1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 struct ieee80211_hdr *hdr; 101 unsigned int hdrlen; 102 __le16 fc; 103 104 if (present_fcs_len) 105 __pskb_trim(skb, skb->len - present_fcs_len); 106 __pskb_pull(skb, rtap_space); 107 108 hdr = (void *)skb->data; 109 fc = hdr->frame_control; 110 111 /* 112 * Remove the HT-Control field (if present) on management 113 * frames after we've sent the frame to monitoring. We 114 * (currently) don't need it, and don't properly parse 115 * frames with it present, due to the assumption of a 116 * fixed management header length. 117 */ 118 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 119 return skb; 120 121 hdrlen = ieee80211_hdrlen(fc); 122 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 123 124 if (!pskb_may_pull(skb, hdrlen)) { 125 dev_kfree_skb(skb); 126 return NULL; 127 } 128 129 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 130 hdrlen - IEEE80211_HT_CTL_LEN); 131 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 132 133 return skb; 134 } 135 136 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 137 unsigned int rtap_space) 138 { 139 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 140 struct ieee80211_hdr *hdr; 141 142 hdr = (void *)(skb->data + rtap_space); 143 144 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 145 RX_FLAG_FAILED_PLCP_CRC | 146 RX_FLAG_ONLY_MONITOR | 147 RX_FLAG_NO_PSDU)) 148 return true; 149 150 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 151 return true; 152 153 if (ieee80211_is_ctl(hdr->frame_control) && 154 !ieee80211_is_pspoll(hdr->frame_control) && 155 !ieee80211_is_back_req(hdr->frame_control)) 156 return true; 157 158 return false; 159 } 160 161 static int 162 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 163 struct ieee80211_rx_status *status, 164 struct sk_buff *skb) 165 { 166 int len; 167 168 /* always present fields */ 169 len = sizeof(struct ieee80211_radiotap_header) + 8; 170 171 /* allocate extra bitmaps */ 172 if (status->chains) 173 len += 4 * hweight8(status->chains); 174 /* vendor presence bitmap */ 175 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 176 len += 4; 177 178 if (ieee80211_have_rx_timestamp(status)) { 179 len = ALIGN(len, 8); 180 len += 8; 181 } 182 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 183 len += 1; 184 185 /* antenna field, if we don't have per-chain info */ 186 if (!status->chains) 187 len += 1; 188 189 /* padding for RX_FLAGS if necessary */ 190 len = ALIGN(len, 2); 191 192 if (status->encoding == RX_ENC_HT) /* HT info */ 193 len += 3; 194 195 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 196 len = ALIGN(len, 4); 197 len += 8; 198 } 199 200 if (status->encoding == RX_ENC_VHT) { 201 len = ALIGN(len, 2); 202 len += 12; 203 } 204 205 if (local->hw.radiotap_timestamp.units_pos >= 0) { 206 len = ALIGN(len, 8); 207 len += 12; 208 } 209 210 if (status->encoding == RX_ENC_HE && 211 status->flag & RX_FLAG_RADIOTAP_HE) { 212 len = ALIGN(len, 2); 213 len += 12; 214 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 215 } 216 217 if (status->encoding == RX_ENC_HE && 218 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 219 len = ALIGN(len, 2); 220 len += 12; 221 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 222 } 223 224 if (status->flag & RX_FLAG_NO_PSDU) 225 len += 1; 226 227 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 228 len = ALIGN(len, 2); 229 len += 4; 230 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 231 } 232 233 if (status->chains) { 234 /* antenna and antenna signal fields */ 235 len += 2 * hweight8(status->chains); 236 } 237 238 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 239 struct ieee80211_vendor_radiotap *rtap; 240 int vendor_data_offset = 0; 241 242 /* 243 * The position to look at depends on the existence (or non- 244 * existence) of other elements, so take that into account... 245 */ 246 if (status->flag & RX_FLAG_RADIOTAP_HE) 247 vendor_data_offset += 248 sizeof(struct ieee80211_radiotap_he); 249 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 250 vendor_data_offset += 251 sizeof(struct ieee80211_radiotap_he_mu); 252 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 253 vendor_data_offset += 254 sizeof(struct ieee80211_radiotap_lsig); 255 256 rtap = (void *)&skb->data[vendor_data_offset]; 257 258 /* alignment for fixed 6-byte vendor data header */ 259 len = ALIGN(len, 2); 260 /* vendor data header */ 261 len += 6; 262 if (WARN_ON(rtap->align == 0)) 263 rtap->align = 1; 264 len = ALIGN(len, rtap->align); 265 len += rtap->len + rtap->pad; 266 } 267 268 return len; 269 } 270 271 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 272 struct sk_buff *skb, 273 int rtap_space) 274 { 275 struct { 276 struct ieee80211_hdr_3addr hdr; 277 u8 category; 278 u8 action_code; 279 } __packed __aligned(2) action; 280 281 if (!sdata) 282 return; 283 284 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 285 286 if (skb->len < rtap_space + sizeof(action) + 287 VHT_MUMIMO_GROUPS_DATA_LEN) 288 return; 289 290 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 291 return; 292 293 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 294 295 if (!ieee80211_is_action(action.hdr.frame_control)) 296 return; 297 298 if (action.category != WLAN_CATEGORY_VHT) 299 return; 300 301 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 302 return; 303 304 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 305 return; 306 307 skb = skb_copy(skb, GFP_ATOMIC); 308 if (!skb) 309 return; 310 311 skb_queue_tail(&sdata->skb_queue, skb); 312 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 313 } 314 315 /* 316 * ieee80211_add_rx_radiotap_header - add radiotap header 317 * 318 * add a radiotap header containing all the fields which the hardware provided. 319 */ 320 static void 321 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 322 struct sk_buff *skb, 323 struct ieee80211_rate *rate, 324 int rtap_len, bool has_fcs) 325 { 326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 327 struct ieee80211_radiotap_header *rthdr; 328 unsigned char *pos; 329 __le32 *it_present; 330 u32 it_present_val; 331 u16 rx_flags = 0; 332 u16 channel_flags = 0; 333 int mpdulen, chain; 334 unsigned long chains = status->chains; 335 struct ieee80211_vendor_radiotap rtap = {}; 336 struct ieee80211_radiotap_he he = {}; 337 struct ieee80211_radiotap_he_mu he_mu = {}; 338 struct ieee80211_radiotap_lsig lsig = {}; 339 340 if (status->flag & RX_FLAG_RADIOTAP_HE) { 341 he = *(struct ieee80211_radiotap_he *)skb->data; 342 skb_pull(skb, sizeof(he)); 343 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 344 } 345 346 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 347 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 348 skb_pull(skb, sizeof(he_mu)); 349 } 350 351 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 352 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 353 skb_pull(skb, sizeof(lsig)); 354 } 355 356 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 357 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 358 /* rtap.len and rtap.pad are undone immediately */ 359 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 360 } 361 362 mpdulen = skb->len; 363 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 364 mpdulen += FCS_LEN; 365 366 rthdr = skb_push(skb, rtap_len); 367 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 368 it_present = &rthdr->it_present; 369 370 /* radiotap header, set always present flags */ 371 rthdr->it_len = cpu_to_le16(rtap_len); 372 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 373 BIT(IEEE80211_RADIOTAP_CHANNEL) | 374 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 375 376 if (!status->chains) 377 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 378 379 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 380 it_present_val |= 381 BIT(IEEE80211_RADIOTAP_EXT) | 382 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 383 put_unaligned_le32(it_present_val, it_present); 384 it_present++; 385 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 386 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 387 } 388 389 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 390 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 391 BIT(IEEE80211_RADIOTAP_EXT); 392 put_unaligned_le32(it_present_val, it_present); 393 it_present++; 394 it_present_val = rtap.present; 395 } 396 397 put_unaligned_le32(it_present_val, it_present); 398 399 pos = (void *)(it_present + 1); 400 401 /* the order of the following fields is important */ 402 403 /* IEEE80211_RADIOTAP_TSFT */ 404 if (ieee80211_have_rx_timestamp(status)) { 405 /* padding */ 406 while ((pos - (u8 *)rthdr) & 7) 407 *pos++ = 0; 408 put_unaligned_le64( 409 ieee80211_calculate_rx_timestamp(local, status, 410 mpdulen, 0), 411 pos); 412 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 413 pos += 8; 414 } 415 416 /* IEEE80211_RADIOTAP_FLAGS */ 417 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 418 *pos |= IEEE80211_RADIOTAP_F_FCS; 419 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 420 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 421 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 422 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 423 pos++; 424 425 /* IEEE80211_RADIOTAP_RATE */ 426 if (!rate || status->encoding != RX_ENC_LEGACY) { 427 /* 428 * Without rate information don't add it. If we have, 429 * MCS information is a separate field in radiotap, 430 * added below. The byte here is needed as padding 431 * for the channel though, so initialise it to 0. 432 */ 433 *pos = 0; 434 } else { 435 int shift = 0; 436 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 437 if (status->bw == RATE_INFO_BW_10) 438 shift = 1; 439 else if (status->bw == RATE_INFO_BW_5) 440 shift = 2; 441 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 442 } 443 pos++; 444 445 /* IEEE80211_RADIOTAP_CHANNEL */ 446 /* TODO: frequency offset in KHz */ 447 put_unaligned_le16(status->freq, pos); 448 pos += 2; 449 if (status->bw == RATE_INFO_BW_10) 450 channel_flags |= IEEE80211_CHAN_HALF; 451 else if (status->bw == RATE_INFO_BW_5) 452 channel_flags |= IEEE80211_CHAN_QUARTER; 453 454 if (status->band == NL80211_BAND_5GHZ) 455 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 456 else if (status->encoding != RX_ENC_LEGACY) 457 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 458 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 459 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 460 else if (rate) 461 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 462 else 463 channel_flags |= IEEE80211_CHAN_2GHZ; 464 put_unaligned_le16(channel_flags, pos); 465 pos += 2; 466 467 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 468 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 469 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 470 *pos = status->signal; 471 rthdr->it_present |= 472 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 473 pos++; 474 } 475 476 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 477 478 if (!status->chains) { 479 /* IEEE80211_RADIOTAP_ANTENNA */ 480 *pos = status->antenna; 481 pos++; 482 } 483 484 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 485 486 /* IEEE80211_RADIOTAP_RX_FLAGS */ 487 /* ensure 2 byte alignment for the 2 byte field as required */ 488 if ((pos - (u8 *)rthdr) & 1) 489 *pos++ = 0; 490 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 491 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 492 put_unaligned_le16(rx_flags, pos); 493 pos += 2; 494 495 if (status->encoding == RX_ENC_HT) { 496 unsigned int stbc; 497 498 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 499 *pos++ = local->hw.radiotap_mcs_details; 500 *pos = 0; 501 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 502 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 503 if (status->bw == RATE_INFO_BW_40) 504 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 505 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 506 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 507 if (status->enc_flags & RX_ENC_FLAG_LDPC) 508 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 509 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 510 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 511 pos++; 512 *pos++ = status->rate_idx; 513 } 514 515 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 516 u16 flags = 0; 517 518 /* ensure 4 byte alignment */ 519 while ((pos - (u8 *)rthdr) & 3) 520 pos++; 521 rthdr->it_present |= 522 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 523 put_unaligned_le32(status->ampdu_reference, pos); 524 pos += 4; 525 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 526 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 527 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 528 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 529 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 530 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 531 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 532 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 533 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 534 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 535 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 536 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 537 put_unaligned_le16(flags, pos); 538 pos += 2; 539 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 540 *pos++ = status->ampdu_delimiter_crc; 541 else 542 *pos++ = 0; 543 *pos++ = 0; 544 } 545 546 if (status->encoding == RX_ENC_VHT) { 547 u16 known = local->hw.radiotap_vht_details; 548 549 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 550 put_unaligned_le16(known, pos); 551 pos += 2; 552 /* flags */ 553 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 554 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 555 /* in VHT, STBC is binary */ 556 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 557 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 558 if (status->enc_flags & RX_ENC_FLAG_BF) 559 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 560 pos++; 561 /* bandwidth */ 562 switch (status->bw) { 563 case RATE_INFO_BW_80: 564 *pos++ = 4; 565 break; 566 case RATE_INFO_BW_160: 567 *pos++ = 11; 568 break; 569 case RATE_INFO_BW_40: 570 *pos++ = 1; 571 break; 572 default: 573 *pos++ = 0; 574 } 575 /* MCS/NSS */ 576 *pos = (status->rate_idx << 4) | status->nss; 577 pos += 4; 578 /* coding field */ 579 if (status->enc_flags & RX_ENC_FLAG_LDPC) 580 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 581 pos++; 582 /* group ID */ 583 pos++; 584 /* partial_aid */ 585 pos += 2; 586 } 587 588 if (local->hw.radiotap_timestamp.units_pos >= 0) { 589 u16 accuracy = 0; 590 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 591 592 rthdr->it_present |= 593 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 594 595 /* ensure 8 byte alignment */ 596 while ((pos - (u8 *)rthdr) & 7) 597 pos++; 598 599 put_unaligned_le64(status->device_timestamp, pos); 600 pos += sizeof(u64); 601 602 if (local->hw.radiotap_timestamp.accuracy >= 0) { 603 accuracy = local->hw.radiotap_timestamp.accuracy; 604 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 605 } 606 put_unaligned_le16(accuracy, pos); 607 pos += sizeof(u16); 608 609 *pos++ = local->hw.radiotap_timestamp.units_pos; 610 *pos++ = flags; 611 } 612 613 if (status->encoding == RX_ENC_HE && 614 status->flag & RX_FLAG_RADIOTAP_HE) { 615 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 616 617 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 618 he.data6 |= HE_PREP(DATA6_NSTS, 619 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 620 status->enc_flags)); 621 he.data3 |= HE_PREP(DATA3_STBC, 1); 622 } else { 623 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 624 } 625 626 #define CHECK_GI(s) \ 627 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 628 (int)NL80211_RATE_INFO_HE_GI_##s) 629 630 CHECK_GI(0_8); 631 CHECK_GI(1_6); 632 CHECK_GI(3_2); 633 634 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 635 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 636 he.data3 |= HE_PREP(DATA3_CODING, 637 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 638 639 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 640 641 switch (status->bw) { 642 case RATE_INFO_BW_20: 643 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 644 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 645 break; 646 case RATE_INFO_BW_40: 647 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 648 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 649 break; 650 case RATE_INFO_BW_80: 651 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 652 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 653 break; 654 case RATE_INFO_BW_160: 655 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 656 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 657 break; 658 case RATE_INFO_BW_HE_RU: 659 #define CHECK_RU_ALLOC(s) \ 660 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 661 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 662 663 CHECK_RU_ALLOC(26); 664 CHECK_RU_ALLOC(52); 665 CHECK_RU_ALLOC(106); 666 CHECK_RU_ALLOC(242); 667 CHECK_RU_ALLOC(484); 668 CHECK_RU_ALLOC(996); 669 CHECK_RU_ALLOC(2x996); 670 671 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 672 status->he_ru + 4); 673 break; 674 default: 675 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 676 } 677 678 /* ensure 2 byte alignment */ 679 while ((pos - (u8 *)rthdr) & 1) 680 pos++; 681 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 682 memcpy(pos, &he, sizeof(he)); 683 pos += sizeof(he); 684 } 685 686 if (status->encoding == RX_ENC_HE && 687 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 688 /* ensure 2 byte alignment */ 689 while ((pos - (u8 *)rthdr) & 1) 690 pos++; 691 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 692 memcpy(pos, &he_mu, sizeof(he_mu)); 693 pos += sizeof(he_mu); 694 } 695 696 if (status->flag & RX_FLAG_NO_PSDU) { 697 rthdr->it_present |= 698 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 699 *pos++ = status->zero_length_psdu_type; 700 } 701 702 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 703 /* ensure 2 byte alignment */ 704 while ((pos - (u8 *)rthdr) & 1) 705 pos++; 706 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 707 memcpy(pos, &lsig, sizeof(lsig)); 708 pos += sizeof(lsig); 709 } 710 711 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 712 *pos++ = status->chain_signal[chain]; 713 *pos++ = chain; 714 } 715 716 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 717 /* ensure 2 byte alignment for the vendor field as required */ 718 if ((pos - (u8 *)rthdr) & 1) 719 *pos++ = 0; 720 *pos++ = rtap.oui[0]; 721 *pos++ = rtap.oui[1]; 722 *pos++ = rtap.oui[2]; 723 *pos++ = rtap.subns; 724 put_unaligned_le16(rtap.len, pos); 725 pos += 2; 726 /* align the actual payload as requested */ 727 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 728 *pos++ = 0; 729 /* data (and possible padding) already follows */ 730 } 731 } 732 733 static struct sk_buff * 734 ieee80211_make_monitor_skb(struct ieee80211_local *local, 735 struct sk_buff **origskb, 736 struct ieee80211_rate *rate, 737 int rtap_space, bool use_origskb) 738 { 739 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 740 int rt_hdrlen, needed_headroom; 741 struct sk_buff *skb; 742 743 /* room for the radiotap header based on driver features */ 744 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 745 needed_headroom = rt_hdrlen - rtap_space; 746 747 if (use_origskb) { 748 /* only need to expand headroom if necessary */ 749 skb = *origskb; 750 *origskb = NULL; 751 752 /* 753 * This shouldn't trigger often because most devices have an 754 * RX header they pull before we get here, and that should 755 * be big enough for our radiotap information. We should 756 * probably export the length to drivers so that we can have 757 * them allocate enough headroom to start with. 758 */ 759 if (skb_headroom(skb) < needed_headroom && 760 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 761 dev_kfree_skb(skb); 762 return NULL; 763 } 764 } else { 765 /* 766 * Need to make a copy and possibly remove radiotap header 767 * and FCS from the original. 768 */ 769 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 770 771 if (!skb) 772 return NULL; 773 } 774 775 /* prepend radiotap information */ 776 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 777 778 skb_reset_mac_header(skb); 779 skb->ip_summed = CHECKSUM_UNNECESSARY; 780 skb->pkt_type = PACKET_OTHERHOST; 781 skb->protocol = htons(ETH_P_802_2); 782 783 return skb; 784 } 785 786 /* 787 * This function copies a received frame to all monitor interfaces and 788 * returns a cleaned-up SKB that no longer includes the FCS nor the 789 * radiotap header the driver might have added. 790 */ 791 static struct sk_buff * 792 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 793 struct ieee80211_rate *rate) 794 { 795 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 796 struct ieee80211_sub_if_data *sdata; 797 struct sk_buff *monskb = NULL; 798 int present_fcs_len = 0; 799 unsigned int rtap_space = 0; 800 struct ieee80211_sub_if_data *monitor_sdata = 801 rcu_dereference(local->monitor_sdata); 802 bool only_monitor = false; 803 unsigned int min_head_len; 804 805 if (status->flag & RX_FLAG_RADIOTAP_HE) 806 rtap_space += sizeof(struct ieee80211_radiotap_he); 807 808 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 809 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 810 811 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 812 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 813 814 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 815 struct ieee80211_vendor_radiotap *rtap = 816 (void *)(origskb->data + rtap_space); 817 818 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 819 } 820 821 min_head_len = rtap_space; 822 823 /* 824 * First, we may need to make a copy of the skb because 825 * (1) we need to modify it for radiotap (if not present), and 826 * (2) the other RX handlers will modify the skb we got. 827 * 828 * We don't need to, of course, if we aren't going to return 829 * the SKB because it has a bad FCS/PLCP checksum. 830 */ 831 832 if (!(status->flag & RX_FLAG_NO_PSDU)) { 833 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 834 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 835 /* driver bug */ 836 WARN_ON(1); 837 dev_kfree_skb(origskb); 838 return NULL; 839 } 840 present_fcs_len = FCS_LEN; 841 } 842 843 /* also consider the hdr->frame_control */ 844 min_head_len += 2; 845 } 846 847 /* ensure that the expected data elements are in skb head */ 848 if (!pskb_may_pull(origskb, min_head_len)) { 849 dev_kfree_skb(origskb); 850 return NULL; 851 } 852 853 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 854 855 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 856 if (only_monitor) { 857 dev_kfree_skb(origskb); 858 return NULL; 859 } 860 861 return ieee80211_clean_skb(origskb, present_fcs_len, 862 rtap_space); 863 } 864 865 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 866 867 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 868 bool last_monitor = list_is_last(&sdata->u.mntr.list, 869 &local->mon_list); 870 871 if (!monskb) 872 monskb = ieee80211_make_monitor_skb(local, &origskb, 873 rate, rtap_space, 874 only_monitor && 875 last_monitor); 876 877 if (monskb) { 878 struct sk_buff *skb; 879 880 if (last_monitor) { 881 skb = monskb; 882 monskb = NULL; 883 } else { 884 skb = skb_clone(monskb, GFP_ATOMIC); 885 } 886 887 if (skb) { 888 skb->dev = sdata->dev; 889 ieee80211_rx_stats(skb->dev, skb->len); 890 netif_receive_skb(skb); 891 } 892 } 893 894 if (last_monitor) 895 break; 896 } 897 898 /* this happens if last_monitor was erroneously false */ 899 dev_kfree_skb(monskb); 900 901 /* ditto */ 902 if (!origskb) 903 return NULL; 904 905 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 906 } 907 908 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 909 { 910 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 912 int tid, seqno_idx, security_idx; 913 914 /* does the frame have a qos control field? */ 915 if (ieee80211_is_data_qos(hdr->frame_control)) { 916 u8 *qc = ieee80211_get_qos_ctl(hdr); 917 /* frame has qos control */ 918 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 919 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 920 status->rx_flags |= IEEE80211_RX_AMSDU; 921 922 seqno_idx = tid; 923 security_idx = tid; 924 } else { 925 /* 926 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 927 * 928 * Sequence numbers for management frames, QoS data 929 * frames with a broadcast/multicast address in the 930 * Address 1 field, and all non-QoS data frames sent 931 * by QoS STAs are assigned using an additional single 932 * modulo-4096 counter, [...] 933 * 934 * We also use that counter for non-QoS STAs. 935 */ 936 seqno_idx = IEEE80211_NUM_TIDS; 937 security_idx = 0; 938 if (ieee80211_is_mgmt(hdr->frame_control)) 939 security_idx = IEEE80211_NUM_TIDS; 940 tid = 0; 941 } 942 943 rx->seqno_idx = seqno_idx; 944 rx->security_idx = security_idx; 945 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 946 * For now, set skb->priority to 0 for other cases. */ 947 rx->skb->priority = (tid > 7) ? 0 : tid; 948 } 949 950 /** 951 * DOC: Packet alignment 952 * 953 * Drivers always need to pass packets that are aligned to two-byte boundaries 954 * to the stack. 955 * 956 * Additionally, should, if possible, align the payload data in a way that 957 * guarantees that the contained IP header is aligned to a four-byte 958 * boundary. In the case of regular frames, this simply means aligning the 959 * payload to a four-byte boundary (because either the IP header is directly 960 * contained, or IV/RFC1042 headers that have a length divisible by four are 961 * in front of it). If the payload data is not properly aligned and the 962 * architecture doesn't support efficient unaligned operations, mac80211 963 * will align the data. 964 * 965 * With A-MSDU frames, however, the payload data address must yield two modulo 966 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 967 * push the IP header further back to a multiple of four again. Thankfully, the 968 * specs were sane enough this time around to require padding each A-MSDU 969 * subframe to a length that is a multiple of four. 970 * 971 * Padding like Atheros hardware adds which is between the 802.11 header and 972 * the payload is not supported, the driver is required to move the 802.11 973 * header to be directly in front of the payload in that case. 974 */ 975 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 976 { 977 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 978 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 979 #endif 980 } 981 982 983 /* rx handlers */ 984 985 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 986 { 987 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 988 989 if (is_multicast_ether_addr(hdr->addr1)) 990 return 0; 991 992 return ieee80211_is_robust_mgmt_frame(skb); 993 } 994 995 996 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 997 { 998 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 999 1000 if (!is_multicast_ether_addr(hdr->addr1)) 1001 return 0; 1002 1003 return ieee80211_is_robust_mgmt_frame(skb); 1004 } 1005 1006 1007 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 1008 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 1009 { 1010 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 1011 struct ieee80211_mmie *mmie; 1012 struct ieee80211_mmie_16 *mmie16; 1013 1014 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 1015 return -1; 1016 1017 if (!ieee80211_is_robust_mgmt_frame(skb) && 1018 !ieee80211_is_beacon(hdr->frame_control)) 1019 return -1; /* not a robust management frame */ 1020 1021 mmie = (struct ieee80211_mmie *) 1022 (skb->data + skb->len - sizeof(*mmie)); 1023 if (mmie->element_id == WLAN_EID_MMIE && 1024 mmie->length == sizeof(*mmie) - 2) 1025 return le16_to_cpu(mmie->key_id); 1026 1027 mmie16 = (struct ieee80211_mmie_16 *) 1028 (skb->data + skb->len - sizeof(*mmie16)); 1029 if (skb->len >= 24 + sizeof(*mmie16) && 1030 mmie16->element_id == WLAN_EID_MMIE && 1031 mmie16->length == sizeof(*mmie16) - 2) 1032 return le16_to_cpu(mmie16->key_id); 1033 1034 return -1; 1035 } 1036 1037 static int ieee80211_get_keyid(struct sk_buff *skb, 1038 const struct ieee80211_cipher_scheme *cs) 1039 { 1040 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1041 __le16 fc; 1042 int hdrlen; 1043 int minlen; 1044 u8 key_idx_off; 1045 u8 key_idx_shift; 1046 u8 keyid; 1047 1048 fc = hdr->frame_control; 1049 hdrlen = ieee80211_hdrlen(fc); 1050 1051 if (cs) { 1052 minlen = hdrlen + cs->hdr_len; 1053 key_idx_off = hdrlen + cs->key_idx_off; 1054 key_idx_shift = cs->key_idx_shift; 1055 } else { 1056 /* WEP, TKIP, CCMP and GCMP */ 1057 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1058 key_idx_off = hdrlen + 3; 1059 key_idx_shift = 6; 1060 } 1061 1062 if (unlikely(skb->len < minlen)) 1063 return -EINVAL; 1064 1065 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1066 1067 if (cs) 1068 keyid &= cs->key_idx_mask; 1069 keyid >>= key_idx_shift; 1070 1071 /* cs could use more than the usual two bits for the keyid */ 1072 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1073 return -EINVAL; 1074 1075 return keyid; 1076 } 1077 1078 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1079 { 1080 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1081 char *dev_addr = rx->sdata->vif.addr; 1082 1083 if (ieee80211_is_data(hdr->frame_control)) { 1084 if (is_multicast_ether_addr(hdr->addr1)) { 1085 if (ieee80211_has_tods(hdr->frame_control) || 1086 !ieee80211_has_fromds(hdr->frame_control)) 1087 return RX_DROP_MONITOR; 1088 if (ether_addr_equal(hdr->addr3, dev_addr)) 1089 return RX_DROP_MONITOR; 1090 } else { 1091 if (!ieee80211_has_a4(hdr->frame_control)) 1092 return RX_DROP_MONITOR; 1093 if (ether_addr_equal(hdr->addr4, dev_addr)) 1094 return RX_DROP_MONITOR; 1095 } 1096 } 1097 1098 /* If there is not an established peer link and this is not a peer link 1099 * establisment frame, beacon or probe, drop the frame. 1100 */ 1101 1102 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1103 struct ieee80211_mgmt *mgmt; 1104 1105 if (!ieee80211_is_mgmt(hdr->frame_control)) 1106 return RX_DROP_MONITOR; 1107 1108 if (ieee80211_is_action(hdr->frame_control)) { 1109 u8 category; 1110 1111 /* make sure category field is present */ 1112 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1113 return RX_DROP_MONITOR; 1114 1115 mgmt = (struct ieee80211_mgmt *)hdr; 1116 category = mgmt->u.action.category; 1117 if (category != WLAN_CATEGORY_MESH_ACTION && 1118 category != WLAN_CATEGORY_SELF_PROTECTED) 1119 return RX_DROP_MONITOR; 1120 return RX_CONTINUE; 1121 } 1122 1123 if (ieee80211_is_probe_req(hdr->frame_control) || 1124 ieee80211_is_probe_resp(hdr->frame_control) || 1125 ieee80211_is_beacon(hdr->frame_control) || 1126 ieee80211_is_auth(hdr->frame_control)) 1127 return RX_CONTINUE; 1128 1129 return RX_DROP_MONITOR; 1130 } 1131 1132 return RX_CONTINUE; 1133 } 1134 1135 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1136 int index) 1137 { 1138 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1139 struct sk_buff *tail = skb_peek_tail(frames); 1140 struct ieee80211_rx_status *status; 1141 1142 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1143 return true; 1144 1145 if (!tail) 1146 return false; 1147 1148 status = IEEE80211_SKB_RXCB(tail); 1149 if (status->flag & RX_FLAG_AMSDU_MORE) 1150 return false; 1151 1152 return true; 1153 } 1154 1155 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1156 struct tid_ampdu_rx *tid_agg_rx, 1157 int index, 1158 struct sk_buff_head *frames) 1159 { 1160 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1161 struct sk_buff *skb; 1162 struct ieee80211_rx_status *status; 1163 1164 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1165 1166 if (skb_queue_empty(skb_list)) 1167 goto no_frame; 1168 1169 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1170 __skb_queue_purge(skb_list); 1171 goto no_frame; 1172 } 1173 1174 /* release frames from the reorder ring buffer */ 1175 tid_agg_rx->stored_mpdu_num--; 1176 while ((skb = __skb_dequeue(skb_list))) { 1177 status = IEEE80211_SKB_RXCB(skb); 1178 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1179 __skb_queue_tail(frames, skb); 1180 } 1181 1182 no_frame: 1183 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1184 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1185 } 1186 1187 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1188 struct tid_ampdu_rx *tid_agg_rx, 1189 u16 head_seq_num, 1190 struct sk_buff_head *frames) 1191 { 1192 int index; 1193 1194 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1195 1196 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1197 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1198 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1199 frames); 1200 } 1201 } 1202 1203 /* 1204 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1205 * the skb was added to the buffer longer than this time ago, the earlier 1206 * frames that have not yet been received are assumed to be lost and the skb 1207 * can be released for processing. This may also release other skb's from the 1208 * reorder buffer if there are no additional gaps between the frames. 1209 * 1210 * Callers must hold tid_agg_rx->reorder_lock. 1211 */ 1212 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1213 1214 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1215 struct tid_ampdu_rx *tid_agg_rx, 1216 struct sk_buff_head *frames) 1217 { 1218 int index, i, j; 1219 1220 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1221 1222 /* release the buffer until next missing frame */ 1223 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1224 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1225 tid_agg_rx->stored_mpdu_num) { 1226 /* 1227 * No buffers ready to be released, but check whether any 1228 * frames in the reorder buffer have timed out. 1229 */ 1230 int skipped = 1; 1231 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1232 j = (j + 1) % tid_agg_rx->buf_size) { 1233 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1234 skipped++; 1235 continue; 1236 } 1237 if (skipped && 1238 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1239 HT_RX_REORDER_BUF_TIMEOUT)) 1240 goto set_release_timer; 1241 1242 /* don't leave incomplete A-MSDUs around */ 1243 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1244 i = (i + 1) % tid_agg_rx->buf_size) 1245 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1246 1247 ht_dbg_ratelimited(sdata, 1248 "release an RX reorder frame due to timeout on earlier frames\n"); 1249 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1250 frames); 1251 1252 /* 1253 * Increment the head seq# also for the skipped slots. 1254 */ 1255 tid_agg_rx->head_seq_num = 1256 (tid_agg_rx->head_seq_num + 1257 skipped) & IEEE80211_SN_MASK; 1258 skipped = 0; 1259 } 1260 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1261 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1262 frames); 1263 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1264 } 1265 1266 if (tid_agg_rx->stored_mpdu_num) { 1267 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1268 1269 for (; j != (index - 1) % tid_agg_rx->buf_size; 1270 j = (j + 1) % tid_agg_rx->buf_size) { 1271 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1272 break; 1273 } 1274 1275 set_release_timer: 1276 1277 if (!tid_agg_rx->removed) 1278 mod_timer(&tid_agg_rx->reorder_timer, 1279 tid_agg_rx->reorder_time[j] + 1 + 1280 HT_RX_REORDER_BUF_TIMEOUT); 1281 } else { 1282 del_timer(&tid_agg_rx->reorder_timer); 1283 } 1284 } 1285 1286 /* 1287 * As this function belongs to the RX path it must be under 1288 * rcu_read_lock protection. It returns false if the frame 1289 * can be processed immediately, true if it was consumed. 1290 */ 1291 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1292 struct tid_ampdu_rx *tid_agg_rx, 1293 struct sk_buff *skb, 1294 struct sk_buff_head *frames) 1295 { 1296 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1297 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1298 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1299 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1300 u16 head_seq_num, buf_size; 1301 int index; 1302 bool ret = true; 1303 1304 spin_lock(&tid_agg_rx->reorder_lock); 1305 1306 /* 1307 * Offloaded BA sessions have no known starting sequence number so pick 1308 * one from first Rxed frame for this tid after BA was started. 1309 */ 1310 if (unlikely(tid_agg_rx->auto_seq)) { 1311 tid_agg_rx->auto_seq = false; 1312 tid_agg_rx->ssn = mpdu_seq_num; 1313 tid_agg_rx->head_seq_num = mpdu_seq_num; 1314 } 1315 1316 buf_size = tid_agg_rx->buf_size; 1317 head_seq_num = tid_agg_rx->head_seq_num; 1318 1319 /* 1320 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1321 * be reordered. 1322 */ 1323 if (unlikely(!tid_agg_rx->started)) { 1324 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1325 ret = false; 1326 goto out; 1327 } 1328 tid_agg_rx->started = true; 1329 } 1330 1331 /* frame with out of date sequence number */ 1332 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1333 dev_kfree_skb(skb); 1334 goto out; 1335 } 1336 1337 /* 1338 * If frame the sequence number exceeds our buffering window 1339 * size release some previous frames to make room for this one. 1340 */ 1341 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1342 head_seq_num = ieee80211_sn_inc( 1343 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1344 /* release stored frames up to new head to stack */ 1345 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1346 head_seq_num, frames); 1347 } 1348 1349 /* Now the new frame is always in the range of the reordering buffer */ 1350 1351 index = mpdu_seq_num % tid_agg_rx->buf_size; 1352 1353 /* check if we already stored this frame */ 1354 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1355 dev_kfree_skb(skb); 1356 goto out; 1357 } 1358 1359 /* 1360 * If the current MPDU is in the right order and nothing else 1361 * is stored we can process it directly, no need to buffer it. 1362 * If it is first but there's something stored, we may be able 1363 * to release frames after this one. 1364 */ 1365 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1366 tid_agg_rx->stored_mpdu_num == 0) { 1367 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1368 tid_agg_rx->head_seq_num = 1369 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1370 ret = false; 1371 goto out; 1372 } 1373 1374 /* put the frame in the reordering buffer */ 1375 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1376 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1377 tid_agg_rx->reorder_time[index] = jiffies; 1378 tid_agg_rx->stored_mpdu_num++; 1379 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1380 } 1381 1382 out: 1383 spin_unlock(&tid_agg_rx->reorder_lock); 1384 return ret; 1385 } 1386 1387 /* 1388 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1389 * true if the MPDU was buffered, false if it should be processed. 1390 */ 1391 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1392 struct sk_buff_head *frames) 1393 { 1394 struct sk_buff *skb = rx->skb; 1395 struct ieee80211_local *local = rx->local; 1396 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1397 struct sta_info *sta = rx->sta; 1398 struct tid_ampdu_rx *tid_agg_rx; 1399 u16 sc; 1400 u8 tid, ack_policy; 1401 1402 if (!ieee80211_is_data_qos(hdr->frame_control) || 1403 is_multicast_ether_addr(hdr->addr1)) 1404 goto dont_reorder; 1405 1406 /* 1407 * filter the QoS data rx stream according to 1408 * STA/TID and check if this STA/TID is on aggregation 1409 */ 1410 1411 if (!sta) 1412 goto dont_reorder; 1413 1414 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1415 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1416 tid = ieee80211_get_tid(hdr); 1417 1418 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1419 if (!tid_agg_rx) { 1420 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1421 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1422 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1423 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1424 WLAN_BACK_RECIPIENT, 1425 WLAN_REASON_QSTA_REQUIRE_SETUP); 1426 goto dont_reorder; 1427 } 1428 1429 /* qos null data frames are excluded */ 1430 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1431 goto dont_reorder; 1432 1433 /* not part of a BA session */ 1434 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1435 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1436 goto dont_reorder; 1437 1438 /* new, potentially un-ordered, ampdu frame - process it */ 1439 1440 /* reset session timer */ 1441 if (tid_agg_rx->timeout) 1442 tid_agg_rx->last_rx = jiffies; 1443 1444 /* if this mpdu is fragmented - terminate rx aggregation session */ 1445 sc = le16_to_cpu(hdr->seq_ctrl); 1446 if (sc & IEEE80211_SCTL_FRAG) { 1447 skb_queue_tail(&rx->sdata->skb_queue, skb); 1448 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1449 return; 1450 } 1451 1452 /* 1453 * No locking needed -- we will only ever process one 1454 * RX packet at a time, and thus own tid_agg_rx. All 1455 * other code manipulating it needs to (and does) make 1456 * sure that we cannot get to it any more before doing 1457 * anything with it. 1458 */ 1459 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1460 frames)) 1461 return; 1462 1463 dont_reorder: 1464 __skb_queue_tail(frames, skb); 1465 } 1466 1467 static ieee80211_rx_result debug_noinline 1468 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1469 { 1470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1471 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1472 1473 if (status->flag & RX_FLAG_DUP_VALIDATED) 1474 return RX_CONTINUE; 1475 1476 /* 1477 * Drop duplicate 802.11 retransmissions 1478 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1479 */ 1480 1481 if (rx->skb->len < 24) 1482 return RX_CONTINUE; 1483 1484 if (ieee80211_is_ctl(hdr->frame_control) || 1485 ieee80211_is_any_nullfunc(hdr->frame_control) || 1486 is_multicast_ether_addr(hdr->addr1)) 1487 return RX_CONTINUE; 1488 1489 if (!rx->sta) 1490 return RX_CONTINUE; 1491 1492 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1493 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1494 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1495 rx->sta->rx_stats.num_duplicates++; 1496 return RX_DROP_UNUSABLE; 1497 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1498 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1499 } 1500 1501 return RX_CONTINUE; 1502 } 1503 1504 static ieee80211_rx_result debug_noinline 1505 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1506 { 1507 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1508 1509 /* Drop disallowed frame classes based on STA auth/assoc state; 1510 * IEEE 802.11, Chap 5.5. 1511 * 1512 * mac80211 filters only based on association state, i.e. it drops 1513 * Class 3 frames from not associated stations. hostapd sends 1514 * deauth/disassoc frames when needed. In addition, hostapd is 1515 * responsible for filtering on both auth and assoc states. 1516 */ 1517 1518 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1519 return ieee80211_rx_mesh_check(rx); 1520 1521 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1522 ieee80211_is_pspoll(hdr->frame_control)) && 1523 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1524 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1525 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1526 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1527 /* 1528 * accept port control frames from the AP even when it's not 1529 * yet marked ASSOC to prevent a race where we don't set the 1530 * assoc bit quickly enough before it sends the first frame 1531 */ 1532 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1533 ieee80211_is_data_present(hdr->frame_control)) { 1534 unsigned int hdrlen; 1535 __be16 ethertype; 1536 1537 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1538 1539 if (rx->skb->len < hdrlen + 8) 1540 return RX_DROP_MONITOR; 1541 1542 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1543 if (ethertype == rx->sdata->control_port_protocol) 1544 return RX_CONTINUE; 1545 } 1546 1547 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1548 cfg80211_rx_spurious_frame(rx->sdata->dev, 1549 hdr->addr2, 1550 GFP_ATOMIC)) 1551 return RX_DROP_UNUSABLE; 1552 1553 return RX_DROP_MONITOR; 1554 } 1555 1556 return RX_CONTINUE; 1557 } 1558 1559 1560 static ieee80211_rx_result debug_noinline 1561 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1562 { 1563 struct ieee80211_local *local; 1564 struct ieee80211_hdr *hdr; 1565 struct sk_buff *skb; 1566 1567 local = rx->local; 1568 skb = rx->skb; 1569 hdr = (struct ieee80211_hdr *) skb->data; 1570 1571 if (!local->pspolling) 1572 return RX_CONTINUE; 1573 1574 if (!ieee80211_has_fromds(hdr->frame_control)) 1575 /* this is not from AP */ 1576 return RX_CONTINUE; 1577 1578 if (!ieee80211_is_data(hdr->frame_control)) 1579 return RX_CONTINUE; 1580 1581 if (!ieee80211_has_moredata(hdr->frame_control)) { 1582 /* AP has no more frames buffered for us */ 1583 local->pspolling = false; 1584 return RX_CONTINUE; 1585 } 1586 1587 /* more data bit is set, let's request a new frame from the AP */ 1588 ieee80211_send_pspoll(local, rx->sdata); 1589 1590 return RX_CONTINUE; 1591 } 1592 1593 static void sta_ps_start(struct sta_info *sta) 1594 { 1595 struct ieee80211_sub_if_data *sdata = sta->sdata; 1596 struct ieee80211_local *local = sdata->local; 1597 struct ps_data *ps; 1598 int tid; 1599 1600 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1601 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1602 ps = &sdata->bss->ps; 1603 else 1604 return; 1605 1606 atomic_inc(&ps->num_sta_ps); 1607 set_sta_flag(sta, WLAN_STA_PS_STA); 1608 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1609 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1610 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1611 sta->sta.addr, sta->sta.aid); 1612 1613 ieee80211_clear_fast_xmit(sta); 1614 1615 if (!sta->sta.txq[0]) 1616 return; 1617 1618 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1619 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1620 struct txq_info *txqi = to_txq_info(txq); 1621 1622 spin_lock(&local->active_txq_lock[txq->ac]); 1623 if (!list_empty(&txqi->schedule_order)) 1624 list_del_init(&txqi->schedule_order); 1625 spin_unlock(&local->active_txq_lock[txq->ac]); 1626 1627 if (txq_has_queue(txq)) 1628 set_bit(tid, &sta->txq_buffered_tids); 1629 else 1630 clear_bit(tid, &sta->txq_buffered_tids); 1631 } 1632 } 1633 1634 static void sta_ps_end(struct sta_info *sta) 1635 { 1636 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1637 sta->sta.addr, sta->sta.aid); 1638 1639 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1640 /* 1641 * Clear the flag only if the other one is still set 1642 * so that the TX path won't start TX'ing new frames 1643 * directly ... In the case that the driver flag isn't 1644 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1645 */ 1646 clear_sta_flag(sta, WLAN_STA_PS_STA); 1647 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1648 sta->sta.addr, sta->sta.aid); 1649 return; 1650 } 1651 1652 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1653 clear_sta_flag(sta, WLAN_STA_PS_STA); 1654 ieee80211_sta_ps_deliver_wakeup(sta); 1655 } 1656 1657 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1658 { 1659 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1660 bool in_ps; 1661 1662 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1663 1664 /* Don't let the same PS state be set twice */ 1665 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1666 if ((start && in_ps) || (!start && !in_ps)) 1667 return -EINVAL; 1668 1669 if (start) 1670 sta_ps_start(sta); 1671 else 1672 sta_ps_end(sta); 1673 1674 return 0; 1675 } 1676 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1677 1678 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1679 { 1680 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1681 1682 if (test_sta_flag(sta, WLAN_STA_SP)) 1683 return; 1684 1685 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1686 ieee80211_sta_ps_deliver_poll_response(sta); 1687 else 1688 set_sta_flag(sta, WLAN_STA_PSPOLL); 1689 } 1690 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1691 1692 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1693 { 1694 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1695 int ac = ieee80211_ac_from_tid(tid); 1696 1697 /* 1698 * If this AC is not trigger-enabled do nothing unless the 1699 * driver is calling us after it already checked. 1700 * 1701 * NB: This could/should check a separate bitmap of trigger- 1702 * enabled queues, but for now we only implement uAPSD w/o 1703 * TSPEC changes to the ACs, so they're always the same. 1704 */ 1705 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1706 tid != IEEE80211_NUM_TIDS) 1707 return; 1708 1709 /* if we are in a service period, do nothing */ 1710 if (test_sta_flag(sta, WLAN_STA_SP)) 1711 return; 1712 1713 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1714 ieee80211_sta_ps_deliver_uapsd(sta); 1715 else 1716 set_sta_flag(sta, WLAN_STA_UAPSD); 1717 } 1718 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1719 1720 static ieee80211_rx_result debug_noinline 1721 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1722 { 1723 struct ieee80211_sub_if_data *sdata = rx->sdata; 1724 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1725 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1726 1727 if (!rx->sta) 1728 return RX_CONTINUE; 1729 1730 if (sdata->vif.type != NL80211_IFTYPE_AP && 1731 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1732 return RX_CONTINUE; 1733 1734 /* 1735 * The device handles station powersave, so don't do anything about 1736 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1737 * it to mac80211 since they're handled.) 1738 */ 1739 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1740 return RX_CONTINUE; 1741 1742 /* 1743 * Don't do anything if the station isn't already asleep. In 1744 * the uAPSD case, the station will probably be marked asleep, 1745 * in the PS-Poll case the station must be confused ... 1746 */ 1747 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1748 return RX_CONTINUE; 1749 1750 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1751 ieee80211_sta_pspoll(&rx->sta->sta); 1752 1753 /* Free PS Poll skb here instead of returning RX_DROP that would 1754 * count as an dropped frame. */ 1755 dev_kfree_skb(rx->skb); 1756 1757 return RX_QUEUED; 1758 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1759 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1760 ieee80211_has_pm(hdr->frame_control) && 1761 (ieee80211_is_data_qos(hdr->frame_control) || 1762 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1763 u8 tid = ieee80211_get_tid(hdr); 1764 1765 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1766 } 1767 1768 return RX_CONTINUE; 1769 } 1770 1771 static ieee80211_rx_result debug_noinline 1772 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1773 { 1774 struct sta_info *sta = rx->sta; 1775 struct sk_buff *skb = rx->skb; 1776 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1777 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1778 int i; 1779 1780 if (!sta) 1781 return RX_CONTINUE; 1782 1783 /* 1784 * Update last_rx only for IBSS packets which are for the current 1785 * BSSID and for station already AUTHORIZED to avoid keeping the 1786 * current IBSS network alive in cases where other STAs start 1787 * using different BSSID. This will also give the station another 1788 * chance to restart the authentication/authorization in case 1789 * something went wrong the first time. 1790 */ 1791 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1792 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1793 NL80211_IFTYPE_ADHOC); 1794 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1795 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1796 sta->rx_stats.last_rx = jiffies; 1797 if (ieee80211_is_data(hdr->frame_control) && 1798 !is_multicast_ether_addr(hdr->addr1)) 1799 sta->rx_stats.last_rate = 1800 sta_stats_encode_rate(status); 1801 } 1802 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1803 sta->rx_stats.last_rx = jiffies; 1804 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1805 /* 1806 * Mesh beacons will update last_rx when if they are found to 1807 * match the current local configuration when processed. 1808 */ 1809 sta->rx_stats.last_rx = jiffies; 1810 if (ieee80211_is_data(hdr->frame_control)) 1811 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1812 } 1813 1814 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1815 ieee80211_sta_rx_notify(rx->sdata, hdr); 1816 1817 sta->rx_stats.fragments++; 1818 1819 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1820 sta->rx_stats.bytes += rx->skb->len; 1821 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1822 1823 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1824 sta->rx_stats.last_signal = status->signal; 1825 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1826 } 1827 1828 if (status->chains) { 1829 sta->rx_stats.chains = status->chains; 1830 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1831 int signal = status->chain_signal[i]; 1832 1833 if (!(status->chains & BIT(i))) 1834 continue; 1835 1836 sta->rx_stats.chain_signal_last[i] = signal; 1837 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1838 -signal); 1839 } 1840 } 1841 1842 /* 1843 * Change STA power saving mode only at the end of a frame 1844 * exchange sequence, and only for a data or management 1845 * frame as specified in IEEE 802.11-2016 11.2.3.2 1846 */ 1847 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1848 !ieee80211_has_morefrags(hdr->frame_control) && 1849 !is_multicast_ether_addr(hdr->addr1) && 1850 (ieee80211_is_mgmt(hdr->frame_control) || 1851 ieee80211_is_data(hdr->frame_control)) && 1852 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1853 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1854 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1855 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1856 if (!ieee80211_has_pm(hdr->frame_control)) 1857 sta_ps_end(sta); 1858 } else { 1859 if (ieee80211_has_pm(hdr->frame_control)) 1860 sta_ps_start(sta); 1861 } 1862 } 1863 1864 /* mesh power save support */ 1865 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1866 ieee80211_mps_rx_h_sta_process(sta, hdr); 1867 1868 /* 1869 * Drop (qos-)data::nullfunc frames silently, since they 1870 * are used only to control station power saving mode. 1871 */ 1872 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1873 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1874 1875 /* 1876 * If we receive a 4-addr nullfunc frame from a STA 1877 * that was not moved to a 4-addr STA vlan yet send 1878 * the event to userspace and for older hostapd drop 1879 * the frame to the monitor interface. 1880 */ 1881 if (ieee80211_has_a4(hdr->frame_control) && 1882 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1883 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1884 !rx->sdata->u.vlan.sta))) { 1885 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1886 cfg80211_rx_unexpected_4addr_frame( 1887 rx->sdata->dev, sta->sta.addr, 1888 GFP_ATOMIC); 1889 return RX_DROP_MONITOR; 1890 } 1891 /* 1892 * Update counter and free packet here to avoid 1893 * counting this as a dropped packed. 1894 */ 1895 sta->rx_stats.packets++; 1896 dev_kfree_skb(rx->skb); 1897 return RX_QUEUED; 1898 } 1899 1900 return RX_CONTINUE; 1901 } /* ieee80211_rx_h_sta_process */ 1902 1903 static struct ieee80211_key * 1904 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1905 { 1906 struct ieee80211_key *key = NULL; 1907 struct ieee80211_sub_if_data *sdata = rx->sdata; 1908 int idx2; 1909 1910 /* Make sure key gets set if either BIGTK key index is set so that 1911 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1912 * Beacon frames and Beacon frames that claim to use another BIGTK key 1913 * index (i.e., a key that we do not have). 1914 */ 1915 1916 if (idx < 0) { 1917 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1918 idx2 = idx + 1; 1919 } else { 1920 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1921 idx2 = idx + 1; 1922 else 1923 idx2 = idx - 1; 1924 } 1925 1926 if (rx->sta) 1927 key = rcu_dereference(rx->sta->gtk[idx]); 1928 if (!key) 1929 key = rcu_dereference(sdata->keys[idx]); 1930 if (!key && rx->sta) 1931 key = rcu_dereference(rx->sta->gtk[idx2]); 1932 if (!key) 1933 key = rcu_dereference(sdata->keys[idx2]); 1934 1935 return key; 1936 } 1937 1938 static ieee80211_rx_result debug_noinline 1939 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1940 { 1941 struct sk_buff *skb = rx->skb; 1942 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1944 int keyidx; 1945 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1946 struct ieee80211_key *sta_ptk = NULL; 1947 struct ieee80211_key *ptk_idx = NULL; 1948 int mmie_keyidx = -1; 1949 __le16 fc; 1950 const struct ieee80211_cipher_scheme *cs = NULL; 1951 1952 /* 1953 * Key selection 101 1954 * 1955 * There are five types of keys: 1956 * - GTK (group keys) 1957 * - IGTK (group keys for management frames) 1958 * - BIGTK (group keys for Beacon frames) 1959 * - PTK (pairwise keys) 1960 * - STK (station-to-station pairwise keys) 1961 * 1962 * When selecting a key, we have to distinguish between multicast 1963 * (including broadcast) and unicast frames, the latter can only 1964 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1965 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1966 * then unicast frames can also use key indices like GTKs. Hence, if we 1967 * don't have a PTK/STK we check the key index for a WEP key. 1968 * 1969 * Note that in a regular BSS, multicast frames are sent by the 1970 * AP only, associated stations unicast the frame to the AP first 1971 * which then multicasts it on their behalf. 1972 * 1973 * There is also a slight problem in IBSS mode: GTKs are negotiated 1974 * with each station, that is something we don't currently handle. 1975 * The spec seems to expect that one negotiates the same key with 1976 * every station but there's no such requirement; VLANs could be 1977 * possible. 1978 */ 1979 1980 /* start without a key */ 1981 rx->key = NULL; 1982 fc = hdr->frame_control; 1983 1984 if (rx->sta) { 1985 int keyid = rx->sta->ptk_idx; 1986 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1987 1988 if (ieee80211_has_protected(fc)) { 1989 cs = rx->sta->cipher_scheme; 1990 keyid = ieee80211_get_keyid(rx->skb, cs); 1991 1992 if (unlikely(keyid < 0)) 1993 return RX_DROP_UNUSABLE; 1994 1995 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1996 } 1997 } 1998 1999 if (!ieee80211_has_protected(fc)) 2000 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 2001 2002 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 2003 rx->key = ptk_idx ? ptk_idx : sta_ptk; 2004 if ((status->flag & RX_FLAG_DECRYPTED) && 2005 (status->flag & RX_FLAG_IV_STRIPPED)) 2006 return RX_CONTINUE; 2007 /* Skip decryption if the frame is not protected. */ 2008 if (!ieee80211_has_protected(fc)) 2009 return RX_CONTINUE; 2010 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 2011 /* Broadcast/multicast robust management frame / BIP */ 2012 if ((status->flag & RX_FLAG_DECRYPTED) && 2013 (status->flag & RX_FLAG_IV_STRIPPED)) 2014 return RX_CONTINUE; 2015 2016 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 2017 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 2018 NUM_DEFAULT_BEACON_KEYS) { 2019 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2020 skb->data, 2021 skb->len); 2022 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2023 } 2024 2025 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 2026 if (!rx->key) 2027 return RX_CONTINUE; /* Beacon protection not in use */ 2028 } else if (mmie_keyidx >= 0) { 2029 /* Broadcast/multicast robust management frame / BIP */ 2030 if ((status->flag & RX_FLAG_DECRYPTED) && 2031 (status->flag & RX_FLAG_IV_STRIPPED)) 2032 return RX_CONTINUE; 2033 2034 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2035 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2036 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2037 if (rx->sta) { 2038 if (ieee80211_is_group_privacy_action(skb) && 2039 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2040 return RX_DROP_MONITOR; 2041 2042 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2043 } 2044 if (!rx->key) 2045 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2046 } else if (!ieee80211_has_protected(fc)) { 2047 /* 2048 * The frame was not protected, so skip decryption. However, we 2049 * need to set rx->key if there is a key that could have been 2050 * used so that the frame may be dropped if encryption would 2051 * have been expected. 2052 */ 2053 struct ieee80211_key *key = NULL; 2054 struct ieee80211_sub_if_data *sdata = rx->sdata; 2055 int i; 2056 2057 if (ieee80211_is_beacon(fc)) { 2058 key = ieee80211_rx_get_bigtk(rx, -1); 2059 } else if (ieee80211_is_mgmt(fc) && 2060 is_multicast_ether_addr(hdr->addr1)) { 2061 key = rcu_dereference(rx->sdata->default_mgmt_key); 2062 } else { 2063 if (rx->sta) { 2064 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2065 key = rcu_dereference(rx->sta->gtk[i]); 2066 if (key) 2067 break; 2068 } 2069 } 2070 if (!key) { 2071 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2072 key = rcu_dereference(sdata->keys[i]); 2073 if (key) 2074 break; 2075 } 2076 } 2077 } 2078 if (key) 2079 rx->key = key; 2080 return RX_CONTINUE; 2081 } else { 2082 /* 2083 * The device doesn't give us the IV so we won't be 2084 * able to look up the key. That's ok though, we 2085 * don't need to decrypt the frame, we just won't 2086 * be able to keep statistics accurate. 2087 * Except for key threshold notifications, should 2088 * we somehow allow the driver to tell us which key 2089 * the hardware used if this flag is set? 2090 */ 2091 if ((status->flag & RX_FLAG_DECRYPTED) && 2092 (status->flag & RX_FLAG_IV_STRIPPED)) 2093 return RX_CONTINUE; 2094 2095 keyidx = ieee80211_get_keyid(rx->skb, cs); 2096 2097 if (unlikely(keyidx < 0)) 2098 return RX_DROP_UNUSABLE; 2099 2100 /* check per-station GTK first, if multicast packet */ 2101 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2102 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2103 2104 /* if not found, try default key */ 2105 if (!rx->key) { 2106 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2107 2108 /* 2109 * RSNA-protected unicast frames should always be 2110 * sent with pairwise or station-to-station keys, 2111 * but for WEP we allow using a key index as well. 2112 */ 2113 if (rx->key && 2114 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2115 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2116 !is_multicast_ether_addr(hdr->addr1)) 2117 rx->key = NULL; 2118 } 2119 } 2120 2121 if (rx->key) { 2122 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2123 return RX_DROP_MONITOR; 2124 2125 /* TODO: add threshold stuff again */ 2126 } else { 2127 return RX_DROP_MONITOR; 2128 } 2129 2130 switch (rx->key->conf.cipher) { 2131 case WLAN_CIPHER_SUITE_WEP40: 2132 case WLAN_CIPHER_SUITE_WEP104: 2133 result = ieee80211_crypto_wep_decrypt(rx); 2134 break; 2135 case WLAN_CIPHER_SUITE_TKIP: 2136 result = ieee80211_crypto_tkip_decrypt(rx); 2137 break; 2138 case WLAN_CIPHER_SUITE_CCMP: 2139 result = ieee80211_crypto_ccmp_decrypt( 2140 rx, IEEE80211_CCMP_MIC_LEN); 2141 break; 2142 case WLAN_CIPHER_SUITE_CCMP_256: 2143 result = ieee80211_crypto_ccmp_decrypt( 2144 rx, IEEE80211_CCMP_256_MIC_LEN); 2145 break; 2146 case WLAN_CIPHER_SUITE_AES_CMAC: 2147 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2148 break; 2149 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2150 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2151 break; 2152 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2153 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2154 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2155 break; 2156 case WLAN_CIPHER_SUITE_GCMP: 2157 case WLAN_CIPHER_SUITE_GCMP_256: 2158 result = ieee80211_crypto_gcmp_decrypt(rx); 2159 break; 2160 default: 2161 result = ieee80211_crypto_hw_decrypt(rx); 2162 } 2163 2164 /* the hdr variable is invalid after the decrypt handlers */ 2165 2166 /* either the frame has been decrypted or will be dropped */ 2167 status->flag |= RX_FLAG_DECRYPTED; 2168 2169 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2170 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2171 skb->data, skb->len); 2172 2173 return result; 2174 } 2175 2176 static inline struct ieee80211_fragment_entry * 2177 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2178 unsigned int frag, unsigned int seq, int rx_queue, 2179 struct sk_buff **skb) 2180 { 2181 struct ieee80211_fragment_entry *entry; 2182 2183 entry = &sdata->fragments[sdata->fragment_next++]; 2184 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2185 sdata->fragment_next = 0; 2186 2187 if (!skb_queue_empty(&entry->skb_list)) 2188 __skb_queue_purge(&entry->skb_list); 2189 2190 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2191 *skb = NULL; 2192 entry->first_frag_time = jiffies; 2193 entry->seq = seq; 2194 entry->rx_queue = rx_queue; 2195 entry->last_frag = frag; 2196 entry->check_sequential_pn = false; 2197 entry->extra_len = 0; 2198 2199 return entry; 2200 } 2201 2202 static inline struct ieee80211_fragment_entry * 2203 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2204 unsigned int frag, unsigned int seq, 2205 int rx_queue, struct ieee80211_hdr *hdr) 2206 { 2207 struct ieee80211_fragment_entry *entry; 2208 int i, idx; 2209 2210 idx = sdata->fragment_next; 2211 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2212 struct ieee80211_hdr *f_hdr; 2213 struct sk_buff *f_skb; 2214 2215 idx--; 2216 if (idx < 0) 2217 idx = IEEE80211_FRAGMENT_MAX - 1; 2218 2219 entry = &sdata->fragments[idx]; 2220 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2221 entry->rx_queue != rx_queue || 2222 entry->last_frag + 1 != frag) 2223 continue; 2224 2225 f_skb = __skb_peek(&entry->skb_list); 2226 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2227 2228 /* 2229 * Check ftype and addresses are equal, else check next fragment 2230 */ 2231 if (((hdr->frame_control ^ f_hdr->frame_control) & 2232 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2233 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2234 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2235 continue; 2236 2237 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2238 __skb_queue_purge(&entry->skb_list); 2239 continue; 2240 } 2241 return entry; 2242 } 2243 2244 return NULL; 2245 } 2246 2247 static ieee80211_rx_result debug_noinline 2248 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2249 { 2250 struct ieee80211_hdr *hdr; 2251 u16 sc; 2252 __le16 fc; 2253 unsigned int frag, seq; 2254 struct ieee80211_fragment_entry *entry; 2255 struct sk_buff *skb; 2256 2257 hdr = (struct ieee80211_hdr *)rx->skb->data; 2258 fc = hdr->frame_control; 2259 2260 if (ieee80211_is_ctl(fc)) 2261 return RX_CONTINUE; 2262 2263 sc = le16_to_cpu(hdr->seq_ctrl); 2264 frag = sc & IEEE80211_SCTL_FRAG; 2265 2266 if (is_multicast_ether_addr(hdr->addr1)) { 2267 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2268 goto out_no_led; 2269 } 2270 2271 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2272 goto out; 2273 2274 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2275 2276 if (skb_linearize(rx->skb)) 2277 return RX_DROP_UNUSABLE; 2278 2279 /* 2280 * skb_linearize() might change the skb->data and 2281 * previously cached variables (in this case, hdr) need to 2282 * be refreshed with the new data. 2283 */ 2284 hdr = (struct ieee80211_hdr *)rx->skb->data; 2285 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2286 2287 if (frag == 0) { 2288 /* This is the first fragment of a new frame. */ 2289 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2290 rx->seqno_idx, &(rx->skb)); 2291 if (rx->key && 2292 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2293 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2294 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2295 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2296 ieee80211_has_protected(fc)) { 2297 int queue = rx->security_idx; 2298 2299 /* Store CCMP/GCMP PN so that we can verify that the 2300 * next fragment has a sequential PN value. 2301 */ 2302 entry->check_sequential_pn = true; 2303 memcpy(entry->last_pn, 2304 rx->key->u.ccmp.rx_pn[queue], 2305 IEEE80211_CCMP_PN_LEN); 2306 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2307 u.ccmp.rx_pn) != 2308 offsetof(struct ieee80211_key, 2309 u.gcmp.rx_pn)); 2310 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2311 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2312 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2313 IEEE80211_GCMP_PN_LEN); 2314 } 2315 return RX_QUEUED; 2316 } 2317 2318 /* This is a fragment for a frame that should already be pending in 2319 * fragment cache. Add this fragment to the end of the pending entry. 2320 */ 2321 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2322 rx->seqno_idx, hdr); 2323 if (!entry) { 2324 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2325 return RX_DROP_MONITOR; 2326 } 2327 2328 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2329 * MPDU PN values are not incrementing in steps of 1." 2330 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2331 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2332 */ 2333 if (entry->check_sequential_pn) { 2334 int i; 2335 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2336 int queue; 2337 2338 if (!rx->key || 2339 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2340 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2341 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2342 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2343 return RX_DROP_UNUSABLE; 2344 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2345 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2346 pn[i]++; 2347 if (pn[i]) 2348 break; 2349 } 2350 queue = rx->security_idx; 2351 rpn = rx->key->u.ccmp.rx_pn[queue]; 2352 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2353 return RX_DROP_UNUSABLE; 2354 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2355 } 2356 2357 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2358 __skb_queue_tail(&entry->skb_list, rx->skb); 2359 entry->last_frag = frag; 2360 entry->extra_len += rx->skb->len; 2361 if (ieee80211_has_morefrags(fc)) { 2362 rx->skb = NULL; 2363 return RX_QUEUED; 2364 } 2365 2366 rx->skb = __skb_dequeue(&entry->skb_list); 2367 if (skb_tailroom(rx->skb) < entry->extra_len) { 2368 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2369 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2370 GFP_ATOMIC))) { 2371 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2372 __skb_queue_purge(&entry->skb_list); 2373 return RX_DROP_UNUSABLE; 2374 } 2375 } 2376 while ((skb = __skb_dequeue(&entry->skb_list))) { 2377 skb_put_data(rx->skb, skb->data, skb->len); 2378 dev_kfree_skb(skb); 2379 } 2380 2381 out: 2382 ieee80211_led_rx(rx->local); 2383 out_no_led: 2384 if (rx->sta) 2385 rx->sta->rx_stats.packets++; 2386 return RX_CONTINUE; 2387 } 2388 2389 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2390 { 2391 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2392 return -EACCES; 2393 2394 return 0; 2395 } 2396 2397 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2398 { 2399 struct sk_buff *skb = rx->skb; 2400 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2401 2402 /* 2403 * Pass through unencrypted frames if the hardware has 2404 * decrypted them already. 2405 */ 2406 if (status->flag & RX_FLAG_DECRYPTED) 2407 return 0; 2408 2409 /* Drop unencrypted frames if key is set. */ 2410 if (unlikely(!ieee80211_has_protected(fc) && 2411 !ieee80211_is_any_nullfunc(fc) && 2412 ieee80211_is_data(fc) && rx->key)) 2413 return -EACCES; 2414 2415 return 0; 2416 } 2417 2418 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2419 { 2420 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2421 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2422 __le16 fc = hdr->frame_control; 2423 2424 /* 2425 * Pass through unencrypted frames if the hardware has 2426 * decrypted them already. 2427 */ 2428 if (status->flag & RX_FLAG_DECRYPTED) 2429 return 0; 2430 2431 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2432 if (unlikely(!ieee80211_has_protected(fc) && 2433 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2434 rx->key)) { 2435 if (ieee80211_is_deauth(fc) || 2436 ieee80211_is_disassoc(fc)) 2437 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2438 rx->skb->data, 2439 rx->skb->len); 2440 return -EACCES; 2441 } 2442 /* BIP does not use Protected field, so need to check MMIE */ 2443 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2444 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2445 if (ieee80211_is_deauth(fc) || 2446 ieee80211_is_disassoc(fc)) 2447 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2448 rx->skb->data, 2449 rx->skb->len); 2450 return -EACCES; 2451 } 2452 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2453 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2454 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2455 rx->skb->data, 2456 rx->skb->len); 2457 return -EACCES; 2458 } 2459 /* 2460 * When using MFP, Action frames are not allowed prior to 2461 * having configured keys. 2462 */ 2463 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2464 ieee80211_is_robust_mgmt_frame(rx->skb))) 2465 return -EACCES; 2466 } 2467 2468 return 0; 2469 } 2470 2471 static int 2472 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2473 { 2474 struct ieee80211_sub_if_data *sdata = rx->sdata; 2475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2476 bool check_port_control = false; 2477 struct ethhdr *ehdr; 2478 int ret; 2479 2480 *port_control = false; 2481 if (ieee80211_has_a4(hdr->frame_control) && 2482 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2483 return -1; 2484 2485 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2486 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2487 2488 if (!sdata->u.mgd.use_4addr) 2489 return -1; 2490 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2491 check_port_control = true; 2492 } 2493 2494 if (is_multicast_ether_addr(hdr->addr1) && 2495 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2496 return -1; 2497 2498 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2499 if (ret < 0) 2500 return ret; 2501 2502 ehdr = (struct ethhdr *) rx->skb->data; 2503 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2504 *port_control = true; 2505 else if (check_port_control) 2506 return -1; 2507 2508 return 0; 2509 } 2510 2511 /* 2512 * requires that rx->skb is a frame with ethernet header 2513 */ 2514 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2515 { 2516 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2517 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2518 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2519 2520 /* 2521 * Allow EAPOL frames to us/the PAE group address regardless 2522 * of whether the frame was encrypted or not. 2523 */ 2524 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2525 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2526 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2527 return true; 2528 2529 if (ieee80211_802_1x_port_control(rx) || 2530 ieee80211_drop_unencrypted(rx, fc)) 2531 return false; 2532 2533 return true; 2534 } 2535 2536 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2537 struct ieee80211_rx_data *rx) 2538 { 2539 struct ieee80211_sub_if_data *sdata = rx->sdata; 2540 struct net_device *dev = sdata->dev; 2541 2542 if (unlikely((skb->protocol == sdata->control_port_protocol || 2543 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2544 !sdata->control_port_no_preauth)) && 2545 sdata->control_port_over_nl80211)) { 2546 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2547 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2548 2549 cfg80211_rx_control_port(dev, skb, noencrypt); 2550 dev_kfree_skb(skb); 2551 } else { 2552 memset(skb->cb, 0, sizeof(skb->cb)); 2553 2554 /* deliver to local stack */ 2555 if (rx->napi) 2556 napi_gro_receive(rx->napi, skb); 2557 else 2558 netif_receive_skb(skb); 2559 } 2560 } 2561 2562 /* 2563 * requires that rx->skb is a frame with ethernet header 2564 */ 2565 static void 2566 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2567 { 2568 struct ieee80211_sub_if_data *sdata = rx->sdata; 2569 struct net_device *dev = sdata->dev; 2570 struct sk_buff *skb, *xmit_skb; 2571 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2572 struct sta_info *dsta; 2573 2574 skb = rx->skb; 2575 xmit_skb = NULL; 2576 2577 ieee80211_rx_stats(dev, skb->len); 2578 2579 if (rx->sta) { 2580 /* The seqno index has the same property as needed 2581 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2582 * for non-QoS-data frames. Here we know it's a data 2583 * frame, so count MSDUs. 2584 */ 2585 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2586 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2587 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2588 } 2589 2590 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2591 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2592 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2593 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2594 if (is_multicast_ether_addr(ehdr->h_dest) && 2595 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2596 /* 2597 * send multicast frames both to higher layers in 2598 * local net stack and back to the wireless medium 2599 */ 2600 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2601 if (!xmit_skb) 2602 net_info_ratelimited("%s: failed to clone multicast frame\n", 2603 dev->name); 2604 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2605 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2606 dsta = sta_info_get(sdata, ehdr->h_dest); 2607 if (dsta) { 2608 /* 2609 * The destination station is associated to 2610 * this AP (in this VLAN), so send the frame 2611 * directly to it and do not pass it to local 2612 * net stack. 2613 */ 2614 xmit_skb = skb; 2615 skb = NULL; 2616 } 2617 } 2618 } 2619 2620 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2621 if (skb) { 2622 /* 'align' will only take the values 0 or 2 here since all 2623 * frames are required to be aligned to 2-byte boundaries 2624 * when being passed to mac80211; the code here works just 2625 * as well if that isn't true, but mac80211 assumes it can 2626 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2627 */ 2628 int align; 2629 2630 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2631 if (align) { 2632 if (WARN_ON(skb_headroom(skb) < 3)) { 2633 dev_kfree_skb(skb); 2634 skb = NULL; 2635 } else { 2636 u8 *data = skb->data; 2637 size_t len = skb_headlen(skb); 2638 skb->data -= align; 2639 memmove(skb->data, data, len); 2640 skb_set_tail_pointer(skb, len); 2641 } 2642 } 2643 } 2644 #endif 2645 2646 if (skb) { 2647 skb->protocol = eth_type_trans(skb, dev); 2648 ieee80211_deliver_skb_to_local_stack(skb, rx); 2649 } 2650 2651 if (xmit_skb) { 2652 /* 2653 * Send to wireless media and increase priority by 256 to 2654 * keep the received priority instead of reclassifying 2655 * the frame (see cfg80211_classify8021d). 2656 */ 2657 xmit_skb->priority += 256; 2658 xmit_skb->protocol = htons(ETH_P_802_3); 2659 skb_reset_network_header(xmit_skb); 2660 skb_reset_mac_header(xmit_skb); 2661 dev_queue_xmit(xmit_skb); 2662 } 2663 } 2664 2665 static ieee80211_rx_result debug_noinline 2666 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2667 { 2668 struct net_device *dev = rx->sdata->dev; 2669 struct sk_buff *skb = rx->skb; 2670 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2671 __le16 fc = hdr->frame_control; 2672 struct sk_buff_head frame_list; 2673 struct ethhdr ethhdr; 2674 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2675 2676 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2677 check_da = NULL; 2678 check_sa = NULL; 2679 } else switch (rx->sdata->vif.type) { 2680 case NL80211_IFTYPE_AP: 2681 case NL80211_IFTYPE_AP_VLAN: 2682 check_da = NULL; 2683 break; 2684 case NL80211_IFTYPE_STATION: 2685 if (!rx->sta || 2686 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2687 check_sa = NULL; 2688 break; 2689 case NL80211_IFTYPE_MESH_POINT: 2690 check_sa = NULL; 2691 break; 2692 default: 2693 break; 2694 } 2695 2696 skb->dev = dev; 2697 __skb_queue_head_init(&frame_list); 2698 2699 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2700 rx->sdata->vif.addr, 2701 rx->sdata->vif.type, 2702 data_offset)) 2703 return RX_DROP_UNUSABLE; 2704 2705 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2706 rx->sdata->vif.type, 2707 rx->local->hw.extra_tx_headroom, 2708 check_da, check_sa); 2709 2710 while (!skb_queue_empty(&frame_list)) { 2711 rx->skb = __skb_dequeue(&frame_list); 2712 2713 if (!ieee80211_frame_allowed(rx, fc)) { 2714 dev_kfree_skb(rx->skb); 2715 continue; 2716 } 2717 2718 ieee80211_deliver_skb(rx); 2719 } 2720 2721 return RX_QUEUED; 2722 } 2723 2724 static ieee80211_rx_result debug_noinline 2725 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2726 { 2727 struct sk_buff *skb = rx->skb; 2728 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2729 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2730 __le16 fc = hdr->frame_control; 2731 2732 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2733 return RX_CONTINUE; 2734 2735 if (unlikely(!ieee80211_is_data(fc))) 2736 return RX_CONTINUE; 2737 2738 if (unlikely(!ieee80211_is_data_present(fc))) 2739 return RX_DROP_MONITOR; 2740 2741 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2742 switch (rx->sdata->vif.type) { 2743 case NL80211_IFTYPE_AP_VLAN: 2744 if (!rx->sdata->u.vlan.sta) 2745 return RX_DROP_UNUSABLE; 2746 break; 2747 case NL80211_IFTYPE_STATION: 2748 if (!rx->sdata->u.mgd.use_4addr) 2749 return RX_DROP_UNUSABLE; 2750 break; 2751 default: 2752 return RX_DROP_UNUSABLE; 2753 } 2754 } 2755 2756 if (is_multicast_ether_addr(hdr->addr1)) 2757 return RX_DROP_UNUSABLE; 2758 2759 return __ieee80211_rx_h_amsdu(rx, 0); 2760 } 2761 2762 #ifdef CONFIG_MAC80211_MESH 2763 static ieee80211_rx_result 2764 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2765 { 2766 struct ieee80211_hdr *fwd_hdr, *hdr; 2767 struct ieee80211_tx_info *info; 2768 struct ieee80211s_hdr *mesh_hdr; 2769 struct sk_buff *skb = rx->skb, *fwd_skb; 2770 struct ieee80211_local *local = rx->local; 2771 struct ieee80211_sub_if_data *sdata = rx->sdata; 2772 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2773 u16 ac, q, hdrlen; 2774 int tailroom = 0; 2775 2776 hdr = (struct ieee80211_hdr *) skb->data; 2777 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2778 2779 /* make sure fixed part of mesh header is there, also checks skb len */ 2780 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2781 return RX_DROP_MONITOR; 2782 2783 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2784 2785 /* make sure full mesh header is there, also checks skb len */ 2786 if (!pskb_may_pull(rx->skb, 2787 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2788 return RX_DROP_MONITOR; 2789 2790 /* reload pointers */ 2791 hdr = (struct ieee80211_hdr *) skb->data; 2792 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2793 2794 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2795 return RX_DROP_MONITOR; 2796 2797 /* frame is in RMC, don't forward */ 2798 if (ieee80211_is_data(hdr->frame_control) && 2799 is_multicast_ether_addr(hdr->addr1) && 2800 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2801 return RX_DROP_MONITOR; 2802 2803 if (!ieee80211_is_data(hdr->frame_control)) 2804 return RX_CONTINUE; 2805 2806 if (!mesh_hdr->ttl) 2807 return RX_DROP_MONITOR; 2808 2809 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2810 struct mesh_path *mppath; 2811 char *proxied_addr; 2812 char *mpp_addr; 2813 2814 if (is_multicast_ether_addr(hdr->addr1)) { 2815 mpp_addr = hdr->addr3; 2816 proxied_addr = mesh_hdr->eaddr1; 2817 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2818 MESH_FLAGS_AE_A5_A6) { 2819 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2820 mpp_addr = hdr->addr4; 2821 proxied_addr = mesh_hdr->eaddr2; 2822 } else { 2823 return RX_DROP_MONITOR; 2824 } 2825 2826 rcu_read_lock(); 2827 mppath = mpp_path_lookup(sdata, proxied_addr); 2828 if (!mppath) { 2829 mpp_path_add(sdata, proxied_addr, mpp_addr); 2830 } else { 2831 spin_lock_bh(&mppath->state_lock); 2832 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2833 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2834 mppath->exp_time = jiffies; 2835 spin_unlock_bh(&mppath->state_lock); 2836 } 2837 rcu_read_unlock(); 2838 } 2839 2840 /* Frame has reached destination. Don't forward */ 2841 if (!is_multicast_ether_addr(hdr->addr1) && 2842 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2843 return RX_CONTINUE; 2844 2845 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2846 q = sdata->vif.hw_queue[ac]; 2847 if (ieee80211_queue_stopped(&local->hw, q)) { 2848 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2849 return RX_DROP_MONITOR; 2850 } 2851 skb_set_queue_mapping(skb, q); 2852 2853 if (!--mesh_hdr->ttl) { 2854 if (!is_multicast_ether_addr(hdr->addr1)) 2855 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2856 dropped_frames_ttl); 2857 goto out; 2858 } 2859 2860 if (!ifmsh->mshcfg.dot11MeshForwarding) 2861 goto out; 2862 2863 if (sdata->crypto_tx_tailroom_needed_cnt) 2864 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2865 2866 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2867 sdata->encrypt_headroom, 2868 tailroom, GFP_ATOMIC); 2869 if (!fwd_skb) 2870 goto out; 2871 2872 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2873 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2874 info = IEEE80211_SKB_CB(fwd_skb); 2875 memset(info, 0, sizeof(*info)); 2876 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2877 info->control.vif = &rx->sdata->vif; 2878 info->control.jiffies = jiffies; 2879 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2880 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2881 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2882 /* update power mode indication when forwarding */ 2883 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2884 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2885 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2886 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2887 } else { 2888 /* unable to resolve next hop */ 2889 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2890 fwd_hdr->addr3, 0, 2891 WLAN_REASON_MESH_PATH_NOFORWARD, 2892 fwd_hdr->addr2); 2893 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2894 kfree_skb(fwd_skb); 2895 return RX_DROP_MONITOR; 2896 } 2897 2898 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2899 ieee80211_add_pending_skb(local, fwd_skb); 2900 out: 2901 if (is_multicast_ether_addr(hdr->addr1)) 2902 return RX_CONTINUE; 2903 return RX_DROP_MONITOR; 2904 } 2905 #endif 2906 2907 static ieee80211_rx_result debug_noinline 2908 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2909 { 2910 struct ieee80211_sub_if_data *sdata = rx->sdata; 2911 struct ieee80211_local *local = rx->local; 2912 struct net_device *dev = sdata->dev; 2913 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2914 __le16 fc = hdr->frame_control; 2915 bool port_control; 2916 int err; 2917 2918 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2919 return RX_CONTINUE; 2920 2921 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2922 return RX_DROP_MONITOR; 2923 2924 /* 2925 * Send unexpected-4addr-frame event to hostapd. For older versions, 2926 * also drop the frame to cooked monitor interfaces. 2927 */ 2928 if (ieee80211_has_a4(hdr->frame_control) && 2929 sdata->vif.type == NL80211_IFTYPE_AP) { 2930 if (rx->sta && 2931 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2932 cfg80211_rx_unexpected_4addr_frame( 2933 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2934 return RX_DROP_MONITOR; 2935 } 2936 2937 err = __ieee80211_data_to_8023(rx, &port_control); 2938 if (unlikely(err)) 2939 return RX_DROP_UNUSABLE; 2940 2941 if (!ieee80211_frame_allowed(rx, fc)) 2942 return RX_DROP_MONITOR; 2943 2944 /* directly handle TDLS channel switch requests/responses */ 2945 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2946 cpu_to_be16(ETH_P_TDLS))) { 2947 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2948 2949 if (pskb_may_pull(rx->skb, 2950 offsetof(struct ieee80211_tdls_data, u)) && 2951 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2952 tf->category == WLAN_CATEGORY_TDLS && 2953 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2954 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2955 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2956 schedule_work(&local->tdls_chsw_work); 2957 if (rx->sta) 2958 rx->sta->rx_stats.packets++; 2959 2960 return RX_QUEUED; 2961 } 2962 } 2963 2964 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2965 unlikely(port_control) && sdata->bss) { 2966 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2967 u.ap); 2968 dev = sdata->dev; 2969 rx->sdata = sdata; 2970 } 2971 2972 rx->skb->dev = dev; 2973 2974 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2975 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2976 !is_multicast_ether_addr( 2977 ((struct ethhdr *)rx->skb->data)->h_dest) && 2978 (!local->scanning && 2979 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2980 mod_timer(&local->dynamic_ps_timer, jiffies + 2981 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2982 2983 ieee80211_deliver_skb(rx); 2984 2985 return RX_QUEUED; 2986 } 2987 2988 static ieee80211_rx_result debug_noinline 2989 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2990 { 2991 struct sk_buff *skb = rx->skb; 2992 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2993 struct tid_ampdu_rx *tid_agg_rx; 2994 u16 start_seq_num; 2995 u16 tid; 2996 2997 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2998 return RX_CONTINUE; 2999 3000 if (ieee80211_is_back_req(bar->frame_control)) { 3001 struct { 3002 __le16 control, start_seq_num; 3003 } __packed bar_data; 3004 struct ieee80211_event event = { 3005 .type = BAR_RX_EVENT, 3006 }; 3007 3008 if (!rx->sta) 3009 return RX_DROP_MONITOR; 3010 3011 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3012 &bar_data, sizeof(bar_data))) 3013 return RX_DROP_MONITOR; 3014 3015 tid = le16_to_cpu(bar_data.control) >> 12; 3016 3017 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3018 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3019 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3020 WLAN_BACK_RECIPIENT, 3021 WLAN_REASON_QSTA_REQUIRE_SETUP); 3022 3023 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3024 if (!tid_agg_rx) 3025 return RX_DROP_MONITOR; 3026 3027 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3028 event.u.ba.tid = tid; 3029 event.u.ba.ssn = start_seq_num; 3030 event.u.ba.sta = &rx->sta->sta; 3031 3032 /* reset session timer */ 3033 if (tid_agg_rx->timeout) 3034 mod_timer(&tid_agg_rx->session_timer, 3035 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3036 3037 spin_lock(&tid_agg_rx->reorder_lock); 3038 /* release stored frames up to start of BAR */ 3039 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3040 start_seq_num, frames); 3041 spin_unlock(&tid_agg_rx->reorder_lock); 3042 3043 drv_event_callback(rx->local, rx->sdata, &event); 3044 3045 kfree_skb(skb); 3046 return RX_QUEUED; 3047 } 3048 3049 /* 3050 * After this point, we only want management frames, 3051 * so we can drop all remaining control frames to 3052 * cooked monitor interfaces. 3053 */ 3054 return RX_DROP_MONITOR; 3055 } 3056 3057 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3058 struct ieee80211_mgmt *mgmt, 3059 size_t len) 3060 { 3061 struct ieee80211_local *local = sdata->local; 3062 struct sk_buff *skb; 3063 struct ieee80211_mgmt *resp; 3064 3065 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3066 /* Not to own unicast address */ 3067 return; 3068 } 3069 3070 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3071 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3072 /* Not from the current AP or not associated yet. */ 3073 return; 3074 } 3075 3076 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3077 /* Too short SA Query request frame */ 3078 return; 3079 } 3080 3081 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3082 if (skb == NULL) 3083 return; 3084 3085 skb_reserve(skb, local->hw.extra_tx_headroom); 3086 resp = skb_put_zero(skb, 24); 3087 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3088 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3089 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3090 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3091 IEEE80211_STYPE_ACTION); 3092 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3093 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3094 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3095 memcpy(resp->u.action.u.sa_query.trans_id, 3096 mgmt->u.action.u.sa_query.trans_id, 3097 WLAN_SA_QUERY_TR_ID_LEN); 3098 3099 ieee80211_tx_skb(sdata, skb); 3100 } 3101 3102 static ieee80211_rx_result debug_noinline 3103 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3104 { 3105 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3106 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3107 3108 /* 3109 * From here on, look only at management frames. 3110 * Data and control frames are already handled, 3111 * and unknown (reserved) frames are useless. 3112 */ 3113 if (rx->skb->len < 24) 3114 return RX_DROP_MONITOR; 3115 3116 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3117 return RX_DROP_MONITOR; 3118 3119 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3120 ieee80211_is_beacon(mgmt->frame_control) && 3121 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3122 int sig = 0; 3123 3124 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3125 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3126 sig = status->signal; 3127 3128 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3129 rx->skb->data, rx->skb->len, 3130 ieee80211_rx_status_to_khz(status), 3131 sig); 3132 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3133 } 3134 3135 if (ieee80211_drop_unencrypted_mgmt(rx)) 3136 return RX_DROP_UNUSABLE; 3137 3138 return RX_CONTINUE; 3139 } 3140 3141 static ieee80211_rx_result debug_noinline 3142 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3143 { 3144 struct ieee80211_local *local = rx->local; 3145 struct ieee80211_sub_if_data *sdata = rx->sdata; 3146 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3147 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3148 int len = rx->skb->len; 3149 3150 if (!ieee80211_is_action(mgmt->frame_control)) 3151 return RX_CONTINUE; 3152 3153 /* drop too small frames */ 3154 if (len < IEEE80211_MIN_ACTION_SIZE) 3155 return RX_DROP_UNUSABLE; 3156 3157 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3158 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3159 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3160 return RX_DROP_UNUSABLE; 3161 3162 switch (mgmt->u.action.category) { 3163 case WLAN_CATEGORY_HT: 3164 /* reject HT action frames from stations not supporting HT */ 3165 if (!rx->sta->sta.ht_cap.ht_supported) 3166 goto invalid; 3167 3168 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3169 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3170 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3171 sdata->vif.type != NL80211_IFTYPE_AP && 3172 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3173 break; 3174 3175 /* verify action & smps_control/chanwidth are present */ 3176 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3177 goto invalid; 3178 3179 switch (mgmt->u.action.u.ht_smps.action) { 3180 case WLAN_HT_ACTION_SMPS: { 3181 struct ieee80211_supported_band *sband; 3182 enum ieee80211_smps_mode smps_mode; 3183 struct sta_opmode_info sta_opmode = {}; 3184 3185 if (sdata->vif.type != NL80211_IFTYPE_AP && 3186 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3187 goto handled; 3188 3189 /* convert to HT capability */ 3190 switch (mgmt->u.action.u.ht_smps.smps_control) { 3191 case WLAN_HT_SMPS_CONTROL_DISABLED: 3192 smps_mode = IEEE80211_SMPS_OFF; 3193 break; 3194 case WLAN_HT_SMPS_CONTROL_STATIC: 3195 smps_mode = IEEE80211_SMPS_STATIC; 3196 break; 3197 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3198 smps_mode = IEEE80211_SMPS_DYNAMIC; 3199 break; 3200 default: 3201 goto invalid; 3202 } 3203 3204 /* if no change do nothing */ 3205 if (rx->sta->sta.smps_mode == smps_mode) 3206 goto handled; 3207 rx->sta->sta.smps_mode = smps_mode; 3208 sta_opmode.smps_mode = 3209 ieee80211_smps_mode_to_smps_mode(smps_mode); 3210 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3211 3212 sband = rx->local->hw.wiphy->bands[status->band]; 3213 3214 rate_control_rate_update(local, sband, rx->sta, 3215 IEEE80211_RC_SMPS_CHANGED); 3216 cfg80211_sta_opmode_change_notify(sdata->dev, 3217 rx->sta->addr, 3218 &sta_opmode, 3219 GFP_ATOMIC); 3220 goto handled; 3221 } 3222 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3223 struct ieee80211_supported_band *sband; 3224 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3225 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3226 struct sta_opmode_info sta_opmode = {}; 3227 3228 /* If it doesn't support 40 MHz it can't change ... */ 3229 if (!(rx->sta->sta.ht_cap.cap & 3230 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3231 goto handled; 3232 3233 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3234 max_bw = IEEE80211_STA_RX_BW_20; 3235 else 3236 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3237 3238 /* set cur_max_bandwidth and recalc sta bw */ 3239 rx->sta->cur_max_bandwidth = max_bw; 3240 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3241 3242 if (rx->sta->sta.bandwidth == new_bw) 3243 goto handled; 3244 3245 rx->sta->sta.bandwidth = new_bw; 3246 sband = rx->local->hw.wiphy->bands[status->band]; 3247 sta_opmode.bw = 3248 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3249 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3250 3251 rate_control_rate_update(local, sband, rx->sta, 3252 IEEE80211_RC_BW_CHANGED); 3253 cfg80211_sta_opmode_change_notify(sdata->dev, 3254 rx->sta->addr, 3255 &sta_opmode, 3256 GFP_ATOMIC); 3257 goto handled; 3258 } 3259 default: 3260 goto invalid; 3261 } 3262 3263 break; 3264 case WLAN_CATEGORY_PUBLIC: 3265 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3266 goto invalid; 3267 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3268 break; 3269 if (!rx->sta) 3270 break; 3271 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3272 break; 3273 if (mgmt->u.action.u.ext_chan_switch.action_code != 3274 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3275 break; 3276 if (len < offsetof(struct ieee80211_mgmt, 3277 u.action.u.ext_chan_switch.variable)) 3278 goto invalid; 3279 goto queue; 3280 case WLAN_CATEGORY_VHT: 3281 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3282 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3283 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3284 sdata->vif.type != NL80211_IFTYPE_AP && 3285 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3286 break; 3287 3288 /* verify action code is present */ 3289 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3290 goto invalid; 3291 3292 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3293 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3294 /* verify opmode is present */ 3295 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3296 goto invalid; 3297 goto queue; 3298 } 3299 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3300 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3301 goto invalid; 3302 goto queue; 3303 } 3304 default: 3305 break; 3306 } 3307 break; 3308 case WLAN_CATEGORY_BACK: 3309 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3310 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3311 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3312 sdata->vif.type != NL80211_IFTYPE_AP && 3313 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3314 break; 3315 3316 /* verify action_code is present */ 3317 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3318 break; 3319 3320 switch (mgmt->u.action.u.addba_req.action_code) { 3321 case WLAN_ACTION_ADDBA_REQ: 3322 if (len < (IEEE80211_MIN_ACTION_SIZE + 3323 sizeof(mgmt->u.action.u.addba_req))) 3324 goto invalid; 3325 break; 3326 case WLAN_ACTION_ADDBA_RESP: 3327 if (len < (IEEE80211_MIN_ACTION_SIZE + 3328 sizeof(mgmt->u.action.u.addba_resp))) 3329 goto invalid; 3330 break; 3331 case WLAN_ACTION_DELBA: 3332 if (len < (IEEE80211_MIN_ACTION_SIZE + 3333 sizeof(mgmt->u.action.u.delba))) 3334 goto invalid; 3335 break; 3336 default: 3337 goto invalid; 3338 } 3339 3340 goto queue; 3341 case WLAN_CATEGORY_SPECTRUM_MGMT: 3342 /* verify action_code is present */ 3343 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3344 break; 3345 3346 switch (mgmt->u.action.u.measurement.action_code) { 3347 case WLAN_ACTION_SPCT_MSR_REQ: 3348 if (status->band != NL80211_BAND_5GHZ) 3349 break; 3350 3351 if (len < (IEEE80211_MIN_ACTION_SIZE + 3352 sizeof(mgmt->u.action.u.measurement))) 3353 break; 3354 3355 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3356 break; 3357 3358 ieee80211_process_measurement_req(sdata, mgmt, len); 3359 goto handled; 3360 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3361 u8 *bssid; 3362 if (len < (IEEE80211_MIN_ACTION_SIZE + 3363 sizeof(mgmt->u.action.u.chan_switch))) 3364 break; 3365 3366 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3367 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3368 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3369 break; 3370 3371 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3372 bssid = sdata->u.mgd.bssid; 3373 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3374 bssid = sdata->u.ibss.bssid; 3375 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3376 bssid = mgmt->sa; 3377 else 3378 break; 3379 3380 if (!ether_addr_equal(mgmt->bssid, bssid)) 3381 break; 3382 3383 goto queue; 3384 } 3385 } 3386 break; 3387 case WLAN_CATEGORY_SELF_PROTECTED: 3388 if (len < (IEEE80211_MIN_ACTION_SIZE + 3389 sizeof(mgmt->u.action.u.self_prot.action_code))) 3390 break; 3391 3392 switch (mgmt->u.action.u.self_prot.action_code) { 3393 case WLAN_SP_MESH_PEERING_OPEN: 3394 case WLAN_SP_MESH_PEERING_CLOSE: 3395 case WLAN_SP_MESH_PEERING_CONFIRM: 3396 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3397 goto invalid; 3398 if (sdata->u.mesh.user_mpm) 3399 /* userspace handles this frame */ 3400 break; 3401 goto queue; 3402 case WLAN_SP_MGK_INFORM: 3403 case WLAN_SP_MGK_ACK: 3404 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3405 goto invalid; 3406 break; 3407 } 3408 break; 3409 case WLAN_CATEGORY_MESH_ACTION: 3410 if (len < (IEEE80211_MIN_ACTION_SIZE + 3411 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3412 break; 3413 3414 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3415 break; 3416 if (mesh_action_is_path_sel(mgmt) && 3417 !mesh_path_sel_is_hwmp(sdata)) 3418 break; 3419 goto queue; 3420 } 3421 3422 return RX_CONTINUE; 3423 3424 invalid: 3425 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3426 /* will return in the next handlers */ 3427 return RX_CONTINUE; 3428 3429 handled: 3430 if (rx->sta) 3431 rx->sta->rx_stats.packets++; 3432 dev_kfree_skb(rx->skb); 3433 return RX_QUEUED; 3434 3435 queue: 3436 skb_queue_tail(&sdata->skb_queue, rx->skb); 3437 ieee80211_queue_work(&local->hw, &sdata->work); 3438 if (rx->sta) 3439 rx->sta->rx_stats.packets++; 3440 return RX_QUEUED; 3441 } 3442 3443 static ieee80211_rx_result debug_noinline 3444 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3445 { 3446 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3447 int sig = 0; 3448 3449 /* skip known-bad action frames and return them in the next handler */ 3450 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3451 return RX_CONTINUE; 3452 3453 /* 3454 * Getting here means the kernel doesn't know how to handle 3455 * it, but maybe userspace does ... include returned frames 3456 * so userspace can register for those to know whether ones 3457 * it transmitted were processed or returned. 3458 */ 3459 3460 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3461 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3462 sig = status->signal; 3463 3464 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3465 ieee80211_rx_status_to_khz(status), sig, 3466 rx->skb->data, rx->skb->len, 0)) { 3467 if (rx->sta) 3468 rx->sta->rx_stats.packets++; 3469 dev_kfree_skb(rx->skb); 3470 return RX_QUEUED; 3471 } 3472 3473 return RX_CONTINUE; 3474 } 3475 3476 static ieee80211_rx_result debug_noinline 3477 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3478 { 3479 struct ieee80211_sub_if_data *sdata = rx->sdata; 3480 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3481 int len = rx->skb->len; 3482 3483 if (!ieee80211_is_action(mgmt->frame_control)) 3484 return RX_CONTINUE; 3485 3486 switch (mgmt->u.action.category) { 3487 case WLAN_CATEGORY_SA_QUERY: 3488 if (len < (IEEE80211_MIN_ACTION_SIZE + 3489 sizeof(mgmt->u.action.u.sa_query))) 3490 break; 3491 3492 switch (mgmt->u.action.u.sa_query.action) { 3493 case WLAN_ACTION_SA_QUERY_REQUEST: 3494 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3495 break; 3496 ieee80211_process_sa_query_req(sdata, mgmt, len); 3497 goto handled; 3498 } 3499 break; 3500 } 3501 3502 return RX_CONTINUE; 3503 3504 handled: 3505 if (rx->sta) 3506 rx->sta->rx_stats.packets++; 3507 dev_kfree_skb(rx->skb); 3508 return RX_QUEUED; 3509 } 3510 3511 static ieee80211_rx_result debug_noinline 3512 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3513 { 3514 struct ieee80211_local *local = rx->local; 3515 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3516 struct sk_buff *nskb; 3517 struct ieee80211_sub_if_data *sdata = rx->sdata; 3518 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3519 3520 if (!ieee80211_is_action(mgmt->frame_control)) 3521 return RX_CONTINUE; 3522 3523 /* 3524 * For AP mode, hostapd is responsible for handling any action 3525 * frames that we didn't handle, including returning unknown 3526 * ones. For all other modes we will return them to the sender, 3527 * setting the 0x80 bit in the action category, as required by 3528 * 802.11-2012 9.24.4. 3529 * Newer versions of hostapd shall also use the management frame 3530 * registration mechanisms, but older ones still use cooked 3531 * monitor interfaces so push all frames there. 3532 */ 3533 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3534 (sdata->vif.type == NL80211_IFTYPE_AP || 3535 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3536 return RX_DROP_MONITOR; 3537 3538 if (is_multicast_ether_addr(mgmt->da)) 3539 return RX_DROP_MONITOR; 3540 3541 /* do not return rejected action frames */ 3542 if (mgmt->u.action.category & 0x80) 3543 return RX_DROP_UNUSABLE; 3544 3545 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3546 GFP_ATOMIC); 3547 if (nskb) { 3548 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3549 3550 nmgmt->u.action.category |= 0x80; 3551 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3552 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3553 3554 memset(nskb->cb, 0, sizeof(nskb->cb)); 3555 3556 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3557 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3558 3559 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3560 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3561 IEEE80211_TX_CTL_NO_CCK_RATE; 3562 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3563 info->hw_queue = 3564 local->hw.offchannel_tx_hw_queue; 3565 } 3566 3567 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3568 status->band, 0); 3569 } 3570 dev_kfree_skb(rx->skb); 3571 return RX_QUEUED; 3572 } 3573 3574 static ieee80211_rx_result debug_noinline 3575 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3576 { 3577 struct ieee80211_sub_if_data *sdata = rx->sdata; 3578 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3579 __le16 stype; 3580 3581 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3582 3583 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3584 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3585 sdata->vif.type != NL80211_IFTYPE_OCB && 3586 sdata->vif.type != NL80211_IFTYPE_STATION) 3587 return RX_DROP_MONITOR; 3588 3589 switch (stype) { 3590 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3591 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3592 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3593 /* process for all: mesh, mlme, ibss */ 3594 break; 3595 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3596 if (is_multicast_ether_addr(mgmt->da) && 3597 !is_broadcast_ether_addr(mgmt->da)) 3598 return RX_DROP_MONITOR; 3599 3600 /* process only for station/IBSS */ 3601 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3602 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3603 return RX_DROP_MONITOR; 3604 break; 3605 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3606 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3607 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3608 if (is_multicast_ether_addr(mgmt->da) && 3609 !is_broadcast_ether_addr(mgmt->da)) 3610 return RX_DROP_MONITOR; 3611 3612 /* process only for station */ 3613 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3614 return RX_DROP_MONITOR; 3615 break; 3616 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3617 /* process only for ibss and mesh */ 3618 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3619 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3620 return RX_DROP_MONITOR; 3621 break; 3622 default: 3623 return RX_DROP_MONITOR; 3624 } 3625 3626 /* queue up frame and kick off work to process it */ 3627 skb_queue_tail(&sdata->skb_queue, rx->skb); 3628 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3629 if (rx->sta) 3630 rx->sta->rx_stats.packets++; 3631 3632 return RX_QUEUED; 3633 } 3634 3635 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3636 struct ieee80211_rate *rate) 3637 { 3638 struct ieee80211_sub_if_data *sdata; 3639 struct ieee80211_local *local = rx->local; 3640 struct sk_buff *skb = rx->skb, *skb2; 3641 struct net_device *prev_dev = NULL; 3642 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3643 int needed_headroom; 3644 3645 /* 3646 * If cooked monitor has been processed already, then 3647 * don't do it again. If not, set the flag. 3648 */ 3649 if (rx->flags & IEEE80211_RX_CMNTR) 3650 goto out_free_skb; 3651 rx->flags |= IEEE80211_RX_CMNTR; 3652 3653 /* If there are no cooked monitor interfaces, just free the SKB */ 3654 if (!local->cooked_mntrs) 3655 goto out_free_skb; 3656 3657 /* vendor data is long removed here */ 3658 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3659 /* room for the radiotap header based on driver features */ 3660 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3661 3662 if (skb_headroom(skb) < needed_headroom && 3663 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3664 goto out_free_skb; 3665 3666 /* prepend radiotap information */ 3667 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3668 false); 3669 3670 skb_reset_mac_header(skb); 3671 skb->ip_summed = CHECKSUM_UNNECESSARY; 3672 skb->pkt_type = PACKET_OTHERHOST; 3673 skb->protocol = htons(ETH_P_802_2); 3674 3675 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3676 if (!ieee80211_sdata_running(sdata)) 3677 continue; 3678 3679 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3680 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3681 continue; 3682 3683 if (prev_dev) { 3684 skb2 = skb_clone(skb, GFP_ATOMIC); 3685 if (skb2) { 3686 skb2->dev = prev_dev; 3687 netif_receive_skb(skb2); 3688 } 3689 } 3690 3691 prev_dev = sdata->dev; 3692 ieee80211_rx_stats(sdata->dev, skb->len); 3693 } 3694 3695 if (prev_dev) { 3696 skb->dev = prev_dev; 3697 netif_receive_skb(skb); 3698 return; 3699 } 3700 3701 out_free_skb: 3702 dev_kfree_skb(skb); 3703 } 3704 3705 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3706 ieee80211_rx_result res) 3707 { 3708 switch (res) { 3709 case RX_DROP_MONITOR: 3710 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3711 if (rx->sta) 3712 rx->sta->rx_stats.dropped++; 3713 /* fall through */ 3714 case RX_CONTINUE: { 3715 struct ieee80211_rate *rate = NULL; 3716 struct ieee80211_supported_band *sband; 3717 struct ieee80211_rx_status *status; 3718 3719 status = IEEE80211_SKB_RXCB((rx->skb)); 3720 3721 sband = rx->local->hw.wiphy->bands[status->band]; 3722 if (status->encoding == RX_ENC_LEGACY) 3723 rate = &sband->bitrates[status->rate_idx]; 3724 3725 ieee80211_rx_cooked_monitor(rx, rate); 3726 break; 3727 } 3728 case RX_DROP_UNUSABLE: 3729 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3730 if (rx->sta) 3731 rx->sta->rx_stats.dropped++; 3732 dev_kfree_skb(rx->skb); 3733 break; 3734 case RX_QUEUED: 3735 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3736 break; 3737 } 3738 } 3739 3740 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3741 struct sk_buff_head *frames) 3742 { 3743 ieee80211_rx_result res = RX_DROP_MONITOR; 3744 struct sk_buff *skb; 3745 3746 #define CALL_RXH(rxh) \ 3747 do { \ 3748 res = rxh(rx); \ 3749 if (res != RX_CONTINUE) \ 3750 goto rxh_next; \ 3751 } while (0) 3752 3753 /* Lock here to avoid hitting all of the data used in the RX 3754 * path (e.g. key data, station data, ...) concurrently when 3755 * a frame is released from the reorder buffer due to timeout 3756 * from the timer, potentially concurrently with RX from the 3757 * driver. 3758 */ 3759 spin_lock_bh(&rx->local->rx_path_lock); 3760 3761 while ((skb = __skb_dequeue(frames))) { 3762 /* 3763 * all the other fields are valid across frames 3764 * that belong to an aMPDU since they are on the 3765 * same TID from the same station 3766 */ 3767 rx->skb = skb; 3768 3769 CALL_RXH(ieee80211_rx_h_check_more_data); 3770 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3771 CALL_RXH(ieee80211_rx_h_sta_process); 3772 CALL_RXH(ieee80211_rx_h_decrypt); 3773 CALL_RXH(ieee80211_rx_h_defragment); 3774 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3775 /* must be after MMIC verify so header is counted in MPDU mic */ 3776 #ifdef CONFIG_MAC80211_MESH 3777 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3778 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3779 #endif 3780 CALL_RXH(ieee80211_rx_h_amsdu); 3781 CALL_RXH(ieee80211_rx_h_data); 3782 3783 /* special treatment -- needs the queue */ 3784 res = ieee80211_rx_h_ctrl(rx, frames); 3785 if (res != RX_CONTINUE) 3786 goto rxh_next; 3787 3788 CALL_RXH(ieee80211_rx_h_mgmt_check); 3789 CALL_RXH(ieee80211_rx_h_action); 3790 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3791 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3792 CALL_RXH(ieee80211_rx_h_action_return); 3793 CALL_RXH(ieee80211_rx_h_mgmt); 3794 3795 rxh_next: 3796 ieee80211_rx_handlers_result(rx, res); 3797 3798 #undef CALL_RXH 3799 } 3800 3801 spin_unlock_bh(&rx->local->rx_path_lock); 3802 } 3803 3804 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3805 { 3806 struct sk_buff_head reorder_release; 3807 ieee80211_rx_result res = RX_DROP_MONITOR; 3808 3809 __skb_queue_head_init(&reorder_release); 3810 3811 #define CALL_RXH(rxh) \ 3812 do { \ 3813 res = rxh(rx); \ 3814 if (res != RX_CONTINUE) \ 3815 goto rxh_next; \ 3816 } while (0) 3817 3818 CALL_RXH(ieee80211_rx_h_check_dup); 3819 CALL_RXH(ieee80211_rx_h_check); 3820 3821 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3822 3823 ieee80211_rx_handlers(rx, &reorder_release); 3824 return; 3825 3826 rxh_next: 3827 ieee80211_rx_handlers_result(rx, res); 3828 3829 #undef CALL_RXH 3830 } 3831 3832 /* 3833 * This function makes calls into the RX path, therefore 3834 * it has to be invoked under RCU read lock. 3835 */ 3836 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3837 { 3838 struct sk_buff_head frames; 3839 struct ieee80211_rx_data rx = { 3840 .sta = sta, 3841 .sdata = sta->sdata, 3842 .local = sta->local, 3843 /* This is OK -- must be QoS data frame */ 3844 .security_idx = tid, 3845 .seqno_idx = tid, 3846 .napi = NULL, /* must be NULL to not have races */ 3847 }; 3848 struct tid_ampdu_rx *tid_agg_rx; 3849 3850 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3851 if (!tid_agg_rx) 3852 return; 3853 3854 __skb_queue_head_init(&frames); 3855 3856 spin_lock(&tid_agg_rx->reorder_lock); 3857 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3858 spin_unlock(&tid_agg_rx->reorder_lock); 3859 3860 if (!skb_queue_empty(&frames)) { 3861 struct ieee80211_event event = { 3862 .type = BA_FRAME_TIMEOUT, 3863 .u.ba.tid = tid, 3864 .u.ba.sta = &sta->sta, 3865 }; 3866 drv_event_callback(rx.local, rx.sdata, &event); 3867 } 3868 3869 ieee80211_rx_handlers(&rx, &frames); 3870 } 3871 3872 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3873 u16 ssn, u64 filtered, 3874 u16 received_mpdus) 3875 { 3876 struct sta_info *sta; 3877 struct tid_ampdu_rx *tid_agg_rx; 3878 struct sk_buff_head frames; 3879 struct ieee80211_rx_data rx = { 3880 /* This is OK -- must be QoS data frame */ 3881 .security_idx = tid, 3882 .seqno_idx = tid, 3883 }; 3884 int i, diff; 3885 3886 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3887 return; 3888 3889 __skb_queue_head_init(&frames); 3890 3891 sta = container_of(pubsta, struct sta_info, sta); 3892 3893 rx.sta = sta; 3894 rx.sdata = sta->sdata; 3895 rx.local = sta->local; 3896 3897 rcu_read_lock(); 3898 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3899 if (!tid_agg_rx) 3900 goto out; 3901 3902 spin_lock_bh(&tid_agg_rx->reorder_lock); 3903 3904 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3905 int release; 3906 3907 /* release all frames in the reorder buffer */ 3908 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3909 IEEE80211_SN_MODULO; 3910 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3911 release, &frames); 3912 /* update ssn to match received ssn */ 3913 tid_agg_rx->head_seq_num = ssn; 3914 } else { 3915 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3916 &frames); 3917 } 3918 3919 /* handle the case that received ssn is behind the mac ssn. 3920 * it can be tid_agg_rx->buf_size behind and still be valid */ 3921 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3922 if (diff >= tid_agg_rx->buf_size) { 3923 tid_agg_rx->reorder_buf_filtered = 0; 3924 goto release; 3925 } 3926 filtered = filtered >> diff; 3927 ssn += diff; 3928 3929 /* update bitmap */ 3930 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3931 int index = (ssn + i) % tid_agg_rx->buf_size; 3932 3933 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3934 if (filtered & BIT_ULL(i)) 3935 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3936 } 3937 3938 /* now process also frames that the filter marking released */ 3939 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3940 3941 release: 3942 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3943 3944 ieee80211_rx_handlers(&rx, &frames); 3945 3946 out: 3947 rcu_read_unlock(); 3948 } 3949 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3950 3951 /* main receive path */ 3952 3953 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3954 { 3955 struct ieee80211_sub_if_data *sdata = rx->sdata; 3956 struct sk_buff *skb = rx->skb; 3957 struct ieee80211_hdr *hdr = (void *)skb->data; 3958 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3959 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3960 bool multicast = is_multicast_ether_addr(hdr->addr1); 3961 3962 switch (sdata->vif.type) { 3963 case NL80211_IFTYPE_STATION: 3964 if (!bssid && !sdata->u.mgd.use_4addr) 3965 return false; 3966 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3967 return false; 3968 if (multicast) 3969 return true; 3970 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3971 case NL80211_IFTYPE_ADHOC: 3972 if (!bssid) 3973 return false; 3974 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3975 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3976 return false; 3977 if (ieee80211_is_beacon(hdr->frame_control)) 3978 return true; 3979 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3980 return false; 3981 if (!multicast && 3982 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3983 return false; 3984 if (!rx->sta) { 3985 int rate_idx; 3986 if (status->encoding != RX_ENC_LEGACY) 3987 rate_idx = 0; /* TODO: HT/VHT rates */ 3988 else 3989 rate_idx = status->rate_idx; 3990 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3991 BIT(rate_idx)); 3992 } 3993 return true; 3994 case NL80211_IFTYPE_OCB: 3995 if (!bssid) 3996 return false; 3997 if (!ieee80211_is_data_present(hdr->frame_control)) 3998 return false; 3999 if (!is_broadcast_ether_addr(bssid)) 4000 return false; 4001 if (!multicast && 4002 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4003 return false; 4004 if (!rx->sta) { 4005 int rate_idx; 4006 if (status->encoding != RX_ENC_LEGACY) 4007 rate_idx = 0; /* TODO: HT rates */ 4008 else 4009 rate_idx = status->rate_idx; 4010 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4011 BIT(rate_idx)); 4012 } 4013 return true; 4014 case NL80211_IFTYPE_MESH_POINT: 4015 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4016 return false; 4017 if (multicast) 4018 return true; 4019 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4020 case NL80211_IFTYPE_AP_VLAN: 4021 case NL80211_IFTYPE_AP: 4022 if (!bssid) 4023 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4024 4025 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4026 /* 4027 * Accept public action frames even when the 4028 * BSSID doesn't match, this is used for P2P 4029 * and location updates. Note that mac80211 4030 * itself never looks at these frames. 4031 */ 4032 if (!multicast && 4033 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4034 return false; 4035 if (ieee80211_is_public_action(hdr, skb->len)) 4036 return true; 4037 return ieee80211_is_beacon(hdr->frame_control); 4038 } 4039 4040 if (!ieee80211_has_tods(hdr->frame_control)) { 4041 /* ignore data frames to TDLS-peers */ 4042 if (ieee80211_is_data(hdr->frame_control)) 4043 return false; 4044 /* ignore action frames to TDLS-peers */ 4045 if (ieee80211_is_action(hdr->frame_control) && 4046 !is_broadcast_ether_addr(bssid) && 4047 !ether_addr_equal(bssid, hdr->addr1)) 4048 return false; 4049 } 4050 4051 /* 4052 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4053 * the BSSID - we've checked that already but may have accepted 4054 * the wildcard (ff:ff:ff:ff:ff:ff). 4055 * 4056 * It also says: 4057 * The BSSID of the Data frame is determined as follows: 4058 * a) If the STA is contained within an AP or is associated 4059 * with an AP, the BSSID is the address currently in use 4060 * by the STA contained in the AP. 4061 * 4062 * So we should not accept data frames with an address that's 4063 * multicast. 4064 * 4065 * Accepting it also opens a security problem because stations 4066 * could encrypt it with the GTK and inject traffic that way. 4067 */ 4068 if (ieee80211_is_data(hdr->frame_control) && multicast) 4069 return false; 4070 4071 return true; 4072 case NL80211_IFTYPE_WDS: 4073 if (bssid || !ieee80211_is_data(hdr->frame_control)) 4074 return false; 4075 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 4076 case NL80211_IFTYPE_P2P_DEVICE: 4077 return ieee80211_is_public_action(hdr, skb->len) || 4078 ieee80211_is_probe_req(hdr->frame_control) || 4079 ieee80211_is_probe_resp(hdr->frame_control) || 4080 ieee80211_is_beacon(hdr->frame_control); 4081 case NL80211_IFTYPE_NAN: 4082 /* Currently no frames on NAN interface are allowed */ 4083 return false; 4084 default: 4085 break; 4086 } 4087 4088 WARN_ON_ONCE(1); 4089 return false; 4090 } 4091 4092 void ieee80211_check_fast_rx(struct sta_info *sta) 4093 { 4094 struct ieee80211_sub_if_data *sdata = sta->sdata; 4095 struct ieee80211_local *local = sdata->local; 4096 struct ieee80211_key *key; 4097 struct ieee80211_fast_rx fastrx = { 4098 .dev = sdata->dev, 4099 .vif_type = sdata->vif.type, 4100 .control_port_protocol = sdata->control_port_protocol, 4101 }, *old, *new = NULL; 4102 bool assign = false; 4103 4104 /* use sparse to check that we don't return without updating */ 4105 __acquire(check_fast_rx); 4106 4107 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4108 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4109 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4110 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4111 4112 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4113 4114 /* fast-rx doesn't do reordering */ 4115 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4116 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4117 goto clear; 4118 4119 switch (sdata->vif.type) { 4120 case NL80211_IFTYPE_STATION: 4121 if (sta->sta.tdls) { 4122 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4123 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4124 fastrx.expected_ds_bits = 0; 4125 } else { 4126 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 4127 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4128 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4129 fastrx.expected_ds_bits = 4130 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4131 } 4132 4133 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4134 fastrx.expected_ds_bits |= 4135 cpu_to_le16(IEEE80211_FCTL_TODS); 4136 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4137 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4138 } 4139 4140 if (!sdata->u.mgd.powersave) 4141 break; 4142 4143 /* software powersave is a huge mess, avoid all of it */ 4144 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4145 goto clear; 4146 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4147 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4148 goto clear; 4149 break; 4150 case NL80211_IFTYPE_AP_VLAN: 4151 case NL80211_IFTYPE_AP: 4152 /* parallel-rx requires this, at least with calls to 4153 * ieee80211_sta_ps_transition() 4154 */ 4155 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4156 goto clear; 4157 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4158 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4159 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4160 4161 fastrx.internal_forward = 4162 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4163 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4164 !sdata->u.vlan.sta); 4165 4166 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4167 sdata->u.vlan.sta) { 4168 fastrx.expected_ds_bits |= 4169 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4170 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4171 fastrx.internal_forward = 0; 4172 } 4173 4174 break; 4175 default: 4176 goto clear; 4177 } 4178 4179 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4180 goto clear; 4181 4182 rcu_read_lock(); 4183 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4184 if (key) { 4185 switch (key->conf.cipher) { 4186 case WLAN_CIPHER_SUITE_TKIP: 4187 /* we don't want to deal with MMIC in fast-rx */ 4188 goto clear_rcu; 4189 case WLAN_CIPHER_SUITE_CCMP: 4190 case WLAN_CIPHER_SUITE_CCMP_256: 4191 case WLAN_CIPHER_SUITE_GCMP: 4192 case WLAN_CIPHER_SUITE_GCMP_256: 4193 break; 4194 default: 4195 /* We also don't want to deal with 4196 * WEP or cipher scheme. 4197 */ 4198 goto clear_rcu; 4199 } 4200 4201 fastrx.key = true; 4202 fastrx.icv_len = key->conf.icv_len; 4203 } 4204 4205 assign = true; 4206 clear_rcu: 4207 rcu_read_unlock(); 4208 clear: 4209 __release(check_fast_rx); 4210 4211 if (assign) 4212 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4213 4214 spin_lock_bh(&sta->lock); 4215 old = rcu_dereference_protected(sta->fast_rx, true); 4216 rcu_assign_pointer(sta->fast_rx, new); 4217 spin_unlock_bh(&sta->lock); 4218 4219 if (old) 4220 kfree_rcu(old, rcu_head); 4221 } 4222 4223 void ieee80211_clear_fast_rx(struct sta_info *sta) 4224 { 4225 struct ieee80211_fast_rx *old; 4226 4227 spin_lock_bh(&sta->lock); 4228 old = rcu_dereference_protected(sta->fast_rx, true); 4229 RCU_INIT_POINTER(sta->fast_rx, NULL); 4230 spin_unlock_bh(&sta->lock); 4231 4232 if (old) 4233 kfree_rcu(old, rcu_head); 4234 } 4235 4236 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4237 { 4238 struct ieee80211_local *local = sdata->local; 4239 struct sta_info *sta; 4240 4241 lockdep_assert_held(&local->sta_mtx); 4242 4243 list_for_each_entry(sta, &local->sta_list, list) { 4244 if (sdata != sta->sdata && 4245 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4246 continue; 4247 ieee80211_check_fast_rx(sta); 4248 } 4249 } 4250 4251 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4252 { 4253 struct ieee80211_local *local = sdata->local; 4254 4255 mutex_lock(&local->sta_mtx); 4256 __ieee80211_check_fast_rx_iface(sdata); 4257 mutex_unlock(&local->sta_mtx); 4258 } 4259 4260 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4261 struct ieee80211_fast_rx *fast_rx) 4262 { 4263 struct sk_buff *skb = rx->skb; 4264 struct ieee80211_hdr *hdr = (void *)skb->data; 4265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4266 struct sta_info *sta = rx->sta; 4267 int orig_len = skb->len; 4268 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4269 int snap_offs = hdrlen; 4270 struct { 4271 u8 snap[sizeof(rfc1042_header)]; 4272 __be16 proto; 4273 } *payload __aligned(2); 4274 struct { 4275 u8 da[ETH_ALEN]; 4276 u8 sa[ETH_ALEN]; 4277 } addrs __aligned(2); 4278 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4279 4280 if (fast_rx->uses_rss) 4281 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4282 4283 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4284 * to a common data structure; drivers can implement that per queue 4285 * but we don't have that information in mac80211 4286 */ 4287 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4288 return false; 4289 4290 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4291 4292 /* If using encryption, we also need to have: 4293 * - PN_VALIDATED: similar, but the implementation is tricky 4294 * - DECRYPTED: necessary for PN_VALIDATED 4295 */ 4296 if (fast_rx->key && 4297 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4298 return false; 4299 4300 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4301 return false; 4302 4303 if (unlikely(ieee80211_is_frag(hdr))) 4304 return false; 4305 4306 /* Since our interface address cannot be multicast, this 4307 * implicitly also rejects multicast frames without the 4308 * explicit check. 4309 * 4310 * We shouldn't get any *data* frames not addressed to us 4311 * (AP mode will accept multicast *management* frames), but 4312 * punting here will make it go through the full checks in 4313 * ieee80211_accept_frame(). 4314 */ 4315 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4316 return false; 4317 4318 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4319 IEEE80211_FCTL_TODS)) != 4320 fast_rx->expected_ds_bits) 4321 return false; 4322 4323 /* assign the key to drop unencrypted frames (later) 4324 * and strip the IV/MIC if necessary 4325 */ 4326 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4327 /* GCMP header length is the same */ 4328 snap_offs += IEEE80211_CCMP_HDR_LEN; 4329 } 4330 4331 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4332 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4333 goto drop; 4334 4335 payload = (void *)(skb->data + snap_offs); 4336 4337 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4338 return false; 4339 4340 /* Don't handle these here since they require special code. 4341 * Accept AARP and IPX even though they should come with a 4342 * bridge-tunnel header - but if we get them this way then 4343 * there's little point in discarding them. 4344 */ 4345 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4346 payload->proto == fast_rx->control_port_protocol)) 4347 return false; 4348 } 4349 4350 /* after this point, don't punt to the slowpath! */ 4351 4352 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4353 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4354 goto drop; 4355 4356 if (unlikely(fast_rx->sta_notify)) { 4357 ieee80211_sta_rx_notify(rx->sdata, hdr); 4358 fast_rx->sta_notify = false; 4359 } 4360 4361 /* statistics part of ieee80211_rx_h_sta_process() */ 4362 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4363 stats->last_signal = status->signal; 4364 if (!fast_rx->uses_rss) 4365 ewma_signal_add(&sta->rx_stats_avg.signal, 4366 -status->signal); 4367 } 4368 4369 if (status->chains) { 4370 int i; 4371 4372 stats->chains = status->chains; 4373 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4374 int signal = status->chain_signal[i]; 4375 4376 if (!(status->chains & BIT(i))) 4377 continue; 4378 4379 stats->chain_signal_last[i] = signal; 4380 if (!fast_rx->uses_rss) 4381 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4382 -signal); 4383 } 4384 } 4385 /* end of statistics */ 4386 4387 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4388 goto drop; 4389 4390 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4391 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4392 RX_QUEUED) 4393 goto drop; 4394 4395 return true; 4396 } 4397 4398 stats->last_rx = jiffies; 4399 stats->last_rate = sta_stats_encode_rate(status); 4400 4401 stats->fragments++; 4402 stats->packets++; 4403 4404 /* do the header conversion - first grab the addresses */ 4405 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4406 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4407 /* remove the SNAP but leave the ethertype */ 4408 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4409 /* push the addresses in front */ 4410 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4411 4412 skb->dev = fast_rx->dev; 4413 4414 ieee80211_rx_stats(fast_rx->dev, skb->len); 4415 4416 /* The seqno index has the same property as needed 4417 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4418 * for non-QoS-data frames. Here we know it's a data 4419 * frame, so count MSDUs. 4420 */ 4421 u64_stats_update_begin(&stats->syncp); 4422 stats->msdu[rx->seqno_idx]++; 4423 stats->bytes += orig_len; 4424 u64_stats_update_end(&stats->syncp); 4425 4426 if (fast_rx->internal_forward) { 4427 struct sk_buff *xmit_skb = NULL; 4428 if (is_multicast_ether_addr(addrs.da)) { 4429 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4430 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4431 sta_info_get(rx->sdata, addrs.da)) { 4432 xmit_skb = skb; 4433 skb = NULL; 4434 } 4435 4436 if (xmit_skb) { 4437 /* 4438 * Send to wireless media and increase priority by 256 4439 * to keep the received priority instead of 4440 * reclassifying the frame (see cfg80211_classify8021d). 4441 */ 4442 xmit_skb->priority += 256; 4443 xmit_skb->protocol = htons(ETH_P_802_3); 4444 skb_reset_network_header(xmit_skb); 4445 skb_reset_mac_header(xmit_skb); 4446 dev_queue_xmit(xmit_skb); 4447 } 4448 4449 if (!skb) 4450 return true; 4451 } 4452 4453 /* deliver to local stack */ 4454 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4455 memset(skb->cb, 0, sizeof(skb->cb)); 4456 if (rx->napi) 4457 napi_gro_receive(rx->napi, skb); 4458 else 4459 netif_receive_skb(skb); 4460 4461 return true; 4462 drop: 4463 dev_kfree_skb(skb); 4464 stats->dropped++; 4465 return true; 4466 } 4467 4468 /* 4469 * This function returns whether or not the SKB 4470 * was destined for RX processing or not, which, 4471 * if consume is true, is equivalent to whether 4472 * or not the skb was consumed. 4473 */ 4474 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4475 struct sk_buff *skb, bool consume) 4476 { 4477 struct ieee80211_local *local = rx->local; 4478 struct ieee80211_sub_if_data *sdata = rx->sdata; 4479 4480 rx->skb = skb; 4481 4482 /* See if we can do fast-rx; if we have to copy we already lost, 4483 * so punt in that case. We should never have to deliver a data 4484 * frame to multiple interfaces anyway. 4485 * 4486 * We skip the ieee80211_accept_frame() call and do the necessary 4487 * checking inside ieee80211_invoke_fast_rx(). 4488 */ 4489 if (consume && rx->sta) { 4490 struct ieee80211_fast_rx *fast_rx; 4491 4492 fast_rx = rcu_dereference(rx->sta->fast_rx); 4493 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4494 return true; 4495 } 4496 4497 if (!ieee80211_accept_frame(rx)) 4498 return false; 4499 4500 if (!consume) { 4501 skb = skb_copy(skb, GFP_ATOMIC); 4502 if (!skb) { 4503 if (net_ratelimit()) 4504 wiphy_debug(local->hw.wiphy, 4505 "failed to copy skb for %s\n", 4506 sdata->name); 4507 return true; 4508 } 4509 4510 rx->skb = skb; 4511 } 4512 4513 ieee80211_invoke_rx_handlers(rx); 4514 return true; 4515 } 4516 4517 /* 4518 * This is the actual Rx frames handler. as it belongs to Rx path it must 4519 * be called with rcu_read_lock protection. 4520 */ 4521 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4522 struct ieee80211_sta *pubsta, 4523 struct sk_buff *skb, 4524 struct napi_struct *napi) 4525 { 4526 struct ieee80211_local *local = hw_to_local(hw); 4527 struct ieee80211_sub_if_data *sdata; 4528 struct ieee80211_hdr *hdr; 4529 __le16 fc; 4530 struct ieee80211_rx_data rx; 4531 struct ieee80211_sub_if_data *prev; 4532 struct rhlist_head *tmp; 4533 int err = 0; 4534 4535 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4536 memset(&rx, 0, sizeof(rx)); 4537 rx.skb = skb; 4538 rx.local = local; 4539 rx.napi = napi; 4540 4541 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4542 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4543 4544 if (ieee80211_is_mgmt(fc)) { 4545 /* drop frame if too short for header */ 4546 if (skb->len < ieee80211_hdrlen(fc)) 4547 err = -ENOBUFS; 4548 else 4549 err = skb_linearize(skb); 4550 } else { 4551 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4552 } 4553 4554 if (err) { 4555 dev_kfree_skb(skb); 4556 return; 4557 } 4558 4559 hdr = (struct ieee80211_hdr *)skb->data; 4560 ieee80211_parse_qos(&rx); 4561 ieee80211_verify_alignment(&rx); 4562 4563 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4564 ieee80211_is_beacon(hdr->frame_control))) 4565 ieee80211_scan_rx(local, skb); 4566 4567 if (ieee80211_is_data(fc)) { 4568 struct sta_info *sta, *prev_sta; 4569 4570 if (pubsta) { 4571 rx.sta = container_of(pubsta, struct sta_info, sta); 4572 rx.sdata = rx.sta->sdata; 4573 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4574 return; 4575 goto out; 4576 } 4577 4578 prev_sta = NULL; 4579 4580 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4581 if (!prev_sta) { 4582 prev_sta = sta; 4583 continue; 4584 } 4585 4586 rx.sta = prev_sta; 4587 rx.sdata = prev_sta->sdata; 4588 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4589 4590 prev_sta = sta; 4591 } 4592 4593 if (prev_sta) { 4594 rx.sta = prev_sta; 4595 rx.sdata = prev_sta->sdata; 4596 4597 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4598 return; 4599 goto out; 4600 } 4601 } 4602 4603 prev = NULL; 4604 4605 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4606 if (!ieee80211_sdata_running(sdata)) 4607 continue; 4608 4609 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4610 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4611 continue; 4612 4613 /* 4614 * frame is destined for this interface, but if it's 4615 * not also for the previous one we handle that after 4616 * the loop to avoid copying the SKB once too much 4617 */ 4618 4619 if (!prev) { 4620 prev = sdata; 4621 continue; 4622 } 4623 4624 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4625 rx.sdata = prev; 4626 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4627 4628 prev = sdata; 4629 } 4630 4631 if (prev) { 4632 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4633 rx.sdata = prev; 4634 4635 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4636 return; 4637 } 4638 4639 out: 4640 dev_kfree_skb(skb); 4641 } 4642 4643 /* 4644 * This is the receive path handler. It is called by a low level driver when an 4645 * 802.11 MPDU is received from the hardware. 4646 */ 4647 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4648 struct sk_buff *skb, struct napi_struct *napi) 4649 { 4650 struct ieee80211_local *local = hw_to_local(hw); 4651 struct ieee80211_rate *rate = NULL; 4652 struct ieee80211_supported_band *sband; 4653 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4654 4655 WARN_ON_ONCE(softirq_count() == 0); 4656 4657 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4658 goto drop; 4659 4660 sband = local->hw.wiphy->bands[status->band]; 4661 if (WARN_ON(!sband)) 4662 goto drop; 4663 4664 /* 4665 * If we're suspending, it is possible although not too likely 4666 * that we'd be receiving frames after having already partially 4667 * quiesced the stack. We can't process such frames then since 4668 * that might, for example, cause stations to be added or other 4669 * driver callbacks be invoked. 4670 */ 4671 if (unlikely(local->quiescing || local->suspended)) 4672 goto drop; 4673 4674 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4675 if (unlikely(local->in_reconfig)) 4676 goto drop; 4677 4678 /* 4679 * The same happens when we're not even started, 4680 * but that's worth a warning. 4681 */ 4682 if (WARN_ON(!local->started)) 4683 goto drop; 4684 4685 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4686 /* 4687 * Validate the rate, unless a PLCP error means that 4688 * we probably can't have a valid rate here anyway. 4689 */ 4690 4691 switch (status->encoding) { 4692 case RX_ENC_HT: 4693 /* 4694 * rate_idx is MCS index, which can be [0-76] 4695 * as documented on: 4696 * 4697 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4698 * 4699 * Anything else would be some sort of driver or 4700 * hardware error. The driver should catch hardware 4701 * errors. 4702 */ 4703 if (WARN(status->rate_idx > 76, 4704 "Rate marked as an HT rate but passed " 4705 "status->rate_idx is not " 4706 "an MCS index [0-76]: %d (0x%02x)\n", 4707 status->rate_idx, 4708 status->rate_idx)) 4709 goto drop; 4710 break; 4711 case RX_ENC_VHT: 4712 if (WARN_ONCE(status->rate_idx > 9 || 4713 !status->nss || 4714 status->nss > 8, 4715 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4716 status->rate_idx, status->nss)) 4717 goto drop; 4718 break; 4719 case RX_ENC_HE: 4720 if (WARN_ONCE(status->rate_idx > 11 || 4721 !status->nss || 4722 status->nss > 8, 4723 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4724 status->rate_idx, status->nss)) 4725 goto drop; 4726 break; 4727 default: 4728 WARN_ON_ONCE(1); 4729 /* fall through */ 4730 case RX_ENC_LEGACY: 4731 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4732 goto drop; 4733 rate = &sband->bitrates[status->rate_idx]; 4734 } 4735 } 4736 4737 status->rx_flags = 0; 4738 4739 /* 4740 * key references and virtual interfaces are protected using RCU 4741 * and this requires that we are in a read-side RCU section during 4742 * receive processing 4743 */ 4744 rcu_read_lock(); 4745 4746 /* 4747 * Frames with failed FCS/PLCP checksum are not returned, 4748 * all other frames are returned without radiotap header 4749 * if it was previously present. 4750 * Also, frames with less than 16 bytes are dropped. 4751 */ 4752 skb = ieee80211_rx_monitor(local, skb, rate); 4753 if (!skb) { 4754 rcu_read_unlock(); 4755 return; 4756 } 4757 4758 ieee80211_tpt_led_trig_rx(local, 4759 ((struct ieee80211_hdr *)skb->data)->frame_control, 4760 skb->len); 4761 4762 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4763 4764 rcu_read_unlock(); 4765 4766 return; 4767 drop: 4768 kfree_skb(skb); 4769 } 4770 EXPORT_SYMBOL(ieee80211_rx_napi); 4771 4772 /* This is a version of the rx handler that can be called from hard irq 4773 * context. Post the skb on the queue and schedule the tasklet */ 4774 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4775 { 4776 struct ieee80211_local *local = hw_to_local(hw); 4777 4778 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4779 4780 skb->pkt_type = IEEE80211_RX_MSG; 4781 skb_queue_tail(&local->skb_queue, skb); 4782 tasklet_schedule(&local->tasklet); 4783 } 4784 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4785