1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 44 if (likely(skb->len > FCS_LEN)) 45 __pskb_trim(skb, skb->len - FCS_LEN); 46 else { 47 /* driver bug */ 48 WARN_ON(1); 49 dev_kfree_skb(skb); 50 skb = NULL; 51 } 52 } 53 54 return skb; 55 } 56 57 static inline int should_drop_frame(struct sk_buff *skb, 58 int present_fcs_len) 59 { 60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 61 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 62 63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 64 return 1; 65 if (unlikely(skb->len < 16 + present_fcs_len)) 66 return 1; 67 if (ieee80211_is_ctl(hdr->frame_control) && 68 !ieee80211_is_pspoll(hdr->frame_control) && 69 !ieee80211_is_back_req(hdr->frame_control)) 70 return 1; 71 return 0; 72 } 73 74 static int 75 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 76 struct ieee80211_rx_status *status) 77 { 78 int len; 79 80 /* always present fields */ 81 len = sizeof(struct ieee80211_radiotap_header) + 9; 82 83 if (status->flag & RX_FLAG_MACTIME_MPDU) 84 len += 8; 85 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 86 len += 1; 87 88 if (len & 1) /* padding for RX_FLAGS if necessary */ 89 len++; 90 91 if (status->flag & RX_FLAG_HT) /* HT info */ 92 len += 3; 93 94 return len; 95 } 96 97 /** 98 * ieee80211_add_rx_radiotap_header - add radiotap header 99 * 100 * add a radiotap header containing all the fields which the hardware provided. 101 */ 102 static void 103 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 104 struct sk_buff *skb, 105 struct ieee80211_rate *rate, 106 int rtap_len, bool has_fcs) 107 { 108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 109 struct ieee80211_radiotap_header *rthdr; 110 unsigned char *pos; 111 u16 rx_flags = 0; 112 113 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 114 memset(rthdr, 0, rtap_len); 115 116 /* radiotap header, set always present flags */ 117 rthdr->it_present = 118 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 119 (1 << IEEE80211_RADIOTAP_CHANNEL) | 120 (1 << IEEE80211_RADIOTAP_ANTENNA) | 121 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 122 rthdr->it_len = cpu_to_le16(rtap_len); 123 124 pos = (unsigned char *)(rthdr+1); 125 126 /* the order of the following fields is important */ 127 128 /* IEEE80211_RADIOTAP_TSFT */ 129 if (status->flag & RX_FLAG_MACTIME_MPDU) { 130 put_unaligned_le64(status->mactime, pos); 131 rthdr->it_present |= 132 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 133 pos += 8; 134 } 135 136 /* IEEE80211_RADIOTAP_FLAGS */ 137 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 138 *pos |= IEEE80211_RADIOTAP_F_FCS; 139 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 140 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 141 if (status->flag & RX_FLAG_SHORTPRE) 142 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 143 pos++; 144 145 /* IEEE80211_RADIOTAP_RATE */ 146 if (!rate || status->flag & RX_FLAG_HT) { 147 /* 148 * Without rate information don't add it. If we have, 149 * MCS information is a separate field in radiotap, 150 * added below. The byte here is needed as padding 151 * for the channel though, so initialise it to 0. 152 */ 153 *pos = 0; 154 } else { 155 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 156 *pos = rate->bitrate / 5; 157 } 158 pos++; 159 160 /* IEEE80211_RADIOTAP_CHANNEL */ 161 put_unaligned_le16(status->freq, pos); 162 pos += 2; 163 if (status->band == IEEE80211_BAND_5GHZ) 164 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 165 pos); 166 else if (status->flag & RX_FLAG_HT) 167 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 168 pos); 169 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 170 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 171 pos); 172 else if (rate) 173 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 174 pos); 175 else 176 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos); 177 pos += 2; 178 179 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 180 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 181 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 182 *pos = status->signal; 183 rthdr->it_present |= 184 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 185 pos++; 186 } 187 188 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 189 190 /* IEEE80211_RADIOTAP_ANTENNA */ 191 *pos = status->antenna; 192 pos++; 193 194 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 195 196 /* IEEE80211_RADIOTAP_RX_FLAGS */ 197 /* ensure 2 byte alignment for the 2 byte field as required */ 198 if ((pos - (u8 *)rthdr) & 1) 199 pos++; 200 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 201 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 202 put_unaligned_le16(rx_flags, pos); 203 pos += 2; 204 205 if (status->flag & RX_FLAG_HT) { 206 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 207 *pos++ = local->hw.radiotap_mcs_details; 208 *pos = 0; 209 if (status->flag & RX_FLAG_SHORT_GI) 210 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 211 if (status->flag & RX_FLAG_40MHZ) 212 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 213 if (status->flag & RX_FLAG_HT_GF) 214 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 215 pos++; 216 *pos++ = status->rate_idx; 217 } 218 } 219 220 /* 221 * This function copies a received frame to all monitor interfaces and 222 * returns a cleaned-up SKB that no longer includes the FCS nor the 223 * radiotap header the driver might have added. 224 */ 225 static struct sk_buff * 226 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 227 struct ieee80211_rate *rate) 228 { 229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 230 struct ieee80211_sub_if_data *sdata; 231 int needed_headroom; 232 struct sk_buff *skb, *skb2; 233 struct net_device *prev_dev = NULL; 234 int present_fcs_len = 0; 235 236 /* 237 * First, we may need to make a copy of the skb because 238 * (1) we need to modify it for radiotap (if not present), and 239 * (2) the other RX handlers will modify the skb we got. 240 * 241 * We don't need to, of course, if we aren't going to return 242 * the SKB because it has a bad FCS/PLCP checksum. 243 */ 244 245 /* room for the radiotap header based on driver features */ 246 needed_headroom = ieee80211_rx_radiotap_len(local, status); 247 248 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 249 present_fcs_len = FCS_LEN; 250 251 /* make sure hdr->frame_control is on the linear part */ 252 if (!pskb_may_pull(origskb, 2)) { 253 dev_kfree_skb(origskb); 254 return NULL; 255 } 256 257 if (!local->monitors) { 258 if (should_drop_frame(origskb, present_fcs_len)) { 259 dev_kfree_skb(origskb); 260 return NULL; 261 } 262 263 return remove_monitor_info(local, origskb); 264 } 265 266 if (should_drop_frame(origskb, present_fcs_len)) { 267 /* only need to expand headroom if necessary */ 268 skb = origskb; 269 origskb = NULL; 270 271 /* 272 * This shouldn't trigger often because most devices have an 273 * RX header they pull before we get here, and that should 274 * be big enough for our radiotap information. We should 275 * probably export the length to drivers so that we can have 276 * them allocate enough headroom to start with. 277 */ 278 if (skb_headroom(skb) < needed_headroom && 279 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 280 dev_kfree_skb(skb); 281 return NULL; 282 } 283 } else { 284 /* 285 * Need to make a copy and possibly remove radiotap header 286 * and FCS from the original. 287 */ 288 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 289 290 origskb = remove_monitor_info(local, origskb); 291 292 if (!skb) 293 return origskb; 294 } 295 296 /* prepend radiotap information */ 297 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 298 true); 299 300 skb_reset_mac_header(skb); 301 skb->ip_summed = CHECKSUM_UNNECESSARY; 302 skb->pkt_type = PACKET_OTHERHOST; 303 skb->protocol = htons(ETH_P_802_2); 304 305 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 306 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 307 continue; 308 309 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 310 continue; 311 312 if (!ieee80211_sdata_running(sdata)) 313 continue; 314 315 if (prev_dev) { 316 skb2 = skb_clone(skb, GFP_ATOMIC); 317 if (skb2) { 318 skb2->dev = prev_dev; 319 netif_receive_skb(skb2); 320 } 321 } 322 323 prev_dev = sdata->dev; 324 sdata->dev->stats.rx_packets++; 325 sdata->dev->stats.rx_bytes += skb->len; 326 } 327 328 if (prev_dev) { 329 skb->dev = prev_dev; 330 netif_receive_skb(skb); 331 } else 332 dev_kfree_skb(skb); 333 334 return origskb; 335 } 336 337 338 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 339 { 340 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 341 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 342 int tid, seqno_idx, security_idx; 343 344 /* does the frame have a qos control field? */ 345 if (ieee80211_is_data_qos(hdr->frame_control)) { 346 u8 *qc = ieee80211_get_qos_ctl(hdr); 347 /* frame has qos control */ 348 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 349 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 350 status->rx_flags |= IEEE80211_RX_AMSDU; 351 352 seqno_idx = tid; 353 security_idx = tid; 354 } else { 355 /* 356 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 357 * 358 * Sequence numbers for management frames, QoS data 359 * frames with a broadcast/multicast address in the 360 * Address 1 field, and all non-QoS data frames sent 361 * by QoS STAs are assigned using an additional single 362 * modulo-4096 counter, [...] 363 * 364 * We also use that counter for non-QoS STAs. 365 */ 366 seqno_idx = NUM_RX_DATA_QUEUES; 367 security_idx = 0; 368 if (ieee80211_is_mgmt(hdr->frame_control)) 369 security_idx = NUM_RX_DATA_QUEUES; 370 tid = 0; 371 } 372 373 rx->seqno_idx = seqno_idx; 374 rx->security_idx = security_idx; 375 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 376 * For now, set skb->priority to 0 for other cases. */ 377 rx->skb->priority = (tid > 7) ? 0 : tid; 378 } 379 380 /** 381 * DOC: Packet alignment 382 * 383 * Drivers always need to pass packets that are aligned to two-byte boundaries 384 * to the stack. 385 * 386 * Additionally, should, if possible, align the payload data in a way that 387 * guarantees that the contained IP header is aligned to a four-byte 388 * boundary. In the case of regular frames, this simply means aligning the 389 * payload to a four-byte boundary (because either the IP header is directly 390 * contained, or IV/RFC1042 headers that have a length divisible by four are 391 * in front of it). If the payload data is not properly aligned and the 392 * architecture doesn't support efficient unaligned operations, mac80211 393 * will align the data. 394 * 395 * With A-MSDU frames, however, the payload data address must yield two modulo 396 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 397 * push the IP header further back to a multiple of four again. Thankfully, the 398 * specs were sane enough this time around to require padding each A-MSDU 399 * subframe to a length that is a multiple of four. 400 * 401 * Padding like Atheros hardware adds which is between the 802.11 header and 402 * the payload is not supported, the driver is required to move the 802.11 403 * header to be directly in front of the payload in that case. 404 */ 405 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 406 { 407 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 408 WARN_ONCE((unsigned long)rx->skb->data & 1, 409 "unaligned packet at 0x%p\n", rx->skb->data); 410 #endif 411 } 412 413 414 /* rx handlers */ 415 416 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 417 { 418 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 419 420 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 421 return 0; 422 423 return ieee80211_is_robust_mgmt_frame(hdr); 424 } 425 426 427 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 428 { 429 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 430 431 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 432 return 0; 433 434 return ieee80211_is_robust_mgmt_frame(hdr); 435 } 436 437 438 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 439 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 440 { 441 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 442 struct ieee80211_mmie *mmie; 443 444 if (skb->len < 24 + sizeof(*mmie) || 445 !is_multicast_ether_addr(hdr->da)) 446 return -1; 447 448 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 449 return -1; /* not a robust management frame */ 450 451 mmie = (struct ieee80211_mmie *) 452 (skb->data + skb->len - sizeof(*mmie)); 453 if (mmie->element_id != WLAN_EID_MMIE || 454 mmie->length != sizeof(*mmie) - 2) 455 return -1; 456 457 return le16_to_cpu(mmie->key_id); 458 } 459 460 461 static ieee80211_rx_result 462 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 463 { 464 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 465 char *dev_addr = rx->sdata->vif.addr; 466 467 if (ieee80211_is_data(hdr->frame_control)) { 468 if (is_multicast_ether_addr(hdr->addr1)) { 469 if (ieee80211_has_tods(hdr->frame_control) || 470 !ieee80211_has_fromds(hdr->frame_control)) 471 return RX_DROP_MONITOR; 472 if (ether_addr_equal(hdr->addr3, dev_addr)) 473 return RX_DROP_MONITOR; 474 } else { 475 if (!ieee80211_has_a4(hdr->frame_control)) 476 return RX_DROP_MONITOR; 477 if (ether_addr_equal(hdr->addr4, dev_addr)) 478 return RX_DROP_MONITOR; 479 } 480 } 481 482 /* If there is not an established peer link and this is not a peer link 483 * establisment frame, beacon or probe, drop the frame. 484 */ 485 486 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 487 struct ieee80211_mgmt *mgmt; 488 489 if (!ieee80211_is_mgmt(hdr->frame_control)) 490 return RX_DROP_MONITOR; 491 492 if (ieee80211_is_action(hdr->frame_control)) { 493 u8 category; 494 mgmt = (struct ieee80211_mgmt *)hdr; 495 category = mgmt->u.action.category; 496 if (category != WLAN_CATEGORY_MESH_ACTION && 497 category != WLAN_CATEGORY_SELF_PROTECTED) 498 return RX_DROP_MONITOR; 499 return RX_CONTINUE; 500 } 501 502 if (ieee80211_is_probe_req(hdr->frame_control) || 503 ieee80211_is_probe_resp(hdr->frame_control) || 504 ieee80211_is_beacon(hdr->frame_control) || 505 ieee80211_is_auth(hdr->frame_control)) 506 return RX_CONTINUE; 507 508 return RX_DROP_MONITOR; 509 510 } 511 512 return RX_CONTINUE; 513 } 514 515 #define SEQ_MODULO 0x1000 516 #define SEQ_MASK 0xfff 517 518 static inline int seq_less(u16 sq1, u16 sq2) 519 { 520 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 521 } 522 523 static inline u16 seq_inc(u16 sq) 524 { 525 return (sq + 1) & SEQ_MASK; 526 } 527 528 static inline u16 seq_sub(u16 sq1, u16 sq2) 529 { 530 return (sq1 - sq2) & SEQ_MASK; 531 } 532 533 534 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 535 struct tid_ampdu_rx *tid_agg_rx, 536 int index) 537 { 538 struct ieee80211_local *local = sdata->local; 539 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 540 struct ieee80211_rx_status *status; 541 542 lockdep_assert_held(&tid_agg_rx->reorder_lock); 543 544 if (!skb) 545 goto no_frame; 546 547 /* release the frame from the reorder ring buffer */ 548 tid_agg_rx->stored_mpdu_num--; 549 tid_agg_rx->reorder_buf[index] = NULL; 550 status = IEEE80211_SKB_RXCB(skb); 551 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 552 skb_queue_tail(&local->rx_skb_queue, skb); 553 554 no_frame: 555 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 556 } 557 558 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 559 struct tid_ampdu_rx *tid_agg_rx, 560 u16 head_seq_num) 561 { 562 int index; 563 564 lockdep_assert_held(&tid_agg_rx->reorder_lock); 565 566 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 567 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 568 tid_agg_rx->buf_size; 569 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index); 570 } 571 } 572 573 /* 574 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 575 * the skb was added to the buffer longer than this time ago, the earlier 576 * frames that have not yet been received are assumed to be lost and the skb 577 * can be released for processing. This may also release other skb's from the 578 * reorder buffer if there are no additional gaps between the frames. 579 * 580 * Callers must hold tid_agg_rx->reorder_lock. 581 */ 582 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 583 584 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 585 struct tid_ampdu_rx *tid_agg_rx) 586 { 587 int index, j; 588 589 lockdep_assert_held(&tid_agg_rx->reorder_lock); 590 591 /* release the buffer until next missing frame */ 592 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 593 tid_agg_rx->buf_size; 594 if (!tid_agg_rx->reorder_buf[index] && 595 tid_agg_rx->stored_mpdu_num) { 596 /* 597 * No buffers ready to be released, but check whether any 598 * frames in the reorder buffer have timed out. 599 */ 600 int skipped = 1; 601 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 602 j = (j + 1) % tid_agg_rx->buf_size) { 603 if (!tid_agg_rx->reorder_buf[j]) { 604 skipped++; 605 continue; 606 } 607 if (skipped && 608 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 609 HT_RX_REORDER_BUF_TIMEOUT)) 610 goto set_release_timer; 611 612 ht_dbg_ratelimited(sdata, 613 "release an RX reorder frame due to timeout on earlier frames\n"); 614 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j); 615 616 /* 617 * Increment the head seq# also for the skipped slots. 618 */ 619 tid_agg_rx->head_seq_num = 620 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 621 skipped = 0; 622 } 623 } else while (tid_agg_rx->reorder_buf[index]) { 624 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index); 625 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 626 tid_agg_rx->buf_size; 627 } 628 629 if (tid_agg_rx->stored_mpdu_num) { 630 j = index = seq_sub(tid_agg_rx->head_seq_num, 631 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 632 633 for (; j != (index - 1) % tid_agg_rx->buf_size; 634 j = (j + 1) % tid_agg_rx->buf_size) { 635 if (tid_agg_rx->reorder_buf[j]) 636 break; 637 } 638 639 set_release_timer: 640 641 mod_timer(&tid_agg_rx->reorder_timer, 642 tid_agg_rx->reorder_time[j] + 1 + 643 HT_RX_REORDER_BUF_TIMEOUT); 644 } else { 645 del_timer(&tid_agg_rx->reorder_timer); 646 } 647 } 648 649 /* 650 * As this function belongs to the RX path it must be under 651 * rcu_read_lock protection. It returns false if the frame 652 * can be processed immediately, true if it was consumed. 653 */ 654 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 655 struct tid_ampdu_rx *tid_agg_rx, 656 struct sk_buff *skb) 657 { 658 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 659 u16 sc = le16_to_cpu(hdr->seq_ctrl); 660 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 661 u16 head_seq_num, buf_size; 662 int index; 663 bool ret = true; 664 665 spin_lock(&tid_agg_rx->reorder_lock); 666 667 buf_size = tid_agg_rx->buf_size; 668 head_seq_num = tid_agg_rx->head_seq_num; 669 670 /* frame with out of date sequence number */ 671 if (seq_less(mpdu_seq_num, head_seq_num)) { 672 dev_kfree_skb(skb); 673 goto out; 674 } 675 676 /* 677 * If frame the sequence number exceeds our buffering window 678 * size release some previous frames to make room for this one. 679 */ 680 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 681 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 682 /* release stored frames up to new head to stack */ 683 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 684 head_seq_num); 685 } 686 687 /* Now the new frame is always in the range of the reordering buffer */ 688 689 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 690 691 /* check if we already stored this frame */ 692 if (tid_agg_rx->reorder_buf[index]) { 693 dev_kfree_skb(skb); 694 goto out; 695 } 696 697 /* 698 * If the current MPDU is in the right order and nothing else 699 * is stored we can process it directly, no need to buffer it. 700 * If it is first but there's something stored, we may be able 701 * to release frames after this one. 702 */ 703 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 704 tid_agg_rx->stored_mpdu_num == 0) { 705 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 706 ret = false; 707 goto out; 708 } 709 710 /* put the frame in the reordering buffer */ 711 tid_agg_rx->reorder_buf[index] = skb; 712 tid_agg_rx->reorder_time[index] = jiffies; 713 tid_agg_rx->stored_mpdu_num++; 714 ieee80211_sta_reorder_release(sdata, tid_agg_rx); 715 716 out: 717 spin_unlock(&tid_agg_rx->reorder_lock); 718 return ret; 719 } 720 721 /* 722 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 723 * true if the MPDU was buffered, false if it should be processed. 724 */ 725 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx) 726 { 727 struct sk_buff *skb = rx->skb; 728 struct ieee80211_local *local = rx->local; 729 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 730 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 731 struct sta_info *sta = rx->sta; 732 struct tid_ampdu_rx *tid_agg_rx; 733 u16 sc; 734 u8 tid, ack_policy; 735 736 if (!ieee80211_is_data_qos(hdr->frame_control)) 737 goto dont_reorder; 738 739 /* 740 * filter the QoS data rx stream according to 741 * STA/TID and check if this STA/TID is on aggregation 742 */ 743 744 if (!sta) 745 goto dont_reorder; 746 747 ack_policy = *ieee80211_get_qos_ctl(hdr) & 748 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 749 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 750 751 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 752 if (!tid_agg_rx) 753 goto dont_reorder; 754 755 /* qos null data frames are excluded */ 756 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 757 goto dont_reorder; 758 759 /* not part of a BA session */ 760 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 761 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 762 goto dont_reorder; 763 764 /* not actually part of this BA session */ 765 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 766 goto dont_reorder; 767 768 /* new, potentially un-ordered, ampdu frame - process it */ 769 770 /* reset session timer */ 771 if (tid_agg_rx->timeout) 772 tid_agg_rx->last_rx = jiffies; 773 774 /* if this mpdu is fragmented - terminate rx aggregation session */ 775 sc = le16_to_cpu(hdr->seq_ctrl); 776 if (sc & IEEE80211_SCTL_FRAG) { 777 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 778 skb_queue_tail(&rx->sdata->skb_queue, skb); 779 ieee80211_queue_work(&local->hw, &rx->sdata->work); 780 return; 781 } 782 783 /* 784 * No locking needed -- we will only ever process one 785 * RX packet at a time, and thus own tid_agg_rx. All 786 * other code manipulating it needs to (and does) make 787 * sure that we cannot get to it any more before doing 788 * anything with it. 789 */ 790 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb)) 791 return; 792 793 dont_reorder: 794 skb_queue_tail(&local->rx_skb_queue, skb); 795 } 796 797 static ieee80211_rx_result debug_noinline 798 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 799 { 800 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 801 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 802 803 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 804 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 805 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 806 rx->sta->last_seq_ctrl[rx->seqno_idx] == 807 hdr->seq_ctrl)) { 808 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 809 rx->local->dot11FrameDuplicateCount++; 810 rx->sta->num_duplicates++; 811 } 812 return RX_DROP_UNUSABLE; 813 } else 814 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 815 } 816 817 if (unlikely(rx->skb->len < 16)) { 818 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 819 return RX_DROP_MONITOR; 820 } 821 822 /* Drop disallowed frame classes based on STA auth/assoc state; 823 * IEEE 802.11, Chap 5.5. 824 * 825 * mac80211 filters only based on association state, i.e. it drops 826 * Class 3 frames from not associated stations. hostapd sends 827 * deauth/disassoc frames when needed. In addition, hostapd is 828 * responsible for filtering on both auth and assoc states. 829 */ 830 831 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 832 return ieee80211_rx_mesh_check(rx); 833 834 if (unlikely((ieee80211_is_data(hdr->frame_control) || 835 ieee80211_is_pspoll(hdr->frame_control)) && 836 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 837 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 838 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 839 /* 840 * accept port control frames from the AP even when it's not 841 * yet marked ASSOC to prevent a race where we don't set the 842 * assoc bit quickly enough before it sends the first frame 843 */ 844 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 845 ieee80211_is_data_present(hdr->frame_control)) { 846 u16 ethertype; 847 u8 *payload; 848 849 payload = rx->skb->data + 850 ieee80211_hdrlen(hdr->frame_control); 851 ethertype = (payload[6] << 8) | payload[7]; 852 if (cpu_to_be16(ethertype) == 853 rx->sdata->control_port_protocol) 854 return RX_CONTINUE; 855 } 856 857 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 858 cfg80211_rx_spurious_frame(rx->sdata->dev, 859 hdr->addr2, 860 GFP_ATOMIC)) 861 return RX_DROP_UNUSABLE; 862 863 return RX_DROP_MONITOR; 864 } 865 866 return RX_CONTINUE; 867 } 868 869 870 static ieee80211_rx_result debug_noinline 871 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 872 { 873 struct sk_buff *skb = rx->skb; 874 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 875 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 876 int keyidx; 877 int hdrlen; 878 ieee80211_rx_result result = RX_DROP_UNUSABLE; 879 struct ieee80211_key *sta_ptk = NULL; 880 int mmie_keyidx = -1; 881 __le16 fc; 882 883 /* 884 * Key selection 101 885 * 886 * There are four types of keys: 887 * - GTK (group keys) 888 * - IGTK (group keys for management frames) 889 * - PTK (pairwise keys) 890 * - STK (station-to-station pairwise keys) 891 * 892 * When selecting a key, we have to distinguish between multicast 893 * (including broadcast) and unicast frames, the latter can only 894 * use PTKs and STKs while the former always use GTKs and IGTKs. 895 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 896 * unicast frames can also use key indices like GTKs. Hence, if we 897 * don't have a PTK/STK we check the key index for a WEP key. 898 * 899 * Note that in a regular BSS, multicast frames are sent by the 900 * AP only, associated stations unicast the frame to the AP first 901 * which then multicasts it on their behalf. 902 * 903 * There is also a slight problem in IBSS mode: GTKs are negotiated 904 * with each station, that is something we don't currently handle. 905 * The spec seems to expect that one negotiates the same key with 906 * every station but there's no such requirement; VLANs could be 907 * possible. 908 */ 909 910 /* 911 * No point in finding a key and decrypting if the frame is neither 912 * addressed to us nor a multicast frame. 913 */ 914 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 915 return RX_CONTINUE; 916 917 /* start without a key */ 918 rx->key = NULL; 919 920 if (rx->sta) 921 sta_ptk = rcu_dereference(rx->sta->ptk); 922 923 fc = hdr->frame_control; 924 925 if (!ieee80211_has_protected(fc)) 926 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 927 928 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 929 rx->key = sta_ptk; 930 if ((status->flag & RX_FLAG_DECRYPTED) && 931 (status->flag & RX_FLAG_IV_STRIPPED)) 932 return RX_CONTINUE; 933 /* Skip decryption if the frame is not protected. */ 934 if (!ieee80211_has_protected(fc)) 935 return RX_CONTINUE; 936 } else if (mmie_keyidx >= 0) { 937 /* Broadcast/multicast robust management frame / BIP */ 938 if ((status->flag & RX_FLAG_DECRYPTED) && 939 (status->flag & RX_FLAG_IV_STRIPPED)) 940 return RX_CONTINUE; 941 942 if (mmie_keyidx < NUM_DEFAULT_KEYS || 943 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 944 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 945 if (rx->sta) 946 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 947 if (!rx->key) 948 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 949 } else if (!ieee80211_has_protected(fc)) { 950 /* 951 * The frame was not protected, so skip decryption. However, we 952 * need to set rx->key if there is a key that could have been 953 * used so that the frame may be dropped if encryption would 954 * have been expected. 955 */ 956 struct ieee80211_key *key = NULL; 957 struct ieee80211_sub_if_data *sdata = rx->sdata; 958 int i; 959 960 if (ieee80211_is_mgmt(fc) && 961 is_multicast_ether_addr(hdr->addr1) && 962 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 963 rx->key = key; 964 else { 965 if (rx->sta) { 966 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 967 key = rcu_dereference(rx->sta->gtk[i]); 968 if (key) 969 break; 970 } 971 } 972 if (!key) { 973 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 974 key = rcu_dereference(sdata->keys[i]); 975 if (key) 976 break; 977 } 978 } 979 if (key) 980 rx->key = key; 981 } 982 return RX_CONTINUE; 983 } else { 984 u8 keyid; 985 /* 986 * The device doesn't give us the IV so we won't be 987 * able to look up the key. That's ok though, we 988 * don't need to decrypt the frame, we just won't 989 * be able to keep statistics accurate. 990 * Except for key threshold notifications, should 991 * we somehow allow the driver to tell us which key 992 * the hardware used if this flag is set? 993 */ 994 if ((status->flag & RX_FLAG_DECRYPTED) && 995 (status->flag & RX_FLAG_IV_STRIPPED)) 996 return RX_CONTINUE; 997 998 hdrlen = ieee80211_hdrlen(fc); 999 1000 if (rx->skb->len < 8 + hdrlen) 1001 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1002 1003 /* 1004 * no need to call ieee80211_wep_get_keyidx, 1005 * it verifies a bunch of things we've done already 1006 */ 1007 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1008 keyidx = keyid >> 6; 1009 1010 /* check per-station GTK first, if multicast packet */ 1011 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1012 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1013 1014 /* if not found, try default key */ 1015 if (!rx->key) { 1016 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1017 1018 /* 1019 * RSNA-protected unicast frames should always be 1020 * sent with pairwise or station-to-station keys, 1021 * but for WEP we allow using a key index as well. 1022 */ 1023 if (rx->key && 1024 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1025 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1026 !is_multicast_ether_addr(hdr->addr1)) 1027 rx->key = NULL; 1028 } 1029 } 1030 1031 if (rx->key) { 1032 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1033 return RX_DROP_MONITOR; 1034 1035 rx->key->tx_rx_count++; 1036 /* TODO: add threshold stuff again */ 1037 } else { 1038 return RX_DROP_MONITOR; 1039 } 1040 1041 switch (rx->key->conf.cipher) { 1042 case WLAN_CIPHER_SUITE_WEP40: 1043 case WLAN_CIPHER_SUITE_WEP104: 1044 result = ieee80211_crypto_wep_decrypt(rx); 1045 break; 1046 case WLAN_CIPHER_SUITE_TKIP: 1047 result = ieee80211_crypto_tkip_decrypt(rx); 1048 break; 1049 case WLAN_CIPHER_SUITE_CCMP: 1050 result = ieee80211_crypto_ccmp_decrypt(rx); 1051 break; 1052 case WLAN_CIPHER_SUITE_AES_CMAC: 1053 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1054 break; 1055 default: 1056 /* 1057 * We can reach here only with HW-only algorithms 1058 * but why didn't it decrypt the frame?! 1059 */ 1060 return RX_DROP_UNUSABLE; 1061 } 1062 1063 /* the hdr variable is invalid after the decrypt handlers */ 1064 1065 /* either the frame has been decrypted or will be dropped */ 1066 status->flag |= RX_FLAG_DECRYPTED; 1067 1068 return result; 1069 } 1070 1071 static ieee80211_rx_result debug_noinline 1072 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1073 { 1074 struct ieee80211_local *local; 1075 struct ieee80211_hdr *hdr; 1076 struct sk_buff *skb; 1077 1078 local = rx->local; 1079 skb = rx->skb; 1080 hdr = (struct ieee80211_hdr *) skb->data; 1081 1082 if (!local->pspolling) 1083 return RX_CONTINUE; 1084 1085 if (!ieee80211_has_fromds(hdr->frame_control)) 1086 /* this is not from AP */ 1087 return RX_CONTINUE; 1088 1089 if (!ieee80211_is_data(hdr->frame_control)) 1090 return RX_CONTINUE; 1091 1092 if (!ieee80211_has_moredata(hdr->frame_control)) { 1093 /* AP has no more frames buffered for us */ 1094 local->pspolling = false; 1095 return RX_CONTINUE; 1096 } 1097 1098 /* more data bit is set, let's request a new frame from the AP */ 1099 ieee80211_send_pspoll(local, rx->sdata); 1100 1101 return RX_CONTINUE; 1102 } 1103 1104 static void ap_sta_ps_start(struct sta_info *sta) 1105 { 1106 struct ieee80211_sub_if_data *sdata = sta->sdata; 1107 struct ieee80211_local *local = sdata->local; 1108 1109 atomic_inc(&sdata->bss->num_sta_ps); 1110 set_sta_flag(sta, WLAN_STA_PS_STA); 1111 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1112 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1113 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1114 sta->sta.addr, sta->sta.aid); 1115 } 1116 1117 static void ap_sta_ps_end(struct sta_info *sta) 1118 { 1119 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1120 sta->sta.addr, sta->sta.aid); 1121 1122 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1123 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1124 sta->sta.addr, sta->sta.aid); 1125 return; 1126 } 1127 1128 ieee80211_sta_ps_deliver_wakeup(sta); 1129 } 1130 1131 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1132 { 1133 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1134 bool in_ps; 1135 1136 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1137 1138 /* Don't let the same PS state be set twice */ 1139 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1140 if ((start && in_ps) || (!start && !in_ps)) 1141 return -EINVAL; 1142 1143 if (start) 1144 ap_sta_ps_start(sta_inf); 1145 else 1146 ap_sta_ps_end(sta_inf); 1147 1148 return 0; 1149 } 1150 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1151 1152 static ieee80211_rx_result debug_noinline 1153 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1154 { 1155 struct ieee80211_sub_if_data *sdata = rx->sdata; 1156 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1157 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1158 int tid, ac; 1159 1160 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1161 return RX_CONTINUE; 1162 1163 if (sdata->vif.type != NL80211_IFTYPE_AP && 1164 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1165 return RX_CONTINUE; 1166 1167 /* 1168 * The device handles station powersave, so don't do anything about 1169 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1170 * it to mac80211 since they're handled.) 1171 */ 1172 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1173 return RX_CONTINUE; 1174 1175 /* 1176 * Don't do anything if the station isn't already asleep. In 1177 * the uAPSD case, the station will probably be marked asleep, 1178 * in the PS-Poll case the station must be confused ... 1179 */ 1180 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1181 return RX_CONTINUE; 1182 1183 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1184 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1185 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1186 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1187 else 1188 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1189 } 1190 1191 /* Free PS Poll skb here instead of returning RX_DROP that would 1192 * count as an dropped frame. */ 1193 dev_kfree_skb(rx->skb); 1194 1195 return RX_QUEUED; 1196 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1197 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1198 ieee80211_has_pm(hdr->frame_control) && 1199 (ieee80211_is_data_qos(hdr->frame_control) || 1200 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1201 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1202 ac = ieee802_1d_to_ac[tid & 7]; 1203 1204 /* 1205 * If this AC is not trigger-enabled do nothing. 1206 * 1207 * NB: This could/should check a separate bitmap of trigger- 1208 * enabled queues, but for now we only implement uAPSD w/o 1209 * TSPEC changes to the ACs, so they're always the same. 1210 */ 1211 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1212 return RX_CONTINUE; 1213 1214 /* if we are in a service period, do nothing */ 1215 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1216 return RX_CONTINUE; 1217 1218 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1219 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1220 else 1221 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1222 } 1223 1224 return RX_CONTINUE; 1225 } 1226 1227 static ieee80211_rx_result debug_noinline 1228 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1229 { 1230 struct sta_info *sta = rx->sta; 1231 struct sk_buff *skb = rx->skb; 1232 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1233 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1234 1235 if (!sta) 1236 return RX_CONTINUE; 1237 1238 /* 1239 * Update last_rx only for IBSS packets which are for the current 1240 * BSSID to avoid keeping the current IBSS network alive in cases 1241 * where other STAs start using different BSSID. 1242 */ 1243 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1244 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1245 NL80211_IFTYPE_ADHOC); 1246 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid)) { 1247 sta->last_rx = jiffies; 1248 if (ieee80211_is_data(hdr->frame_control)) { 1249 sta->last_rx_rate_idx = status->rate_idx; 1250 sta->last_rx_rate_flag = status->flag; 1251 } 1252 } 1253 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1254 /* 1255 * Mesh beacons will update last_rx when if they are found to 1256 * match the current local configuration when processed. 1257 */ 1258 sta->last_rx = jiffies; 1259 if (ieee80211_is_data(hdr->frame_control)) { 1260 sta->last_rx_rate_idx = status->rate_idx; 1261 sta->last_rx_rate_flag = status->flag; 1262 } 1263 } 1264 1265 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1266 return RX_CONTINUE; 1267 1268 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1269 ieee80211_sta_rx_notify(rx->sdata, hdr); 1270 1271 sta->rx_fragments++; 1272 sta->rx_bytes += rx->skb->len; 1273 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1274 sta->last_signal = status->signal; 1275 ewma_add(&sta->avg_signal, -status->signal); 1276 } 1277 1278 /* 1279 * Change STA power saving mode only at the end of a frame 1280 * exchange sequence. 1281 */ 1282 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1283 !ieee80211_has_morefrags(hdr->frame_control) && 1284 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1285 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1286 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1287 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1288 /* 1289 * Ignore doze->wake transitions that are 1290 * indicated by non-data frames, the standard 1291 * is unclear here, but for example going to 1292 * PS mode and then scanning would cause a 1293 * doze->wake transition for the probe request, 1294 * and that is clearly undesirable. 1295 */ 1296 if (ieee80211_is_data(hdr->frame_control) && 1297 !ieee80211_has_pm(hdr->frame_control)) 1298 ap_sta_ps_end(sta); 1299 } else { 1300 if (ieee80211_has_pm(hdr->frame_control)) 1301 ap_sta_ps_start(sta); 1302 } 1303 } 1304 1305 /* 1306 * Drop (qos-)data::nullfunc frames silently, since they 1307 * are used only to control station power saving mode. 1308 */ 1309 if (ieee80211_is_nullfunc(hdr->frame_control) || 1310 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1311 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1312 1313 /* 1314 * If we receive a 4-addr nullfunc frame from a STA 1315 * that was not moved to a 4-addr STA vlan yet send 1316 * the event to userspace and for older hostapd drop 1317 * the frame to the monitor interface. 1318 */ 1319 if (ieee80211_has_a4(hdr->frame_control) && 1320 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1321 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1322 !rx->sdata->u.vlan.sta))) { 1323 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1324 cfg80211_rx_unexpected_4addr_frame( 1325 rx->sdata->dev, sta->sta.addr, 1326 GFP_ATOMIC); 1327 return RX_DROP_MONITOR; 1328 } 1329 /* 1330 * Update counter and free packet here to avoid 1331 * counting this as a dropped packed. 1332 */ 1333 sta->rx_packets++; 1334 dev_kfree_skb(rx->skb); 1335 return RX_QUEUED; 1336 } 1337 1338 return RX_CONTINUE; 1339 } /* ieee80211_rx_h_sta_process */ 1340 1341 static inline struct ieee80211_fragment_entry * 1342 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1343 unsigned int frag, unsigned int seq, int rx_queue, 1344 struct sk_buff **skb) 1345 { 1346 struct ieee80211_fragment_entry *entry; 1347 int idx; 1348 1349 idx = sdata->fragment_next; 1350 entry = &sdata->fragments[sdata->fragment_next++]; 1351 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1352 sdata->fragment_next = 0; 1353 1354 if (!skb_queue_empty(&entry->skb_list)) 1355 __skb_queue_purge(&entry->skb_list); 1356 1357 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1358 *skb = NULL; 1359 entry->first_frag_time = jiffies; 1360 entry->seq = seq; 1361 entry->rx_queue = rx_queue; 1362 entry->last_frag = frag; 1363 entry->ccmp = 0; 1364 entry->extra_len = 0; 1365 1366 return entry; 1367 } 1368 1369 static inline struct ieee80211_fragment_entry * 1370 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1371 unsigned int frag, unsigned int seq, 1372 int rx_queue, struct ieee80211_hdr *hdr) 1373 { 1374 struct ieee80211_fragment_entry *entry; 1375 int i, idx; 1376 1377 idx = sdata->fragment_next; 1378 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1379 struct ieee80211_hdr *f_hdr; 1380 1381 idx--; 1382 if (idx < 0) 1383 idx = IEEE80211_FRAGMENT_MAX - 1; 1384 1385 entry = &sdata->fragments[idx]; 1386 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1387 entry->rx_queue != rx_queue || 1388 entry->last_frag + 1 != frag) 1389 continue; 1390 1391 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1392 1393 /* 1394 * Check ftype and addresses are equal, else check next fragment 1395 */ 1396 if (((hdr->frame_control ^ f_hdr->frame_control) & 1397 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1398 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1399 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1400 continue; 1401 1402 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1403 __skb_queue_purge(&entry->skb_list); 1404 continue; 1405 } 1406 return entry; 1407 } 1408 1409 return NULL; 1410 } 1411 1412 static ieee80211_rx_result debug_noinline 1413 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1414 { 1415 struct ieee80211_hdr *hdr; 1416 u16 sc; 1417 __le16 fc; 1418 unsigned int frag, seq; 1419 struct ieee80211_fragment_entry *entry; 1420 struct sk_buff *skb; 1421 struct ieee80211_rx_status *status; 1422 1423 hdr = (struct ieee80211_hdr *)rx->skb->data; 1424 fc = hdr->frame_control; 1425 sc = le16_to_cpu(hdr->seq_ctrl); 1426 frag = sc & IEEE80211_SCTL_FRAG; 1427 1428 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1429 (rx->skb)->len < 24 || 1430 is_multicast_ether_addr(hdr->addr1))) { 1431 /* not fragmented */ 1432 goto out; 1433 } 1434 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1435 1436 if (skb_linearize(rx->skb)) 1437 return RX_DROP_UNUSABLE; 1438 1439 /* 1440 * skb_linearize() might change the skb->data and 1441 * previously cached variables (in this case, hdr) need to 1442 * be refreshed with the new data. 1443 */ 1444 hdr = (struct ieee80211_hdr *)rx->skb->data; 1445 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1446 1447 if (frag == 0) { 1448 /* This is the first fragment of a new frame. */ 1449 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1450 rx->seqno_idx, &(rx->skb)); 1451 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1452 ieee80211_has_protected(fc)) { 1453 int queue = rx->security_idx; 1454 /* Store CCMP PN so that we can verify that the next 1455 * fragment has a sequential PN value. */ 1456 entry->ccmp = 1; 1457 memcpy(entry->last_pn, 1458 rx->key->u.ccmp.rx_pn[queue], 1459 CCMP_PN_LEN); 1460 } 1461 return RX_QUEUED; 1462 } 1463 1464 /* This is a fragment for a frame that should already be pending in 1465 * fragment cache. Add this fragment to the end of the pending entry. 1466 */ 1467 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1468 rx->seqno_idx, hdr); 1469 if (!entry) { 1470 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1471 return RX_DROP_MONITOR; 1472 } 1473 1474 /* Verify that MPDUs within one MSDU have sequential PN values. 1475 * (IEEE 802.11i, 8.3.3.4.5) */ 1476 if (entry->ccmp) { 1477 int i; 1478 u8 pn[CCMP_PN_LEN], *rpn; 1479 int queue; 1480 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1481 return RX_DROP_UNUSABLE; 1482 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1483 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1484 pn[i]++; 1485 if (pn[i]) 1486 break; 1487 } 1488 queue = rx->security_idx; 1489 rpn = rx->key->u.ccmp.rx_pn[queue]; 1490 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1491 return RX_DROP_UNUSABLE; 1492 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1493 } 1494 1495 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1496 __skb_queue_tail(&entry->skb_list, rx->skb); 1497 entry->last_frag = frag; 1498 entry->extra_len += rx->skb->len; 1499 if (ieee80211_has_morefrags(fc)) { 1500 rx->skb = NULL; 1501 return RX_QUEUED; 1502 } 1503 1504 rx->skb = __skb_dequeue(&entry->skb_list); 1505 if (skb_tailroom(rx->skb) < entry->extra_len) { 1506 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1507 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1508 GFP_ATOMIC))) { 1509 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1510 __skb_queue_purge(&entry->skb_list); 1511 return RX_DROP_UNUSABLE; 1512 } 1513 } 1514 while ((skb = __skb_dequeue(&entry->skb_list))) { 1515 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1516 dev_kfree_skb(skb); 1517 } 1518 1519 /* Complete frame has been reassembled - process it now */ 1520 status = IEEE80211_SKB_RXCB(rx->skb); 1521 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1522 1523 out: 1524 if (rx->sta) 1525 rx->sta->rx_packets++; 1526 if (is_multicast_ether_addr(hdr->addr1)) 1527 rx->local->dot11MulticastReceivedFrameCount++; 1528 else 1529 ieee80211_led_rx(rx->local); 1530 return RX_CONTINUE; 1531 } 1532 1533 static int 1534 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1535 { 1536 if (unlikely(!rx->sta || 1537 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1538 return -EACCES; 1539 1540 return 0; 1541 } 1542 1543 static int 1544 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1545 { 1546 struct sk_buff *skb = rx->skb; 1547 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1548 1549 /* 1550 * Pass through unencrypted frames if the hardware has 1551 * decrypted them already. 1552 */ 1553 if (status->flag & RX_FLAG_DECRYPTED) 1554 return 0; 1555 1556 /* Drop unencrypted frames if key is set. */ 1557 if (unlikely(!ieee80211_has_protected(fc) && 1558 !ieee80211_is_nullfunc(fc) && 1559 ieee80211_is_data(fc) && 1560 (rx->key || rx->sdata->drop_unencrypted))) 1561 return -EACCES; 1562 1563 return 0; 1564 } 1565 1566 static int 1567 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1568 { 1569 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1570 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1571 __le16 fc = hdr->frame_control; 1572 1573 /* 1574 * Pass through unencrypted frames if the hardware has 1575 * decrypted them already. 1576 */ 1577 if (status->flag & RX_FLAG_DECRYPTED) 1578 return 0; 1579 1580 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1581 if (unlikely(!ieee80211_has_protected(fc) && 1582 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1583 rx->key)) { 1584 if (ieee80211_is_deauth(fc)) 1585 cfg80211_send_unprot_deauth(rx->sdata->dev, 1586 rx->skb->data, 1587 rx->skb->len); 1588 else if (ieee80211_is_disassoc(fc)) 1589 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1590 rx->skb->data, 1591 rx->skb->len); 1592 return -EACCES; 1593 } 1594 /* BIP does not use Protected field, so need to check MMIE */ 1595 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1596 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1597 if (ieee80211_is_deauth(fc)) 1598 cfg80211_send_unprot_deauth(rx->sdata->dev, 1599 rx->skb->data, 1600 rx->skb->len); 1601 else if (ieee80211_is_disassoc(fc)) 1602 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1603 rx->skb->data, 1604 rx->skb->len); 1605 return -EACCES; 1606 } 1607 /* 1608 * When using MFP, Action frames are not allowed prior to 1609 * having configured keys. 1610 */ 1611 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1612 ieee80211_is_robust_mgmt_frame( 1613 (struct ieee80211_hdr *) rx->skb->data))) 1614 return -EACCES; 1615 } 1616 1617 return 0; 1618 } 1619 1620 static int 1621 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1622 { 1623 struct ieee80211_sub_if_data *sdata = rx->sdata; 1624 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1625 bool check_port_control = false; 1626 struct ethhdr *ehdr; 1627 int ret; 1628 1629 *port_control = false; 1630 if (ieee80211_has_a4(hdr->frame_control) && 1631 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1632 return -1; 1633 1634 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1635 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1636 1637 if (!sdata->u.mgd.use_4addr) 1638 return -1; 1639 else 1640 check_port_control = true; 1641 } 1642 1643 if (is_multicast_ether_addr(hdr->addr1) && 1644 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1645 return -1; 1646 1647 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1648 if (ret < 0) 1649 return ret; 1650 1651 ehdr = (struct ethhdr *) rx->skb->data; 1652 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1653 *port_control = true; 1654 else if (check_port_control) 1655 return -1; 1656 1657 return 0; 1658 } 1659 1660 /* 1661 * requires that rx->skb is a frame with ethernet header 1662 */ 1663 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1664 { 1665 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1666 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1667 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1668 1669 /* 1670 * Allow EAPOL frames to us/the PAE group address regardless 1671 * of whether the frame was encrypted or not. 1672 */ 1673 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1674 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1675 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1676 return true; 1677 1678 if (ieee80211_802_1x_port_control(rx) || 1679 ieee80211_drop_unencrypted(rx, fc)) 1680 return false; 1681 1682 return true; 1683 } 1684 1685 /* 1686 * requires that rx->skb is a frame with ethernet header 1687 */ 1688 static void 1689 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1690 { 1691 struct ieee80211_sub_if_data *sdata = rx->sdata; 1692 struct net_device *dev = sdata->dev; 1693 struct sk_buff *skb, *xmit_skb; 1694 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1695 struct sta_info *dsta; 1696 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1697 1698 skb = rx->skb; 1699 xmit_skb = NULL; 1700 1701 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1702 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1703 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1704 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1705 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1706 if (is_multicast_ether_addr(ehdr->h_dest)) { 1707 /* 1708 * send multicast frames both to higher layers in 1709 * local net stack and back to the wireless medium 1710 */ 1711 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1712 if (!xmit_skb) 1713 net_info_ratelimited("%s: failed to clone multicast frame\n", 1714 dev->name); 1715 } else { 1716 dsta = sta_info_get(sdata, skb->data); 1717 if (dsta) { 1718 /* 1719 * The destination station is associated to 1720 * this AP (in this VLAN), so send the frame 1721 * directly to it and do not pass it to local 1722 * net stack. 1723 */ 1724 xmit_skb = skb; 1725 skb = NULL; 1726 } 1727 } 1728 } 1729 1730 if (skb) { 1731 int align __maybe_unused; 1732 1733 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1734 /* 1735 * 'align' will only take the values 0 or 2 here 1736 * since all frames are required to be aligned 1737 * to 2-byte boundaries when being passed to 1738 * mac80211. That also explains the __skb_push() 1739 * below. 1740 */ 1741 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1742 if (align) { 1743 if (WARN_ON(skb_headroom(skb) < 3)) { 1744 dev_kfree_skb(skb); 1745 skb = NULL; 1746 } else { 1747 u8 *data = skb->data; 1748 size_t len = skb_headlen(skb); 1749 skb->data -= align; 1750 memmove(skb->data, data, len); 1751 skb_set_tail_pointer(skb, len); 1752 } 1753 } 1754 #endif 1755 1756 if (skb) { 1757 /* deliver to local stack */ 1758 skb->protocol = eth_type_trans(skb, dev); 1759 memset(skb->cb, 0, sizeof(skb->cb)); 1760 netif_receive_skb(skb); 1761 } 1762 } 1763 1764 if (xmit_skb) { 1765 /* 1766 * Send to wireless media and increase priority by 256 to 1767 * keep the received priority instead of reclassifying 1768 * the frame (see cfg80211_classify8021d). 1769 */ 1770 xmit_skb->priority += 256; 1771 xmit_skb->protocol = htons(ETH_P_802_3); 1772 skb_reset_network_header(xmit_skb); 1773 skb_reset_mac_header(xmit_skb); 1774 dev_queue_xmit(xmit_skb); 1775 } 1776 } 1777 1778 static ieee80211_rx_result debug_noinline 1779 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1780 { 1781 struct net_device *dev = rx->sdata->dev; 1782 struct sk_buff *skb = rx->skb; 1783 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1784 __le16 fc = hdr->frame_control; 1785 struct sk_buff_head frame_list; 1786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1787 1788 if (unlikely(!ieee80211_is_data(fc))) 1789 return RX_CONTINUE; 1790 1791 if (unlikely(!ieee80211_is_data_present(fc))) 1792 return RX_DROP_MONITOR; 1793 1794 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1795 return RX_CONTINUE; 1796 1797 if (ieee80211_has_a4(hdr->frame_control) && 1798 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1799 !rx->sdata->u.vlan.sta) 1800 return RX_DROP_UNUSABLE; 1801 1802 if (is_multicast_ether_addr(hdr->addr1) && 1803 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1804 rx->sdata->u.vlan.sta) || 1805 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1806 rx->sdata->u.mgd.use_4addr))) 1807 return RX_DROP_UNUSABLE; 1808 1809 skb->dev = dev; 1810 __skb_queue_head_init(&frame_list); 1811 1812 if (skb_linearize(skb)) 1813 return RX_DROP_UNUSABLE; 1814 1815 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1816 rx->sdata->vif.type, 1817 rx->local->hw.extra_tx_headroom, true); 1818 1819 while (!skb_queue_empty(&frame_list)) { 1820 rx->skb = __skb_dequeue(&frame_list); 1821 1822 if (!ieee80211_frame_allowed(rx, fc)) { 1823 dev_kfree_skb(rx->skb); 1824 continue; 1825 } 1826 dev->stats.rx_packets++; 1827 dev->stats.rx_bytes += rx->skb->len; 1828 1829 ieee80211_deliver_skb(rx); 1830 } 1831 1832 return RX_QUEUED; 1833 } 1834 1835 #ifdef CONFIG_MAC80211_MESH 1836 static ieee80211_rx_result 1837 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1838 { 1839 struct ieee80211_hdr *fwd_hdr, *hdr; 1840 struct ieee80211_tx_info *info; 1841 struct ieee80211s_hdr *mesh_hdr; 1842 struct sk_buff *skb = rx->skb, *fwd_skb; 1843 struct ieee80211_local *local = rx->local; 1844 struct ieee80211_sub_if_data *sdata = rx->sdata; 1845 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1846 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 1847 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 1848 u16 q, hdrlen; 1849 1850 hdr = (struct ieee80211_hdr *) skb->data; 1851 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1852 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1853 1854 /* frame is in RMC, don't forward */ 1855 if (ieee80211_is_data(hdr->frame_control) && 1856 is_multicast_ether_addr(hdr->addr1) && 1857 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata)) 1858 return RX_DROP_MONITOR; 1859 1860 if (!ieee80211_is_data(hdr->frame_control)) 1861 return RX_CONTINUE; 1862 1863 if (!mesh_hdr->ttl) 1864 return RX_DROP_MONITOR; 1865 1866 if (mesh_hdr->flags & MESH_FLAGS_AE) { 1867 struct mesh_path *mppath; 1868 char *proxied_addr; 1869 char *mpp_addr; 1870 1871 if (is_multicast_ether_addr(hdr->addr1)) { 1872 mpp_addr = hdr->addr3; 1873 proxied_addr = mesh_hdr->eaddr1; 1874 } else { 1875 mpp_addr = hdr->addr4; 1876 proxied_addr = mesh_hdr->eaddr2; 1877 } 1878 1879 rcu_read_lock(); 1880 mppath = mpp_path_lookup(proxied_addr, sdata); 1881 if (!mppath) { 1882 mpp_path_add(proxied_addr, mpp_addr, sdata); 1883 } else { 1884 spin_lock_bh(&mppath->state_lock); 1885 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 1886 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 1887 spin_unlock_bh(&mppath->state_lock); 1888 } 1889 rcu_read_unlock(); 1890 } 1891 1892 /* Frame has reached destination. Don't forward */ 1893 if (!is_multicast_ether_addr(hdr->addr1) && 1894 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 1895 return RX_CONTINUE; 1896 1897 q = ieee80211_select_queue_80211(sdata, skb, hdr); 1898 if (ieee80211_queue_stopped(&local->hw, q)) { 1899 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 1900 return RX_DROP_MONITOR; 1901 } 1902 skb_set_queue_mapping(skb, q); 1903 1904 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1905 goto out; 1906 1907 if (!--mesh_hdr->ttl) { 1908 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 1909 return RX_DROP_MONITOR; 1910 } 1911 1912 if (!ifmsh->mshcfg.dot11MeshForwarding) 1913 goto out; 1914 1915 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1916 if (!fwd_skb) { 1917 net_info_ratelimited("%s: failed to clone mesh frame\n", 1918 sdata->name); 1919 goto out; 1920 } 1921 1922 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1923 info = IEEE80211_SKB_CB(fwd_skb); 1924 memset(info, 0, sizeof(*info)); 1925 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1926 info->control.vif = &rx->sdata->vif; 1927 info->control.jiffies = jiffies; 1928 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 1929 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 1930 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 1931 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) { 1932 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 1933 } else { 1934 /* unable to resolve next hop */ 1935 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3, 1936 0, reason, fwd_hdr->addr2, sdata); 1937 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 1938 kfree_skb(fwd_skb); 1939 return RX_DROP_MONITOR; 1940 } 1941 1942 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 1943 ieee80211_add_pending_skb(local, fwd_skb); 1944 out: 1945 if (is_multicast_ether_addr(hdr->addr1) || 1946 sdata->dev->flags & IFF_PROMISC) 1947 return RX_CONTINUE; 1948 else 1949 return RX_DROP_MONITOR; 1950 } 1951 #endif 1952 1953 static ieee80211_rx_result debug_noinline 1954 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1955 { 1956 struct ieee80211_sub_if_data *sdata = rx->sdata; 1957 struct ieee80211_local *local = rx->local; 1958 struct net_device *dev = sdata->dev; 1959 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1960 __le16 fc = hdr->frame_control; 1961 bool port_control; 1962 int err; 1963 1964 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 1965 return RX_CONTINUE; 1966 1967 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1968 return RX_DROP_MONITOR; 1969 1970 /* 1971 * Send unexpected-4addr-frame event to hostapd. For older versions, 1972 * also drop the frame to cooked monitor interfaces. 1973 */ 1974 if (ieee80211_has_a4(hdr->frame_control) && 1975 sdata->vif.type == NL80211_IFTYPE_AP) { 1976 if (rx->sta && 1977 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 1978 cfg80211_rx_unexpected_4addr_frame( 1979 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 1980 return RX_DROP_MONITOR; 1981 } 1982 1983 err = __ieee80211_data_to_8023(rx, &port_control); 1984 if (unlikely(err)) 1985 return RX_DROP_UNUSABLE; 1986 1987 if (!ieee80211_frame_allowed(rx, fc)) 1988 return RX_DROP_MONITOR; 1989 1990 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1991 unlikely(port_control) && sdata->bss) { 1992 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1993 u.ap); 1994 dev = sdata->dev; 1995 rx->sdata = sdata; 1996 } 1997 1998 rx->skb->dev = dev; 1999 2000 dev->stats.rx_packets++; 2001 dev->stats.rx_bytes += rx->skb->len; 2002 2003 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2004 !is_multicast_ether_addr( 2005 ((struct ethhdr *)rx->skb->data)->h_dest) && 2006 (!local->scanning && 2007 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2008 mod_timer(&local->dynamic_ps_timer, jiffies + 2009 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2010 } 2011 2012 ieee80211_deliver_skb(rx); 2013 2014 return RX_QUEUED; 2015 } 2016 2017 static ieee80211_rx_result debug_noinline 2018 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 2019 { 2020 struct sk_buff *skb = rx->skb; 2021 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2022 struct tid_ampdu_rx *tid_agg_rx; 2023 u16 start_seq_num; 2024 u16 tid; 2025 2026 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2027 return RX_CONTINUE; 2028 2029 if (ieee80211_is_back_req(bar->frame_control)) { 2030 struct { 2031 __le16 control, start_seq_num; 2032 } __packed bar_data; 2033 2034 if (!rx->sta) 2035 return RX_DROP_MONITOR; 2036 2037 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2038 &bar_data, sizeof(bar_data))) 2039 return RX_DROP_MONITOR; 2040 2041 tid = le16_to_cpu(bar_data.control) >> 12; 2042 2043 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2044 if (!tid_agg_rx) 2045 return RX_DROP_MONITOR; 2046 2047 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2048 2049 /* reset session timer */ 2050 if (tid_agg_rx->timeout) 2051 mod_timer(&tid_agg_rx->session_timer, 2052 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2053 2054 spin_lock(&tid_agg_rx->reorder_lock); 2055 /* release stored frames up to start of BAR */ 2056 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2057 start_seq_num); 2058 spin_unlock(&tid_agg_rx->reorder_lock); 2059 2060 kfree_skb(skb); 2061 return RX_QUEUED; 2062 } 2063 2064 /* 2065 * After this point, we only want management frames, 2066 * so we can drop all remaining control frames to 2067 * cooked monitor interfaces. 2068 */ 2069 return RX_DROP_MONITOR; 2070 } 2071 2072 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2073 struct ieee80211_mgmt *mgmt, 2074 size_t len) 2075 { 2076 struct ieee80211_local *local = sdata->local; 2077 struct sk_buff *skb; 2078 struct ieee80211_mgmt *resp; 2079 2080 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2081 /* Not to own unicast address */ 2082 return; 2083 } 2084 2085 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2086 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2087 /* Not from the current AP or not associated yet. */ 2088 return; 2089 } 2090 2091 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2092 /* Too short SA Query request frame */ 2093 return; 2094 } 2095 2096 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2097 if (skb == NULL) 2098 return; 2099 2100 skb_reserve(skb, local->hw.extra_tx_headroom); 2101 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2102 memset(resp, 0, 24); 2103 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2104 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2105 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2106 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2107 IEEE80211_STYPE_ACTION); 2108 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2109 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2110 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2111 memcpy(resp->u.action.u.sa_query.trans_id, 2112 mgmt->u.action.u.sa_query.trans_id, 2113 WLAN_SA_QUERY_TR_ID_LEN); 2114 2115 ieee80211_tx_skb(sdata, skb); 2116 } 2117 2118 static ieee80211_rx_result debug_noinline 2119 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2120 { 2121 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2122 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2123 2124 /* 2125 * From here on, look only at management frames. 2126 * Data and control frames are already handled, 2127 * and unknown (reserved) frames are useless. 2128 */ 2129 if (rx->skb->len < 24) 2130 return RX_DROP_MONITOR; 2131 2132 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2133 return RX_DROP_MONITOR; 2134 2135 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2136 ieee80211_is_beacon(mgmt->frame_control) && 2137 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2138 int sig = 0; 2139 2140 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2141 sig = status->signal; 2142 2143 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2144 rx->skb->data, rx->skb->len, 2145 status->freq, sig, GFP_ATOMIC); 2146 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2147 } 2148 2149 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2150 return RX_DROP_MONITOR; 2151 2152 if (ieee80211_drop_unencrypted_mgmt(rx)) 2153 return RX_DROP_UNUSABLE; 2154 2155 return RX_CONTINUE; 2156 } 2157 2158 static ieee80211_rx_result debug_noinline 2159 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2160 { 2161 struct ieee80211_local *local = rx->local; 2162 struct ieee80211_sub_if_data *sdata = rx->sdata; 2163 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2164 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2165 int len = rx->skb->len; 2166 2167 if (!ieee80211_is_action(mgmt->frame_control)) 2168 return RX_CONTINUE; 2169 2170 /* drop too small frames */ 2171 if (len < IEEE80211_MIN_ACTION_SIZE) 2172 return RX_DROP_UNUSABLE; 2173 2174 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) 2175 return RX_DROP_UNUSABLE; 2176 2177 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2178 return RX_DROP_UNUSABLE; 2179 2180 switch (mgmt->u.action.category) { 2181 case WLAN_CATEGORY_HT: 2182 /* reject HT action frames from stations not supporting HT */ 2183 if (!rx->sta->sta.ht_cap.ht_supported) 2184 goto invalid; 2185 2186 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2187 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2188 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2189 sdata->vif.type != NL80211_IFTYPE_AP && 2190 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2191 break; 2192 2193 /* verify action & smps_control are present */ 2194 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2195 goto invalid; 2196 2197 switch (mgmt->u.action.u.ht_smps.action) { 2198 case WLAN_HT_ACTION_SMPS: { 2199 struct ieee80211_supported_band *sband; 2200 u8 smps; 2201 2202 /* convert to HT capability */ 2203 switch (mgmt->u.action.u.ht_smps.smps_control) { 2204 case WLAN_HT_SMPS_CONTROL_DISABLED: 2205 smps = WLAN_HT_CAP_SM_PS_DISABLED; 2206 break; 2207 case WLAN_HT_SMPS_CONTROL_STATIC: 2208 smps = WLAN_HT_CAP_SM_PS_STATIC; 2209 break; 2210 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2211 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 2212 break; 2213 default: 2214 goto invalid; 2215 } 2216 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 2217 2218 /* if no change do nothing */ 2219 if ((rx->sta->sta.ht_cap.cap & 2220 IEEE80211_HT_CAP_SM_PS) == smps) 2221 goto handled; 2222 2223 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS; 2224 rx->sta->sta.ht_cap.cap |= smps; 2225 2226 sband = rx->local->hw.wiphy->bands[status->band]; 2227 2228 rate_control_rate_update(local, sband, rx->sta, 2229 IEEE80211_RC_SMPS_CHANGED); 2230 goto handled; 2231 } 2232 default: 2233 goto invalid; 2234 } 2235 2236 break; 2237 case WLAN_CATEGORY_BACK: 2238 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2239 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2240 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2241 sdata->vif.type != NL80211_IFTYPE_AP && 2242 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2243 break; 2244 2245 /* verify action_code is present */ 2246 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2247 break; 2248 2249 switch (mgmt->u.action.u.addba_req.action_code) { 2250 case WLAN_ACTION_ADDBA_REQ: 2251 if (len < (IEEE80211_MIN_ACTION_SIZE + 2252 sizeof(mgmt->u.action.u.addba_req))) 2253 goto invalid; 2254 break; 2255 case WLAN_ACTION_ADDBA_RESP: 2256 if (len < (IEEE80211_MIN_ACTION_SIZE + 2257 sizeof(mgmt->u.action.u.addba_resp))) 2258 goto invalid; 2259 break; 2260 case WLAN_ACTION_DELBA: 2261 if (len < (IEEE80211_MIN_ACTION_SIZE + 2262 sizeof(mgmt->u.action.u.delba))) 2263 goto invalid; 2264 break; 2265 default: 2266 goto invalid; 2267 } 2268 2269 goto queue; 2270 case WLAN_CATEGORY_SPECTRUM_MGMT: 2271 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 2272 break; 2273 2274 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2275 break; 2276 2277 /* verify action_code is present */ 2278 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2279 break; 2280 2281 switch (mgmt->u.action.u.measurement.action_code) { 2282 case WLAN_ACTION_SPCT_MSR_REQ: 2283 if (len < (IEEE80211_MIN_ACTION_SIZE + 2284 sizeof(mgmt->u.action.u.measurement))) 2285 break; 2286 ieee80211_process_measurement_req(sdata, mgmt, len); 2287 goto handled; 2288 case WLAN_ACTION_SPCT_CHL_SWITCH: 2289 if (len < (IEEE80211_MIN_ACTION_SIZE + 2290 sizeof(mgmt->u.action.u.chan_switch))) 2291 break; 2292 2293 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2294 break; 2295 2296 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2297 break; 2298 2299 goto queue; 2300 } 2301 break; 2302 case WLAN_CATEGORY_SA_QUERY: 2303 if (len < (IEEE80211_MIN_ACTION_SIZE + 2304 sizeof(mgmt->u.action.u.sa_query))) 2305 break; 2306 2307 switch (mgmt->u.action.u.sa_query.action) { 2308 case WLAN_ACTION_SA_QUERY_REQUEST: 2309 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2310 break; 2311 ieee80211_process_sa_query_req(sdata, mgmt, len); 2312 goto handled; 2313 } 2314 break; 2315 case WLAN_CATEGORY_SELF_PROTECTED: 2316 switch (mgmt->u.action.u.self_prot.action_code) { 2317 case WLAN_SP_MESH_PEERING_OPEN: 2318 case WLAN_SP_MESH_PEERING_CLOSE: 2319 case WLAN_SP_MESH_PEERING_CONFIRM: 2320 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2321 goto invalid; 2322 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) 2323 /* userspace handles this frame */ 2324 break; 2325 goto queue; 2326 case WLAN_SP_MGK_INFORM: 2327 case WLAN_SP_MGK_ACK: 2328 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2329 goto invalid; 2330 break; 2331 } 2332 break; 2333 case WLAN_CATEGORY_MESH_ACTION: 2334 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2335 break; 2336 if (mesh_action_is_path_sel(mgmt) && 2337 (!mesh_path_sel_is_hwmp(sdata))) 2338 break; 2339 goto queue; 2340 } 2341 2342 return RX_CONTINUE; 2343 2344 invalid: 2345 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2346 /* will return in the next handlers */ 2347 return RX_CONTINUE; 2348 2349 handled: 2350 if (rx->sta) 2351 rx->sta->rx_packets++; 2352 dev_kfree_skb(rx->skb); 2353 return RX_QUEUED; 2354 2355 queue: 2356 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2357 skb_queue_tail(&sdata->skb_queue, rx->skb); 2358 ieee80211_queue_work(&local->hw, &sdata->work); 2359 if (rx->sta) 2360 rx->sta->rx_packets++; 2361 return RX_QUEUED; 2362 } 2363 2364 static ieee80211_rx_result debug_noinline 2365 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2366 { 2367 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2368 int sig = 0; 2369 2370 /* skip known-bad action frames and return them in the next handler */ 2371 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2372 return RX_CONTINUE; 2373 2374 /* 2375 * Getting here means the kernel doesn't know how to handle 2376 * it, but maybe userspace does ... include returned frames 2377 * so userspace can register for those to know whether ones 2378 * it transmitted were processed or returned. 2379 */ 2380 2381 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2382 sig = status->signal; 2383 2384 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2385 rx->skb->data, rx->skb->len, 2386 GFP_ATOMIC)) { 2387 if (rx->sta) 2388 rx->sta->rx_packets++; 2389 dev_kfree_skb(rx->skb); 2390 return RX_QUEUED; 2391 } 2392 2393 2394 return RX_CONTINUE; 2395 } 2396 2397 static ieee80211_rx_result debug_noinline 2398 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2399 { 2400 struct ieee80211_local *local = rx->local; 2401 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2402 struct sk_buff *nskb; 2403 struct ieee80211_sub_if_data *sdata = rx->sdata; 2404 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2405 2406 if (!ieee80211_is_action(mgmt->frame_control)) 2407 return RX_CONTINUE; 2408 2409 /* 2410 * For AP mode, hostapd is responsible for handling any action 2411 * frames that we didn't handle, including returning unknown 2412 * ones. For all other modes we will return them to the sender, 2413 * setting the 0x80 bit in the action category, as required by 2414 * 802.11-2012 9.24.4. 2415 * Newer versions of hostapd shall also use the management frame 2416 * registration mechanisms, but older ones still use cooked 2417 * monitor interfaces so push all frames there. 2418 */ 2419 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2420 (sdata->vif.type == NL80211_IFTYPE_AP || 2421 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2422 return RX_DROP_MONITOR; 2423 2424 if (is_multicast_ether_addr(mgmt->da)) 2425 return RX_DROP_MONITOR; 2426 2427 /* do not return rejected action frames */ 2428 if (mgmt->u.action.category & 0x80) 2429 return RX_DROP_UNUSABLE; 2430 2431 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2432 GFP_ATOMIC); 2433 if (nskb) { 2434 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2435 2436 nmgmt->u.action.category |= 0x80; 2437 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2438 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2439 2440 memset(nskb->cb, 0, sizeof(nskb->cb)); 2441 2442 ieee80211_tx_skb(rx->sdata, nskb); 2443 } 2444 dev_kfree_skb(rx->skb); 2445 return RX_QUEUED; 2446 } 2447 2448 static ieee80211_rx_result debug_noinline 2449 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2450 { 2451 struct ieee80211_sub_if_data *sdata = rx->sdata; 2452 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2453 __le16 stype; 2454 2455 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2456 2457 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2458 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2459 sdata->vif.type != NL80211_IFTYPE_STATION) 2460 return RX_DROP_MONITOR; 2461 2462 switch (stype) { 2463 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2464 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2465 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2466 /* process for all: mesh, mlme, ibss */ 2467 break; 2468 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2469 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2470 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2471 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2472 if (is_multicast_ether_addr(mgmt->da) && 2473 !is_broadcast_ether_addr(mgmt->da)) 2474 return RX_DROP_MONITOR; 2475 2476 /* process only for station */ 2477 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2478 return RX_DROP_MONITOR; 2479 break; 2480 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2481 /* process only for ibss */ 2482 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 2483 return RX_DROP_MONITOR; 2484 break; 2485 default: 2486 return RX_DROP_MONITOR; 2487 } 2488 2489 /* queue up frame and kick off work to process it */ 2490 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2491 skb_queue_tail(&sdata->skb_queue, rx->skb); 2492 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2493 if (rx->sta) 2494 rx->sta->rx_packets++; 2495 2496 return RX_QUEUED; 2497 } 2498 2499 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2500 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2501 struct ieee80211_rate *rate) 2502 { 2503 struct ieee80211_sub_if_data *sdata; 2504 struct ieee80211_local *local = rx->local; 2505 struct sk_buff *skb = rx->skb, *skb2; 2506 struct net_device *prev_dev = NULL; 2507 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2508 int needed_headroom; 2509 2510 /* 2511 * If cooked monitor has been processed already, then 2512 * don't do it again. If not, set the flag. 2513 */ 2514 if (rx->flags & IEEE80211_RX_CMNTR) 2515 goto out_free_skb; 2516 rx->flags |= IEEE80211_RX_CMNTR; 2517 2518 /* If there are no cooked monitor interfaces, just free the SKB */ 2519 if (!local->cooked_mntrs) 2520 goto out_free_skb; 2521 2522 /* room for the radiotap header based on driver features */ 2523 needed_headroom = ieee80211_rx_radiotap_len(local, status); 2524 2525 if (skb_headroom(skb) < needed_headroom && 2526 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2527 goto out_free_skb; 2528 2529 /* prepend radiotap information */ 2530 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2531 false); 2532 2533 skb_set_mac_header(skb, 0); 2534 skb->ip_summed = CHECKSUM_UNNECESSARY; 2535 skb->pkt_type = PACKET_OTHERHOST; 2536 skb->protocol = htons(ETH_P_802_2); 2537 2538 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2539 if (!ieee80211_sdata_running(sdata)) 2540 continue; 2541 2542 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2543 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2544 continue; 2545 2546 if (prev_dev) { 2547 skb2 = skb_clone(skb, GFP_ATOMIC); 2548 if (skb2) { 2549 skb2->dev = prev_dev; 2550 netif_receive_skb(skb2); 2551 } 2552 } 2553 2554 prev_dev = sdata->dev; 2555 sdata->dev->stats.rx_packets++; 2556 sdata->dev->stats.rx_bytes += skb->len; 2557 } 2558 2559 if (prev_dev) { 2560 skb->dev = prev_dev; 2561 netif_receive_skb(skb); 2562 return; 2563 } 2564 2565 out_free_skb: 2566 dev_kfree_skb(skb); 2567 } 2568 2569 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2570 ieee80211_rx_result res) 2571 { 2572 switch (res) { 2573 case RX_DROP_MONITOR: 2574 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2575 if (rx->sta) 2576 rx->sta->rx_dropped++; 2577 /* fall through */ 2578 case RX_CONTINUE: { 2579 struct ieee80211_rate *rate = NULL; 2580 struct ieee80211_supported_band *sband; 2581 struct ieee80211_rx_status *status; 2582 2583 status = IEEE80211_SKB_RXCB((rx->skb)); 2584 2585 sband = rx->local->hw.wiphy->bands[status->band]; 2586 if (!(status->flag & RX_FLAG_HT)) 2587 rate = &sband->bitrates[status->rate_idx]; 2588 2589 ieee80211_rx_cooked_monitor(rx, rate); 2590 break; 2591 } 2592 case RX_DROP_UNUSABLE: 2593 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2594 if (rx->sta) 2595 rx->sta->rx_dropped++; 2596 dev_kfree_skb(rx->skb); 2597 break; 2598 case RX_QUEUED: 2599 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2600 break; 2601 } 2602 } 2603 2604 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx) 2605 { 2606 ieee80211_rx_result res = RX_DROP_MONITOR; 2607 struct sk_buff *skb; 2608 2609 #define CALL_RXH(rxh) \ 2610 do { \ 2611 res = rxh(rx); \ 2612 if (res != RX_CONTINUE) \ 2613 goto rxh_next; \ 2614 } while (0); 2615 2616 spin_lock(&rx->local->rx_skb_queue.lock); 2617 if (rx->local->running_rx_handler) 2618 goto unlock; 2619 2620 rx->local->running_rx_handler = true; 2621 2622 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) { 2623 spin_unlock(&rx->local->rx_skb_queue.lock); 2624 2625 /* 2626 * all the other fields are valid across frames 2627 * that belong to an aMPDU since they are on the 2628 * same TID from the same station 2629 */ 2630 rx->skb = skb; 2631 2632 CALL_RXH(ieee80211_rx_h_decrypt) 2633 CALL_RXH(ieee80211_rx_h_check_more_data) 2634 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2635 CALL_RXH(ieee80211_rx_h_sta_process) 2636 CALL_RXH(ieee80211_rx_h_defragment) 2637 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2638 /* must be after MMIC verify so header is counted in MPDU mic */ 2639 #ifdef CONFIG_MAC80211_MESH 2640 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2641 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2642 #endif 2643 CALL_RXH(ieee80211_rx_h_amsdu) 2644 CALL_RXH(ieee80211_rx_h_data) 2645 CALL_RXH(ieee80211_rx_h_ctrl); 2646 CALL_RXH(ieee80211_rx_h_mgmt_check) 2647 CALL_RXH(ieee80211_rx_h_action) 2648 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2649 CALL_RXH(ieee80211_rx_h_action_return) 2650 CALL_RXH(ieee80211_rx_h_mgmt) 2651 2652 rxh_next: 2653 ieee80211_rx_handlers_result(rx, res); 2654 spin_lock(&rx->local->rx_skb_queue.lock); 2655 #undef CALL_RXH 2656 } 2657 2658 rx->local->running_rx_handler = false; 2659 2660 unlock: 2661 spin_unlock(&rx->local->rx_skb_queue.lock); 2662 } 2663 2664 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2665 { 2666 ieee80211_rx_result res = RX_DROP_MONITOR; 2667 2668 #define CALL_RXH(rxh) \ 2669 do { \ 2670 res = rxh(rx); \ 2671 if (res != RX_CONTINUE) \ 2672 goto rxh_next; \ 2673 } while (0); 2674 2675 CALL_RXH(ieee80211_rx_h_check) 2676 2677 ieee80211_rx_reorder_ampdu(rx); 2678 2679 ieee80211_rx_handlers(rx); 2680 return; 2681 2682 rxh_next: 2683 ieee80211_rx_handlers_result(rx, res); 2684 2685 #undef CALL_RXH 2686 } 2687 2688 /* 2689 * This function makes calls into the RX path, therefore 2690 * it has to be invoked under RCU read lock. 2691 */ 2692 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2693 { 2694 struct ieee80211_rx_data rx = { 2695 .sta = sta, 2696 .sdata = sta->sdata, 2697 .local = sta->local, 2698 /* This is OK -- must be QoS data frame */ 2699 .security_idx = tid, 2700 .seqno_idx = tid, 2701 .flags = 0, 2702 }; 2703 struct tid_ampdu_rx *tid_agg_rx; 2704 2705 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2706 if (!tid_agg_rx) 2707 return; 2708 2709 spin_lock(&tid_agg_rx->reorder_lock); 2710 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx); 2711 spin_unlock(&tid_agg_rx->reorder_lock); 2712 2713 ieee80211_rx_handlers(&rx); 2714 } 2715 2716 /* main receive path */ 2717 2718 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2719 struct ieee80211_hdr *hdr) 2720 { 2721 struct ieee80211_sub_if_data *sdata = rx->sdata; 2722 struct sk_buff *skb = rx->skb; 2723 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2724 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2725 int multicast = is_multicast_ether_addr(hdr->addr1); 2726 2727 switch (sdata->vif.type) { 2728 case NL80211_IFTYPE_STATION: 2729 if (!bssid && !sdata->u.mgd.use_4addr) 2730 return 0; 2731 if (!multicast && 2732 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2733 if (!(sdata->dev->flags & IFF_PROMISC) || 2734 sdata->u.mgd.use_4addr) 2735 return 0; 2736 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2737 } 2738 break; 2739 case NL80211_IFTYPE_ADHOC: 2740 if (!bssid) 2741 return 0; 2742 if (ieee80211_is_beacon(hdr->frame_control)) { 2743 return 1; 2744 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2745 return 0; 2746 } else if (!multicast && 2747 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2748 if (!(sdata->dev->flags & IFF_PROMISC)) 2749 return 0; 2750 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2751 } else if (!rx->sta) { 2752 int rate_idx; 2753 if (status->flag & RX_FLAG_HT) 2754 rate_idx = 0; /* TODO: HT rates */ 2755 else 2756 rate_idx = status->rate_idx; 2757 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 2758 BIT(rate_idx)); 2759 } 2760 break; 2761 case NL80211_IFTYPE_MESH_POINT: 2762 if (!multicast && 2763 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2764 if (!(sdata->dev->flags & IFF_PROMISC)) 2765 return 0; 2766 2767 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2768 } 2769 break; 2770 case NL80211_IFTYPE_AP_VLAN: 2771 case NL80211_IFTYPE_AP: 2772 if (!bssid) { 2773 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 2774 return 0; 2775 } else if (!ieee80211_bssid_match(bssid, 2776 sdata->vif.addr)) { 2777 /* 2778 * Accept public action frames even when the 2779 * BSSID doesn't match, this is used for P2P 2780 * and location updates. Note that mac80211 2781 * itself never looks at these frames. 2782 */ 2783 if (ieee80211_is_public_action(hdr, skb->len)) 2784 return 1; 2785 if (!ieee80211_is_beacon(hdr->frame_control)) 2786 return 0; 2787 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2788 } 2789 break; 2790 case NL80211_IFTYPE_WDS: 2791 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2792 return 0; 2793 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 2794 return 0; 2795 break; 2796 default: 2797 /* should never get here */ 2798 WARN_ON(1); 2799 break; 2800 } 2801 2802 return 1; 2803 } 2804 2805 /* 2806 * This function returns whether or not the SKB 2807 * was destined for RX processing or not, which, 2808 * if consume is true, is equivalent to whether 2809 * or not the skb was consumed. 2810 */ 2811 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 2812 struct sk_buff *skb, bool consume) 2813 { 2814 struct ieee80211_local *local = rx->local; 2815 struct ieee80211_sub_if_data *sdata = rx->sdata; 2816 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2817 struct ieee80211_hdr *hdr = (void *)skb->data; 2818 int prepares; 2819 2820 rx->skb = skb; 2821 status->rx_flags |= IEEE80211_RX_RA_MATCH; 2822 prepares = prepare_for_handlers(rx, hdr); 2823 2824 if (!prepares) 2825 return false; 2826 2827 if (!consume) { 2828 skb = skb_copy(skb, GFP_ATOMIC); 2829 if (!skb) { 2830 if (net_ratelimit()) 2831 wiphy_debug(local->hw.wiphy, 2832 "failed to copy skb for %s\n", 2833 sdata->name); 2834 return true; 2835 } 2836 2837 rx->skb = skb; 2838 } 2839 2840 ieee80211_invoke_rx_handlers(rx); 2841 return true; 2842 } 2843 2844 /* 2845 * This is the actual Rx frames handler. as it blongs to Rx path it must 2846 * be called with rcu_read_lock protection. 2847 */ 2848 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2849 struct sk_buff *skb) 2850 { 2851 struct ieee80211_local *local = hw_to_local(hw); 2852 struct ieee80211_sub_if_data *sdata; 2853 struct ieee80211_hdr *hdr; 2854 __le16 fc; 2855 struct ieee80211_rx_data rx; 2856 struct ieee80211_sub_if_data *prev; 2857 struct sta_info *sta, *tmp, *prev_sta; 2858 int err = 0; 2859 2860 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 2861 memset(&rx, 0, sizeof(rx)); 2862 rx.skb = skb; 2863 rx.local = local; 2864 2865 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 2866 local->dot11ReceivedFragmentCount++; 2867 2868 if (ieee80211_is_mgmt(fc)) 2869 err = skb_linearize(skb); 2870 else 2871 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 2872 2873 if (err) { 2874 dev_kfree_skb(skb); 2875 return; 2876 } 2877 2878 hdr = (struct ieee80211_hdr *)skb->data; 2879 ieee80211_parse_qos(&rx); 2880 ieee80211_verify_alignment(&rx); 2881 2882 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 2883 ieee80211_is_beacon(hdr->frame_control))) 2884 ieee80211_scan_rx(local, skb); 2885 2886 if (ieee80211_is_data(fc)) { 2887 prev_sta = NULL; 2888 2889 for_each_sta_info(local, hdr->addr2, sta, tmp) { 2890 if (!prev_sta) { 2891 prev_sta = sta; 2892 continue; 2893 } 2894 2895 rx.sta = prev_sta; 2896 rx.sdata = prev_sta->sdata; 2897 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2898 2899 prev_sta = sta; 2900 } 2901 2902 if (prev_sta) { 2903 rx.sta = prev_sta; 2904 rx.sdata = prev_sta->sdata; 2905 2906 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2907 return; 2908 goto out; 2909 } 2910 } 2911 2912 prev = NULL; 2913 2914 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2915 if (!ieee80211_sdata_running(sdata)) 2916 continue; 2917 2918 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 2919 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 2920 continue; 2921 2922 /* 2923 * frame is destined for this interface, but if it's 2924 * not also for the previous one we handle that after 2925 * the loop to avoid copying the SKB once too much 2926 */ 2927 2928 if (!prev) { 2929 prev = sdata; 2930 continue; 2931 } 2932 2933 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2934 rx.sdata = prev; 2935 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2936 2937 prev = sdata; 2938 } 2939 2940 if (prev) { 2941 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2942 rx.sdata = prev; 2943 2944 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2945 return; 2946 } 2947 2948 out: 2949 dev_kfree_skb(skb); 2950 } 2951 2952 /* 2953 * This is the receive path handler. It is called by a low level driver when an 2954 * 802.11 MPDU is received from the hardware. 2955 */ 2956 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 2957 { 2958 struct ieee80211_local *local = hw_to_local(hw); 2959 struct ieee80211_rate *rate = NULL; 2960 struct ieee80211_supported_band *sband; 2961 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2962 2963 WARN_ON_ONCE(softirq_count() == 0); 2964 2965 if (WARN_ON(status->band < 0 || 2966 status->band >= IEEE80211_NUM_BANDS)) 2967 goto drop; 2968 2969 sband = local->hw.wiphy->bands[status->band]; 2970 if (WARN_ON(!sband)) 2971 goto drop; 2972 2973 /* 2974 * If we're suspending, it is possible although not too likely 2975 * that we'd be receiving frames after having already partially 2976 * quiesced the stack. We can't process such frames then since 2977 * that might, for example, cause stations to be added or other 2978 * driver callbacks be invoked. 2979 */ 2980 if (unlikely(local->quiescing || local->suspended)) 2981 goto drop; 2982 2983 /* We might be during a HW reconfig, prevent Rx for the same reason */ 2984 if (unlikely(local->in_reconfig)) 2985 goto drop; 2986 2987 /* 2988 * The same happens when we're not even started, 2989 * but that's worth a warning. 2990 */ 2991 if (WARN_ON(!local->started)) 2992 goto drop; 2993 2994 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 2995 /* 2996 * Validate the rate, unless a PLCP error means that 2997 * we probably can't have a valid rate here anyway. 2998 */ 2999 3000 if (status->flag & RX_FLAG_HT) { 3001 /* 3002 * rate_idx is MCS index, which can be [0-76] 3003 * as documented on: 3004 * 3005 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3006 * 3007 * Anything else would be some sort of driver or 3008 * hardware error. The driver should catch hardware 3009 * errors. 3010 */ 3011 if (WARN((status->rate_idx < 0 || 3012 status->rate_idx > 76), 3013 "Rate marked as an HT rate but passed " 3014 "status->rate_idx is not " 3015 "an MCS index [0-76]: %d (0x%02x)\n", 3016 status->rate_idx, 3017 status->rate_idx)) 3018 goto drop; 3019 } else { 3020 if (WARN_ON(status->rate_idx < 0 || 3021 status->rate_idx >= sband->n_bitrates)) 3022 goto drop; 3023 rate = &sband->bitrates[status->rate_idx]; 3024 } 3025 } 3026 3027 status->rx_flags = 0; 3028 3029 /* 3030 * key references and virtual interfaces are protected using RCU 3031 * and this requires that we are in a read-side RCU section during 3032 * receive processing 3033 */ 3034 rcu_read_lock(); 3035 3036 /* 3037 * Frames with failed FCS/PLCP checksum are not returned, 3038 * all other frames are returned without radiotap header 3039 * if it was previously present. 3040 * Also, frames with less than 16 bytes are dropped. 3041 */ 3042 skb = ieee80211_rx_monitor(local, skb, rate); 3043 if (!skb) { 3044 rcu_read_unlock(); 3045 return; 3046 } 3047 3048 ieee80211_tpt_led_trig_rx(local, 3049 ((struct ieee80211_hdr *)skb->data)->frame_control, 3050 skb->len); 3051 __ieee80211_rx_handle_packet(hw, skb); 3052 3053 rcu_read_unlock(); 3054 3055 return; 3056 drop: 3057 kfree_skb(skb); 3058 } 3059 EXPORT_SYMBOL(ieee80211_rx); 3060 3061 /* This is a version of the rx handler that can be called from hard irq 3062 * context. Post the skb on the queue and schedule the tasklet */ 3063 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3064 { 3065 struct ieee80211_local *local = hw_to_local(hw); 3066 3067 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3068 3069 skb->pkt_type = IEEE80211_RX_MSG; 3070 skb_queue_tail(&local->skb_queue, skb); 3071 tasklet_schedule(&local->tasklet); 3072 } 3073 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3074