manipulating it needs to (and does) make 979 * sure that we cannot get to it any more before doing 980 * anything with it. 981 */ 982 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 983 frames)) 984 return; 985 986 dont_reorder: 987 __skb_queue_tail(frames, skb); 988 } 989 990 static ieee80211_rx_result debug_noinline 991 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 992 { 993 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 994 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 995 996 /* 997 * Drop duplicate 802.11 retransmissions 998 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 999 */ 1000 if (rx->skb->len >= 24 && rx->sta && 1001 !ieee80211_is_ctl(hdr->frame_control) && 1002 !ieee80211_is_qos_nullfunc(hdr->frame_control) && 1003 !is_multicast_ether_addr(hdr->addr1)) { 1004 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1005 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1006 hdr->seq_ctrl)) { 1007 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1008 rx->local->dot11FrameDuplicateCount++; 1009 rx->sta->num_duplicates++; 1010 } 1011 return RX_DROP_UNUSABLE; 1012 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1013 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1014 } 1015 } 1016 1017 if (unlikely(rx->skb->len < 16)) { 1018 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1019 return RX_DROP_MONITOR; 1020 } 1021 1022 /* Drop disallowed frame classes based on STA auth/assoc state; 1023 * IEEE 802.11, Chap 5.5. 1024 * 1025 * mac80211 filters only based on association state, i.e. it drops 1026 * Class 3 frames from not associated stations. hostapd sends 1027 * deauth/disassoc frames when needed. In addition, hostapd is 1028 * responsible for filtering on both auth and assoc states. 1029 */ 1030 1031 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1032 return ieee80211_rx_mesh_check(rx); 1033 1034 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1035 ieee80211_is_pspoll(hdr->frame_control)) && 1036 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1037 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1038 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1039 /* 1040 * accept port control frames from the AP even when it's not 1041 * yet marked ASSOC to prevent a race where we don't set the 1042 * assoc bit quickly enough before it sends the first frame 1043 */ 1044 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1045 ieee80211_is_data_present(hdr->frame_control)) { 1046 unsigned int hdrlen; 1047 __be16 ethertype; 1048 1049 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1050 1051 if (rx->skb->len < hdrlen + 8) 1052 return RX_DROP_MONITOR; 1053 1054 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1055 if (ethertype == rx->sdata->control_port_protocol) 1056 return RX_CONTINUE; 1057 } 1058 1059 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1060 cfg80211_rx_spurious_frame(rx->sdata->dev, 1061 hdr->addr2, 1062 GFP_ATOMIC)) 1063 return RX_DROP_UNUSABLE; 1064 1065 return RX_DROP_MONITOR; 1066 } 1067 1068 return RX_CONTINUE; 1069 } 1070 1071 1072 static ieee80211_rx_result debug_noinline 1073 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1074 { 1075 struct ieee80211_local *local; 1076 struct ieee80211_hdr *hdr; 1077 struct sk_buff *skb; 1078 1079 local = rx->local; 1080 skb = rx->skb; 1081 hdr = (struct ieee80211_hdr *) skb->data; 1082 1083 if (!local->pspolling) 1084 return RX_CONTINUE; 1085 1086 if (!ieee80211_has_fromds(hdr->frame_control)) 1087 /* this is not from AP */ 1088 return RX_CONTINUE; 1089 1090 if (!ieee80211_is_data(hdr->frame_control)) 1091 return RX_CONTINUE; 1092 1093 if (!ieee80211_has_moredata(hdr->frame_control)) { 1094 /* AP has no more frames buffered for us */ 1095 local->pspolling = false; 1096 return RX_CONTINUE; 1097 } 1098 1099 /* more data bit is set, let's request a new frame from the AP */ 1100 ieee80211_send_pspoll(local, rx->sdata); 1101 1102 return RX_CONTINUE; 1103 } 1104 1105 static void sta_ps_start(struct sta_info *sta) 1106 { 1107 struct ieee80211_sub_if_data *sdata = sta->sdata; 1108 struct ieee80211_local *local = sdata->local; 1109 struct ps_data *ps; 1110 1111 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1112 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1113 ps = &sdata->bss->ps; 1114 else 1115 return; 1116 1117 atomic_inc(&ps->num_sta_ps); 1118 set_sta_flag(sta, WLAN_STA_PS_STA); 1119 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1120 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1121 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1122 sta->sta.addr, sta->sta.aid); 1123 } 1124 1125 static void sta_ps_end(struct sta_info *sta) 1126 { 1127 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1128 sta->sta.addr, sta->sta.aid); 1129 1130 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1131 /* 1132 * Clear the flag only if the other one is still set 1133 * so that the TX path won't start TX'ing new frames 1134 * directly ... In the case that the driver flag isn't 1135 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1136 */ 1137 clear_sta_flag(sta, WLAN_STA_PS_STA); 1138 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1139 sta->sta.addr, sta->sta.aid); 1140 return; 1141 } 1142 1143 ieee80211_sta_ps_deliver_wakeup(sta); 1144 } 1145 1146 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1147 { 1148 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1149 bool in_ps; 1150 1151 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1152 1153 /* Don't let the same PS state be set twice */ 1154 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1155 if ((start && in_ps) || (!start && !in_ps)) 1156 return -EINVAL; 1157 1158 if (start) 1159 sta_ps_start(sta_inf); 1160 else 1161 sta_ps_end(sta_inf); 1162 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1166 1167 static ieee80211_rx_result debug_noinline 1168 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1169 { 1170 struct ieee80211_sub_if_data *sdata = rx->sdata; 1171 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1172 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1173 int tid, ac; 1174 1175 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1176 return RX_CONTINUE; 1177 1178 if (sdata->vif.type != NL80211_IFTYPE_AP && 1179 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1180 return RX_CONTINUE; 1181 1182 /* 1183 * The device handles station powersave, so don't do anything about 1184 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1185 * it to mac80211 since they're handled.) 1186 */ 1187 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1188 return RX_CONTINUE; 1189 1190 /* 1191 * Don't do anything if the station isn't already asleep. In 1192 * the uAPSD case, the station will probably be marked asleep, 1193 * in the PS-Poll case the station must be confused ... 1194 */ 1195 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1196 return RX_CONTINUE; 1197 1198 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1199 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1200 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1201 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1202 else 1203 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1204 } 1205 1206 /* Free PS Poll skb here instead of returning RX_DROP that would 1207 * count as an dropped frame. */ 1208 dev_kfree_skb(rx->skb); 1209 1210 return RX_QUEUED; 1211 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1212 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1213 ieee80211_has_pm(hdr->frame_control) && 1214 (ieee80211_is_data_qos(hdr->frame_control) || 1215 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1216 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1217 ac = ieee802_1d_to_ac[tid & 7]; 1218 1219 /* 1220 * If this AC is not trigger-enabled do nothing. 1221 * 1222 * NB: This could/should check a separate bitmap of trigger- 1223 * enabled queues, but for now we only implement uAPSD w/o 1224 * TSPEC changes to the ACs, so they're always the same. 1225 */ 1226 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1227 return RX_CONTINUE; 1228 1229 /* if we are in a service period, do nothing */ 1230 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1231 return RX_CONTINUE; 1232 1233 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1234 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1235 else 1236 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1237 } 1238 1239 return RX_CONTINUE; 1240 } 1241 1242 static ieee80211_rx_result debug_noinline 1243 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1244 { 1245 struct sta_info *sta = rx->sta; 1246 struct sk_buff *skb = rx->skb; 1247 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1248 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1249 int i; 1250 1251 if (!sta) 1252 return RX_CONTINUE; 1253 1254 /* 1255 * Update last_rx only for IBSS packets which are for the current 1256 * BSSID and for station already AUTHORIZED to avoid keeping the 1257 * current IBSS network alive in cases where other STAs start 1258 * using different BSSID. This will also give the station another 1259 * chance to restart the authentication/authorization in case 1260 * something went wrong the first time. 1261 */ 1262 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1263 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1264 NL80211_IFTYPE_ADHOC); 1265 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1266 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1267 sta->last_rx = jiffies; 1268 if (ieee80211_is_data(hdr->frame_control)) { 1269 sta->last_rx_rate_idx = status->rate_idx; 1270 sta->last_rx_rate_flag = status->flag; 1271 sta->last_rx_rate_vht_nss = status->vht_nss; 1272 } 1273 } 1274 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1275 /* 1276 * Mesh beacons will update last_rx when if they are found to 1277 * match the current local configuration when processed. 1278 */ 1279 sta->last_rx = jiffies; 1280 if (ieee80211_is_data(hdr->frame_control)) { 1281 sta->last_rx_rate_idx = status->rate_idx; 1282 sta->last_rx_rate_flag = status->flag; 1283 sta->last_rx_rate_vht_nss = status->vht_nss; 1284 } 1285 } 1286 1287 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1288 return RX_CONTINUE; 1289 1290 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1291 ieee80211_sta_rx_notify(rx->sdata, hdr); 1292 1293 sta->rx_fragments++; 1294 sta->rx_bytes += rx->skb->len; 1295 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1296 sta->last_signal = status->signal; 1297 ewma_add(&sta->avg_signal, -status->signal); 1298 } 1299 1300 if (status->chains) { 1301 sta->chains = status->chains; 1302 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1303 int signal = status->chain_signal[i]; 1304 1305 if (!(status->chains & BIT(i))) 1306 continue; 1307 1308 sta->chain_signal_last[i] = signal; 1309 ewma_add(&sta->chain_signal_avg[i], -signal); 1310 } 1311 } 1312 1313 /* 1314 * Change STA power saving mode only at the end of a frame 1315 * exchange sequence. 1316 */ 1317 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1318 !ieee80211_has_morefrags(hdr->frame_control) && 1319 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1320 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1321 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1322 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1323 /* 1324 * Ignore doze->wake transitions that are 1325 * indicated by non-data frames, the standard 1326 * is unclear here, but for example going to 1327 * PS mode and then scanning would cause a 1328 * doze->wake transition for the probe request, 1329 * and that is clearly undesirable. 1330 */ 1331 if (ieee80211_is_data(hdr->frame_control) && 1332 !ieee80211_has_pm(hdr->frame_control)) 1333 sta_ps_end(sta); 1334 } else { 1335 if (ieee80211_has_pm(hdr->frame_control)) 1336 sta_ps_start(sta); 1337 } 1338 } 1339 1340 /* mesh power save support */ 1341 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1342 ieee80211_mps_rx_h_sta_process(sta, hdr); 1343 1344 /* 1345 * Drop (qos-)data::nullfunc frames silently, since they 1346 * are used only to control station power saving mode. 1347 */ 1348 if (ieee80211_is_nullfunc(hdr->frame_control) || 1349 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1350 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1351 1352 /* 1353 * If we receive a 4-addr nullfunc frame from a STA 1354 * that was not moved to a 4-addr STA vlan yet send 1355 * the event to userspace and for older hostapd drop 1356 * the frame to the monitor interface. 1357 */ 1358 if (ieee80211_has_a4(hdr->frame_control) && 1359 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1360 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1361 !rx->sdata->u.vlan.sta))) { 1362 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1363 cfg80211_rx_unexpected_4addr_frame( 1364 rx->sdata->dev, sta->sta.addr, 1365 GFP_ATOMIC); 1366 return RX_DROP_MONITOR; 1367 } 1368 /* 1369 * Update counter and free packet here to avoid 1370 * counting this as a dropped packed. 1371 */ 1372 sta->rx_packets++; 1373 dev_kfree_skb(rx->skb); 1374 return RX_QUEUED; 1375 } 1376 1377 return RX_CONTINUE; 1378 } /* ieee80211_rx_h_sta_process */ 1379 1380 static ieee80211_rx_result debug_noinline 1381 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1382 { 1383 struct sk_buff *skb = rx->skb; 1384 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1385 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1386 int keyidx; 1387 int hdrlen; 1388 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1389 struct ieee80211_key *sta_ptk = NULL; 1390 int mmie_keyidx = -1; 1391 __le16 fc; 1392 const struct ieee80211_cipher_scheme *cs = NULL; 1393 1394 /* 1395 * Key selection 101 1396 * 1397 * There are four types of keys: 1398 * - GTK (group keys) 1399 * - IGTK (group keys for management frames) 1400 * - PTK (pairwise keys) 1401 * - STK (station-to-station pairwise keys) 1402 * 1403 * When selecting a key, we have to distinguish between multicast 1404 * (including broadcast) and unicast frames, the latter can only 1405 * use PTKs and STKs while the former always use GTKs and IGTKs. 1406 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1407 * unicast frames can also use key indices like GTKs. Hence, if we 1408 * don't have a PTK/STK we check the key index for a WEP key. 1409 * 1410 * Note that in a regular BSS, multicast frames are sent by the 1411 * AP only, associated stations unicast the frame to the AP first 1412 * which then multicasts it on their behalf. 1413 * 1414 * There is also a slight problem in IBSS mode: GTKs are negotiated 1415 * with each station, that is something we don't currently handle. 1416 * The spec seems to expect that one negotiates the same key with 1417 * every station but there's no such requirement; VLANs could be 1418 * possible. 1419 */ 1420 1421 /* 1422 * No point in finding a key and decrypting if the frame is neither 1423 * addressed to us nor a multicast frame. 1424 */ 1425 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1426 return RX_CONTINUE; 1427 1428 /* start without a key */ 1429 rx->key = NULL; 1430 fc = hdr->frame_control; 1431 1432 if (rx->sta) { 1433 int keyid = rx->sta->ptk_idx; 1434 1435 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1436 cs = rx->sta->cipher_scheme; 1437 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1438 if (unlikely(keyid < 0)) 1439 return RX_DROP_UNUSABLE; 1440 } 1441 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1442 } 1443 1444 if (!ieee80211_has_protected(fc)) 1445 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1446 1447 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1448 rx->key = sta_ptk; 1449 if ((status->flag & RX_FLAG_DECRYPTED) && 1450 (status->flag & RX_FLAG_IV_STRIPPED)) 1451 return RX_CONTINUE; 1452 /* Skip decryption if the frame is not protected. */ 1453 if (!ieee80211_has_protected(fc)) 1454 return RX_CONTINUE; 1455 } else if (mmie_keyidx >= 0) { 1456 /* Broadcast/multicast robust management frame / BIP */ 1457 if ((status->flag & RX_FLAG_DECRYPTED) && 1458 (status->flag & RX_FLAG_IV_STRIPPED)) 1459 return RX_CONTINUE; 1460 1461 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1462 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1463 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1464 if (rx->sta) 1465 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1466 if (!rx->key) 1467 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1468 } else if (!ieee80211_has_protected(fc)) { 1469 /* 1470 * The frame was not protected, so skip decryption. However, we 1471 * need to set rx->key if there is a key that could have been 1472 * used so that the frame may be dropped if encryption would 1473 * have been expected. 1474 */ 1475 struct ieee80211_key *key = NULL; 1476 struct ieee80211_sub_if_data *sdata = rx->sdata; 1477 int i; 1478 1479 if (ieee80211_is_mgmt(fc) && 1480 is_multicast_ether_addr(hdr->addr1) && 1481 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1482 rx->key = key; 1483 else { 1484 if (rx->sta) { 1485 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1486 key = rcu_dereference(rx->sta->gtk[i]); 1487 if (key) 1488 break; 1489 } 1490 } 1491 if (!key) { 1492 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1493 key = rcu_dereference(sdata->keys[i]); 1494 if (key) 1495 break; 1496 } 1497 } 1498 if (key) 1499 rx->key = key; 1500 } 1501 return RX_CONTINUE; 1502 } else { 1503 u8 keyid; 1504 1505 /* 1506 * The device doesn't give us the IV so we won't be 1507 * able to look up the key. That's ok though, we 1508 * don't need to decrypt the frame, we just won't 1509 * be able to keep statistics accurate. 1510 * Except for key threshold notifications, should 1511 * we somehow allow the driver to tell us which key 1512 * the hardware used if this flag is set? 1513 */ 1514 if ((status->flag & RX_FLAG_DECRYPTED) && 1515 (status->flag & RX_FLAG_IV_STRIPPED)) 1516 return RX_CONTINUE; 1517 1518 hdrlen = ieee80211_hdrlen(fc); 1519 1520 if (cs) { 1521 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1522 1523 if (unlikely(keyidx < 0)) 1524 return RX_DROP_UNUSABLE; 1525 } else { 1526 if (rx->skb->len < 8 + hdrlen) 1527 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1528 /* 1529 * no need to call ieee80211_wep_get_keyidx, 1530 * it verifies a bunch of things we've done already 1531 */ 1532 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1533 keyidx = keyid >> 6; 1534 } 1535 1536 /* check per-station GTK first, if multicast packet */ 1537 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1538 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1539 1540 /* if not found, try default key */ 1541 if (!rx->key) { 1542 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1543 1544 /* 1545 * RSNA-protected unicast frames should always be 1546 * sent with pairwise or station-to-station keys, 1547 * but for WEP we allow using a key index as well. 1548 */ 1549 if (rx->key && 1550 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1551 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1552 !is_multicast_ether_addr(hdr->addr1)) 1553 rx->key = NULL; 1554 } 1555 } 1556 1557 if (rx->key) { 1558 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1559 return RX_DROP_MONITOR; 1560 1561 rx->key->tx_rx_count++; 1562 /* TODO: add threshold stuff again */ 1563 } else { 1564 return RX_DROP_MONITOR; 1565 } 1566 1567 switch (rx->key->conf.cipher) { 1568 case WLAN_CIPHER_SUITE_WEP40: 1569 case WLAN_CIPHER_SUITE_WEP104: 1570 result = ieee80211_crypto_wep_decrypt(rx); 1571 break; 1572 case WLAN_CIPHER_SUITE_TKIP: 1573 result = ieee80211_crypto_tkip_decrypt(rx); 1574 break; 1575 case WLAN_CIPHER_SUITE_CCMP: 1576 result = ieee80211_crypto_ccmp_decrypt(rx); 1577 break; 1578 case WLAN_CIPHER_SUITE_AES_CMAC: 1579 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1580 break; 1581 default: 1582 result = ieee80211_crypto_hw_decrypt(rx); 1583 } 1584 1585 /* the hdr variable is invalid after the decrypt handlers */ 1586 1587 /* either the frame has been decrypted or will be dropped */ 1588 status->flag |= RX_FLAG_DECRYPTED; 1589 1590 return result; 1591 } 1592 1593 static inline struct ieee80211_fragment_entry * 1594 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1595 unsigned int frag, unsigned int seq, int rx_queue, 1596 struct sk_buff **skb) 1597 { 1598 struct ieee80211_fragment_entry *entry; 1599 1600 entry = &sdata->fragments[sdata->fragment_next++]; 1601 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1602 sdata->fragment_next = 0; 1603 1604 if (!skb_queue_empty(&entry->skb_list)) 1605 __skb_queue_purge(&entry->skb_list); 1606 1607 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1608 *skb = NULL; 1609 entry->first_frag_time = jiffies; 1610 entry->seq = seq; 1611 entry->rx_queue = rx_queue; 1612 entry->last_frag = frag; 1613 entry->ccmp = 0; 1614 entry->extra_len = 0; 1615 1616 return entry; 1617 } 1618 1619 static inline struct ieee80211_fragment_entry * 1620 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1621 unsigned int frag, unsigned int seq, 1622 int rx_queue, struct ieee80211_hdr *hdr) 1623 { 1624 struct ieee80211_fragment_entry *entry; 1625 int i, idx; 1626 1627 idx = sdata->fragment_next; 1628 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1629 struct ieee80211_hdr *f_hdr; 1630 1631 idx--; 1632 if (idx < 0) 1633 idx = IEEE80211_FRAGMENT_MAX - 1; 1634 1635 entry = &sdata->fragments[idx]; 1636 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1637 entry->rx_queue != rx_queue || 1638 entry->last_frag + 1 != frag) 1639 continue; 1640 1641 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1642 1643 /* 1644 * Check ftype and addresses are equal, else check next fragment 1645 */ 1646 if (((hdr->frame_control ^ f_hdr->frame_control) & 1647 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1648 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1649 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1650 continue; 1651 1652 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1653 __skb_queue_purge(&entry->skb_list); 1654 continue; 1655 } 1656 return entry; 1657 } 1658 1659 return NULL; 1660 } 1661 1662 static ieee80211_rx_result debug_noinline 1663 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1664 { 1665 struct ieee80211_hdr *hdr; 1666 u16 sc; 1667 __le16 fc; 1668 unsigned int frag, seq; 1669 struct ieee80211_fragment_entry *entry; 1670 struct sk_buff *skb; 1671 struct ieee80211_rx_status *status; 1672 1673 hdr = (struct ieee80211_hdr *)rx->skb->data; 1674 fc = hdr->frame_control; 1675 1676 if (ieee80211_is_ctl(fc)) 1677 return RX_CONTINUE; 1678 1679 sc = le16_to_cpu(hdr->seq_ctrl); 1680 frag = sc & IEEE80211_SCTL_FRAG; 1681 1682 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1683 is_multicast_ether_addr(hdr->addr1))) { 1684 /* not fragmented */ 1685 goto out; 1686 } 1687 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1688 1689 if (skb_linearize(rx->skb)) 1690 return RX_DROP_UNUSABLE; 1691 1692 /* 1693 * skb_linearize() might change the skb->data and 1694 * previously cached variables (in this case, hdr) need to 1695 * be refreshed with the new data. 1696 */ 1697 hdr = (struct ieee80211_hdr *)rx->skb->data; 1698 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1699 1700 if (frag == 0) { 1701 /* This is the first fragment of a new frame. */ 1702 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1703 rx->seqno_idx, &(rx->skb)); 1704 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1705 ieee80211_has_protected(fc)) { 1706 int queue = rx->security_idx; 1707 /* Store CCMP PN so that we can verify that the next 1708 * fragment has a sequential PN value. */ 1709 entry->ccmp = 1; 1710 memcpy(entry->last_pn, 1711 rx->key->u.ccmp.rx_pn[queue], 1712 IEEE80211_CCMP_PN_LEN); 1713 } 1714 return RX_QUEUED; 1715 } 1716 1717 /* This is a fragment for a frame that should already be pending in 1718 * fragment cache. Add this fragment to the end of the pending entry. 1719 */ 1720 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1721 rx->seqno_idx, hdr); 1722 if (!entry) { 1723 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1724 return RX_DROP_MONITOR; 1725 } 1726 1727 /* Verify that MPDUs within one MSDU have sequential PN values. 1728 * (IEEE 802.11i, 8.3.3.4.5) */ 1729 if (entry->ccmp) { 1730 int i; 1731 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1732 int queue; 1733 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1734 return RX_DROP_UNUSABLE; 1735 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1736 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1737 pn[i]++; 1738 if (pn[i]) 1739 break; 1740 } 1741 queue = rx->security_idx; 1742 rpn = rx->key->u.ccmp.rx_pn[queue]; 1743 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1744 return RX_DROP_UNUSABLE; 1745 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1746 } 1747 1748 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1749 __skb_queue_tail(&entry->skb_list, rx->skb); 1750 entry->last_frag = frag; 1751 entry->extra_len += rx->skb->len; 1752 if (ieee80211_has_morefrags(fc)) { 1753 rx->skb = NULL; 1754 return RX_QUEUED; 1755 } 1756 1757 rx->skb = __skb_dequeue(&entry->skb_list); 1758 if (skb_tailroom(rx->skb) < entry->extra_len) { 1759 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1760 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1761 GFP_ATOMIC))) { 1762 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1763 __skb_queue_purge(&entry->skb_list); 1764 return RX_DROP_UNUSABLE; 1765 } 1766 } 1767 while ((skb = __skb_dequeue(&entry->skb_list))) { 1768 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1769 dev_kfree_skb(skb); 1770 } 1771 1772 /* Complete frame has been reassembled - process it now */ 1773 status = IEEE80211_SKB_RXCB(rx->skb); 1774 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1775 1776 out: 1777 if (rx->sta) 1778 rx->sta->rx_packets++; 1779 if (is_multicast_ether_addr(hdr->addr1)) 1780 rx->local->dot11MulticastReceivedFrameCount++; 1781 else 1782 ieee80211_led_rx(rx->local); 1783 return RX_CONTINUE; 1784 } 1785 1786 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1787 { 1788 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1789 return -EACCES; 1790 1791 return 0; 1792 } 1793 1794 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1795 { 1796 struct sk_buff *skb = rx->skb; 1797 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1798 1799 /* 1800 * Pass through unencrypted frames if the hardware has 1801 * decrypted them already. 1802 */ 1803 if (status->flag & RX_FLAG_DECRYPTED) 1804 return 0; 1805 1806 /* Drop unencrypted frames if key is set. */ 1807 if (unlikely(!ieee80211_has_protected(fc) && 1808 !ieee80211_is_nullfunc(fc) && 1809 ieee80211_is_data(fc) && 1810 (rx->key || rx->sdata->drop_unencrypted))) 1811 return -EACCES; 1812 1813 return 0; 1814 } 1815 1816 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1817 { 1818 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1819 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1820 __le16 fc = hdr->frame_control; 1821 1822 /* 1823 * Pass through unencrypted frames if the hardware has 1824 * decrypted them already. 1825 */ 1826 if (status->flag & RX_FLAG_DECRYPTED) 1827 return 0; 1828 1829 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1830 if (unlikely(!ieee80211_has_protected(fc) && 1831 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1832 rx->key)) { 1833 if (ieee80211_is_deauth(fc) || 1834 ieee80211_is_disassoc(fc)) 1835 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1836 rx->skb->data, 1837 rx->skb->len); 1838 return -EACCES; 1839 } 1840 /* BIP does not use Protected field, so need to check MMIE */ 1841 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1842 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1843 if (ieee80211_is_deauth(fc) || 1844 ieee80211_is_disassoc(fc)) 1845 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1846 rx->skb->data, 1847 rx->skb->len); 1848 return -EACCES; 1849 } 1850 /* 1851 * When using MFP, Action frames are not allowed prior to 1852 * having configured keys. 1853 */ 1854 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1855 ieee80211_is_robust_mgmt_frame( 1856 (struct ieee80211_hdr *) rx->skb->data))) 1857 return -EACCES; 1858 } 1859 1860 return 0; 1861 } 1862 1863 static int 1864 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1865 { 1866 struct ieee80211_sub_if_data *sdata = rx->sdata; 1867 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1868 bool check_port_control = false; 1869 struct ethhdr *ehdr; 1870 int ret; 1871 1872 *port_control = false; 1873 if (ieee80211_has_a4(hdr->frame_control) && 1874 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1875 return -1; 1876 1877 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1878 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1879 1880 if (!sdata->u.mgd.use_4addr) 1881 return -1; 1882 else 1883 check_port_control = true; 1884 } 1885 1886 if (is_multicast_ether_addr(hdr->addr1) && 1887 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1888 return -1; 1889 1890 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1891 if (ret < 0) 1892 return ret; 1893 1894 ehdr = (struct ethhdr *) rx->skb->data; 1895 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1896 *port_control = true; 1897 else if (check_port_control) 1898 return -1; 1899 1900 return 0; 1901 } 1902 1903 /* 1904 * requires that rx->skb is a frame with ethernet header 1905 */ 1906 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1907 { 1908 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1909 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1910 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1911 1912 /* 1913 * Allow EAPOL frames to us/the PAE group address regardless 1914 * of whether the frame was encrypted or not. 1915 */ 1916 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1917 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1918 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1919 return true; 1920 1921 if (ieee80211_802_1x_port_control(rx) || 1922 ieee80211_drop_unencrypted(rx, fc)) 1923 return false; 1924 1925 return true; 1926 } 1927 1928 /* 1929 * requires that rx->skb is a frame with ethernet header 1930 */ 1931 static void 1932 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1933 { 1934 struct ieee80211_sub_if_data *sdata = rx->sdata; 1935 struct net_device *dev = sdata->dev; 1936 struct sk_buff *skb, *xmit_skb; 1937 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1938 struct sta_info *dsta; 1939 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1940 1941 skb = rx->skb; 1942 xmit_skb = NULL; 1943 1944 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1945 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1946 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1947 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1948 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1949 if (is_multicast_ether_addr(ehdr->h_dest)) { 1950 /* 1951 * send multicast frames both to higher layers in 1952 * local net stack and back to the wireless medium 1953 */ 1954 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1955 if (!xmit_skb) 1956 net_info_ratelimited("%s: failed to clone multicast frame\n", 1957 dev->name); 1958 } else { 1959 dsta = sta_info_get(sdata, skb->data); 1960 if (dsta) { 1961 /* 1962 * The destination station is associated to 1963 * this AP (in this VLAN), so send the frame 1964 * directly to it and do not pass it to local 1965 * net stack. 1966 */ 1967 xmit_skb = skb; 1968 skb = NULL; 1969 } 1970 } 1971 } 1972 1973 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1974 if (skb) { 1975 /* 'align' will only take the values 0 or 2 here since all 1976 * frames are required to be aligned to 2-byte boundaries 1977 * when being passed to mac80211; the code here works just 1978 * as well if that isn't true, but mac80211 assumes it can 1979 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 1980 */ 1981 int align; 1982 1983 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 1984 if (align) { 1985 if (WARN_ON(skb_headroom(skb) < 3)) { 1986 dev_kfree_skb(skb); 1987 skb = NULL; 1988 } else { 1989 u8 *data = skb->data; 1990 size_t len = skb_headlen(skb); 1991 skb->data -= align; 1992 memmove(skb->data, data, len); 1993 skb_set_tail_pointer(skb, len); 1994 } 1995 } 1996 } 1997 #endif 1998 1999 if (skb) { 2000 /* deliver to local stack */ 2001 skb->protocol = eth_type_trans(skb, dev); 2002 memset(skb->cb, 0, sizeof(skb->cb)); 2003 netif_receive_skb(skb); 2004 } 2005 2006 if (xmit_skb) { 2007 /* 2008 * Send to wireless media and increase priority by 256 to 2009 * keep the received priority instead of reclassifying 2010 * the frame (see cfg80211_classify8021d). 2011 */ 2012 xmit_skb->priority += 256; 2013 xmit_skb->protocol = htons(ETH_P_802_3); 2014 skb_reset_network_header(xmit_skb); 2015 skb_reset_mac_header(xmit_skb); 2016 dev_queue_xmit(xmit_skb); 2017 } 2018 } 2019 2020 static ieee80211_rx_result debug_noinline 2021 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2022 { 2023 struct net_device *dev = rx->sdata->dev; 2024 struct sk_buff *skb = rx->skb; 2025 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2026 __le16 fc = hdr->frame_control; 2027 struct sk_buff_head frame_list; 2028 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2029 2030 if (unlikely(!ieee80211_is_data(fc))) 2031 return RX_CONTINUE; 2032 2033 if (unlikely(!ieee80211_is_data_present(fc))) 2034 return RX_DROP_MONITOR; 2035 2036 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2037 return RX_CONTINUE; 2038 2039 if (ieee80211_has_a4(hdr->frame_control) && 2040 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2041 !rx->sdata->u.vlan.sta) 2042 return RX_DROP_UNUSABLE; 2043 2044 if (is_multicast_ether_addr(hdr->addr1) && 2045 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2046 rx->sdata->u.vlan.sta) || 2047 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2048 rx->sdata->u.mgd.use_4addr))) 2049 return RX_DROP_UNUSABLE; 2050 2051 skb->dev = dev; 2052 __skb_queue_head_init(&frame_list); 2053 2054 if (skb_linearize(skb)) 2055 return RX_DROP_UNUSABLE; 2056 2057 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2058 rx->sdata->vif.type, 2059 rx->local->hw.extra_tx_headroom, true); 2060 2061 while (!skb_queue_empty(&frame_list)) { 2062 rx->skb = __skb_dequeue(&frame_list); 2063 2064 if (!ieee80211_frame_allowed(rx, fc)) { 2065 dev_kfree_skb(rx->skb); 2066 continue; 2067 } 2068 dev->stats.rx_packets++; 2069 dev->stats.rx_bytes += rx->skb->len; 2070 2071 ieee80211_deliver_skb(rx); 2072 } 2073 2074 return RX_QUEUED; 2075 } 2076 2077 #ifdef CONFIG_MAC80211_MESH 2078 static ieee80211_rx_result 2079 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2080 { 2081 struct ieee80211_hdr *fwd_hdr, *hdr; 2082 struct ieee80211_tx_info *info; 2083 struct ieee80211s_hdr *mesh_hdr; 2084 struct sk_buff *skb = rx->skb, *fwd_skb; 2085 struct ieee80211_local *local = rx->local; 2086 struct ieee80211_sub_if_data *sdata = rx->sdata; 2087 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2088 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2089 u16 q, hdrlen; 2090 2091 hdr = (struct ieee80211_hdr *) skb->data; 2092 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2093 2094 /* make sure fixed part of mesh header is there, also checks skb len */ 2095 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2096 return RX_DROP_MONITOR; 2097 2098 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2099 2100 /* make sure full mesh header is there, also checks skb len */ 2101 if (!pskb_may_pull(rx->skb, 2102 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2103 return RX_DROP_MONITOR; 2104 2105 /* reload pointers */ 2106 hdr = (struct ieee80211_hdr *) skb->data; 2107 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2108 2109 /* frame is in RMC, don't forward */ 2110 if (ieee80211_is_data(hdr->frame_control) && 2111 is_multicast_ether_addr(hdr->addr1) && 2112 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2113 return RX_DROP_MONITOR; 2114 2115 if (!ieee80211_is_data(hdr->frame_control) || 2116 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2117 return RX_CONTINUE; 2118 2119 if (!mesh_hdr->ttl) 2120 return RX_DROP_MONITOR; 2121 2122 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2123 struct mesh_path *mppath; 2124 char *proxied_addr; 2125 char *mpp_addr; 2126 2127 if (is_multicast_ether_addr(hdr->addr1)) { 2128 mpp_addr = hdr->addr3; 2129 proxied_addr = mesh_hdr->eaddr1; 2130 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2131 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2132 mpp_addr = hdr->addr4; 2133 proxied_addr = mesh_hdr->eaddr2; 2134 } else { 2135 return RX_DROP_MONITOR; 2136 } 2137 2138 rcu_read_lock(); 2139 mppath = mpp_path_lookup(sdata, proxied_addr); 2140 if (!mppath) { 2141 mpp_path_add(sdata, proxied_addr, mpp_addr); 2142 } else { 2143 spin_lock_bh(&mppath->state_lock); 2144 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2145 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2146 spin_unlock_bh(&mppath->state_lock); 2147 } 2148 rcu_read_unlock(); 2149 } 2150 2151 /* Frame has reached destination. Don't forward */ 2152 if (!is_multicast_ether_addr(hdr->addr1) && 2153 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2154 return RX_CONTINUE; 2155 2156 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2157 if (ieee80211_queue_stopped(&local->hw, q)) { 2158 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2159 return RX_DROP_MONITOR; 2160 } 2161 skb_set_queue_mapping(skb, q); 2162 2163 if (!--mesh_hdr->ttl) { 2164 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2165 goto out; 2166 } 2167 2168 if (!ifmsh->mshcfg.dot11MeshForwarding) 2169 goto out; 2170 2171 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2172 if (!fwd_skb) { 2173 net_info_ratelimited("%s: failed to clone mesh frame\n", 2174 sdata->name); 2175 goto out; 2176 } 2177 2178 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2179 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2180 info = IEEE80211_SKB_CB(fwd_skb); 2181 memset(info, 0, sizeof(*info)); 2182 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2183 info->control.vif = &rx->sdata->vif; 2184 info->control.jiffies = jiffies; 2185 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2186 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2187 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2188 /* update power mode indication when forwarding */ 2189 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2190 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2191 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2192 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2193 } else { 2194 /* unable to resolve next hop */ 2195 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2196 fwd_hdr->addr3, 0, 2197 WLAN_REASON_MESH_PATH_NOFORWARD, 2198 fwd_hdr->addr2); 2199 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2200 kfree_skb(fwd_skb); 2201 return RX_DROP_MONITOR; 2202 } 2203 2204 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2205 ieee80211_add_pending_skb(local, fwd_skb); 2206 out: 2207 if (is_multicast_ether_addr(hdr->addr1) || 2208 sdata->dev->flags & IFF_PROMISC) 2209 return RX_CONTINUE; 2210 else 2211 return RX_DROP_MONITOR; 2212 } 2213 #endif 2214 2215 static ieee80211_rx_result debug_noinline 2216 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2217 { 2218 struct ieee80211_sub_if_data *sdata = rx->sdata; 2219 struct ieee80211_local *local = rx->local; 2220 struct net_device *dev = sdata->dev; 2221 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2222 __le16 fc = hdr->frame_control; 2223 bool port_control; 2224 int err; 2225 2226 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2227 return RX_CONTINUE; 2228 2229 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2230 return RX_DROP_MONITOR; 2231 2232 /* 2233 * Send unexpected-4addr-frame event to hostapd. For older versions, 2234 * also drop the frame to cooked monitor interfaces. 2235 */ 2236 if (ieee80211_has_a4(hdr->frame_control) && 2237 sdata->vif.type == NL80211_IFTYPE_AP) { 2238 if (rx->sta && 2239 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2240 cfg80211_rx_unexpected_4addr_frame( 2241 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2242 return RX_DROP_MONITOR; 2243 } 2244 2245 err = __ieee80211_data_to_8023(rx, &port_control); 2246 if (unlikely(err)) 2247 return RX_DROP_UNUSABLE; 2248 2249 if (!ieee80211_frame_allowed(rx, fc)) 2250 return RX_DROP_MONITOR; 2251 2252 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2253 unlikely(port_control) && sdata->bss) { 2254 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2255 u.ap); 2256 dev = sdata->dev; 2257 rx->sdata = sdata; 2258 } 2259 2260 rx->skb->dev = dev; 2261 2262 dev->stats.rx_packets++; 2263 dev->stats.rx_bytes += rx->skb->len; 2264 2265 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2266 !is_multicast_ether_addr( 2267 ((struct ethhdr *)rx->skb->data)->h_dest) && 2268 (!local->scanning && 2269 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2270 mod_timer(&local->dynamic_ps_timer, jiffies + 2271 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2272 } 2273 2274 ieee80211_deliver_skb(rx); 2275 2276 return RX_QUEUED; 2277 } 2278 2279 static ieee80211_rx_result debug_noinline 2280 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2281 { 2282 struct sk_buff *skb = rx->skb; 2283 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2284 struct tid_ampdu_rx *tid_agg_rx; 2285 u16 start_seq_num; 2286 u16 tid; 2287 2288 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2289 return RX_CONTINUE; 2290 2291 if (ieee80211_is_back_req(bar->frame_control)) { 2292 struct { 2293 __le16 control, start_seq_num; 2294 } __packed bar_data; 2295 2296 if (!rx->sta) 2297 return RX_DROP_MONITOR; 2298 2299 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2300 &bar_data, sizeof(bar_data))) 2301 return RX_DROP_MONITOR; 2302 2303 tid = le16_to_cpu(bar_data.control) >> 12; 2304 2305 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2306 if (!tid_agg_rx) 2307 return RX_DROP_MONITOR; 2308 2309 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2310 2311 /* reset session timer */ 2312 if (tid_agg_rx->timeout) 2313 mod_timer(&tid_agg_rx->session_timer, 2314 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2315 2316 spin_lock(&tid_agg_rx->reorder_lock); 2317 /* release stored frames up to start of BAR */ 2318 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2319 start_seq_num, frames); 2320 spin_unlock(&tid_agg_rx->reorder_lock); 2321 2322 kfree_skb(skb); 2323 return RX_QUEUED; 2324 } 2325 2326 /* 2327 * After this point, we only want management frames, 2328 * so we can drop all remaining control frames to 2329 * cooked monitor interfaces. 2330 */ 2331 return RX_DROP_MONITOR; 2332 } 2333 2334 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2335 struct ieee80211_mgmt *mgmt, 2336 size_t len) 2337 { 2338 struct ieee80211_local *local = sdata->local; 2339 struct sk_buff *skb; 2340 struct ieee80211_mgmt *resp; 2341 2342 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2343 /* Not to own unicast address */ 2344 return; 2345 } 2346 2347 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2348 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2349 /* Not from the current AP or not associated yet. */ 2350 return; 2351 } 2352 2353 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2354 /* Too short SA Query request frame */ 2355 return; 2356 } 2357 2358 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2359 if (skb == NULL) 2360 return; 2361 2362 skb_reserve(skb, local->hw.extra_tx_headroom); 2363 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2364 memset(resp, 0, 24); 2365 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2366 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2367 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2368 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2369 IEEE80211_STYPE_ACTION); 2370 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2371 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2372 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2373 memcpy(resp->u.action.u.sa_query.trans_id, 2374 mgmt->u.action.u.sa_query.trans_id, 2375 WLAN_SA_QUERY_TR_ID_LEN); 2376 2377 ieee80211_tx_skb(sdata, skb); 2378 } 2379 2380 static ieee80211_rx_result debug_noinline 2381 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2382 { 2383 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2384 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2385 2386 /* 2387 * From here on, look only at management frames. 2388 * Data and control frames are already handled, 2389 * and unknown (reserved) frames are useless. 2390 */ 2391 if (rx->skb->len < 24) 2392 return RX_DROP_MONITOR; 2393 2394 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2395 return RX_DROP_MONITOR; 2396 2397 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2398 ieee80211_is_beacon(mgmt->frame_control) && 2399 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2400 int sig = 0; 2401 2402 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2403 sig = status->signal; 2404 2405 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2406 rx->skb->data, rx->skb->len, 2407 status->freq, sig); 2408 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2409 } 2410 2411 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2412 return RX_DROP_MONITOR; 2413 2414 if (ieee80211_drop_unencrypted_mgmt(rx)) 2415 return RX_DROP_UNUSABLE; 2416 2417 return RX_CONTINUE; 2418 } 2419 2420 static ieee80211_rx_result debug_noinline 2421 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2422 { 2423 struct ieee80211_local *local = rx->local; 2424 struct ieee80211_sub_if_data *sdata = rx->sdata; 2425 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2426 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2427 int len = rx->skb->len; 2428 2429 if (!ieee80211_is_action(mgmt->frame_control)) 2430 return RX_CONTINUE; 2431 2432 /* drop too small frames */ 2433 if (len < IEEE80211_MIN_ACTION_SIZE) 2434 return RX_DROP_UNUSABLE; 2435 2436 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2437 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2438 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2439 return RX_DROP_UNUSABLE; 2440 2441 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2442 return RX_DROP_UNUSABLE; 2443 2444 switch (mgmt->u.action.category) { 2445 case WLAN_CATEGORY_HT: 2446 /* reject HT action frames from stations not supporting HT */ 2447 if (!rx->sta->sta.ht_cap.ht_supported) 2448 goto invalid; 2449 2450 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2451 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2452 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2453 sdata->vif.type != NL80211_IFTYPE_AP && 2454 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2455 break; 2456 2457 /* verify action & smps_control/chanwidth are present */ 2458 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2459 goto invalid; 2460 2461 switch (mgmt->u.action.u.ht_smps.action) { 2462 case WLAN_HT_ACTION_SMPS: { 2463 struct ieee80211_supported_band *sband; 2464 enum ieee80211_smps_mode smps_mode; 2465 2466 /* convert to HT capability */ 2467 switch (mgmt->u.action.u.ht_smps.smps_control) { 2468 case WLAN_HT_SMPS_CONTROL_DISABLED: 2469 smps_mode = IEEE80211_SMPS_OFF; 2470 break; 2471 case WLAN_HT_SMPS_CONTROL_STATIC: 2472 smps_mode = IEEE80211_SMPS_STATIC; 2473 break; 2474 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2475 smps_mode = IEEE80211_SMPS_DYNAMIC; 2476 break; 2477 default: 2478 goto invalid; 2479 } 2480 2481 /* if no change do nothing */ 2482 if (rx->sta->sta.smps_mode == smps_mode) 2483 goto handled; 2484 rx->sta->sta.smps_mode = smps_mode; 2485 2486 sband = rx->local->hw.wiphy->bands[status->band]; 2487 2488 rate_control_rate_update(local, sband, rx->sta, 2489 IEEE80211_RC_SMPS_CHANGED); 2490 goto handled; 2491 } 2492 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2493 struct ieee80211_supported_band *sband; 2494 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2495 enum ieee80211_sta_rx_bandwidth new_bw; 2496 2497 /* If it doesn't support 40 MHz it can't change ... */ 2498 if (!(rx->sta->sta.ht_cap.cap & 2499 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2500 goto handled; 2501 2502 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2503 new_bw = IEEE80211_STA_RX_BW_20; 2504 else 2505 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2506 2507 if (rx->sta->sta.bandwidth == new_bw) 2508 goto handled; 2509 2510 sband = rx->local->hw.wiphy->bands[status->band]; 2511 2512 rate_control_rate_update(local, sband, rx->sta, 2513 IEEE80211_RC_BW_CHANGED); 2514 goto handled; 2515 } 2516 default: 2517 goto invalid; 2518 } 2519 2520 break; 2521 case WLAN_CATEGORY_PUBLIC: 2522 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2523 goto invalid; 2524 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2525 break; 2526 if (!rx->sta) 2527 break; 2528 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2529 break; 2530 if (mgmt->u.action.u.ext_chan_switch.action_code != 2531 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2532 break; 2533 if (len < offsetof(struct ieee80211_mgmt, 2534 u.action.u.ext_chan_switch.variable)) 2535 goto invalid; 2536 goto queue; 2537 case WLAN_CATEGORY_VHT: 2538 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2539 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2540 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2541 sdata->vif.type != NL80211_IFTYPE_AP && 2542 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2543 break; 2544 2545 /* verify action code is present */ 2546 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2547 goto invalid; 2548 2549 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2550 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2551 u8 opmode; 2552 2553 /* verify opmode is present */ 2554 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2555 goto invalid; 2556 2557 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2558 2559 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2560 opmode, status->band, 2561 false); 2562 goto handled; 2563 } 2564 default: 2565 break; 2566 } 2567 break; 2568 case WLAN_CATEGORY_BACK: 2569 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2570 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2571 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2572 sdata->vif.type != NL80211_IFTYPE_AP && 2573 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2574 break; 2575 2576 /* verify action_code is present */ 2577 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2578 break; 2579 2580 switch (mgmt->u.action.u.addba_req.action_code) { 2581 case WLAN_ACTION_ADDBA_REQ: 2582 if (len < (IEEE80211_MIN_ACTION_SIZE + 2583 sizeof(mgmt->u.action.u.addba_req))) 2584 goto invalid; 2585 break; 2586 case WLAN_ACTION_ADDBA_RESP: 2587 if (len < (IEEE80211_MIN_ACTION_SIZE + 2588 sizeof(mgmt->u.action.u.addba_resp))) 2589 goto invalid; 2590 break; 2591 case WLAN_ACTION_DELBA: 2592 if (len < (IEEE80211_MIN_ACTION_SIZE + 2593 sizeof(mgmt->u.action.u.delba))) 2594 goto invalid; 2595 break; 2596 default: 2597 goto invalid; 2598 } 2599 2600 goto queue; 2601 case WLAN_CATEGORY_SPECTRUM_MGMT: 2602 /* verify action_code is present */ 2603 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2604 break; 2605 2606 switch (mgmt->u.action.u.measurement.action_code) { 2607 case WLAN_ACTION_SPCT_MSR_REQ: 2608 if (status->band != IEEE80211_BAND_5GHZ) 2609 break; 2610 2611 if (len < (IEEE80211_MIN_ACTION_SIZE + 2612 sizeof(mgmt->u.action.u.measurement))) 2613 break; 2614 2615 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2616 break; 2617 2618 ieee80211_process_measurement_req(sdata, mgmt, len); 2619 goto handled; 2620 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2621 u8 *bssid; 2622 if (len < (IEEE80211_MIN_ACTION_SIZE + 2623 sizeof(mgmt->u.action.u.chan_switch))) 2624 break; 2625 2626 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2627 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2628 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2629 break; 2630 2631 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2632 bssid = sdata->u.mgd.bssid; 2633 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2634 bssid = sdata->u.ibss.bssid; 2635 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2636 bssid = mgmt->sa; 2637 else 2638 break; 2639 2640 if (!ether_addr_equal(mgmt->bssid, bssid)) 2641 break; 2642 2643 goto queue; 2644 } 2645 } 2646 break; 2647 case WLAN_CATEGORY_SA_QUERY: 2648 if (len < (IEEE80211_MIN_ACTION_SIZE + 2649 sizeof(mgmt->u.action.u.sa_query))) 2650 break; 2651 2652 switch (mgmt->u.action.u.sa_query.action) { 2653 case WLAN_ACTION_SA_QUERY_REQUEST: 2654 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2655 break; 2656 ieee80211_process_sa_query_req(sdata, mgmt, len); 2657 goto handled; 2658 } 2659 break; 2660 case WLAN_CATEGORY_SELF_PROTECTED: 2661 if (len < (IEEE80211_MIN_ACTION_SIZE + 2662 sizeof(mgmt->u.action.u.self_prot.action_code))) 2663 break; 2664 2665 switch (mgmt->u.action.u.self_prot.action_code) { 2666 case WLAN_SP_MESH_PEERING_OPEN: 2667 case WLAN_SP_MESH_PEERING_CLOSE: 2668 case WLAN_SP_MESH_PEERING_CONFIRM: 2669 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2670 goto invalid; 2671 if (sdata->u.mesh.user_mpm) 2672 /* userspace handles this frame */ 2673 break; 2674 goto queue; 2675 case WLAN_SP_MGK_INFORM: 2676 case WLAN_SP_MGK_ACK: 2677 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2678 goto invalid; 2679 break; 2680 } 2681 break; 2682 case WLAN_CATEGORY_MESH_ACTION: 2683 if (len < (IEEE80211_MIN_ACTION_SIZE + 2684 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2685 break; 2686 2687 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2688 break; 2689 if (mesh_action_is_path_sel(mgmt) && 2690 !mesh_path_sel_is_hwmp(sdata)) 2691 break; 2692 goto queue; 2693 } 2694 2695 return RX_CONTINUE; 2696 2697 invalid: 2698 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2699 /* will return in the next handlers */ 2700 return RX_CONTINUE; 2701 2702 handled: 2703 if (rx->sta) 2704 rx->sta->rx_packets++; 2705 dev_kfree_skb(rx->skb); 2706 return RX_QUEUED; 2707 2708 queue: 2709 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2710 skb_queue_tail(&sdata->skb_queue, rx->skb); 2711 ieee80211_queue_work(&local->hw, &sdata->work); 2712 if (rx->sta) 2713 rx->sta->rx_packets++; 2714 return RX_QUEUED; 2715 } 2716 2717 static ieee80211_rx_result debug_noinline 2718 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2719 { 2720 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2721 int sig = 0; 2722 2723 /* skip known-bad action frames and return them in the next handler */ 2724 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2725 return RX_CONTINUE; 2726 2727 /* 2728 * Getting here means the kernel doesn't know how to handle 2729 * it, but maybe userspace does ... include returned frames 2730 * so userspace can register for those to know whether ones 2731 * it transmitted were processed or returned. 2732 */ 2733 2734 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2735 sig = status->signal; 2736 2737 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2738 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) { 2739 if (rx->sta) 2740 rx->sta->rx_packets++; 2741 dev_kfree_skb(rx->skb); 2742 return RX_QUEUED; 2743 } 2744 2745 return RX_CONTINUE; 2746 } 2747 2748 static ieee80211_rx_result debug_noinline 2749 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2750 { 2751 struct ieee80211_local *local = rx->local; 2752 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2753 struct sk_buff *nskb; 2754 struct ieee80211_sub_if_data *sdata = rx->sdata; 2755 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2756 2757 if (!ieee80211_is_action(mgmt->frame_control)) 2758 return RX_CONTINUE; 2759 2760 /* 2761 * For AP mode, hostapd is responsible for handling any action 2762 * frames that we didn't handle, including returning unknown 2763 * ones. For all other modes we will return them to the sender, 2764 * setting the 0x80 bit in the action category, as required by 2765 * 802.11-2012 9.24.4. 2766 * Newer versions of hostapd shall also use the management frame 2767 * registration mechanisms, but older ones still use cooked 2768 * monitor interfaces so push all frames there. 2769 */ 2770 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2771 (sdata->vif.type == NL80211_IFTYPE_AP || 2772 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2773 return RX_DROP_MONITOR; 2774 2775 if (is_multicast_ether_addr(mgmt->da)) 2776 return RX_DROP_MONITOR; 2777 2778 /* do not return rejected action frames */ 2779 if (mgmt->u.action.category & 0x80) 2780 return RX_DROP_UNUSABLE; 2781 2782 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2783 GFP_ATOMIC); 2784 if (nskb) { 2785 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2786 2787 nmgmt->u.action.category |= 0x80; 2788 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2789 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2790 2791 memset(nskb->cb, 0, sizeof(nskb->cb)); 2792 2793 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2794 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2795 2796 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2797 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2798 IEEE80211_TX_CTL_NO_CCK_RATE; 2799 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2800 info->hw_queue = 2801 local->hw.offchannel_tx_hw_queue; 2802 } 2803 2804 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2805 status->band); 2806 } 2807 dev_kfree_skb(rx->skb); 2808 return RX_QUEUED; 2809 } 2810 2811 static ieee80211_rx_result debug_noinline 2812 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2813 { 2814 struct ieee80211_sub_if_data *sdata = rx->sdata; 2815 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2816 __le16 stype; 2817 2818 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2819 2820 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2821 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2822 sdata->vif.type != NL80211_IFTYPE_STATION) 2823 return RX_DROP_MONITOR; 2824 2825 switch (stype) { 2826 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2827 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2828 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2829 /* process for all: mesh, mlme, ibss */ 2830 break; 2831 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2832 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2833 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2834 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2835 if (is_multicast_ether_addr(mgmt->da) && 2836 !is_broadcast_ether_addr(mgmt->da)) 2837 return RX_DROP_MONITOR; 2838 2839 /* process only for station */ 2840 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2841 return RX_DROP_MONITOR; 2842 break; 2843 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2844 /* process only for ibss and mesh */ 2845 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2846 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2847 return RX_DROP_MONITOR; 2848 break; 2849 default: 2850 return RX_DROP_MONITOR; 2851 } 2852 2853 /* queue up frame and kick off work to process it */ 2854 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2855 skb_queue_tail(&sdata->skb_queue, rx->skb); 2856 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2857 if (rx->sta) 2858 rx->sta->rx_packets++; 2859 2860 return RX_QUEUED; 2861 } 2862 2863 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2864 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2865 struct ieee80211_rate *rate) 2866 { 2867 struct ieee80211_sub_if_data *sdata; 2868 struct ieee80211_local *local = rx->local; 2869 struct sk_buff *skb = rx->skb, *skb2; 2870 struct net_device *prev_dev = NULL; 2871 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2872 int needed_headroom; 2873 2874 /* 2875 * If cooked monitor has been processed already, then 2876 * don't do it again. If not, set the flag. 2877 */ 2878 if (rx->flags & IEEE80211_RX_CMNTR) 2879 goto out_free_skb; 2880 rx->flags |= IEEE80211_RX_CMNTR; 2881 2882 /* If there are no cooked monitor interfaces, just free the SKB */ 2883 if (!local->cooked_mntrs) 2884 goto out_free_skb; 2885 2886 /* room for the radiotap header based on driver features */ 2887 needed_headroom = ieee80211_rx_radiotap_space(local, status); 2888 2889 if (skb_headroom(skb) < needed_headroom && 2890 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2891 goto out_free_skb; 2892 2893 /* prepend radiotap information */ 2894 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2895 false); 2896 2897 skb_set_mac_header(skb, 0); 2898 skb->ip_summed = CHECKSUM_UNNECESSARY; 2899 skb->pkt_type = PACKET_OTHERHOST; 2900 skb->protocol = htons(ETH_P_802_2); 2901 2902 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2903 if (!ieee80211_sdata_running(sdata)) 2904 continue; 2905 2906 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2907 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2908 continue; 2909 2910 if (prev_dev) { 2911 skb2 = skb_clone(skb, GFP_ATOMIC); 2912 if (skb2) { 2913 skb2->dev = prev_dev; 2914 netif_receive_skb(skb2); 2915 } 2916 } 2917 2918 prev_dev = sdata->dev; 2919 sdata->dev->stats.rx_packets++; 2920 sdata->dev->stats.rx_bytes += skb->len; 2921 } 2922 2923 if (prev_dev) { 2924 skb->dev = prev_dev; 2925 netif_receive_skb(skb); 2926 return; 2927 } 2928 2929 out_free_skb: 2930 dev_kfree_skb(skb); 2931 } 2932 2933 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2934 ieee80211_rx_result res) 2935 { 2936 switch (res) { 2937 case RX_DROP_MONITOR: 2938 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2939 if (rx->sta) 2940 rx->sta->rx_dropped++; 2941 /* fall through */ 2942 case RX_CONTINUE: { 2943 struct ieee80211_rate *rate = NULL; 2944 struct ieee80211_supported_band *sband; 2945 struct ieee80211_rx_status *status; 2946 2947 status = IEEE80211_SKB_RXCB((rx->skb)); 2948 2949 sband = rx->local->hw.wiphy->bands[status->band]; 2950 if (!(status->flag & RX_FLAG_HT) && 2951 !(status->flag & RX_FLAG_VHT)) 2952 rate = &sband->bitrates[status->rate_idx]; 2953 2954 ieee80211_rx_cooked_monitor(rx, rate); 2955 break; 2956 } 2957 case RX_DROP_UNUSABLE: 2958 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2959 if (rx->sta) 2960 rx->sta->rx_dropped++; 2961 dev_kfree_skb(rx->skb); 2962 break; 2963 case RX_QUEUED: 2964 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2965 break; 2966 } 2967 } 2968 2969 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 2970 struct sk_buff_head *frames) 2971 { 2972 ieee80211_rx_result res = RX_DROP_MONITOR; 2973 struct sk_buff *skb; 2974 2975 #define CALL_RXH(rxh) \ 2976 do { \ 2977 res = rxh(rx); \ 2978 if (res != RX_CONTINUE) \ 2979 goto rxh_next; \ 2980 } while (0); 2981 2982 spin_lock_bh(&rx->local->rx_path_lock); 2983 2984 while ((skb = __skb_dequeue(frames))) { 2985 /* 2986 * all the other fields are valid across frames 2987 * that belong to an aMPDU since they are on the 2988 * same TID from the same station 2989 */ 2990 rx->skb = skb; 2991 2992 CALL_RXH(ieee80211_rx_h_check_more_data) 2993 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2994 CALL_RXH(ieee80211_rx_h_sta_process) 2995 CALL_RXH(ieee80211_rx_h_decrypt) 2996 CALL_RXH(ieee80211_rx_h_defragment) 2997 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2998 /* must be after MMIC verify so header is counted in MPDU mic */ 2999 #ifdef CONFIG_MAC80211_MESH 3000 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3001 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3002 #endif 3003 CALL_RXH(ieee80211_rx_h_amsdu) 3004 CALL_RXH(ieee80211_rx_h_data) 3005 3006 /* special treatment -- needs the queue */ 3007 res = ieee80211_rx_h_ctrl(rx, frames); 3008 if (res != RX_CONTINUE) 3009 goto rxh_next; 3010 3011 CALL_RXH(ieee80211_rx_h_mgmt_check) 3012 CALL_RXH(ieee80211_rx_h_action) 3013 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3014 CALL_RXH(ieee80211_rx_h_action_return) 3015 CALL_RXH(ieee80211_rx_h_mgmt) 3016 3017 rxh_next: 3018 ieee80211_rx_handlers_result(rx, res); 3019 3020 #undef CALL_RXH 3021 } 3022 3023 spin_unlock_bh(&rx->local->rx_path_lock); 3024 } 3025 3026 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3027 { 3028 struct sk_buff_head reorder_release; 3029 ieee80211_rx_result res = RX_DROP_MONITOR; 3030 3031 __skb_queue_head_init(&reorder_release); 3032 3033 #define CALL_RXH(rxh) \ 3034 do { \ 3035 res = rxh(rx); \ 3036 if (res != RX_CONTINUE) \ 3037 goto rxh_next; \ 3038 } while (0); 3039 3040 CALL_RXH(ieee80211_rx_h_check) 3041 3042 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3043 3044 ieee80211_rx_handlers(rx, &reorder_release); 3045 return; 3046 3047 rxh_next: 3048 ieee80211_rx_handlers_result(rx, res); 3049 3050 #undef CALL_RXH 3051 } 3052 3053 /* 3054 * This function makes calls into the RX path, therefore 3055 * it has to be invoked under RCU read lock. 3056 */ 3057 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3058 { 3059 struct sk_buff_head frames; 3060 struct ieee80211_rx_data rx = { 3061 .sta = sta, 3062 .sdata = sta->sdata, 3063 .local = sta->local, 3064 /* This is OK -- must be QoS data frame */ 3065 .security_idx = tid, 3066 .seqno_idx = tid, 3067 .flags = 0, 3068 }; 3069 struct tid_ampdu_rx *tid_agg_rx; 3070 3071 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3072 if (!tid_agg_rx) 3073 return; 3074 3075 __skb_queue_head_init(&frames); 3076 3077 spin_lock(&tid_agg_rx->reorder_lock); 3078 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3079 spin_unlock(&tid_agg_rx->reorder_lock); 3080 3081 ieee80211_rx_handlers(&rx, &frames); 3082 } 3083 3084 /* main receive path */ 3085 3086 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3087 struct ieee80211_hdr *hdr) 3088 { 3089 struct ieee80211_sub_if_data *sdata = rx->sdata; 3090 struct sk_buff *skb = rx->skb; 3091 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3092 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3093 int multicast = is_multicast_ether_addr(hdr->addr1); 3094 3095 switch (sdata->vif.type) { 3096 case NL80211_IFTYPE_STATION: 3097 if (!bssid && !sdata->u.mgd.use_4addr) 3098 return false; 3099 if (!multicast && 3100 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3101 if (!(sdata->dev->flags & IFF_PROMISC) || 3102 sdata->u.mgd.use_4addr) 3103 return false; 3104 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3105 } 3106 break; 3107 case NL80211_IFTYPE_ADHOC: 3108 if (!bssid) 3109 return false; 3110 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3111 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3112 return false; 3113 if (ieee80211_is_beacon(hdr->frame_control)) { 3114 return true; 3115 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3116 return false; 3117 } else if (!multicast && 3118 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3119 if (!(sdata->dev->flags & IFF_PROMISC)) 3120 return false; 3121 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3122 } else if (!rx->sta) { 3123 int rate_idx; 3124 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3125 rate_idx = 0; /* TODO: HT/VHT rates */ 3126 else 3127 rate_idx = status->rate_idx; 3128 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3129 BIT(rate_idx)); 3130 } 3131 break; 3132 case NL80211_IFTYPE_MESH_POINT: 3133 if (!multicast && 3134 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3135 if (!(sdata->dev->flags & IFF_PROMISC)) 3136 return false; 3137 3138 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3139 } 3140 break; 3141 case NL80211_IFTYPE_AP_VLAN: 3142 case NL80211_IFTYPE_AP: 3143 if (!bssid) { 3144 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3145 return false; 3146 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3147 /* 3148 * Accept public action frames even when the 3149 * BSSID doesn't match, this is used for P2P 3150 * and location updates. Note that mac80211 3151 * itself never looks at these frames. 3152 */ 3153 if (!multicast && 3154 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3155 return false; 3156 if (ieee80211_is_public_action(hdr, skb->len)) 3157 return true; 3158 if (!ieee80211_is_beacon(hdr->frame_control)) 3159 return false; 3160 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3161 } 3162 break; 3163 case NL80211_IFTYPE_WDS: 3164 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3165 return false; 3166 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3167 return false; 3168 break; 3169 case NL80211_IFTYPE_P2P_DEVICE: 3170 if (!ieee80211_is_public_action(hdr, skb->len) && 3171 !ieee80211_is_probe_req(hdr->frame_control) && 3172 !ieee80211_is_probe_resp(hdr->frame_control) && 3173 !ieee80211_is_beacon(hdr->frame_control)) 3174 return false; 3175 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3176 !multicast) 3177 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3178 break; 3179 default: 3180 /* should never get here */ 3181 WARN_ON_ONCE(1); 3182 break; 3183 } 3184 3185 return true; 3186 } 3187 3188 /* 3189 * This function returns whether or not the SKB 3190 * was destined for RX processing or not, which, 3191 * if consume is true, is equivalent to whether 3192 * or not the skb was consumed. 3193 */ 3194 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3195 struct sk_buff *skb, bool consume) 3196 { 3197 struct ieee80211_local *local = rx->local; 3198 struct ieee80211_sub_if_data *sdata = rx->sdata; 3199 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3200 struct ieee80211_hdr *hdr = (void *)skb->data; 3201 3202 rx->skb = skb; 3203 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3204 3205 if (!prepare_for_handlers(rx, hdr)) 3206 return false; 3207 3208 if (!consume) { 3209 skb = skb_copy(skb, GFP_ATOMIC); 3210 if (!skb) { 3211 if (net_ratelimit()) 3212 wiphy_debug(local->hw.wiphy, 3213 "failed to copy skb for %s\n", 3214 sdata->name); 3215 return true; 3216 } 3217 3218 rx->skb = skb; 3219 } 3220 3221 ieee80211_invoke_rx_handlers(rx); 3222 return true; 3223 } 3224 3225 /* 3226 * This is the actual Rx frames handler. as it blongs to Rx path it must 3227 * be called with rcu_read_lock protection. 3228 */ 3229 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3230 struct sk_buff *skb) 3231 { 3232 struct ieee80211_local *local = hw_to_local(hw); 3233 struct ieee80211_sub_if_data *sdata; 3234 struct ieee80211_hdr *hdr; 3235 __le16 fc; 3236 struct ieee80211_rx_data rx; 3237 struct ieee80211_sub_if_data *prev; 3238 struct sta_info *sta, *tmp, *prev_sta; 3239 int err = 0; 3240 3241 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3242 memset(&rx, 0, sizeof(rx)); 3243 rx.skb = skb; 3244 rx.local = local; 3245 3246 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3247 local->dot11ReceivedFragmentCount++; 3248 3249 if (ieee80211_is_mgmt(fc)) { 3250 /* drop frame if too short for header */ 3251 if (skb->len < ieee80211_hdrlen(fc)) 3252 err = -ENOBUFS; 3253 else 3254 err = skb_linearize(skb); 3255 } else { 3256 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3257 } 3258 3259 if (err) { 3260 dev_kfree_skb(skb); 3261 return; 3262 } 3263 3264 hdr = (struct ieee80211_hdr *)skb->data; 3265 ieee80211_parse_qos(&rx); 3266 ieee80211_verify_alignment(&rx); 3267 3268 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3269 ieee80211_is_beacon(hdr->frame_control))) 3270 ieee80211_scan_rx(local, skb); 3271 3272 if (ieee80211_is_data(fc)) { 3273 prev_sta = NULL; 3274 3275 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3276 if (!prev_sta) { 3277 prev_sta = sta; 3278 continue; 3279 } 3280 3281 rx.sta = prev_sta; 3282 rx.sdata = prev_sta->sdata; 3283 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3284 3285 prev_sta = sta; 3286 } 3287 3288 if (prev_sta) { 3289 rx.sta = prev_sta; 3290 rx.sdata = prev_sta->sdata; 3291 3292 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3293 return; 3294 goto out; 3295 } 3296 } 3297 3298 prev = NULL; 3299 3300 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3301 if (!ieee80211_sdata_running(sdata)) 3302 continue; 3303 3304 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3305 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3306 continue; 3307 3308 /* 3309 * frame is destined for this interface, but if it's 3310 * not also for the previous one we handle that after 3311 * the loop to avoid copying the SKB once too much 3312 */ 3313 3314 if (!prev) { 3315 prev = sdata; 3316 continue; 3317 } 3318 3319 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3320 rx.sdata = prev; 3321 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3322 3323 prev = sdata; 3324 } 3325 3326 if (prev) { 3327 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3328 rx.sdata = prev; 3329 3330 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3331 return; 3332 } 3333 3334 out: 3335 dev_kfree_skb(skb); 3336 } 3337 3338 /* 3339 * This is the receive path handler. It is called by a low level driver when an 3340 * 802.11 MPDU is received from the hardware. 3341 */ 3342 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3343 { 3344 struct ieee80211_local *local = hw_to_local(hw); 3345 struct ieee80211_rate *rate = NULL; 3346 struct ieee80211_supported_band *sband; 3347 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3348 3349 WARN_ON_ONCE(softirq_count() == 0); 3350 3351 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3352 goto drop; 3353 3354 sband = local->hw.wiphy->bands[status->band]; 3355 if (WARN_ON(!sband)) 3356 goto drop; 3357 3358 /* 3359 * If we're suspending, it is possible although not too likely 3360 * that we'd be receiving frames after having already partially 3361 * quiesced the stack. We can't process such frames then since 3362 * that might, for example, cause stations to be added or other 3363 * driver callbacks be invoked. 3364 */ 3365 if (unlikely(local->quiescing || local->suspended)) 3366 goto drop; 3367 3368 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3369 if (unlikely(local->in_reconfig)) 3370 goto drop; 3371 3372 /* 3373 * The same happens when we're not even started, 3374 * but that's worth a warning. 3375 */ 3376 if (WARN_ON(!local->started)) 3377 goto drop; 3378 3379 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3380 /* 3381 * Validate the rate, unless a PLCP error means that 3382 * we probably can't have a valid rate here anyway. 3383 */ 3384 3385 if (status->flag & RX_FLAG_HT) { 3386 /* 3387 * rate_idx is MCS index, which can be [0-76] 3388 * as documented on: 3389 * 3390 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3391 * 3392 * Anything else would be some sort of driver or 3393 * hardware error. The driver should catch hardware 3394 * errors. 3395 */ 3396 if (WARN(status->rate_idx > 76, 3397 "Rate marked as an HT rate but passed " 3398 "status->rate_idx is not " 3399 "an MCS index [0-76]: %d (0x%02x)\n", 3400 status->rate_idx, 3401 status->rate_idx)) 3402 goto drop; 3403 } else if (status->flag & RX_FLAG_VHT) { 3404 if (WARN_ONCE(status->rate_idx > 9 || 3405 !status->vht_nss || 3406 status->vht_nss > 8, 3407 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3408 status->rate_idx, status->vht_nss)) 3409 goto drop; 3410 } else { 3411 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3412 goto drop; 3413 rate = &sband->bitrates[status->rate_idx]; 3414 } 3415 } 3416 3417 status->rx_flags = 0; 3418 3419 /* 3420 * key references and virtual interfaces are protected using RCU 3421 * and this requires that we are in a read-side RCU section during 3422 * receive processing 3423 */ 3424 rcu_read_lock(); 3425 3426 /* 3427 * Frames with failed FCS/PLCP checksum are not returned, 3428 * all other frames are returned without radiotap header 3429 * if it was previously present. 3430 * Also, frames with less than 16 bytes are dropped. 3431 */ 3432 skb = ieee80211_rx_monitor(local, skb, rate); 3433 if (!skb) { 3434 rcu_read_unlock(); 3435 return; 3436 } 3437 3438 ieee80211_tpt_led_trig_rx(local, 3439 ((struct ieee80211_hdr *)skb->data)->frame_control, 3440 skb->len); 3441 __ieee80211_rx_handle_packet(hw, skb); 3442 3443 rcu_read_unlock(); 3444 3445 return; 3446 drop: 3447 kfree_skb(skb); 3448 } 3449 EXPORT_SYMBOL(ieee80211_rx); 3450 3451 /* This is a version of the rx handler that can be called from hard irq 3452 * context. Post the skb on the queue and schedule the tasklet */ 3453 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3454 { 3455 struct ieee80211_local *local = hw_to_local(hw); 3456 3457 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3458 3459 skb->pkt_type = IEEE80211_RX_MSG; 3460 skb_queue_tail(&local->skb_queue, skb); 3461 tasklet_schedule(&local->tasklet); 3462 } 3463 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3464