1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 struct ieee80211_hdr *hdr; 101 unsigned int hdrlen; 102 __le16 fc; 103 104 if (present_fcs_len) 105 __pskb_trim(skb, skb->len - present_fcs_len); 106 __pskb_pull(skb, rtap_space); 107 108 hdr = (void *)skb->data; 109 fc = hdr->frame_control; 110 111 /* 112 * Remove the HT-Control field (if present) on management 113 * frames after we've sent the frame to monitoring. We 114 * (currently) don't need it, and don't properly parse 115 * frames with it present, due to the assumption of a 116 * fixed management header length. 117 */ 118 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 119 return skb; 120 121 hdrlen = ieee80211_hdrlen(fc); 122 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 123 124 if (!pskb_may_pull(skb, hdrlen)) { 125 dev_kfree_skb(skb); 126 return NULL; 127 } 128 129 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 130 hdrlen - IEEE80211_HT_CTL_LEN); 131 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 132 133 return skb; 134 } 135 136 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 137 unsigned int rtap_space) 138 { 139 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 140 struct ieee80211_hdr *hdr; 141 142 hdr = (void *)(skb->data + rtap_space); 143 144 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 145 RX_FLAG_FAILED_PLCP_CRC | 146 RX_FLAG_ONLY_MONITOR | 147 RX_FLAG_NO_PSDU)) 148 return true; 149 150 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 151 return true; 152 153 if (ieee80211_is_ctl(hdr->frame_control) && 154 !ieee80211_is_pspoll(hdr->frame_control) && 155 !ieee80211_is_back_req(hdr->frame_control)) 156 return true; 157 158 return false; 159 } 160 161 static int 162 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 163 struct ieee80211_rx_status *status, 164 struct sk_buff *skb) 165 { 166 int len; 167 168 /* always present fields */ 169 len = sizeof(struct ieee80211_radiotap_header) + 8; 170 171 /* allocate extra bitmaps */ 172 if (status->chains) 173 len += 4 * hweight8(status->chains); 174 /* vendor presence bitmap */ 175 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 176 len += 4; 177 178 if (ieee80211_have_rx_timestamp(status)) { 179 len = ALIGN(len, 8); 180 len += 8; 181 } 182 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 183 len += 1; 184 185 /* antenna field, if we don't have per-chain info */ 186 if (!status->chains) 187 len += 1; 188 189 /* padding for RX_FLAGS if necessary */ 190 len = ALIGN(len, 2); 191 192 if (status->encoding == RX_ENC_HT) /* HT info */ 193 len += 3; 194 195 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 196 len = ALIGN(len, 4); 197 len += 8; 198 } 199 200 if (status->encoding == RX_ENC_VHT) { 201 len = ALIGN(len, 2); 202 len += 12; 203 } 204 205 if (local->hw.radiotap_timestamp.units_pos >= 0) { 206 len = ALIGN(len, 8); 207 len += 12; 208 } 209 210 if (status->encoding == RX_ENC_HE && 211 status->flag & RX_FLAG_RADIOTAP_HE) { 212 len = ALIGN(len, 2); 213 len += 12; 214 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 215 } 216 217 if (status->encoding == RX_ENC_HE && 218 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 219 len = ALIGN(len, 2); 220 len += 12; 221 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 222 } 223 224 if (status->flag & RX_FLAG_NO_PSDU) 225 len += 1; 226 227 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 228 len = ALIGN(len, 2); 229 len += 4; 230 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 231 } 232 233 if (status->chains) { 234 /* antenna and antenna signal fields */ 235 len += 2 * hweight8(status->chains); 236 } 237 238 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 239 struct ieee80211_vendor_radiotap *rtap; 240 int vendor_data_offset = 0; 241 242 /* 243 * The position to look at depends on the existence (or non- 244 * existence) of other elements, so take that into account... 245 */ 246 if (status->flag & RX_FLAG_RADIOTAP_HE) 247 vendor_data_offset += 248 sizeof(struct ieee80211_radiotap_he); 249 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 250 vendor_data_offset += 251 sizeof(struct ieee80211_radiotap_he_mu); 252 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 253 vendor_data_offset += 254 sizeof(struct ieee80211_radiotap_lsig); 255 256 rtap = (void *)&skb->data[vendor_data_offset]; 257 258 /* alignment for fixed 6-byte vendor data header */ 259 len = ALIGN(len, 2); 260 /* vendor data header */ 261 len += 6; 262 if (WARN_ON(rtap->align == 0)) 263 rtap->align = 1; 264 len = ALIGN(len, rtap->align); 265 len += rtap->len + rtap->pad; 266 } 267 268 return len; 269 } 270 271 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 272 struct sk_buff *skb, 273 int rtap_space) 274 { 275 struct { 276 struct ieee80211_hdr_3addr hdr; 277 u8 category; 278 u8 action_code; 279 } __packed __aligned(2) action; 280 281 if (!sdata) 282 return; 283 284 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 285 286 if (skb->len < rtap_space + sizeof(action) + 287 VHT_MUMIMO_GROUPS_DATA_LEN) 288 return; 289 290 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 291 return; 292 293 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 294 295 if (!ieee80211_is_action(action.hdr.frame_control)) 296 return; 297 298 if (action.category != WLAN_CATEGORY_VHT) 299 return; 300 301 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 302 return; 303 304 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 305 return; 306 307 skb = skb_copy(skb, GFP_ATOMIC); 308 if (!skb) 309 return; 310 311 skb_queue_tail(&sdata->skb_queue, skb); 312 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 313 } 314 315 /* 316 * ieee80211_add_rx_radiotap_header - add radiotap header 317 * 318 * add a radiotap header containing all the fields which the hardware provided. 319 */ 320 static void 321 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 322 struct sk_buff *skb, 323 struct ieee80211_rate *rate, 324 int rtap_len, bool has_fcs) 325 { 326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 327 struct ieee80211_radiotap_header *rthdr; 328 unsigned char *pos; 329 __le32 *it_present; 330 u32 it_present_val; 331 u16 rx_flags = 0; 332 u16 channel_flags = 0; 333 int mpdulen, chain; 334 unsigned long chains = status->chains; 335 struct ieee80211_vendor_radiotap rtap = {}; 336 struct ieee80211_radiotap_he he = {}; 337 struct ieee80211_radiotap_he_mu he_mu = {}; 338 struct ieee80211_radiotap_lsig lsig = {}; 339 340 if (status->flag & RX_FLAG_RADIOTAP_HE) { 341 he = *(struct ieee80211_radiotap_he *)skb->data; 342 skb_pull(skb, sizeof(he)); 343 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 344 } 345 346 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 347 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 348 skb_pull(skb, sizeof(he_mu)); 349 } 350 351 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 352 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 353 skb_pull(skb, sizeof(lsig)); 354 } 355 356 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 357 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 358 /* rtap.len and rtap.pad are undone immediately */ 359 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 360 } 361 362 mpdulen = skb->len; 363 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 364 mpdulen += FCS_LEN; 365 366 rthdr = skb_push(skb, rtap_len); 367 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 368 it_present = &rthdr->it_present; 369 370 /* radiotap header, set always present flags */ 371 rthdr->it_len = cpu_to_le16(rtap_len); 372 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 373 BIT(IEEE80211_RADIOTAP_CHANNEL) | 374 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 375 376 if (!status->chains) 377 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 378 379 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 380 it_present_val |= 381 BIT(IEEE80211_RADIOTAP_EXT) | 382 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 383 put_unaligned_le32(it_present_val, it_present); 384 it_present++; 385 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 386 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 387 } 388 389 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 390 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 391 BIT(IEEE80211_RADIOTAP_EXT); 392 put_unaligned_le32(it_present_val, it_present); 393 it_present++; 394 it_present_val = rtap.present; 395 } 396 397 put_unaligned_le32(it_present_val, it_present); 398 399 pos = (void *)(it_present + 1); 400 401 /* the order of the following fields is important */ 402 403 /* IEEE80211_RADIOTAP_TSFT */ 404 if (ieee80211_have_rx_timestamp(status)) { 405 /* padding */ 406 while ((pos - (u8 *)rthdr) & 7) 407 *pos++ = 0; 408 put_unaligned_le64( 409 ieee80211_calculate_rx_timestamp(local, status, 410 mpdulen, 0), 411 pos); 412 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 413 pos += 8; 414 } 415 416 /* IEEE80211_RADIOTAP_FLAGS */ 417 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 418 *pos |= IEEE80211_RADIOTAP_F_FCS; 419 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 420 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 421 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 422 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 423 pos++; 424 425 /* IEEE80211_RADIOTAP_RATE */ 426 if (!rate || status->encoding != RX_ENC_LEGACY) { 427 /* 428 * Without rate information don't add it. If we have, 429 * MCS information is a separate field in radiotap, 430 * added below. The byte here is needed as padding 431 * for the channel though, so initialise it to 0. 432 */ 433 *pos = 0; 434 } else { 435 int shift = 0; 436 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 437 if (status->bw == RATE_INFO_BW_10) 438 shift = 1; 439 else if (status->bw == RATE_INFO_BW_5) 440 shift = 2; 441 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 442 } 443 pos++; 444 445 /* IEEE80211_RADIOTAP_CHANNEL */ 446 /* TODO: frequency offset in KHz */ 447 put_unaligned_le16(status->freq, pos); 448 pos += 2; 449 if (status->bw == RATE_INFO_BW_10) 450 channel_flags |= IEEE80211_CHAN_HALF; 451 else if (status->bw == RATE_INFO_BW_5) 452 channel_flags |= IEEE80211_CHAN_QUARTER; 453 454 if (status->band == NL80211_BAND_5GHZ || 455 status->band == NL80211_BAND_6GHZ) 456 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 457 else if (status->encoding != RX_ENC_LEGACY) 458 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 459 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 460 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 461 else if (rate) 462 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 463 else 464 channel_flags |= IEEE80211_CHAN_2GHZ; 465 put_unaligned_le16(channel_flags, pos); 466 pos += 2; 467 468 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 469 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 470 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 471 *pos = status->signal; 472 rthdr->it_present |= 473 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 474 pos++; 475 } 476 477 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 478 479 if (!status->chains) { 480 /* IEEE80211_RADIOTAP_ANTENNA */ 481 *pos = status->antenna; 482 pos++; 483 } 484 485 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 486 487 /* IEEE80211_RADIOTAP_RX_FLAGS */ 488 /* ensure 2 byte alignment for the 2 byte field as required */ 489 if ((pos - (u8 *)rthdr) & 1) 490 *pos++ = 0; 491 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 492 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 493 put_unaligned_le16(rx_flags, pos); 494 pos += 2; 495 496 if (status->encoding == RX_ENC_HT) { 497 unsigned int stbc; 498 499 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 500 *pos++ = local->hw.radiotap_mcs_details; 501 *pos = 0; 502 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 503 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 504 if (status->bw == RATE_INFO_BW_40) 505 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 506 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 507 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 508 if (status->enc_flags & RX_ENC_FLAG_LDPC) 509 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 510 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 511 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 512 pos++; 513 *pos++ = status->rate_idx; 514 } 515 516 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 517 u16 flags = 0; 518 519 /* ensure 4 byte alignment */ 520 while ((pos - (u8 *)rthdr) & 3) 521 pos++; 522 rthdr->it_present |= 523 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 524 put_unaligned_le32(status->ampdu_reference, pos); 525 pos += 4; 526 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 527 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 528 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 529 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 530 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 531 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 532 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 533 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 534 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 535 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 536 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 537 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 538 put_unaligned_le16(flags, pos); 539 pos += 2; 540 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 541 *pos++ = status->ampdu_delimiter_crc; 542 else 543 *pos++ = 0; 544 *pos++ = 0; 545 } 546 547 if (status->encoding == RX_ENC_VHT) { 548 u16 known = local->hw.radiotap_vht_details; 549 550 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 551 put_unaligned_le16(known, pos); 552 pos += 2; 553 /* flags */ 554 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 555 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 556 /* in VHT, STBC is binary */ 557 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 558 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 559 if (status->enc_flags & RX_ENC_FLAG_BF) 560 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 561 pos++; 562 /* bandwidth */ 563 switch (status->bw) { 564 case RATE_INFO_BW_80: 565 *pos++ = 4; 566 break; 567 case RATE_INFO_BW_160: 568 *pos++ = 11; 569 break; 570 case RATE_INFO_BW_40: 571 *pos++ = 1; 572 break; 573 default: 574 *pos++ = 0; 575 } 576 /* MCS/NSS */ 577 *pos = (status->rate_idx << 4) | status->nss; 578 pos += 4; 579 /* coding field */ 580 if (status->enc_flags & RX_ENC_FLAG_LDPC) 581 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 582 pos++; 583 /* group ID */ 584 pos++; 585 /* partial_aid */ 586 pos += 2; 587 } 588 589 if (local->hw.radiotap_timestamp.units_pos >= 0) { 590 u16 accuracy = 0; 591 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 592 593 rthdr->it_present |= 594 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 595 596 /* ensure 8 byte alignment */ 597 while ((pos - (u8 *)rthdr) & 7) 598 pos++; 599 600 put_unaligned_le64(status->device_timestamp, pos); 601 pos += sizeof(u64); 602 603 if (local->hw.radiotap_timestamp.accuracy >= 0) { 604 accuracy = local->hw.radiotap_timestamp.accuracy; 605 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 606 } 607 put_unaligned_le16(accuracy, pos); 608 pos += sizeof(u16); 609 610 *pos++ = local->hw.radiotap_timestamp.units_pos; 611 *pos++ = flags; 612 } 613 614 if (status->encoding == RX_ENC_HE && 615 status->flag & RX_FLAG_RADIOTAP_HE) { 616 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 617 618 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 619 he.data6 |= HE_PREP(DATA6_NSTS, 620 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 621 status->enc_flags)); 622 he.data3 |= HE_PREP(DATA3_STBC, 1); 623 } else { 624 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 625 } 626 627 #define CHECK_GI(s) \ 628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 629 (int)NL80211_RATE_INFO_HE_GI_##s) 630 631 CHECK_GI(0_8); 632 CHECK_GI(1_6); 633 CHECK_GI(3_2); 634 635 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 636 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 637 he.data3 |= HE_PREP(DATA3_CODING, 638 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 639 640 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 641 642 switch (status->bw) { 643 case RATE_INFO_BW_20: 644 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 645 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 646 break; 647 case RATE_INFO_BW_40: 648 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 649 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 650 break; 651 case RATE_INFO_BW_80: 652 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 653 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 654 break; 655 case RATE_INFO_BW_160: 656 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 657 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 658 break; 659 case RATE_INFO_BW_HE_RU: 660 #define CHECK_RU_ALLOC(s) \ 661 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 662 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 663 664 CHECK_RU_ALLOC(26); 665 CHECK_RU_ALLOC(52); 666 CHECK_RU_ALLOC(106); 667 CHECK_RU_ALLOC(242); 668 CHECK_RU_ALLOC(484); 669 CHECK_RU_ALLOC(996); 670 CHECK_RU_ALLOC(2x996); 671 672 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 673 status->he_ru + 4); 674 break; 675 default: 676 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 677 } 678 679 /* ensure 2 byte alignment */ 680 while ((pos - (u8 *)rthdr) & 1) 681 pos++; 682 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 683 memcpy(pos, &he, sizeof(he)); 684 pos += sizeof(he); 685 } 686 687 if (status->encoding == RX_ENC_HE && 688 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 689 /* ensure 2 byte alignment */ 690 while ((pos - (u8 *)rthdr) & 1) 691 pos++; 692 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 693 memcpy(pos, &he_mu, sizeof(he_mu)); 694 pos += sizeof(he_mu); 695 } 696 697 if (status->flag & RX_FLAG_NO_PSDU) { 698 rthdr->it_present |= 699 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 700 *pos++ = status->zero_length_psdu_type; 701 } 702 703 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 704 /* ensure 2 byte alignment */ 705 while ((pos - (u8 *)rthdr) & 1) 706 pos++; 707 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 708 memcpy(pos, &lsig, sizeof(lsig)); 709 pos += sizeof(lsig); 710 } 711 712 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 713 *pos++ = status->chain_signal[chain]; 714 *pos++ = chain; 715 } 716 717 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 718 /* ensure 2 byte alignment for the vendor field as required */ 719 if ((pos - (u8 *)rthdr) & 1) 720 *pos++ = 0; 721 *pos++ = rtap.oui[0]; 722 *pos++ = rtap.oui[1]; 723 *pos++ = rtap.oui[2]; 724 *pos++ = rtap.subns; 725 put_unaligned_le16(rtap.len, pos); 726 pos += 2; 727 /* align the actual payload as requested */ 728 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 729 *pos++ = 0; 730 /* data (and possible padding) already follows */ 731 } 732 } 733 734 static struct sk_buff * 735 ieee80211_make_monitor_skb(struct ieee80211_local *local, 736 struct sk_buff **origskb, 737 struct ieee80211_rate *rate, 738 int rtap_space, bool use_origskb) 739 { 740 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 741 int rt_hdrlen, needed_headroom; 742 struct sk_buff *skb; 743 744 /* room for the radiotap header based on driver features */ 745 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 746 needed_headroom = rt_hdrlen - rtap_space; 747 748 if (use_origskb) { 749 /* only need to expand headroom if necessary */ 750 skb = *origskb; 751 *origskb = NULL; 752 753 /* 754 * This shouldn't trigger often because most devices have an 755 * RX header they pull before we get here, and that should 756 * be big enough for our radiotap information. We should 757 * probably export the length to drivers so that we can have 758 * them allocate enough headroom to start with. 759 */ 760 if (skb_headroom(skb) < needed_headroom && 761 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 762 dev_kfree_skb(skb); 763 return NULL; 764 } 765 } else { 766 /* 767 * Need to make a copy and possibly remove radiotap header 768 * and FCS from the original. 769 */ 770 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 771 772 if (!skb) 773 return NULL; 774 } 775 776 /* prepend radiotap information */ 777 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 778 779 skb_reset_mac_header(skb); 780 skb->ip_summed = CHECKSUM_UNNECESSARY; 781 skb->pkt_type = PACKET_OTHERHOST; 782 skb->protocol = htons(ETH_P_802_2); 783 784 return skb; 785 } 786 787 /* 788 * This function copies a received frame to all monitor interfaces and 789 * returns a cleaned-up SKB that no longer includes the FCS nor the 790 * radiotap header the driver might have added. 791 */ 792 static struct sk_buff * 793 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 794 struct ieee80211_rate *rate) 795 { 796 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 797 struct ieee80211_sub_if_data *sdata; 798 struct sk_buff *monskb = NULL; 799 int present_fcs_len = 0; 800 unsigned int rtap_space = 0; 801 struct ieee80211_sub_if_data *monitor_sdata = 802 rcu_dereference(local->monitor_sdata); 803 bool only_monitor = false; 804 unsigned int min_head_len; 805 806 if (status->flag & RX_FLAG_RADIOTAP_HE) 807 rtap_space += sizeof(struct ieee80211_radiotap_he); 808 809 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 810 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 811 812 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 813 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 814 815 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 816 struct ieee80211_vendor_radiotap *rtap = 817 (void *)(origskb->data + rtap_space); 818 819 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 820 } 821 822 min_head_len = rtap_space; 823 824 /* 825 * First, we may need to make a copy of the skb because 826 * (1) we need to modify it for radiotap (if not present), and 827 * (2) the other RX handlers will modify the skb we got. 828 * 829 * We don't need to, of course, if we aren't going to return 830 * the SKB because it has a bad FCS/PLCP checksum. 831 */ 832 833 if (!(status->flag & RX_FLAG_NO_PSDU)) { 834 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 835 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 836 /* driver bug */ 837 WARN_ON(1); 838 dev_kfree_skb(origskb); 839 return NULL; 840 } 841 present_fcs_len = FCS_LEN; 842 } 843 844 /* also consider the hdr->frame_control */ 845 min_head_len += 2; 846 } 847 848 /* ensure that the expected data elements are in skb head */ 849 if (!pskb_may_pull(origskb, min_head_len)) { 850 dev_kfree_skb(origskb); 851 return NULL; 852 } 853 854 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 855 856 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 857 if (only_monitor) { 858 dev_kfree_skb(origskb); 859 return NULL; 860 } 861 862 return ieee80211_clean_skb(origskb, present_fcs_len, 863 rtap_space); 864 } 865 866 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 867 868 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 869 bool last_monitor = list_is_last(&sdata->u.mntr.list, 870 &local->mon_list); 871 872 if (!monskb) 873 monskb = ieee80211_make_monitor_skb(local, &origskb, 874 rate, rtap_space, 875 only_monitor && 876 last_monitor); 877 878 if (monskb) { 879 struct sk_buff *skb; 880 881 if (last_monitor) { 882 skb = monskb; 883 monskb = NULL; 884 } else { 885 skb = skb_clone(monskb, GFP_ATOMIC); 886 } 887 888 if (skb) { 889 skb->dev = sdata->dev; 890 ieee80211_rx_stats(skb->dev, skb->len); 891 netif_receive_skb(skb); 892 } 893 } 894 895 if (last_monitor) 896 break; 897 } 898 899 /* this happens if last_monitor was erroneously false */ 900 dev_kfree_skb(monskb); 901 902 /* ditto */ 903 if (!origskb) 904 return NULL; 905 906 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 907 } 908 909 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 910 { 911 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 912 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 913 int tid, seqno_idx, security_idx; 914 915 /* does the frame have a qos control field? */ 916 if (ieee80211_is_data_qos(hdr->frame_control)) { 917 u8 *qc = ieee80211_get_qos_ctl(hdr); 918 /* frame has qos control */ 919 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 920 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 921 status->rx_flags |= IEEE80211_RX_AMSDU; 922 923 seqno_idx = tid; 924 security_idx = tid; 925 } else { 926 /* 927 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 928 * 929 * Sequence numbers for management frames, QoS data 930 * frames with a broadcast/multicast address in the 931 * Address 1 field, and all non-QoS data frames sent 932 * by QoS STAs are assigned using an additional single 933 * modulo-4096 counter, [...] 934 * 935 * We also use that counter for non-QoS STAs. 936 */ 937 seqno_idx = IEEE80211_NUM_TIDS; 938 security_idx = 0; 939 if (ieee80211_is_mgmt(hdr->frame_control)) 940 security_idx = IEEE80211_NUM_TIDS; 941 tid = 0; 942 } 943 944 rx->seqno_idx = seqno_idx; 945 rx->security_idx = security_idx; 946 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 947 * For now, set skb->priority to 0 for other cases. */ 948 rx->skb->priority = (tid > 7) ? 0 : tid; 949 } 950 951 /** 952 * DOC: Packet alignment 953 * 954 * Drivers always need to pass packets that are aligned to two-byte boundaries 955 * to the stack. 956 * 957 * Additionally, should, if possible, align the payload data in a way that 958 * guarantees that the contained IP header is aligned to a four-byte 959 * boundary. In the case of regular frames, this simply means aligning the 960 * payload to a four-byte boundary (because either the IP header is directly 961 * contained, or IV/RFC1042 headers that have a length divisible by four are 962 * in front of it). If the payload data is not properly aligned and the 963 * architecture doesn't support efficient unaligned operations, mac80211 964 * will align the data. 965 * 966 * With A-MSDU frames, however, the payload data address must yield two modulo 967 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 968 * push the IP header further back to a multiple of four again. Thankfully, the 969 * specs were sane enough this time around to require padding each A-MSDU 970 * subframe to a length that is a multiple of four. 971 * 972 * Padding like Atheros hardware adds which is between the 802.11 header and 973 * the payload is not supported, the driver is required to move the 802.11 974 * header to be directly in front of the payload in that case. 975 */ 976 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 977 { 978 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 979 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 980 #endif 981 } 982 983 984 /* rx handlers */ 985 986 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 987 { 988 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 989 990 if (is_multicast_ether_addr(hdr->addr1)) 991 return 0; 992 993 return ieee80211_is_robust_mgmt_frame(skb); 994 } 995 996 997 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 998 { 999 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1000 1001 if (!is_multicast_ether_addr(hdr->addr1)) 1002 return 0; 1003 1004 return ieee80211_is_robust_mgmt_frame(skb); 1005 } 1006 1007 1008 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 1009 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 1010 { 1011 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 1012 struct ieee80211_mmie *mmie; 1013 struct ieee80211_mmie_16 *mmie16; 1014 1015 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 1016 return -1; 1017 1018 if (!ieee80211_is_robust_mgmt_frame(skb) && 1019 !ieee80211_is_beacon(hdr->frame_control)) 1020 return -1; /* not a robust management frame */ 1021 1022 mmie = (struct ieee80211_mmie *) 1023 (skb->data + skb->len - sizeof(*mmie)); 1024 if (mmie->element_id == WLAN_EID_MMIE && 1025 mmie->length == sizeof(*mmie) - 2) 1026 return le16_to_cpu(mmie->key_id); 1027 1028 mmie16 = (struct ieee80211_mmie_16 *) 1029 (skb->data + skb->len - sizeof(*mmie16)); 1030 if (skb->len >= 24 + sizeof(*mmie16) && 1031 mmie16->element_id == WLAN_EID_MMIE && 1032 mmie16->length == sizeof(*mmie16) - 2) 1033 return le16_to_cpu(mmie16->key_id); 1034 1035 return -1; 1036 } 1037 1038 static int ieee80211_get_keyid(struct sk_buff *skb, 1039 const struct ieee80211_cipher_scheme *cs) 1040 { 1041 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1042 __le16 fc; 1043 int hdrlen; 1044 int minlen; 1045 u8 key_idx_off; 1046 u8 key_idx_shift; 1047 u8 keyid; 1048 1049 fc = hdr->frame_control; 1050 hdrlen = ieee80211_hdrlen(fc); 1051 1052 if (cs) { 1053 minlen = hdrlen + cs->hdr_len; 1054 key_idx_off = hdrlen + cs->key_idx_off; 1055 key_idx_shift = cs->key_idx_shift; 1056 } else { 1057 /* WEP, TKIP, CCMP and GCMP */ 1058 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1059 key_idx_off = hdrlen + 3; 1060 key_idx_shift = 6; 1061 } 1062 1063 if (unlikely(skb->len < minlen)) 1064 return -EINVAL; 1065 1066 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1067 1068 if (cs) 1069 keyid &= cs->key_idx_mask; 1070 keyid >>= key_idx_shift; 1071 1072 /* cs could use more than the usual two bits for the keyid */ 1073 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1074 return -EINVAL; 1075 1076 return keyid; 1077 } 1078 1079 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1080 { 1081 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1082 char *dev_addr = rx->sdata->vif.addr; 1083 1084 if (ieee80211_is_data(hdr->frame_control)) { 1085 if (is_multicast_ether_addr(hdr->addr1)) { 1086 if (ieee80211_has_tods(hdr->frame_control) || 1087 !ieee80211_has_fromds(hdr->frame_control)) 1088 return RX_DROP_MONITOR; 1089 if (ether_addr_equal(hdr->addr3, dev_addr)) 1090 return RX_DROP_MONITOR; 1091 } else { 1092 if (!ieee80211_has_a4(hdr->frame_control)) 1093 return RX_DROP_MONITOR; 1094 if (ether_addr_equal(hdr->addr4, dev_addr)) 1095 return RX_DROP_MONITOR; 1096 } 1097 } 1098 1099 /* If there is not an established peer link and this is not a peer link 1100 * establisment frame, beacon or probe, drop the frame. 1101 */ 1102 1103 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1104 struct ieee80211_mgmt *mgmt; 1105 1106 if (!ieee80211_is_mgmt(hdr->frame_control)) 1107 return RX_DROP_MONITOR; 1108 1109 if (ieee80211_is_action(hdr->frame_control)) { 1110 u8 category; 1111 1112 /* make sure category field is present */ 1113 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1114 return RX_DROP_MONITOR; 1115 1116 mgmt = (struct ieee80211_mgmt *)hdr; 1117 category = mgmt->u.action.category; 1118 if (category != WLAN_CATEGORY_MESH_ACTION && 1119 category != WLAN_CATEGORY_SELF_PROTECTED) 1120 return RX_DROP_MONITOR; 1121 return RX_CONTINUE; 1122 } 1123 1124 if (ieee80211_is_probe_req(hdr->frame_control) || 1125 ieee80211_is_probe_resp(hdr->frame_control) || 1126 ieee80211_is_beacon(hdr->frame_control) || 1127 ieee80211_is_auth(hdr->frame_control)) 1128 return RX_CONTINUE; 1129 1130 return RX_DROP_MONITOR; 1131 } 1132 1133 return RX_CONTINUE; 1134 } 1135 1136 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1137 int index) 1138 { 1139 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1140 struct sk_buff *tail = skb_peek_tail(frames); 1141 struct ieee80211_rx_status *status; 1142 1143 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1144 return true; 1145 1146 if (!tail) 1147 return false; 1148 1149 status = IEEE80211_SKB_RXCB(tail); 1150 if (status->flag & RX_FLAG_AMSDU_MORE) 1151 return false; 1152 1153 return true; 1154 } 1155 1156 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1157 struct tid_ampdu_rx *tid_agg_rx, 1158 int index, 1159 struct sk_buff_head *frames) 1160 { 1161 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1162 struct sk_buff *skb; 1163 struct ieee80211_rx_status *status; 1164 1165 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1166 1167 if (skb_queue_empty(skb_list)) 1168 goto no_frame; 1169 1170 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1171 __skb_queue_purge(skb_list); 1172 goto no_frame; 1173 } 1174 1175 /* release frames from the reorder ring buffer */ 1176 tid_agg_rx->stored_mpdu_num--; 1177 while ((skb = __skb_dequeue(skb_list))) { 1178 status = IEEE80211_SKB_RXCB(skb); 1179 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1180 __skb_queue_tail(frames, skb); 1181 } 1182 1183 no_frame: 1184 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1185 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1186 } 1187 1188 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1189 struct tid_ampdu_rx *tid_agg_rx, 1190 u16 head_seq_num, 1191 struct sk_buff_head *frames) 1192 { 1193 int index; 1194 1195 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1196 1197 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1198 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1199 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1200 frames); 1201 } 1202 } 1203 1204 /* 1205 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1206 * the skb was added to the buffer longer than this time ago, the earlier 1207 * frames that have not yet been received are assumed to be lost and the skb 1208 * can be released for processing. This may also release other skb's from the 1209 * reorder buffer if there are no additional gaps between the frames. 1210 * 1211 * Callers must hold tid_agg_rx->reorder_lock. 1212 */ 1213 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1214 1215 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1216 struct tid_ampdu_rx *tid_agg_rx, 1217 struct sk_buff_head *frames) 1218 { 1219 int index, i, j; 1220 1221 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1222 1223 /* release the buffer until next missing frame */ 1224 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1225 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1226 tid_agg_rx->stored_mpdu_num) { 1227 /* 1228 * No buffers ready to be released, but check whether any 1229 * frames in the reorder buffer have timed out. 1230 */ 1231 int skipped = 1; 1232 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1233 j = (j + 1) % tid_agg_rx->buf_size) { 1234 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1235 skipped++; 1236 continue; 1237 } 1238 if (skipped && 1239 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1240 HT_RX_REORDER_BUF_TIMEOUT)) 1241 goto set_release_timer; 1242 1243 /* don't leave incomplete A-MSDUs around */ 1244 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1245 i = (i + 1) % tid_agg_rx->buf_size) 1246 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1247 1248 ht_dbg_ratelimited(sdata, 1249 "release an RX reorder frame due to timeout on earlier frames\n"); 1250 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1251 frames); 1252 1253 /* 1254 * Increment the head seq# also for the skipped slots. 1255 */ 1256 tid_agg_rx->head_seq_num = 1257 (tid_agg_rx->head_seq_num + 1258 skipped) & IEEE80211_SN_MASK; 1259 skipped = 0; 1260 } 1261 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1262 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1263 frames); 1264 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1265 } 1266 1267 if (tid_agg_rx->stored_mpdu_num) { 1268 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1269 1270 for (; j != (index - 1) % tid_agg_rx->buf_size; 1271 j = (j + 1) % tid_agg_rx->buf_size) { 1272 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1273 break; 1274 } 1275 1276 set_release_timer: 1277 1278 if (!tid_agg_rx->removed) 1279 mod_timer(&tid_agg_rx->reorder_timer, 1280 tid_agg_rx->reorder_time[j] + 1 + 1281 HT_RX_REORDER_BUF_TIMEOUT); 1282 } else { 1283 del_timer(&tid_agg_rx->reorder_timer); 1284 } 1285 } 1286 1287 /* 1288 * As this function belongs to the RX path it must be under 1289 * rcu_read_lock protection. It returns false if the frame 1290 * can be processed immediately, true if it was consumed. 1291 */ 1292 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1293 struct tid_ampdu_rx *tid_agg_rx, 1294 struct sk_buff *skb, 1295 struct sk_buff_head *frames) 1296 { 1297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1298 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1299 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1300 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1301 u16 head_seq_num, buf_size; 1302 int index; 1303 bool ret = true; 1304 1305 spin_lock(&tid_agg_rx->reorder_lock); 1306 1307 /* 1308 * Offloaded BA sessions have no known starting sequence number so pick 1309 * one from first Rxed frame for this tid after BA was started. 1310 */ 1311 if (unlikely(tid_agg_rx->auto_seq)) { 1312 tid_agg_rx->auto_seq = false; 1313 tid_agg_rx->ssn = mpdu_seq_num; 1314 tid_agg_rx->head_seq_num = mpdu_seq_num; 1315 } 1316 1317 buf_size = tid_agg_rx->buf_size; 1318 head_seq_num = tid_agg_rx->head_seq_num; 1319 1320 /* 1321 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1322 * be reordered. 1323 */ 1324 if (unlikely(!tid_agg_rx->started)) { 1325 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1326 ret = false; 1327 goto out; 1328 } 1329 tid_agg_rx->started = true; 1330 } 1331 1332 /* frame with out of date sequence number */ 1333 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1334 dev_kfree_skb(skb); 1335 goto out; 1336 } 1337 1338 /* 1339 * If frame the sequence number exceeds our buffering window 1340 * size release some previous frames to make room for this one. 1341 */ 1342 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1343 head_seq_num = ieee80211_sn_inc( 1344 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1345 /* release stored frames up to new head to stack */ 1346 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1347 head_seq_num, frames); 1348 } 1349 1350 /* Now the new frame is always in the range of the reordering buffer */ 1351 1352 index = mpdu_seq_num % tid_agg_rx->buf_size; 1353 1354 /* check if we already stored this frame */ 1355 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1356 dev_kfree_skb(skb); 1357 goto out; 1358 } 1359 1360 /* 1361 * If the current MPDU is in the right order and nothing else 1362 * is stored we can process it directly, no need to buffer it. 1363 * If it is first but there's something stored, we may be able 1364 * to release frames after this one. 1365 */ 1366 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1367 tid_agg_rx->stored_mpdu_num == 0) { 1368 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1369 tid_agg_rx->head_seq_num = 1370 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1371 ret = false; 1372 goto out; 1373 } 1374 1375 /* put the frame in the reordering buffer */ 1376 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1377 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1378 tid_agg_rx->reorder_time[index] = jiffies; 1379 tid_agg_rx->stored_mpdu_num++; 1380 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1381 } 1382 1383 out: 1384 spin_unlock(&tid_agg_rx->reorder_lock); 1385 return ret; 1386 } 1387 1388 /* 1389 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1390 * true if the MPDU was buffered, false if it should be processed. 1391 */ 1392 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1393 struct sk_buff_head *frames) 1394 { 1395 struct sk_buff *skb = rx->skb; 1396 struct ieee80211_local *local = rx->local; 1397 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1398 struct sta_info *sta = rx->sta; 1399 struct tid_ampdu_rx *tid_agg_rx; 1400 u16 sc; 1401 u8 tid, ack_policy; 1402 1403 if (!ieee80211_is_data_qos(hdr->frame_control) || 1404 is_multicast_ether_addr(hdr->addr1)) 1405 goto dont_reorder; 1406 1407 /* 1408 * filter the QoS data rx stream according to 1409 * STA/TID and check if this STA/TID is on aggregation 1410 */ 1411 1412 if (!sta) 1413 goto dont_reorder; 1414 1415 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1416 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1417 tid = ieee80211_get_tid(hdr); 1418 1419 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1420 if (!tid_agg_rx) { 1421 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1422 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1423 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1424 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1425 WLAN_BACK_RECIPIENT, 1426 WLAN_REASON_QSTA_REQUIRE_SETUP); 1427 goto dont_reorder; 1428 } 1429 1430 /* qos null data frames are excluded */ 1431 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1432 goto dont_reorder; 1433 1434 /* not part of a BA session */ 1435 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1436 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1437 goto dont_reorder; 1438 1439 /* new, potentially un-ordered, ampdu frame - process it */ 1440 1441 /* reset session timer */ 1442 if (tid_agg_rx->timeout) 1443 tid_agg_rx->last_rx = jiffies; 1444 1445 /* if this mpdu is fragmented - terminate rx aggregation session */ 1446 sc = le16_to_cpu(hdr->seq_ctrl); 1447 if (sc & IEEE80211_SCTL_FRAG) { 1448 skb_queue_tail(&rx->sdata->skb_queue, skb); 1449 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1450 return; 1451 } 1452 1453 /* 1454 * No locking needed -- we will only ever process one 1455 * RX packet at a time, and thus own tid_agg_rx. All 1456 * other code manipulating it needs to (and does) make 1457 * sure that we cannot get to it any more before doing 1458 * anything with it. 1459 */ 1460 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1461 frames)) 1462 return; 1463 1464 dont_reorder: 1465 __skb_queue_tail(frames, skb); 1466 } 1467 1468 static ieee80211_rx_result debug_noinline 1469 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1470 { 1471 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1472 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1473 1474 if (status->flag & RX_FLAG_DUP_VALIDATED) 1475 return RX_CONTINUE; 1476 1477 /* 1478 * Drop duplicate 802.11 retransmissions 1479 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1480 */ 1481 1482 if (rx->skb->len < 24) 1483 return RX_CONTINUE; 1484 1485 if (ieee80211_is_ctl(hdr->frame_control) || 1486 ieee80211_is_any_nullfunc(hdr->frame_control) || 1487 is_multicast_ether_addr(hdr->addr1)) 1488 return RX_CONTINUE; 1489 1490 if (!rx->sta) 1491 return RX_CONTINUE; 1492 1493 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1494 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1495 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1496 rx->sta->rx_stats.num_duplicates++; 1497 return RX_DROP_UNUSABLE; 1498 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1499 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1500 } 1501 1502 return RX_CONTINUE; 1503 } 1504 1505 static ieee80211_rx_result debug_noinline 1506 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1507 { 1508 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1509 1510 /* Drop disallowed frame classes based on STA auth/assoc state; 1511 * IEEE 802.11, Chap 5.5. 1512 * 1513 * mac80211 filters only based on association state, i.e. it drops 1514 * Class 3 frames from not associated stations. hostapd sends 1515 * deauth/disassoc frames when needed. In addition, hostapd is 1516 * responsible for filtering on both auth and assoc states. 1517 */ 1518 1519 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1520 return ieee80211_rx_mesh_check(rx); 1521 1522 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1523 ieee80211_is_pspoll(hdr->frame_control)) && 1524 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1525 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1526 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1527 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1528 /* 1529 * accept port control frames from the AP even when it's not 1530 * yet marked ASSOC to prevent a race where we don't set the 1531 * assoc bit quickly enough before it sends the first frame 1532 */ 1533 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1534 ieee80211_is_data_present(hdr->frame_control)) { 1535 unsigned int hdrlen; 1536 __be16 ethertype; 1537 1538 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1539 1540 if (rx->skb->len < hdrlen + 8) 1541 return RX_DROP_MONITOR; 1542 1543 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1544 if (ethertype == rx->sdata->control_port_protocol) 1545 return RX_CONTINUE; 1546 } 1547 1548 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1549 cfg80211_rx_spurious_frame(rx->sdata->dev, 1550 hdr->addr2, 1551 GFP_ATOMIC)) 1552 return RX_DROP_UNUSABLE; 1553 1554 return RX_DROP_MONITOR; 1555 } 1556 1557 return RX_CONTINUE; 1558 } 1559 1560 1561 static ieee80211_rx_result debug_noinline 1562 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1563 { 1564 struct ieee80211_local *local; 1565 struct ieee80211_hdr *hdr; 1566 struct sk_buff *skb; 1567 1568 local = rx->local; 1569 skb = rx->skb; 1570 hdr = (struct ieee80211_hdr *) skb->data; 1571 1572 if (!local->pspolling) 1573 return RX_CONTINUE; 1574 1575 if (!ieee80211_has_fromds(hdr->frame_control)) 1576 /* this is not from AP */ 1577 return RX_CONTINUE; 1578 1579 if (!ieee80211_is_data(hdr->frame_control)) 1580 return RX_CONTINUE; 1581 1582 if (!ieee80211_has_moredata(hdr->frame_control)) { 1583 /* AP has no more frames buffered for us */ 1584 local->pspolling = false; 1585 return RX_CONTINUE; 1586 } 1587 1588 /* more data bit is set, let's request a new frame from the AP */ 1589 ieee80211_send_pspoll(local, rx->sdata); 1590 1591 return RX_CONTINUE; 1592 } 1593 1594 static void sta_ps_start(struct sta_info *sta) 1595 { 1596 struct ieee80211_sub_if_data *sdata = sta->sdata; 1597 struct ieee80211_local *local = sdata->local; 1598 struct ps_data *ps; 1599 int tid; 1600 1601 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1602 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1603 ps = &sdata->bss->ps; 1604 else 1605 return; 1606 1607 atomic_inc(&ps->num_sta_ps); 1608 set_sta_flag(sta, WLAN_STA_PS_STA); 1609 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1610 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1611 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1612 sta->sta.addr, sta->sta.aid); 1613 1614 ieee80211_clear_fast_xmit(sta); 1615 1616 if (!sta->sta.txq[0]) 1617 return; 1618 1619 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1620 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1621 struct txq_info *txqi = to_txq_info(txq); 1622 1623 spin_lock(&local->active_txq_lock[txq->ac]); 1624 if (!list_empty(&txqi->schedule_order)) 1625 list_del_init(&txqi->schedule_order); 1626 spin_unlock(&local->active_txq_lock[txq->ac]); 1627 1628 if (txq_has_queue(txq)) 1629 set_bit(tid, &sta->txq_buffered_tids); 1630 else 1631 clear_bit(tid, &sta->txq_buffered_tids); 1632 } 1633 } 1634 1635 static void sta_ps_end(struct sta_info *sta) 1636 { 1637 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1638 sta->sta.addr, sta->sta.aid); 1639 1640 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1641 /* 1642 * Clear the flag only if the other one is still set 1643 * so that the TX path won't start TX'ing new frames 1644 * directly ... In the case that the driver flag isn't 1645 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1646 */ 1647 clear_sta_flag(sta, WLAN_STA_PS_STA); 1648 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1649 sta->sta.addr, sta->sta.aid); 1650 return; 1651 } 1652 1653 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1654 clear_sta_flag(sta, WLAN_STA_PS_STA); 1655 ieee80211_sta_ps_deliver_wakeup(sta); 1656 } 1657 1658 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1659 { 1660 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1661 bool in_ps; 1662 1663 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1664 1665 /* Don't let the same PS state be set twice */ 1666 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1667 if ((start && in_ps) || (!start && !in_ps)) 1668 return -EINVAL; 1669 1670 if (start) 1671 sta_ps_start(sta); 1672 else 1673 sta_ps_end(sta); 1674 1675 return 0; 1676 } 1677 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1678 1679 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1680 { 1681 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1682 1683 if (test_sta_flag(sta, WLAN_STA_SP)) 1684 return; 1685 1686 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1687 ieee80211_sta_ps_deliver_poll_response(sta); 1688 else 1689 set_sta_flag(sta, WLAN_STA_PSPOLL); 1690 } 1691 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1692 1693 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1694 { 1695 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1696 int ac = ieee80211_ac_from_tid(tid); 1697 1698 /* 1699 * If this AC is not trigger-enabled do nothing unless the 1700 * driver is calling us after it already checked. 1701 * 1702 * NB: This could/should check a separate bitmap of trigger- 1703 * enabled queues, but for now we only implement uAPSD w/o 1704 * TSPEC changes to the ACs, so they're always the same. 1705 */ 1706 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1707 tid != IEEE80211_NUM_TIDS) 1708 return; 1709 1710 /* if we are in a service period, do nothing */ 1711 if (test_sta_flag(sta, WLAN_STA_SP)) 1712 return; 1713 1714 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1715 ieee80211_sta_ps_deliver_uapsd(sta); 1716 else 1717 set_sta_flag(sta, WLAN_STA_UAPSD); 1718 } 1719 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1720 1721 static ieee80211_rx_result debug_noinline 1722 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1723 { 1724 struct ieee80211_sub_if_data *sdata = rx->sdata; 1725 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1726 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1727 1728 if (!rx->sta) 1729 return RX_CONTINUE; 1730 1731 if (sdata->vif.type != NL80211_IFTYPE_AP && 1732 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1733 return RX_CONTINUE; 1734 1735 /* 1736 * The device handles station powersave, so don't do anything about 1737 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1738 * it to mac80211 since they're handled.) 1739 */ 1740 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1741 return RX_CONTINUE; 1742 1743 /* 1744 * Don't do anything if the station isn't already asleep. In 1745 * the uAPSD case, the station will probably be marked asleep, 1746 * in the PS-Poll case the station must be confused ... 1747 */ 1748 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1749 return RX_CONTINUE; 1750 1751 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1752 ieee80211_sta_pspoll(&rx->sta->sta); 1753 1754 /* Free PS Poll skb here instead of returning RX_DROP that would 1755 * count as an dropped frame. */ 1756 dev_kfree_skb(rx->skb); 1757 1758 return RX_QUEUED; 1759 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1760 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1761 ieee80211_has_pm(hdr->frame_control) && 1762 (ieee80211_is_data_qos(hdr->frame_control) || 1763 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1764 u8 tid = ieee80211_get_tid(hdr); 1765 1766 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1767 } 1768 1769 return RX_CONTINUE; 1770 } 1771 1772 static ieee80211_rx_result debug_noinline 1773 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1774 { 1775 struct sta_info *sta = rx->sta; 1776 struct sk_buff *skb = rx->skb; 1777 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1779 int i; 1780 1781 if (!sta) 1782 return RX_CONTINUE; 1783 1784 /* 1785 * Update last_rx only for IBSS packets which are for the current 1786 * BSSID and for station already AUTHORIZED to avoid keeping the 1787 * current IBSS network alive in cases where other STAs start 1788 * using different BSSID. This will also give the station another 1789 * chance to restart the authentication/authorization in case 1790 * something went wrong the first time. 1791 */ 1792 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1793 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1794 NL80211_IFTYPE_ADHOC); 1795 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1796 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1797 sta->rx_stats.last_rx = jiffies; 1798 if (ieee80211_is_data(hdr->frame_control) && 1799 !is_multicast_ether_addr(hdr->addr1)) 1800 sta->rx_stats.last_rate = 1801 sta_stats_encode_rate(status); 1802 } 1803 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1804 sta->rx_stats.last_rx = jiffies; 1805 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1806 /* 1807 * Mesh beacons will update last_rx when if they are found to 1808 * match the current local configuration when processed. 1809 */ 1810 sta->rx_stats.last_rx = jiffies; 1811 if (ieee80211_is_data(hdr->frame_control)) 1812 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1813 } 1814 1815 sta->rx_stats.fragments++; 1816 1817 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1818 sta->rx_stats.bytes += rx->skb->len; 1819 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1820 1821 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1822 sta->rx_stats.last_signal = status->signal; 1823 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1824 } 1825 1826 if (status->chains) { 1827 sta->rx_stats.chains = status->chains; 1828 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1829 int signal = status->chain_signal[i]; 1830 1831 if (!(status->chains & BIT(i))) 1832 continue; 1833 1834 sta->rx_stats.chain_signal_last[i] = signal; 1835 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1836 -signal); 1837 } 1838 } 1839 1840 /* 1841 * Change STA power saving mode only at the end of a frame 1842 * exchange sequence, and only for a data or management 1843 * frame as specified in IEEE 802.11-2016 11.2.3.2 1844 */ 1845 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1846 !ieee80211_has_morefrags(hdr->frame_control) && 1847 !is_multicast_ether_addr(hdr->addr1) && 1848 (ieee80211_is_mgmt(hdr->frame_control) || 1849 ieee80211_is_data(hdr->frame_control)) && 1850 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1852 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1853 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1854 if (!ieee80211_has_pm(hdr->frame_control)) 1855 sta_ps_end(sta); 1856 } else { 1857 if (ieee80211_has_pm(hdr->frame_control)) 1858 sta_ps_start(sta); 1859 } 1860 } 1861 1862 /* mesh power save support */ 1863 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1864 ieee80211_mps_rx_h_sta_process(sta, hdr); 1865 1866 /* 1867 * Drop (qos-)data::nullfunc frames silently, since they 1868 * are used only to control station power saving mode. 1869 */ 1870 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1871 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1872 1873 /* 1874 * If we receive a 4-addr nullfunc frame from a STA 1875 * that was not moved to a 4-addr STA vlan yet send 1876 * the event to userspace and for older hostapd drop 1877 * the frame to the monitor interface. 1878 */ 1879 if (ieee80211_has_a4(hdr->frame_control) && 1880 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1881 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1882 !rx->sdata->u.vlan.sta))) { 1883 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1884 cfg80211_rx_unexpected_4addr_frame( 1885 rx->sdata->dev, sta->sta.addr, 1886 GFP_ATOMIC); 1887 return RX_DROP_MONITOR; 1888 } 1889 /* 1890 * Update counter and free packet here to avoid 1891 * counting this as a dropped packed. 1892 */ 1893 sta->rx_stats.packets++; 1894 dev_kfree_skb(rx->skb); 1895 return RX_QUEUED; 1896 } 1897 1898 return RX_CONTINUE; 1899 } /* ieee80211_rx_h_sta_process */ 1900 1901 static struct ieee80211_key * 1902 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1903 { 1904 struct ieee80211_key *key = NULL; 1905 struct ieee80211_sub_if_data *sdata = rx->sdata; 1906 int idx2; 1907 1908 /* Make sure key gets set if either BIGTK key index is set so that 1909 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1910 * Beacon frames and Beacon frames that claim to use another BIGTK key 1911 * index (i.e., a key that we do not have). 1912 */ 1913 1914 if (idx < 0) { 1915 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1916 idx2 = idx + 1; 1917 } else { 1918 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1919 idx2 = idx + 1; 1920 else 1921 idx2 = idx - 1; 1922 } 1923 1924 if (rx->sta) 1925 key = rcu_dereference(rx->sta->gtk[idx]); 1926 if (!key) 1927 key = rcu_dereference(sdata->keys[idx]); 1928 if (!key && rx->sta) 1929 key = rcu_dereference(rx->sta->gtk[idx2]); 1930 if (!key) 1931 key = rcu_dereference(sdata->keys[idx2]); 1932 1933 return key; 1934 } 1935 1936 static ieee80211_rx_result debug_noinline 1937 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1938 { 1939 struct sk_buff *skb = rx->skb; 1940 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1941 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1942 int keyidx; 1943 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1944 struct ieee80211_key *sta_ptk = NULL; 1945 struct ieee80211_key *ptk_idx = NULL; 1946 int mmie_keyidx = -1; 1947 __le16 fc; 1948 const struct ieee80211_cipher_scheme *cs = NULL; 1949 1950 /* 1951 * Key selection 101 1952 * 1953 * There are five types of keys: 1954 * - GTK (group keys) 1955 * - IGTK (group keys for management frames) 1956 * - BIGTK (group keys for Beacon frames) 1957 * - PTK (pairwise keys) 1958 * - STK (station-to-station pairwise keys) 1959 * 1960 * When selecting a key, we have to distinguish between multicast 1961 * (including broadcast) and unicast frames, the latter can only 1962 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1963 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1964 * then unicast frames can also use key indices like GTKs. Hence, if we 1965 * don't have a PTK/STK we check the key index for a WEP key. 1966 * 1967 * Note that in a regular BSS, multicast frames are sent by the 1968 * AP only, associated stations unicast the frame to the AP first 1969 * which then multicasts it on their behalf. 1970 * 1971 * There is also a slight problem in IBSS mode: GTKs are negotiated 1972 * with each station, that is something we don't currently handle. 1973 * The spec seems to expect that one negotiates the same key with 1974 * every station but there's no such requirement; VLANs could be 1975 * possible. 1976 */ 1977 1978 /* start without a key */ 1979 rx->key = NULL; 1980 fc = hdr->frame_control; 1981 1982 if (rx->sta) { 1983 int keyid = rx->sta->ptk_idx; 1984 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1985 1986 if (ieee80211_has_protected(fc)) { 1987 cs = rx->sta->cipher_scheme; 1988 keyid = ieee80211_get_keyid(rx->skb, cs); 1989 1990 if (unlikely(keyid < 0)) 1991 return RX_DROP_UNUSABLE; 1992 1993 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1994 } 1995 } 1996 1997 if (!ieee80211_has_protected(fc)) 1998 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1999 2000 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 2001 rx->key = ptk_idx ? ptk_idx : sta_ptk; 2002 if ((status->flag & RX_FLAG_DECRYPTED) && 2003 (status->flag & RX_FLAG_IV_STRIPPED)) 2004 return RX_CONTINUE; 2005 /* Skip decryption if the frame is not protected. */ 2006 if (!ieee80211_has_protected(fc)) 2007 return RX_CONTINUE; 2008 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 2009 /* Broadcast/multicast robust management frame / BIP */ 2010 if ((status->flag & RX_FLAG_DECRYPTED) && 2011 (status->flag & RX_FLAG_IV_STRIPPED)) 2012 return RX_CONTINUE; 2013 2014 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 2015 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 2016 NUM_DEFAULT_BEACON_KEYS) { 2017 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2018 skb->data, 2019 skb->len); 2020 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2021 } 2022 2023 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 2024 if (!rx->key) 2025 return RX_CONTINUE; /* Beacon protection not in use */ 2026 } else if (mmie_keyidx >= 0) { 2027 /* Broadcast/multicast robust management frame / BIP */ 2028 if ((status->flag & RX_FLAG_DECRYPTED) && 2029 (status->flag & RX_FLAG_IV_STRIPPED)) 2030 return RX_CONTINUE; 2031 2032 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2033 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2034 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2035 if (rx->sta) { 2036 if (ieee80211_is_group_privacy_action(skb) && 2037 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2038 return RX_DROP_MONITOR; 2039 2040 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2041 } 2042 if (!rx->key) 2043 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2044 } else if (!ieee80211_has_protected(fc)) { 2045 /* 2046 * The frame was not protected, so skip decryption. However, we 2047 * need to set rx->key if there is a key that could have been 2048 * used so that the frame may be dropped if encryption would 2049 * have been expected. 2050 */ 2051 struct ieee80211_key *key = NULL; 2052 struct ieee80211_sub_if_data *sdata = rx->sdata; 2053 int i; 2054 2055 if (ieee80211_is_beacon(fc)) { 2056 key = ieee80211_rx_get_bigtk(rx, -1); 2057 } else if (ieee80211_is_mgmt(fc) && 2058 is_multicast_ether_addr(hdr->addr1)) { 2059 key = rcu_dereference(rx->sdata->default_mgmt_key); 2060 } else { 2061 if (rx->sta) { 2062 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2063 key = rcu_dereference(rx->sta->gtk[i]); 2064 if (key) 2065 break; 2066 } 2067 } 2068 if (!key) { 2069 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2070 key = rcu_dereference(sdata->keys[i]); 2071 if (key) 2072 break; 2073 } 2074 } 2075 } 2076 if (key) 2077 rx->key = key; 2078 return RX_CONTINUE; 2079 } else { 2080 /* 2081 * The device doesn't give us the IV so we won't be 2082 * able to look up the key. That's ok though, we 2083 * don't need to decrypt the frame, we just won't 2084 * be able to keep statistics accurate. 2085 * Except for key threshold notifications, should 2086 * we somehow allow the driver to tell us which key 2087 * the hardware used if this flag is set? 2088 */ 2089 if ((status->flag & RX_FLAG_DECRYPTED) && 2090 (status->flag & RX_FLAG_IV_STRIPPED)) 2091 return RX_CONTINUE; 2092 2093 keyidx = ieee80211_get_keyid(rx->skb, cs); 2094 2095 if (unlikely(keyidx < 0)) 2096 return RX_DROP_UNUSABLE; 2097 2098 /* check per-station GTK first, if multicast packet */ 2099 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2100 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2101 2102 /* if not found, try default key */ 2103 if (!rx->key) { 2104 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2105 2106 /* 2107 * RSNA-protected unicast frames should always be 2108 * sent with pairwise or station-to-station keys, 2109 * but for WEP we allow using a key index as well. 2110 */ 2111 if (rx->key && 2112 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2113 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2114 !is_multicast_ether_addr(hdr->addr1)) 2115 rx->key = NULL; 2116 } 2117 } 2118 2119 if (rx->key) { 2120 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2121 return RX_DROP_MONITOR; 2122 2123 /* TODO: add threshold stuff again */ 2124 } else { 2125 return RX_DROP_MONITOR; 2126 } 2127 2128 switch (rx->key->conf.cipher) { 2129 case WLAN_CIPHER_SUITE_WEP40: 2130 case WLAN_CIPHER_SUITE_WEP104: 2131 result = ieee80211_crypto_wep_decrypt(rx); 2132 break; 2133 case WLAN_CIPHER_SUITE_TKIP: 2134 result = ieee80211_crypto_tkip_decrypt(rx); 2135 break; 2136 case WLAN_CIPHER_SUITE_CCMP: 2137 result = ieee80211_crypto_ccmp_decrypt( 2138 rx, IEEE80211_CCMP_MIC_LEN); 2139 break; 2140 case WLAN_CIPHER_SUITE_CCMP_256: 2141 result = ieee80211_crypto_ccmp_decrypt( 2142 rx, IEEE80211_CCMP_256_MIC_LEN); 2143 break; 2144 case WLAN_CIPHER_SUITE_AES_CMAC: 2145 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2146 break; 2147 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2148 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2149 break; 2150 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2151 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2152 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2153 break; 2154 case WLAN_CIPHER_SUITE_GCMP: 2155 case WLAN_CIPHER_SUITE_GCMP_256: 2156 result = ieee80211_crypto_gcmp_decrypt(rx); 2157 break; 2158 default: 2159 result = ieee80211_crypto_hw_decrypt(rx); 2160 } 2161 2162 /* the hdr variable is invalid after the decrypt handlers */ 2163 2164 /* either the frame has been decrypted or will be dropped */ 2165 status->flag |= RX_FLAG_DECRYPTED; 2166 2167 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2168 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2169 skb->data, skb->len); 2170 2171 return result; 2172 } 2173 2174 static inline struct ieee80211_fragment_entry * 2175 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2176 unsigned int frag, unsigned int seq, int rx_queue, 2177 struct sk_buff **skb) 2178 { 2179 struct ieee80211_fragment_entry *entry; 2180 2181 entry = &sdata->fragments[sdata->fragment_next++]; 2182 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2183 sdata->fragment_next = 0; 2184 2185 if (!skb_queue_empty(&entry->skb_list)) 2186 __skb_queue_purge(&entry->skb_list); 2187 2188 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2189 *skb = NULL; 2190 entry->first_frag_time = jiffies; 2191 entry->seq = seq; 2192 entry->rx_queue = rx_queue; 2193 entry->last_frag = frag; 2194 entry->check_sequential_pn = false; 2195 entry->extra_len = 0; 2196 2197 return entry; 2198 } 2199 2200 static inline struct ieee80211_fragment_entry * 2201 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2202 unsigned int frag, unsigned int seq, 2203 int rx_queue, struct ieee80211_hdr *hdr) 2204 { 2205 struct ieee80211_fragment_entry *entry; 2206 int i, idx; 2207 2208 idx = sdata->fragment_next; 2209 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2210 struct ieee80211_hdr *f_hdr; 2211 struct sk_buff *f_skb; 2212 2213 idx--; 2214 if (idx < 0) 2215 idx = IEEE80211_FRAGMENT_MAX - 1; 2216 2217 entry = &sdata->fragments[idx]; 2218 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2219 entry->rx_queue != rx_queue || 2220 entry->last_frag + 1 != frag) 2221 continue; 2222 2223 f_skb = __skb_peek(&entry->skb_list); 2224 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2225 2226 /* 2227 * Check ftype and addresses are equal, else check next fragment 2228 */ 2229 if (((hdr->frame_control ^ f_hdr->frame_control) & 2230 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2231 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2232 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2233 continue; 2234 2235 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2236 __skb_queue_purge(&entry->skb_list); 2237 continue; 2238 } 2239 return entry; 2240 } 2241 2242 return NULL; 2243 } 2244 2245 static ieee80211_rx_result debug_noinline 2246 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2247 { 2248 struct ieee80211_hdr *hdr; 2249 u16 sc; 2250 __le16 fc; 2251 unsigned int frag, seq; 2252 struct ieee80211_fragment_entry *entry; 2253 struct sk_buff *skb; 2254 2255 hdr = (struct ieee80211_hdr *)rx->skb->data; 2256 fc = hdr->frame_control; 2257 2258 if (ieee80211_is_ctl(fc)) 2259 return RX_CONTINUE; 2260 2261 sc = le16_to_cpu(hdr->seq_ctrl); 2262 frag = sc & IEEE80211_SCTL_FRAG; 2263 2264 if (is_multicast_ether_addr(hdr->addr1)) { 2265 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2266 goto out_no_led; 2267 } 2268 2269 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2270 goto out; 2271 2272 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2273 2274 if (skb_linearize(rx->skb)) 2275 return RX_DROP_UNUSABLE; 2276 2277 /* 2278 * skb_linearize() might change the skb->data and 2279 * previously cached variables (in this case, hdr) need to 2280 * be refreshed with the new data. 2281 */ 2282 hdr = (struct ieee80211_hdr *)rx->skb->data; 2283 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2284 2285 if (frag == 0) { 2286 /* This is the first fragment of a new frame. */ 2287 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2288 rx->seqno_idx, &(rx->skb)); 2289 if (rx->key && 2290 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2291 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2292 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2293 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2294 ieee80211_has_protected(fc)) { 2295 int queue = rx->security_idx; 2296 2297 /* Store CCMP/GCMP PN so that we can verify that the 2298 * next fragment has a sequential PN value. 2299 */ 2300 entry->check_sequential_pn = true; 2301 memcpy(entry->last_pn, 2302 rx->key->u.ccmp.rx_pn[queue], 2303 IEEE80211_CCMP_PN_LEN); 2304 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2305 u.ccmp.rx_pn) != 2306 offsetof(struct ieee80211_key, 2307 u.gcmp.rx_pn)); 2308 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2309 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2310 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2311 IEEE80211_GCMP_PN_LEN); 2312 } 2313 return RX_QUEUED; 2314 } 2315 2316 /* This is a fragment for a frame that should already be pending in 2317 * fragment cache. Add this fragment to the end of the pending entry. 2318 */ 2319 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2320 rx->seqno_idx, hdr); 2321 if (!entry) { 2322 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2323 return RX_DROP_MONITOR; 2324 } 2325 2326 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2327 * MPDU PN values are not incrementing in steps of 1." 2328 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2329 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2330 */ 2331 if (entry->check_sequential_pn) { 2332 int i; 2333 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2334 int queue; 2335 2336 if (!rx->key || 2337 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2338 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2339 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2340 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2341 return RX_DROP_UNUSABLE; 2342 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2343 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2344 pn[i]++; 2345 if (pn[i]) 2346 break; 2347 } 2348 queue = rx->security_idx; 2349 rpn = rx->key->u.ccmp.rx_pn[queue]; 2350 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2351 return RX_DROP_UNUSABLE; 2352 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2353 } 2354 2355 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2356 __skb_queue_tail(&entry->skb_list, rx->skb); 2357 entry->last_frag = frag; 2358 entry->extra_len += rx->skb->len; 2359 if (ieee80211_has_morefrags(fc)) { 2360 rx->skb = NULL; 2361 return RX_QUEUED; 2362 } 2363 2364 rx->skb = __skb_dequeue(&entry->skb_list); 2365 if (skb_tailroom(rx->skb) < entry->extra_len) { 2366 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2367 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2368 GFP_ATOMIC))) { 2369 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2370 __skb_queue_purge(&entry->skb_list); 2371 return RX_DROP_UNUSABLE; 2372 } 2373 } 2374 while ((skb = __skb_dequeue(&entry->skb_list))) { 2375 skb_put_data(rx->skb, skb->data, skb->len); 2376 dev_kfree_skb(skb); 2377 } 2378 2379 out: 2380 ieee80211_led_rx(rx->local); 2381 out_no_led: 2382 if (rx->sta) 2383 rx->sta->rx_stats.packets++; 2384 return RX_CONTINUE; 2385 } 2386 2387 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2388 { 2389 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2390 return -EACCES; 2391 2392 return 0; 2393 } 2394 2395 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2396 { 2397 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2398 struct sk_buff *skb = rx->skb; 2399 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2400 2401 /* 2402 * Pass through unencrypted frames if the hardware has 2403 * decrypted them already. 2404 */ 2405 if (status->flag & RX_FLAG_DECRYPTED) 2406 return 0; 2407 2408 /* check mesh EAPOL frames first */ 2409 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2410 ieee80211_is_data(fc))) { 2411 struct ieee80211s_hdr *mesh_hdr; 2412 u16 hdr_len = ieee80211_hdrlen(fc); 2413 u16 ethertype_offset; 2414 __be16 ethertype; 2415 2416 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2417 goto drop_check; 2418 2419 /* make sure fixed part of mesh header is there, also checks skb len */ 2420 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2421 goto drop_check; 2422 2423 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2424 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2425 sizeof(rfc1042_header); 2426 2427 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2428 ethertype == rx->sdata->control_port_protocol) 2429 return 0; 2430 } 2431 2432 drop_check: 2433 /* Drop unencrypted frames if key is set. */ 2434 if (unlikely(!ieee80211_has_protected(fc) && 2435 !ieee80211_is_any_nullfunc(fc) && 2436 ieee80211_is_data(fc) && rx->key)) 2437 return -EACCES; 2438 2439 return 0; 2440 } 2441 2442 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2443 { 2444 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2445 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2446 __le16 fc = hdr->frame_control; 2447 2448 /* 2449 * Pass through unencrypted frames if the hardware has 2450 * decrypted them already. 2451 */ 2452 if (status->flag & RX_FLAG_DECRYPTED) 2453 return 0; 2454 2455 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2456 if (unlikely(!ieee80211_has_protected(fc) && 2457 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2458 rx->key)) { 2459 if (ieee80211_is_deauth(fc) || 2460 ieee80211_is_disassoc(fc)) 2461 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2462 rx->skb->data, 2463 rx->skb->len); 2464 return -EACCES; 2465 } 2466 /* BIP does not use Protected field, so need to check MMIE */ 2467 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2468 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2469 if (ieee80211_is_deauth(fc) || 2470 ieee80211_is_disassoc(fc)) 2471 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2472 rx->skb->data, 2473 rx->skb->len); 2474 return -EACCES; 2475 } 2476 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2477 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2478 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2479 rx->skb->data, 2480 rx->skb->len); 2481 return -EACCES; 2482 } 2483 /* 2484 * When using MFP, Action frames are not allowed prior to 2485 * having configured keys. 2486 */ 2487 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2488 ieee80211_is_robust_mgmt_frame(rx->skb))) 2489 return -EACCES; 2490 } 2491 2492 return 0; 2493 } 2494 2495 static int 2496 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2497 { 2498 struct ieee80211_sub_if_data *sdata = rx->sdata; 2499 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2500 bool check_port_control = false; 2501 struct ethhdr *ehdr; 2502 int ret; 2503 2504 *port_control = false; 2505 if (ieee80211_has_a4(hdr->frame_control) && 2506 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2507 return -1; 2508 2509 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2510 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2511 2512 if (!sdata->u.mgd.use_4addr) 2513 return -1; 2514 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2515 check_port_control = true; 2516 } 2517 2518 if (is_multicast_ether_addr(hdr->addr1) && 2519 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2520 return -1; 2521 2522 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2523 if (ret < 0) 2524 return ret; 2525 2526 ehdr = (struct ethhdr *) rx->skb->data; 2527 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2528 *port_control = true; 2529 else if (check_port_control) 2530 return -1; 2531 2532 return 0; 2533 } 2534 2535 /* 2536 * requires that rx->skb is a frame with ethernet header 2537 */ 2538 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2539 { 2540 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2541 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2542 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2543 2544 /* 2545 * Allow EAPOL frames to us/the PAE group address regardless 2546 * of whether the frame was encrypted or not. 2547 */ 2548 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2549 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2550 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2551 return true; 2552 2553 if (ieee80211_802_1x_port_control(rx) || 2554 ieee80211_drop_unencrypted(rx, fc)) 2555 return false; 2556 2557 return true; 2558 } 2559 2560 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2561 struct ieee80211_rx_data *rx) 2562 { 2563 struct ieee80211_sub_if_data *sdata = rx->sdata; 2564 struct net_device *dev = sdata->dev; 2565 2566 if (unlikely((skb->protocol == sdata->control_port_protocol || 2567 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2568 !sdata->control_port_no_preauth)) && 2569 sdata->control_port_over_nl80211)) { 2570 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2571 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2572 2573 cfg80211_rx_control_port(dev, skb, noencrypt); 2574 dev_kfree_skb(skb); 2575 } else { 2576 memset(skb->cb, 0, sizeof(skb->cb)); 2577 2578 /* deliver to local stack */ 2579 if (rx->list) 2580 list_add_tail(&skb->list, rx->list); 2581 else 2582 netif_receive_skb(skb); 2583 } 2584 } 2585 2586 /* 2587 * requires that rx->skb is a frame with ethernet header 2588 */ 2589 static void 2590 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2591 { 2592 struct ieee80211_sub_if_data *sdata = rx->sdata; 2593 struct net_device *dev = sdata->dev; 2594 struct sk_buff *skb, *xmit_skb; 2595 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2596 struct sta_info *dsta; 2597 2598 skb = rx->skb; 2599 xmit_skb = NULL; 2600 2601 ieee80211_rx_stats(dev, skb->len); 2602 2603 if (rx->sta) { 2604 /* The seqno index has the same property as needed 2605 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2606 * for non-QoS-data frames. Here we know it's a data 2607 * frame, so count MSDUs. 2608 */ 2609 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2610 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2611 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2612 } 2613 2614 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2615 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2616 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2617 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2618 if (is_multicast_ether_addr(ehdr->h_dest) && 2619 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2620 /* 2621 * send multicast frames both to higher layers in 2622 * local net stack and back to the wireless medium 2623 */ 2624 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2625 if (!xmit_skb) 2626 net_info_ratelimited("%s: failed to clone multicast frame\n", 2627 dev->name); 2628 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2629 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2630 dsta = sta_info_get(sdata, ehdr->h_dest); 2631 if (dsta) { 2632 /* 2633 * The destination station is associated to 2634 * this AP (in this VLAN), so send the frame 2635 * directly to it and do not pass it to local 2636 * net stack. 2637 */ 2638 xmit_skb = skb; 2639 skb = NULL; 2640 } 2641 } 2642 } 2643 2644 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2645 if (skb) { 2646 /* 'align' will only take the values 0 or 2 here since all 2647 * frames are required to be aligned to 2-byte boundaries 2648 * when being passed to mac80211; the code here works just 2649 * as well if that isn't true, but mac80211 assumes it can 2650 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2651 */ 2652 int align; 2653 2654 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2655 if (align) { 2656 if (WARN_ON(skb_headroom(skb) < 3)) { 2657 dev_kfree_skb(skb); 2658 skb = NULL; 2659 } else { 2660 u8 *data = skb->data; 2661 size_t len = skb_headlen(skb); 2662 skb->data -= align; 2663 memmove(skb->data, data, len); 2664 skb_set_tail_pointer(skb, len); 2665 } 2666 } 2667 } 2668 #endif 2669 2670 if (skb) { 2671 skb->protocol = eth_type_trans(skb, dev); 2672 ieee80211_deliver_skb_to_local_stack(skb, rx); 2673 } 2674 2675 if (xmit_skb) { 2676 /* 2677 * Send to wireless media and increase priority by 256 to 2678 * keep the received priority instead of reclassifying 2679 * the frame (see cfg80211_classify8021d). 2680 */ 2681 xmit_skb->priority += 256; 2682 xmit_skb->protocol = htons(ETH_P_802_3); 2683 skb_reset_network_header(xmit_skb); 2684 skb_reset_mac_header(xmit_skb); 2685 dev_queue_xmit(xmit_skb); 2686 } 2687 } 2688 2689 static ieee80211_rx_result debug_noinline 2690 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2691 { 2692 struct net_device *dev = rx->sdata->dev; 2693 struct sk_buff *skb = rx->skb; 2694 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2695 __le16 fc = hdr->frame_control; 2696 struct sk_buff_head frame_list; 2697 struct ethhdr ethhdr; 2698 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2699 2700 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2701 check_da = NULL; 2702 check_sa = NULL; 2703 } else switch (rx->sdata->vif.type) { 2704 case NL80211_IFTYPE_AP: 2705 case NL80211_IFTYPE_AP_VLAN: 2706 check_da = NULL; 2707 break; 2708 case NL80211_IFTYPE_STATION: 2709 if (!rx->sta || 2710 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2711 check_sa = NULL; 2712 break; 2713 case NL80211_IFTYPE_MESH_POINT: 2714 check_sa = NULL; 2715 break; 2716 default: 2717 break; 2718 } 2719 2720 skb->dev = dev; 2721 __skb_queue_head_init(&frame_list); 2722 2723 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2724 rx->sdata->vif.addr, 2725 rx->sdata->vif.type, 2726 data_offset)) 2727 return RX_DROP_UNUSABLE; 2728 2729 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2730 rx->sdata->vif.type, 2731 rx->local->hw.extra_tx_headroom, 2732 check_da, check_sa); 2733 2734 while (!skb_queue_empty(&frame_list)) { 2735 rx->skb = __skb_dequeue(&frame_list); 2736 2737 if (!ieee80211_frame_allowed(rx, fc)) { 2738 dev_kfree_skb(rx->skb); 2739 continue; 2740 } 2741 2742 ieee80211_deliver_skb(rx); 2743 } 2744 2745 return RX_QUEUED; 2746 } 2747 2748 static ieee80211_rx_result debug_noinline 2749 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2750 { 2751 struct sk_buff *skb = rx->skb; 2752 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2753 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2754 __le16 fc = hdr->frame_control; 2755 2756 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2757 return RX_CONTINUE; 2758 2759 if (unlikely(!ieee80211_is_data(fc))) 2760 return RX_CONTINUE; 2761 2762 if (unlikely(!ieee80211_is_data_present(fc))) 2763 return RX_DROP_MONITOR; 2764 2765 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2766 switch (rx->sdata->vif.type) { 2767 case NL80211_IFTYPE_AP_VLAN: 2768 if (!rx->sdata->u.vlan.sta) 2769 return RX_DROP_UNUSABLE; 2770 break; 2771 case NL80211_IFTYPE_STATION: 2772 if (!rx->sdata->u.mgd.use_4addr) 2773 return RX_DROP_UNUSABLE; 2774 break; 2775 default: 2776 return RX_DROP_UNUSABLE; 2777 } 2778 } 2779 2780 if (is_multicast_ether_addr(hdr->addr1)) 2781 return RX_DROP_UNUSABLE; 2782 2783 return __ieee80211_rx_h_amsdu(rx, 0); 2784 } 2785 2786 #ifdef CONFIG_MAC80211_MESH 2787 static ieee80211_rx_result 2788 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2789 { 2790 struct ieee80211_hdr *fwd_hdr, *hdr; 2791 struct ieee80211_tx_info *info; 2792 struct ieee80211s_hdr *mesh_hdr; 2793 struct sk_buff *skb = rx->skb, *fwd_skb; 2794 struct ieee80211_local *local = rx->local; 2795 struct ieee80211_sub_if_data *sdata = rx->sdata; 2796 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2797 u16 ac, q, hdrlen; 2798 int tailroom = 0; 2799 2800 hdr = (struct ieee80211_hdr *) skb->data; 2801 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2802 2803 /* make sure fixed part of mesh header is there, also checks skb len */ 2804 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2805 return RX_DROP_MONITOR; 2806 2807 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2808 2809 /* make sure full mesh header is there, also checks skb len */ 2810 if (!pskb_may_pull(rx->skb, 2811 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2812 return RX_DROP_MONITOR; 2813 2814 /* reload pointers */ 2815 hdr = (struct ieee80211_hdr *) skb->data; 2816 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2817 2818 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2819 return RX_DROP_MONITOR; 2820 2821 /* frame is in RMC, don't forward */ 2822 if (ieee80211_is_data(hdr->frame_control) && 2823 is_multicast_ether_addr(hdr->addr1) && 2824 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2825 return RX_DROP_MONITOR; 2826 2827 if (!ieee80211_is_data(hdr->frame_control)) 2828 return RX_CONTINUE; 2829 2830 if (!mesh_hdr->ttl) 2831 return RX_DROP_MONITOR; 2832 2833 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2834 struct mesh_path *mppath; 2835 char *proxied_addr; 2836 char *mpp_addr; 2837 2838 if (is_multicast_ether_addr(hdr->addr1)) { 2839 mpp_addr = hdr->addr3; 2840 proxied_addr = mesh_hdr->eaddr1; 2841 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2842 MESH_FLAGS_AE_A5_A6) { 2843 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2844 mpp_addr = hdr->addr4; 2845 proxied_addr = mesh_hdr->eaddr2; 2846 } else { 2847 return RX_DROP_MONITOR; 2848 } 2849 2850 rcu_read_lock(); 2851 mppath = mpp_path_lookup(sdata, proxied_addr); 2852 if (!mppath) { 2853 mpp_path_add(sdata, proxied_addr, mpp_addr); 2854 } else { 2855 spin_lock_bh(&mppath->state_lock); 2856 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2857 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2858 mppath->exp_time = jiffies; 2859 spin_unlock_bh(&mppath->state_lock); 2860 } 2861 rcu_read_unlock(); 2862 } 2863 2864 /* Frame has reached destination. Don't forward */ 2865 if (!is_multicast_ether_addr(hdr->addr1) && 2866 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2867 return RX_CONTINUE; 2868 2869 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2870 q = sdata->vif.hw_queue[ac]; 2871 if (ieee80211_queue_stopped(&local->hw, q)) { 2872 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2873 return RX_DROP_MONITOR; 2874 } 2875 skb_set_queue_mapping(skb, q); 2876 2877 if (!--mesh_hdr->ttl) { 2878 if (!is_multicast_ether_addr(hdr->addr1)) 2879 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2880 dropped_frames_ttl); 2881 goto out; 2882 } 2883 2884 if (!ifmsh->mshcfg.dot11MeshForwarding) 2885 goto out; 2886 2887 if (sdata->crypto_tx_tailroom_needed_cnt) 2888 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2889 2890 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2891 sdata->encrypt_headroom, 2892 tailroom, GFP_ATOMIC); 2893 if (!fwd_skb) 2894 goto out; 2895 2896 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2897 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2898 info = IEEE80211_SKB_CB(fwd_skb); 2899 memset(info, 0, sizeof(*info)); 2900 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2901 info->control.vif = &rx->sdata->vif; 2902 info->control.jiffies = jiffies; 2903 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2904 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2905 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2906 /* update power mode indication when forwarding */ 2907 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2908 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2909 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2910 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2911 } else { 2912 /* unable to resolve next hop */ 2913 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2914 fwd_hdr->addr3, 0, 2915 WLAN_REASON_MESH_PATH_NOFORWARD, 2916 fwd_hdr->addr2); 2917 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2918 kfree_skb(fwd_skb); 2919 return RX_DROP_MONITOR; 2920 } 2921 2922 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2923 ieee80211_add_pending_skb(local, fwd_skb); 2924 out: 2925 if (is_multicast_ether_addr(hdr->addr1)) 2926 return RX_CONTINUE; 2927 return RX_DROP_MONITOR; 2928 } 2929 #endif 2930 2931 static ieee80211_rx_result debug_noinline 2932 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2933 { 2934 struct ieee80211_sub_if_data *sdata = rx->sdata; 2935 struct ieee80211_local *local = rx->local; 2936 struct net_device *dev = sdata->dev; 2937 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2938 __le16 fc = hdr->frame_control; 2939 bool port_control; 2940 int err; 2941 2942 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2943 return RX_CONTINUE; 2944 2945 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2946 return RX_DROP_MONITOR; 2947 2948 /* 2949 * Send unexpected-4addr-frame event to hostapd. For older versions, 2950 * also drop the frame to cooked monitor interfaces. 2951 */ 2952 if (ieee80211_has_a4(hdr->frame_control) && 2953 sdata->vif.type == NL80211_IFTYPE_AP) { 2954 if (rx->sta && 2955 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2956 cfg80211_rx_unexpected_4addr_frame( 2957 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2958 return RX_DROP_MONITOR; 2959 } 2960 2961 err = __ieee80211_data_to_8023(rx, &port_control); 2962 if (unlikely(err)) 2963 return RX_DROP_UNUSABLE; 2964 2965 if (!ieee80211_frame_allowed(rx, fc)) 2966 return RX_DROP_MONITOR; 2967 2968 /* directly handle TDLS channel switch requests/responses */ 2969 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2970 cpu_to_be16(ETH_P_TDLS))) { 2971 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2972 2973 if (pskb_may_pull(rx->skb, 2974 offsetof(struct ieee80211_tdls_data, u)) && 2975 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2976 tf->category == WLAN_CATEGORY_TDLS && 2977 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2978 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2979 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2980 schedule_work(&local->tdls_chsw_work); 2981 if (rx->sta) 2982 rx->sta->rx_stats.packets++; 2983 2984 return RX_QUEUED; 2985 } 2986 } 2987 2988 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2989 unlikely(port_control) && sdata->bss) { 2990 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2991 u.ap); 2992 dev = sdata->dev; 2993 rx->sdata = sdata; 2994 } 2995 2996 rx->skb->dev = dev; 2997 2998 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2999 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3000 !is_multicast_ether_addr( 3001 ((struct ethhdr *)rx->skb->data)->h_dest) && 3002 (!local->scanning && 3003 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3004 mod_timer(&local->dynamic_ps_timer, jiffies + 3005 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3006 3007 ieee80211_deliver_skb(rx); 3008 3009 return RX_QUEUED; 3010 } 3011 3012 static ieee80211_rx_result debug_noinline 3013 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3014 { 3015 struct sk_buff *skb = rx->skb; 3016 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3017 struct tid_ampdu_rx *tid_agg_rx; 3018 u16 start_seq_num; 3019 u16 tid; 3020 3021 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3022 return RX_CONTINUE; 3023 3024 if (ieee80211_is_back_req(bar->frame_control)) { 3025 struct { 3026 __le16 control, start_seq_num; 3027 } __packed bar_data; 3028 struct ieee80211_event event = { 3029 .type = BAR_RX_EVENT, 3030 }; 3031 3032 if (!rx->sta) 3033 return RX_DROP_MONITOR; 3034 3035 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3036 &bar_data, sizeof(bar_data))) 3037 return RX_DROP_MONITOR; 3038 3039 tid = le16_to_cpu(bar_data.control) >> 12; 3040 3041 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3042 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3043 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3044 WLAN_BACK_RECIPIENT, 3045 WLAN_REASON_QSTA_REQUIRE_SETUP); 3046 3047 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3048 if (!tid_agg_rx) 3049 return RX_DROP_MONITOR; 3050 3051 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3052 event.u.ba.tid = tid; 3053 event.u.ba.ssn = start_seq_num; 3054 event.u.ba.sta = &rx->sta->sta; 3055 3056 /* reset session timer */ 3057 if (tid_agg_rx->timeout) 3058 mod_timer(&tid_agg_rx->session_timer, 3059 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3060 3061 spin_lock(&tid_agg_rx->reorder_lock); 3062 /* release stored frames up to start of BAR */ 3063 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3064 start_seq_num, frames); 3065 spin_unlock(&tid_agg_rx->reorder_lock); 3066 3067 drv_event_callback(rx->local, rx->sdata, &event); 3068 3069 kfree_skb(skb); 3070 return RX_QUEUED; 3071 } 3072 3073 /* 3074 * After this point, we only want management frames, 3075 * so we can drop all remaining control frames to 3076 * cooked monitor interfaces. 3077 */ 3078 return RX_DROP_MONITOR; 3079 } 3080 3081 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3082 struct ieee80211_mgmt *mgmt, 3083 size_t len) 3084 { 3085 struct ieee80211_local *local = sdata->local; 3086 struct sk_buff *skb; 3087 struct ieee80211_mgmt *resp; 3088 3089 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3090 /* Not to own unicast address */ 3091 return; 3092 } 3093 3094 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3095 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3096 /* Not from the current AP or not associated yet. */ 3097 return; 3098 } 3099 3100 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3101 /* Too short SA Query request frame */ 3102 return; 3103 } 3104 3105 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3106 if (skb == NULL) 3107 return; 3108 3109 skb_reserve(skb, local->hw.extra_tx_headroom); 3110 resp = skb_put_zero(skb, 24); 3111 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3112 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3113 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3114 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3115 IEEE80211_STYPE_ACTION); 3116 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3117 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3118 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3119 memcpy(resp->u.action.u.sa_query.trans_id, 3120 mgmt->u.action.u.sa_query.trans_id, 3121 WLAN_SA_QUERY_TR_ID_LEN); 3122 3123 ieee80211_tx_skb(sdata, skb); 3124 } 3125 3126 static ieee80211_rx_result debug_noinline 3127 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3128 { 3129 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3130 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3131 3132 /* 3133 * From here on, look only at management frames. 3134 * Data and control frames are already handled, 3135 * and unknown (reserved) frames are useless. 3136 */ 3137 if (rx->skb->len < 24) 3138 return RX_DROP_MONITOR; 3139 3140 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3141 return RX_DROP_MONITOR; 3142 3143 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3144 ieee80211_is_beacon(mgmt->frame_control) && 3145 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3146 int sig = 0; 3147 3148 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3149 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3150 sig = status->signal; 3151 3152 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3153 rx->skb->data, rx->skb->len, 3154 ieee80211_rx_status_to_khz(status), 3155 sig); 3156 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3157 } 3158 3159 if (ieee80211_drop_unencrypted_mgmt(rx)) 3160 return RX_DROP_UNUSABLE; 3161 3162 return RX_CONTINUE; 3163 } 3164 3165 static ieee80211_rx_result debug_noinline 3166 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3167 { 3168 struct ieee80211_local *local = rx->local; 3169 struct ieee80211_sub_if_data *sdata = rx->sdata; 3170 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3171 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3172 int len = rx->skb->len; 3173 3174 if (!ieee80211_is_action(mgmt->frame_control)) 3175 return RX_CONTINUE; 3176 3177 /* drop too small frames */ 3178 if (len < IEEE80211_MIN_ACTION_SIZE) 3179 return RX_DROP_UNUSABLE; 3180 3181 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3182 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3183 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3184 return RX_DROP_UNUSABLE; 3185 3186 switch (mgmt->u.action.category) { 3187 case WLAN_CATEGORY_HT: 3188 /* reject HT action frames from stations not supporting HT */ 3189 if (!rx->sta->sta.ht_cap.ht_supported) 3190 goto invalid; 3191 3192 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3193 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3194 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3195 sdata->vif.type != NL80211_IFTYPE_AP && 3196 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3197 break; 3198 3199 /* verify action & smps_control/chanwidth are present */ 3200 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3201 goto invalid; 3202 3203 switch (mgmt->u.action.u.ht_smps.action) { 3204 case WLAN_HT_ACTION_SMPS: { 3205 struct ieee80211_supported_band *sband; 3206 enum ieee80211_smps_mode smps_mode; 3207 struct sta_opmode_info sta_opmode = {}; 3208 3209 if (sdata->vif.type != NL80211_IFTYPE_AP && 3210 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3211 goto handled; 3212 3213 /* convert to HT capability */ 3214 switch (mgmt->u.action.u.ht_smps.smps_control) { 3215 case WLAN_HT_SMPS_CONTROL_DISABLED: 3216 smps_mode = IEEE80211_SMPS_OFF; 3217 break; 3218 case WLAN_HT_SMPS_CONTROL_STATIC: 3219 smps_mode = IEEE80211_SMPS_STATIC; 3220 break; 3221 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3222 smps_mode = IEEE80211_SMPS_DYNAMIC; 3223 break; 3224 default: 3225 goto invalid; 3226 } 3227 3228 /* if no change do nothing */ 3229 if (rx->sta->sta.smps_mode == smps_mode) 3230 goto handled; 3231 rx->sta->sta.smps_mode = smps_mode; 3232 sta_opmode.smps_mode = 3233 ieee80211_smps_mode_to_smps_mode(smps_mode); 3234 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3235 3236 sband = rx->local->hw.wiphy->bands[status->band]; 3237 3238 rate_control_rate_update(local, sband, rx->sta, 3239 IEEE80211_RC_SMPS_CHANGED); 3240 cfg80211_sta_opmode_change_notify(sdata->dev, 3241 rx->sta->addr, 3242 &sta_opmode, 3243 GFP_ATOMIC); 3244 goto handled; 3245 } 3246 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3247 struct ieee80211_supported_band *sband; 3248 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3249 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3250 struct sta_opmode_info sta_opmode = {}; 3251 3252 /* If it doesn't support 40 MHz it can't change ... */ 3253 if (!(rx->sta->sta.ht_cap.cap & 3254 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3255 goto handled; 3256 3257 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3258 max_bw = IEEE80211_STA_RX_BW_20; 3259 else 3260 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3261 3262 /* set cur_max_bandwidth and recalc sta bw */ 3263 rx->sta->cur_max_bandwidth = max_bw; 3264 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3265 3266 if (rx->sta->sta.bandwidth == new_bw) 3267 goto handled; 3268 3269 rx->sta->sta.bandwidth = new_bw; 3270 sband = rx->local->hw.wiphy->bands[status->band]; 3271 sta_opmode.bw = 3272 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3273 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3274 3275 rate_control_rate_update(local, sband, rx->sta, 3276 IEEE80211_RC_BW_CHANGED); 3277 cfg80211_sta_opmode_change_notify(sdata->dev, 3278 rx->sta->addr, 3279 &sta_opmode, 3280 GFP_ATOMIC); 3281 goto handled; 3282 } 3283 default: 3284 goto invalid; 3285 } 3286 3287 break; 3288 case WLAN_CATEGORY_PUBLIC: 3289 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3290 goto invalid; 3291 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3292 break; 3293 if (!rx->sta) 3294 break; 3295 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3296 break; 3297 if (mgmt->u.action.u.ext_chan_switch.action_code != 3298 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3299 break; 3300 if (len < offsetof(struct ieee80211_mgmt, 3301 u.action.u.ext_chan_switch.variable)) 3302 goto invalid; 3303 goto queue; 3304 case WLAN_CATEGORY_VHT: 3305 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3306 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3307 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3308 sdata->vif.type != NL80211_IFTYPE_AP && 3309 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3310 break; 3311 3312 /* verify action code is present */ 3313 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3314 goto invalid; 3315 3316 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3317 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3318 /* verify opmode is present */ 3319 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3320 goto invalid; 3321 goto queue; 3322 } 3323 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3324 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3325 goto invalid; 3326 goto queue; 3327 } 3328 default: 3329 break; 3330 } 3331 break; 3332 case WLAN_CATEGORY_BACK: 3333 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3334 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3335 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3336 sdata->vif.type != NL80211_IFTYPE_AP && 3337 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3338 break; 3339 3340 /* verify action_code is present */ 3341 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3342 break; 3343 3344 switch (mgmt->u.action.u.addba_req.action_code) { 3345 case WLAN_ACTION_ADDBA_REQ: 3346 if (len < (IEEE80211_MIN_ACTION_SIZE + 3347 sizeof(mgmt->u.action.u.addba_req))) 3348 goto invalid; 3349 break; 3350 case WLAN_ACTION_ADDBA_RESP: 3351 if (len < (IEEE80211_MIN_ACTION_SIZE + 3352 sizeof(mgmt->u.action.u.addba_resp))) 3353 goto invalid; 3354 break; 3355 case WLAN_ACTION_DELBA: 3356 if (len < (IEEE80211_MIN_ACTION_SIZE + 3357 sizeof(mgmt->u.action.u.delba))) 3358 goto invalid; 3359 break; 3360 default: 3361 goto invalid; 3362 } 3363 3364 goto queue; 3365 case WLAN_CATEGORY_SPECTRUM_MGMT: 3366 /* verify action_code is present */ 3367 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3368 break; 3369 3370 switch (mgmt->u.action.u.measurement.action_code) { 3371 case WLAN_ACTION_SPCT_MSR_REQ: 3372 if (status->band != NL80211_BAND_5GHZ) 3373 break; 3374 3375 if (len < (IEEE80211_MIN_ACTION_SIZE + 3376 sizeof(mgmt->u.action.u.measurement))) 3377 break; 3378 3379 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3380 break; 3381 3382 ieee80211_process_measurement_req(sdata, mgmt, len); 3383 goto handled; 3384 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3385 u8 *bssid; 3386 if (len < (IEEE80211_MIN_ACTION_SIZE + 3387 sizeof(mgmt->u.action.u.chan_switch))) 3388 break; 3389 3390 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3391 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3392 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3393 break; 3394 3395 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3396 bssid = sdata->u.mgd.bssid; 3397 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3398 bssid = sdata->u.ibss.bssid; 3399 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3400 bssid = mgmt->sa; 3401 else 3402 break; 3403 3404 if (!ether_addr_equal(mgmt->bssid, bssid)) 3405 break; 3406 3407 goto queue; 3408 } 3409 } 3410 break; 3411 case WLAN_CATEGORY_SELF_PROTECTED: 3412 if (len < (IEEE80211_MIN_ACTION_SIZE + 3413 sizeof(mgmt->u.action.u.self_prot.action_code))) 3414 break; 3415 3416 switch (mgmt->u.action.u.self_prot.action_code) { 3417 case WLAN_SP_MESH_PEERING_OPEN: 3418 case WLAN_SP_MESH_PEERING_CLOSE: 3419 case WLAN_SP_MESH_PEERING_CONFIRM: 3420 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3421 goto invalid; 3422 if (sdata->u.mesh.user_mpm) 3423 /* userspace handles this frame */ 3424 break; 3425 goto queue; 3426 case WLAN_SP_MGK_INFORM: 3427 case WLAN_SP_MGK_ACK: 3428 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3429 goto invalid; 3430 break; 3431 } 3432 break; 3433 case WLAN_CATEGORY_MESH_ACTION: 3434 if (len < (IEEE80211_MIN_ACTION_SIZE + 3435 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3436 break; 3437 3438 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3439 break; 3440 if (mesh_action_is_path_sel(mgmt) && 3441 !mesh_path_sel_is_hwmp(sdata)) 3442 break; 3443 goto queue; 3444 } 3445 3446 return RX_CONTINUE; 3447 3448 invalid: 3449 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3450 /* will return in the next handlers */ 3451 return RX_CONTINUE; 3452 3453 handled: 3454 if (rx->sta) 3455 rx->sta->rx_stats.packets++; 3456 dev_kfree_skb(rx->skb); 3457 return RX_QUEUED; 3458 3459 queue: 3460 skb_queue_tail(&sdata->skb_queue, rx->skb); 3461 ieee80211_queue_work(&local->hw, &sdata->work); 3462 if (rx->sta) 3463 rx->sta->rx_stats.packets++; 3464 return RX_QUEUED; 3465 } 3466 3467 static ieee80211_rx_result debug_noinline 3468 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3469 { 3470 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3471 int sig = 0; 3472 3473 /* skip known-bad action frames and return them in the next handler */ 3474 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3475 return RX_CONTINUE; 3476 3477 /* 3478 * Getting here means the kernel doesn't know how to handle 3479 * it, but maybe userspace does ... include returned frames 3480 * so userspace can register for those to know whether ones 3481 * it transmitted were processed or returned. 3482 */ 3483 3484 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3485 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3486 sig = status->signal; 3487 3488 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3489 ieee80211_rx_status_to_khz(status), sig, 3490 rx->skb->data, rx->skb->len, 0)) { 3491 if (rx->sta) 3492 rx->sta->rx_stats.packets++; 3493 dev_kfree_skb(rx->skb); 3494 return RX_QUEUED; 3495 } 3496 3497 return RX_CONTINUE; 3498 } 3499 3500 static ieee80211_rx_result debug_noinline 3501 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3502 { 3503 struct ieee80211_sub_if_data *sdata = rx->sdata; 3504 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3505 int len = rx->skb->len; 3506 3507 if (!ieee80211_is_action(mgmt->frame_control)) 3508 return RX_CONTINUE; 3509 3510 switch (mgmt->u.action.category) { 3511 case WLAN_CATEGORY_SA_QUERY: 3512 if (len < (IEEE80211_MIN_ACTION_SIZE + 3513 sizeof(mgmt->u.action.u.sa_query))) 3514 break; 3515 3516 switch (mgmt->u.action.u.sa_query.action) { 3517 case WLAN_ACTION_SA_QUERY_REQUEST: 3518 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3519 break; 3520 ieee80211_process_sa_query_req(sdata, mgmt, len); 3521 goto handled; 3522 } 3523 break; 3524 } 3525 3526 return RX_CONTINUE; 3527 3528 handled: 3529 if (rx->sta) 3530 rx->sta->rx_stats.packets++; 3531 dev_kfree_skb(rx->skb); 3532 return RX_QUEUED; 3533 } 3534 3535 static ieee80211_rx_result debug_noinline 3536 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3537 { 3538 struct ieee80211_local *local = rx->local; 3539 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3540 struct sk_buff *nskb; 3541 struct ieee80211_sub_if_data *sdata = rx->sdata; 3542 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3543 3544 if (!ieee80211_is_action(mgmt->frame_control)) 3545 return RX_CONTINUE; 3546 3547 /* 3548 * For AP mode, hostapd is responsible for handling any action 3549 * frames that we didn't handle, including returning unknown 3550 * ones. For all other modes we will return them to the sender, 3551 * setting the 0x80 bit in the action category, as required by 3552 * 802.11-2012 9.24.4. 3553 * Newer versions of hostapd shall also use the management frame 3554 * registration mechanisms, but older ones still use cooked 3555 * monitor interfaces so push all frames there. 3556 */ 3557 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3558 (sdata->vif.type == NL80211_IFTYPE_AP || 3559 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3560 return RX_DROP_MONITOR; 3561 3562 if (is_multicast_ether_addr(mgmt->da)) 3563 return RX_DROP_MONITOR; 3564 3565 /* do not return rejected action frames */ 3566 if (mgmt->u.action.category & 0x80) 3567 return RX_DROP_UNUSABLE; 3568 3569 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3570 GFP_ATOMIC); 3571 if (nskb) { 3572 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3573 3574 nmgmt->u.action.category |= 0x80; 3575 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3576 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3577 3578 memset(nskb->cb, 0, sizeof(nskb->cb)); 3579 3580 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3581 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3582 3583 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3584 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3585 IEEE80211_TX_CTL_NO_CCK_RATE; 3586 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3587 info->hw_queue = 3588 local->hw.offchannel_tx_hw_queue; 3589 } 3590 3591 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3592 status->band); 3593 } 3594 dev_kfree_skb(rx->skb); 3595 return RX_QUEUED; 3596 } 3597 3598 static ieee80211_rx_result debug_noinline 3599 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3600 { 3601 struct ieee80211_sub_if_data *sdata = rx->sdata; 3602 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3603 __le16 stype; 3604 3605 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3606 3607 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3608 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3609 sdata->vif.type != NL80211_IFTYPE_OCB && 3610 sdata->vif.type != NL80211_IFTYPE_STATION) 3611 return RX_DROP_MONITOR; 3612 3613 switch (stype) { 3614 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3615 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3616 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3617 /* process for all: mesh, mlme, ibss */ 3618 break; 3619 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3620 if (is_multicast_ether_addr(mgmt->da) && 3621 !is_broadcast_ether_addr(mgmt->da)) 3622 return RX_DROP_MONITOR; 3623 3624 /* process only for station/IBSS */ 3625 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3626 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3627 return RX_DROP_MONITOR; 3628 break; 3629 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3630 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3631 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3632 if (is_multicast_ether_addr(mgmt->da) && 3633 !is_broadcast_ether_addr(mgmt->da)) 3634 return RX_DROP_MONITOR; 3635 3636 /* process only for station */ 3637 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3638 return RX_DROP_MONITOR; 3639 break; 3640 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3641 /* process only for ibss and mesh */ 3642 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3643 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3644 return RX_DROP_MONITOR; 3645 break; 3646 default: 3647 return RX_DROP_MONITOR; 3648 } 3649 3650 /* queue up frame and kick off work to process it */ 3651 skb_queue_tail(&sdata->skb_queue, rx->skb); 3652 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3653 if (rx->sta) 3654 rx->sta->rx_stats.packets++; 3655 3656 return RX_QUEUED; 3657 } 3658 3659 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3660 struct ieee80211_rate *rate) 3661 { 3662 struct ieee80211_sub_if_data *sdata; 3663 struct ieee80211_local *local = rx->local; 3664 struct sk_buff *skb = rx->skb, *skb2; 3665 struct net_device *prev_dev = NULL; 3666 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3667 int needed_headroom; 3668 3669 /* 3670 * If cooked monitor has been processed already, then 3671 * don't do it again. If not, set the flag. 3672 */ 3673 if (rx->flags & IEEE80211_RX_CMNTR) 3674 goto out_free_skb; 3675 rx->flags |= IEEE80211_RX_CMNTR; 3676 3677 /* If there are no cooked monitor interfaces, just free the SKB */ 3678 if (!local->cooked_mntrs) 3679 goto out_free_skb; 3680 3681 /* vendor data is long removed here */ 3682 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3683 /* room for the radiotap header based on driver features */ 3684 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3685 3686 if (skb_headroom(skb) < needed_headroom && 3687 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3688 goto out_free_skb; 3689 3690 /* prepend radiotap information */ 3691 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3692 false); 3693 3694 skb_reset_mac_header(skb); 3695 skb->ip_summed = CHECKSUM_UNNECESSARY; 3696 skb->pkt_type = PACKET_OTHERHOST; 3697 skb->protocol = htons(ETH_P_802_2); 3698 3699 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3700 if (!ieee80211_sdata_running(sdata)) 3701 continue; 3702 3703 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3704 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3705 continue; 3706 3707 if (prev_dev) { 3708 skb2 = skb_clone(skb, GFP_ATOMIC); 3709 if (skb2) { 3710 skb2->dev = prev_dev; 3711 netif_receive_skb(skb2); 3712 } 3713 } 3714 3715 prev_dev = sdata->dev; 3716 ieee80211_rx_stats(sdata->dev, skb->len); 3717 } 3718 3719 if (prev_dev) { 3720 skb->dev = prev_dev; 3721 netif_receive_skb(skb); 3722 return; 3723 } 3724 3725 out_free_skb: 3726 dev_kfree_skb(skb); 3727 } 3728 3729 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3730 ieee80211_rx_result res) 3731 { 3732 switch (res) { 3733 case RX_DROP_MONITOR: 3734 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3735 if (rx->sta) 3736 rx->sta->rx_stats.dropped++; 3737 fallthrough; 3738 case RX_CONTINUE: { 3739 struct ieee80211_rate *rate = NULL; 3740 struct ieee80211_supported_band *sband; 3741 struct ieee80211_rx_status *status; 3742 3743 status = IEEE80211_SKB_RXCB((rx->skb)); 3744 3745 sband = rx->local->hw.wiphy->bands[status->band]; 3746 if (status->encoding == RX_ENC_LEGACY) 3747 rate = &sband->bitrates[status->rate_idx]; 3748 3749 ieee80211_rx_cooked_monitor(rx, rate); 3750 break; 3751 } 3752 case RX_DROP_UNUSABLE: 3753 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3754 if (rx->sta) 3755 rx->sta->rx_stats.dropped++; 3756 dev_kfree_skb(rx->skb); 3757 break; 3758 case RX_QUEUED: 3759 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3760 break; 3761 } 3762 } 3763 3764 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3765 struct sk_buff_head *frames) 3766 { 3767 ieee80211_rx_result res = RX_DROP_MONITOR; 3768 struct sk_buff *skb; 3769 3770 #define CALL_RXH(rxh) \ 3771 do { \ 3772 res = rxh(rx); \ 3773 if (res != RX_CONTINUE) \ 3774 goto rxh_next; \ 3775 } while (0) 3776 3777 /* Lock here to avoid hitting all of the data used in the RX 3778 * path (e.g. key data, station data, ...) concurrently when 3779 * a frame is released from the reorder buffer due to timeout 3780 * from the timer, potentially concurrently with RX from the 3781 * driver. 3782 */ 3783 spin_lock_bh(&rx->local->rx_path_lock); 3784 3785 while ((skb = __skb_dequeue(frames))) { 3786 /* 3787 * all the other fields are valid across frames 3788 * that belong to an aMPDU since they are on the 3789 * same TID from the same station 3790 */ 3791 rx->skb = skb; 3792 3793 CALL_RXH(ieee80211_rx_h_check_more_data); 3794 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3795 CALL_RXH(ieee80211_rx_h_sta_process); 3796 CALL_RXH(ieee80211_rx_h_decrypt); 3797 CALL_RXH(ieee80211_rx_h_defragment); 3798 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3799 /* must be after MMIC verify so header is counted in MPDU mic */ 3800 #ifdef CONFIG_MAC80211_MESH 3801 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3802 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3803 #endif 3804 CALL_RXH(ieee80211_rx_h_amsdu); 3805 CALL_RXH(ieee80211_rx_h_data); 3806 3807 /* special treatment -- needs the queue */ 3808 res = ieee80211_rx_h_ctrl(rx, frames); 3809 if (res != RX_CONTINUE) 3810 goto rxh_next; 3811 3812 CALL_RXH(ieee80211_rx_h_mgmt_check); 3813 CALL_RXH(ieee80211_rx_h_action); 3814 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3815 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3816 CALL_RXH(ieee80211_rx_h_action_return); 3817 CALL_RXH(ieee80211_rx_h_mgmt); 3818 3819 rxh_next: 3820 ieee80211_rx_handlers_result(rx, res); 3821 3822 #undef CALL_RXH 3823 } 3824 3825 spin_unlock_bh(&rx->local->rx_path_lock); 3826 } 3827 3828 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3829 { 3830 struct sk_buff_head reorder_release; 3831 ieee80211_rx_result res = RX_DROP_MONITOR; 3832 3833 __skb_queue_head_init(&reorder_release); 3834 3835 #define CALL_RXH(rxh) \ 3836 do { \ 3837 res = rxh(rx); \ 3838 if (res != RX_CONTINUE) \ 3839 goto rxh_next; \ 3840 } while (0) 3841 3842 CALL_RXH(ieee80211_rx_h_check_dup); 3843 CALL_RXH(ieee80211_rx_h_check); 3844 3845 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3846 3847 ieee80211_rx_handlers(rx, &reorder_release); 3848 return; 3849 3850 rxh_next: 3851 ieee80211_rx_handlers_result(rx, res); 3852 3853 #undef CALL_RXH 3854 } 3855 3856 /* 3857 * This function makes calls into the RX path, therefore 3858 * it has to be invoked under RCU read lock. 3859 */ 3860 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3861 { 3862 struct sk_buff_head frames; 3863 struct ieee80211_rx_data rx = { 3864 .sta = sta, 3865 .sdata = sta->sdata, 3866 .local = sta->local, 3867 /* This is OK -- must be QoS data frame */ 3868 .security_idx = tid, 3869 .seqno_idx = tid, 3870 }; 3871 struct tid_ampdu_rx *tid_agg_rx; 3872 3873 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3874 if (!tid_agg_rx) 3875 return; 3876 3877 __skb_queue_head_init(&frames); 3878 3879 spin_lock(&tid_agg_rx->reorder_lock); 3880 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3881 spin_unlock(&tid_agg_rx->reorder_lock); 3882 3883 if (!skb_queue_empty(&frames)) { 3884 struct ieee80211_event event = { 3885 .type = BA_FRAME_TIMEOUT, 3886 .u.ba.tid = tid, 3887 .u.ba.sta = &sta->sta, 3888 }; 3889 drv_event_callback(rx.local, rx.sdata, &event); 3890 } 3891 3892 ieee80211_rx_handlers(&rx, &frames); 3893 } 3894 3895 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3896 u16 ssn, u64 filtered, 3897 u16 received_mpdus) 3898 { 3899 struct sta_info *sta; 3900 struct tid_ampdu_rx *tid_agg_rx; 3901 struct sk_buff_head frames; 3902 struct ieee80211_rx_data rx = { 3903 /* This is OK -- must be QoS data frame */ 3904 .security_idx = tid, 3905 .seqno_idx = tid, 3906 }; 3907 int i, diff; 3908 3909 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3910 return; 3911 3912 __skb_queue_head_init(&frames); 3913 3914 sta = container_of(pubsta, struct sta_info, sta); 3915 3916 rx.sta = sta; 3917 rx.sdata = sta->sdata; 3918 rx.local = sta->local; 3919 3920 rcu_read_lock(); 3921 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3922 if (!tid_agg_rx) 3923 goto out; 3924 3925 spin_lock_bh(&tid_agg_rx->reorder_lock); 3926 3927 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3928 int release; 3929 3930 /* release all frames in the reorder buffer */ 3931 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3932 IEEE80211_SN_MODULO; 3933 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3934 release, &frames); 3935 /* update ssn to match received ssn */ 3936 tid_agg_rx->head_seq_num = ssn; 3937 } else { 3938 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3939 &frames); 3940 } 3941 3942 /* handle the case that received ssn is behind the mac ssn. 3943 * it can be tid_agg_rx->buf_size behind and still be valid */ 3944 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3945 if (diff >= tid_agg_rx->buf_size) { 3946 tid_agg_rx->reorder_buf_filtered = 0; 3947 goto release; 3948 } 3949 filtered = filtered >> diff; 3950 ssn += diff; 3951 3952 /* update bitmap */ 3953 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3954 int index = (ssn + i) % tid_agg_rx->buf_size; 3955 3956 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3957 if (filtered & BIT_ULL(i)) 3958 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3959 } 3960 3961 /* now process also frames that the filter marking released */ 3962 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3963 3964 release: 3965 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3966 3967 ieee80211_rx_handlers(&rx, &frames); 3968 3969 out: 3970 rcu_read_unlock(); 3971 } 3972 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3973 3974 /* main receive path */ 3975 3976 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3977 { 3978 struct ieee80211_sub_if_data *sdata = rx->sdata; 3979 struct sk_buff *skb = rx->skb; 3980 struct ieee80211_hdr *hdr = (void *)skb->data; 3981 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3982 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3983 bool multicast = is_multicast_ether_addr(hdr->addr1); 3984 3985 switch (sdata->vif.type) { 3986 case NL80211_IFTYPE_STATION: 3987 if (!bssid && !sdata->u.mgd.use_4addr) 3988 return false; 3989 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3990 return false; 3991 if (multicast) 3992 return true; 3993 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3994 case NL80211_IFTYPE_ADHOC: 3995 if (!bssid) 3996 return false; 3997 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3998 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3999 return false; 4000 if (ieee80211_is_beacon(hdr->frame_control)) 4001 return true; 4002 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4003 return false; 4004 if (!multicast && 4005 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4006 return false; 4007 if (!rx->sta) { 4008 int rate_idx; 4009 if (status->encoding != RX_ENC_LEGACY) 4010 rate_idx = 0; /* TODO: HT/VHT rates */ 4011 else 4012 rate_idx = status->rate_idx; 4013 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4014 BIT(rate_idx)); 4015 } 4016 return true; 4017 case NL80211_IFTYPE_OCB: 4018 if (!bssid) 4019 return false; 4020 if (!ieee80211_is_data_present(hdr->frame_control)) 4021 return false; 4022 if (!is_broadcast_ether_addr(bssid)) 4023 return false; 4024 if (!multicast && 4025 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4026 return false; 4027 if (!rx->sta) { 4028 int rate_idx; 4029 if (status->encoding != RX_ENC_LEGACY) 4030 rate_idx = 0; /* TODO: HT rates */ 4031 else 4032 rate_idx = status->rate_idx; 4033 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4034 BIT(rate_idx)); 4035 } 4036 return true; 4037 case NL80211_IFTYPE_MESH_POINT: 4038 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4039 return false; 4040 if (multicast) 4041 return true; 4042 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4043 case NL80211_IFTYPE_AP_VLAN: 4044 case NL80211_IFTYPE_AP: 4045 if (!bssid) 4046 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4047 4048 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4049 /* 4050 * Accept public action frames even when the 4051 * BSSID doesn't match, this is used for P2P 4052 * and location updates. Note that mac80211 4053 * itself never looks at these frames. 4054 */ 4055 if (!multicast && 4056 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4057 return false; 4058 if (ieee80211_is_public_action(hdr, skb->len)) 4059 return true; 4060 return ieee80211_is_beacon(hdr->frame_control); 4061 } 4062 4063 if (!ieee80211_has_tods(hdr->frame_control)) { 4064 /* ignore data frames to TDLS-peers */ 4065 if (ieee80211_is_data(hdr->frame_control)) 4066 return false; 4067 /* ignore action frames to TDLS-peers */ 4068 if (ieee80211_is_action(hdr->frame_control) && 4069 !is_broadcast_ether_addr(bssid) && 4070 !ether_addr_equal(bssid, hdr->addr1)) 4071 return false; 4072 } 4073 4074 /* 4075 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4076 * the BSSID - we've checked that already but may have accepted 4077 * the wildcard (ff:ff:ff:ff:ff:ff). 4078 * 4079 * It also says: 4080 * The BSSID of the Data frame is determined as follows: 4081 * a) If the STA is contained within an AP or is associated 4082 * with an AP, the BSSID is the address currently in use 4083 * by the STA contained in the AP. 4084 * 4085 * So we should not accept data frames with an address that's 4086 * multicast. 4087 * 4088 * Accepting it also opens a security problem because stations 4089 * could encrypt it with the GTK and inject traffic that way. 4090 */ 4091 if (ieee80211_is_data(hdr->frame_control) && multicast) 4092 return false; 4093 4094 return true; 4095 case NL80211_IFTYPE_WDS: 4096 if (bssid || !ieee80211_is_data(hdr->frame_control)) 4097 return false; 4098 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 4099 case NL80211_IFTYPE_P2P_DEVICE: 4100 return ieee80211_is_public_action(hdr, skb->len) || 4101 ieee80211_is_probe_req(hdr->frame_control) || 4102 ieee80211_is_probe_resp(hdr->frame_control) || 4103 ieee80211_is_beacon(hdr->frame_control); 4104 case NL80211_IFTYPE_NAN: 4105 /* Currently no frames on NAN interface are allowed */ 4106 return false; 4107 default: 4108 break; 4109 } 4110 4111 WARN_ON_ONCE(1); 4112 return false; 4113 } 4114 4115 void ieee80211_check_fast_rx(struct sta_info *sta) 4116 { 4117 struct ieee80211_sub_if_data *sdata = sta->sdata; 4118 struct ieee80211_local *local = sdata->local; 4119 struct ieee80211_key *key; 4120 struct ieee80211_fast_rx fastrx = { 4121 .dev = sdata->dev, 4122 .vif_type = sdata->vif.type, 4123 .control_port_protocol = sdata->control_port_protocol, 4124 }, *old, *new = NULL; 4125 bool assign = false; 4126 4127 /* use sparse to check that we don't return without updating */ 4128 __acquire(check_fast_rx); 4129 4130 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4131 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4132 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4133 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4134 4135 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4136 4137 /* fast-rx doesn't do reordering */ 4138 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4139 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4140 goto clear; 4141 4142 switch (sdata->vif.type) { 4143 case NL80211_IFTYPE_STATION: 4144 if (sta->sta.tdls) { 4145 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4146 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4147 fastrx.expected_ds_bits = 0; 4148 } else { 4149 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4150 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4151 fastrx.expected_ds_bits = 4152 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4153 } 4154 4155 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4156 fastrx.expected_ds_bits |= 4157 cpu_to_le16(IEEE80211_FCTL_TODS); 4158 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4159 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4160 } 4161 4162 if (!sdata->u.mgd.powersave) 4163 break; 4164 4165 /* software powersave is a huge mess, avoid all of it */ 4166 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4167 goto clear; 4168 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4169 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4170 goto clear; 4171 break; 4172 case NL80211_IFTYPE_AP_VLAN: 4173 case NL80211_IFTYPE_AP: 4174 /* parallel-rx requires this, at least with calls to 4175 * ieee80211_sta_ps_transition() 4176 */ 4177 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4178 goto clear; 4179 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4180 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4181 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4182 4183 fastrx.internal_forward = 4184 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4185 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4186 !sdata->u.vlan.sta); 4187 4188 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4189 sdata->u.vlan.sta) { 4190 fastrx.expected_ds_bits |= 4191 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4192 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4193 fastrx.internal_forward = 0; 4194 } 4195 4196 break; 4197 default: 4198 goto clear; 4199 } 4200 4201 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4202 goto clear; 4203 4204 rcu_read_lock(); 4205 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4206 if (key) { 4207 switch (key->conf.cipher) { 4208 case WLAN_CIPHER_SUITE_TKIP: 4209 /* we don't want to deal with MMIC in fast-rx */ 4210 goto clear_rcu; 4211 case WLAN_CIPHER_SUITE_CCMP: 4212 case WLAN_CIPHER_SUITE_CCMP_256: 4213 case WLAN_CIPHER_SUITE_GCMP: 4214 case WLAN_CIPHER_SUITE_GCMP_256: 4215 break; 4216 default: 4217 /* We also don't want to deal with 4218 * WEP or cipher scheme. 4219 */ 4220 goto clear_rcu; 4221 } 4222 4223 fastrx.key = true; 4224 fastrx.icv_len = key->conf.icv_len; 4225 } 4226 4227 assign = true; 4228 clear_rcu: 4229 rcu_read_unlock(); 4230 clear: 4231 __release(check_fast_rx); 4232 4233 if (assign) 4234 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4235 4236 spin_lock_bh(&sta->lock); 4237 old = rcu_dereference_protected(sta->fast_rx, true); 4238 rcu_assign_pointer(sta->fast_rx, new); 4239 spin_unlock_bh(&sta->lock); 4240 4241 if (old) 4242 kfree_rcu(old, rcu_head); 4243 } 4244 4245 void ieee80211_clear_fast_rx(struct sta_info *sta) 4246 { 4247 struct ieee80211_fast_rx *old; 4248 4249 spin_lock_bh(&sta->lock); 4250 old = rcu_dereference_protected(sta->fast_rx, true); 4251 RCU_INIT_POINTER(sta->fast_rx, NULL); 4252 spin_unlock_bh(&sta->lock); 4253 4254 if (old) 4255 kfree_rcu(old, rcu_head); 4256 } 4257 4258 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4259 { 4260 struct ieee80211_local *local = sdata->local; 4261 struct sta_info *sta; 4262 4263 lockdep_assert_held(&local->sta_mtx); 4264 4265 list_for_each_entry(sta, &local->sta_list, list) { 4266 if (sdata != sta->sdata && 4267 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4268 continue; 4269 ieee80211_check_fast_rx(sta); 4270 } 4271 } 4272 4273 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4274 { 4275 struct ieee80211_local *local = sdata->local; 4276 4277 mutex_lock(&local->sta_mtx); 4278 __ieee80211_check_fast_rx_iface(sdata); 4279 mutex_unlock(&local->sta_mtx); 4280 } 4281 4282 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4283 struct ieee80211_fast_rx *fast_rx) 4284 { 4285 struct sk_buff *skb = rx->skb; 4286 struct ieee80211_hdr *hdr = (void *)skb->data; 4287 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4288 struct sta_info *sta = rx->sta; 4289 int orig_len = skb->len; 4290 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4291 int snap_offs = hdrlen; 4292 struct { 4293 u8 snap[sizeof(rfc1042_header)]; 4294 __be16 proto; 4295 } *payload __aligned(2); 4296 struct { 4297 u8 da[ETH_ALEN]; 4298 u8 sa[ETH_ALEN]; 4299 } addrs __aligned(2); 4300 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4301 4302 if (fast_rx->uses_rss) 4303 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4304 4305 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4306 * to a common data structure; drivers can implement that per queue 4307 * but we don't have that information in mac80211 4308 */ 4309 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4310 return false; 4311 4312 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4313 4314 /* If using encryption, we also need to have: 4315 * - PN_VALIDATED: similar, but the implementation is tricky 4316 * - DECRYPTED: necessary for PN_VALIDATED 4317 */ 4318 if (fast_rx->key && 4319 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4320 return false; 4321 4322 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4323 return false; 4324 4325 if (unlikely(ieee80211_is_frag(hdr))) 4326 return false; 4327 4328 /* Since our interface address cannot be multicast, this 4329 * implicitly also rejects multicast frames without the 4330 * explicit check. 4331 * 4332 * We shouldn't get any *data* frames not addressed to us 4333 * (AP mode will accept multicast *management* frames), but 4334 * punting here will make it go through the full checks in 4335 * ieee80211_accept_frame(). 4336 */ 4337 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4338 return false; 4339 4340 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4341 IEEE80211_FCTL_TODS)) != 4342 fast_rx->expected_ds_bits) 4343 return false; 4344 4345 /* assign the key to drop unencrypted frames (later) 4346 * and strip the IV/MIC if necessary 4347 */ 4348 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4349 /* GCMP header length is the same */ 4350 snap_offs += IEEE80211_CCMP_HDR_LEN; 4351 } 4352 4353 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4354 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4355 goto drop; 4356 4357 payload = (void *)(skb->data + snap_offs); 4358 4359 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4360 return false; 4361 4362 /* Don't handle these here since they require special code. 4363 * Accept AARP and IPX even though they should come with a 4364 * bridge-tunnel header - but if we get them this way then 4365 * there's little point in discarding them. 4366 */ 4367 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4368 payload->proto == fast_rx->control_port_protocol)) 4369 return false; 4370 } 4371 4372 /* after this point, don't punt to the slowpath! */ 4373 4374 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4375 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4376 goto drop; 4377 4378 /* statistics part of ieee80211_rx_h_sta_process() */ 4379 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4380 stats->last_signal = status->signal; 4381 if (!fast_rx->uses_rss) 4382 ewma_signal_add(&sta->rx_stats_avg.signal, 4383 -status->signal); 4384 } 4385 4386 if (status->chains) { 4387 int i; 4388 4389 stats->chains = status->chains; 4390 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4391 int signal = status->chain_signal[i]; 4392 4393 if (!(status->chains & BIT(i))) 4394 continue; 4395 4396 stats->chain_signal_last[i] = signal; 4397 if (!fast_rx->uses_rss) 4398 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4399 -signal); 4400 } 4401 } 4402 /* end of statistics */ 4403 4404 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4405 goto drop; 4406 4407 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4408 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4409 RX_QUEUED) 4410 goto drop; 4411 4412 return true; 4413 } 4414 4415 stats->last_rx = jiffies; 4416 stats->last_rate = sta_stats_encode_rate(status); 4417 4418 stats->fragments++; 4419 stats->packets++; 4420 4421 /* do the header conversion - first grab the addresses */ 4422 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4423 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4424 /* remove the SNAP but leave the ethertype */ 4425 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4426 /* push the addresses in front */ 4427 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4428 4429 skb->dev = fast_rx->dev; 4430 4431 ieee80211_rx_stats(fast_rx->dev, skb->len); 4432 4433 /* The seqno index has the same property as needed 4434 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4435 * for non-QoS-data frames. Here we know it's a data 4436 * frame, so count MSDUs. 4437 */ 4438 u64_stats_update_begin(&stats->syncp); 4439 stats->msdu[rx->seqno_idx]++; 4440 stats->bytes += orig_len; 4441 u64_stats_update_end(&stats->syncp); 4442 4443 if (fast_rx->internal_forward) { 4444 struct sk_buff *xmit_skb = NULL; 4445 if (is_multicast_ether_addr(addrs.da)) { 4446 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4447 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4448 sta_info_get(rx->sdata, addrs.da)) { 4449 xmit_skb = skb; 4450 skb = NULL; 4451 } 4452 4453 if (xmit_skb) { 4454 /* 4455 * Send to wireless media and increase priority by 256 4456 * to keep the received priority instead of 4457 * reclassifying the frame (see cfg80211_classify8021d). 4458 */ 4459 xmit_skb->priority += 256; 4460 xmit_skb->protocol = htons(ETH_P_802_3); 4461 skb_reset_network_header(xmit_skb); 4462 skb_reset_mac_header(xmit_skb); 4463 dev_queue_xmit(xmit_skb); 4464 } 4465 4466 if (!skb) 4467 return true; 4468 } 4469 4470 /* deliver to local stack */ 4471 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4472 memset(skb->cb, 0, sizeof(skb->cb)); 4473 if (rx->list) 4474 list_add_tail(&skb->list, rx->list); 4475 else 4476 netif_receive_skb(skb); 4477 4478 return true; 4479 drop: 4480 dev_kfree_skb(skb); 4481 stats->dropped++; 4482 return true; 4483 } 4484 4485 /* 4486 * This function returns whether or not the SKB 4487 * was destined for RX processing or not, which, 4488 * if consume is true, is equivalent to whether 4489 * or not the skb was consumed. 4490 */ 4491 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4492 struct sk_buff *skb, bool consume) 4493 { 4494 struct ieee80211_local *local = rx->local; 4495 struct ieee80211_sub_if_data *sdata = rx->sdata; 4496 4497 rx->skb = skb; 4498 4499 /* See if we can do fast-rx; if we have to copy we already lost, 4500 * so punt in that case. We should never have to deliver a data 4501 * frame to multiple interfaces anyway. 4502 * 4503 * We skip the ieee80211_accept_frame() call and do the necessary 4504 * checking inside ieee80211_invoke_fast_rx(). 4505 */ 4506 if (consume && rx->sta) { 4507 struct ieee80211_fast_rx *fast_rx; 4508 4509 fast_rx = rcu_dereference(rx->sta->fast_rx); 4510 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4511 return true; 4512 } 4513 4514 if (!ieee80211_accept_frame(rx)) 4515 return false; 4516 4517 if (!consume) { 4518 skb = skb_copy(skb, GFP_ATOMIC); 4519 if (!skb) { 4520 if (net_ratelimit()) 4521 wiphy_debug(local->hw.wiphy, 4522 "failed to copy skb for %s\n", 4523 sdata->name); 4524 return true; 4525 } 4526 4527 rx->skb = skb; 4528 } 4529 4530 ieee80211_invoke_rx_handlers(rx); 4531 return true; 4532 } 4533 4534 /* 4535 * This is the actual Rx frames handler. as it belongs to Rx path it must 4536 * be called with rcu_read_lock protection. 4537 */ 4538 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4539 struct ieee80211_sta *pubsta, 4540 struct sk_buff *skb, 4541 struct list_head *list) 4542 { 4543 struct ieee80211_local *local = hw_to_local(hw); 4544 struct ieee80211_sub_if_data *sdata; 4545 struct ieee80211_hdr *hdr; 4546 __le16 fc; 4547 struct ieee80211_rx_data rx; 4548 struct ieee80211_sub_if_data *prev; 4549 struct rhlist_head *tmp; 4550 int err = 0; 4551 4552 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4553 memset(&rx, 0, sizeof(rx)); 4554 rx.skb = skb; 4555 rx.local = local; 4556 rx.list = list; 4557 4558 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4559 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4560 4561 if (ieee80211_is_mgmt(fc)) { 4562 /* drop frame if too short for header */ 4563 if (skb->len < ieee80211_hdrlen(fc)) 4564 err = -ENOBUFS; 4565 else 4566 err = skb_linearize(skb); 4567 } else { 4568 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4569 } 4570 4571 if (err) { 4572 dev_kfree_skb(skb); 4573 return; 4574 } 4575 4576 hdr = (struct ieee80211_hdr *)skb->data; 4577 ieee80211_parse_qos(&rx); 4578 ieee80211_verify_alignment(&rx); 4579 4580 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4581 ieee80211_is_beacon(hdr->frame_control))) 4582 ieee80211_scan_rx(local, skb); 4583 4584 if (ieee80211_is_data(fc)) { 4585 struct sta_info *sta, *prev_sta; 4586 4587 if (pubsta) { 4588 rx.sta = container_of(pubsta, struct sta_info, sta); 4589 rx.sdata = rx.sta->sdata; 4590 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4591 return; 4592 goto out; 4593 } 4594 4595 prev_sta = NULL; 4596 4597 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4598 if (!prev_sta) { 4599 prev_sta = sta; 4600 continue; 4601 } 4602 4603 rx.sta = prev_sta; 4604 rx.sdata = prev_sta->sdata; 4605 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4606 4607 prev_sta = sta; 4608 } 4609 4610 if (prev_sta) { 4611 rx.sta = prev_sta; 4612 rx.sdata = prev_sta->sdata; 4613 4614 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4615 return; 4616 goto out; 4617 } 4618 } 4619 4620 prev = NULL; 4621 4622 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4623 if (!ieee80211_sdata_running(sdata)) 4624 continue; 4625 4626 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4627 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4628 continue; 4629 4630 /* 4631 * frame is destined for this interface, but if it's 4632 * not also for the previous one we handle that after 4633 * the loop to avoid copying the SKB once too much 4634 */ 4635 4636 if (!prev) { 4637 prev = sdata; 4638 continue; 4639 } 4640 4641 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4642 rx.sdata = prev; 4643 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4644 4645 prev = sdata; 4646 } 4647 4648 if (prev) { 4649 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4650 rx.sdata = prev; 4651 4652 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4653 return; 4654 } 4655 4656 out: 4657 dev_kfree_skb(skb); 4658 } 4659 4660 /* 4661 * This is the receive path handler. It is called by a low level driver when an 4662 * 802.11 MPDU is received from the hardware. 4663 */ 4664 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4665 struct sk_buff *skb, struct list_head *list) 4666 { 4667 struct ieee80211_local *local = hw_to_local(hw); 4668 struct ieee80211_rate *rate = NULL; 4669 struct ieee80211_supported_band *sband; 4670 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4671 4672 WARN_ON_ONCE(softirq_count() == 0); 4673 4674 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4675 goto drop; 4676 4677 sband = local->hw.wiphy->bands[status->band]; 4678 if (WARN_ON(!sband)) 4679 goto drop; 4680 4681 /* 4682 * If we're suspending, it is possible although not too likely 4683 * that we'd be receiving frames after having already partially 4684 * quiesced the stack. We can't process such frames then since 4685 * that might, for example, cause stations to be added or other 4686 * driver callbacks be invoked. 4687 */ 4688 if (unlikely(local->quiescing || local->suspended)) 4689 goto drop; 4690 4691 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4692 if (unlikely(local->in_reconfig)) 4693 goto drop; 4694 4695 /* 4696 * The same happens when we're not even started, 4697 * but that's worth a warning. 4698 */ 4699 if (WARN_ON(!local->started)) 4700 goto drop; 4701 4702 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4703 /* 4704 * Validate the rate, unless a PLCP error means that 4705 * we probably can't have a valid rate here anyway. 4706 */ 4707 4708 switch (status->encoding) { 4709 case RX_ENC_HT: 4710 /* 4711 * rate_idx is MCS index, which can be [0-76] 4712 * as documented on: 4713 * 4714 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4715 * 4716 * Anything else would be some sort of driver or 4717 * hardware error. The driver should catch hardware 4718 * errors. 4719 */ 4720 if (WARN(status->rate_idx > 76, 4721 "Rate marked as an HT rate but passed " 4722 "status->rate_idx is not " 4723 "an MCS index [0-76]: %d (0x%02x)\n", 4724 status->rate_idx, 4725 status->rate_idx)) 4726 goto drop; 4727 break; 4728 case RX_ENC_VHT: 4729 if (WARN_ONCE(status->rate_idx > 9 || 4730 !status->nss || 4731 status->nss > 8, 4732 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4733 status->rate_idx, status->nss)) 4734 goto drop; 4735 break; 4736 case RX_ENC_HE: 4737 if (WARN_ONCE(status->rate_idx > 11 || 4738 !status->nss || 4739 status->nss > 8, 4740 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4741 status->rate_idx, status->nss)) 4742 goto drop; 4743 break; 4744 default: 4745 WARN_ON_ONCE(1); 4746 fallthrough; 4747 case RX_ENC_LEGACY: 4748 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4749 goto drop; 4750 rate = &sband->bitrates[status->rate_idx]; 4751 } 4752 } 4753 4754 status->rx_flags = 0; 4755 4756 /* 4757 * Frames with failed FCS/PLCP checksum are not returned, 4758 * all other frames are returned without radiotap header 4759 * if it was previously present. 4760 * Also, frames with less than 16 bytes are dropped. 4761 */ 4762 skb = ieee80211_rx_monitor(local, skb, rate); 4763 if (!skb) 4764 return; 4765 4766 ieee80211_tpt_led_trig_rx(local, 4767 ((struct ieee80211_hdr *)skb->data)->frame_control, 4768 skb->len); 4769 4770 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4771 4772 return; 4773 drop: 4774 kfree_skb(skb); 4775 } 4776 EXPORT_SYMBOL(ieee80211_rx_list); 4777 4778 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4779 struct sk_buff *skb, struct napi_struct *napi) 4780 { 4781 struct sk_buff *tmp; 4782 LIST_HEAD(list); 4783 4784 4785 /* 4786 * key references and virtual interfaces are protected using RCU 4787 * and this requires that we are in a read-side RCU section during 4788 * receive processing 4789 */ 4790 rcu_read_lock(); 4791 ieee80211_rx_list(hw, pubsta, skb, &list); 4792 rcu_read_unlock(); 4793 4794 if (!napi) { 4795 netif_receive_skb_list(&list); 4796 return; 4797 } 4798 4799 list_for_each_entry_safe(skb, tmp, &list, list) { 4800 skb_list_del_init(skb); 4801 napi_gro_receive(napi, skb); 4802 } 4803 } 4804 EXPORT_SYMBOL(ieee80211_rx_napi); 4805 4806 /* This is a version of the rx handler that can be called from hard irq 4807 * context. Post the skb on the queue and schedule the tasklet */ 4808 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4809 { 4810 struct ieee80211_local *local = hw_to_local(hw); 4811 4812 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4813 4814 skb->pkt_type = IEEE80211_RX_MSG; 4815 skb_queue_tail(&local->skb_queue, skb); 4816 tasklet_schedule(&local->tasklet); 4817 } 4818 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4819