1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 44 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 if (status->vendor_radiotap_len) 57 __pskb_pull(skb, status->vendor_radiotap_len); 58 59 return skb; 60 } 61 62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + status->vendor_radiotap_len); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return 1; 73 if (unlikely(skb->len < 16 + present_fcs_len + 74 status->vendor_radiotap_len)) 75 return 1; 76 if (ieee80211_is_ctl(hdr->frame_control) && 77 !ieee80211_is_pspoll(hdr->frame_control) && 78 !ieee80211_is_back_req(hdr->frame_control)) 79 return 1; 80 return 0; 81 } 82 83 static int 84 ieee80211_rx_radiotap_space(struct ieee80211_local *local, 85 struct ieee80211_rx_status *status) 86 { 87 int len; 88 89 /* always present fields */ 90 len = sizeof(struct ieee80211_radiotap_header) + 9; 91 92 /* allocate extra bitmap */ 93 if (status->vendor_radiotap_len) 94 len += 4; 95 96 if (ieee80211_have_rx_timestamp(status)) { 97 len = ALIGN(len, 8); 98 len += 8; 99 } 100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 101 len += 1; 102 103 /* padding for RX_FLAGS if necessary */ 104 len = ALIGN(len, 2); 105 106 if (status->flag & RX_FLAG_HT) /* HT info */ 107 len += 3; 108 109 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 110 len = ALIGN(len, 4); 111 len += 8; 112 } 113 114 if (status->flag & RX_FLAG_VHT) { 115 len = ALIGN(len, 2); 116 len += 12; 117 } 118 119 if (status->vendor_radiotap_len) { 120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0)) 121 status->vendor_radiotap_align = 1; 122 /* align standard part of vendor namespace */ 123 len = ALIGN(len, 2); 124 /* allocate standard part of vendor namespace */ 125 len += 6; 126 /* align vendor-defined part */ 127 len = ALIGN(len, status->vendor_radiotap_align); 128 /* vendor-defined part is already in skb */ 129 } 130 131 return len; 132 } 133 134 /* 135 * ieee80211_add_rx_radiotap_header - add radiotap header 136 * 137 * add a radiotap header containing all the fields which the hardware provided. 138 */ 139 static void 140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 141 struct sk_buff *skb, 142 struct ieee80211_rate *rate, 143 int rtap_len, bool has_fcs) 144 { 145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 146 struct ieee80211_radiotap_header *rthdr; 147 unsigned char *pos; 148 u16 rx_flags = 0; 149 int mpdulen; 150 151 mpdulen = skb->len; 152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 153 mpdulen += FCS_LEN; 154 155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 156 memset(rthdr, 0, rtap_len); 157 158 /* radiotap header, set always present flags */ 159 rthdr->it_present = 160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 161 (1 << IEEE80211_RADIOTAP_CHANNEL) | 162 (1 << IEEE80211_RADIOTAP_ANTENNA) | 163 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len); 165 166 pos = (unsigned char *)(rthdr + 1); 167 168 if (status->vendor_radiotap_len) { 169 rthdr->it_present |= 170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) | 171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT)); 172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos); 173 pos += 4; 174 } 175 176 /* the order of the following fields is important */ 177 178 /* IEEE80211_RADIOTAP_TSFT */ 179 if (ieee80211_have_rx_timestamp(status)) { 180 /* padding */ 181 while ((pos - (u8 *)rthdr) & 7) 182 *pos++ = 0; 183 put_unaligned_le64( 184 ieee80211_calculate_rx_timestamp(local, status, 185 mpdulen, 0), 186 pos); 187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 188 pos += 8; 189 } 190 191 /* IEEE80211_RADIOTAP_FLAGS */ 192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 193 *pos |= IEEE80211_RADIOTAP_F_FCS; 194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 195 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 196 if (status->flag & RX_FLAG_SHORTPRE) 197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 198 pos++; 199 200 /* IEEE80211_RADIOTAP_RATE */ 201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 202 /* 203 * Without rate information don't add it. If we have, 204 * MCS information is a separate field in radiotap, 205 * added below. The byte here is needed as padding 206 * for the channel though, so initialise it to 0. 207 */ 208 *pos = 0; 209 } else { 210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 211 *pos = rate->bitrate / 5; 212 } 213 pos++; 214 215 /* IEEE80211_RADIOTAP_CHANNEL */ 216 put_unaligned_le16(status->freq, pos); 217 pos += 2; 218 if (status->band == IEEE80211_BAND_5GHZ) 219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 220 pos); 221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 223 pos); 224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 226 pos); 227 else if (rate) 228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 229 pos); 230 else 231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos); 232 pos += 2; 233 234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 237 *pos = status->signal; 238 rthdr->it_present |= 239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 240 pos++; 241 } 242 243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 244 245 /* IEEE80211_RADIOTAP_ANTENNA */ 246 *pos = status->antenna; 247 pos++; 248 249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 250 251 /* IEEE80211_RADIOTAP_RX_FLAGS */ 252 /* ensure 2 byte alignment for the 2 byte field as required */ 253 if ((pos - (u8 *)rthdr) & 1) 254 *pos++ = 0; 255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 257 put_unaligned_le16(rx_flags, pos); 258 pos += 2; 259 260 if (status->flag & RX_FLAG_HT) { 261 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 262 *pos++ = local->hw.radiotap_mcs_details; 263 *pos = 0; 264 if (status->flag & RX_FLAG_SHORT_GI) 265 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 266 if (status->flag & RX_FLAG_40MHZ) 267 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 268 if (status->flag & RX_FLAG_HT_GF) 269 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 270 pos++; 271 *pos++ = status->rate_idx; 272 } 273 274 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 275 u16 flags = 0; 276 277 /* ensure 4 byte alignment */ 278 while ((pos - (u8 *)rthdr) & 3) 279 pos++; 280 rthdr->it_present |= 281 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 282 put_unaligned_le32(status->ampdu_reference, pos); 283 pos += 4; 284 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 285 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 286 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 287 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 288 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 289 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 290 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 292 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 293 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 294 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 295 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 296 put_unaligned_le16(flags, pos); 297 pos += 2; 298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 299 *pos++ = status->ampdu_delimiter_crc; 300 else 301 *pos++ = 0; 302 *pos++ = 0; 303 } 304 305 if (status->flag & RX_FLAG_VHT) { 306 u16 known = local->hw.radiotap_vht_details; 307 308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 309 /* known field - how to handle 80+80? */ 310 if (status->flag & RX_FLAG_80P80MHZ) 311 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 312 put_unaligned_le16(known, pos); 313 pos += 2; 314 /* flags */ 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 317 pos++; 318 /* bandwidth */ 319 if (status->flag & RX_FLAG_80MHZ) 320 *pos++ = 4; 321 else if (status->flag & RX_FLAG_80P80MHZ) 322 *pos++ = 0; /* marked not known above */ 323 else if (status->flag & RX_FLAG_160MHZ) 324 *pos++ = 11; 325 else if (status->flag & RX_FLAG_40MHZ) 326 *pos++ = 1; 327 else /* 20 MHz */ 328 *pos++ = 0; 329 /* MCS/NSS */ 330 *pos = (status->rate_idx << 4) | status->vht_nss; 331 pos += 4; 332 /* coding field */ 333 pos++; 334 /* group ID */ 335 pos++; 336 /* partial_aid */ 337 pos += 2; 338 } 339 340 if (status->vendor_radiotap_len) { 341 /* ensure 2 byte alignment for the vendor field as required */ 342 if ((pos - (u8 *)rthdr) & 1) 343 *pos++ = 0; 344 *pos++ = status->vendor_radiotap_oui[0]; 345 *pos++ = status->vendor_radiotap_oui[1]; 346 *pos++ = status->vendor_radiotap_oui[2]; 347 *pos++ = status->vendor_radiotap_subns; 348 put_unaligned_le16(status->vendor_radiotap_len, pos); 349 pos += 2; 350 /* align the actual payload as requested */ 351 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1)) 352 *pos++ = 0; 353 } 354 } 355 356 /* 357 * This function copies a received frame to all monitor interfaces and 358 * returns a cleaned-up SKB that no longer includes the FCS nor the 359 * radiotap header the driver might have added. 360 */ 361 static struct sk_buff * 362 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 363 struct ieee80211_rate *rate) 364 { 365 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 366 struct ieee80211_sub_if_data *sdata; 367 int needed_headroom; 368 struct sk_buff *skb, *skb2; 369 struct net_device *prev_dev = NULL; 370 int present_fcs_len = 0; 371 372 /* 373 * First, we may need to make a copy of the skb because 374 * (1) we need to modify it for radiotap (if not present), and 375 * (2) the other RX handlers will modify the skb we got. 376 * 377 * We don't need to, of course, if we aren't going to return 378 * the SKB because it has a bad FCS/PLCP checksum. 379 */ 380 381 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 382 present_fcs_len = FCS_LEN; 383 384 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 385 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) { 386 dev_kfree_skb(origskb); 387 return NULL; 388 } 389 390 if (!local->monitors) { 391 if (should_drop_frame(origskb, present_fcs_len)) { 392 dev_kfree_skb(origskb); 393 return NULL; 394 } 395 396 return remove_monitor_info(local, origskb); 397 } 398 399 /* room for the radiotap header based on driver features */ 400 needed_headroom = ieee80211_rx_radiotap_space(local, status); 401 402 if (should_drop_frame(origskb, present_fcs_len)) { 403 /* only need to expand headroom if necessary */ 404 skb = origskb; 405 origskb = NULL; 406 407 /* 408 * This shouldn't trigger often because most devices have an 409 * RX header they pull before we get here, and that should 410 * be big enough for our radiotap information. We should 411 * probably export the length to drivers so that we can have 412 * them allocate enough headroom to start with. 413 */ 414 if (skb_headroom(skb) < needed_headroom && 415 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 416 dev_kfree_skb(skb); 417 return NULL; 418 } 419 } else { 420 /* 421 * Need to make a copy and possibly remove radiotap header 422 * and FCS from the original. 423 */ 424 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 425 426 origskb = remove_monitor_info(local, origskb); 427 428 if (!skb) 429 return origskb; 430 } 431 432 /* prepend radiotap information */ 433 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 434 true); 435 436 skb_reset_mac_header(skb); 437 skb->ip_summed = CHECKSUM_UNNECESSARY; 438 skb->pkt_type = PACKET_OTHERHOST; 439 skb->protocol = htons(ETH_P_802_2); 440 441 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 442 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 443 continue; 444 445 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 446 continue; 447 448 if (!ieee80211_sdata_running(sdata)) 449 continue; 450 451 if (prev_dev) { 452 skb2 = skb_clone(skb, GFP_ATOMIC); 453 if (skb2) { 454 skb2->dev = prev_dev; 455 netif_receive_skb(skb2); 456 } 457 } 458 459 prev_dev = sdata->dev; 460 sdata->dev->stats.rx_packets++; 461 sdata->dev->stats.rx_bytes += skb->len; 462 } 463 464 if (prev_dev) { 465 skb->dev = prev_dev; 466 netif_receive_skb(skb); 467 } else 468 dev_kfree_skb(skb); 469 470 return origskb; 471 } 472 473 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 474 { 475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 476 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 477 int tid, seqno_idx, security_idx; 478 479 /* does the frame have a qos control field? */ 480 if (ieee80211_is_data_qos(hdr->frame_control)) { 481 u8 *qc = ieee80211_get_qos_ctl(hdr); 482 /* frame has qos control */ 483 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 484 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 485 status->rx_flags |= IEEE80211_RX_AMSDU; 486 487 seqno_idx = tid; 488 security_idx = tid; 489 } else { 490 /* 491 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 492 * 493 * Sequence numbers for management frames, QoS data 494 * frames with a broadcast/multicast address in the 495 * Address 1 field, and all non-QoS data frames sent 496 * by QoS STAs are assigned using an additional single 497 * modulo-4096 counter, [...] 498 * 499 * We also use that counter for non-QoS STAs. 500 */ 501 seqno_idx = IEEE80211_NUM_TIDS; 502 security_idx = 0; 503 if (ieee80211_is_mgmt(hdr->frame_control)) 504 security_idx = IEEE80211_NUM_TIDS; 505 tid = 0; 506 } 507 508 rx->seqno_idx = seqno_idx; 509 rx->security_idx = security_idx; 510 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 511 * For now, set skb->priority to 0 for other cases. */ 512 rx->skb->priority = (tid > 7) ? 0 : tid; 513 } 514 515 /** 516 * DOC: Packet alignment 517 * 518 * Drivers always need to pass packets that are aligned to two-byte boundaries 519 * to the stack. 520 * 521 * Additionally, should, if possible, align the payload data in a way that 522 * guarantees that the contained IP header is aligned to a four-byte 523 * boundary. In the case of regular frames, this simply means aligning the 524 * payload to a four-byte boundary (because either the IP header is directly 525 * contained, or IV/RFC1042 headers that have a length divisible by four are 526 * in front of it). If the payload data is not properly aligned and the 527 * architecture doesn't support efficient unaligned operations, mac80211 528 * will align the data. 529 * 530 * With A-MSDU frames, however, the payload data address must yield two modulo 531 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 532 * push the IP header further back to a multiple of four again. Thankfully, the 533 * specs were sane enough this time around to require padding each A-MSDU 534 * subframe to a length that is a multiple of four. 535 * 536 * Padding like Atheros hardware adds which is between the 802.11 header and 537 * the payload is not supported, the driver is required to move the 802.11 538 * header to be directly in front of the payload in that case. 539 */ 540 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 541 { 542 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 543 WARN_ONCE((unsigned long)rx->skb->data & 1, 544 "unaligned packet at 0x%p\n", rx->skb->data); 545 #endif 546 } 547 548 549 /* rx handlers */ 550 551 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 552 { 553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 554 555 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 556 return 0; 557 558 return ieee80211_is_robust_mgmt_frame(hdr); 559 } 560 561 562 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 563 { 564 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 565 566 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 567 return 0; 568 569 return ieee80211_is_robust_mgmt_frame(hdr); 570 } 571 572 573 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 574 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 575 { 576 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 577 struct ieee80211_mmie *mmie; 578 579 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 580 return -1; 581 582 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 583 return -1; /* not a robust management frame */ 584 585 mmie = (struct ieee80211_mmie *) 586 (skb->data + skb->len - sizeof(*mmie)); 587 if (mmie->element_id != WLAN_EID_MMIE || 588 mmie->length != sizeof(*mmie) - 2) 589 return -1; 590 591 return le16_to_cpu(mmie->key_id); 592 } 593 594 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 595 { 596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 597 char *dev_addr = rx->sdata->vif.addr; 598 599 if (ieee80211_is_data(hdr->frame_control)) { 600 if (is_multicast_ether_addr(hdr->addr1)) { 601 if (ieee80211_has_tods(hdr->frame_control) || 602 !ieee80211_has_fromds(hdr->frame_control)) 603 return RX_DROP_MONITOR; 604 if (ether_addr_equal(hdr->addr3, dev_addr)) 605 return RX_DROP_MONITOR; 606 } else { 607 if (!ieee80211_has_a4(hdr->frame_control)) 608 return RX_DROP_MONITOR; 609 if (ether_addr_equal(hdr->addr4, dev_addr)) 610 return RX_DROP_MONITOR; 611 } 612 } 613 614 /* If there is not an established peer link and this is not a peer link 615 * establisment frame, beacon or probe, drop the frame. 616 */ 617 618 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 619 struct ieee80211_mgmt *mgmt; 620 621 if (!ieee80211_is_mgmt(hdr->frame_control)) 622 return RX_DROP_MONITOR; 623 624 if (ieee80211_is_action(hdr->frame_control)) { 625 u8 category; 626 627 /* make sure category field is present */ 628 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 629 return RX_DROP_MONITOR; 630 631 mgmt = (struct ieee80211_mgmt *)hdr; 632 category = mgmt->u.action.category; 633 if (category != WLAN_CATEGORY_MESH_ACTION && 634 category != WLAN_CATEGORY_SELF_PROTECTED) 635 return RX_DROP_MONITOR; 636 return RX_CONTINUE; 637 } 638 639 if (ieee80211_is_probe_req(hdr->frame_control) || 640 ieee80211_is_probe_resp(hdr->frame_control) || 641 ieee80211_is_beacon(hdr->frame_control) || 642 ieee80211_is_auth(hdr->frame_control)) 643 return RX_CONTINUE; 644 645 return RX_DROP_MONITOR; 646 } 647 648 return RX_CONTINUE; 649 } 650 651 #define SEQ_MODULO 0x1000 652 #define SEQ_MASK 0xfff 653 654 static inline int seq_less(u16 sq1, u16 sq2) 655 { 656 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 657 } 658 659 static inline u16 seq_inc(u16 sq) 660 { 661 return (sq + 1) & SEQ_MASK; 662 } 663 664 static inline u16 seq_sub(u16 sq1, u16 sq2) 665 { 666 return (sq1 - sq2) & SEQ_MASK; 667 } 668 669 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 670 struct tid_ampdu_rx *tid_agg_rx, 671 int index, 672 struct sk_buff_head *frames) 673 { 674 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 675 struct ieee80211_rx_status *status; 676 677 lockdep_assert_held(&tid_agg_rx->reorder_lock); 678 679 if (!skb) 680 goto no_frame; 681 682 /* release the frame from the reorder ring buffer */ 683 tid_agg_rx->stored_mpdu_num--; 684 tid_agg_rx->reorder_buf[index] = NULL; 685 status = IEEE80211_SKB_RXCB(skb); 686 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 687 __skb_queue_tail(frames, skb); 688 689 no_frame: 690 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 691 } 692 693 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 694 struct tid_ampdu_rx *tid_agg_rx, 695 u16 head_seq_num, 696 struct sk_buff_head *frames) 697 { 698 int index; 699 700 lockdep_assert_held(&tid_agg_rx->reorder_lock); 701 702 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 703 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 704 tid_agg_rx->buf_size; 705 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 706 frames); 707 } 708 } 709 710 /* 711 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 712 * the skb was added to the buffer longer than this time ago, the earlier 713 * frames that have not yet been received are assumed to be lost and the skb 714 * can be released for processing. This may also release other skb's from the 715 * reorder buffer if there are no additional gaps between the frames. 716 * 717 * Callers must hold tid_agg_rx->reorder_lock. 718 */ 719 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 720 721 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 722 struct tid_ampdu_rx *tid_agg_rx, 723 struct sk_buff_head *frames) 724 { 725 int index, j; 726 727 lockdep_assert_held(&tid_agg_rx->reorder_lock); 728 729 /* release the buffer until next missing frame */ 730 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 731 tid_agg_rx->buf_size; 732 if (!tid_agg_rx->reorder_buf[index] && 733 tid_agg_rx->stored_mpdu_num) { 734 /* 735 * No buffers ready to be released, but check whether any 736 * frames in the reorder buffer have timed out. 737 */ 738 int skipped = 1; 739 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 740 j = (j + 1) % tid_agg_rx->buf_size) { 741 if (!tid_agg_rx->reorder_buf[j]) { 742 skipped++; 743 continue; 744 } 745 if (skipped && 746 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 747 HT_RX_REORDER_BUF_TIMEOUT)) 748 goto set_release_timer; 749 750 ht_dbg_ratelimited(sdata, 751 "release an RX reorder frame due to timeout on earlier frames\n"); 752 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 753 frames); 754 755 /* 756 * Increment the head seq# also for the skipped slots. 757 */ 758 tid_agg_rx->head_seq_num = 759 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 760 skipped = 0; 761 } 762 } else while (tid_agg_rx->reorder_buf[index]) { 763 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 764 frames); 765 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 766 tid_agg_rx->buf_size; 767 } 768 769 if (tid_agg_rx->stored_mpdu_num) { 770 j = index = seq_sub(tid_agg_rx->head_seq_num, 771 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 772 773 for (; j != (index - 1) % tid_agg_rx->buf_size; 774 j = (j + 1) % tid_agg_rx->buf_size) { 775 if (tid_agg_rx->reorder_buf[j]) 776 break; 777 } 778 779 set_release_timer: 780 781 mod_timer(&tid_agg_rx->reorder_timer, 782 tid_agg_rx->reorder_time[j] + 1 + 783 HT_RX_REORDER_BUF_TIMEOUT); 784 } else { 785 del_timer(&tid_agg_rx->reorder_timer); 786 } 787 } 788 789 /* 790 * As this function belongs to the RX path it must be under 791 * rcu_read_lock protection. It returns false if the frame 792 * can be processed immediately, true if it was consumed. 793 */ 794 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 795 struct tid_ampdu_rx *tid_agg_rx, 796 struct sk_buff *skb, 797 struct sk_buff_head *frames) 798 { 799 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 800 u16 sc = le16_to_cpu(hdr->seq_ctrl); 801 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 802 u16 head_seq_num, buf_size; 803 int index; 804 bool ret = true; 805 806 spin_lock(&tid_agg_rx->reorder_lock); 807 808 buf_size = tid_agg_rx->buf_size; 809 head_seq_num = tid_agg_rx->head_seq_num; 810 811 /* frame with out of date sequence number */ 812 if (seq_less(mpdu_seq_num, head_seq_num)) { 813 dev_kfree_skb(skb); 814 goto out; 815 } 816 817 /* 818 * If frame the sequence number exceeds our buffering window 819 * size release some previous frames to make room for this one. 820 */ 821 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 822 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 823 /* release stored frames up to new head to stack */ 824 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 825 head_seq_num, frames); 826 } 827 828 /* Now the new frame is always in the range of the reordering buffer */ 829 830 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 831 832 /* check if we already stored this frame */ 833 if (tid_agg_rx->reorder_buf[index]) { 834 dev_kfree_skb(skb); 835 goto out; 836 } 837 838 /* 839 * If the current MPDU is in the right order and nothing else 840 * is stored we can process it directly, no need to buffer it. 841 * If it is first but there's something stored, we may be able 842 * to release frames after this one. 843 */ 844 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 845 tid_agg_rx->stored_mpdu_num == 0) { 846 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 847 ret = false; 848 goto out; 849 } 850 851 /* put the frame in the reordering buffer */ 852 tid_agg_rx->reorder_buf[index] = skb; 853 tid_agg_rx->reorder_time[index] = jiffies; 854 tid_agg_rx->stored_mpdu_num++; 855 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 856 857 out: 858 spin_unlock(&tid_agg_rx->reorder_lock); 859 return ret; 860 } 861 862 /* 863 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 864 * true if the MPDU was buffered, false if it should be processed. 865 */ 866 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 867 struct sk_buff_head *frames) 868 { 869 struct sk_buff *skb = rx->skb; 870 struct ieee80211_local *local = rx->local; 871 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 872 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 873 struct sta_info *sta = rx->sta; 874 struct tid_ampdu_rx *tid_agg_rx; 875 u16 sc; 876 u8 tid, ack_policy; 877 878 if (!ieee80211_is_data_qos(hdr->frame_control)) 879 goto dont_reorder; 880 881 /* 882 * filter the QoS data rx stream according to 883 * STA/TID and check if this STA/TID is on aggregation 884 */ 885 886 if (!sta) 887 goto dont_reorder; 888 889 ack_policy = *ieee80211_get_qos_ctl(hdr) & 890 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 891 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 892 893 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 894 if (!tid_agg_rx) 895 goto dont_reorder; 896 897 /* qos null data frames are excluded */ 898 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 899 goto dont_reorder; 900 901 /* not part of a BA session */ 902 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 903 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 904 goto dont_reorder; 905 906 /* not actually part of this BA session */ 907 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 908 goto dont_reorder; 909 910 /* new, potentially un-ordered, ampdu frame - process it */ 911 912 /* reset session timer */ 913 if (tid_agg_rx->timeout) 914 tid_agg_rx->last_rx = jiffies; 915 916 /* if this mpdu is fragmented - terminate rx aggregation session */ 917 sc = le16_to_cpu(hdr->seq_ctrl); 918 if (sc & IEEE80211_SCTL_FRAG) { 919 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 920 skb_queue_tail(&rx->sdata->skb_queue, skb); 921 ieee80211_queue_work(&local->hw, &rx->sdata->work); 922 return; 923 } 924 925 /* 926 * No locking needed -- we will only ever process one 927 * RX packet at a time, and thus own tid_agg_rx. All 928 * other code manipulating it needs to (and does) make 929 * sure that we cannot get to it any more before doing 930 * anything with it. 931 */ 932 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 933 frames)) 934 return; 935 936 dont_reorder: 937 __skb_queue_tail(frames, skb); 938 } 939 940 static ieee80211_rx_result debug_noinline 941 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 942 { 943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 944 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 945 946 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 947 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 948 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 949 rx->sta->last_seq_ctrl[rx->seqno_idx] == 950 hdr->seq_ctrl)) { 951 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 952 rx->local->dot11FrameDuplicateCount++; 953 rx->sta->num_duplicates++; 954 } 955 return RX_DROP_UNUSABLE; 956 } else 957 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 958 } 959 960 if (unlikely(rx->skb->len < 16)) { 961 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 962 return RX_DROP_MONITOR; 963 } 964 965 /* Drop disallowed frame classes based on STA auth/assoc state; 966 * IEEE 802.11, Chap 5.5. 967 * 968 * mac80211 filters only based on association state, i.e. it drops 969 * Class 3 frames from not associated stations. hostapd sends 970 * deauth/disassoc frames when needed. In addition, hostapd is 971 * responsible for filtering on both auth and assoc states. 972 */ 973 974 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 975 return ieee80211_rx_mesh_check(rx); 976 977 if (unlikely((ieee80211_is_data(hdr->frame_control) || 978 ieee80211_is_pspoll(hdr->frame_control)) && 979 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 980 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 981 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 982 /* 983 * accept port control frames from the AP even when it's not 984 * yet marked ASSOC to prevent a race where we don't set the 985 * assoc bit quickly enough before it sends the first frame 986 */ 987 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 988 ieee80211_is_data_present(hdr->frame_control)) { 989 unsigned int hdrlen; 990 __be16 ethertype; 991 992 hdrlen = ieee80211_hdrlen(hdr->frame_control); 993 994 if (rx->skb->len < hdrlen + 8) 995 return RX_DROP_MONITOR; 996 997 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 998 if (ethertype == rx->sdata->control_port_protocol) 999 return RX_CONTINUE; 1000 } 1001 1002 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1003 cfg80211_rx_spurious_frame(rx->sdata->dev, 1004 hdr->addr2, 1005 GFP_ATOMIC)) 1006 return RX_DROP_UNUSABLE; 1007 1008 return RX_DROP_MONITOR; 1009 } 1010 1011 return RX_CONTINUE; 1012 } 1013 1014 1015 static ieee80211_rx_result debug_noinline 1016 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1017 { 1018 struct sk_buff *skb = rx->skb; 1019 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1020 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1021 int keyidx; 1022 int hdrlen; 1023 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1024 struct ieee80211_key *sta_ptk = NULL; 1025 int mmie_keyidx = -1; 1026 __le16 fc; 1027 1028 /* 1029 * Key selection 101 1030 * 1031 * There are four types of keys: 1032 * - GTK (group keys) 1033 * - IGTK (group keys for management frames) 1034 * - PTK (pairwise keys) 1035 * - STK (station-to-station pairwise keys) 1036 * 1037 * When selecting a key, we have to distinguish between multicast 1038 * (including broadcast) and unicast frames, the latter can only 1039 * use PTKs and STKs while the former always use GTKs and IGTKs. 1040 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1041 * unicast frames can also use key indices like GTKs. Hence, if we 1042 * don't have a PTK/STK we check the key index for a WEP key. 1043 * 1044 * Note that in a regular BSS, multicast frames are sent by the 1045 * AP only, associated stations unicast the frame to the AP first 1046 * which then multicasts it on their behalf. 1047 * 1048 * There is also a slight problem in IBSS mode: GTKs are negotiated 1049 * with each station, that is something we don't currently handle. 1050 * The spec seems to expect that one negotiates the same key with 1051 * every station but there's no such requirement; VLANs could be 1052 * possible. 1053 */ 1054 1055 /* 1056 * No point in finding a key and decrypting if the frame is neither 1057 * addressed to us nor a multicast frame. 1058 */ 1059 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1060 return RX_CONTINUE; 1061 1062 /* start without a key */ 1063 rx->key = NULL; 1064 1065 if (rx->sta) 1066 sta_ptk = rcu_dereference(rx->sta->ptk); 1067 1068 fc = hdr->frame_control; 1069 1070 if (!ieee80211_has_protected(fc)) 1071 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1072 1073 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1074 rx->key = sta_ptk; 1075 if ((status->flag & RX_FLAG_DECRYPTED) && 1076 (status->flag & RX_FLAG_IV_STRIPPED)) 1077 return RX_CONTINUE; 1078 /* Skip decryption if the frame is not protected. */ 1079 if (!ieee80211_has_protected(fc)) 1080 return RX_CONTINUE; 1081 } else if (mmie_keyidx >= 0) { 1082 /* Broadcast/multicast robust management frame / BIP */ 1083 if ((status->flag & RX_FLAG_DECRYPTED) && 1084 (status->flag & RX_FLAG_IV_STRIPPED)) 1085 return RX_CONTINUE; 1086 1087 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1088 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1089 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1090 if (rx->sta) 1091 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1092 if (!rx->key) 1093 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1094 } else if (!ieee80211_has_protected(fc)) { 1095 /* 1096 * The frame was not protected, so skip decryption. However, we 1097 * need to set rx->key if there is a key that could have been 1098 * used so that the frame may be dropped if encryption would 1099 * have been expected. 1100 */ 1101 struct ieee80211_key *key = NULL; 1102 struct ieee80211_sub_if_data *sdata = rx->sdata; 1103 int i; 1104 1105 if (ieee80211_is_mgmt(fc) && 1106 is_multicast_ether_addr(hdr->addr1) && 1107 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1108 rx->key = key; 1109 else { 1110 if (rx->sta) { 1111 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1112 key = rcu_dereference(rx->sta->gtk[i]); 1113 if (key) 1114 break; 1115 } 1116 } 1117 if (!key) { 1118 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1119 key = rcu_dereference(sdata->keys[i]); 1120 if (key) 1121 break; 1122 } 1123 } 1124 if (key) 1125 rx->key = key; 1126 } 1127 return RX_CONTINUE; 1128 } else { 1129 u8 keyid; 1130 /* 1131 * The device doesn't give us the IV so we won't be 1132 * able to look up the key. That's ok though, we 1133 * don't need to decrypt the frame, we just won't 1134 * be able to keep statistics accurate. 1135 * Except for key threshold notifications, should 1136 * we somehow allow the driver to tell us which key 1137 * the hardware used if this flag is set? 1138 */ 1139 if ((status->flag & RX_FLAG_DECRYPTED) && 1140 (status->flag & RX_FLAG_IV_STRIPPED)) 1141 return RX_CONTINUE; 1142 1143 hdrlen = ieee80211_hdrlen(fc); 1144 1145 if (rx->skb->len < 8 + hdrlen) 1146 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1147 1148 /* 1149 * no need to call ieee80211_wep_get_keyidx, 1150 * it verifies a bunch of things we've done already 1151 */ 1152 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1153 keyidx = keyid >> 6; 1154 1155 /* check per-station GTK first, if multicast packet */ 1156 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1157 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1158 1159 /* if not found, try default key */ 1160 if (!rx->key) { 1161 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1162 1163 /* 1164 * RSNA-protected unicast frames should always be 1165 * sent with pairwise or station-to-station keys, 1166 * but for WEP we allow using a key index as well. 1167 */ 1168 if (rx->key && 1169 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1170 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1171 !is_multicast_ether_addr(hdr->addr1)) 1172 rx->key = NULL; 1173 } 1174 } 1175 1176 if (rx->key) { 1177 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1178 return RX_DROP_MONITOR; 1179 1180 rx->key->tx_rx_count++; 1181 /* TODO: add threshold stuff again */ 1182 } else { 1183 return RX_DROP_MONITOR; 1184 } 1185 1186 switch (rx->key->conf.cipher) { 1187 case WLAN_CIPHER_SUITE_WEP40: 1188 case WLAN_CIPHER_SUITE_WEP104: 1189 result = ieee80211_crypto_wep_decrypt(rx); 1190 break; 1191 case WLAN_CIPHER_SUITE_TKIP: 1192 result = ieee80211_crypto_tkip_decrypt(rx); 1193 break; 1194 case WLAN_CIPHER_SUITE_CCMP: 1195 result = ieee80211_crypto_ccmp_decrypt(rx); 1196 break; 1197 case WLAN_CIPHER_SUITE_AES_CMAC: 1198 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1199 break; 1200 default: 1201 /* 1202 * We can reach here only with HW-only algorithms 1203 * but why didn't it decrypt the frame?! 1204 */ 1205 return RX_DROP_UNUSABLE; 1206 } 1207 1208 /* the hdr variable is invalid after the decrypt handlers */ 1209 1210 /* either the frame has been decrypted or will be dropped */ 1211 status->flag |= RX_FLAG_DECRYPTED; 1212 1213 return result; 1214 } 1215 1216 static ieee80211_rx_result debug_noinline 1217 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1218 { 1219 struct ieee80211_local *local; 1220 struct ieee80211_hdr *hdr; 1221 struct sk_buff *skb; 1222 1223 local = rx->local; 1224 skb = rx->skb; 1225 hdr = (struct ieee80211_hdr *) skb->data; 1226 1227 if (!local->pspolling) 1228 return RX_CONTINUE; 1229 1230 if (!ieee80211_has_fromds(hdr->frame_control)) 1231 /* this is not from AP */ 1232 return RX_CONTINUE; 1233 1234 if (!ieee80211_is_data(hdr->frame_control)) 1235 return RX_CONTINUE; 1236 1237 if (!ieee80211_has_moredata(hdr->frame_control)) { 1238 /* AP has no more frames buffered for us */ 1239 local->pspolling = false; 1240 return RX_CONTINUE; 1241 } 1242 1243 /* more data bit is set, let's request a new frame from the AP */ 1244 ieee80211_send_pspoll(local, rx->sdata); 1245 1246 return RX_CONTINUE; 1247 } 1248 1249 static void sta_ps_start(struct sta_info *sta) 1250 { 1251 struct ieee80211_sub_if_data *sdata = sta->sdata; 1252 struct ieee80211_local *local = sdata->local; 1253 struct ps_data *ps; 1254 1255 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1256 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1257 ps = &sdata->bss->ps; 1258 else 1259 return; 1260 1261 atomic_inc(&ps->num_sta_ps); 1262 set_sta_flag(sta, WLAN_STA_PS_STA); 1263 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1264 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1265 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1266 sta->sta.addr, sta->sta.aid); 1267 } 1268 1269 static void sta_ps_end(struct sta_info *sta) 1270 { 1271 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1272 sta->sta.addr, sta->sta.aid); 1273 1274 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1275 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1276 sta->sta.addr, sta->sta.aid); 1277 return; 1278 } 1279 1280 ieee80211_sta_ps_deliver_wakeup(sta); 1281 } 1282 1283 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1284 { 1285 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1286 bool in_ps; 1287 1288 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1289 1290 /* Don't let the same PS state be set twice */ 1291 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1292 if ((start && in_ps) || (!start && !in_ps)) 1293 return -EINVAL; 1294 1295 if (start) 1296 sta_ps_start(sta_inf); 1297 else 1298 sta_ps_end(sta_inf); 1299 1300 return 0; 1301 } 1302 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1303 1304 static ieee80211_rx_result debug_noinline 1305 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1306 { 1307 struct ieee80211_sub_if_data *sdata = rx->sdata; 1308 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1309 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1310 int tid, ac; 1311 1312 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1313 return RX_CONTINUE; 1314 1315 if (sdata->vif.type != NL80211_IFTYPE_AP && 1316 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1317 return RX_CONTINUE; 1318 1319 /* 1320 * The device handles station powersave, so don't do anything about 1321 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1322 * it to mac80211 since they're handled.) 1323 */ 1324 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1325 return RX_CONTINUE; 1326 1327 /* 1328 * Don't do anything if the station isn't already asleep. In 1329 * the uAPSD case, the station will probably be marked asleep, 1330 * in the PS-Poll case the station must be confused ... 1331 */ 1332 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1333 return RX_CONTINUE; 1334 1335 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1336 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1337 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1338 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1339 else 1340 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1341 } 1342 1343 /* Free PS Poll skb here instead of returning RX_DROP that would 1344 * count as an dropped frame. */ 1345 dev_kfree_skb(rx->skb); 1346 1347 return RX_QUEUED; 1348 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1349 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1350 ieee80211_has_pm(hdr->frame_control) && 1351 (ieee80211_is_data_qos(hdr->frame_control) || 1352 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1353 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1354 ac = ieee802_1d_to_ac[tid & 7]; 1355 1356 /* 1357 * If this AC is not trigger-enabled do nothing. 1358 * 1359 * NB: This could/should check a separate bitmap of trigger- 1360 * enabled queues, but for now we only implement uAPSD w/o 1361 * TSPEC changes to the ACs, so they're always the same. 1362 */ 1363 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1364 return RX_CONTINUE; 1365 1366 /* if we are in a service period, do nothing */ 1367 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1368 return RX_CONTINUE; 1369 1370 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1371 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1372 else 1373 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1374 } 1375 1376 return RX_CONTINUE; 1377 } 1378 1379 static ieee80211_rx_result debug_noinline 1380 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1381 { 1382 struct sta_info *sta = rx->sta; 1383 struct sk_buff *skb = rx->skb; 1384 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1385 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1386 1387 if (!sta) 1388 return RX_CONTINUE; 1389 1390 /* 1391 * Update last_rx only for IBSS packets which are for the current 1392 * BSSID and for station already AUTHORIZED to avoid keeping the 1393 * current IBSS network alive in cases where other STAs start 1394 * using different BSSID. This will also give the station another 1395 * chance to restart the authentication/authorization in case 1396 * something went wrong the first time. 1397 */ 1398 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1399 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1400 NL80211_IFTYPE_ADHOC); 1401 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1402 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1403 sta->last_rx = jiffies; 1404 if (ieee80211_is_data(hdr->frame_control)) { 1405 sta->last_rx_rate_idx = status->rate_idx; 1406 sta->last_rx_rate_flag = status->flag; 1407 sta->last_rx_rate_vht_nss = status->vht_nss; 1408 } 1409 } 1410 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1411 /* 1412 * Mesh beacons will update last_rx when if they are found to 1413 * match the current local configuration when processed. 1414 */ 1415 sta->last_rx = jiffies; 1416 if (ieee80211_is_data(hdr->frame_control)) { 1417 sta->last_rx_rate_idx = status->rate_idx; 1418 sta->last_rx_rate_flag = status->flag; 1419 sta->last_rx_rate_vht_nss = status->vht_nss; 1420 } 1421 } 1422 1423 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1424 return RX_CONTINUE; 1425 1426 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1427 ieee80211_sta_rx_notify(rx->sdata, hdr); 1428 1429 sta->rx_fragments++; 1430 sta->rx_bytes += rx->skb->len; 1431 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1432 sta->last_signal = status->signal; 1433 ewma_add(&sta->avg_signal, -status->signal); 1434 } 1435 1436 /* 1437 * Change STA power saving mode only at the end of a frame 1438 * exchange sequence. 1439 */ 1440 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1441 !ieee80211_has_morefrags(hdr->frame_control) && 1442 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1443 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1444 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1445 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1446 /* 1447 * Ignore doze->wake transitions that are 1448 * indicated by non-data frames, the standard 1449 * is unclear here, but for example going to 1450 * PS mode and then scanning would cause a 1451 * doze->wake transition for the probe request, 1452 * and that is clearly undesirable. 1453 */ 1454 if (ieee80211_is_data(hdr->frame_control) && 1455 !ieee80211_has_pm(hdr->frame_control)) 1456 sta_ps_end(sta); 1457 } else { 1458 if (ieee80211_has_pm(hdr->frame_control)) 1459 sta_ps_start(sta); 1460 } 1461 } 1462 1463 /* mesh power save support */ 1464 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1465 ieee80211_mps_rx_h_sta_process(sta, hdr); 1466 1467 /* 1468 * Drop (qos-)data::nullfunc frames silently, since they 1469 * are used only to control station power saving mode. 1470 */ 1471 if (ieee80211_is_nullfunc(hdr->frame_control) || 1472 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1473 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1474 1475 /* 1476 * If we receive a 4-addr nullfunc frame from a STA 1477 * that was not moved to a 4-addr STA vlan yet send 1478 * the event to userspace and for older hostapd drop 1479 * the frame to the monitor interface. 1480 */ 1481 if (ieee80211_has_a4(hdr->frame_control) && 1482 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1483 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1484 !rx->sdata->u.vlan.sta))) { 1485 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1486 cfg80211_rx_unexpected_4addr_frame( 1487 rx->sdata->dev, sta->sta.addr, 1488 GFP_ATOMIC); 1489 return RX_DROP_MONITOR; 1490 } 1491 /* 1492 * Update counter and free packet here to avoid 1493 * counting this as a dropped packed. 1494 */ 1495 sta->rx_packets++; 1496 dev_kfree_skb(rx->skb); 1497 return RX_QUEUED; 1498 } 1499 1500 return RX_CONTINUE; 1501 } /* ieee80211_rx_h_sta_process */ 1502 1503 static inline struct ieee80211_fragment_entry * 1504 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1505 unsigned int frag, unsigned int seq, int rx_queue, 1506 struct sk_buff **skb) 1507 { 1508 struct ieee80211_fragment_entry *entry; 1509 1510 entry = &sdata->fragments[sdata->fragment_next++]; 1511 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1512 sdata->fragment_next = 0; 1513 1514 if (!skb_queue_empty(&entry->skb_list)) 1515 __skb_queue_purge(&entry->skb_list); 1516 1517 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1518 *skb = NULL; 1519 entry->first_frag_time = jiffies; 1520 entry->seq = seq; 1521 entry->rx_queue = rx_queue; 1522 entry->last_frag = frag; 1523 entry->ccmp = 0; 1524 entry->extra_len = 0; 1525 1526 return entry; 1527 } 1528 1529 static inline struct ieee80211_fragment_entry * 1530 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1531 unsigned int frag, unsigned int seq, 1532 int rx_queue, struct ieee80211_hdr *hdr) 1533 { 1534 struct ieee80211_fragment_entry *entry; 1535 int i, idx; 1536 1537 idx = sdata->fragment_next; 1538 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1539 struct ieee80211_hdr *f_hdr; 1540 1541 idx--; 1542 if (idx < 0) 1543 idx = IEEE80211_FRAGMENT_MAX - 1; 1544 1545 entry = &sdata->fragments[idx]; 1546 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1547 entry->rx_queue != rx_queue || 1548 entry->last_frag + 1 != frag) 1549 continue; 1550 1551 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1552 1553 /* 1554 * Check ftype and addresses are equal, else check next fragment 1555 */ 1556 if (((hdr->frame_control ^ f_hdr->frame_control) & 1557 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1558 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1559 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1560 continue; 1561 1562 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1563 __skb_queue_purge(&entry->skb_list); 1564 continue; 1565 } 1566 return entry; 1567 } 1568 1569 return NULL; 1570 } 1571 1572 static ieee80211_rx_result debug_noinline 1573 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1574 { 1575 struct ieee80211_hdr *hdr; 1576 u16 sc; 1577 __le16 fc; 1578 unsigned int frag, seq; 1579 struct ieee80211_fragment_entry *entry; 1580 struct sk_buff *skb; 1581 struct ieee80211_rx_status *status; 1582 1583 hdr = (struct ieee80211_hdr *)rx->skb->data; 1584 fc = hdr->frame_control; 1585 1586 if (ieee80211_is_ctl(fc)) 1587 return RX_CONTINUE; 1588 1589 sc = le16_to_cpu(hdr->seq_ctrl); 1590 frag = sc & IEEE80211_SCTL_FRAG; 1591 1592 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1593 is_multicast_ether_addr(hdr->addr1))) { 1594 /* not fragmented */ 1595 goto out; 1596 } 1597 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1598 1599 if (skb_linearize(rx->skb)) 1600 return RX_DROP_UNUSABLE; 1601 1602 /* 1603 * skb_linearize() might change the skb->data and 1604 * previously cached variables (in this case, hdr) need to 1605 * be refreshed with the new data. 1606 */ 1607 hdr = (struct ieee80211_hdr *)rx->skb->data; 1608 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1609 1610 if (frag == 0) { 1611 /* This is the first fragment of a new frame. */ 1612 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1613 rx->seqno_idx, &(rx->skb)); 1614 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1615 ieee80211_has_protected(fc)) { 1616 int queue = rx->security_idx; 1617 /* Store CCMP PN so that we can verify that the next 1618 * fragment has a sequential PN value. */ 1619 entry->ccmp = 1; 1620 memcpy(entry->last_pn, 1621 rx->key->u.ccmp.rx_pn[queue], 1622 CCMP_PN_LEN); 1623 } 1624 return RX_QUEUED; 1625 } 1626 1627 /* This is a fragment for a frame that should already be pending in 1628 * fragment cache. Add this fragment to the end of the pending entry. 1629 */ 1630 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1631 rx->seqno_idx, hdr); 1632 if (!entry) { 1633 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1634 return RX_DROP_MONITOR; 1635 } 1636 1637 /* Verify that MPDUs within one MSDU have sequential PN values. 1638 * (IEEE 802.11i, 8.3.3.4.5) */ 1639 if (entry->ccmp) { 1640 int i; 1641 u8 pn[CCMP_PN_LEN], *rpn; 1642 int queue; 1643 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1644 return RX_DROP_UNUSABLE; 1645 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1646 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1647 pn[i]++; 1648 if (pn[i]) 1649 break; 1650 } 1651 queue = rx->security_idx; 1652 rpn = rx->key->u.ccmp.rx_pn[queue]; 1653 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1654 return RX_DROP_UNUSABLE; 1655 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1656 } 1657 1658 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1659 __skb_queue_tail(&entry->skb_list, rx->skb); 1660 entry->last_frag = frag; 1661 entry->extra_len += rx->skb->len; 1662 if (ieee80211_has_morefrags(fc)) { 1663 rx->skb = NULL; 1664 return RX_QUEUED; 1665 } 1666 1667 rx->skb = __skb_dequeue(&entry->skb_list); 1668 if (skb_tailroom(rx->skb) < entry->extra_len) { 1669 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1670 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1671 GFP_ATOMIC))) { 1672 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1673 __skb_queue_purge(&entry->skb_list); 1674 return RX_DROP_UNUSABLE; 1675 } 1676 } 1677 while ((skb = __skb_dequeue(&entry->skb_list))) { 1678 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1679 dev_kfree_skb(skb); 1680 } 1681 1682 /* Complete frame has been reassembled - process it now */ 1683 status = IEEE80211_SKB_RXCB(rx->skb); 1684 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1685 1686 out: 1687 if (rx->sta) 1688 rx->sta->rx_packets++; 1689 if (is_multicast_ether_addr(hdr->addr1)) 1690 rx->local->dot11MulticastReceivedFrameCount++; 1691 else 1692 ieee80211_led_rx(rx->local); 1693 return RX_CONTINUE; 1694 } 1695 1696 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1697 { 1698 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1699 return -EACCES; 1700 1701 return 0; 1702 } 1703 1704 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1705 { 1706 struct sk_buff *skb = rx->skb; 1707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1708 1709 /* 1710 * Pass through unencrypted frames if the hardware has 1711 * decrypted them already. 1712 */ 1713 if (status->flag & RX_FLAG_DECRYPTED) 1714 return 0; 1715 1716 /* Drop unencrypted frames if key is set. */ 1717 if (unlikely(!ieee80211_has_protected(fc) && 1718 !ieee80211_is_nullfunc(fc) && 1719 ieee80211_is_data(fc) && 1720 (rx->key || rx->sdata->drop_unencrypted))) 1721 return -EACCES; 1722 1723 return 0; 1724 } 1725 1726 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1727 { 1728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1729 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1730 __le16 fc = hdr->frame_control; 1731 1732 /* 1733 * Pass through unencrypted frames if the hardware has 1734 * decrypted them already. 1735 */ 1736 if (status->flag & RX_FLAG_DECRYPTED) 1737 return 0; 1738 1739 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1740 if (unlikely(!ieee80211_has_protected(fc) && 1741 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1742 rx->key)) { 1743 if (ieee80211_is_deauth(fc)) 1744 cfg80211_send_unprot_deauth(rx->sdata->dev, 1745 rx->skb->data, 1746 rx->skb->len); 1747 else if (ieee80211_is_disassoc(fc)) 1748 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1749 rx->skb->data, 1750 rx->skb->len); 1751 return -EACCES; 1752 } 1753 /* BIP does not use Protected field, so need to check MMIE */ 1754 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1755 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1756 if (ieee80211_is_deauth(fc)) 1757 cfg80211_send_unprot_deauth(rx->sdata->dev, 1758 rx->skb->data, 1759 rx->skb->len); 1760 else if (ieee80211_is_disassoc(fc)) 1761 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1762 rx->skb->data, 1763 rx->skb->len); 1764 return -EACCES; 1765 } 1766 /* 1767 * When using MFP, Action frames are not allowed prior to 1768 * having configured keys. 1769 */ 1770 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1771 ieee80211_is_robust_mgmt_frame( 1772 (struct ieee80211_hdr *) rx->skb->data))) 1773 return -EACCES; 1774 } 1775 1776 return 0; 1777 } 1778 1779 static int 1780 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1781 { 1782 struct ieee80211_sub_if_data *sdata = rx->sdata; 1783 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1784 bool check_port_control = false; 1785 struct ethhdr *ehdr; 1786 int ret; 1787 1788 *port_control = false; 1789 if (ieee80211_has_a4(hdr->frame_control) && 1790 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1791 return -1; 1792 1793 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1794 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1795 1796 if (!sdata->u.mgd.use_4addr) 1797 return -1; 1798 else 1799 check_port_control = true; 1800 } 1801 1802 if (is_multicast_ether_addr(hdr->addr1) && 1803 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1804 return -1; 1805 1806 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1807 if (ret < 0) 1808 return ret; 1809 1810 ehdr = (struct ethhdr *) rx->skb->data; 1811 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1812 *port_control = true; 1813 else if (check_port_control) 1814 return -1; 1815 1816 return 0; 1817 } 1818 1819 /* 1820 * requires that rx->skb is a frame with ethernet header 1821 */ 1822 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1823 { 1824 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1825 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1826 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1827 1828 /* 1829 * Allow EAPOL frames to us/the PAE group address regardless 1830 * of whether the frame was encrypted or not. 1831 */ 1832 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1833 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1834 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1835 return true; 1836 1837 if (ieee80211_802_1x_port_control(rx) || 1838 ieee80211_drop_unencrypted(rx, fc)) 1839 return false; 1840 1841 return true; 1842 } 1843 1844 /* 1845 * requires that rx->skb is a frame with ethernet header 1846 */ 1847 static void 1848 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1849 { 1850 struct ieee80211_sub_if_data *sdata = rx->sdata; 1851 struct net_device *dev = sdata->dev; 1852 struct sk_buff *skb, *xmit_skb; 1853 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1854 struct sta_info *dsta; 1855 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1856 1857 skb = rx->skb; 1858 xmit_skb = NULL; 1859 1860 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1861 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1862 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1863 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1864 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1865 if (is_multicast_ether_addr(ehdr->h_dest)) { 1866 /* 1867 * send multicast frames both to higher layers in 1868 * local net stack and back to the wireless medium 1869 */ 1870 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1871 if (!xmit_skb) 1872 net_info_ratelimited("%s: failed to clone multicast frame\n", 1873 dev->name); 1874 } else { 1875 dsta = sta_info_get(sdata, skb->data); 1876 if (dsta) { 1877 /* 1878 * The destination station is associated to 1879 * this AP (in this VLAN), so send the frame 1880 * directly to it and do not pass it to local 1881 * net stack. 1882 */ 1883 xmit_skb = skb; 1884 skb = NULL; 1885 } 1886 } 1887 } 1888 1889 if (skb) { 1890 int align __maybe_unused; 1891 1892 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1893 /* 1894 * 'align' will only take the values 0 or 2 here 1895 * since all frames are required to be aligned 1896 * to 2-byte boundaries when being passed to 1897 * mac80211. That also explains the __skb_push() 1898 * below. 1899 */ 1900 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1901 if (align) { 1902 if (WARN_ON(skb_headroom(skb) < 3)) { 1903 dev_kfree_skb(skb); 1904 skb = NULL; 1905 } else { 1906 u8 *data = skb->data; 1907 size_t len = skb_headlen(skb); 1908 skb->data -= align; 1909 memmove(skb->data, data, len); 1910 skb_set_tail_pointer(skb, len); 1911 } 1912 } 1913 #endif 1914 1915 if (skb) { 1916 /* deliver to local stack */ 1917 skb->protocol = eth_type_trans(skb, dev); 1918 memset(skb->cb, 0, sizeof(skb->cb)); 1919 netif_receive_skb(skb); 1920 } 1921 } 1922 1923 if (xmit_skb) { 1924 /* 1925 * Send to wireless media and increase priority by 256 to 1926 * keep the received priority instead of reclassifying 1927 * the frame (see cfg80211_classify8021d). 1928 */ 1929 xmit_skb->priority += 256; 1930 xmit_skb->protocol = htons(ETH_P_802_3); 1931 skb_reset_network_header(xmit_skb); 1932 skb_reset_mac_header(xmit_skb); 1933 dev_queue_xmit(xmit_skb); 1934 } 1935 } 1936 1937 static ieee80211_rx_result debug_noinline 1938 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1939 { 1940 struct net_device *dev = rx->sdata->dev; 1941 struct sk_buff *skb = rx->skb; 1942 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1943 __le16 fc = hdr->frame_control; 1944 struct sk_buff_head frame_list; 1945 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1946 1947 if (unlikely(!ieee80211_is_data(fc))) 1948 return RX_CONTINUE; 1949 1950 if (unlikely(!ieee80211_is_data_present(fc))) 1951 return RX_DROP_MONITOR; 1952 1953 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1954 return RX_CONTINUE; 1955 1956 if (ieee80211_has_a4(hdr->frame_control) && 1957 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1958 !rx->sdata->u.vlan.sta) 1959 return RX_DROP_UNUSABLE; 1960 1961 if (is_multicast_ether_addr(hdr->addr1) && 1962 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1963 rx->sdata->u.vlan.sta) || 1964 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1965 rx->sdata->u.mgd.use_4addr))) 1966 return RX_DROP_UNUSABLE; 1967 1968 skb->dev = dev; 1969 __skb_queue_head_init(&frame_list); 1970 1971 if (skb_linearize(skb)) 1972 return RX_DROP_UNUSABLE; 1973 1974 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1975 rx->sdata->vif.type, 1976 rx->local->hw.extra_tx_headroom, true); 1977 1978 while (!skb_queue_empty(&frame_list)) { 1979 rx->skb = __skb_dequeue(&frame_list); 1980 1981 if (!ieee80211_frame_allowed(rx, fc)) { 1982 dev_kfree_skb(rx->skb); 1983 continue; 1984 } 1985 dev->stats.rx_packets++; 1986 dev->stats.rx_bytes += rx->skb->len; 1987 1988 ieee80211_deliver_skb(rx); 1989 } 1990 1991 return RX_QUEUED; 1992 } 1993 1994 #ifdef CONFIG_MAC80211_MESH 1995 static ieee80211_rx_result 1996 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1997 { 1998 struct ieee80211_hdr *fwd_hdr, *hdr; 1999 struct ieee80211_tx_info *info; 2000 struct ieee80211s_hdr *mesh_hdr; 2001 struct sk_buff *skb = rx->skb, *fwd_skb; 2002 struct ieee80211_local *local = rx->local; 2003 struct ieee80211_sub_if_data *sdata = rx->sdata; 2004 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2005 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2006 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 2007 u16 q, hdrlen; 2008 2009 hdr = (struct ieee80211_hdr *) skb->data; 2010 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2011 2012 /* make sure fixed part of mesh header is there, also checks skb len */ 2013 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2014 return RX_DROP_MONITOR; 2015 2016 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2017 2018 /* make sure full mesh header is there, also checks skb len */ 2019 if (!pskb_may_pull(rx->skb, 2020 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2021 return RX_DROP_MONITOR; 2022 2023 /* reload pointers */ 2024 hdr = (struct ieee80211_hdr *) skb->data; 2025 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2026 2027 /* frame is in RMC, don't forward */ 2028 if (ieee80211_is_data(hdr->frame_control) && 2029 is_multicast_ether_addr(hdr->addr1) && 2030 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2031 return RX_DROP_MONITOR; 2032 2033 if (!ieee80211_is_data(hdr->frame_control) || 2034 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2035 return RX_CONTINUE; 2036 2037 if (!mesh_hdr->ttl) 2038 return RX_DROP_MONITOR; 2039 2040 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2041 struct mesh_path *mppath; 2042 char *proxied_addr; 2043 char *mpp_addr; 2044 2045 if (is_multicast_ether_addr(hdr->addr1)) { 2046 mpp_addr = hdr->addr3; 2047 proxied_addr = mesh_hdr->eaddr1; 2048 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2049 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2050 mpp_addr = hdr->addr4; 2051 proxied_addr = mesh_hdr->eaddr2; 2052 } else { 2053 return RX_DROP_MONITOR; 2054 } 2055 2056 rcu_read_lock(); 2057 mppath = mpp_path_lookup(sdata, proxied_addr); 2058 if (!mppath) { 2059 mpp_path_add(sdata, proxied_addr, mpp_addr); 2060 } else { 2061 spin_lock_bh(&mppath->state_lock); 2062 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2063 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2064 spin_unlock_bh(&mppath->state_lock); 2065 } 2066 rcu_read_unlock(); 2067 } 2068 2069 /* Frame has reached destination. Don't forward */ 2070 if (!is_multicast_ether_addr(hdr->addr1) && 2071 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2072 return RX_CONTINUE; 2073 2074 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2075 if (ieee80211_queue_stopped(&local->hw, q)) { 2076 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2077 return RX_DROP_MONITOR; 2078 } 2079 skb_set_queue_mapping(skb, q); 2080 2081 if (!--mesh_hdr->ttl) { 2082 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2083 goto out; 2084 } 2085 2086 if (!ifmsh->mshcfg.dot11MeshForwarding) 2087 goto out; 2088 2089 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2090 if (!fwd_skb) { 2091 net_info_ratelimited("%s: failed to clone mesh frame\n", 2092 sdata->name); 2093 goto out; 2094 } 2095 2096 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2097 info = IEEE80211_SKB_CB(fwd_skb); 2098 memset(info, 0, sizeof(*info)); 2099 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2100 info->control.vif = &rx->sdata->vif; 2101 info->control.jiffies = jiffies; 2102 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2103 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2104 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2105 /* update power mode indication when forwarding */ 2106 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2107 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2108 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2109 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2110 } else { 2111 /* unable to resolve next hop */ 2112 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2113 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2); 2114 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2115 kfree_skb(fwd_skb); 2116 return RX_DROP_MONITOR; 2117 } 2118 2119 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2120 ieee80211_add_pending_skb(local, fwd_skb); 2121 out: 2122 if (is_multicast_ether_addr(hdr->addr1) || 2123 sdata->dev->flags & IFF_PROMISC) 2124 return RX_CONTINUE; 2125 else 2126 return RX_DROP_MONITOR; 2127 } 2128 #endif 2129 2130 static ieee80211_rx_result debug_noinline 2131 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2132 { 2133 struct ieee80211_sub_if_data *sdata = rx->sdata; 2134 struct ieee80211_local *local = rx->local; 2135 struct net_device *dev = sdata->dev; 2136 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2137 __le16 fc = hdr->frame_control; 2138 bool port_control; 2139 int err; 2140 2141 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2142 return RX_CONTINUE; 2143 2144 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2145 return RX_DROP_MONITOR; 2146 2147 /* 2148 * Send unexpected-4addr-frame event to hostapd. For older versions, 2149 * also drop the frame to cooked monitor interfaces. 2150 */ 2151 if (ieee80211_has_a4(hdr->frame_control) && 2152 sdata->vif.type == NL80211_IFTYPE_AP) { 2153 if (rx->sta && 2154 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2155 cfg80211_rx_unexpected_4addr_frame( 2156 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2157 return RX_DROP_MONITOR; 2158 } 2159 2160 err = __ieee80211_data_to_8023(rx, &port_control); 2161 if (unlikely(err)) 2162 return RX_DROP_UNUSABLE; 2163 2164 if (!ieee80211_frame_allowed(rx, fc)) 2165 return RX_DROP_MONITOR; 2166 2167 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2168 unlikely(port_control) && sdata->bss) { 2169 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2170 u.ap); 2171 dev = sdata->dev; 2172 rx->sdata = sdata; 2173 } 2174 2175 rx->skb->dev = dev; 2176 2177 dev->stats.rx_packets++; 2178 dev->stats.rx_bytes += rx->skb->len; 2179 2180 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2181 !is_multicast_ether_addr( 2182 ((struct ethhdr *)rx->skb->data)->h_dest) && 2183 (!local->scanning && 2184 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2185 mod_timer(&local->dynamic_ps_timer, jiffies + 2186 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2187 } 2188 2189 ieee80211_deliver_skb(rx); 2190 2191 return RX_QUEUED; 2192 } 2193 2194 static ieee80211_rx_result debug_noinline 2195 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2196 { 2197 struct sk_buff *skb = rx->skb; 2198 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2199 struct tid_ampdu_rx *tid_agg_rx; 2200 u16 start_seq_num; 2201 u16 tid; 2202 2203 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2204 return RX_CONTINUE; 2205 2206 if (ieee80211_is_back_req(bar->frame_control)) { 2207 struct { 2208 __le16 control, start_seq_num; 2209 } __packed bar_data; 2210 2211 if (!rx->sta) 2212 return RX_DROP_MONITOR; 2213 2214 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2215 &bar_data, sizeof(bar_data))) 2216 return RX_DROP_MONITOR; 2217 2218 tid = le16_to_cpu(bar_data.control) >> 12; 2219 2220 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2221 if (!tid_agg_rx) 2222 return RX_DROP_MONITOR; 2223 2224 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2225 2226 /* reset session timer */ 2227 if (tid_agg_rx->timeout) 2228 mod_timer(&tid_agg_rx->session_timer, 2229 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2230 2231 spin_lock(&tid_agg_rx->reorder_lock); 2232 /* release stored frames up to start of BAR */ 2233 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2234 start_seq_num, frames); 2235 spin_unlock(&tid_agg_rx->reorder_lock); 2236 2237 kfree_skb(skb); 2238 return RX_QUEUED; 2239 } 2240 2241 /* 2242 * After this point, we only want management frames, 2243 * so we can drop all remaining control frames to 2244 * cooked monitor interfaces. 2245 */ 2246 return RX_DROP_MONITOR; 2247 } 2248 2249 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2250 struct ieee80211_mgmt *mgmt, 2251 size_t len) 2252 { 2253 struct ieee80211_local *local = sdata->local; 2254 struct sk_buff *skb; 2255 struct ieee80211_mgmt *resp; 2256 2257 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2258 /* Not to own unicast address */ 2259 return; 2260 } 2261 2262 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2263 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2264 /* Not from the current AP or not associated yet. */ 2265 return; 2266 } 2267 2268 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2269 /* Too short SA Query request frame */ 2270 return; 2271 } 2272 2273 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2274 if (skb == NULL) 2275 return; 2276 2277 skb_reserve(skb, local->hw.extra_tx_headroom); 2278 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2279 memset(resp, 0, 24); 2280 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2281 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2282 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2283 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2284 IEEE80211_STYPE_ACTION); 2285 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2286 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2287 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2288 memcpy(resp->u.action.u.sa_query.trans_id, 2289 mgmt->u.action.u.sa_query.trans_id, 2290 WLAN_SA_QUERY_TR_ID_LEN); 2291 2292 ieee80211_tx_skb(sdata, skb); 2293 } 2294 2295 static ieee80211_rx_result debug_noinline 2296 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2297 { 2298 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2299 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2300 2301 /* 2302 * From here on, look only at management frames. 2303 * Data and control frames are already handled, 2304 * and unknown (reserved) frames are useless. 2305 */ 2306 if (rx->skb->len < 24) 2307 return RX_DROP_MONITOR; 2308 2309 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2310 return RX_DROP_MONITOR; 2311 2312 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2313 ieee80211_is_beacon(mgmt->frame_control) && 2314 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2315 int sig = 0; 2316 2317 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2318 sig = status->signal; 2319 2320 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2321 rx->skb->data, rx->skb->len, 2322 status->freq, sig); 2323 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2324 } 2325 2326 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2327 return RX_DROP_MONITOR; 2328 2329 if (ieee80211_drop_unencrypted_mgmt(rx)) 2330 return RX_DROP_UNUSABLE; 2331 2332 return RX_CONTINUE; 2333 } 2334 2335 static ieee80211_rx_result debug_noinline 2336 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2337 { 2338 struct ieee80211_local *local = rx->local; 2339 struct ieee80211_sub_if_data *sdata = rx->sdata; 2340 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2341 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2342 int len = rx->skb->len; 2343 2344 if (!ieee80211_is_action(mgmt->frame_control)) 2345 return RX_CONTINUE; 2346 2347 /* drop too small frames */ 2348 if (len < IEEE80211_MIN_ACTION_SIZE) 2349 return RX_DROP_UNUSABLE; 2350 2351 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2352 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED) 2353 return RX_DROP_UNUSABLE; 2354 2355 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2356 return RX_DROP_UNUSABLE; 2357 2358 switch (mgmt->u.action.category) { 2359 case WLAN_CATEGORY_HT: 2360 /* reject HT action frames from stations not supporting HT */ 2361 if (!rx->sta->sta.ht_cap.ht_supported) 2362 goto invalid; 2363 2364 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2365 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2366 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2367 sdata->vif.type != NL80211_IFTYPE_AP && 2368 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2369 break; 2370 2371 /* verify action & smps_control/chanwidth are present */ 2372 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2373 goto invalid; 2374 2375 switch (mgmt->u.action.u.ht_smps.action) { 2376 case WLAN_HT_ACTION_SMPS: { 2377 struct ieee80211_supported_band *sband; 2378 enum ieee80211_smps_mode smps_mode; 2379 2380 /* convert to HT capability */ 2381 switch (mgmt->u.action.u.ht_smps.smps_control) { 2382 case WLAN_HT_SMPS_CONTROL_DISABLED: 2383 smps_mode = IEEE80211_SMPS_OFF; 2384 break; 2385 case WLAN_HT_SMPS_CONTROL_STATIC: 2386 smps_mode = IEEE80211_SMPS_STATIC; 2387 break; 2388 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2389 smps_mode = IEEE80211_SMPS_DYNAMIC; 2390 break; 2391 default: 2392 goto invalid; 2393 } 2394 2395 /* if no change do nothing */ 2396 if (rx->sta->sta.smps_mode == smps_mode) 2397 goto handled; 2398 rx->sta->sta.smps_mode = smps_mode; 2399 2400 sband = rx->local->hw.wiphy->bands[status->band]; 2401 2402 rate_control_rate_update(local, sband, rx->sta, 2403 IEEE80211_RC_SMPS_CHANGED); 2404 goto handled; 2405 } 2406 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2407 struct ieee80211_supported_band *sband; 2408 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2409 enum ieee80211_sta_rx_bandwidth new_bw; 2410 2411 /* If it doesn't support 40 MHz it can't change ... */ 2412 if (!(rx->sta->sta.ht_cap.cap & 2413 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2414 goto handled; 2415 2416 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2417 new_bw = IEEE80211_STA_RX_BW_20; 2418 else 2419 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2420 2421 if (rx->sta->sta.bandwidth == new_bw) 2422 goto handled; 2423 2424 sband = rx->local->hw.wiphy->bands[status->band]; 2425 2426 rate_control_rate_update(local, sband, rx->sta, 2427 IEEE80211_RC_BW_CHANGED); 2428 goto handled; 2429 } 2430 default: 2431 goto invalid; 2432 } 2433 2434 break; 2435 case WLAN_CATEGORY_VHT: 2436 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2437 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2438 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2439 sdata->vif.type != NL80211_IFTYPE_AP && 2440 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2441 break; 2442 2443 /* verify action code is present */ 2444 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2445 goto invalid; 2446 2447 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2448 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2449 u8 opmode; 2450 2451 /* verify opmode is present */ 2452 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2453 goto invalid; 2454 2455 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2456 2457 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2458 opmode, status->band, 2459 false); 2460 goto handled; 2461 } 2462 default: 2463 break; 2464 } 2465 break; 2466 case WLAN_CATEGORY_BACK: 2467 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2468 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2469 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2470 sdata->vif.type != NL80211_IFTYPE_AP && 2471 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2472 break; 2473 2474 /* verify action_code is present */ 2475 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2476 break; 2477 2478 switch (mgmt->u.action.u.addba_req.action_code) { 2479 case WLAN_ACTION_ADDBA_REQ: 2480 if (len < (IEEE80211_MIN_ACTION_SIZE + 2481 sizeof(mgmt->u.action.u.addba_req))) 2482 goto invalid; 2483 break; 2484 case WLAN_ACTION_ADDBA_RESP: 2485 if (len < (IEEE80211_MIN_ACTION_SIZE + 2486 sizeof(mgmt->u.action.u.addba_resp))) 2487 goto invalid; 2488 break; 2489 case WLAN_ACTION_DELBA: 2490 if (len < (IEEE80211_MIN_ACTION_SIZE + 2491 sizeof(mgmt->u.action.u.delba))) 2492 goto invalid; 2493 break; 2494 default: 2495 goto invalid; 2496 } 2497 2498 goto queue; 2499 case WLAN_CATEGORY_SPECTRUM_MGMT: 2500 if (status->band != IEEE80211_BAND_5GHZ) 2501 break; 2502 2503 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2504 break; 2505 2506 /* verify action_code is present */ 2507 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2508 break; 2509 2510 switch (mgmt->u.action.u.measurement.action_code) { 2511 case WLAN_ACTION_SPCT_MSR_REQ: 2512 if (len < (IEEE80211_MIN_ACTION_SIZE + 2513 sizeof(mgmt->u.action.u.measurement))) 2514 break; 2515 ieee80211_process_measurement_req(sdata, mgmt, len); 2516 goto handled; 2517 case WLAN_ACTION_SPCT_CHL_SWITCH: 2518 if (len < (IEEE80211_MIN_ACTION_SIZE + 2519 sizeof(mgmt->u.action.u.chan_switch))) 2520 break; 2521 2522 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2523 break; 2524 2525 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2526 break; 2527 2528 goto queue; 2529 } 2530 break; 2531 case WLAN_CATEGORY_SA_QUERY: 2532 if (len < (IEEE80211_MIN_ACTION_SIZE + 2533 sizeof(mgmt->u.action.u.sa_query))) 2534 break; 2535 2536 switch (mgmt->u.action.u.sa_query.action) { 2537 case WLAN_ACTION_SA_QUERY_REQUEST: 2538 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2539 break; 2540 ieee80211_process_sa_query_req(sdata, mgmt, len); 2541 goto handled; 2542 } 2543 break; 2544 case WLAN_CATEGORY_SELF_PROTECTED: 2545 if (len < (IEEE80211_MIN_ACTION_SIZE + 2546 sizeof(mgmt->u.action.u.self_prot.action_code))) 2547 break; 2548 2549 switch (mgmt->u.action.u.self_prot.action_code) { 2550 case WLAN_SP_MESH_PEERING_OPEN: 2551 case WLAN_SP_MESH_PEERING_CLOSE: 2552 case WLAN_SP_MESH_PEERING_CONFIRM: 2553 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2554 goto invalid; 2555 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) 2556 /* userspace handles this frame */ 2557 break; 2558 goto queue; 2559 case WLAN_SP_MGK_INFORM: 2560 case WLAN_SP_MGK_ACK: 2561 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2562 goto invalid; 2563 break; 2564 } 2565 break; 2566 case WLAN_CATEGORY_MESH_ACTION: 2567 if (len < (IEEE80211_MIN_ACTION_SIZE + 2568 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2569 break; 2570 2571 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2572 break; 2573 if (mesh_action_is_path_sel(mgmt) && 2574 !mesh_path_sel_is_hwmp(sdata)) 2575 break; 2576 goto queue; 2577 } 2578 2579 return RX_CONTINUE; 2580 2581 invalid: 2582 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2583 /* will return in the next handlers */ 2584 return RX_CONTINUE; 2585 2586 handled: 2587 if (rx->sta) 2588 rx->sta->rx_packets++; 2589 dev_kfree_skb(rx->skb); 2590 return RX_QUEUED; 2591 2592 queue: 2593 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2594 skb_queue_tail(&sdata->skb_queue, rx->skb); 2595 ieee80211_queue_work(&local->hw, &sdata->work); 2596 if (rx->sta) 2597 rx->sta->rx_packets++; 2598 return RX_QUEUED; 2599 } 2600 2601 static ieee80211_rx_result debug_noinline 2602 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2603 { 2604 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2605 int sig = 0; 2606 2607 /* skip known-bad action frames and return them in the next handler */ 2608 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2609 return RX_CONTINUE; 2610 2611 /* 2612 * Getting here means the kernel doesn't know how to handle 2613 * it, but maybe userspace does ... include returned frames 2614 * so userspace can register for those to know whether ones 2615 * it transmitted were processed or returned. 2616 */ 2617 2618 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2619 sig = status->signal; 2620 2621 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2622 rx->skb->data, rx->skb->len, 2623 GFP_ATOMIC)) { 2624 if (rx->sta) 2625 rx->sta->rx_packets++; 2626 dev_kfree_skb(rx->skb); 2627 return RX_QUEUED; 2628 } 2629 2630 return RX_CONTINUE; 2631 } 2632 2633 static ieee80211_rx_result debug_noinline 2634 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2635 { 2636 struct ieee80211_local *local = rx->local; 2637 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2638 struct sk_buff *nskb; 2639 struct ieee80211_sub_if_data *sdata = rx->sdata; 2640 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2641 2642 if (!ieee80211_is_action(mgmt->frame_control)) 2643 return RX_CONTINUE; 2644 2645 /* 2646 * For AP mode, hostapd is responsible for handling any action 2647 * frames that we didn't handle, including returning unknown 2648 * ones. For all other modes we will return them to the sender, 2649 * setting the 0x80 bit in the action category, as required by 2650 * 802.11-2012 9.24.4. 2651 * Newer versions of hostapd shall also use the management frame 2652 * registration mechanisms, but older ones still use cooked 2653 * monitor interfaces so push all frames there. 2654 */ 2655 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2656 (sdata->vif.type == NL80211_IFTYPE_AP || 2657 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2658 return RX_DROP_MONITOR; 2659 2660 if (is_multicast_ether_addr(mgmt->da)) 2661 return RX_DROP_MONITOR; 2662 2663 /* do not return rejected action frames */ 2664 if (mgmt->u.action.category & 0x80) 2665 return RX_DROP_UNUSABLE; 2666 2667 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2668 GFP_ATOMIC); 2669 if (nskb) { 2670 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2671 2672 nmgmt->u.action.category |= 0x80; 2673 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2674 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2675 2676 memset(nskb->cb, 0, sizeof(nskb->cb)); 2677 2678 ieee80211_tx_skb(rx->sdata, nskb); 2679 } 2680 dev_kfree_skb(rx->skb); 2681 return RX_QUEUED; 2682 } 2683 2684 static ieee80211_rx_result debug_noinline 2685 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2686 { 2687 struct ieee80211_sub_if_data *sdata = rx->sdata; 2688 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2689 __le16 stype; 2690 2691 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2692 2693 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2694 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2695 sdata->vif.type != NL80211_IFTYPE_STATION) 2696 return RX_DROP_MONITOR; 2697 2698 switch (stype) { 2699 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2700 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2701 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2702 /* process for all: mesh, mlme, ibss */ 2703 break; 2704 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2705 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2706 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2707 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2708 if (is_multicast_ether_addr(mgmt->da) && 2709 !is_broadcast_ether_addr(mgmt->da)) 2710 return RX_DROP_MONITOR; 2711 2712 /* process only for station */ 2713 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2714 return RX_DROP_MONITOR; 2715 break; 2716 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2717 /* process only for ibss and mesh */ 2718 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2719 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2720 return RX_DROP_MONITOR; 2721 break; 2722 default: 2723 return RX_DROP_MONITOR; 2724 } 2725 2726 /* queue up frame and kick off work to process it */ 2727 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2728 skb_queue_tail(&sdata->skb_queue, rx->skb); 2729 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2730 if (rx->sta) 2731 rx->sta->rx_packets++; 2732 2733 return RX_QUEUED; 2734 } 2735 2736 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2737 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2738 struct ieee80211_rate *rate) 2739 { 2740 struct ieee80211_sub_if_data *sdata; 2741 struct ieee80211_local *local = rx->local; 2742 struct sk_buff *skb = rx->skb, *skb2; 2743 struct net_device *prev_dev = NULL; 2744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2745 int needed_headroom; 2746 2747 /* 2748 * If cooked monitor has been processed already, then 2749 * don't do it again. If not, set the flag. 2750 */ 2751 if (rx->flags & IEEE80211_RX_CMNTR) 2752 goto out_free_skb; 2753 rx->flags |= IEEE80211_RX_CMNTR; 2754 2755 /* If there are no cooked monitor interfaces, just free the SKB */ 2756 if (!local->cooked_mntrs) 2757 goto out_free_skb; 2758 2759 /* room for the radiotap header based on driver features */ 2760 needed_headroom = ieee80211_rx_radiotap_space(local, status); 2761 2762 if (skb_headroom(skb) < needed_headroom && 2763 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2764 goto out_free_skb; 2765 2766 /* prepend radiotap information */ 2767 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2768 false); 2769 2770 skb_set_mac_header(skb, 0); 2771 skb->ip_summed = CHECKSUM_UNNECESSARY; 2772 skb->pkt_type = PACKET_OTHERHOST; 2773 skb->protocol = htons(ETH_P_802_2); 2774 2775 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2776 if (!ieee80211_sdata_running(sdata)) 2777 continue; 2778 2779 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2780 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2781 continue; 2782 2783 if (prev_dev) { 2784 skb2 = skb_clone(skb, GFP_ATOMIC); 2785 if (skb2) { 2786 skb2->dev = prev_dev; 2787 netif_receive_skb(skb2); 2788 } 2789 } 2790 2791 prev_dev = sdata->dev; 2792 sdata->dev->stats.rx_packets++; 2793 sdata->dev->stats.rx_bytes += skb->len; 2794 } 2795 2796 if (prev_dev) { 2797 skb->dev = prev_dev; 2798 netif_receive_skb(skb); 2799 return; 2800 } 2801 2802 out_free_skb: 2803 dev_kfree_skb(skb); 2804 } 2805 2806 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2807 ieee80211_rx_result res) 2808 { 2809 switch (res) { 2810 case RX_DROP_MONITOR: 2811 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2812 if (rx->sta) 2813 rx->sta->rx_dropped++; 2814 /* fall through */ 2815 case RX_CONTINUE: { 2816 struct ieee80211_rate *rate = NULL; 2817 struct ieee80211_supported_band *sband; 2818 struct ieee80211_rx_status *status; 2819 2820 status = IEEE80211_SKB_RXCB((rx->skb)); 2821 2822 sband = rx->local->hw.wiphy->bands[status->band]; 2823 if (!(status->flag & RX_FLAG_HT) && 2824 !(status->flag & RX_FLAG_VHT)) 2825 rate = &sband->bitrates[status->rate_idx]; 2826 2827 ieee80211_rx_cooked_monitor(rx, rate); 2828 break; 2829 } 2830 case RX_DROP_UNUSABLE: 2831 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2832 if (rx->sta) 2833 rx->sta->rx_dropped++; 2834 dev_kfree_skb(rx->skb); 2835 break; 2836 case RX_QUEUED: 2837 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2838 break; 2839 } 2840 } 2841 2842 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 2843 struct sk_buff_head *frames) 2844 { 2845 ieee80211_rx_result res = RX_DROP_MONITOR; 2846 struct sk_buff *skb; 2847 2848 #define CALL_RXH(rxh) \ 2849 do { \ 2850 res = rxh(rx); \ 2851 if (res != RX_CONTINUE) \ 2852 goto rxh_next; \ 2853 } while (0); 2854 2855 spin_lock_bh(&rx->local->rx_path_lock); 2856 2857 while ((skb = __skb_dequeue(frames))) { 2858 /* 2859 * all the other fields are valid across frames 2860 * that belong to an aMPDU since they are on the 2861 * same TID from the same station 2862 */ 2863 rx->skb = skb; 2864 2865 CALL_RXH(ieee80211_rx_h_decrypt) 2866 CALL_RXH(ieee80211_rx_h_check_more_data) 2867 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2868 CALL_RXH(ieee80211_rx_h_sta_process) 2869 CALL_RXH(ieee80211_rx_h_defragment) 2870 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2871 /* must be after MMIC verify so header is counted in MPDU mic */ 2872 #ifdef CONFIG_MAC80211_MESH 2873 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2874 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2875 #endif 2876 CALL_RXH(ieee80211_rx_h_amsdu) 2877 CALL_RXH(ieee80211_rx_h_data) 2878 2879 /* special treatment -- needs the queue */ 2880 res = ieee80211_rx_h_ctrl(rx, frames); 2881 if (res != RX_CONTINUE) 2882 goto rxh_next; 2883 2884 CALL_RXH(ieee80211_rx_h_mgmt_check) 2885 CALL_RXH(ieee80211_rx_h_action) 2886 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2887 CALL_RXH(ieee80211_rx_h_action_return) 2888 CALL_RXH(ieee80211_rx_h_mgmt) 2889 2890 rxh_next: 2891 ieee80211_rx_handlers_result(rx, res); 2892 2893 #undef CALL_RXH 2894 } 2895 2896 spin_unlock_bh(&rx->local->rx_path_lock); 2897 } 2898 2899 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2900 { 2901 struct sk_buff_head reorder_release; 2902 ieee80211_rx_result res = RX_DROP_MONITOR; 2903 2904 __skb_queue_head_init(&reorder_release); 2905 2906 #define CALL_RXH(rxh) \ 2907 do { \ 2908 res = rxh(rx); \ 2909 if (res != RX_CONTINUE) \ 2910 goto rxh_next; \ 2911 } while (0); 2912 2913 CALL_RXH(ieee80211_rx_h_check) 2914 2915 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 2916 2917 ieee80211_rx_handlers(rx, &reorder_release); 2918 return; 2919 2920 rxh_next: 2921 ieee80211_rx_handlers_result(rx, res); 2922 2923 #undef CALL_RXH 2924 } 2925 2926 /* 2927 * This function makes calls into the RX path, therefore 2928 * it has to be invoked under RCU read lock. 2929 */ 2930 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2931 { 2932 struct sk_buff_head frames; 2933 struct ieee80211_rx_data rx = { 2934 .sta = sta, 2935 .sdata = sta->sdata, 2936 .local = sta->local, 2937 /* This is OK -- must be QoS data frame */ 2938 .security_idx = tid, 2939 .seqno_idx = tid, 2940 .flags = 0, 2941 }; 2942 struct tid_ampdu_rx *tid_agg_rx; 2943 2944 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2945 if (!tid_agg_rx) 2946 return; 2947 2948 __skb_queue_head_init(&frames); 2949 2950 spin_lock(&tid_agg_rx->reorder_lock); 2951 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 2952 spin_unlock(&tid_agg_rx->reorder_lock); 2953 2954 ieee80211_rx_handlers(&rx, &frames); 2955 } 2956 2957 /* main receive path */ 2958 2959 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2960 struct ieee80211_hdr *hdr) 2961 { 2962 struct ieee80211_sub_if_data *sdata = rx->sdata; 2963 struct sk_buff *skb = rx->skb; 2964 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2965 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2966 int multicast = is_multicast_ether_addr(hdr->addr1); 2967 2968 switch (sdata->vif.type) { 2969 case NL80211_IFTYPE_STATION: 2970 if (!bssid && !sdata->u.mgd.use_4addr) 2971 return 0; 2972 if (!multicast && 2973 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2974 if (!(sdata->dev->flags & IFF_PROMISC) || 2975 sdata->u.mgd.use_4addr) 2976 return 0; 2977 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2978 } 2979 break; 2980 case NL80211_IFTYPE_ADHOC: 2981 if (!bssid) 2982 return 0; 2983 if (ieee80211_is_beacon(hdr->frame_control)) { 2984 return 1; 2985 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2986 return 0; 2987 } else if (!multicast && 2988 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2989 if (!(sdata->dev->flags & IFF_PROMISC)) 2990 return 0; 2991 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2992 } else if (!rx->sta) { 2993 int rate_idx; 2994 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 2995 rate_idx = 0; /* TODO: HT/VHT rates */ 2996 else 2997 rate_idx = status->rate_idx; 2998 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 2999 BIT(rate_idx)); 3000 } 3001 break; 3002 case NL80211_IFTYPE_MESH_POINT: 3003 if (!multicast && 3004 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3005 if (!(sdata->dev->flags & IFF_PROMISC)) 3006 return 0; 3007 3008 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3009 } 3010 break; 3011 case NL80211_IFTYPE_AP_VLAN: 3012 case NL80211_IFTYPE_AP: 3013 if (!bssid) { 3014 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3015 return 0; 3016 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3017 /* 3018 * Accept public action frames even when the 3019 * BSSID doesn't match, this is used for P2P 3020 * and location updates. Note that mac80211 3021 * itself never looks at these frames. 3022 */ 3023 if (ieee80211_is_public_action(hdr, skb->len)) 3024 return 1; 3025 if (!ieee80211_is_beacon(hdr->frame_control)) 3026 return 0; 3027 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3028 } 3029 break; 3030 case NL80211_IFTYPE_WDS: 3031 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3032 return 0; 3033 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3034 return 0; 3035 break; 3036 case NL80211_IFTYPE_P2P_DEVICE: 3037 if (!ieee80211_is_public_action(hdr, skb->len) && 3038 !ieee80211_is_probe_req(hdr->frame_control) && 3039 !ieee80211_is_probe_resp(hdr->frame_control) && 3040 !ieee80211_is_beacon(hdr->frame_control)) 3041 return 0; 3042 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3043 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3044 break; 3045 default: 3046 /* should never get here */ 3047 WARN_ON_ONCE(1); 3048 break; 3049 } 3050 3051 return 1; 3052 } 3053 3054 /* 3055 * This function returns whether or not the SKB 3056 * was destined for RX processing or not, which, 3057 * if consume is true, is equivalent to whether 3058 * or not the skb was consumed. 3059 */ 3060 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3061 struct sk_buff *skb, bool consume) 3062 { 3063 struct ieee80211_local *local = rx->local; 3064 struct ieee80211_sub_if_data *sdata = rx->sdata; 3065 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3066 struct ieee80211_hdr *hdr = (void *)skb->data; 3067 int prepares; 3068 3069 rx->skb = skb; 3070 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3071 prepares = prepare_for_handlers(rx, hdr); 3072 3073 if (!prepares) 3074 return false; 3075 3076 if (!consume) { 3077 skb = skb_copy(skb, GFP_ATOMIC); 3078 if (!skb) { 3079 if (net_ratelimit()) 3080 wiphy_debug(local->hw.wiphy, 3081 "failed to copy skb for %s\n", 3082 sdata->name); 3083 return true; 3084 } 3085 3086 rx->skb = skb; 3087 } 3088 3089 ieee80211_invoke_rx_handlers(rx); 3090 return true; 3091 } 3092 3093 /* 3094 * This is the actual Rx frames handler. as it blongs to Rx path it must 3095 * be called with rcu_read_lock protection. 3096 */ 3097 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3098 struct sk_buff *skb) 3099 { 3100 struct ieee80211_local *local = hw_to_local(hw); 3101 struct ieee80211_sub_if_data *sdata; 3102 struct ieee80211_hdr *hdr; 3103 __le16 fc; 3104 struct ieee80211_rx_data rx; 3105 struct ieee80211_sub_if_data *prev; 3106 struct sta_info *sta, *tmp, *prev_sta; 3107 int err = 0; 3108 3109 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3110 memset(&rx, 0, sizeof(rx)); 3111 rx.skb = skb; 3112 rx.local = local; 3113 3114 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3115 local->dot11ReceivedFragmentCount++; 3116 3117 if (ieee80211_is_mgmt(fc)) { 3118 /* drop frame if too short for header */ 3119 if (skb->len < ieee80211_hdrlen(fc)) 3120 err = -ENOBUFS; 3121 else 3122 err = skb_linearize(skb); 3123 } else { 3124 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3125 } 3126 3127 if (err) { 3128 dev_kfree_skb(skb); 3129 return; 3130 } 3131 3132 hdr = (struct ieee80211_hdr *)skb->data; 3133 ieee80211_parse_qos(&rx); 3134 ieee80211_verify_alignment(&rx); 3135 3136 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3137 ieee80211_is_beacon(hdr->frame_control))) 3138 ieee80211_scan_rx(local, skb); 3139 3140 if (ieee80211_is_data(fc)) { 3141 prev_sta = NULL; 3142 3143 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3144 if (!prev_sta) { 3145 prev_sta = sta; 3146 continue; 3147 } 3148 3149 rx.sta = prev_sta; 3150 rx.sdata = prev_sta->sdata; 3151 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3152 3153 prev_sta = sta; 3154 } 3155 3156 if (prev_sta) { 3157 rx.sta = prev_sta; 3158 rx.sdata = prev_sta->sdata; 3159 3160 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3161 return; 3162 goto out; 3163 } 3164 } 3165 3166 prev = NULL; 3167 3168 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3169 if (!ieee80211_sdata_running(sdata)) 3170 continue; 3171 3172 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3173 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3174 continue; 3175 3176 /* 3177 * frame is destined for this interface, but if it's 3178 * not also for the previous one we handle that after 3179 * the loop to avoid copying the SKB once too much 3180 */ 3181 3182 if (!prev) { 3183 prev = sdata; 3184 continue; 3185 } 3186 3187 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3188 rx.sdata = prev; 3189 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3190 3191 prev = sdata; 3192 } 3193 3194 if (prev) { 3195 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3196 rx.sdata = prev; 3197 3198 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3199 return; 3200 } 3201 3202 out: 3203 dev_kfree_skb(skb); 3204 } 3205 3206 /* 3207 * This is the receive path handler. It is called by a low level driver when an 3208 * 802.11 MPDU is received from the hardware. 3209 */ 3210 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3211 { 3212 struct ieee80211_local *local = hw_to_local(hw); 3213 struct ieee80211_rate *rate = NULL; 3214 struct ieee80211_supported_band *sband; 3215 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3216 3217 WARN_ON_ONCE(softirq_count() == 0); 3218 3219 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3220 goto drop; 3221 3222 sband = local->hw.wiphy->bands[status->band]; 3223 if (WARN_ON(!sband)) 3224 goto drop; 3225 3226 /* 3227 * If we're suspending, it is possible although not too likely 3228 * that we'd be receiving frames after having already partially 3229 * quiesced the stack. We can't process such frames then since 3230 * that might, for example, cause stations to be added or other 3231 * driver callbacks be invoked. 3232 */ 3233 if (unlikely(local->quiescing || local->suspended)) 3234 goto drop; 3235 3236 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3237 if (unlikely(local->in_reconfig)) 3238 goto drop; 3239 3240 /* 3241 * The same happens when we're not even started, 3242 * but that's worth a warning. 3243 */ 3244 if (WARN_ON(!local->started)) 3245 goto drop; 3246 3247 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3248 /* 3249 * Validate the rate, unless a PLCP error means that 3250 * we probably can't have a valid rate here anyway. 3251 */ 3252 3253 if (status->flag & RX_FLAG_HT) { 3254 /* 3255 * rate_idx is MCS index, which can be [0-76] 3256 * as documented on: 3257 * 3258 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3259 * 3260 * Anything else would be some sort of driver or 3261 * hardware error. The driver should catch hardware 3262 * errors. 3263 */ 3264 if (WARN(status->rate_idx > 76, 3265 "Rate marked as an HT rate but passed " 3266 "status->rate_idx is not " 3267 "an MCS index [0-76]: %d (0x%02x)\n", 3268 status->rate_idx, 3269 status->rate_idx)) 3270 goto drop; 3271 } else if (status->flag & RX_FLAG_VHT) { 3272 if (WARN_ONCE(status->rate_idx > 9 || 3273 !status->vht_nss || 3274 status->vht_nss > 8, 3275 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3276 status->rate_idx, status->vht_nss)) 3277 goto drop; 3278 } else { 3279 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3280 goto drop; 3281 rate = &sband->bitrates[status->rate_idx]; 3282 } 3283 } 3284 3285 status->rx_flags = 0; 3286 3287 /* 3288 * key references and virtual interfaces are protected using RCU 3289 * and this requires that we are in a read-side RCU section during 3290 * receive processing 3291 */ 3292 rcu_read_lock(); 3293 3294 /* 3295 * Frames with failed FCS/PLCP checksum are not returned, 3296 * all other frames are returned without radiotap header 3297 * if it was previously present. 3298 * Also, frames with less than 16 bytes are dropped. 3299 */ 3300 skb = ieee80211_rx_monitor(local, skb, rate); 3301 if (!skb) { 3302 rcu_read_unlock(); 3303 return; 3304 } 3305 3306 ieee80211_tpt_led_trig_rx(local, 3307 ((struct ieee80211_hdr *)skb->data)->frame_control, 3308 skb->len); 3309 __ieee80211_rx_handle_packet(hw, skb); 3310 3311 rcu_read_unlock(); 3312 3313 return; 3314 drop: 3315 kfree_skb(skb); 3316 } 3317 EXPORT_SYMBOL(ieee80211_rx); 3318 3319 /* This is a version of the rx handler that can be called from hard irq 3320 * context. Post the skb on the queue and schedule the tasklet */ 3321 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3322 { 3323 struct ieee80211_local *local = hw_to_local(hw); 3324 3325 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3326 3327 skb->pkt_type = IEEE80211_RX_MSG; 3328 skb_queue_tail(&local->skb_queue, skb); 3329 tasklet_schedule(&local->tasklet); 3330 } 3331 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3332