1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 struct sta_info *sta, 219 struct sk_buff *skb) 220 { 221 skb_queue_tail(&sdata->skb_queue, skb); 222 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 223 if (sta) 224 sta->rx_stats.packets++; 225 } 226 227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 228 struct sta_info *sta, 229 struct sk_buff *skb) 230 { 231 skb->protocol = 0; 232 __ieee80211_queue_skb_to_iface(sdata, sta, skb); 233 } 234 235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 236 struct sk_buff *skb, 237 int rtap_space) 238 { 239 struct { 240 struct ieee80211_hdr_3addr hdr; 241 u8 category; 242 u8 action_code; 243 } __packed __aligned(2) action; 244 245 if (!sdata) 246 return; 247 248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 249 250 if (skb->len < rtap_space + sizeof(action) + 251 VHT_MUMIMO_GROUPS_DATA_LEN) 252 return; 253 254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 255 return; 256 257 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 258 259 if (!ieee80211_is_action(action.hdr.frame_control)) 260 return; 261 262 if (action.category != WLAN_CATEGORY_VHT) 263 return; 264 265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 266 return; 267 268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 269 return; 270 271 skb = skb_copy(skb, GFP_ATOMIC); 272 if (!skb) 273 return; 274 275 ieee80211_queue_skb_to_iface(sdata, NULL, skb); 276 } 277 278 /* 279 * ieee80211_add_rx_radiotap_header - add radiotap header 280 * 281 * add a radiotap header containing all the fields which the hardware provided. 282 */ 283 static void 284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 285 struct sk_buff *skb, 286 struct ieee80211_rate *rate, 287 int rtap_len, bool has_fcs) 288 { 289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 290 struct ieee80211_radiotap_header *rthdr; 291 unsigned char *pos; 292 __le32 *it_present; 293 u32 it_present_val; 294 u16 rx_flags = 0; 295 u16 channel_flags = 0; 296 int mpdulen, chain; 297 unsigned long chains = status->chains; 298 struct ieee80211_vendor_radiotap rtap = {}; 299 struct ieee80211_radiotap_he he = {}; 300 struct ieee80211_radiotap_he_mu he_mu = {}; 301 struct ieee80211_radiotap_lsig lsig = {}; 302 303 if (status->flag & RX_FLAG_RADIOTAP_HE) { 304 he = *(struct ieee80211_radiotap_he *)skb->data; 305 skb_pull(skb, sizeof(he)); 306 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 307 } 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 311 skb_pull(skb, sizeof(he_mu)); 312 } 313 314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 316 skb_pull(skb, sizeof(lsig)); 317 } 318 319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 321 /* rtap.len and rtap.pad are undone immediately */ 322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 323 } 324 325 mpdulen = skb->len; 326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 327 mpdulen += FCS_LEN; 328 329 rthdr = skb_push(skb, rtap_len); 330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 331 it_present = &rthdr->it_present; 332 333 /* radiotap header, set always present flags */ 334 rthdr->it_len = cpu_to_le16(rtap_len); 335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 336 BIT(IEEE80211_RADIOTAP_CHANNEL) | 337 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 338 339 if (!status->chains) 340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 341 342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 343 it_present_val |= 344 BIT(IEEE80211_RADIOTAP_EXT) | 345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 350 } 351 352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 354 BIT(IEEE80211_RADIOTAP_EXT); 355 put_unaligned_le32(it_present_val, it_present); 356 it_present++; 357 it_present_val = rtap.present; 358 } 359 360 put_unaligned_le32(it_present_val, it_present); 361 362 /* This references through an offset into it_optional[] rather 363 * than via it_present otherwise later uses of pos will cause 364 * the compiler to think we have walked past the end of the 365 * struct member. 366 */ 367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 368 369 /* the order of the following fields is important */ 370 371 /* IEEE80211_RADIOTAP_TSFT */ 372 if (ieee80211_have_rx_timestamp(status)) { 373 /* padding */ 374 while ((pos - (u8 *)rthdr) & 7) 375 *pos++ = 0; 376 put_unaligned_le64( 377 ieee80211_calculate_rx_timestamp(local, status, 378 mpdulen, 0), 379 pos); 380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 381 pos += 8; 382 } 383 384 /* IEEE80211_RADIOTAP_FLAGS */ 385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 386 *pos |= IEEE80211_RADIOTAP_F_FCS; 387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 388 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 391 pos++; 392 393 /* IEEE80211_RADIOTAP_RATE */ 394 if (!rate || status->encoding != RX_ENC_LEGACY) { 395 /* 396 * Without rate information don't add it. If we have, 397 * MCS information is a separate field in radiotap, 398 * added below. The byte here is needed as padding 399 * for the channel though, so initialise it to 0. 400 */ 401 *pos = 0; 402 } else { 403 int shift = 0; 404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 405 if (status->bw == RATE_INFO_BW_10) 406 shift = 1; 407 else if (status->bw == RATE_INFO_BW_5) 408 shift = 2; 409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 410 } 411 pos++; 412 413 /* IEEE80211_RADIOTAP_CHANNEL */ 414 /* TODO: frequency offset in KHz */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ || 423 status->band == NL80211_BAND_6GHZ) 424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 425 else if (status->encoding != RX_ENC_LEGACY) 426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 429 else if (rate) 430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 431 else 432 channel_flags |= IEEE80211_CHAN_2GHZ; 433 put_unaligned_le16(channel_flags, pos); 434 pos += 2; 435 436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 439 *pos = status->signal; 440 rthdr->it_present |= 441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 442 pos++; 443 } 444 445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 446 447 if (!status->chains) { 448 /* IEEE80211_RADIOTAP_ANTENNA */ 449 *pos = status->antenna; 450 pos++; 451 } 452 453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 454 455 /* IEEE80211_RADIOTAP_RX_FLAGS */ 456 /* ensure 2 byte alignment for the 2 byte field as required */ 457 if ((pos - (u8 *)rthdr) & 1) 458 *pos++ = 0; 459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 461 put_unaligned_le16(rx_flags, pos); 462 pos += 2; 463 464 if (status->encoding == RX_ENC_HT) { 465 unsigned int stbc; 466 467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 468 *pos++ = local->hw.radiotap_mcs_details; 469 *pos = 0; 470 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 471 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 472 if (status->bw == RATE_INFO_BW_40) 473 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 474 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 475 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 476 if (status->enc_flags & RX_ENC_FLAG_LDPC) 477 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 478 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 479 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 480 pos++; 481 *pos++ = status->rate_idx; 482 } 483 484 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 485 u16 flags = 0; 486 487 /* ensure 4 byte alignment */ 488 while ((pos - (u8 *)rthdr) & 3) 489 pos++; 490 rthdr->it_present |= 491 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 492 put_unaligned_le32(status->ampdu_reference, pos); 493 pos += 4; 494 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 495 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 496 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 497 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 498 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 499 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 500 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 501 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 502 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 503 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 504 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 505 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 506 put_unaligned_le16(flags, pos); 507 pos += 2; 508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 509 *pos++ = status->ampdu_delimiter_crc; 510 else 511 *pos++ = 0; 512 *pos++ = 0; 513 } 514 515 if (status->encoding == RX_ENC_VHT) { 516 u16 known = local->hw.radiotap_vht_details; 517 518 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 519 put_unaligned_le16(known, pos); 520 pos += 2; 521 /* flags */ 522 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 523 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 524 /* in VHT, STBC is binary */ 525 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 526 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 527 if (status->enc_flags & RX_ENC_FLAG_BF) 528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 529 pos++; 530 /* bandwidth */ 531 switch (status->bw) { 532 case RATE_INFO_BW_80: 533 *pos++ = 4; 534 break; 535 case RATE_INFO_BW_160: 536 *pos++ = 11; 537 break; 538 case RATE_INFO_BW_40: 539 *pos++ = 1; 540 break; 541 default: 542 *pos++ = 0; 543 } 544 /* MCS/NSS */ 545 *pos = (status->rate_idx << 4) | status->nss; 546 pos += 4; 547 /* coding field */ 548 if (status->enc_flags & RX_ENC_FLAG_LDPC) 549 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 550 pos++; 551 /* group ID */ 552 pos++; 553 /* partial_aid */ 554 pos += 2; 555 } 556 557 if (local->hw.radiotap_timestamp.units_pos >= 0) { 558 u16 accuracy = 0; 559 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 560 561 rthdr->it_present |= 562 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 563 564 /* ensure 8 byte alignment */ 565 while ((pos - (u8 *)rthdr) & 7) 566 pos++; 567 568 put_unaligned_le64(status->device_timestamp, pos); 569 pos += sizeof(u64); 570 571 if (local->hw.radiotap_timestamp.accuracy >= 0) { 572 accuracy = local->hw.radiotap_timestamp.accuracy; 573 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 574 } 575 put_unaligned_le16(accuracy, pos); 576 pos += sizeof(u16); 577 578 *pos++ = local->hw.radiotap_timestamp.units_pos; 579 *pos++ = flags; 580 } 581 582 if (status->encoding == RX_ENC_HE && 583 status->flag & RX_FLAG_RADIOTAP_HE) { 584 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 585 586 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 587 he.data6 |= HE_PREP(DATA6_NSTS, 588 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 589 status->enc_flags)); 590 he.data3 |= HE_PREP(DATA3_STBC, 1); 591 } else { 592 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 593 } 594 595 #define CHECK_GI(s) \ 596 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 597 (int)NL80211_RATE_INFO_HE_GI_##s) 598 599 CHECK_GI(0_8); 600 CHECK_GI(1_6); 601 CHECK_GI(3_2); 602 603 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 604 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 605 he.data3 |= HE_PREP(DATA3_CODING, 606 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 607 608 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 609 610 switch (status->bw) { 611 case RATE_INFO_BW_20: 612 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 613 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 614 break; 615 case RATE_INFO_BW_40: 616 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 617 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 618 break; 619 case RATE_INFO_BW_80: 620 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 621 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 622 break; 623 case RATE_INFO_BW_160: 624 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 625 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 626 break; 627 case RATE_INFO_BW_HE_RU: 628 #define CHECK_RU_ALLOC(s) \ 629 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 630 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 631 632 CHECK_RU_ALLOC(26); 633 CHECK_RU_ALLOC(52); 634 CHECK_RU_ALLOC(106); 635 CHECK_RU_ALLOC(242); 636 CHECK_RU_ALLOC(484); 637 CHECK_RU_ALLOC(996); 638 CHECK_RU_ALLOC(2x996); 639 640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 641 status->he_ru + 4); 642 break; 643 default: 644 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 645 } 646 647 /* ensure 2 byte alignment */ 648 while ((pos - (u8 *)rthdr) & 1) 649 pos++; 650 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 651 memcpy(pos, &he, sizeof(he)); 652 pos += sizeof(he); 653 } 654 655 if (status->encoding == RX_ENC_HE && 656 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 657 /* ensure 2 byte alignment */ 658 while ((pos - (u8 *)rthdr) & 1) 659 pos++; 660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 661 memcpy(pos, &he_mu, sizeof(he_mu)); 662 pos += sizeof(he_mu); 663 } 664 665 if (status->flag & RX_FLAG_NO_PSDU) { 666 rthdr->it_present |= 667 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 668 *pos++ = status->zero_length_psdu_type; 669 } 670 671 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 672 /* ensure 2 byte alignment */ 673 while ((pos - (u8 *)rthdr) & 1) 674 pos++; 675 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 676 memcpy(pos, &lsig, sizeof(lsig)); 677 pos += sizeof(lsig); 678 } 679 680 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 681 *pos++ = status->chain_signal[chain]; 682 *pos++ = chain; 683 } 684 685 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 686 /* ensure 2 byte alignment for the vendor field as required */ 687 if ((pos - (u8 *)rthdr) & 1) 688 *pos++ = 0; 689 *pos++ = rtap.oui[0]; 690 *pos++ = rtap.oui[1]; 691 *pos++ = rtap.oui[2]; 692 *pos++ = rtap.subns; 693 put_unaligned_le16(rtap.len, pos); 694 pos += 2; 695 /* align the actual payload as requested */ 696 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 697 *pos++ = 0; 698 /* data (and possible padding) already follows */ 699 } 700 } 701 702 static struct sk_buff * 703 ieee80211_make_monitor_skb(struct ieee80211_local *local, 704 struct sk_buff **origskb, 705 struct ieee80211_rate *rate, 706 int rtap_space, bool use_origskb) 707 { 708 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 709 int rt_hdrlen, needed_headroom; 710 struct sk_buff *skb; 711 712 /* room for the radiotap header based on driver features */ 713 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 714 needed_headroom = rt_hdrlen - rtap_space; 715 716 if (use_origskb) { 717 /* only need to expand headroom if necessary */ 718 skb = *origskb; 719 *origskb = NULL; 720 721 /* 722 * This shouldn't trigger often because most devices have an 723 * RX header they pull before we get here, and that should 724 * be big enough for our radiotap information. We should 725 * probably export the length to drivers so that we can have 726 * them allocate enough headroom to start with. 727 */ 728 if (skb_headroom(skb) < needed_headroom && 729 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 730 dev_kfree_skb(skb); 731 return NULL; 732 } 733 } else { 734 /* 735 * Need to make a copy and possibly remove radiotap header 736 * and FCS from the original. 737 */ 738 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 739 0, GFP_ATOMIC); 740 741 if (!skb) 742 return NULL; 743 } 744 745 /* prepend radiotap information */ 746 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 747 748 skb_reset_mac_header(skb); 749 skb->ip_summed = CHECKSUM_UNNECESSARY; 750 skb->pkt_type = PACKET_OTHERHOST; 751 skb->protocol = htons(ETH_P_802_2); 752 753 return skb; 754 } 755 756 /* 757 * This function copies a received frame to all monitor interfaces and 758 * returns a cleaned-up SKB that no longer includes the FCS nor the 759 * radiotap header the driver might have added. 760 */ 761 static struct sk_buff * 762 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 763 struct ieee80211_rate *rate) 764 { 765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 766 struct ieee80211_sub_if_data *sdata; 767 struct sk_buff *monskb = NULL; 768 int present_fcs_len = 0; 769 unsigned int rtap_space = 0; 770 struct ieee80211_sub_if_data *monitor_sdata = 771 rcu_dereference(local->monitor_sdata); 772 bool only_monitor = false; 773 unsigned int min_head_len; 774 775 if (status->flag & RX_FLAG_RADIOTAP_HE) 776 rtap_space += sizeof(struct ieee80211_radiotap_he); 777 778 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 779 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 780 781 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 782 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 783 784 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 785 struct ieee80211_vendor_radiotap *rtap = 786 (void *)(origskb->data + rtap_space); 787 788 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 789 } 790 791 min_head_len = rtap_space; 792 793 /* 794 * First, we may need to make a copy of the skb because 795 * (1) we need to modify it for radiotap (if not present), and 796 * (2) the other RX handlers will modify the skb we got. 797 * 798 * We don't need to, of course, if we aren't going to return 799 * the SKB because it has a bad FCS/PLCP checksum. 800 */ 801 802 if (!(status->flag & RX_FLAG_NO_PSDU)) { 803 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 804 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 805 /* driver bug */ 806 WARN_ON(1); 807 dev_kfree_skb(origskb); 808 return NULL; 809 } 810 present_fcs_len = FCS_LEN; 811 } 812 813 /* also consider the hdr->frame_control */ 814 min_head_len += 2; 815 } 816 817 /* ensure that the expected data elements are in skb head */ 818 if (!pskb_may_pull(origskb, min_head_len)) { 819 dev_kfree_skb(origskb); 820 return NULL; 821 } 822 823 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 824 825 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 826 if (only_monitor) { 827 dev_kfree_skb(origskb); 828 return NULL; 829 } 830 831 return ieee80211_clean_skb(origskb, present_fcs_len, 832 rtap_space); 833 } 834 835 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 836 837 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 838 bool last_monitor = list_is_last(&sdata->u.mntr.list, 839 &local->mon_list); 840 841 if (!monskb) 842 monskb = ieee80211_make_monitor_skb(local, &origskb, 843 rate, rtap_space, 844 only_monitor && 845 last_monitor); 846 847 if (monskb) { 848 struct sk_buff *skb; 849 850 if (last_monitor) { 851 skb = monskb; 852 monskb = NULL; 853 } else { 854 skb = skb_clone(monskb, GFP_ATOMIC); 855 } 856 857 if (skb) { 858 skb->dev = sdata->dev; 859 dev_sw_netstats_rx_add(skb->dev, skb->len); 860 netif_receive_skb(skb); 861 } 862 } 863 864 if (last_monitor) 865 break; 866 } 867 868 /* this happens if last_monitor was erroneously false */ 869 dev_kfree_skb(monskb); 870 871 /* ditto */ 872 if (!origskb) 873 return NULL; 874 875 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 876 } 877 878 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 879 { 880 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 882 int tid, seqno_idx, security_idx; 883 884 /* does the frame have a qos control field? */ 885 if (ieee80211_is_data_qos(hdr->frame_control)) { 886 u8 *qc = ieee80211_get_qos_ctl(hdr); 887 /* frame has qos control */ 888 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 889 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 890 status->rx_flags |= IEEE80211_RX_AMSDU; 891 892 seqno_idx = tid; 893 security_idx = tid; 894 } else { 895 /* 896 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 897 * 898 * Sequence numbers for management frames, QoS data 899 * frames with a broadcast/multicast address in the 900 * Address 1 field, and all non-QoS data frames sent 901 * by QoS STAs are assigned using an additional single 902 * modulo-4096 counter, [...] 903 * 904 * We also use that counter for non-QoS STAs. 905 */ 906 seqno_idx = IEEE80211_NUM_TIDS; 907 security_idx = 0; 908 if (ieee80211_is_mgmt(hdr->frame_control)) 909 security_idx = IEEE80211_NUM_TIDS; 910 tid = 0; 911 } 912 913 rx->seqno_idx = seqno_idx; 914 rx->security_idx = security_idx; 915 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 916 * For now, set skb->priority to 0 for other cases. */ 917 rx->skb->priority = (tid > 7) ? 0 : tid; 918 } 919 920 /** 921 * DOC: Packet alignment 922 * 923 * Drivers always need to pass packets that are aligned to two-byte boundaries 924 * to the stack. 925 * 926 * Additionally, should, if possible, align the payload data in a way that 927 * guarantees that the contained IP header is aligned to a four-byte 928 * boundary. In the case of regular frames, this simply means aligning the 929 * payload to a four-byte boundary (because either the IP header is directly 930 * contained, or IV/RFC1042 headers that have a length divisible by four are 931 * in front of it). If the payload data is not properly aligned and the 932 * architecture doesn't support efficient unaligned operations, mac80211 933 * will align the data. 934 * 935 * With A-MSDU frames, however, the payload data address must yield two modulo 936 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 937 * push the IP header further back to a multiple of four again. Thankfully, the 938 * specs were sane enough this time around to require padding each A-MSDU 939 * subframe to a length that is a multiple of four. 940 * 941 * Padding like Atheros hardware adds which is between the 802.11 header and 942 * the payload is not supported, the driver is required to move the 802.11 943 * header to be directly in front of the payload in that case. 944 */ 945 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 946 { 947 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 948 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 949 #endif 950 } 951 952 953 /* rx handlers */ 954 955 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 956 { 957 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 958 959 if (is_multicast_ether_addr(hdr->addr1)) 960 return 0; 961 962 return ieee80211_is_robust_mgmt_frame(skb); 963 } 964 965 966 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 967 { 968 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 969 970 if (!is_multicast_ether_addr(hdr->addr1)) 971 return 0; 972 973 return ieee80211_is_robust_mgmt_frame(skb); 974 } 975 976 977 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 978 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 979 { 980 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 981 struct ieee80211_mmie *mmie; 982 struct ieee80211_mmie_16 *mmie16; 983 984 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 985 return -1; 986 987 if (!ieee80211_is_robust_mgmt_frame(skb) && 988 !ieee80211_is_beacon(hdr->frame_control)) 989 return -1; /* not a robust management frame */ 990 991 mmie = (struct ieee80211_mmie *) 992 (skb->data + skb->len - sizeof(*mmie)); 993 if (mmie->element_id == WLAN_EID_MMIE && 994 mmie->length == sizeof(*mmie) - 2) 995 return le16_to_cpu(mmie->key_id); 996 997 mmie16 = (struct ieee80211_mmie_16 *) 998 (skb->data + skb->len - sizeof(*mmie16)); 999 if (skb->len >= 24 + sizeof(*mmie16) && 1000 mmie16->element_id == WLAN_EID_MMIE && 1001 mmie16->length == sizeof(*mmie16) - 2) 1002 return le16_to_cpu(mmie16->key_id); 1003 1004 return -1; 1005 } 1006 1007 static int ieee80211_get_keyid(struct sk_buff *skb, 1008 const struct ieee80211_cipher_scheme *cs) 1009 { 1010 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1011 __le16 fc; 1012 int hdrlen; 1013 int minlen; 1014 u8 key_idx_off; 1015 u8 key_idx_shift; 1016 u8 keyid; 1017 1018 fc = hdr->frame_control; 1019 hdrlen = ieee80211_hdrlen(fc); 1020 1021 if (cs) { 1022 minlen = hdrlen + cs->hdr_len; 1023 key_idx_off = hdrlen + cs->key_idx_off; 1024 key_idx_shift = cs->key_idx_shift; 1025 } else { 1026 /* WEP, TKIP, CCMP and GCMP */ 1027 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1028 key_idx_off = hdrlen + 3; 1029 key_idx_shift = 6; 1030 } 1031 1032 if (unlikely(skb->len < minlen)) 1033 return -EINVAL; 1034 1035 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1036 1037 if (cs) 1038 keyid &= cs->key_idx_mask; 1039 keyid >>= key_idx_shift; 1040 1041 /* cs could use more than the usual two bits for the keyid */ 1042 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1043 return -EINVAL; 1044 1045 return keyid; 1046 } 1047 1048 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1049 { 1050 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1051 char *dev_addr = rx->sdata->vif.addr; 1052 1053 if (ieee80211_is_data(hdr->frame_control)) { 1054 if (is_multicast_ether_addr(hdr->addr1)) { 1055 if (ieee80211_has_tods(hdr->frame_control) || 1056 !ieee80211_has_fromds(hdr->frame_control)) 1057 return RX_DROP_MONITOR; 1058 if (ether_addr_equal(hdr->addr3, dev_addr)) 1059 return RX_DROP_MONITOR; 1060 } else { 1061 if (!ieee80211_has_a4(hdr->frame_control)) 1062 return RX_DROP_MONITOR; 1063 if (ether_addr_equal(hdr->addr4, dev_addr)) 1064 return RX_DROP_MONITOR; 1065 } 1066 } 1067 1068 /* If there is not an established peer link and this is not a peer link 1069 * establisment frame, beacon or probe, drop the frame. 1070 */ 1071 1072 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1073 struct ieee80211_mgmt *mgmt; 1074 1075 if (!ieee80211_is_mgmt(hdr->frame_control)) 1076 return RX_DROP_MONITOR; 1077 1078 if (ieee80211_is_action(hdr->frame_control)) { 1079 u8 category; 1080 1081 /* make sure category field is present */ 1082 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1083 return RX_DROP_MONITOR; 1084 1085 mgmt = (struct ieee80211_mgmt *)hdr; 1086 category = mgmt->u.action.category; 1087 if (category != WLAN_CATEGORY_MESH_ACTION && 1088 category != WLAN_CATEGORY_SELF_PROTECTED) 1089 return RX_DROP_MONITOR; 1090 return RX_CONTINUE; 1091 } 1092 1093 if (ieee80211_is_probe_req(hdr->frame_control) || 1094 ieee80211_is_probe_resp(hdr->frame_control) || 1095 ieee80211_is_beacon(hdr->frame_control) || 1096 ieee80211_is_auth(hdr->frame_control)) 1097 return RX_CONTINUE; 1098 1099 return RX_DROP_MONITOR; 1100 } 1101 1102 return RX_CONTINUE; 1103 } 1104 1105 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1106 int index) 1107 { 1108 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1109 struct sk_buff *tail = skb_peek_tail(frames); 1110 struct ieee80211_rx_status *status; 1111 1112 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1113 return true; 1114 1115 if (!tail) 1116 return false; 1117 1118 status = IEEE80211_SKB_RXCB(tail); 1119 if (status->flag & RX_FLAG_AMSDU_MORE) 1120 return false; 1121 1122 return true; 1123 } 1124 1125 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1126 struct tid_ampdu_rx *tid_agg_rx, 1127 int index, 1128 struct sk_buff_head *frames) 1129 { 1130 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1131 struct sk_buff *skb; 1132 struct ieee80211_rx_status *status; 1133 1134 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1135 1136 if (skb_queue_empty(skb_list)) 1137 goto no_frame; 1138 1139 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1140 __skb_queue_purge(skb_list); 1141 goto no_frame; 1142 } 1143 1144 /* release frames from the reorder ring buffer */ 1145 tid_agg_rx->stored_mpdu_num--; 1146 while ((skb = __skb_dequeue(skb_list))) { 1147 status = IEEE80211_SKB_RXCB(skb); 1148 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1149 __skb_queue_tail(frames, skb); 1150 } 1151 1152 no_frame: 1153 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1154 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1155 } 1156 1157 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1158 struct tid_ampdu_rx *tid_agg_rx, 1159 u16 head_seq_num, 1160 struct sk_buff_head *frames) 1161 { 1162 int index; 1163 1164 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1165 1166 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1167 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1168 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1169 frames); 1170 } 1171 } 1172 1173 /* 1174 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1175 * the skb was added to the buffer longer than this time ago, the earlier 1176 * frames that have not yet been received are assumed to be lost and the skb 1177 * can be released for processing. This may also release other skb's from the 1178 * reorder buffer if there are no additional gaps between the frames. 1179 * 1180 * Callers must hold tid_agg_rx->reorder_lock. 1181 */ 1182 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1183 1184 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1185 struct tid_ampdu_rx *tid_agg_rx, 1186 struct sk_buff_head *frames) 1187 { 1188 int index, i, j; 1189 1190 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1191 1192 /* release the buffer until next missing frame */ 1193 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1194 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1195 tid_agg_rx->stored_mpdu_num) { 1196 /* 1197 * No buffers ready to be released, but check whether any 1198 * frames in the reorder buffer have timed out. 1199 */ 1200 int skipped = 1; 1201 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1202 j = (j + 1) % tid_agg_rx->buf_size) { 1203 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1204 skipped++; 1205 continue; 1206 } 1207 if (skipped && 1208 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1209 HT_RX_REORDER_BUF_TIMEOUT)) 1210 goto set_release_timer; 1211 1212 /* don't leave incomplete A-MSDUs around */ 1213 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1214 i = (i + 1) % tid_agg_rx->buf_size) 1215 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1216 1217 ht_dbg_ratelimited(sdata, 1218 "release an RX reorder frame due to timeout on earlier frames\n"); 1219 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1220 frames); 1221 1222 /* 1223 * Increment the head seq# also for the skipped slots. 1224 */ 1225 tid_agg_rx->head_seq_num = 1226 (tid_agg_rx->head_seq_num + 1227 skipped) & IEEE80211_SN_MASK; 1228 skipped = 0; 1229 } 1230 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1231 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1232 frames); 1233 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1234 } 1235 1236 if (tid_agg_rx->stored_mpdu_num) { 1237 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1238 1239 for (; j != (index - 1) % tid_agg_rx->buf_size; 1240 j = (j + 1) % tid_agg_rx->buf_size) { 1241 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1242 break; 1243 } 1244 1245 set_release_timer: 1246 1247 if (!tid_agg_rx->removed) 1248 mod_timer(&tid_agg_rx->reorder_timer, 1249 tid_agg_rx->reorder_time[j] + 1 + 1250 HT_RX_REORDER_BUF_TIMEOUT); 1251 } else { 1252 del_timer(&tid_agg_rx->reorder_timer); 1253 } 1254 } 1255 1256 /* 1257 * As this function belongs to the RX path it must be under 1258 * rcu_read_lock protection. It returns false if the frame 1259 * can be processed immediately, true if it was consumed. 1260 */ 1261 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1262 struct tid_ampdu_rx *tid_agg_rx, 1263 struct sk_buff *skb, 1264 struct sk_buff_head *frames) 1265 { 1266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1267 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1268 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1269 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1270 u16 head_seq_num, buf_size; 1271 int index; 1272 bool ret = true; 1273 1274 spin_lock(&tid_agg_rx->reorder_lock); 1275 1276 /* 1277 * Offloaded BA sessions have no known starting sequence number so pick 1278 * one from first Rxed frame for this tid after BA was started. 1279 */ 1280 if (unlikely(tid_agg_rx->auto_seq)) { 1281 tid_agg_rx->auto_seq = false; 1282 tid_agg_rx->ssn = mpdu_seq_num; 1283 tid_agg_rx->head_seq_num = mpdu_seq_num; 1284 } 1285 1286 buf_size = tid_agg_rx->buf_size; 1287 head_seq_num = tid_agg_rx->head_seq_num; 1288 1289 /* 1290 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1291 * be reordered. 1292 */ 1293 if (unlikely(!tid_agg_rx->started)) { 1294 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1295 ret = false; 1296 goto out; 1297 } 1298 tid_agg_rx->started = true; 1299 } 1300 1301 /* frame with out of date sequence number */ 1302 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1303 dev_kfree_skb(skb); 1304 goto out; 1305 } 1306 1307 /* 1308 * If frame the sequence number exceeds our buffering window 1309 * size release some previous frames to make room for this one. 1310 */ 1311 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1312 head_seq_num = ieee80211_sn_inc( 1313 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1314 /* release stored frames up to new head to stack */ 1315 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1316 head_seq_num, frames); 1317 } 1318 1319 /* Now the new frame is always in the range of the reordering buffer */ 1320 1321 index = mpdu_seq_num % tid_agg_rx->buf_size; 1322 1323 /* check if we already stored this frame */ 1324 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1325 dev_kfree_skb(skb); 1326 goto out; 1327 } 1328 1329 /* 1330 * If the current MPDU is in the right order and nothing else 1331 * is stored we can process it directly, no need to buffer it. 1332 * If it is first but there's something stored, we may be able 1333 * to release frames after this one. 1334 */ 1335 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1336 tid_agg_rx->stored_mpdu_num == 0) { 1337 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1338 tid_agg_rx->head_seq_num = 1339 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1340 ret = false; 1341 goto out; 1342 } 1343 1344 /* put the frame in the reordering buffer */ 1345 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1346 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1347 tid_agg_rx->reorder_time[index] = jiffies; 1348 tid_agg_rx->stored_mpdu_num++; 1349 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1350 } 1351 1352 out: 1353 spin_unlock(&tid_agg_rx->reorder_lock); 1354 return ret; 1355 } 1356 1357 /* 1358 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1359 * true if the MPDU was buffered, false if it should be processed. 1360 */ 1361 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1362 struct sk_buff_head *frames) 1363 { 1364 struct sk_buff *skb = rx->skb; 1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1366 struct sta_info *sta = rx->sta; 1367 struct tid_ampdu_rx *tid_agg_rx; 1368 u16 sc; 1369 u8 tid, ack_policy; 1370 1371 if (!ieee80211_is_data_qos(hdr->frame_control) || 1372 is_multicast_ether_addr(hdr->addr1)) 1373 goto dont_reorder; 1374 1375 /* 1376 * filter the QoS data rx stream according to 1377 * STA/TID and check if this STA/TID is on aggregation 1378 */ 1379 1380 if (!sta) 1381 goto dont_reorder; 1382 1383 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1385 tid = ieee80211_get_tid(hdr); 1386 1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1388 if (!tid_agg_rx) { 1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1393 WLAN_BACK_RECIPIENT, 1394 WLAN_REASON_QSTA_REQUIRE_SETUP); 1395 goto dont_reorder; 1396 } 1397 1398 /* qos null data frames are excluded */ 1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1400 goto dont_reorder; 1401 1402 /* not part of a BA session */ 1403 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1404 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1405 goto dont_reorder; 1406 1407 /* new, potentially un-ordered, ampdu frame - process it */ 1408 1409 /* reset session timer */ 1410 if (tid_agg_rx->timeout) 1411 tid_agg_rx->last_rx = jiffies; 1412 1413 /* if this mpdu is fragmented - terminate rx aggregation session */ 1414 sc = le16_to_cpu(hdr->seq_ctrl); 1415 if (sc & IEEE80211_SCTL_FRAG) { 1416 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); 1417 return; 1418 } 1419 1420 /* 1421 * No locking needed -- we will only ever process one 1422 * RX packet at a time, and thus own tid_agg_rx. All 1423 * other code manipulating it needs to (and does) make 1424 * sure that we cannot get to it any more before doing 1425 * anything with it. 1426 */ 1427 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1428 frames)) 1429 return; 1430 1431 dont_reorder: 1432 __skb_queue_tail(frames, skb); 1433 } 1434 1435 static ieee80211_rx_result debug_noinline 1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1437 { 1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1439 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1440 1441 if (status->flag & RX_FLAG_DUP_VALIDATED) 1442 return RX_CONTINUE; 1443 1444 /* 1445 * Drop duplicate 802.11 retransmissions 1446 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1447 */ 1448 1449 if (rx->skb->len < 24) 1450 return RX_CONTINUE; 1451 1452 if (ieee80211_is_ctl(hdr->frame_control) || 1453 ieee80211_is_any_nullfunc(hdr->frame_control) || 1454 is_multicast_ether_addr(hdr->addr1)) 1455 return RX_CONTINUE; 1456 1457 if (!rx->sta) 1458 return RX_CONTINUE; 1459 1460 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1461 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1462 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1463 rx->sta->rx_stats.num_duplicates++; 1464 return RX_DROP_UNUSABLE; 1465 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1466 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1467 } 1468 1469 return RX_CONTINUE; 1470 } 1471 1472 static ieee80211_rx_result debug_noinline 1473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1474 { 1475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1476 1477 /* Drop disallowed frame classes based on STA auth/assoc state; 1478 * IEEE 802.11, Chap 5.5. 1479 * 1480 * mac80211 filters only based on association state, i.e. it drops 1481 * Class 3 frames from not associated stations. hostapd sends 1482 * deauth/disassoc frames when needed. In addition, hostapd is 1483 * responsible for filtering on both auth and assoc states. 1484 */ 1485 1486 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1487 return ieee80211_rx_mesh_check(rx); 1488 1489 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1490 ieee80211_is_pspoll(hdr->frame_control)) && 1491 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1492 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1493 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1494 /* 1495 * accept port control frames from the AP even when it's not 1496 * yet marked ASSOC to prevent a race where we don't set the 1497 * assoc bit quickly enough before it sends the first frame 1498 */ 1499 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1500 ieee80211_is_data_present(hdr->frame_control)) { 1501 unsigned int hdrlen; 1502 __be16 ethertype; 1503 1504 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1505 1506 if (rx->skb->len < hdrlen + 8) 1507 return RX_DROP_MONITOR; 1508 1509 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1510 if (ethertype == rx->sdata->control_port_protocol) 1511 return RX_CONTINUE; 1512 } 1513 1514 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1515 cfg80211_rx_spurious_frame(rx->sdata->dev, 1516 hdr->addr2, 1517 GFP_ATOMIC)) 1518 return RX_DROP_UNUSABLE; 1519 1520 return RX_DROP_MONITOR; 1521 } 1522 1523 return RX_CONTINUE; 1524 } 1525 1526 1527 static ieee80211_rx_result debug_noinline 1528 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1529 { 1530 struct ieee80211_local *local; 1531 struct ieee80211_hdr *hdr; 1532 struct sk_buff *skb; 1533 1534 local = rx->local; 1535 skb = rx->skb; 1536 hdr = (struct ieee80211_hdr *) skb->data; 1537 1538 if (!local->pspolling) 1539 return RX_CONTINUE; 1540 1541 if (!ieee80211_has_fromds(hdr->frame_control)) 1542 /* this is not from AP */ 1543 return RX_CONTINUE; 1544 1545 if (!ieee80211_is_data(hdr->frame_control)) 1546 return RX_CONTINUE; 1547 1548 if (!ieee80211_has_moredata(hdr->frame_control)) { 1549 /* AP has no more frames buffered for us */ 1550 local->pspolling = false; 1551 return RX_CONTINUE; 1552 } 1553 1554 /* more data bit is set, let's request a new frame from the AP */ 1555 ieee80211_send_pspoll(local, rx->sdata); 1556 1557 return RX_CONTINUE; 1558 } 1559 1560 static void sta_ps_start(struct sta_info *sta) 1561 { 1562 struct ieee80211_sub_if_data *sdata = sta->sdata; 1563 struct ieee80211_local *local = sdata->local; 1564 struct ps_data *ps; 1565 int tid; 1566 1567 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1568 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1569 ps = &sdata->bss->ps; 1570 else 1571 return; 1572 1573 atomic_inc(&ps->num_sta_ps); 1574 set_sta_flag(sta, WLAN_STA_PS_STA); 1575 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1576 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1577 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1578 sta->sta.addr, sta->sta.aid); 1579 1580 ieee80211_clear_fast_xmit(sta); 1581 1582 if (!sta->sta.txq[0]) 1583 return; 1584 1585 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1586 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1587 1588 ieee80211_unschedule_txq(&local->hw, txq, false); 1589 1590 if (txq_has_queue(txq)) 1591 set_bit(tid, &sta->txq_buffered_tids); 1592 else 1593 clear_bit(tid, &sta->txq_buffered_tids); 1594 } 1595 } 1596 1597 static void sta_ps_end(struct sta_info *sta) 1598 { 1599 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1600 sta->sta.addr, sta->sta.aid); 1601 1602 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1603 /* 1604 * Clear the flag only if the other one is still set 1605 * so that the TX path won't start TX'ing new frames 1606 * directly ... In the case that the driver flag isn't 1607 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1608 */ 1609 clear_sta_flag(sta, WLAN_STA_PS_STA); 1610 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1611 sta->sta.addr, sta->sta.aid); 1612 return; 1613 } 1614 1615 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1616 clear_sta_flag(sta, WLAN_STA_PS_STA); 1617 ieee80211_sta_ps_deliver_wakeup(sta); 1618 } 1619 1620 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1621 { 1622 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1623 bool in_ps; 1624 1625 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1626 1627 /* Don't let the same PS state be set twice */ 1628 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1629 if ((start && in_ps) || (!start && !in_ps)) 1630 return -EINVAL; 1631 1632 if (start) 1633 sta_ps_start(sta); 1634 else 1635 sta_ps_end(sta); 1636 1637 return 0; 1638 } 1639 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1640 1641 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1642 { 1643 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1644 1645 if (test_sta_flag(sta, WLAN_STA_SP)) 1646 return; 1647 1648 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1649 ieee80211_sta_ps_deliver_poll_response(sta); 1650 else 1651 set_sta_flag(sta, WLAN_STA_PSPOLL); 1652 } 1653 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1654 1655 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1656 { 1657 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1658 int ac = ieee80211_ac_from_tid(tid); 1659 1660 /* 1661 * If this AC is not trigger-enabled do nothing unless the 1662 * driver is calling us after it already checked. 1663 * 1664 * NB: This could/should check a separate bitmap of trigger- 1665 * enabled queues, but for now we only implement uAPSD w/o 1666 * TSPEC changes to the ACs, so they're always the same. 1667 */ 1668 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1669 tid != IEEE80211_NUM_TIDS) 1670 return; 1671 1672 /* if we are in a service period, do nothing */ 1673 if (test_sta_flag(sta, WLAN_STA_SP)) 1674 return; 1675 1676 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1677 ieee80211_sta_ps_deliver_uapsd(sta); 1678 else 1679 set_sta_flag(sta, WLAN_STA_UAPSD); 1680 } 1681 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1682 1683 static ieee80211_rx_result debug_noinline 1684 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1685 { 1686 struct ieee80211_sub_if_data *sdata = rx->sdata; 1687 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1688 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1689 1690 if (!rx->sta) 1691 return RX_CONTINUE; 1692 1693 if (sdata->vif.type != NL80211_IFTYPE_AP && 1694 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1695 return RX_CONTINUE; 1696 1697 /* 1698 * The device handles station powersave, so don't do anything about 1699 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1700 * it to mac80211 since they're handled.) 1701 */ 1702 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1703 return RX_CONTINUE; 1704 1705 /* 1706 * Don't do anything if the station isn't already asleep. In 1707 * the uAPSD case, the station will probably be marked asleep, 1708 * in the PS-Poll case the station must be confused ... 1709 */ 1710 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1711 return RX_CONTINUE; 1712 1713 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1714 ieee80211_sta_pspoll(&rx->sta->sta); 1715 1716 /* Free PS Poll skb here instead of returning RX_DROP that would 1717 * count as an dropped frame. */ 1718 dev_kfree_skb(rx->skb); 1719 1720 return RX_QUEUED; 1721 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1722 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1723 ieee80211_has_pm(hdr->frame_control) && 1724 (ieee80211_is_data_qos(hdr->frame_control) || 1725 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1726 u8 tid = ieee80211_get_tid(hdr); 1727 1728 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1729 } 1730 1731 return RX_CONTINUE; 1732 } 1733 1734 static ieee80211_rx_result debug_noinline 1735 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1736 { 1737 struct sta_info *sta = rx->sta; 1738 struct sk_buff *skb = rx->skb; 1739 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1740 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1741 int i; 1742 1743 if (!sta) 1744 return RX_CONTINUE; 1745 1746 /* 1747 * Update last_rx only for IBSS packets which are for the current 1748 * BSSID and for station already AUTHORIZED to avoid keeping the 1749 * current IBSS network alive in cases where other STAs start 1750 * using different BSSID. This will also give the station another 1751 * chance to restart the authentication/authorization in case 1752 * something went wrong the first time. 1753 */ 1754 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1755 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1756 NL80211_IFTYPE_ADHOC); 1757 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1758 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1759 sta->rx_stats.last_rx = jiffies; 1760 if (ieee80211_is_data(hdr->frame_control) && 1761 !is_multicast_ether_addr(hdr->addr1)) 1762 sta->rx_stats.last_rate = 1763 sta_stats_encode_rate(status); 1764 } 1765 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1766 sta->rx_stats.last_rx = jiffies; 1767 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1768 !is_multicast_ether_addr(hdr->addr1)) { 1769 /* 1770 * Mesh beacons will update last_rx when if they are found to 1771 * match the current local configuration when processed. 1772 */ 1773 sta->rx_stats.last_rx = jiffies; 1774 if (ieee80211_is_data(hdr->frame_control)) 1775 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1776 } 1777 1778 sta->rx_stats.fragments++; 1779 1780 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1781 sta->rx_stats.bytes += rx->skb->len; 1782 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1783 1784 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1785 sta->rx_stats.last_signal = status->signal; 1786 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1787 } 1788 1789 if (status->chains) { 1790 sta->rx_stats.chains = status->chains; 1791 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1792 int signal = status->chain_signal[i]; 1793 1794 if (!(status->chains & BIT(i))) 1795 continue; 1796 1797 sta->rx_stats.chain_signal_last[i] = signal; 1798 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1799 -signal); 1800 } 1801 } 1802 1803 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1804 return RX_CONTINUE; 1805 1806 /* 1807 * Change STA power saving mode only at the end of a frame 1808 * exchange sequence, and only for a data or management 1809 * frame as specified in IEEE 802.11-2016 11.2.3.2 1810 */ 1811 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1812 !ieee80211_has_morefrags(hdr->frame_control) && 1813 !is_multicast_ether_addr(hdr->addr1) && 1814 (ieee80211_is_mgmt(hdr->frame_control) || 1815 ieee80211_is_data(hdr->frame_control)) && 1816 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1817 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1818 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1819 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1820 if (!ieee80211_has_pm(hdr->frame_control)) 1821 sta_ps_end(sta); 1822 } else { 1823 if (ieee80211_has_pm(hdr->frame_control)) 1824 sta_ps_start(sta); 1825 } 1826 } 1827 1828 /* mesh power save support */ 1829 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1830 ieee80211_mps_rx_h_sta_process(sta, hdr); 1831 1832 /* 1833 * Drop (qos-)data::nullfunc frames silently, since they 1834 * are used only to control station power saving mode. 1835 */ 1836 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1837 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1838 1839 /* 1840 * If we receive a 4-addr nullfunc frame from a STA 1841 * that was not moved to a 4-addr STA vlan yet send 1842 * the event to userspace and for older hostapd drop 1843 * the frame to the monitor interface. 1844 */ 1845 if (ieee80211_has_a4(hdr->frame_control) && 1846 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1847 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1848 !rx->sdata->u.vlan.sta))) { 1849 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1850 cfg80211_rx_unexpected_4addr_frame( 1851 rx->sdata->dev, sta->sta.addr, 1852 GFP_ATOMIC); 1853 return RX_DROP_MONITOR; 1854 } 1855 /* 1856 * Update counter and free packet here to avoid 1857 * counting this as a dropped packed. 1858 */ 1859 sta->rx_stats.packets++; 1860 dev_kfree_skb(rx->skb); 1861 return RX_QUEUED; 1862 } 1863 1864 return RX_CONTINUE; 1865 } /* ieee80211_rx_h_sta_process */ 1866 1867 static struct ieee80211_key * 1868 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1869 { 1870 struct ieee80211_key *key = NULL; 1871 struct ieee80211_sub_if_data *sdata = rx->sdata; 1872 int idx2; 1873 1874 /* Make sure key gets set if either BIGTK key index is set so that 1875 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1876 * Beacon frames and Beacon frames that claim to use another BIGTK key 1877 * index (i.e., a key that we do not have). 1878 */ 1879 1880 if (idx < 0) { 1881 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1882 idx2 = idx + 1; 1883 } else { 1884 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1885 idx2 = idx + 1; 1886 else 1887 idx2 = idx - 1; 1888 } 1889 1890 if (rx->sta) 1891 key = rcu_dereference(rx->sta->gtk[idx]); 1892 if (!key) 1893 key = rcu_dereference(sdata->keys[idx]); 1894 if (!key && rx->sta) 1895 key = rcu_dereference(rx->sta->gtk[idx2]); 1896 if (!key) 1897 key = rcu_dereference(sdata->keys[idx2]); 1898 1899 return key; 1900 } 1901 1902 static ieee80211_rx_result debug_noinline 1903 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1904 { 1905 struct sk_buff *skb = rx->skb; 1906 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1908 int keyidx; 1909 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1910 struct ieee80211_key *sta_ptk = NULL; 1911 struct ieee80211_key *ptk_idx = NULL; 1912 int mmie_keyidx = -1; 1913 __le16 fc; 1914 const struct ieee80211_cipher_scheme *cs = NULL; 1915 1916 if (ieee80211_is_ext(hdr->frame_control)) 1917 return RX_CONTINUE; 1918 1919 /* 1920 * Key selection 101 1921 * 1922 * There are five types of keys: 1923 * - GTK (group keys) 1924 * - IGTK (group keys for management frames) 1925 * - BIGTK (group keys for Beacon frames) 1926 * - PTK (pairwise keys) 1927 * - STK (station-to-station pairwise keys) 1928 * 1929 * When selecting a key, we have to distinguish between multicast 1930 * (including broadcast) and unicast frames, the latter can only 1931 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1932 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1933 * then unicast frames can also use key indices like GTKs. Hence, if we 1934 * don't have a PTK/STK we check the key index for a WEP key. 1935 * 1936 * Note that in a regular BSS, multicast frames are sent by the 1937 * AP only, associated stations unicast the frame to the AP first 1938 * which then multicasts it on their behalf. 1939 * 1940 * There is also a slight problem in IBSS mode: GTKs are negotiated 1941 * with each station, that is something we don't currently handle. 1942 * The spec seems to expect that one negotiates the same key with 1943 * every station but there's no such requirement; VLANs could be 1944 * possible. 1945 */ 1946 1947 /* start without a key */ 1948 rx->key = NULL; 1949 fc = hdr->frame_control; 1950 1951 if (rx->sta) { 1952 int keyid = rx->sta->ptk_idx; 1953 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1954 1955 if (ieee80211_has_protected(fc) && 1956 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1957 cs = rx->sta->cipher_scheme; 1958 keyid = ieee80211_get_keyid(rx->skb, cs); 1959 1960 if (unlikely(keyid < 0)) 1961 return RX_DROP_UNUSABLE; 1962 1963 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1964 } 1965 } 1966 1967 if (!ieee80211_has_protected(fc)) 1968 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1969 1970 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1971 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1972 if ((status->flag & RX_FLAG_DECRYPTED) && 1973 (status->flag & RX_FLAG_IV_STRIPPED)) 1974 return RX_CONTINUE; 1975 /* Skip decryption if the frame is not protected. */ 1976 if (!ieee80211_has_protected(fc)) 1977 return RX_CONTINUE; 1978 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1979 /* Broadcast/multicast robust management frame / BIP */ 1980 if ((status->flag & RX_FLAG_DECRYPTED) && 1981 (status->flag & RX_FLAG_IV_STRIPPED)) 1982 return RX_CONTINUE; 1983 1984 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1985 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1986 NUM_DEFAULT_BEACON_KEYS) { 1987 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1988 skb->data, 1989 skb->len); 1990 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1991 } 1992 1993 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1994 if (!rx->key) 1995 return RX_CONTINUE; /* Beacon protection not in use */ 1996 } else if (mmie_keyidx >= 0) { 1997 /* Broadcast/multicast robust management frame / BIP */ 1998 if ((status->flag & RX_FLAG_DECRYPTED) && 1999 (status->flag & RX_FLAG_IV_STRIPPED)) 2000 return RX_CONTINUE; 2001 2002 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2003 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2004 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2005 if (rx->sta) { 2006 if (ieee80211_is_group_privacy_action(skb) && 2007 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2008 return RX_DROP_MONITOR; 2009 2010 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2011 } 2012 if (!rx->key) 2013 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2014 } else if (!ieee80211_has_protected(fc)) { 2015 /* 2016 * The frame was not protected, so skip decryption. However, we 2017 * need to set rx->key if there is a key that could have been 2018 * used so that the frame may be dropped if encryption would 2019 * have been expected. 2020 */ 2021 struct ieee80211_key *key = NULL; 2022 struct ieee80211_sub_if_data *sdata = rx->sdata; 2023 int i; 2024 2025 if (ieee80211_is_beacon(fc)) { 2026 key = ieee80211_rx_get_bigtk(rx, -1); 2027 } else if (ieee80211_is_mgmt(fc) && 2028 is_multicast_ether_addr(hdr->addr1)) { 2029 key = rcu_dereference(rx->sdata->default_mgmt_key); 2030 } else { 2031 if (rx->sta) { 2032 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2033 key = rcu_dereference(rx->sta->gtk[i]); 2034 if (key) 2035 break; 2036 } 2037 } 2038 if (!key) { 2039 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2040 key = rcu_dereference(sdata->keys[i]); 2041 if (key) 2042 break; 2043 } 2044 } 2045 } 2046 if (key) 2047 rx->key = key; 2048 return RX_CONTINUE; 2049 } else { 2050 /* 2051 * The device doesn't give us the IV so we won't be 2052 * able to look up the key. That's ok though, we 2053 * don't need to decrypt the frame, we just won't 2054 * be able to keep statistics accurate. 2055 * Except for key threshold notifications, should 2056 * we somehow allow the driver to tell us which key 2057 * the hardware used if this flag is set? 2058 */ 2059 if ((status->flag & RX_FLAG_DECRYPTED) && 2060 (status->flag & RX_FLAG_IV_STRIPPED)) 2061 return RX_CONTINUE; 2062 2063 keyidx = ieee80211_get_keyid(rx->skb, cs); 2064 2065 if (unlikely(keyidx < 0)) 2066 return RX_DROP_UNUSABLE; 2067 2068 /* check per-station GTK first, if multicast packet */ 2069 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2070 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2071 2072 /* if not found, try default key */ 2073 if (!rx->key) { 2074 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2075 2076 /* 2077 * RSNA-protected unicast frames should always be 2078 * sent with pairwise or station-to-station keys, 2079 * but for WEP we allow using a key index as well. 2080 */ 2081 if (rx->key && 2082 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2083 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2084 !is_multicast_ether_addr(hdr->addr1)) 2085 rx->key = NULL; 2086 } 2087 } 2088 2089 if (rx->key) { 2090 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2091 return RX_DROP_MONITOR; 2092 2093 /* TODO: add threshold stuff again */ 2094 } else { 2095 return RX_DROP_MONITOR; 2096 } 2097 2098 switch (rx->key->conf.cipher) { 2099 case WLAN_CIPHER_SUITE_WEP40: 2100 case WLAN_CIPHER_SUITE_WEP104: 2101 result = ieee80211_crypto_wep_decrypt(rx); 2102 break; 2103 case WLAN_CIPHER_SUITE_TKIP: 2104 result = ieee80211_crypto_tkip_decrypt(rx); 2105 break; 2106 case WLAN_CIPHER_SUITE_CCMP: 2107 result = ieee80211_crypto_ccmp_decrypt( 2108 rx, IEEE80211_CCMP_MIC_LEN); 2109 break; 2110 case WLAN_CIPHER_SUITE_CCMP_256: 2111 result = ieee80211_crypto_ccmp_decrypt( 2112 rx, IEEE80211_CCMP_256_MIC_LEN); 2113 break; 2114 case WLAN_CIPHER_SUITE_AES_CMAC: 2115 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2116 break; 2117 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2118 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2119 break; 2120 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2121 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2122 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2123 break; 2124 case WLAN_CIPHER_SUITE_GCMP: 2125 case WLAN_CIPHER_SUITE_GCMP_256: 2126 result = ieee80211_crypto_gcmp_decrypt(rx); 2127 break; 2128 default: 2129 result = ieee80211_crypto_hw_decrypt(rx); 2130 } 2131 2132 /* the hdr variable is invalid after the decrypt handlers */ 2133 2134 /* either the frame has been decrypted or will be dropped */ 2135 status->flag |= RX_FLAG_DECRYPTED; 2136 2137 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2138 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2139 skb->data, skb->len); 2140 2141 return result; 2142 } 2143 2144 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2145 { 2146 int i; 2147 2148 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2149 skb_queue_head_init(&cache->entries[i].skb_list); 2150 } 2151 2152 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2153 { 2154 int i; 2155 2156 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2157 __skb_queue_purge(&cache->entries[i].skb_list); 2158 } 2159 2160 static inline struct ieee80211_fragment_entry * 2161 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2162 unsigned int frag, unsigned int seq, int rx_queue, 2163 struct sk_buff **skb) 2164 { 2165 struct ieee80211_fragment_entry *entry; 2166 2167 entry = &cache->entries[cache->next++]; 2168 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2169 cache->next = 0; 2170 2171 __skb_queue_purge(&entry->skb_list); 2172 2173 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2174 *skb = NULL; 2175 entry->first_frag_time = jiffies; 2176 entry->seq = seq; 2177 entry->rx_queue = rx_queue; 2178 entry->last_frag = frag; 2179 entry->check_sequential_pn = false; 2180 entry->extra_len = 0; 2181 2182 return entry; 2183 } 2184 2185 static inline struct ieee80211_fragment_entry * 2186 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2187 unsigned int frag, unsigned int seq, 2188 int rx_queue, struct ieee80211_hdr *hdr) 2189 { 2190 struct ieee80211_fragment_entry *entry; 2191 int i, idx; 2192 2193 idx = cache->next; 2194 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2195 struct ieee80211_hdr *f_hdr; 2196 struct sk_buff *f_skb; 2197 2198 idx--; 2199 if (idx < 0) 2200 idx = IEEE80211_FRAGMENT_MAX - 1; 2201 2202 entry = &cache->entries[idx]; 2203 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2204 entry->rx_queue != rx_queue || 2205 entry->last_frag + 1 != frag) 2206 continue; 2207 2208 f_skb = __skb_peek(&entry->skb_list); 2209 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2210 2211 /* 2212 * Check ftype and addresses are equal, else check next fragment 2213 */ 2214 if (((hdr->frame_control ^ f_hdr->frame_control) & 2215 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2216 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2217 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2218 continue; 2219 2220 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2221 __skb_queue_purge(&entry->skb_list); 2222 continue; 2223 } 2224 return entry; 2225 } 2226 2227 return NULL; 2228 } 2229 2230 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2231 { 2232 return rx->key && 2233 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2234 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2235 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2236 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2237 ieee80211_has_protected(fc); 2238 } 2239 2240 static ieee80211_rx_result debug_noinline 2241 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2242 { 2243 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2244 struct ieee80211_hdr *hdr; 2245 u16 sc; 2246 __le16 fc; 2247 unsigned int frag, seq; 2248 struct ieee80211_fragment_entry *entry; 2249 struct sk_buff *skb; 2250 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2251 2252 hdr = (struct ieee80211_hdr *)rx->skb->data; 2253 fc = hdr->frame_control; 2254 2255 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2256 return RX_CONTINUE; 2257 2258 sc = le16_to_cpu(hdr->seq_ctrl); 2259 frag = sc & IEEE80211_SCTL_FRAG; 2260 2261 if (rx->sta) 2262 cache = &rx->sta->frags; 2263 2264 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2265 goto out; 2266 2267 if (is_multicast_ether_addr(hdr->addr1)) 2268 return RX_DROP_MONITOR; 2269 2270 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2271 2272 if (skb_linearize(rx->skb)) 2273 return RX_DROP_UNUSABLE; 2274 2275 /* 2276 * skb_linearize() might change the skb->data and 2277 * previously cached variables (in this case, hdr) need to 2278 * be refreshed with the new data. 2279 */ 2280 hdr = (struct ieee80211_hdr *)rx->skb->data; 2281 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2282 2283 if (frag == 0) { 2284 /* This is the first fragment of a new frame. */ 2285 entry = ieee80211_reassemble_add(cache, frag, seq, 2286 rx->seqno_idx, &(rx->skb)); 2287 if (requires_sequential_pn(rx, fc)) { 2288 int queue = rx->security_idx; 2289 2290 /* Store CCMP/GCMP PN so that we can verify that the 2291 * next fragment has a sequential PN value. 2292 */ 2293 entry->check_sequential_pn = true; 2294 entry->is_protected = true; 2295 entry->key_color = rx->key->color; 2296 memcpy(entry->last_pn, 2297 rx->key->u.ccmp.rx_pn[queue], 2298 IEEE80211_CCMP_PN_LEN); 2299 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2300 u.ccmp.rx_pn) != 2301 offsetof(struct ieee80211_key, 2302 u.gcmp.rx_pn)); 2303 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2304 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2305 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2306 IEEE80211_GCMP_PN_LEN); 2307 } else if (rx->key && 2308 (ieee80211_has_protected(fc) || 2309 (status->flag & RX_FLAG_DECRYPTED))) { 2310 entry->is_protected = true; 2311 entry->key_color = rx->key->color; 2312 } 2313 return RX_QUEUED; 2314 } 2315 2316 /* This is a fragment for a frame that should already be pending in 2317 * fragment cache. Add this fragment to the end of the pending entry. 2318 */ 2319 entry = ieee80211_reassemble_find(cache, frag, seq, 2320 rx->seqno_idx, hdr); 2321 if (!entry) { 2322 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2323 return RX_DROP_MONITOR; 2324 } 2325 2326 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2327 * MPDU PN values are not incrementing in steps of 1." 2328 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2329 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2330 */ 2331 if (entry->check_sequential_pn) { 2332 int i; 2333 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2334 2335 if (!requires_sequential_pn(rx, fc)) 2336 return RX_DROP_UNUSABLE; 2337 2338 /* Prevent mixed key and fragment cache attacks */ 2339 if (entry->key_color != rx->key->color) 2340 return RX_DROP_UNUSABLE; 2341 2342 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2343 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2344 pn[i]++; 2345 if (pn[i]) 2346 break; 2347 } 2348 2349 rpn = rx->ccm_gcm.pn; 2350 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2351 return RX_DROP_UNUSABLE; 2352 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2353 } else if (entry->is_protected && 2354 (!rx->key || 2355 (!ieee80211_has_protected(fc) && 2356 !(status->flag & RX_FLAG_DECRYPTED)) || 2357 rx->key->color != entry->key_color)) { 2358 /* Drop this as a mixed key or fragment cache attack, even 2359 * if for TKIP Michael MIC should protect us, and WEP is a 2360 * lost cause anyway. 2361 */ 2362 return RX_DROP_UNUSABLE; 2363 } else if (entry->is_protected && rx->key && 2364 entry->key_color != rx->key->color && 2365 (status->flag & RX_FLAG_DECRYPTED)) { 2366 return RX_DROP_UNUSABLE; 2367 } 2368 2369 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2370 __skb_queue_tail(&entry->skb_list, rx->skb); 2371 entry->last_frag = frag; 2372 entry->extra_len += rx->skb->len; 2373 if (ieee80211_has_morefrags(fc)) { 2374 rx->skb = NULL; 2375 return RX_QUEUED; 2376 } 2377 2378 rx->skb = __skb_dequeue(&entry->skb_list); 2379 if (skb_tailroom(rx->skb) < entry->extra_len) { 2380 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2381 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2382 GFP_ATOMIC))) { 2383 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2384 __skb_queue_purge(&entry->skb_list); 2385 return RX_DROP_UNUSABLE; 2386 } 2387 } 2388 while ((skb = __skb_dequeue(&entry->skb_list))) { 2389 skb_put_data(rx->skb, skb->data, skb->len); 2390 dev_kfree_skb(skb); 2391 } 2392 2393 out: 2394 ieee80211_led_rx(rx->local); 2395 if (rx->sta) 2396 rx->sta->rx_stats.packets++; 2397 return RX_CONTINUE; 2398 } 2399 2400 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2401 { 2402 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2403 return -EACCES; 2404 2405 return 0; 2406 } 2407 2408 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2409 { 2410 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2411 struct sk_buff *skb = rx->skb; 2412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2413 2414 /* 2415 * Pass through unencrypted frames if the hardware has 2416 * decrypted them already. 2417 */ 2418 if (status->flag & RX_FLAG_DECRYPTED) 2419 return 0; 2420 2421 /* check mesh EAPOL frames first */ 2422 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2423 ieee80211_is_data(fc))) { 2424 struct ieee80211s_hdr *mesh_hdr; 2425 u16 hdr_len = ieee80211_hdrlen(fc); 2426 u16 ethertype_offset; 2427 __be16 ethertype; 2428 2429 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2430 goto drop_check; 2431 2432 /* make sure fixed part of mesh header is there, also checks skb len */ 2433 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2434 goto drop_check; 2435 2436 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2437 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2438 sizeof(rfc1042_header); 2439 2440 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2441 ethertype == rx->sdata->control_port_protocol) 2442 return 0; 2443 } 2444 2445 drop_check: 2446 /* Drop unencrypted frames if key is set. */ 2447 if (unlikely(!ieee80211_has_protected(fc) && 2448 !ieee80211_is_any_nullfunc(fc) && 2449 ieee80211_is_data(fc) && rx->key)) 2450 return -EACCES; 2451 2452 return 0; 2453 } 2454 2455 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2456 { 2457 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2458 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2459 __le16 fc = hdr->frame_control; 2460 2461 /* 2462 * Pass through unencrypted frames if the hardware has 2463 * decrypted them already. 2464 */ 2465 if (status->flag & RX_FLAG_DECRYPTED) 2466 return 0; 2467 2468 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2469 if (unlikely(!ieee80211_has_protected(fc) && 2470 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2471 rx->key)) { 2472 if (ieee80211_is_deauth(fc) || 2473 ieee80211_is_disassoc(fc)) 2474 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2475 rx->skb->data, 2476 rx->skb->len); 2477 return -EACCES; 2478 } 2479 /* BIP does not use Protected field, so need to check MMIE */ 2480 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2481 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2482 if (ieee80211_is_deauth(fc) || 2483 ieee80211_is_disassoc(fc)) 2484 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2485 rx->skb->data, 2486 rx->skb->len); 2487 return -EACCES; 2488 } 2489 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2490 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2491 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2492 rx->skb->data, 2493 rx->skb->len); 2494 return -EACCES; 2495 } 2496 /* 2497 * When using MFP, Action frames are not allowed prior to 2498 * having configured keys. 2499 */ 2500 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2501 ieee80211_is_robust_mgmt_frame(rx->skb))) 2502 return -EACCES; 2503 } 2504 2505 return 0; 2506 } 2507 2508 static int 2509 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2510 { 2511 struct ieee80211_sub_if_data *sdata = rx->sdata; 2512 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2513 bool check_port_control = false; 2514 struct ethhdr *ehdr; 2515 int ret; 2516 2517 *port_control = false; 2518 if (ieee80211_has_a4(hdr->frame_control) && 2519 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2520 return -1; 2521 2522 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2523 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2524 2525 if (!sdata->u.mgd.use_4addr) 2526 return -1; 2527 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2528 check_port_control = true; 2529 } 2530 2531 if (is_multicast_ether_addr(hdr->addr1) && 2532 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2533 return -1; 2534 2535 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2536 if (ret < 0) 2537 return ret; 2538 2539 ehdr = (struct ethhdr *) rx->skb->data; 2540 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2541 *port_control = true; 2542 else if (check_port_control) 2543 return -1; 2544 2545 return 0; 2546 } 2547 2548 /* 2549 * requires that rx->skb is a frame with ethernet header 2550 */ 2551 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2552 { 2553 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2554 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2555 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2556 2557 /* 2558 * Allow EAPOL frames to us/the PAE group address regardless of 2559 * whether the frame was encrypted or not, and always disallow 2560 * all other destination addresses for them. 2561 */ 2562 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2563 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2564 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2565 2566 if (ieee80211_802_1x_port_control(rx) || 2567 ieee80211_drop_unencrypted(rx, fc)) 2568 return false; 2569 2570 return true; 2571 } 2572 2573 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2574 struct ieee80211_rx_data *rx) 2575 { 2576 struct ieee80211_sub_if_data *sdata = rx->sdata; 2577 struct net_device *dev = sdata->dev; 2578 2579 if (unlikely((skb->protocol == sdata->control_port_protocol || 2580 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2581 !sdata->control_port_no_preauth)) && 2582 sdata->control_port_over_nl80211)) { 2583 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2584 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2585 2586 cfg80211_rx_control_port(dev, skb, noencrypt); 2587 dev_kfree_skb(skb); 2588 } else { 2589 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2590 2591 memset(skb->cb, 0, sizeof(skb->cb)); 2592 2593 /* 2594 * 802.1X over 802.11 requires that the authenticator address 2595 * be used for EAPOL frames. However, 802.1X allows the use of 2596 * the PAE group address instead. If the interface is part of 2597 * a bridge and we pass the frame with the PAE group address, 2598 * then the bridge will forward it to the network (even if the 2599 * client was not associated yet), which isn't supposed to 2600 * happen. 2601 * To avoid that, rewrite the destination address to our own 2602 * address, so that the authenticator (e.g. hostapd) will see 2603 * the frame, but bridge won't forward it anywhere else. Note 2604 * that due to earlier filtering, the only other address can 2605 * be the PAE group address. 2606 */ 2607 if (unlikely(skb->protocol == sdata->control_port_protocol && 2608 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2609 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2610 2611 /* deliver to local stack */ 2612 if (rx->list) 2613 list_add_tail(&skb->list, rx->list); 2614 else 2615 netif_receive_skb(skb); 2616 } 2617 } 2618 2619 /* 2620 * requires that rx->skb is a frame with ethernet header 2621 */ 2622 static void 2623 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2624 { 2625 struct ieee80211_sub_if_data *sdata = rx->sdata; 2626 struct net_device *dev = sdata->dev; 2627 struct sk_buff *skb, *xmit_skb; 2628 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2629 struct sta_info *dsta; 2630 2631 skb = rx->skb; 2632 xmit_skb = NULL; 2633 2634 dev_sw_netstats_rx_add(dev, skb->len); 2635 2636 if (rx->sta) { 2637 /* The seqno index has the same property as needed 2638 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2639 * for non-QoS-data frames. Here we know it's a data 2640 * frame, so count MSDUs. 2641 */ 2642 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2643 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2644 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2645 } 2646 2647 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2648 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2649 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2650 ehdr->h_proto != rx->sdata->control_port_protocol && 2651 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2652 if (is_multicast_ether_addr(ehdr->h_dest) && 2653 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2654 /* 2655 * send multicast frames both to higher layers in 2656 * local net stack and back to the wireless medium 2657 */ 2658 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2659 if (!xmit_skb) 2660 net_info_ratelimited("%s: failed to clone multicast frame\n", 2661 dev->name); 2662 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2663 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2664 dsta = sta_info_get(sdata, ehdr->h_dest); 2665 if (dsta) { 2666 /* 2667 * The destination station is associated to 2668 * this AP (in this VLAN), so send the frame 2669 * directly to it and do not pass it to local 2670 * net stack. 2671 */ 2672 xmit_skb = skb; 2673 skb = NULL; 2674 } 2675 } 2676 } 2677 2678 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2679 if (skb) { 2680 /* 'align' will only take the values 0 or 2 here since all 2681 * frames are required to be aligned to 2-byte boundaries 2682 * when being passed to mac80211; the code here works just 2683 * as well if that isn't true, but mac80211 assumes it can 2684 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2685 */ 2686 int align; 2687 2688 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2689 if (align) { 2690 if (WARN_ON(skb_headroom(skb) < 3)) { 2691 dev_kfree_skb(skb); 2692 skb = NULL; 2693 } else { 2694 u8 *data = skb->data; 2695 size_t len = skb_headlen(skb); 2696 skb->data -= align; 2697 memmove(skb->data, data, len); 2698 skb_set_tail_pointer(skb, len); 2699 } 2700 } 2701 } 2702 #endif 2703 2704 if (skb) { 2705 skb->protocol = eth_type_trans(skb, dev); 2706 ieee80211_deliver_skb_to_local_stack(skb, rx); 2707 } 2708 2709 if (xmit_skb) { 2710 /* 2711 * Send to wireless media and increase priority by 256 to 2712 * keep the received priority instead of reclassifying 2713 * the frame (see cfg80211_classify8021d). 2714 */ 2715 xmit_skb->priority += 256; 2716 xmit_skb->protocol = htons(ETH_P_802_3); 2717 skb_reset_network_header(xmit_skb); 2718 skb_reset_mac_header(xmit_skb); 2719 dev_queue_xmit(xmit_skb); 2720 } 2721 } 2722 2723 static ieee80211_rx_result debug_noinline 2724 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2725 { 2726 struct net_device *dev = rx->sdata->dev; 2727 struct sk_buff *skb = rx->skb; 2728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2729 __le16 fc = hdr->frame_control; 2730 struct sk_buff_head frame_list; 2731 struct ethhdr ethhdr; 2732 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2733 2734 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2735 check_da = NULL; 2736 check_sa = NULL; 2737 } else switch (rx->sdata->vif.type) { 2738 case NL80211_IFTYPE_AP: 2739 case NL80211_IFTYPE_AP_VLAN: 2740 check_da = NULL; 2741 break; 2742 case NL80211_IFTYPE_STATION: 2743 if (!rx->sta || 2744 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2745 check_sa = NULL; 2746 break; 2747 case NL80211_IFTYPE_MESH_POINT: 2748 check_sa = NULL; 2749 break; 2750 default: 2751 break; 2752 } 2753 2754 skb->dev = dev; 2755 __skb_queue_head_init(&frame_list); 2756 2757 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2758 rx->sdata->vif.addr, 2759 rx->sdata->vif.type, 2760 data_offset, true)) 2761 return RX_DROP_UNUSABLE; 2762 2763 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2764 rx->sdata->vif.type, 2765 rx->local->hw.extra_tx_headroom, 2766 check_da, check_sa); 2767 2768 while (!skb_queue_empty(&frame_list)) { 2769 rx->skb = __skb_dequeue(&frame_list); 2770 2771 if (!ieee80211_frame_allowed(rx, fc)) { 2772 dev_kfree_skb(rx->skb); 2773 continue; 2774 } 2775 2776 ieee80211_deliver_skb(rx); 2777 } 2778 2779 return RX_QUEUED; 2780 } 2781 2782 static ieee80211_rx_result debug_noinline 2783 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2784 { 2785 struct sk_buff *skb = rx->skb; 2786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2787 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2788 __le16 fc = hdr->frame_control; 2789 2790 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2791 return RX_CONTINUE; 2792 2793 if (unlikely(!ieee80211_is_data(fc))) 2794 return RX_CONTINUE; 2795 2796 if (unlikely(!ieee80211_is_data_present(fc))) 2797 return RX_DROP_MONITOR; 2798 2799 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2800 switch (rx->sdata->vif.type) { 2801 case NL80211_IFTYPE_AP_VLAN: 2802 if (!rx->sdata->u.vlan.sta) 2803 return RX_DROP_UNUSABLE; 2804 break; 2805 case NL80211_IFTYPE_STATION: 2806 if (!rx->sdata->u.mgd.use_4addr) 2807 return RX_DROP_UNUSABLE; 2808 break; 2809 default: 2810 return RX_DROP_UNUSABLE; 2811 } 2812 } 2813 2814 if (is_multicast_ether_addr(hdr->addr1)) 2815 return RX_DROP_UNUSABLE; 2816 2817 if (rx->key) { 2818 /* 2819 * We should not receive A-MSDUs on pre-HT connections, 2820 * and HT connections cannot use old ciphers. Thus drop 2821 * them, as in those cases we couldn't even have SPP 2822 * A-MSDUs or such. 2823 */ 2824 switch (rx->key->conf.cipher) { 2825 case WLAN_CIPHER_SUITE_WEP40: 2826 case WLAN_CIPHER_SUITE_WEP104: 2827 case WLAN_CIPHER_SUITE_TKIP: 2828 return RX_DROP_UNUSABLE; 2829 default: 2830 break; 2831 } 2832 } 2833 2834 return __ieee80211_rx_h_amsdu(rx, 0); 2835 } 2836 2837 #ifdef CONFIG_MAC80211_MESH 2838 static ieee80211_rx_result 2839 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2840 { 2841 struct ieee80211_hdr *fwd_hdr, *hdr; 2842 struct ieee80211_tx_info *info; 2843 struct ieee80211s_hdr *mesh_hdr; 2844 struct sk_buff *skb = rx->skb, *fwd_skb; 2845 struct ieee80211_local *local = rx->local; 2846 struct ieee80211_sub_if_data *sdata = rx->sdata; 2847 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2848 u16 ac, q, hdrlen; 2849 int tailroom = 0; 2850 2851 hdr = (struct ieee80211_hdr *) skb->data; 2852 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2853 2854 /* make sure fixed part of mesh header is there, also checks skb len */ 2855 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2856 return RX_DROP_MONITOR; 2857 2858 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2859 2860 /* make sure full mesh header is there, also checks skb len */ 2861 if (!pskb_may_pull(rx->skb, 2862 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2863 return RX_DROP_MONITOR; 2864 2865 /* reload pointers */ 2866 hdr = (struct ieee80211_hdr *) skb->data; 2867 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2868 2869 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2870 return RX_DROP_MONITOR; 2871 2872 /* frame is in RMC, don't forward */ 2873 if (ieee80211_is_data(hdr->frame_control) && 2874 is_multicast_ether_addr(hdr->addr1) && 2875 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2876 return RX_DROP_MONITOR; 2877 2878 if (!ieee80211_is_data(hdr->frame_control)) 2879 return RX_CONTINUE; 2880 2881 if (!mesh_hdr->ttl) 2882 return RX_DROP_MONITOR; 2883 2884 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2885 struct mesh_path *mppath; 2886 char *proxied_addr; 2887 char *mpp_addr; 2888 2889 if (is_multicast_ether_addr(hdr->addr1)) { 2890 mpp_addr = hdr->addr3; 2891 proxied_addr = mesh_hdr->eaddr1; 2892 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2893 MESH_FLAGS_AE_A5_A6) { 2894 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2895 mpp_addr = hdr->addr4; 2896 proxied_addr = mesh_hdr->eaddr2; 2897 } else { 2898 return RX_DROP_MONITOR; 2899 } 2900 2901 rcu_read_lock(); 2902 mppath = mpp_path_lookup(sdata, proxied_addr); 2903 if (!mppath) { 2904 mpp_path_add(sdata, proxied_addr, mpp_addr); 2905 } else { 2906 spin_lock_bh(&mppath->state_lock); 2907 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2908 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2909 mppath->exp_time = jiffies; 2910 spin_unlock_bh(&mppath->state_lock); 2911 } 2912 rcu_read_unlock(); 2913 } 2914 2915 /* Frame has reached destination. Don't forward */ 2916 if (!is_multicast_ether_addr(hdr->addr1) && 2917 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2918 return RX_CONTINUE; 2919 2920 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2921 q = sdata->vif.hw_queue[ac]; 2922 if (ieee80211_queue_stopped(&local->hw, q)) { 2923 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2924 return RX_DROP_MONITOR; 2925 } 2926 skb_set_queue_mapping(skb, q); 2927 2928 if (!--mesh_hdr->ttl) { 2929 if (!is_multicast_ether_addr(hdr->addr1)) 2930 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2931 dropped_frames_ttl); 2932 goto out; 2933 } 2934 2935 if (!ifmsh->mshcfg.dot11MeshForwarding) 2936 goto out; 2937 2938 if (sdata->crypto_tx_tailroom_needed_cnt) 2939 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2940 2941 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2942 sdata->encrypt_headroom, 2943 tailroom, GFP_ATOMIC); 2944 if (!fwd_skb) 2945 goto out; 2946 2947 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2948 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2949 info = IEEE80211_SKB_CB(fwd_skb); 2950 memset(info, 0, sizeof(*info)); 2951 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2952 info->control.vif = &rx->sdata->vif; 2953 info->control.jiffies = jiffies; 2954 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2955 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2956 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2957 /* update power mode indication when forwarding */ 2958 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2959 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2960 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2961 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2962 } else { 2963 /* unable to resolve next hop */ 2964 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2965 fwd_hdr->addr3, 0, 2966 WLAN_REASON_MESH_PATH_NOFORWARD, 2967 fwd_hdr->addr2); 2968 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2969 kfree_skb(fwd_skb); 2970 return RX_DROP_MONITOR; 2971 } 2972 2973 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2974 ieee80211_add_pending_skb(local, fwd_skb); 2975 out: 2976 if (is_multicast_ether_addr(hdr->addr1)) 2977 return RX_CONTINUE; 2978 return RX_DROP_MONITOR; 2979 } 2980 #endif 2981 2982 static ieee80211_rx_result debug_noinline 2983 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2984 { 2985 struct ieee80211_sub_if_data *sdata = rx->sdata; 2986 struct ieee80211_local *local = rx->local; 2987 struct net_device *dev = sdata->dev; 2988 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2989 __le16 fc = hdr->frame_control; 2990 bool port_control; 2991 int err; 2992 2993 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2994 return RX_CONTINUE; 2995 2996 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2997 return RX_DROP_MONITOR; 2998 2999 /* 3000 * Send unexpected-4addr-frame event to hostapd. For older versions, 3001 * also drop the frame to cooked monitor interfaces. 3002 */ 3003 if (ieee80211_has_a4(hdr->frame_control) && 3004 sdata->vif.type == NL80211_IFTYPE_AP) { 3005 if (rx->sta && 3006 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3007 cfg80211_rx_unexpected_4addr_frame( 3008 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3009 return RX_DROP_MONITOR; 3010 } 3011 3012 err = __ieee80211_data_to_8023(rx, &port_control); 3013 if (unlikely(err)) 3014 return RX_DROP_UNUSABLE; 3015 3016 if (!ieee80211_frame_allowed(rx, fc)) 3017 return RX_DROP_MONITOR; 3018 3019 /* directly handle TDLS channel switch requests/responses */ 3020 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3021 cpu_to_be16(ETH_P_TDLS))) { 3022 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3023 3024 if (pskb_may_pull(rx->skb, 3025 offsetof(struct ieee80211_tdls_data, u)) && 3026 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3027 tf->category == WLAN_CATEGORY_TDLS && 3028 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3029 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3030 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3031 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3032 return RX_QUEUED; 3033 } 3034 } 3035 3036 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3037 unlikely(port_control) && sdata->bss) { 3038 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3039 u.ap); 3040 dev = sdata->dev; 3041 rx->sdata = sdata; 3042 } 3043 3044 rx->skb->dev = dev; 3045 3046 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3047 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3048 !is_multicast_ether_addr( 3049 ((struct ethhdr *)rx->skb->data)->h_dest) && 3050 (!local->scanning && 3051 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3052 mod_timer(&local->dynamic_ps_timer, jiffies + 3053 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3054 3055 ieee80211_deliver_skb(rx); 3056 3057 return RX_QUEUED; 3058 } 3059 3060 static ieee80211_rx_result debug_noinline 3061 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3062 { 3063 struct sk_buff *skb = rx->skb; 3064 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3065 struct tid_ampdu_rx *tid_agg_rx; 3066 u16 start_seq_num; 3067 u16 tid; 3068 3069 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3070 return RX_CONTINUE; 3071 3072 if (ieee80211_is_back_req(bar->frame_control)) { 3073 struct { 3074 __le16 control, start_seq_num; 3075 } __packed bar_data; 3076 struct ieee80211_event event = { 3077 .type = BAR_RX_EVENT, 3078 }; 3079 3080 if (!rx->sta) 3081 return RX_DROP_MONITOR; 3082 3083 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3084 &bar_data, sizeof(bar_data))) 3085 return RX_DROP_MONITOR; 3086 3087 tid = le16_to_cpu(bar_data.control) >> 12; 3088 3089 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3090 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3091 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3092 WLAN_BACK_RECIPIENT, 3093 WLAN_REASON_QSTA_REQUIRE_SETUP); 3094 3095 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3096 if (!tid_agg_rx) 3097 return RX_DROP_MONITOR; 3098 3099 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3100 event.u.ba.tid = tid; 3101 event.u.ba.ssn = start_seq_num; 3102 event.u.ba.sta = &rx->sta->sta; 3103 3104 /* reset session timer */ 3105 if (tid_agg_rx->timeout) 3106 mod_timer(&tid_agg_rx->session_timer, 3107 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3108 3109 spin_lock(&tid_agg_rx->reorder_lock); 3110 /* release stored frames up to start of BAR */ 3111 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3112 start_seq_num, frames); 3113 spin_unlock(&tid_agg_rx->reorder_lock); 3114 3115 drv_event_callback(rx->local, rx->sdata, &event); 3116 3117 kfree_skb(skb); 3118 return RX_QUEUED; 3119 } 3120 3121 /* 3122 * After this point, we only want management frames, 3123 * so we can drop all remaining control frames to 3124 * cooked monitor interfaces. 3125 */ 3126 return RX_DROP_MONITOR; 3127 } 3128 3129 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3130 struct ieee80211_mgmt *mgmt, 3131 size_t len) 3132 { 3133 struct ieee80211_local *local = sdata->local; 3134 struct sk_buff *skb; 3135 struct ieee80211_mgmt *resp; 3136 3137 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3138 /* Not to own unicast address */ 3139 return; 3140 } 3141 3142 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3143 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3144 /* Not from the current AP or not associated yet. */ 3145 return; 3146 } 3147 3148 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3149 /* Too short SA Query request frame */ 3150 return; 3151 } 3152 3153 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3154 if (skb == NULL) 3155 return; 3156 3157 skb_reserve(skb, local->hw.extra_tx_headroom); 3158 resp = skb_put_zero(skb, 24); 3159 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3160 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3161 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3162 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3163 IEEE80211_STYPE_ACTION); 3164 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3165 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3166 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3167 memcpy(resp->u.action.u.sa_query.trans_id, 3168 mgmt->u.action.u.sa_query.trans_id, 3169 WLAN_SA_QUERY_TR_ID_LEN); 3170 3171 ieee80211_tx_skb(sdata, skb); 3172 } 3173 3174 static ieee80211_rx_result debug_noinline 3175 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3176 { 3177 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3178 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3179 3180 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3181 return RX_CONTINUE; 3182 3183 /* 3184 * From here on, look only at management frames. 3185 * Data and control frames are already handled, 3186 * and unknown (reserved) frames are useless. 3187 */ 3188 if (rx->skb->len < 24) 3189 return RX_DROP_MONITOR; 3190 3191 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3192 return RX_DROP_MONITOR; 3193 3194 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3195 ieee80211_is_beacon(mgmt->frame_control) && 3196 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3197 int sig = 0; 3198 3199 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3200 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3201 sig = status->signal; 3202 3203 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3204 rx->skb->data, rx->skb->len, 3205 ieee80211_rx_status_to_khz(status), 3206 sig); 3207 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3208 } 3209 3210 if (ieee80211_drop_unencrypted_mgmt(rx)) 3211 return RX_DROP_UNUSABLE; 3212 3213 return RX_CONTINUE; 3214 } 3215 3216 static bool 3217 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3218 { 3219 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3220 struct ieee80211_sub_if_data *sdata = rx->sdata; 3221 3222 /* TWT actions are only supported in AP for the moment */ 3223 if (sdata->vif.type != NL80211_IFTYPE_AP) 3224 return false; 3225 3226 if (!rx->local->ops->add_twt_setup) 3227 return false; 3228 3229 if (!sdata->vif.bss_conf.twt_responder) 3230 return false; 3231 3232 if (!rx->sta) 3233 return false; 3234 3235 switch (mgmt->u.action.u.s1g.action_code) { 3236 case WLAN_S1G_TWT_SETUP: { 3237 struct ieee80211_twt_setup *twt; 3238 3239 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3240 1 + /* action code */ 3241 sizeof(struct ieee80211_twt_setup) + 3242 2 /* TWT req_type agrt */) 3243 break; 3244 3245 twt = (void *)mgmt->u.action.u.s1g.variable; 3246 if (twt->element_id != WLAN_EID_S1G_TWT) 3247 break; 3248 3249 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3250 4 + /* action code + token + tlv */ 3251 twt->length) 3252 break; 3253 3254 return true; /* queue the frame */ 3255 } 3256 case WLAN_S1G_TWT_TEARDOWN: 3257 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3258 break; 3259 3260 return true; /* queue the frame */ 3261 default: 3262 break; 3263 } 3264 3265 return false; 3266 } 3267 3268 static ieee80211_rx_result debug_noinline 3269 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3270 { 3271 struct ieee80211_local *local = rx->local; 3272 struct ieee80211_sub_if_data *sdata = rx->sdata; 3273 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3274 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3275 int len = rx->skb->len; 3276 3277 if (!ieee80211_is_action(mgmt->frame_control)) 3278 return RX_CONTINUE; 3279 3280 /* drop too small frames */ 3281 if (len < IEEE80211_MIN_ACTION_SIZE) 3282 return RX_DROP_UNUSABLE; 3283 3284 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3285 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3286 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3287 return RX_DROP_UNUSABLE; 3288 3289 switch (mgmt->u.action.category) { 3290 case WLAN_CATEGORY_HT: 3291 /* reject HT action frames from stations not supporting HT */ 3292 if (!rx->sta->sta.ht_cap.ht_supported) 3293 goto invalid; 3294 3295 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3296 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3297 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3298 sdata->vif.type != NL80211_IFTYPE_AP && 3299 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3300 break; 3301 3302 /* verify action & smps_control/chanwidth are present */ 3303 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3304 goto invalid; 3305 3306 switch (mgmt->u.action.u.ht_smps.action) { 3307 case WLAN_HT_ACTION_SMPS: { 3308 struct ieee80211_supported_band *sband; 3309 enum ieee80211_smps_mode smps_mode; 3310 struct sta_opmode_info sta_opmode = {}; 3311 3312 if (sdata->vif.type != NL80211_IFTYPE_AP && 3313 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3314 goto handled; 3315 3316 /* convert to HT capability */ 3317 switch (mgmt->u.action.u.ht_smps.smps_control) { 3318 case WLAN_HT_SMPS_CONTROL_DISABLED: 3319 smps_mode = IEEE80211_SMPS_OFF; 3320 break; 3321 case WLAN_HT_SMPS_CONTROL_STATIC: 3322 smps_mode = IEEE80211_SMPS_STATIC; 3323 break; 3324 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3325 smps_mode = IEEE80211_SMPS_DYNAMIC; 3326 break; 3327 default: 3328 goto invalid; 3329 } 3330 3331 /* if no change do nothing */ 3332 if (rx->sta->sta.smps_mode == smps_mode) 3333 goto handled; 3334 rx->sta->sta.smps_mode = smps_mode; 3335 sta_opmode.smps_mode = 3336 ieee80211_smps_mode_to_smps_mode(smps_mode); 3337 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3338 3339 sband = rx->local->hw.wiphy->bands[status->band]; 3340 3341 rate_control_rate_update(local, sband, rx->sta, 3342 IEEE80211_RC_SMPS_CHANGED); 3343 cfg80211_sta_opmode_change_notify(sdata->dev, 3344 rx->sta->addr, 3345 &sta_opmode, 3346 GFP_ATOMIC); 3347 goto handled; 3348 } 3349 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3350 struct ieee80211_supported_band *sband; 3351 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3352 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3353 struct sta_opmode_info sta_opmode = {}; 3354 3355 /* If it doesn't support 40 MHz it can't change ... */ 3356 if (!(rx->sta->sta.ht_cap.cap & 3357 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3358 goto handled; 3359 3360 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3361 max_bw = IEEE80211_STA_RX_BW_20; 3362 else 3363 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3364 3365 /* set cur_max_bandwidth and recalc sta bw */ 3366 rx->sta->cur_max_bandwidth = max_bw; 3367 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3368 3369 if (rx->sta->sta.bandwidth == new_bw) 3370 goto handled; 3371 3372 rx->sta->sta.bandwidth = new_bw; 3373 sband = rx->local->hw.wiphy->bands[status->band]; 3374 sta_opmode.bw = 3375 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3376 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3377 3378 rate_control_rate_update(local, sband, rx->sta, 3379 IEEE80211_RC_BW_CHANGED); 3380 cfg80211_sta_opmode_change_notify(sdata->dev, 3381 rx->sta->addr, 3382 &sta_opmode, 3383 GFP_ATOMIC); 3384 goto handled; 3385 } 3386 default: 3387 goto invalid; 3388 } 3389 3390 break; 3391 case WLAN_CATEGORY_PUBLIC: 3392 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3393 goto invalid; 3394 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3395 break; 3396 if (!rx->sta) 3397 break; 3398 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3399 break; 3400 if (mgmt->u.action.u.ext_chan_switch.action_code != 3401 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3402 break; 3403 if (len < offsetof(struct ieee80211_mgmt, 3404 u.action.u.ext_chan_switch.variable)) 3405 goto invalid; 3406 goto queue; 3407 case WLAN_CATEGORY_VHT: 3408 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3409 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3410 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3411 sdata->vif.type != NL80211_IFTYPE_AP && 3412 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3413 break; 3414 3415 /* verify action code is present */ 3416 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3417 goto invalid; 3418 3419 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3420 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3421 /* verify opmode is present */ 3422 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3423 goto invalid; 3424 goto queue; 3425 } 3426 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3427 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3428 goto invalid; 3429 goto queue; 3430 } 3431 default: 3432 break; 3433 } 3434 break; 3435 case WLAN_CATEGORY_BACK: 3436 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3437 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3438 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3439 sdata->vif.type != NL80211_IFTYPE_AP && 3440 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3441 break; 3442 3443 /* verify action_code is present */ 3444 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3445 break; 3446 3447 switch (mgmt->u.action.u.addba_req.action_code) { 3448 case WLAN_ACTION_ADDBA_REQ: 3449 if (len < (IEEE80211_MIN_ACTION_SIZE + 3450 sizeof(mgmt->u.action.u.addba_req))) 3451 goto invalid; 3452 break; 3453 case WLAN_ACTION_ADDBA_RESP: 3454 if (len < (IEEE80211_MIN_ACTION_SIZE + 3455 sizeof(mgmt->u.action.u.addba_resp))) 3456 goto invalid; 3457 break; 3458 case WLAN_ACTION_DELBA: 3459 if (len < (IEEE80211_MIN_ACTION_SIZE + 3460 sizeof(mgmt->u.action.u.delba))) 3461 goto invalid; 3462 break; 3463 default: 3464 goto invalid; 3465 } 3466 3467 goto queue; 3468 case WLAN_CATEGORY_SPECTRUM_MGMT: 3469 /* verify action_code is present */ 3470 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3471 break; 3472 3473 switch (mgmt->u.action.u.measurement.action_code) { 3474 case WLAN_ACTION_SPCT_MSR_REQ: 3475 if (status->band != NL80211_BAND_5GHZ) 3476 break; 3477 3478 if (len < (IEEE80211_MIN_ACTION_SIZE + 3479 sizeof(mgmt->u.action.u.measurement))) 3480 break; 3481 3482 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3483 break; 3484 3485 ieee80211_process_measurement_req(sdata, mgmt, len); 3486 goto handled; 3487 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3488 u8 *bssid; 3489 if (len < (IEEE80211_MIN_ACTION_SIZE + 3490 sizeof(mgmt->u.action.u.chan_switch))) 3491 break; 3492 3493 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3494 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3495 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3496 break; 3497 3498 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3499 bssid = sdata->u.mgd.bssid; 3500 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3501 bssid = sdata->u.ibss.bssid; 3502 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3503 bssid = mgmt->sa; 3504 else 3505 break; 3506 3507 if (!ether_addr_equal(mgmt->bssid, bssid)) 3508 break; 3509 3510 goto queue; 3511 } 3512 } 3513 break; 3514 case WLAN_CATEGORY_SELF_PROTECTED: 3515 if (len < (IEEE80211_MIN_ACTION_SIZE + 3516 sizeof(mgmt->u.action.u.self_prot.action_code))) 3517 break; 3518 3519 switch (mgmt->u.action.u.self_prot.action_code) { 3520 case WLAN_SP_MESH_PEERING_OPEN: 3521 case WLAN_SP_MESH_PEERING_CLOSE: 3522 case WLAN_SP_MESH_PEERING_CONFIRM: 3523 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3524 goto invalid; 3525 if (sdata->u.mesh.user_mpm) 3526 /* userspace handles this frame */ 3527 break; 3528 goto queue; 3529 case WLAN_SP_MGK_INFORM: 3530 case WLAN_SP_MGK_ACK: 3531 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3532 goto invalid; 3533 break; 3534 } 3535 break; 3536 case WLAN_CATEGORY_MESH_ACTION: 3537 if (len < (IEEE80211_MIN_ACTION_SIZE + 3538 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3539 break; 3540 3541 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3542 break; 3543 if (mesh_action_is_path_sel(mgmt) && 3544 !mesh_path_sel_is_hwmp(sdata)) 3545 break; 3546 goto queue; 3547 case WLAN_CATEGORY_S1G: 3548 switch (mgmt->u.action.u.s1g.action_code) { 3549 case WLAN_S1G_TWT_SETUP: 3550 case WLAN_S1G_TWT_TEARDOWN: 3551 if (ieee80211_process_rx_twt_action(rx)) 3552 goto queue; 3553 break; 3554 default: 3555 break; 3556 } 3557 break; 3558 } 3559 3560 return RX_CONTINUE; 3561 3562 invalid: 3563 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3564 /* will return in the next handlers */ 3565 return RX_CONTINUE; 3566 3567 handled: 3568 if (rx->sta) 3569 rx->sta->rx_stats.packets++; 3570 dev_kfree_skb(rx->skb); 3571 return RX_QUEUED; 3572 3573 queue: 3574 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3575 return RX_QUEUED; 3576 } 3577 3578 static ieee80211_rx_result debug_noinline 3579 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3580 { 3581 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3582 int sig = 0; 3583 3584 /* skip known-bad action frames and return them in the next handler */ 3585 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3586 return RX_CONTINUE; 3587 3588 /* 3589 * Getting here means the kernel doesn't know how to handle 3590 * it, but maybe userspace does ... include returned frames 3591 * so userspace can register for those to know whether ones 3592 * it transmitted were processed or returned. 3593 */ 3594 3595 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3596 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3597 sig = status->signal; 3598 3599 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3600 ieee80211_rx_status_to_khz(status), sig, 3601 rx->skb->data, rx->skb->len, 0)) { 3602 if (rx->sta) 3603 rx->sta->rx_stats.packets++; 3604 dev_kfree_skb(rx->skb); 3605 return RX_QUEUED; 3606 } 3607 3608 return RX_CONTINUE; 3609 } 3610 3611 static ieee80211_rx_result debug_noinline 3612 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3613 { 3614 struct ieee80211_sub_if_data *sdata = rx->sdata; 3615 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3616 int len = rx->skb->len; 3617 3618 if (!ieee80211_is_action(mgmt->frame_control)) 3619 return RX_CONTINUE; 3620 3621 switch (mgmt->u.action.category) { 3622 case WLAN_CATEGORY_SA_QUERY: 3623 if (len < (IEEE80211_MIN_ACTION_SIZE + 3624 sizeof(mgmt->u.action.u.sa_query))) 3625 break; 3626 3627 switch (mgmt->u.action.u.sa_query.action) { 3628 case WLAN_ACTION_SA_QUERY_REQUEST: 3629 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3630 break; 3631 ieee80211_process_sa_query_req(sdata, mgmt, len); 3632 goto handled; 3633 } 3634 break; 3635 } 3636 3637 return RX_CONTINUE; 3638 3639 handled: 3640 if (rx->sta) 3641 rx->sta->rx_stats.packets++; 3642 dev_kfree_skb(rx->skb); 3643 return RX_QUEUED; 3644 } 3645 3646 static ieee80211_rx_result debug_noinline 3647 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3648 { 3649 struct ieee80211_local *local = rx->local; 3650 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3651 struct sk_buff *nskb; 3652 struct ieee80211_sub_if_data *sdata = rx->sdata; 3653 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3654 3655 if (!ieee80211_is_action(mgmt->frame_control)) 3656 return RX_CONTINUE; 3657 3658 /* 3659 * For AP mode, hostapd is responsible for handling any action 3660 * frames that we didn't handle, including returning unknown 3661 * ones. For all other modes we will return them to the sender, 3662 * setting the 0x80 bit in the action category, as required by 3663 * 802.11-2012 9.24.4. 3664 * Newer versions of hostapd shall also use the management frame 3665 * registration mechanisms, but older ones still use cooked 3666 * monitor interfaces so push all frames there. 3667 */ 3668 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3669 (sdata->vif.type == NL80211_IFTYPE_AP || 3670 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3671 return RX_DROP_MONITOR; 3672 3673 if (is_multicast_ether_addr(mgmt->da)) 3674 return RX_DROP_MONITOR; 3675 3676 /* do not return rejected action frames */ 3677 if (mgmt->u.action.category & 0x80) 3678 return RX_DROP_UNUSABLE; 3679 3680 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3681 GFP_ATOMIC); 3682 if (nskb) { 3683 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3684 3685 nmgmt->u.action.category |= 0x80; 3686 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3687 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3688 3689 memset(nskb->cb, 0, sizeof(nskb->cb)); 3690 3691 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3692 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3693 3694 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3695 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3696 IEEE80211_TX_CTL_NO_CCK_RATE; 3697 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3698 info->hw_queue = 3699 local->hw.offchannel_tx_hw_queue; 3700 } 3701 3702 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3703 status->band); 3704 } 3705 dev_kfree_skb(rx->skb); 3706 return RX_QUEUED; 3707 } 3708 3709 static ieee80211_rx_result debug_noinline 3710 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3711 { 3712 struct ieee80211_sub_if_data *sdata = rx->sdata; 3713 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3714 3715 if (!ieee80211_is_ext(hdr->frame_control)) 3716 return RX_CONTINUE; 3717 3718 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3719 return RX_DROP_MONITOR; 3720 3721 /* for now only beacons are ext, so queue them */ 3722 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3723 3724 return RX_QUEUED; 3725 } 3726 3727 static ieee80211_rx_result debug_noinline 3728 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3729 { 3730 struct ieee80211_sub_if_data *sdata = rx->sdata; 3731 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3732 __le16 stype; 3733 3734 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3735 3736 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3737 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3738 sdata->vif.type != NL80211_IFTYPE_OCB && 3739 sdata->vif.type != NL80211_IFTYPE_STATION) 3740 return RX_DROP_MONITOR; 3741 3742 switch (stype) { 3743 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3744 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3745 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3746 /* process for all: mesh, mlme, ibss */ 3747 break; 3748 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3749 if (is_multicast_ether_addr(mgmt->da) && 3750 !is_broadcast_ether_addr(mgmt->da)) 3751 return RX_DROP_MONITOR; 3752 3753 /* process only for station/IBSS */ 3754 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3755 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3756 return RX_DROP_MONITOR; 3757 break; 3758 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3759 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3760 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3761 if (is_multicast_ether_addr(mgmt->da) && 3762 !is_broadcast_ether_addr(mgmt->da)) 3763 return RX_DROP_MONITOR; 3764 3765 /* process only for station */ 3766 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3767 return RX_DROP_MONITOR; 3768 break; 3769 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3770 /* process only for ibss and mesh */ 3771 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3772 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3773 return RX_DROP_MONITOR; 3774 break; 3775 default: 3776 return RX_DROP_MONITOR; 3777 } 3778 3779 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3780 3781 return RX_QUEUED; 3782 } 3783 3784 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3785 struct ieee80211_rate *rate) 3786 { 3787 struct ieee80211_sub_if_data *sdata; 3788 struct ieee80211_local *local = rx->local; 3789 struct sk_buff *skb = rx->skb, *skb2; 3790 struct net_device *prev_dev = NULL; 3791 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3792 int needed_headroom; 3793 3794 /* 3795 * If cooked monitor has been processed already, then 3796 * don't do it again. If not, set the flag. 3797 */ 3798 if (rx->flags & IEEE80211_RX_CMNTR) 3799 goto out_free_skb; 3800 rx->flags |= IEEE80211_RX_CMNTR; 3801 3802 /* If there are no cooked monitor interfaces, just free the SKB */ 3803 if (!local->cooked_mntrs) 3804 goto out_free_skb; 3805 3806 /* vendor data is long removed here */ 3807 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3808 /* room for the radiotap header based on driver features */ 3809 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3810 3811 if (skb_headroom(skb) < needed_headroom && 3812 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3813 goto out_free_skb; 3814 3815 /* prepend radiotap information */ 3816 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3817 false); 3818 3819 skb_reset_mac_header(skb); 3820 skb->ip_summed = CHECKSUM_UNNECESSARY; 3821 skb->pkt_type = PACKET_OTHERHOST; 3822 skb->protocol = htons(ETH_P_802_2); 3823 3824 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3825 if (!ieee80211_sdata_running(sdata)) 3826 continue; 3827 3828 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3829 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3830 continue; 3831 3832 if (prev_dev) { 3833 skb2 = skb_clone(skb, GFP_ATOMIC); 3834 if (skb2) { 3835 skb2->dev = prev_dev; 3836 netif_receive_skb(skb2); 3837 } 3838 } 3839 3840 prev_dev = sdata->dev; 3841 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3842 } 3843 3844 if (prev_dev) { 3845 skb->dev = prev_dev; 3846 netif_receive_skb(skb); 3847 return; 3848 } 3849 3850 out_free_skb: 3851 dev_kfree_skb(skb); 3852 } 3853 3854 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3855 ieee80211_rx_result res) 3856 { 3857 switch (res) { 3858 case RX_DROP_MONITOR: 3859 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3860 if (rx->sta) 3861 rx->sta->rx_stats.dropped++; 3862 fallthrough; 3863 case RX_CONTINUE: { 3864 struct ieee80211_rate *rate = NULL; 3865 struct ieee80211_supported_band *sband; 3866 struct ieee80211_rx_status *status; 3867 3868 status = IEEE80211_SKB_RXCB((rx->skb)); 3869 3870 sband = rx->local->hw.wiphy->bands[status->band]; 3871 if (status->encoding == RX_ENC_LEGACY) 3872 rate = &sband->bitrates[status->rate_idx]; 3873 3874 ieee80211_rx_cooked_monitor(rx, rate); 3875 break; 3876 } 3877 case RX_DROP_UNUSABLE: 3878 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3879 if (rx->sta) 3880 rx->sta->rx_stats.dropped++; 3881 dev_kfree_skb(rx->skb); 3882 break; 3883 case RX_QUEUED: 3884 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3885 break; 3886 } 3887 } 3888 3889 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3890 struct sk_buff_head *frames) 3891 { 3892 ieee80211_rx_result res = RX_DROP_MONITOR; 3893 struct sk_buff *skb; 3894 3895 #define CALL_RXH(rxh) \ 3896 do { \ 3897 res = rxh(rx); \ 3898 if (res != RX_CONTINUE) \ 3899 goto rxh_next; \ 3900 } while (0) 3901 3902 /* Lock here to avoid hitting all of the data used in the RX 3903 * path (e.g. key data, station data, ...) concurrently when 3904 * a frame is released from the reorder buffer due to timeout 3905 * from the timer, potentially concurrently with RX from the 3906 * driver. 3907 */ 3908 spin_lock_bh(&rx->local->rx_path_lock); 3909 3910 while ((skb = __skb_dequeue(frames))) { 3911 /* 3912 * all the other fields are valid across frames 3913 * that belong to an aMPDU since they are on the 3914 * same TID from the same station 3915 */ 3916 rx->skb = skb; 3917 3918 CALL_RXH(ieee80211_rx_h_check_more_data); 3919 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3920 CALL_RXH(ieee80211_rx_h_sta_process); 3921 CALL_RXH(ieee80211_rx_h_decrypt); 3922 CALL_RXH(ieee80211_rx_h_defragment); 3923 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3924 /* must be after MMIC verify so header is counted in MPDU mic */ 3925 #ifdef CONFIG_MAC80211_MESH 3926 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3927 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3928 #endif 3929 CALL_RXH(ieee80211_rx_h_amsdu); 3930 CALL_RXH(ieee80211_rx_h_data); 3931 3932 /* special treatment -- needs the queue */ 3933 res = ieee80211_rx_h_ctrl(rx, frames); 3934 if (res != RX_CONTINUE) 3935 goto rxh_next; 3936 3937 CALL_RXH(ieee80211_rx_h_mgmt_check); 3938 CALL_RXH(ieee80211_rx_h_action); 3939 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3940 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3941 CALL_RXH(ieee80211_rx_h_action_return); 3942 CALL_RXH(ieee80211_rx_h_ext); 3943 CALL_RXH(ieee80211_rx_h_mgmt); 3944 3945 rxh_next: 3946 ieee80211_rx_handlers_result(rx, res); 3947 3948 #undef CALL_RXH 3949 } 3950 3951 spin_unlock_bh(&rx->local->rx_path_lock); 3952 } 3953 3954 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3955 { 3956 struct sk_buff_head reorder_release; 3957 ieee80211_rx_result res = RX_DROP_MONITOR; 3958 3959 __skb_queue_head_init(&reorder_release); 3960 3961 #define CALL_RXH(rxh) \ 3962 do { \ 3963 res = rxh(rx); \ 3964 if (res != RX_CONTINUE) \ 3965 goto rxh_next; \ 3966 } while (0) 3967 3968 CALL_RXH(ieee80211_rx_h_check_dup); 3969 CALL_RXH(ieee80211_rx_h_check); 3970 3971 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3972 3973 ieee80211_rx_handlers(rx, &reorder_release); 3974 return; 3975 3976 rxh_next: 3977 ieee80211_rx_handlers_result(rx, res); 3978 3979 #undef CALL_RXH 3980 } 3981 3982 /* 3983 * This function makes calls into the RX path, therefore 3984 * it has to be invoked under RCU read lock. 3985 */ 3986 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3987 { 3988 struct sk_buff_head frames; 3989 struct ieee80211_rx_data rx = { 3990 .sta = sta, 3991 .sdata = sta->sdata, 3992 .local = sta->local, 3993 /* This is OK -- must be QoS data frame */ 3994 .security_idx = tid, 3995 .seqno_idx = tid, 3996 }; 3997 struct tid_ampdu_rx *tid_agg_rx; 3998 3999 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4000 if (!tid_agg_rx) 4001 return; 4002 4003 __skb_queue_head_init(&frames); 4004 4005 spin_lock(&tid_agg_rx->reorder_lock); 4006 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4007 spin_unlock(&tid_agg_rx->reorder_lock); 4008 4009 if (!skb_queue_empty(&frames)) { 4010 struct ieee80211_event event = { 4011 .type = BA_FRAME_TIMEOUT, 4012 .u.ba.tid = tid, 4013 .u.ba.sta = &sta->sta, 4014 }; 4015 drv_event_callback(rx.local, rx.sdata, &event); 4016 } 4017 4018 ieee80211_rx_handlers(&rx, &frames); 4019 } 4020 4021 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4022 u16 ssn, u64 filtered, 4023 u16 received_mpdus) 4024 { 4025 struct sta_info *sta; 4026 struct tid_ampdu_rx *tid_agg_rx; 4027 struct sk_buff_head frames; 4028 struct ieee80211_rx_data rx = { 4029 /* This is OK -- must be QoS data frame */ 4030 .security_idx = tid, 4031 .seqno_idx = tid, 4032 }; 4033 int i, diff; 4034 4035 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4036 return; 4037 4038 __skb_queue_head_init(&frames); 4039 4040 sta = container_of(pubsta, struct sta_info, sta); 4041 4042 rx.sta = sta; 4043 rx.sdata = sta->sdata; 4044 rx.local = sta->local; 4045 4046 rcu_read_lock(); 4047 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4048 if (!tid_agg_rx) 4049 goto out; 4050 4051 spin_lock_bh(&tid_agg_rx->reorder_lock); 4052 4053 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4054 int release; 4055 4056 /* release all frames in the reorder buffer */ 4057 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4058 IEEE80211_SN_MODULO; 4059 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4060 release, &frames); 4061 /* update ssn to match received ssn */ 4062 tid_agg_rx->head_seq_num = ssn; 4063 } else { 4064 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4065 &frames); 4066 } 4067 4068 /* handle the case that received ssn is behind the mac ssn. 4069 * it can be tid_agg_rx->buf_size behind and still be valid */ 4070 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4071 if (diff >= tid_agg_rx->buf_size) { 4072 tid_agg_rx->reorder_buf_filtered = 0; 4073 goto release; 4074 } 4075 filtered = filtered >> diff; 4076 ssn += diff; 4077 4078 /* update bitmap */ 4079 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4080 int index = (ssn + i) % tid_agg_rx->buf_size; 4081 4082 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4083 if (filtered & BIT_ULL(i)) 4084 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4085 } 4086 4087 /* now process also frames that the filter marking released */ 4088 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4089 4090 release: 4091 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4092 4093 ieee80211_rx_handlers(&rx, &frames); 4094 4095 out: 4096 rcu_read_unlock(); 4097 } 4098 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4099 4100 /* main receive path */ 4101 4102 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4103 { 4104 struct ieee80211_sub_if_data *sdata = rx->sdata; 4105 struct sk_buff *skb = rx->skb; 4106 struct ieee80211_hdr *hdr = (void *)skb->data; 4107 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4108 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4109 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4110 ieee80211_is_s1g_beacon(hdr->frame_control); 4111 4112 switch (sdata->vif.type) { 4113 case NL80211_IFTYPE_STATION: 4114 if (!bssid && !sdata->u.mgd.use_4addr) 4115 return false; 4116 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4117 return false; 4118 if (multicast) 4119 return true; 4120 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4121 case NL80211_IFTYPE_ADHOC: 4122 if (!bssid) 4123 return false; 4124 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4125 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4126 !is_valid_ether_addr(hdr->addr2)) 4127 return false; 4128 if (ieee80211_is_beacon(hdr->frame_control)) 4129 return true; 4130 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4131 return false; 4132 if (!multicast && 4133 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4134 return false; 4135 if (!rx->sta) { 4136 int rate_idx; 4137 if (status->encoding != RX_ENC_LEGACY) 4138 rate_idx = 0; /* TODO: HT/VHT rates */ 4139 else 4140 rate_idx = status->rate_idx; 4141 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4142 BIT(rate_idx)); 4143 } 4144 return true; 4145 case NL80211_IFTYPE_OCB: 4146 if (!bssid) 4147 return false; 4148 if (!ieee80211_is_data_present(hdr->frame_control)) 4149 return false; 4150 if (!is_broadcast_ether_addr(bssid)) 4151 return false; 4152 if (!multicast && 4153 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4154 return false; 4155 if (!rx->sta) { 4156 int rate_idx; 4157 if (status->encoding != RX_ENC_LEGACY) 4158 rate_idx = 0; /* TODO: HT rates */ 4159 else 4160 rate_idx = status->rate_idx; 4161 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4162 BIT(rate_idx)); 4163 } 4164 return true; 4165 case NL80211_IFTYPE_MESH_POINT: 4166 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4167 return false; 4168 if (multicast) 4169 return true; 4170 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4171 case NL80211_IFTYPE_AP_VLAN: 4172 case NL80211_IFTYPE_AP: 4173 if (!bssid) 4174 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4175 4176 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4177 /* 4178 * Accept public action frames even when the 4179 * BSSID doesn't match, this is used for P2P 4180 * and location updates. Note that mac80211 4181 * itself never looks at these frames. 4182 */ 4183 if (!multicast && 4184 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4185 return false; 4186 if (ieee80211_is_public_action(hdr, skb->len)) 4187 return true; 4188 return ieee80211_is_beacon(hdr->frame_control); 4189 } 4190 4191 if (!ieee80211_has_tods(hdr->frame_control)) { 4192 /* ignore data frames to TDLS-peers */ 4193 if (ieee80211_is_data(hdr->frame_control)) 4194 return false; 4195 /* ignore action frames to TDLS-peers */ 4196 if (ieee80211_is_action(hdr->frame_control) && 4197 !is_broadcast_ether_addr(bssid) && 4198 !ether_addr_equal(bssid, hdr->addr1)) 4199 return false; 4200 } 4201 4202 /* 4203 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4204 * the BSSID - we've checked that already but may have accepted 4205 * the wildcard (ff:ff:ff:ff:ff:ff). 4206 * 4207 * It also says: 4208 * The BSSID of the Data frame is determined as follows: 4209 * a) If the STA is contained within an AP or is associated 4210 * with an AP, the BSSID is the address currently in use 4211 * by the STA contained in the AP. 4212 * 4213 * So we should not accept data frames with an address that's 4214 * multicast. 4215 * 4216 * Accepting it also opens a security problem because stations 4217 * could encrypt it with the GTK and inject traffic that way. 4218 */ 4219 if (ieee80211_is_data(hdr->frame_control) && multicast) 4220 return false; 4221 4222 return true; 4223 case NL80211_IFTYPE_P2P_DEVICE: 4224 return ieee80211_is_public_action(hdr, skb->len) || 4225 ieee80211_is_probe_req(hdr->frame_control) || 4226 ieee80211_is_probe_resp(hdr->frame_control) || 4227 ieee80211_is_beacon(hdr->frame_control); 4228 case NL80211_IFTYPE_NAN: 4229 /* Currently no frames on NAN interface are allowed */ 4230 return false; 4231 default: 4232 break; 4233 } 4234 4235 WARN_ON_ONCE(1); 4236 return false; 4237 } 4238 4239 void ieee80211_check_fast_rx(struct sta_info *sta) 4240 { 4241 struct ieee80211_sub_if_data *sdata = sta->sdata; 4242 struct ieee80211_local *local = sdata->local; 4243 struct ieee80211_key *key; 4244 struct ieee80211_fast_rx fastrx = { 4245 .dev = sdata->dev, 4246 .vif_type = sdata->vif.type, 4247 .control_port_protocol = sdata->control_port_protocol, 4248 }, *old, *new = NULL; 4249 bool set_offload = false; 4250 bool assign = false; 4251 bool offload; 4252 4253 /* use sparse to check that we don't return without updating */ 4254 __acquire(check_fast_rx); 4255 4256 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4257 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4258 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4259 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4260 4261 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4262 4263 /* fast-rx doesn't do reordering */ 4264 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4265 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4266 goto clear; 4267 4268 switch (sdata->vif.type) { 4269 case NL80211_IFTYPE_STATION: 4270 if (sta->sta.tdls) { 4271 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4272 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4273 fastrx.expected_ds_bits = 0; 4274 } else { 4275 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4276 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4277 fastrx.expected_ds_bits = 4278 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4279 } 4280 4281 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4282 fastrx.expected_ds_bits |= 4283 cpu_to_le16(IEEE80211_FCTL_TODS); 4284 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4285 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4286 } 4287 4288 if (!sdata->u.mgd.powersave) 4289 break; 4290 4291 /* software powersave is a huge mess, avoid all of it */ 4292 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4293 goto clear; 4294 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4295 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4296 goto clear; 4297 break; 4298 case NL80211_IFTYPE_AP_VLAN: 4299 case NL80211_IFTYPE_AP: 4300 /* parallel-rx requires this, at least with calls to 4301 * ieee80211_sta_ps_transition() 4302 */ 4303 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4304 goto clear; 4305 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4306 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4307 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4308 4309 fastrx.internal_forward = 4310 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4311 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4312 !sdata->u.vlan.sta); 4313 4314 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4315 sdata->u.vlan.sta) { 4316 fastrx.expected_ds_bits |= 4317 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4318 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4319 fastrx.internal_forward = 0; 4320 } 4321 4322 break; 4323 default: 4324 goto clear; 4325 } 4326 4327 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4328 goto clear; 4329 4330 rcu_read_lock(); 4331 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4332 if (!key) 4333 key = rcu_dereference(sdata->default_unicast_key); 4334 if (key) { 4335 switch (key->conf.cipher) { 4336 case WLAN_CIPHER_SUITE_TKIP: 4337 /* we don't want to deal with MMIC in fast-rx */ 4338 goto clear_rcu; 4339 case WLAN_CIPHER_SUITE_CCMP: 4340 case WLAN_CIPHER_SUITE_CCMP_256: 4341 case WLAN_CIPHER_SUITE_GCMP: 4342 case WLAN_CIPHER_SUITE_GCMP_256: 4343 break; 4344 default: 4345 /* We also don't want to deal with 4346 * WEP or cipher scheme. 4347 */ 4348 goto clear_rcu; 4349 } 4350 4351 fastrx.key = true; 4352 fastrx.icv_len = key->conf.icv_len; 4353 } 4354 4355 assign = true; 4356 clear_rcu: 4357 rcu_read_unlock(); 4358 clear: 4359 __release(check_fast_rx); 4360 4361 if (assign) 4362 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4363 4364 offload = assign && 4365 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4366 4367 if (offload) 4368 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4369 else 4370 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4371 4372 if (set_offload) 4373 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4374 4375 spin_lock_bh(&sta->lock); 4376 old = rcu_dereference_protected(sta->fast_rx, true); 4377 rcu_assign_pointer(sta->fast_rx, new); 4378 spin_unlock_bh(&sta->lock); 4379 4380 if (old) 4381 kfree_rcu(old, rcu_head); 4382 } 4383 4384 void ieee80211_clear_fast_rx(struct sta_info *sta) 4385 { 4386 struct ieee80211_fast_rx *old; 4387 4388 spin_lock_bh(&sta->lock); 4389 old = rcu_dereference_protected(sta->fast_rx, true); 4390 RCU_INIT_POINTER(sta->fast_rx, NULL); 4391 spin_unlock_bh(&sta->lock); 4392 4393 if (old) 4394 kfree_rcu(old, rcu_head); 4395 } 4396 4397 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4398 { 4399 struct ieee80211_local *local = sdata->local; 4400 struct sta_info *sta; 4401 4402 lockdep_assert_held(&local->sta_mtx); 4403 4404 list_for_each_entry(sta, &local->sta_list, list) { 4405 if (sdata != sta->sdata && 4406 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4407 continue; 4408 ieee80211_check_fast_rx(sta); 4409 } 4410 } 4411 4412 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4413 { 4414 struct ieee80211_local *local = sdata->local; 4415 4416 mutex_lock(&local->sta_mtx); 4417 __ieee80211_check_fast_rx_iface(sdata); 4418 mutex_unlock(&local->sta_mtx); 4419 } 4420 4421 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4422 struct ieee80211_fast_rx *fast_rx, 4423 int orig_len) 4424 { 4425 struct ieee80211_sta_rx_stats *stats; 4426 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4427 struct sta_info *sta = rx->sta; 4428 struct sk_buff *skb = rx->skb; 4429 void *sa = skb->data + ETH_ALEN; 4430 void *da = skb->data; 4431 4432 stats = &sta->rx_stats; 4433 if (fast_rx->uses_rss) 4434 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4435 4436 /* statistics part of ieee80211_rx_h_sta_process() */ 4437 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4438 stats->last_signal = status->signal; 4439 if (!fast_rx->uses_rss) 4440 ewma_signal_add(&sta->rx_stats_avg.signal, 4441 -status->signal); 4442 } 4443 4444 if (status->chains) { 4445 int i; 4446 4447 stats->chains = status->chains; 4448 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4449 int signal = status->chain_signal[i]; 4450 4451 if (!(status->chains & BIT(i))) 4452 continue; 4453 4454 stats->chain_signal_last[i] = signal; 4455 if (!fast_rx->uses_rss) 4456 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4457 -signal); 4458 } 4459 } 4460 /* end of statistics */ 4461 4462 stats->last_rx = jiffies; 4463 stats->last_rate = sta_stats_encode_rate(status); 4464 4465 stats->fragments++; 4466 stats->packets++; 4467 4468 skb->dev = fast_rx->dev; 4469 4470 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4471 4472 /* The seqno index has the same property as needed 4473 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4474 * for non-QoS-data frames. Here we know it's a data 4475 * frame, so count MSDUs. 4476 */ 4477 u64_stats_update_begin(&stats->syncp); 4478 stats->msdu[rx->seqno_idx]++; 4479 stats->bytes += orig_len; 4480 u64_stats_update_end(&stats->syncp); 4481 4482 if (fast_rx->internal_forward) { 4483 struct sk_buff *xmit_skb = NULL; 4484 if (is_multicast_ether_addr(da)) { 4485 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4486 } else if (!ether_addr_equal(da, sa) && 4487 sta_info_get(rx->sdata, da)) { 4488 xmit_skb = skb; 4489 skb = NULL; 4490 } 4491 4492 if (xmit_skb) { 4493 /* 4494 * Send to wireless media and increase priority by 256 4495 * to keep the received priority instead of 4496 * reclassifying the frame (see cfg80211_classify8021d). 4497 */ 4498 xmit_skb->priority += 256; 4499 xmit_skb->protocol = htons(ETH_P_802_3); 4500 skb_reset_network_header(xmit_skb); 4501 skb_reset_mac_header(xmit_skb); 4502 dev_queue_xmit(xmit_skb); 4503 } 4504 4505 if (!skb) 4506 return; 4507 } 4508 4509 /* deliver to local stack */ 4510 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4511 memset(skb->cb, 0, sizeof(skb->cb)); 4512 if (rx->list) 4513 list_add_tail(&skb->list, rx->list); 4514 else 4515 netif_receive_skb(skb); 4516 4517 } 4518 4519 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4520 struct ieee80211_fast_rx *fast_rx) 4521 { 4522 struct sk_buff *skb = rx->skb; 4523 struct ieee80211_hdr *hdr = (void *)skb->data; 4524 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4525 struct sta_info *sta = rx->sta; 4526 int orig_len = skb->len; 4527 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4528 int snap_offs = hdrlen; 4529 struct { 4530 u8 snap[sizeof(rfc1042_header)]; 4531 __be16 proto; 4532 } *payload __aligned(2); 4533 struct { 4534 u8 da[ETH_ALEN]; 4535 u8 sa[ETH_ALEN]; 4536 } addrs __aligned(2); 4537 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4538 4539 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4540 * to a common data structure; drivers can implement that per queue 4541 * but we don't have that information in mac80211 4542 */ 4543 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4544 return false; 4545 4546 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4547 4548 /* If using encryption, we also need to have: 4549 * - PN_VALIDATED: similar, but the implementation is tricky 4550 * - DECRYPTED: necessary for PN_VALIDATED 4551 */ 4552 if (fast_rx->key && 4553 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4554 return false; 4555 4556 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4557 return false; 4558 4559 if (unlikely(ieee80211_is_frag(hdr))) 4560 return false; 4561 4562 /* Since our interface address cannot be multicast, this 4563 * implicitly also rejects multicast frames without the 4564 * explicit check. 4565 * 4566 * We shouldn't get any *data* frames not addressed to us 4567 * (AP mode will accept multicast *management* frames), but 4568 * punting here will make it go through the full checks in 4569 * ieee80211_accept_frame(). 4570 */ 4571 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4572 return false; 4573 4574 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4575 IEEE80211_FCTL_TODS)) != 4576 fast_rx->expected_ds_bits) 4577 return false; 4578 4579 /* assign the key to drop unencrypted frames (later) 4580 * and strip the IV/MIC if necessary 4581 */ 4582 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4583 /* GCMP header length is the same */ 4584 snap_offs += IEEE80211_CCMP_HDR_LEN; 4585 } 4586 4587 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4588 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4589 goto drop; 4590 4591 payload = (void *)(skb->data + snap_offs); 4592 4593 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4594 return false; 4595 4596 /* Don't handle these here since they require special code. 4597 * Accept AARP and IPX even though they should come with a 4598 * bridge-tunnel header - but if we get them this way then 4599 * there's little point in discarding them. 4600 */ 4601 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4602 payload->proto == fast_rx->control_port_protocol)) 4603 return false; 4604 } 4605 4606 /* after this point, don't punt to the slowpath! */ 4607 4608 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4609 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4610 goto drop; 4611 4612 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4613 goto drop; 4614 4615 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4616 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4617 RX_QUEUED) 4618 goto drop; 4619 4620 return true; 4621 } 4622 4623 /* do the header conversion - first grab the addresses */ 4624 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4625 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4626 /* remove the SNAP but leave the ethertype */ 4627 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4628 /* push the addresses in front */ 4629 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4630 4631 ieee80211_rx_8023(rx, fast_rx, orig_len); 4632 4633 return true; 4634 drop: 4635 dev_kfree_skb(skb); 4636 if (fast_rx->uses_rss) 4637 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4638 4639 stats->dropped++; 4640 return true; 4641 } 4642 4643 /* 4644 * This function returns whether or not the SKB 4645 * was destined for RX processing or not, which, 4646 * if consume is true, is equivalent to whether 4647 * or not the skb was consumed. 4648 */ 4649 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4650 struct sk_buff *skb, bool consume) 4651 { 4652 struct ieee80211_local *local = rx->local; 4653 struct ieee80211_sub_if_data *sdata = rx->sdata; 4654 4655 rx->skb = skb; 4656 4657 /* See if we can do fast-rx; if we have to copy we already lost, 4658 * so punt in that case. We should never have to deliver a data 4659 * frame to multiple interfaces anyway. 4660 * 4661 * We skip the ieee80211_accept_frame() call and do the necessary 4662 * checking inside ieee80211_invoke_fast_rx(). 4663 */ 4664 if (consume && rx->sta) { 4665 struct ieee80211_fast_rx *fast_rx; 4666 4667 fast_rx = rcu_dereference(rx->sta->fast_rx); 4668 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4669 return true; 4670 } 4671 4672 if (!ieee80211_accept_frame(rx)) 4673 return false; 4674 4675 if (!consume) { 4676 skb = skb_copy(skb, GFP_ATOMIC); 4677 if (!skb) { 4678 if (net_ratelimit()) 4679 wiphy_debug(local->hw.wiphy, 4680 "failed to copy skb for %s\n", 4681 sdata->name); 4682 return true; 4683 } 4684 4685 rx->skb = skb; 4686 } 4687 4688 ieee80211_invoke_rx_handlers(rx); 4689 return true; 4690 } 4691 4692 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4693 struct ieee80211_sta *pubsta, 4694 struct sk_buff *skb, 4695 struct list_head *list) 4696 { 4697 struct ieee80211_local *local = hw_to_local(hw); 4698 struct ieee80211_fast_rx *fast_rx; 4699 struct ieee80211_rx_data rx; 4700 4701 memset(&rx, 0, sizeof(rx)); 4702 rx.skb = skb; 4703 rx.local = local; 4704 rx.list = list; 4705 4706 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4707 4708 /* drop frame if too short for header */ 4709 if (skb->len < sizeof(struct ethhdr)) 4710 goto drop; 4711 4712 if (!pubsta) 4713 goto drop; 4714 4715 rx.sta = container_of(pubsta, struct sta_info, sta); 4716 rx.sdata = rx.sta->sdata; 4717 4718 fast_rx = rcu_dereference(rx.sta->fast_rx); 4719 if (!fast_rx) 4720 goto drop; 4721 4722 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4723 return; 4724 4725 drop: 4726 dev_kfree_skb(skb); 4727 } 4728 4729 /* 4730 * This is the actual Rx frames handler. as it belongs to Rx path it must 4731 * be called with rcu_read_lock protection. 4732 */ 4733 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4734 struct ieee80211_sta *pubsta, 4735 struct sk_buff *skb, 4736 struct list_head *list) 4737 { 4738 struct ieee80211_local *local = hw_to_local(hw); 4739 struct ieee80211_sub_if_data *sdata; 4740 struct ieee80211_hdr *hdr; 4741 __le16 fc; 4742 struct ieee80211_rx_data rx; 4743 struct ieee80211_sub_if_data *prev; 4744 struct rhlist_head *tmp; 4745 int err = 0; 4746 4747 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4748 memset(&rx, 0, sizeof(rx)); 4749 rx.skb = skb; 4750 rx.local = local; 4751 rx.list = list; 4752 4753 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4754 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4755 4756 if (ieee80211_is_mgmt(fc)) { 4757 /* drop frame if too short for header */ 4758 if (skb->len < ieee80211_hdrlen(fc)) 4759 err = -ENOBUFS; 4760 else 4761 err = skb_linearize(skb); 4762 } else { 4763 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4764 } 4765 4766 if (err) { 4767 dev_kfree_skb(skb); 4768 return; 4769 } 4770 4771 hdr = (struct ieee80211_hdr *)skb->data; 4772 ieee80211_parse_qos(&rx); 4773 ieee80211_verify_alignment(&rx); 4774 4775 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4776 ieee80211_is_beacon(hdr->frame_control) || 4777 ieee80211_is_s1g_beacon(hdr->frame_control))) 4778 ieee80211_scan_rx(local, skb); 4779 4780 if (ieee80211_is_data(fc)) { 4781 struct sta_info *sta, *prev_sta; 4782 4783 if (pubsta) { 4784 rx.sta = container_of(pubsta, struct sta_info, sta); 4785 rx.sdata = rx.sta->sdata; 4786 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4787 return; 4788 goto out; 4789 } 4790 4791 prev_sta = NULL; 4792 4793 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4794 if (!prev_sta) { 4795 prev_sta = sta; 4796 continue; 4797 } 4798 4799 rx.sta = prev_sta; 4800 rx.sdata = prev_sta->sdata; 4801 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4802 4803 prev_sta = sta; 4804 } 4805 4806 if (prev_sta) { 4807 rx.sta = prev_sta; 4808 rx.sdata = prev_sta->sdata; 4809 4810 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4811 return; 4812 goto out; 4813 } 4814 } 4815 4816 prev = NULL; 4817 4818 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4819 if (!ieee80211_sdata_running(sdata)) 4820 continue; 4821 4822 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4823 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4824 continue; 4825 4826 /* 4827 * frame is destined for this interface, but if it's 4828 * not also for the previous one we handle that after 4829 * the loop to avoid copying the SKB once too much 4830 */ 4831 4832 if (!prev) { 4833 prev = sdata; 4834 continue; 4835 } 4836 4837 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4838 rx.sdata = prev; 4839 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4840 4841 prev = sdata; 4842 } 4843 4844 if (prev) { 4845 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4846 rx.sdata = prev; 4847 4848 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4849 return; 4850 } 4851 4852 out: 4853 dev_kfree_skb(skb); 4854 } 4855 4856 /* 4857 * This is the receive path handler. It is called by a low level driver when an 4858 * 802.11 MPDU is received from the hardware. 4859 */ 4860 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4861 struct sk_buff *skb, struct list_head *list) 4862 { 4863 struct ieee80211_local *local = hw_to_local(hw); 4864 struct ieee80211_rate *rate = NULL; 4865 struct ieee80211_supported_band *sband; 4866 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4867 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 4868 4869 WARN_ON_ONCE(softirq_count() == 0); 4870 4871 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4872 goto drop; 4873 4874 sband = local->hw.wiphy->bands[status->band]; 4875 if (WARN_ON(!sband)) 4876 goto drop; 4877 4878 /* 4879 * If we're suspending, it is possible although not too likely 4880 * that we'd be receiving frames after having already partially 4881 * quiesced the stack. We can't process such frames then since 4882 * that might, for example, cause stations to be added or other 4883 * driver callbacks be invoked. 4884 */ 4885 if (unlikely(local->quiescing || local->suspended)) 4886 goto drop; 4887 4888 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4889 if (unlikely(local->in_reconfig)) 4890 goto drop; 4891 4892 /* 4893 * The same happens when we're not even started, 4894 * but that's worth a warning. 4895 */ 4896 if (WARN_ON(!local->started)) 4897 goto drop; 4898 4899 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4900 /* 4901 * Validate the rate, unless a PLCP error means that 4902 * we probably can't have a valid rate here anyway. 4903 */ 4904 4905 switch (status->encoding) { 4906 case RX_ENC_HT: 4907 /* 4908 * rate_idx is MCS index, which can be [0-76] 4909 * as documented on: 4910 * 4911 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4912 * 4913 * Anything else would be some sort of driver or 4914 * hardware error. The driver should catch hardware 4915 * errors. 4916 */ 4917 if (WARN(status->rate_idx > 76, 4918 "Rate marked as an HT rate but passed " 4919 "status->rate_idx is not " 4920 "an MCS index [0-76]: %d (0x%02x)\n", 4921 status->rate_idx, 4922 status->rate_idx)) 4923 goto drop; 4924 break; 4925 case RX_ENC_VHT: 4926 if (WARN_ONCE(status->rate_idx > 9 || 4927 !status->nss || 4928 status->nss > 8, 4929 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4930 status->rate_idx, status->nss)) 4931 goto drop; 4932 break; 4933 case RX_ENC_HE: 4934 if (WARN_ONCE(status->rate_idx > 11 || 4935 !status->nss || 4936 status->nss > 8, 4937 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4938 status->rate_idx, status->nss)) 4939 goto drop; 4940 break; 4941 default: 4942 WARN_ON_ONCE(1); 4943 fallthrough; 4944 case RX_ENC_LEGACY: 4945 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4946 goto drop; 4947 rate = &sband->bitrates[status->rate_idx]; 4948 } 4949 } 4950 4951 status->rx_flags = 0; 4952 4953 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4954 4955 /* 4956 * Frames with failed FCS/PLCP checksum are not returned, 4957 * all other frames are returned without radiotap header 4958 * if it was previously present. 4959 * Also, frames with less than 16 bytes are dropped. 4960 */ 4961 if (!(status->flag & RX_FLAG_8023)) 4962 skb = ieee80211_rx_monitor(local, skb, rate); 4963 if (skb) { 4964 if ((status->flag & RX_FLAG_8023) || 4965 ieee80211_is_data_present(hdr->frame_control)) 4966 ieee80211_tpt_led_trig_rx(local, skb->len); 4967 4968 if (status->flag & RX_FLAG_8023) 4969 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 4970 else 4971 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4972 } 4973 4974 kcov_remote_stop(); 4975 return; 4976 drop: 4977 kfree_skb(skb); 4978 } 4979 EXPORT_SYMBOL(ieee80211_rx_list); 4980 4981 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4982 struct sk_buff *skb, struct napi_struct *napi) 4983 { 4984 struct sk_buff *tmp; 4985 LIST_HEAD(list); 4986 4987 4988 /* 4989 * key references and virtual interfaces are protected using RCU 4990 * and this requires that we are in a read-side RCU section during 4991 * receive processing 4992 */ 4993 rcu_read_lock(); 4994 ieee80211_rx_list(hw, pubsta, skb, &list); 4995 rcu_read_unlock(); 4996 4997 if (!napi) { 4998 netif_receive_skb_list(&list); 4999 return; 5000 } 5001 5002 list_for_each_entry_safe(skb, tmp, &list, list) { 5003 skb_list_del_init(skb); 5004 napi_gro_receive(napi, skb); 5005 } 5006 } 5007 EXPORT_SYMBOL(ieee80211_rx_napi); 5008 5009 /* This is a version of the rx handler that can be called from hard irq 5010 * context. Post the skb on the queue and schedule the tasklet */ 5011 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5012 { 5013 struct ieee80211_local *local = hw_to_local(hw); 5014 5015 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5016 5017 skb->pkt_type = IEEE80211_RX_MSG; 5018 skb_queue_tail(&local->skb_queue, skb); 5019 tasklet_schedule(&local->tasklet); 5020 } 5021 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5022