1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static void remove_monitor_info(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 if (present_fcs_len) 101 __pskb_trim(skb, skb->len - present_fcs_len); 102 __pskb_pull(skb, rtap_space); 103 } 104 105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 106 unsigned int rtap_space) 107 { 108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 109 struct ieee80211_hdr *hdr; 110 111 hdr = (void *)(skb->data + rtap_space); 112 113 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 114 RX_FLAG_FAILED_PLCP_CRC | 115 RX_FLAG_ONLY_MONITOR | 116 RX_FLAG_NO_PSDU)) 117 return true; 118 119 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 120 return true; 121 122 if (ieee80211_is_ctl(hdr->frame_control) && 123 !ieee80211_is_pspoll(hdr->frame_control) && 124 !ieee80211_is_back_req(hdr->frame_control)) 125 return true; 126 127 return false; 128 } 129 130 static int 131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 132 struct ieee80211_rx_status *status, 133 struct sk_buff *skb) 134 { 135 int len; 136 137 /* always present fields */ 138 len = sizeof(struct ieee80211_radiotap_header) + 8; 139 140 /* allocate extra bitmaps */ 141 if (status->chains) 142 len += 4 * hweight8(status->chains); 143 /* vendor presence bitmap */ 144 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 145 len += 4; 146 147 if (ieee80211_have_rx_timestamp(status)) { 148 len = ALIGN(len, 8); 149 len += 8; 150 } 151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 152 len += 1; 153 154 /* antenna field, if we don't have per-chain info */ 155 if (!status->chains) 156 len += 1; 157 158 /* padding for RX_FLAGS if necessary */ 159 len = ALIGN(len, 2); 160 161 if (status->encoding == RX_ENC_HT) /* HT info */ 162 len += 3; 163 164 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 165 len = ALIGN(len, 4); 166 len += 8; 167 } 168 169 if (status->encoding == RX_ENC_VHT) { 170 len = ALIGN(len, 2); 171 len += 12; 172 } 173 174 if (local->hw.radiotap_timestamp.units_pos >= 0) { 175 len = ALIGN(len, 8); 176 len += 12; 177 } 178 179 if (status->encoding == RX_ENC_HE && 180 status->flag & RX_FLAG_RADIOTAP_HE) { 181 len = ALIGN(len, 2); 182 len += 12; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 184 } 185 186 if (status->encoding == RX_ENC_HE && 187 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 188 len = ALIGN(len, 2); 189 len += 12; 190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 191 } 192 193 if (status->flag & RX_FLAG_NO_PSDU) 194 len += 1; 195 196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 197 len = ALIGN(len, 2); 198 len += 4; 199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 200 } 201 202 if (status->chains) { 203 /* antenna and antenna signal fields */ 204 len += 2 * hweight8(status->chains); 205 } 206 207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 208 struct ieee80211_vendor_radiotap *rtap; 209 int vendor_data_offset = 0; 210 211 /* 212 * The position to look at depends on the existence (or non- 213 * existence) of other elements, so take that into account... 214 */ 215 if (status->flag & RX_FLAG_RADIOTAP_HE) 216 vendor_data_offset += 217 sizeof(struct ieee80211_radiotap_he); 218 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 219 vendor_data_offset += 220 sizeof(struct ieee80211_radiotap_he_mu); 221 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 222 vendor_data_offset += 223 sizeof(struct ieee80211_radiotap_lsig); 224 225 rtap = (void *)&skb->data[vendor_data_offset]; 226 227 /* alignment for fixed 6-byte vendor data header */ 228 len = ALIGN(len, 2); 229 /* vendor data header */ 230 len += 6; 231 if (WARN_ON(rtap->align == 0)) 232 rtap->align = 1; 233 len = ALIGN(len, rtap->align); 234 len += rtap->len + rtap->pad; 235 } 236 237 return len; 238 } 239 240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 241 struct sk_buff *skb, 242 int rtap_space) 243 { 244 struct { 245 struct ieee80211_hdr_3addr hdr; 246 u8 category; 247 u8 action_code; 248 } __packed __aligned(2) action; 249 250 if (!sdata) 251 return; 252 253 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 254 255 if (skb->len < rtap_space + sizeof(action) + 256 VHT_MUMIMO_GROUPS_DATA_LEN) 257 return; 258 259 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 260 return; 261 262 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 263 264 if (!ieee80211_is_action(action.hdr.frame_control)) 265 return; 266 267 if (action.category != WLAN_CATEGORY_VHT) 268 return; 269 270 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 271 return; 272 273 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 274 return; 275 276 skb = skb_copy(skb, GFP_ATOMIC); 277 if (!skb) 278 return; 279 280 skb_queue_tail(&sdata->skb_queue, skb); 281 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 282 } 283 284 /* 285 * ieee80211_add_rx_radiotap_header - add radiotap header 286 * 287 * add a radiotap header containing all the fields which the hardware provided. 288 */ 289 static void 290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 291 struct sk_buff *skb, 292 struct ieee80211_rate *rate, 293 int rtap_len, bool has_fcs) 294 { 295 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 296 struct ieee80211_radiotap_header *rthdr; 297 unsigned char *pos; 298 __le32 *it_present; 299 u32 it_present_val; 300 u16 rx_flags = 0; 301 u16 channel_flags = 0; 302 int mpdulen, chain; 303 unsigned long chains = status->chains; 304 struct ieee80211_vendor_radiotap rtap = {}; 305 struct ieee80211_radiotap_he he = {}; 306 struct ieee80211_radiotap_he_mu he_mu = {}; 307 struct ieee80211_radiotap_lsig lsig = {}; 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE) { 310 he = *(struct ieee80211_radiotap_he *)skb->data; 311 skb_pull(skb, sizeof(he)); 312 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 313 } 314 315 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 316 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 317 skb_pull(skb, sizeof(he_mu)); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 321 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 322 skb_pull(skb, sizeof(lsig)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 326 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 327 /* rtap.len and rtap.pad are undone immediately */ 328 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 329 } 330 331 mpdulen = skb->len; 332 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 333 mpdulen += FCS_LEN; 334 335 rthdr = skb_push(skb, rtap_len); 336 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 337 it_present = &rthdr->it_present; 338 339 /* radiotap header, set always present flags */ 340 rthdr->it_len = cpu_to_le16(rtap_len); 341 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 342 BIT(IEEE80211_RADIOTAP_CHANNEL) | 343 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 344 345 if (!status->chains) 346 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 347 348 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 349 it_present_val |= 350 BIT(IEEE80211_RADIOTAP_EXT) | 351 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 352 put_unaligned_le32(it_present_val, it_present); 353 it_present++; 354 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 355 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 356 } 357 358 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 359 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 360 BIT(IEEE80211_RADIOTAP_EXT); 361 put_unaligned_le32(it_present_val, it_present); 362 it_present++; 363 it_present_val = rtap.present; 364 } 365 366 put_unaligned_le32(it_present_val, it_present); 367 368 pos = (void *)(it_present + 1); 369 370 /* the order of the following fields is important */ 371 372 /* IEEE80211_RADIOTAP_TSFT */ 373 if (ieee80211_have_rx_timestamp(status)) { 374 /* padding */ 375 while ((pos - (u8 *)rthdr) & 7) 376 *pos++ = 0; 377 put_unaligned_le64( 378 ieee80211_calculate_rx_timestamp(local, status, 379 mpdulen, 0), 380 pos); 381 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 382 pos += 8; 383 } 384 385 /* IEEE80211_RADIOTAP_FLAGS */ 386 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 387 *pos |= IEEE80211_RADIOTAP_F_FCS; 388 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 389 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 390 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 391 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 392 pos++; 393 394 /* IEEE80211_RADIOTAP_RATE */ 395 if (!rate || status->encoding != RX_ENC_LEGACY) { 396 /* 397 * Without rate information don't add it. If we have, 398 * MCS information is a separate field in radiotap, 399 * added below. The byte here is needed as padding 400 * for the channel though, so initialise it to 0. 401 */ 402 *pos = 0; 403 } else { 404 int shift = 0; 405 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 406 if (status->bw == RATE_INFO_BW_10) 407 shift = 1; 408 else if (status->bw == RATE_INFO_BW_5) 409 shift = 2; 410 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 411 } 412 pos++; 413 414 /* IEEE80211_RADIOTAP_CHANNEL */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ) 423 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 424 else if (status->encoding != RX_ENC_LEGACY) 425 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 426 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 427 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 428 else if (rate) 429 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 430 else 431 channel_flags |= IEEE80211_CHAN_2GHZ; 432 put_unaligned_le16(channel_flags, pos); 433 pos += 2; 434 435 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 436 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 437 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 438 *pos = status->signal; 439 rthdr->it_present |= 440 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 441 pos++; 442 } 443 444 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 445 446 if (!status->chains) { 447 /* IEEE80211_RADIOTAP_ANTENNA */ 448 *pos = status->antenna; 449 pos++; 450 } 451 452 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 453 454 /* IEEE80211_RADIOTAP_RX_FLAGS */ 455 /* ensure 2 byte alignment for the 2 byte field as required */ 456 if ((pos - (u8 *)rthdr) & 1) 457 *pos++ = 0; 458 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 459 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 460 put_unaligned_le16(rx_flags, pos); 461 pos += 2; 462 463 if (status->encoding == RX_ENC_HT) { 464 unsigned int stbc; 465 466 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 467 *pos++ = local->hw.radiotap_mcs_details; 468 *pos = 0; 469 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 470 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 471 if (status->bw == RATE_INFO_BW_40) 472 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 473 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 474 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 475 if (status->enc_flags & RX_ENC_FLAG_LDPC) 476 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 477 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 478 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 479 pos++; 480 *pos++ = status->rate_idx; 481 } 482 483 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 484 u16 flags = 0; 485 486 /* ensure 4 byte alignment */ 487 while ((pos - (u8 *)rthdr) & 3) 488 pos++; 489 rthdr->it_present |= 490 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 491 put_unaligned_le32(status->ampdu_reference, pos); 492 pos += 4; 493 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 494 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 495 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 496 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 497 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 498 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 499 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 502 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 503 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 504 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 505 put_unaligned_le16(flags, pos); 506 pos += 2; 507 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 508 *pos++ = status->ampdu_delimiter_crc; 509 else 510 *pos++ = 0; 511 *pos++ = 0; 512 } 513 514 if (status->encoding == RX_ENC_VHT) { 515 u16 known = local->hw.radiotap_vht_details; 516 517 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 518 put_unaligned_le16(known, pos); 519 pos += 2; 520 /* flags */ 521 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 522 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 523 /* in VHT, STBC is binary */ 524 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 525 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 526 if (status->enc_flags & RX_ENC_FLAG_BF) 527 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 528 pos++; 529 /* bandwidth */ 530 switch (status->bw) { 531 case RATE_INFO_BW_80: 532 *pos++ = 4; 533 break; 534 case RATE_INFO_BW_160: 535 *pos++ = 11; 536 break; 537 case RATE_INFO_BW_40: 538 *pos++ = 1; 539 break; 540 default: 541 *pos++ = 0; 542 } 543 /* MCS/NSS */ 544 *pos = (status->rate_idx << 4) | status->nss; 545 pos += 4; 546 /* coding field */ 547 if (status->enc_flags & RX_ENC_FLAG_LDPC) 548 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 549 pos++; 550 /* group ID */ 551 pos++; 552 /* partial_aid */ 553 pos += 2; 554 } 555 556 if (local->hw.radiotap_timestamp.units_pos >= 0) { 557 u16 accuracy = 0; 558 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 559 560 rthdr->it_present |= 561 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 562 563 /* ensure 8 byte alignment */ 564 while ((pos - (u8 *)rthdr) & 7) 565 pos++; 566 567 put_unaligned_le64(status->device_timestamp, pos); 568 pos += sizeof(u64); 569 570 if (local->hw.radiotap_timestamp.accuracy >= 0) { 571 accuracy = local->hw.radiotap_timestamp.accuracy; 572 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 573 } 574 put_unaligned_le16(accuracy, pos); 575 pos += sizeof(u16); 576 577 *pos++ = local->hw.radiotap_timestamp.units_pos; 578 *pos++ = flags; 579 } 580 581 if (status->encoding == RX_ENC_HE && 582 status->flag & RX_FLAG_RADIOTAP_HE) { 583 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 584 585 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 586 he.data6 |= HE_PREP(DATA6_NSTS, 587 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 588 status->enc_flags)); 589 he.data3 |= HE_PREP(DATA3_STBC, 1); 590 } else { 591 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 592 } 593 594 #define CHECK_GI(s) \ 595 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 596 (int)NL80211_RATE_INFO_HE_GI_##s) 597 598 CHECK_GI(0_8); 599 CHECK_GI(1_6); 600 CHECK_GI(3_2); 601 602 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 603 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 604 he.data3 |= HE_PREP(DATA3_CODING, 605 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 606 607 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 608 609 switch (status->bw) { 610 case RATE_INFO_BW_20: 611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 613 break; 614 case RATE_INFO_BW_40: 615 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 617 break; 618 case RATE_INFO_BW_80: 619 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 621 break; 622 case RATE_INFO_BW_160: 623 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 624 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 625 break; 626 case RATE_INFO_BW_HE_RU: 627 #define CHECK_RU_ALLOC(s) \ 628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 629 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 630 631 CHECK_RU_ALLOC(26); 632 CHECK_RU_ALLOC(52); 633 CHECK_RU_ALLOC(106); 634 CHECK_RU_ALLOC(242); 635 CHECK_RU_ALLOC(484); 636 CHECK_RU_ALLOC(996); 637 CHECK_RU_ALLOC(2x996); 638 639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 640 status->he_ru + 4); 641 break; 642 default: 643 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 644 } 645 646 /* ensure 2 byte alignment */ 647 while ((pos - (u8 *)rthdr) & 1) 648 pos++; 649 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 650 memcpy(pos, &he, sizeof(he)); 651 pos += sizeof(he); 652 } 653 654 if (status->encoding == RX_ENC_HE && 655 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 656 /* ensure 2 byte alignment */ 657 while ((pos - (u8 *)rthdr) & 1) 658 pos++; 659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 660 memcpy(pos, &he_mu, sizeof(he_mu)); 661 pos += sizeof(he_mu); 662 } 663 664 if (status->flag & RX_FLAG_NO_PSDU) { 665 rthdr->it_present |= 666 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 667 *pos++ = status->zero_length_psdu_type; 668 } 669 670 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 671 /* ensure 2 byte alignment */ 672 while ((pos - (u8 *)rthdr) & 1) 673 pos++; 674 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 675 memcpy(pos, &lsig, sizeof(lsig)); 676 pos += sizeof(lsig); 677 } 678 679 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 680 *pos++ = status->chain_signal[chain]; 681 *pos++ = chain; 682 } 683 684 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 685 /* ensure 2 byte alignment for the vendor field as required */ 686 if ((pos - (u8 *)rthdr) & 1) 687 *pos++ = 0; 688 *pos++ = rtap.oui[0]; 689 *pos++ = rtap.oui[1]; 690 *pos++ = rtap.oui[2]; 691 *pos++ = rtap.subns; 692 put_unaligned_le16(rtap.len, pos); 693 pos += 2; 694 /* align the actual payload as requested */ 695 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 696 *pos++ = 0; 697 /* data (and possible padding) already follows */ 698 } 699 } 700 701 static struct sk_buff * 702 ieee80211_make_monitor_skb(struct ieee80211_local *local, 703 struct sk_buff **origskb, 704 struct ieee80211_rate *rate, 705 int rtap_space, bool use_origskb) 706 { 707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 708 int rt_hdrlen, needed_headroom; 709 struct sk_buff *skb; 710 711 /* room for the radiotap header based on driver features */ 712 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 713 needed_headroom = rt_hdrlen - rtap_space; 714 715 if (use_origskb) { 716 /* only need to expand headroom if necessary */ 717 skb = *origskb; 718 *origskb = NULL; 719 720 /* 721 * This shouldn't trigger often because most devices have an 722 * RX header they pull before we get here, and that should 723 * be big enough for our radiotap information. We should 724 * probably export the length to drivers so that we can have 725 * them allocate enough headroom to start with. 726 */ 727 if (skb_headroom(skb) < needed_headroom && 728 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 729 dev_kfree_skb(skb); 730 return NULL; 731 } 732 } else { 733 /* 734 * Need to make a copy and possibly remove radiotap header 735 * and FCS from the original. 736 */ 737 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 738 739 if (!skb) 740 return NULL; 741 } 742 743 /* prepend radiotap information */ 744 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 745 746 skb_reset_mac_header(skb); 747 skb->ip_summed = CHECKSUM_UNNECESSARY; 748 skb->pkt_type = PACKET_OTHERHOST; 749 skb->protocol = htons(ETH_P_802_2); 750 751 return skb; 752 } 753 754 /* 755 * This function copies a received frame to all monitor interfaces and 756 * returns a cleaned-up SKB that no longer includes the FCS nor the 757 * radiotap header the driver might have added. 758 */ 759 static struct sk_buff * 760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 761 struct ieee80211_rate *rate) 762 { 763 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 764 struct ieee80211_sub_if_data *sdata; 765 struct sk_buff *monskb = NULL; 766 int present_fcs_len = 0; 767 unsigned int rtap_space = 0; 768 struct ieee80211_sub_if_data *monitor_sdata = 769 rcu_dereference(local->monitor_sdata); 770 bool only_monitor = false; 771 unsigned int min_head_len; 772 773 if (status->flag & RX_FLAG_RADIOTAP_HE) 774 rtap_space += sizeof(struct ieee80211_radiotap_he); 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 777 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 778 779 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 780 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 781 782 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 783 struct ieee80211_vendor_radiotap *rtap = 784 (void *)(origskb->data + rtap_space); 785 786 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 787 } 788 789 min_head_len = rtap_space; 790 791 /* 792 * First, we may need to make a copy of the skb because 793 * (1) we need to modify it for radiotap (if not present), and 794 * (2) the other RX handlers will modify the skb we got. 795 * 796 * We don't need to, of course, if we aren't going to return 797 * the SKB because it has a bad FCS/PLCP checksum. 798 */ 799 800 if (!(status->flag & RX_FLAG_NO_PSDU)) { 801 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 802 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 803 /* driver bug */ 804 WARN_ON(1); 805 dev_kfree_skb(origskb); 806 return NULL; 807 } 808 present_fcs_len = FCS_LEN; 809 } 810 811 /* also consider the hdr->frame_control */ 812 min_head_len += 2; 813 } 814 815 /* ensure that the expected data elements are in skb head */ 816 if (!pskb_may_pull(origskb, min_head_len)) { 817 dev_kfree_skb(origskb); 818 return NULL; 819 } 820 821 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 822 823 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 824 if (only_monitor) { 825 dev_kfree_skb(origskb); 826 return NULL; 827 } 828 829 remove_monitor_info(origskb, present_fcs_len, rtap_space); 830 return origskb; 831 } 832 833 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 834 835 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 836 bool last_monitor = list_is_last(&sdata->u.mntr.list, 837 &local->mon_list); 838 839 if (!monskb) 840 monskb = ieee80211_make_monitor_skb(local, &origskb, 841 rate, rtap_space, 842 only_monitor && 843 last_monitor); 844 845 if (monskb) { 846 struct sk_buff *skb; 847 848 if (last_monitor) { 849 skb = monskb; 850 monskb = NULL; 851 } else { 852 skb = skb_clone(monskb, GFP_ATOMIC); 853 } 854 855 if (skb) { 856 skb->dev = sdata->dev; 857 ieee80211_rx_stats(skb->dev, skb->len); 858 netif_receive_skb(skb); 859 } 860 } 861 862 if (last_monitor) 863 break; 864 } 865 866 /* this happens if last_monitor was erroneously false */ 867 dev_kfree_skb(monskb); 868 869 /* ditto */ 870 if (!origskb) 871 return NULL; 872 873 remove_monitor_info(origskb, present_fcs_len, rtap_space); 874 return origskb; 875 } 876 877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 878 { 879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 881 int tid, seqno_idx, security_idx; 882 883 /* does the frame have a qos control field? */ 884 if (ieee80211_is_data_qos(hdr->frame_control)) { 885 u8 *qc = ieee80211_get_qos_ctl(hdr); 886 /* frame has qos control */ 887 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 888 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 889 status->rx_flags |= IEEE80211_RX_AMSDU; 890 891 seqno_idx = tid; 892 security_idx = tid; 893 } else { 894 /* 895 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 896 * 897 * Sequence numbers for management frames, QoS data 898 * frames with a broadcast/multicast address in the 899 * Address 1 field, and all non-QoS data frames sent 900 * by QoS STAs are assigned using an additional single 901 * modulo-4096 counter, [...] 902 * 903 * We also use that counter for non-QoS STAs. 904 */ 905 seqno_idx = IEEE80211_NUM_TIDS; 906 security_idx = 0; 907 if (ieee80211_is_mgmt(hdr->frame_control)) 908 security_idx = IEEE80211_NUM_TIDS; 909 tid = 0; 910 } 911 912 rx->seqno_idx = seqno_idx; 913 rx->security_idx = security_idx; 914 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 915 * For now, set skb->priority to 0 for other cases. */ 916 rx->skb->priority = (tid > 7) ? 0 : tid; 917 } 918 919 /** 920 * DOC: Packet alignment 921 * 922 * Drivers always need to pass packets that are aligned to two-byte boundaries 923 * to the stack. 924 * 925 * Additionally, should, if possible, align the payload data in a way that 926 * guarantees that the contained IP header is aligned to a four-byte 927 * boundary. In the case of regular frames, this simply means aligning the 928 * payload to a four-byte boundary (because either the IP header is directly 929 * contained, or IV/RFC1042 headers that have a length divisible by four are 930 * in front of it). If the payload data is not properly aligned and the 931 * architecture doesn't support efficient unaligned operations, mac80211 932 * will align the data. 933 * 934 * With A-MSDU frames, however, the payload data address must yield two modulo 935 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 936 * push the IP header further back to a multiple of four again. Thankfully, the 937 * specs were sane enough this time around to require padding each A-MSDU 938 * subframe to a length that is a multiple of four. 939 * 940 * Padding like Atheros hardware adds which is between the 802.11 header and 941 * the payload is not supported, the driver is required to move the 802.11 942 * header to be directly in front of the payload in that case. 943 */ 944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 945 { 946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 947 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 948 #endif 949 } 950 951 952 /* rx handlers */ 953 954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 955 { 956 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 957 958 if (is_multicast_ether_addr(hdr->addr1)) 959 return 0; 960 961 return ieee80211_is_robust_mgmt_frame(skb); 962 } 963 964 965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 966 { 967 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 968 969 if (!is_multicast_ether_addr(hdr->addr1)) 970 return 0; 971 972 return ieee80211_is_robust_mgmt_frame(skb); 973 } 974 975 976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 978 { 979 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 980 struct ieee80211_mmie *mmie; 981 struct ieee80211_mmie_16 *mmie16; 982 983 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 984 return -1; 985 986 if (!ieee80211_is_robust_mgmt_frame(skb) && 987 !ieee80211_is_beacon(hdr->frame_control)) 988 return -1; /* not a robust management frame */ 989 990 mmie = (struct ieee80211_mmie *) 991 (skb->data + skb->len - sizeof(*mmie)); 992 if (mmie->element_id == WLAN_EID_MMIE && 993 mmie->length == sizeof(*mmie) - 2) 994 return le16_to_cpu(mmie->key_id); 995 996 mmie16 = (struct ieee80211_mmie_16 *) 997 (skb->data + skb->len - sizeof(*mmie16)); 998 if (skb->len >= 24 + sizeof(*mmie16) && 999 mmie16->element_id == WLAN_EID_MMIE && 1000 mmie16->length == sizeof(*mmie16) - 2) 1001 return le16_to_cpu(mmie16->key_id); 1002 1003 return -1; 1004 } 1005 1006 static int ieee80211_get_keyid(struct sk_buff *skb, 1007 const struct ieee80211_cipher_scheme *cs) 1008 { 1009 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1010 __le16 fc; 1011 int hdrlen; 1012 int minlen; 1013 u8 key_idx_off; 1014 u8 key_idx_shift; 1015 u8 keyid; 1016 1017 fc = hdr->frame_control; 1018 hdrlen = ieee80211_hdrlen(fc); 1019 1020 if (cs) { 1021 minlen = hdrlen + cs->hdr_len; 1022 key_idx_off = hdrlen + cs->key_idx_off; 1023 key_idx_shift = cs->key_idx_shift; 1024 } else { 1025 /* WEP, TKIP, CCMP and GCMP */ 1026 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1027 key_idx_off = hdrlen + 3; 1028 key_idx_shift = 6; 1029 } 1030 1031 if (unlikely(skb->len < minlen)) 1032 return -EINVAL; 1033 1034 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1035 1036 if (cs) 1037 keyid &= cs->key_idx_mask; 1038 keyid >>= key_idx_shift; 1039 1040 /* cs could use more than the usual two bits for the keyid */ 1041 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1042 return -EINVAL; 1043 1044 return keyid; 1045 } 1046 1047 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1048 { 1049 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1050 char *dev_addr = rx->sdata->vif.addr; 1051 1052 if (ieee80211_is_data(hdr->frame_control)) { 1053 if (is_multicast_ether_addr(hdr->addr1)) { 1054 if (ieee80211_has_tods(hdr->frame_control) || 1055 !ieee80211_has_fromds(hdr->frame_control)) 1056 return RX_DROP_MONITOR; 1057 if (ether_addr_equal(hdr->addr3, dev_addr)) 1058 return RX_DROP_MONITOR; 1059 } else { 1060 if (!ieee80211_has_a4(hdr->frame_control)) 1061 return RX_DROP_MONITOR; 1062 if (ether_addr_equal(hdr->addr4, dev_addr)) 1063 return RX_DROP_MONITOR; 1064 } 1065 } 1066 1067 /* If there is not an established peer link and this is not a peer link 1068 * establisment frame, beacon or probe, drop the frame. 1069 */ 1070 1071 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1072 struct ieee80211_mgmt *mgmt; 1073 1074 if (!ieee80211_is_mgmt(hdr->frame_control)) 1075 return RX_DROP_MONITOR; 1076 1077 if (ieee80211_is_action(hdr->frame_control)) { 1078 u8 category; 1079 1080 /* make sure category field is present */ 1081 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1082 return RX_DROP_MONITOR; 1083 1084 mgmt = (struct ieee80211_mgmt *)hdr; 1085 category = mgmt->u.action.category; 1086 if (category != WLAN_CATEGORY_MESH_ACTION && 1087 category != WLAN_CATEGORY_SELF_PROTECTED) 1088 return RX_DROP_MONITOR; 1089 return RX_CONTINUE; 1090 } 1091 1092 if (ieee80211_is_probe_req(hdr->frame_control) || 1093 ieee80211_is_probe_resp(hdr->frame_control) || 1094 ieee80211_is_beacon(hdr->frame_control) || 1095 ieee80211_is_auth(hdr->frame_control)) 1096 return RX_CONTINUE; 1097 1098 return RX_DROP_MONITOR; 1099 } 1100 1101 return RX_CONTINUE; 1102 } 1103 1104 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1105 int index) 1106 { 1107 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1108 struct sk_buff *tail = skb_peek_tail(frames); 1109 struct ieee80211_rx_status *status; 1110 1111 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1112 return true; 1113 1114 if (!tail) 1115 return false; 1116 1117 status = IEEE80211_SKB_RXCB(tail); 1118 if (status->flag & RX_FLAG_AMSDU_MORE) 1119 return false; 1120 1121 return true; 1122 } 1123 1124 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1125 struct tid_ampdu_rx *tid_agg_rx, 1126 int index, 1127 struct sk_buff_head *frames) 1128 { 1129 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1130 struct sk_buff *skb; 1131 struct ieee80211_rx_status *status; 1132 1133 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1134 1135 if (skb_queue_empty(skb_list)) 1136 goto no_frame; 1137 1138 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1139 __skb_queue_purge(skb_list); 1140 goto no_frame; 1141 } 1142 1143 /* release frames from the reorder ring buffer */ 1144 tid_agg_rx->stored_mpdu_num--; 1145 while ((skb = __skb_dequeue(skb_list))) { 1146 status = IEEE80211_SKB_RXCB(skb); 1147 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1148 __skb_queue_tail(frames, skb); 1149 } 1150 1151 no_frame: 1152 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1153 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1154 } 1155 1156 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1157 struct tid_ampdu_rx *tid_agg_rx, 1158 u16 head_seq_num, 1159 struct sk_buff_head *frames) 1160 { 1161 int index; 1162 1163 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1164 1165 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1166 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1167 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1168 frames); 1169 } 1170 } 1171 1172 /* 1173 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1174 * the skb was added to the buffer longer than this time ago, the earlier 1175 * frames that have not yet been received are assumed to be lost and the skb 1176 * can be released for processing. This may also release other skb's from the 1177 * reorder buffer if there are no additional gaps between the frames. 1178 * 1179 * Callers must hold tid_agg_rx->reorder_lock. 1180 */ 1181 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1182 1183 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1184 struct tid_ampdu_rx *tid_agg_rx, 1185 struct sk_buff_head *frames) 1186 { 1187 int index, i, j; 1188 1189 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1190 1191 /* release the buffer until next missing frame */ 1192 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1193 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1194 tid_agg_rx->stored_mpdu_num) { 1195 /* 1196 * No buffers ready to be released, but check whether any 1197 * frames in the reorder buffer have timed out. 1198 */ 1199 int skipped = 1; 1200 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1201 j = (j + 1) % tid_agg_rx->buf_size) { 1202 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1203 skipped++; 1204 continue; 1205 } 1206 if (skipped && 1207 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1208 HT_RX_REORDER_BUF_TIMEOUT)) 1209 goto set_release_timer; 1210 1211 /* don't leave incomplete A-MSDUs around */ 1212 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1213 i = (i + 1) % tid_agg_rx->buf_size) 1214 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1215 1216 ht_dbg_ratelimited(sdata, 1217 "release an RX reorder frame due to timeout on earlier frames\n"); 1218 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1219 frames); 1220 1221 /* 1222 * Increment the head seq# also for the skipped slots. 1223 */ 1224 tid_agg_rx->head_seq_num = 1225 (tid_agg_rx->head_seq_num + 1226 skipped) & IEEE80211_SN_MASK; 1227 skipped = 0; 1228 } 1229 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1230 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1231 frames); 1232 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1233 } 1234 1235 if (tid_agg_rx->stored_mpdu_num) { 1236 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1237 1238 for (; j != (index - 1) % tid_agg_rx->buf_size; 1239 j = (j + 1) % tid_agg_rx->buf_size) { 1240 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1241 break; 1242 } 1243 1244 set_release_timer: 1245 1246 if (!tid_agg_rx->removed) 1247 mod_timer(&tid_agg_rx->reorder_timer, 1248 tid_agg_rx->reorder_time[j] + 1 + 1249 HT_RX_REORDER_BUF_TIMEOUT); 1250 } else { 1251 del_timer(&tid_agg_rx->reorder_timer); 1252 } 1253 } 1254 1255 /* 1256 * As this function belongs to the RX path it must be under 1257 * rcu_read_lock protection. It returns false if the frame 1258 * can be processed immediately, true if it was consumed. 1259 */ 1260 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1261 struct tid_ampdu_rx *tid_agg_rx, 1262 struct sk_buff *skb, 1263 struct sk_buff_head *frames) 1264 { 1265 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1266 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1267 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1268 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1269 u16 head_seq_num, buf_size; 1270 int index; 1271 bool ret = true; 1272 1273 spin_lock(&tid_agg_rx->reorder_lock); 1274 1275 /* 1276 * Offloaded BA sessions have no known starting sequence number so pick 1277 * one from first Rxed frame for this tid after BA was started. 1278 */ 1279 if (unlikely(tid_agg_rx->auto_seq)) { 1280 tid_agg_rx->auto_seq = false; 1281 tid_agg_rx->ssn = mpdu_seq_num; 1282 tid_agg_rx->head_seq_num = mpdu_seq_num; 1283 } 1284 1285 buf_size = tid_agg_rx->buf_size; 1286 head_seq_num = tid_agg_rx->head_seq_num; 1287 1288 /* 1289 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1290 * be reordered. 1291 */ 1292 if (unlikely(!tid_agg_rx->started)) { 1293 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1294 ret = false; 1295 goto out; 1296 } 1297 tid_agg_rx->started = true; 1298 } 1299 1300 /* frame with out of date sequence number */ 1301 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1302 dev_kfree_skb(skb); 1303 goto out; 1304 } 1305 1306 /* 1307 * If frame the sequence number exceeds our buffering window 1308 * size release some previous frames to make room for this one. 1309 */ 1310 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1311 head_seq_num = ieee80211_sn_inc( 1312 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1313 /* release stored frames up to new head to stack */ 1314 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1315 head_seq_num, frames); 1316 } 1317 1318 /* Now the new frame is always in the range of the reordering buffer */ 1319 1320 index = mpdu_seq_num % tid_agg_rx->buf_size; 1321 1322 /* check if we already stored this frame */ 1323 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1324 dev_kfree_skb(skb); 1325 goto out; 1326 } 1327 1328 /* 1329 * If the current MPDU is in the right order and nothing else 1330 * is stored we can process it directly, no need to buffer it. 1331 * If it is first but there's something stored, we may be able 1332 * to release frames after this one. 1333 */ 1334 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1335 tid_agg_rx->stored_mpdu_num == 0) { 1336 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1337 tid_agg_rx->head_seq_num = 1338 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1339 ret = false; 1340 goto out; 1341 } 1342 1343 /* put the frame in the reordering buffer */ 1344 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1345 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1346 tid_agg_rx->reorder_time[index] = jiffies; 1347 tid_agg_rx->stored_mpdu_num++; 1348 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1349 } 1350 1351 out: 1352 spin_unlock(&tid_agg_rx->reorder_lock); 1353 return ret; 1354 } 1355 1356 /* 1357 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1358 * true if the MPDU was buffered, false if it should be processed. 1359 */ 1360 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1361 struct sk_buff_head *frames) 1362 { 1363 struct sk_buff *skb = rx->skb; 1364 struct ieee80211_local *local = rx->local; 1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1366 struct sta_info *sta = rx->sta; 1367 struct tid_ampdu_rx *tid_agg_rx; 1368 u16 sc; 1369 u8 tid, ack_policy; 1370 1371 if (!ieee80211_is_data_qos(hdr->frame_control) || 1372 is_multicast_ether_addr(hdr->addr1)) 1373 goto dont_reorder; 1374 1375 /* 1376 * filter the QoS data rx stream according to 1377 * STA/TID and check if this STA/TID is on aggregation 1378 */ 1379 1380 if (!sta) 1381 goto dont_reorder; 1382 1383 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1385 tid = ieee80211_get_tid(hdr); 1386 1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1388 if (!tid_agg_rx) { 1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1393 WLAN_BACK_RECIPIENT, 1394 WLAN_REASON_QSTA_REQUIRE_SETUP); 1395 goto dont_reorder; 1396 } 1397 1398 /* qos null data frames are excluded */ 1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1400 goto dont_reorder; 1401 1402 /* not part of a BA session */ 1403 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1404 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1405 goto dont_reorder; 1406 1407 /* new, potentially un-ordered, ampdu frame - process it */ 1408 1409 /* reset session timer */ 1410 if (tid_agg_rx->timeout) 1411 tid_agg_rx->last_rx = jiffies; 1412 1413 /* if this mpdu is fragmented - terminate rx aggregation session */ 1414 sc = le16_to_cpu(hdr->seq_ctrl); 1415 if (sc & IEEE80211_SCTL_FRAG) { 1416 skb_queue_tail(&rx->sdata->skb_queue, skb); 1417 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1418 return; 1419 } 1420 1421 /* 1422 * No locking needed -- we will only ever process one 1423 * RX packet at a time, and thus own tid_agg_rx. All 1424 * other code manipulating it needs to (and does) make 1425 * sure that we cannot get to it any more before doing 1426 * anything with it. 1427 */ 1428 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1429 frames)) 1430 return; 1431 1432 dont_reorder: 1433 __skb_queue_tail(frames, skb); 1434 } 1435 1436 static ieee80211_rx_result debug_noinline 1437 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1438 { 1439 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1440 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1441 1442 if (status->flag & RX_FLAG_DUP_VALIDATED) 1443 return RX_CONTINUE; 1444 1445 /* 1446 * Drop duplicate 802.11 retransmissions 1447 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1448 */ 1449 1450 if (rx->skb->len < 24) 1451 return RX_CONTINUE; 1452 1453 if (ieee80211_is_ctl(hdr->frame_control) || 1454 ieee80211_is_any_nullfunc(hdr->frame_control) || 1455 is_multicast_ether_addr(hdr->addr1)) 1456 return RX_CONTINUE; 1457 1458 if (!rx->sta) 1459 return RX_CONTINUE; 1460 1461 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1462 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1463 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1464 rx->sta->rx_stats.num_duplicates++; 1465 return RX_DROP_UNUSABLE; 1466 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1467 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1468 } 1469 1470 return RX_CONTINUE; 1471 } 1472 1473 static ieee80211_rx_result debug_noinline 1474 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1475 { 1476 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1477 1478 /* Drop disallowed frame classes based on STA auth/assoc state; 1479 * IEEE 802.11, Chap 5.5. 1480 * 1481 * mac80211 filters only based on association state, i.e. it drops 1482 * Class 3 frames from not associated stations. hostapd sends 1483 * deauth/disassoc frames when needed. In addition, hostapd is 1484 * responsible for filtering on both auth and assoc states. 1485 */ 1486 1487 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1488 return ieee80211_rx_mesh_check(rx); 1489 1490 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1491 ieee80211_is_pspoll(hdr->frame_control)) && 1492 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1493 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1494 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1495 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1496 /* 1497 * accept port control frames from the AP even when it's not 1498 * yet marked ASSOC to prevent a race where we don't set the 1499 * assoc bit quickly enough before it sends the first frame 1500 */ 1501 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1502 ieee80211_is_data_present(hdr->frame_control)) { 1503 unsigned int hdrlen; 1504 __be16 ethertype; 1505 1506 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1507 1508 if (rx->skb->len < hdrlen + 8) 1509 return RX_DROP_MONITOR; 1510 1511 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1512 if (ethertype == rx->sdata->control_port_protocol) 1513 return RX_CONTINUE; 1514 } 1515 1516 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1517 cfg80211_rx_spurious_frame(rx->sdata->dev, 1518 hdr->addr2, 1519 GFP_ATOMIC)) 1520 return RX_DROP_UNUSABLE; 1521 1522 return RX_DROP_MONITOR; 1523 } 1524 1525 return RX_CONTINUE; 1526 } 1527 1528 1529 static ieee80211_rx_result debug_noinline 1530 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1531 { 1532 struct ieee80211_local *local; 1533 struct ieee80211_hdr *hdr; 1534 struct sk_buff *skb; 1535 1536 local = rx->local; 1537 skb = rx->skb; 1538 hdr = (struct ieee80211_hdr *) skb->data; 1539 1540 if (!local->pspolling) 1541 return RX_CONTINUE; 1542 1543 if (!ieee80211_has_fromds(hdr->frame_control)) 1544 /* this is not from AP */ 1545 return RX_CONTINUE; 1546 1547 if (!ieee80211_is_data(hdr->frame_control)) 1548 return RX_CONTINUE; 1549 1550 if (!ieee80211_has_moredata(hdr->frame_control)) { 1551 /* AP has no more frames buffered for us */ 1552 local->pspolling = false; 1553 return RX_CONTINUE; 1554 } 1555 1556 /* more data bit is set, let's request a new frame from the AP */ 1557 ieee80211_send_pspoll(local, rx->sdata); 1558 1559 return RX_CONTINUE; 1560 } 1561 1562 static void sta_ps_start(struct sta_info *sta) 1563 { 1564 struct ieee80211_sub_if_data *sdata = sta->sdata; 1565 struct ieee80211_local *local = sdata->local; 1566 struct ps_data *ps; 1567 int tid; 1568 1569 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1570 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1571 ps = &sdata->bss->ps; 1572 else 1573 return; 1574 1575 atomic_inc(&ps->num_sta_ps); 1576 set_sta_flag(sta, WLAN_STA_PS_STA); 1577 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1578 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1579 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1580 sta->sta.addr, sta->sta.aid); 1581 1582 ieee80211_clear_fast_xmit(sta); 1583 1584 if (!sta->sta.txq[0]) 1585 return; 1586 1587 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1588 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1589 struct txq_info *txqi = to_txq_info(txq); 1590 1591 spin_lock(&local->active_txq_lock[txq->ac]); 1592 if (!list_empty(&txqi->schedule_order)) 1593 list_del_init(&txqi->schedule_order); 1594 spin_unlock(&local->active_txq_lock[txq->ac]); 1595 1596 if (txq_has_queue(txq)) 1597 set_bit(tid, &sta->txq_buffered_tids); 1598 else 1599 clear_bit(tid, &sta->txq_buffered_tids); 1600 } 1601 } 1602 1603 static void sta_ps_end(struct sta_info *sta) 1604 { 1605 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1606 sta->sta.addr, sta->sta.aid); 1607 1608 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1609 /* 1610 * Clear the flag only if the other one is still set 1611 * so that the TX path won't start TX'ing new frames 1612 * directly ... In the case that the driver flag isn't 1613 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1614 */ 1615 clear_sta_flag(sta, WLAN_STA_PS_STA); 1616 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1617 sta->sta.addr, sta->sta.aid); 1618 return; 1619 } 1620 1621 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1622 clear_sta_flag(sta, WLAN_STA_PS_STA); 1623 ieee80211_sta_ps_deliver_wakeup(sta); 1624 } 1625 1626 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1627 { 1628 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1629 bool in_ps; 1630 1631 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1632 1633 /* Don't let the same PS state be set twice */ 1634 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1635 if ((start && in_ps) || (!start && !in_ps)) 1636 return -EINVAL; 1637 1638 if (start) 1639 sta_ps_start(sta); 1640 else 1641 sta_ps_end(sta); 1642 1643 return 0; 1644 } 1645 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1646 1647 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1648 { 1649 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1650 1651 if (test_sta_flag(sta, WLAN_STA_SP)) 1652 return; 1653 1654 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1655 ieee80211_sta_ps_deliver_poll_response(sta); 1656 else 1657 set_sta_flag(sta, WLAN_STA_PSPOLL); 1658 } 1659 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1660 1661 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1662 { 1663 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1664 int ac = ieee80211_ac_from_tid(tid); 1665 1666 /* 1667 * If this AC is not trigger-enabled do nothing unless the 1668 * driver is calling us after it already checked. 1669 * 1670 * NB: This could/should check a separate bitmap of trigger- 1671 * enabled queues, but for now we only implement uAPSD w/o 1672 * TSPEC changes to the ACs, so they're always the same. 1673 */ 1674 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1675 tid != IEEE80211_NUM_TIDS) 1676 return; 1677 1678 /* if we are in a service period, do nothing */ 1679 if (test_sta_flag(sta, WLAN_STA_SP)) 1680 return; 1681 1682 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1683 ieee80211_sta_ps_deliver_uapsd(sta); 1684 else 1685 set_sta_flag(sta, WLAN_STA_UAPSD); 1686 } 1687 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1688 1689 static ieee80211_rx_result debug_noinline 1690 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1691 { 1692 struct ieee80211_sub_if_data *sdata = rx->sdata; 1693 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1694 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1695 1696 if (!rx->sta) 1697 return RX_CONTINUE; 1698 1699 if (sdata->vif.type != NL80211_IFTYPE_AP && 1700 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1701 return RX_CONTINUE; 1702 1703 /* 1704 * The device handles station powersave, so don't do anything about 1705 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1706 * it to mac80211 since they're handled.) 1707 */ 1708 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1709 return RX_CONTINUE; 1710 1711 /* 1712 * Don't do anything if the station isn't already asleep. In 1713 * the uAPSD case, the station will probably be marked asleep, 1714 * in the PS-Poll case the station must be confused ... 1715 */ 1716 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1717 return RX_CONTINUE; 1718 1719 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1720 ieee80211_sta_pspoll(&rx->sta->sta); 1721 1722 /* Free PS Poll skb here instead of returning RX_DROP that would 1723 * count as an dropped frame. */ 1724 dev_kfree_skb(rx->skb); 1725 1726 return RX_QUEUED; 1727 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1728 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1729 ieee80211_has_pm(hdr->frame_control) && 1730 (ieee80211_is_data_qos(hdr->frame_control) || 1731 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1732 u8 tid = ieee80211_get_tid(hdr); 1733 1734 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1735 } 1736 1737 return RX_CONTINUE; 1738 } 1739 1740 static ieee80211_rx_result debug_noinline 1741 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1742 { 1743 struct sta_info *sta = rx->sta; 1744 struct sk_buff *skb = rx->skb; 1745 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1747 int i; 1748 1749 if (!sta) 1750 return RX_CONTINUE; 1751 1752 /* 1753 * Update last_rx only for IBSS packets which are for the current 1754 * BSSID and for station already AUTHORIZED to avoid keeping the 1755 * current IBSS network alive in cases where other STAs start 1756 * using different BSSID. This will also give the station another 1757 * chance to restart the authentication/authorization in case 1758 * something went wrong the first time. 1759 */ 1760 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1761 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1762 NL80211_IFTYPE_ADHOC); 1763 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1764 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1765 sta->rx_stats.last_rx = jiffies; 1766 if (ieee80211_is_data(hdr->frame_control) && 1767 !is_multicast_ether_addr(hdr->addr1)) 1768 sta->rx_stats.last_rate = 1769 sta_stats_encode_rate(status); 1770 } 1771 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1772 sta->rx_stats.last_rx = jiffies; 1773 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1774 /* 1775 * Mesh beacons will update last_rx when if they are found to 1776 * match the current local configuration when processed. 1777 */ 1778 sta->rx_stats.last_rx = jiffies; 1779 if (ieee80211_is_data(hdr->frame_control)) 1780 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1781 } 1782 1783 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1784 ieee80211_sta_rx_notify(rx->sdata, hdr); 1785 1786 sta->rx_stats.fragments++; 1787 1788 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1789 sta->rx_stats.bytes += rx->skb->len; 1790 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1791 1792 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1793 sta->rx_stats.last_signal = status->signal; 1794 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1795 } 1796 1797 if (status->chains) { 1798 sta->rx_stats.chains = status->chains; 1799 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1800 int signal = status->chain_signal[i]; 1801 1802 if (!(status->chains & BIT(i))) 1803 continue; 1804 1805 sta->rx_stats.chain_signal_last[i] = signal; 1806 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1807 -signal); 1808 } 1809 } 1810 1811 /* 1812 * Change STA power saving mode only at the end of a frame 1813 * exchange sequence, and only for a data or management 1814 * frame as specified in IEEE 802.11-2016 11.2.3.2 1815 */ 1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1817 !ieee80211_has_morefrags(hdr->frame_control) && 1818 !is_multicast_ether_addr(hdr->addr1) && 1819 (ieee80211_is_mgmt(hdr->frame_control) || 1820 ieee80211_is_data(hdr->frame_control)) && 1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1825 if (!ieee80211_has_pm(hdr->frame_control)) 1826 sta_ps_end(sta); 1827 } else { 1828 if (ieee80211_has_pm(hdr->frame_control)) 1829 sta_ps_start(sta); 1830 } 1831 } 1832 1833 /* mesh power save support */ 1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1835 ieee80211_mps_rx_h_sta_process(sta, hdr); 1836 1837 /* 1838 * Drop (qos-)data::nullfunc frames silently, since they 1839 * are used only to control station power saving mode. 1840 */ 1841 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1843 1844 /* 1845 * If we receive a 4-addr nullfunc frame from a STA 1846 * that was not moved to a 4-addr STA vlan yet send 1847 * the event to userspace and for older hostapd drop 1848 * the frame to the monitor interface. 1849 */ 1850 if (ieee80211_has_a4(hdr->frame_control) && 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1853 !rx->sdata->u.vlan.sta))) { 1854 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1855 cfg80211_rx_unexpected_4addr_frame( 1856 rx->sdata->dev, sta->sta.addr, 1857 GFP_ATOMIC); 1858 return RX_DROP_MONITOR; 1859 } 1860 /* 1861 * Update counter and free packet here to avoid 1862 * counting this as a dropped packed. 1863 */ 1864 sta->rx_stats.packets++; 1865 dev_kfree_skb(rx->skb); 1866 return RX_QUEUED; 1867 } 1868 1869 return RX_CONTINUE; 1870 } /* ieee80211_rx_h_sta_process */ 1871 1872 static struct ieee80211_key * 1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1874 { 1875 struct ieee80211_key *key = NULL; 1876 struct ieee80211_sub_if_data *sdata = rx->sdata; 1877 int idx2; 1878 1879 /* Make sure key gets set if either BIGTK key index is set so that 1880 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1881 * Beacon frames and Beacon frames that claim to use another BIGTK key 1882 * index (i.e., a key that we do not have). 1883 */ 1884 1885 if (idx < 0) { 1886 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1887 idx2 = idx + 1; 1888 } else { 1889 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1890 idx2 = idx + 1; 1891 else 1892 idx2 = idx - 1; 1893 } 1894 1895 if (rx->sta) 1896 key = rcu_dereference(rx->sta->gtk[idx]); 1897 if (!key) 1898 key = rcu_dereference(sdata->keys[idx]); 1899 if (!key && rx->sta) 1900 key = rcu_dereference(rx->sta->gtk[idx2]); 1901 if (!key) 1902 key = rcu_dereference(sdata->keys[idx2]); 1903 1904 return key; 1905 } 1906 1907 static ieee80211_rx_result debug_noinline 1908 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1909 { 1910 struct sk_buff *skb = rx->skb; 1911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1913 int keyidx; 1914 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1915 struct ieee80211_key *sta_ptk = NULL; 1916 struct ieee80211_key *ptk_idx = NULL; 1917 int mmie_keyidx = -1; 1918 __le16 fc; 1919 const struct ieee80211_cipher_scheme *cs = NULL; 1920 1921 /* 1922 * Key selection 101 1923 * 1924 * There are five types of keys: 1925 * - GTK (group keys) 1926 * - IGTK (group keys for management frames) 1927 * - BIGTK (group keys for Beacon frames) 1928 * - PTK (pairwise keys) 1929 * - STK (station-to-station pairwise keys) 1930 * 1931 * When selecting a key, we have to distinguish between multicast 1932 * (including broadcast) and unicast frames, the latter can only 1933 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1934 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1935 * then unicast frames can also use key indices like GTKs. Hence, if we 1936 * don't have a PTK/STK we check the key index for a WEP key. 1937 * 1938 * Note that in a regular BSS, multicast frames are sent by the 1939 * AP only, associated stations unicast the frame to the AP first 1940 * which then multicasts it on their behalf. 1941 * 1942 * There is also a slight problem in IBSS mode: GTKs are negotiated 1943 * with each station, that is something we don't currently handle. 1944 * The spec seems to expect that one negotiates the same key with 1945 * every station but there's no such requirement; VLANs could be 1946 * possible. 1947 */ 1948 1949 /* start without a key */ 1950 rx->key = NULL; 1951 fc = hdr->frame_control; 1952 1953 if (rx->sta) { 1954 int keyid = rx->sta->ptk_idx; 1955 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1956 1957 if (ieee80211_has_protected(fc)) { 1958 cs = rx->sta->cipher_scheme; 1959 keyid = ieee80211_get_keyid(rx->skb, cs); 1960 1961 if (unlikely(keyid < 0)) 1962 return RX_DROP_UNUSABLE; 1963 1964 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1965 } 1966 } 1967 1968 if (!ieee80211_has_protected(fc)) 1969 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1970 1971 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1972 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1973 if ((status->flag & RX_FLAG_DECRYPTED) && 1974 (status->flag & RX_FLAG_IV_STRIPPED)) 1975 return RX_CONTINUE; 1976 /* Skip decryption if the frame is not protected. */ 1977 if (!ieee80211_has_protected(fc)) 1978 return RX_CONTINUE; 1979 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1980 /* Broadcast/multicast robust management frame / BIP */ 1981 if ((status->flag & RX_FLAG_DECRYPTED) && 1982 (status->flag & RX_FLAG_IV_STRIPPED)) 1983 return RX_CONTINUE; 1984 1985 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1986 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1987 NUM_DEFAULT_BEACON_KEYS) 1988 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1989 1990 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1991 if (!rx->key) 1992 return RX_CONTINUE; /* Beacon protection not in use */ 1993 } else if (mmie_keyidx >= 0) { 1994 /* Broadcast/multicast robust management frame / BIP */ 1995 if ((status->flag & RX_FLAG_DECRYPTED) && 1996 (status->flag & RX_FLAG_IV_STRIPPED)) 1997 return RX_CONTINUE; 1998 1999 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2000 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2001 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2002 if (rx->sta) { 2003 if (ieee80211_is_group_privacy_action(skb) && 2004 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2005 return RX_DROP_MONITOR; 2006 2007 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2008 } 2009 if (!rx->key) 2010 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2011 } else if (!ieee80211_has_protected(fc)) { 2012 /* 2013 * The frame was not protected, so skip decryption. However, we 2014 * need to set rx->key if there is a key that could have been 2015 * used so that the frame may be dropped if encryption would 2016 * have been expected. 2017 */ 2018 struct ieee80211_key *key = NULL; 2019 struct ieee80211_sub_if_data *sdata = rx->sdata; 2020 int i; 2021 2022 if (ieee80211_is_beacon(fc)) { 2023 key = ieee80211_rx_get_bigtk(rx, -1); 2024 } else if (ieee80211_is_mgmt(fc) && 2025 is_multicast_ether_addr(hdr->addr1)) { 2026 key = rcu_dereference(rx->sdata->default_mgmt_key); 2027 } else { 2028 if (rx->sta) { 2029 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2030 key = rcu_dereference(rx->sta->gtk[i]); 2031 if (key) 2032 break; 2033 } 2034 } 2035 if (!key) { 2036 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2037 key = rcu_dereference(sdata->keys[i]); 2038 if (key) 2039 break; 2040 } 2041 } 2042 } 2043 if (key) 2044 rx->key = key; 2045 return RX_CONTINUE; 2046 } else { 2047 /* 2048 * The device doesn't give us the IV so we won't be 2049 * able to look up the key. That's ok though, we 2050 * don't need to decrypt the frame, we just won't 2051 * be able to keep statistics accurate. 2052 * Except for key threshold notifications, should 2053 * we somehow allow the driver to tell us which key 2054 * the hardware used if this flag is set? 2055 */ 2056 if ((status->flag & RX_FLAG_DECRYPTED) && 2057 (status->flag & RX_FLAG_IV_STRIPPED)) 2058 return RX_CONTINUE; 2059 2060 keyidx = ieee80211_get_keyid(rx->skb, cs); 2061 2062 if (unlikely(keyidx < 0)) 2063 return RX_DROP_UNUSABLE; 2064 2065 /* check per-station GTK first, if multicast packet */ 2066 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2067 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2068 2069 /* if not found, try default key */ 2070 if (!rx->key) { 2071 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2072 2073 /* 2074 * RSNA-protected unicast frames should always be 2075 * sent with pairwise or station-to-station keys, 2076 * but for WEP we allow using a key index as well. 2077 */ 2078 if (rx->key && 2079 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2080 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2081 !is_multicast_ether_addr(hdr->addr1)) 2082 rx->key = NULL; 2083 } 2084 } 2085 2086 if (rx->key) { 2087 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2088 return RX_DROP_MONITOR; 2089 2090 /* TODO: add threshold stuff again */ 2091 } else { 2092 return RX_DROP_MONITOR; 2093 } 2094 2095 switch (rx->key->conf.cipher) { 2096 case WLAN_CIPHER_SUITE_WEP40: 2097 case WLAN_CIPHER_SUITE_WEP104: 2098 result = ieee80211_crypto_wep_decrypt(rx); 2099 break; 2100 case WLAN_CIPHER_SUITE_TKIP: 2101 result = ieee80211_crypto_tkip_decrypt(rx); 2102 break; 2103 case WLAN_CIPHER_SUITE_CCMP: 2104 result = ieee80211_crypto_ccmp_decrypt( 2105 rx, IEEE80211_CCMP_MIC_LEN); 2106 break; 2107 case WLAN_CIPHER_SUITE_CCMP_256: 2108 result = ieee80211_crypto_ccmp_decrypt( 2109 rx, IEEE80211_CCMP_256_MIC_LEN); 2110 break; 2111 case WLAN_CIPHER_SUITE_AES_CMAC: 2112 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2113 break; 2114 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2115 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2116 break; 2117 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2118 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2119 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2120 break; 2121 case WLAN_CIPHER_SUITE_GCMP: 2122 case WLAN_CIPHER_SUITE_GCMP_256: 2123 result = ieee80211_crypto_gcmp_decrypt(rx); 2124 break; 2125 default: 2126 result = ieee80211_crypto_hw_decrypt(rx); 2127 } 2128 2129 /* the hdr variable is invalid after the decrypt handlers */ 2130 2131 /* either the frame has been decrypted or will be dropped */ 2132 status->flag |= RX_FLAG_DECRYPTED; 2133 2134 return result; 2135 } 2136 2137 static inline struct ieee80211_fragment_entry * 2138 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2139 unsigned int frag, unsigned int seq, int rx_queue, 2140 struct sk_buff **skb) 2141 { 2142 struct ieee80211_fragment_entry *entry; 2143 2144 entry = &sdata->fragments[sdata->fragment_next++]; 2145 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2146 sdata->fragment_next = 0; 2147 2148 if (!skb_queue_empty(&entry->skb_list)) 2149 __skb_queue_purge(&entry->skb_list); 2150 2151 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2152 *skb = NULL; 2153 entry->first_frag_time = jiffies; 2154 entry->seq = seq; 2155 entry->rx_queue = rx_queue; 2156 entry->last_frag = frag; 2157 entry->check_sequential_pn = false; 2158 entry->extra_len = 0; 2159 2160 return entry; 2161 } 2162 2163 static inline struct ieee80211_fragment_entry * 2164 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2165 unsigned int frag, unsigned int seq, 2166 int rx_queue, struct ieee80211_hdr *hdr) 2167 { 2168 struct ieee80211_fragment_entry *entry; 2169 int i, idx; 2170 2171 idx = sdata->fragment_next; 2172 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2173 struct ieee80211_hdr *f_hdr; 2174 struct sk_buff *f_skb; 2175 2176 idx--; 2177 if (idx < 0) 2178 idx = IEEE80211_FRAGMENT_MAX - 1; 2179 2180 entry = &sdata->fragments[idx]; 2181 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2182 entry->rx_queue != rx_queue || 2183 entry->last_frag + 1 != frag) 2184 continue; 2185 2186 f_skb = __skb_peek(&entry->skb_list); 2187 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2188 2189 /* 2190 * Check ftype and addresses are equal, else check next fragment 2191 */ 2192 if (((hdr->frame_control ^ f_hdr->frame_control) & 2193 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2194 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2195 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2196 continue; 2197 2198 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2199 __skb_queue_purge(&entry->skb_list); 2200 continue; 2201 } 2202 return entry; 2203 } 2204 2205 return NULL; 2206 } 2207 2208 static ieee80211_rx_result debug_noinline 2209 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2210 { 2211 struct ieee80211_hdr *hdr; 2212 u16 sc; 2213 __le16 fc; 2214 unsigned int frag, seq; 2215 struct ieee80211_fragment_entry *entry; 2216 struct sk_buff *skb; 2217 2218 hdr = (struct ieee80211_hdr *)rx->skb->data; 2219 fc = hdr->frame_control; 2220 2221 if (ieee80211_is_ctl(fc)) 2222 return RX_CONTINUE; 2223 2224 sc = le16_to_cpu(hdr->seq_ctrl); 2225 frag = sc & IEEE80211_SCTL_FRAG; 2226 2227 if (is_multicast_ether_addr(hdr->addr1)) { 2228 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2229 goto out_no_led; 2230 } 2231 2232 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2233 goto out; 2234 2235 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2236 2237 if (skb_linearize(rx->skb)) 2238 return RX_DROP_UNUSABLE; 2239 2240 /* 2241 * skb_linearize() might change the skb->data and 2242 * previously cached variables (in this case, hdr) need to 2243 * be refreshed with the new data. 2244 */ 2245 hdr = (struct ieee80211_hdr *)rx->skb->data; 2246 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2247 2248 if (frag == 0) { 2249 /* This is the first fragment of a new frame. */ 2250 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2251 rx->seqno_idx, &(rx->skb)); 2252 if (rx->key && 2253 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2254 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2255 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2256 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2257 ieee80211_has_protected(fc)) { 2258 int queue = rx->security_idx; 2259 2260 /* Store CCMP/GCMP PN so that we can verify that the 2261 * next fragment has a sequential PN value. 2262 */ 2263 entry->check_sequential_pn = true; 2264 memcpy(entry->last_pn, 2265 rx->key->u.ccmp.rx_pn[queue], 2266 IEEE80211_CCMP_PN_LEN); 2267 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2268 u.ccmp.rx_pn) != 2269 offsetof(struct ieee80211_key, 2270 u.gcmp.rx_pn)); 2271 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2272 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2273 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2274 IEEE80211_GCMP_PN_LEN); 2275 } 2276 return RX_QUEUED; 2277 } 2278 2279 /* This is a fragment for a frame that should already be pending in 2280 * fragment cache. Add this fragment to the end of the pending entry. 2281 */ 2282 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2283 rx->seqno_idx, hdr); 2284 if (!entry) { 2285 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2286 return RX_DROP_MONITOR; 2287 } 2288 2289 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2290 * MPDU PN values are not incrementing in steps of 1." 2291 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2292 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2293 */ 2294 if (entry->check_sequential_pn) { 2295 int i; 2296 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2297 int queue; 2298 2299 if (!rx->key || 2300 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2301 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2302 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2303 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2304 return RX_DROP_UNUSABLE; 2305 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2306 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2307 pn[i]++; 2308 if (pn[i]) 2309 break; 2310 } 2311 queue = rx->security_idx; 2312 rpn = rx->key->u.ccmp.rx_pn[queue]; 2313 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2314 return RX_DROP_UNUSABLE; 2315 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2316 } 2317 2318 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2319 __skb_queue_tail(&entry->skb_list, rx->skb); 2320 entry->last_frag = frag; 2321 entry->extra_len += rx->skb->len; 2322 if (ieee80211_has_morefrags(fc)) { 2323 rx->skb = NULL; 2324 return RX_QUEUED; 2325 } 2326 2327 rx->skb = __skb_dequeue(&entry->skb_list); 2328 if (skb_tailroom(rx->skb) < entry->extra_len) { 2329 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2330 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2331 GFP_ATOMIC))) { 2332 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2333 __skb_queue_purge(&entry->skb_list); 2334 return RX_DROP_UNUSABLE; 2335 } 2336 } 2337 while ((skb = __skb_dequeue(&entry->skb_list))) { 2338 skb_put_data(rx->skb, skb->data, skb->len); 2339 dev_kfree_skb(skb); 2340 } 2341 2342 out: 2343 ieee80211_led_rx(rx->local); 2344 out_no_led: 2345 if (rx->sta) 2346 rx->sta->rx_stats.packets++; 2347 return RX_CONTINUE; 2348 } 2349 2350 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2351 { 2352 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2353 return -EACCES; 2354 2355 return 0; 2356 } 2357 2358 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2359 { 2360 struct sk_buff *skb = rx->skb; 2361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2362 2363 /* 2364 * Pass through unencrypted frames if the hardware has 2365 * decrypted them already. 2366 */ 2367 if (status->flag & RX_FLAG_DECRYPTED) 2368 return 0; 2369 2370 /* Drop unencrypted frames if key is set. */ 2371 if (unlikely(!ieee80211_has_protected(fc) && 2372 !ieee80211_is_any_nullfunc(fc) && 2373 ieee80211_is_data(fc) && rx->key)) 2374 return -EACCES; 2375 2376 return 0; 2377 } 2378 2379 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2380 { 2381 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2382 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2383 __le16 fc = hdr->frame_control; 2384 2385 /* 2386 * Pass through unencrypted frames if the hardware has 2387 * decrypted them already. 2388 */ 2389 if (status->flag & RX_FLAG_DECRYPTED) 2390 return 0; 2391 2392 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2393 if (unlikely(!ieee80211_has_protected(fc) && 2394 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2395 rx->key)) { 2396 if (ieee80211_is_deauth(fc) || 2397 ieee80211_is_disassoc(fc)) 2398 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2399 rx->skb->data, 2400 rx->skb->len); 2401 return -EACCES; 2402 } 2403 /* BIP does not use Protected field, so need to check MMIE */ 2404 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2405 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2406 if (ieee80211_is_deauth(fc) || 2407 ieee80211_is_disassoc(fc)) 2408 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2409 rx->skb->data, 2410 rx->skb->len); 2411 return -EACCES; 2412 } 2413 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2414 ieee80211_get_mmie_keyidx(rx->skb) < 0)) 2415 return -EACCES; 2416 /* 2417 * When using MFP, Action frames are not allowed prior to 2418 * having configured keys. 2419 */ 2420 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2421 ieee80211_is_robust_mgmt_frame(rx->skb))) 2422 return -EACCES; 2423 } 2424 2425 return 0; 2426 } 2427 2428 static int 2429 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2430 { 2431 struct ieee80211_sub_if_data *sdata = rx->sdata; 2432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2433 bool check_port_control = false; 2434 struct ethhdr *ehdr; 2435 int ret; 2436 2437 *port_control = false; 2438 if (ieee80211_has_a4(hdr->frame_control) && 2439 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2440 return -1; 2441 2442 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2443 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2444 2445 if (!sdata->u.mgd.use_4addr) 2446 return -1; 2447 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2448 check_port_control = true; 2449 } 2450 2451 if (is_multicast_ether_addr(hdr->addr1) && 2452 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2453 return -1; 2454 2455 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2456 if (ret < 0) 2457 return ret; 2458 2459 ehdr = (struct ethhdr *) rx->skb->data; 2460 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2461 *port_control = true; 2462 else if (check_port_control) 2463 return -1; 2464 2465 return 0; 2466 } 2467 2468 /* 2469 * requires that rx->skb is a frame with ethernet header 2470 */ 2471 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2472 { 2473 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2474 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2475 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2476 2477 /* 2478 * Allow EAPOL frames to us/the PAE group address regardless 2479 * of whether the frame was encrypted or not. 2480 */ 2481 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2482 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2483 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2484 return true; 2485 2486 if (ieee80211_802_1x_port_control(rx) || 2487 ieee80211_drop_unencrypted(rx, fc)) 2488 return false; 2489 2490 return true; 2491 } 2492 2493 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2494 struct ieee80211_rx_data *rx) 2495 { 2496 struct ieee80211_sub_if_data *sdata = rx->sdata; 2497 struct net_device *dev = sdata->dev; 2498 2499 if (unlikely((skb->protocol == sdata->control_port_protocol || 2500 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && 2501 sdata->control_port_over_nl80211)) { 2502 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2503 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2504 2505 cfg80211_rx_control_port(dev, skb, noencrypt); 2506 dev_kfree_skb(skb); 2507 } else { 2508 memset(skb->cb, 0, sizeof(skb->cb)); 2509 2510 /* deliver to local stack */ 2511 if (rx->napi) 2512 napi_gro_receive(rx->napi, skb); 2513 else 2514 netif_receive_skb(skb); 2515 } 2516 } 2517 2518 /* 2519 * requires that rx->skb is a frame with ethernet header 2520 */ 2521 static void 2522 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2523 { 2524 struct ieee80211_sub_if_data *sdata = rx->sdata; 2525 struct net_device *dev = sdata->dev; 2526 struct sk_buff *skb, *xmit_skb; 2527 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2528 struct sta_info *dsta; 2529 2530 skb = rx->skb; 2531 xmit_skb = NULL; 2532 2533 ieee80211_rx_stats(dev, skb->len); 2534 2535 if (rx->sta) { 2536 /* The seqno index has the same property as needed 2537 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2538 * for non-QoS-data frames. Here we know it's a data 2539 * frame, so count MSDUs. 2540 */ 2541 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2542 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2543 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2544 } 2545 2546 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2547 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2548 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2549 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2550 if (is_multicast_ether_addr(ehdr->h_dest) && 2551 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2552 /* 2553 * send multicast frames both to higher layers in 2554 * local net stack and back to the wireless medium 2555 */ 2556 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2557 if (!xmit_skb) 2558 net_info_ratelimited("%s: failed to clone multicast frame\n", 2559 dev->name); 2560 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2561 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2562 dsta = sta_info_get(sdata, ehdr->h_dest); 2563 if (dsta) { 2564 /* 2565 * The destination station is associated to 2566 * this AP (in this VLAN), so send the frame 2567 * directly to it and do not pass it to local 2568 * net stack. 2569 */ 2570 xmit_skb = skb; 2571 skb = NULL; 2572 } 2573 } 2574 } 2575 2576 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2577 if (skb) { 2578 /* 'align' will only take the values 0 or 2 here since all 2579 * frames are required to be aligned to 2-byte boundaries 2580 * when being passed to mac80211; the code here works just 2581 * as well if that isn't true, but mac80211 assumes it can 2582 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2583 */ 2584 int align; 2585 2586 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2587 if (align) { 2588 if (WARN_ON(skb_headroom(skb) < 3)) { 2589 dev_kfree_skb(skb); 2590 skb = NULL; 2591 } else { 2592 u8 *data = skb->data; 2593 size_t len = skb_headlen(skb); 2594 skb->data -= align; 2595 memmove(skb->data, data, len); 2596 skb_set_tail_pointer(skb, len); 2597 } 2598 } 2599 } 2600 #endif 2601 2602 if (skb) { 2603 skb->protocol = eth_type_trans(skb, dev); 2604 ieee80211_deliver_skb_to_local_stack(skb, rx); 2605 } 2606 2607 if (xmit_skb) { 2608 /* 2609 * Send to wireless media and increase priority by 256 to 2610 * keep the received priority instead of reclassifying 2611 * the frame (see cfg80211_classify8021d). 2612 */ 2613 xmit_skb->priority += 256; 2614 xmit_skb->protocol = htons(ETH_P_802_3); 2615 skb_reset_network_header(xmit_skb); 2616 skb_reset_mac_header(xmit_skb); 2617 dev_queue_xmit(xmit_skb); 2618 } 2619 } 2620 2621 static ieee80211_rx_result debug_noinline 2622 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2623 { 2624 struct net_device *dev = rx->sdata->dev; 2625 struct sk_buff *skb = rx->skb; 2626 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2627 __le16 fc = hdr->frame_control; 2628 struct sk_buff_head frame_list; 2629 struct ethhdr ethhdr; 2630 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2631 2632 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2633 check_da = NULL; 2634 check_sa = NULL; 2635 } else switch (rx->sdata->vif.type) { 2636 case NL80211_IFTYPE_AP: 2637 case NL80211_IFTYPE_AP_VLAN: 2638 check_da = NULL; 2639 break; 2640 case NL80211_IFTYPE_STATION: 2641 if (!rx->sta || 2642 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2643 check_sa = NULL; 2644 break; 2645 case NL80211_IFTYPE_MESH_POINT: 2646 check_sa = NULL; 2647 break; 2648 default: 2649 break; 2650 } 2651 2652 skb->dev = dev; 2653 __skb_queue_head_init(&frame_list); 2654 2655 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2656 rx->sdata->vif.addr, 2657 rx->sdata->vif.type, 2658 data_offset)) 2659 return RX_DROP_UNUSABLE; 2660 2661 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2662 rx->sdata->vif.type, 2663 rx->local->hw.extra_tx_headroom, 2664 check_da, check_sa); 2665 2666 while (!skb_queue_empty(&frame_list)) { 2667 rx->skb = __skb_dequeue(&frame_list); 2668 2669 if (!ieee80211_frame_allowed(rx, fc)) { 2670 dev_kfree_skb(rx->skb); 2671 continue; 2672 } 2673 2674 ieee80211_deliver_skb(rx); 2675 } 2676 2677 return RX_QUEUED; 2678 } 2679 2680 static ieee80211_rx_result debug_noinline 2681 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2682 { 2683 struct sk_buff *skb = rx->skb; 2684 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2685 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2686 __le16 fc = hdr->frame_control; 2687 2688 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2689 return RX_CONTINUE; 2690 2691 if (unlikely(!ieee80211_is_data(fc))) 2692 return RX_CONTINUE; 2693 2694 if (unlikely(!ieee80211_is_data_present(fc))) 2695 return RX_DROP_MONITOR; 2696 2697 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2698 switch (rx->sdata->vif.type) { 2699 case NL80211_IFTYPE_AP_VLAN: 2700 if (!rx->sdata->u.vlan.sta) 2701 return RX_DROP_UNUSABLE; 2702 break; 2703 case NL80211_IFTYPE_STATION: 2704 if (!rx->sdata->u.mgd.use_4addr) 2705 return RX_DROP_UNUSABLE; 2706 break; 2707 default: 2708 return RX_DROP_UNUSABLE; 2709 } 2710 } 2711 2712 if (is_multicast_ether_addr(hdr->addr1)) 2713 return RX_DROP_UNUSABLE; 2714 2715 return __ieee80211_rx_h_amsdu(rx, 0); 2716 } 2717 2718 #ifdef CONFIG_MAC80211_MESH 2719 static ieee80211_rx_result 2720 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2721 { 2722 struct ieee80211_hdr *fwd_hdr, *hdr; 2723 struct ieee80211_tx_info *info; 2724 struct ieee80211s_hdr *mesh_hdr; 2725 struct sk_buff *skb = rx->skb, *fwd_skb; 2726 struct ieee80211_local *local = rx->local; 2727 struct ieee80211_sub_if_data *sdata = rx->sdata; 2728 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2729 u16 ac, q, hdrlen; 2730 int tailroom = 0; 2731 2732 hdr = (struct ieee80211_hdr *) skb->data; 2733 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2734 2735 /* make sure fixed part of mesh header is there, also checks skb len */ 2736 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2737 return RX_DROP_MONITOR; 2738 2739 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2740 2741 /* make sure full mesh header is there, also checks skb len */ 2742 if (!pskb_may_pull(rx->skb, 2743 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2744 return RX_DROP_MONITOR; 2745 2746 /* reload pointers */ 2747 hdr = (struct ieee80211_hdr *) skb->data; 2748 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2749 2750 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2751 return RX_DROP_MONITOR; 2752 2753 /* frame is in RMC, don't forward */ 2754 if (ieee80211_is_data(hdr->frame_control) && 2755 is_multicast_ether_addr(hdr->addr1) && 2756 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2757 return RX_DROP_MONITOR; 2758 2759 if (!ieee80211_is_data(hdr->frame_control)) 2760 return RX_CONTINUE; 2761 2762 if (!mesh_hdr->ttl) 2763 return RX_DROP_MONITOR; 2764 2765 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2766 struct mesh_path *mppath; 2767 char *proxied_addr; 2768 char *mpp_addr; 2769 2770 if (is_multicast_ether_addr(hdr->addr1)) { 2771 mpp_addr = hdr->addr3; 2772 proxied_addr = mesh_hdr->eaddr1; 2773 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2774 MESH_FLAGS_AE_A5_A6) { 2775 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2776 mpp_addr = hdr->addr4; 2777 proxied_addr = mesh_hdr->eaddr2; 2778 } else { 2779 return RX_DROP_MONITOR; 2780 } 2781 2782 rcu_read_lock(); 2783 mppath = mpp_path_lookup(sdata, proxied_addr); 2784 if (!mppath) { 2785 mpp_path_add(sdata, proxied_addr, mpp_addr); 2786 } else { 2787 spin_lock_bh(&mppath->state_lock); 2788 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2789 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2790 mppath->exp_time = jiffies; 2791 spin_unlock_bh(&mppath->state_lock); 2792 } 2793 rcu_read_unlock(); 2794 } 2795 2796 /* Frame has reached destination. Don't forward */ 2797 if (!is_multicast_ether_addr(hdr->addr1) && 2798 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2799 return RX_CONTINUE; 2800 2801 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2802 q = sdata->vif.hw_queue[ac]; 2803 if (ieee80211_queue_stopped(&local->hw, q)) { 2804 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2805 return RX_DROP_MONITOR; 2806 } 2807 skb_set_queue_mapping(skb, q); 2808 2809 if (!--mesh_hdr->ttl) { 2810 if (!is_multicast_ether_addr(hdr->addr1)) 2811 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2812 dropped_frames_ttl); 2813 goto out; 2814 } 2815 2816 if (!ifmsh->mshcfg.dot11MeshForwarding) 2817 goto out; 2818 2819 if (sdata->crypto_tx_tailroom_needed_cnt) 2820 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2821 2822 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2823 sdata->encrypt_headroom, 2824 tailroom, GFP_ATOMIC); 2825 if (!fwd_skb) 2826 goto out; 2827 2828 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2829 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2830 info = IEEE80211_SKB_CB(fwd_skb); 2831 memset(info, 0, sizeof(*info)); 2832 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2833 info->control.vif = &rx->sdata->vif; 2834 info->control.jiffies = jiffies; 2835 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2836 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2837 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2838 /* update power mode indication when forwarding */ 2839 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2840 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2841 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2842 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2843 } else { 2844 /* unable to resolve next hop */ 2845 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2846 fwd_hdr->addr3, 0, 2847 WLAN_REASON_MESH_PATH_NOFORWARD, 2848 fwd_hdr->addr2); 2849 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2850 kfree_skb(fwd_skb); 2851 return RX_DROP_MONITOR; 2852 } 2853 2854 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2855 ieee80211_add_pending_skb(local, fwd_skb); 2856 out: 2857 if (is_multicast_ether_addr(hdr->addr1)) 2858 return RX_CONTINUE; 2859 return RX_DROP_MONITOR; 2860 } 2861 #endif 2862 2863 static ieee80211_rx_result debug_noinline 2864 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2865 { 2866 struct ieee80211_sub_if_data *sdata = rx->sdata; 2867 struct ieee80211_local *local = rx->local; 2868 struct net_device *dev = sdata->dev; 2869 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2870 __le16 fc = hdr->frame_control; 2871 bool port_control; 2872 int err; 2873 2874 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2875 return RX_CONTINUE; 2876 2877 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2878 return RX_DROP_MONITOR; 2879 2880 /* 2881 * Send unexpected-4addr-frame event to hostapd. For older versions, 2882 * also drop the frame to cooked monitor interfaces. 2883 */ 2884 if (ieee80211_has_a4(hdr->frame_control) && 2885 sdata->vif.type == NL80211_IFTYPE_AP) { 2886 if (rx->sta && 2887 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2888 cfg80211_rx_unexpected_4addr_frame( 2889 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2890 return RX_DROP_MONITOR; 2891 } 2892 2893 err = __ieee80211_data_to_8023(rx, &port_control); 2894 if (unlikely(err)) 2895 return RX_DROP_UNUSABLE; 2896 2897 if (!ieee80211_frame_allowed(rx, fc)) 2898 return RX_DROP_MONITOR; 2899 2900 /* directly handle TDLS channel switch requests/responses */ 2901 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2902 cpu_to_be16(ETH_P_TDLS))) { 2903 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2904 2905 if (pskb_may_pull(rx->skb, 2906 offsetof(struct ieee80211_tdls_data, u)) && 2907 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2908 tf->category == WLAN_CATEGORY_TDLS && 2909 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2910 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2911 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2912 schedule_work(&local->tdls_chsw_work); 2913 if (rx->sta) 2914 rx->sta->rx_stats.packets++; 2915 2916 return RX_QUEUED; 2917 } 2918 } 2919 2920 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2921 unlikely(port_control) && sdata->bss) { 2922 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2923 u.ap); 2924 dev = sdata->dev; 2925 rx->sdata = sdata; 2926 } 2927 2928 rx->skb->dev = dev; 2929 2930 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2931 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2932 !is_multicast_ether_addr( 2933 ((struct ethhdr *)rx->skb->data)->h_dest) && 2934 (!local->scanning && 2935 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2936 mod_timer(&local->dynamic_ps_timer, jiffies + 2937 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2938 2939 ieee80211_deliver_skb(rx); 2940 2941 return RX_QUEUED; 2942 } 2943 2944 static ieee80211_rx_result debug_noinline 2945 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2946 { 2947 struct sk_buff *skb = rx->skb; 2948 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2949 struct tid_ampdu_rx *tid_agg_rx; 2950 u16 start_seq_num; 2951 u16 tid; 2952 2953 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2954 return RX_CONTINUE; 2955 2956 if (ieee80211_is_back_req(bar->frame_control)) { 2957 struct { 2958 __le16 control, start_seq_num; 2959 } __packed bar_data; 2960 struct ieee80211_event event = { 2961 .type = BAR_RX_EVENT, 2962 }; 2963 2964 if (!rx->sta) 2965 return RX_DROP_MONITOR; 2966 2967 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2968 &bar_data, sizeof(bar_data))) 2969 return RX_DROP_MONITOR; 2970 2971 tid = le16_to_cpu(bar_data.control) >> 12; 2972 2973 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2974 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2975 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2976 WLAN_BACK_RECIPIENT, 2977 WLAN_REASON_QSTA_REQUIRE_SETUP); 2978 2979 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2980 if (!tid_agg_rx) 2981 return RX_DROP_MONITOR; 2982 2983 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2984 event.u.ba.tid = tid; 2985 event.u.ba.ssn = start_seq_num; 2986 event.u.ba.sta = &rx->sta->sta; 2987 2988 /* reset session timer */ 2989 if (tid_agg_rx->timeout) 2990 mod_timer(&tid_agg_rx->session_timer, 2991 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2992 2993 spin_lock(&tid_agg_rx->reorder_lock); 2994 /* release stored frames up to start of BAR */ 2995 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2996 start_seq_num, frames); 2997 spin_unlock(&tid_agg_rx->reorder_lock); 2998 2999 drv_event_callback(rx->local, rx->sdata, &event); 3000 3001 kfree_skb(skb); 3002 return RX_QUEUED; 3003 } 3004 3005 /* 3006 * After this point, we only want management frames, 3007 * so we can drop all remaining control frames to 3008 * cooked monitor interfaces. 3009 */ 3010 return RX_DROP_MONITOR; 3011 } 3012 3013 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3014 struct ieee80211_mgmt *mgmt, 3015 size_t len) 3016 { 3017 struct ieee80211_local *local = sdata->local; 3018 struct sk_buff *skb; 3019 struct ieee80211_mgmt *resp; 3020 3021 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3022 /* Not to own unicast address */ 3023 return; 3024 } 3025 3026 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3027 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3028 /* Not from the current AP or not associated yet. */ 3029 return; 3030 } 3031 3032 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3033 /* Too short SA Query request frame */ 3034 return; 3035 } 3036 3037 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3038 if (skb == NULL) 3039 return; 3040 3041 skb_reserve(skb, local->hw.extra_tx_headroom); 3042 resp = skb_put_zero(skb, 24); 3043 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3044 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3045 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3046 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3047 IEEE80211_STYPE_ACTION); 3048 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3049 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3050 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3051 memcpy(resp->u.action.u.sa_query.trans_id, 3052 mgmt->u.action.u.sa_query.trans_id, 3053 WLAN_SA_QUERY_TR_ID_LEN); 3054 3055 ieee80211_tx_skb(sdata, skb); 3056 } 3057 3058 static ieee80211_rx_result debug_noinline 3059 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3060 { 3061 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3062 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3063 3064 /* 3065 * From here on, look only at management frames. 3066 * Data and control frames are already handled, 3067 * and unknown (reserved) frames are useless. 3068 */ 3069 if (rx->skb->len < 24) 3070 return RX_DROP_MONITOR; 3071 3072 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3073 return RX_DROP_MONITOR; 3074 3075 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3076 ieee80211_is_beacon(mgmt->frame_control) && 3077 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3078 int sig = 0; 3079 3080 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3081 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3082 sig = status->signal; 3083 3084 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 3085 rx->skb->data, rx->skb->len, 3086 status->freq, sig); 3087 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3088 } 3089 3090 if (ieee80211_drop_unencrypted_mgmt(rx)) 3091 return RX_DROP_UNUSABLE; 3092 3093 return RX_CONTINUE; 3094 } 3095 3096 static ieee80211_rx_result debug_noinline 3097 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3098 { 3099 struct ieee80211_local *local = rx->local; 3100 struct ieee80211_sub_if_data *sdata = rx->sdata; 3101 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3103 int len = rx->skb->len; 3104 3105 if (!ieee80211_is_action(mgmt->frame_control)) 3106 return RX_CONTINUE; 3107 3108 /* drop too small frames */ 3109 if (len < IEEE80211_MIN_ACTION_SIZE) 3110 return RX_DROP_UNUSABLE; 3111 3112 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3113 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3114 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3115 return RX_DROP_UNUSABLE; 3116 3117 switch (mgmt->u.action.category) { 3118 case WLAN_CATEGORY_HT: 3119 /* reject HT action frames from stations not supporting HT */ 3120 if (!rx->sta->sta.ht_cap.ht_supported) 3121 goto invalid; 3122 3123 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3124 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3125 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3126 sdata->vif.type != NL80211_IFTYPE_AP && 3127 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3128 break; 3129 3130 /* verify action & smps_control/chanwidth are present */ 3131 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3132 goto invalid; 3133 3134 switch (mgmt->u.action.u.ht_smps.action) { 3135 case WLAN_HT_ACTION_SMPS: { 3136 struct ieee80211_supported_band *sband; 3137 enum ieee80211_smps_mode smps_mode; 3138 struct sta_opmode_info sta_opmode = {}; 3139 3140 if (sdata->vif.type != NL80211_IFTYPE_AP && 3141 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3142 goto handled; 3143 3144 /* convert to HT capability */ 3145 switch (mgmt->u.action.u.ht_smps.smps_control) { 3146 case WLAN_HT_SMPS_CONTROL_DISABLED: 3147 smps_mode = IEEE80211_SMPS_OFF; 3148 break; 3149 case WLAN_HT_SMPS_CONTROL_STATIC: 3150 smps_mode = IEEE80211_SMPS_STATIC; 3151 break; 3152 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3153 smps_mode = IEEE80211_SMPS_DYNAMIC; 3154 break; 3155 default: 3156 goto invalid; 3157 } 3158 3159 /* if no change do nothing */ 3160 if (rx->sta->sta.smps_mode == smps_mode) 3161 goto handled; 3162 rx->sta->sta.smps_mode = smps_mode; 3163 sta_opmode.smps_mode = 3164 ieee80211_smps_mode_to_smps_mode(smps_mode); 3165 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3166 3167 sband = rx->local->hw.wiphy->bands[status->band]; 3168 3169 rate_control_rate_update(local, sband, rx->sta, 3170 IEEE80211_RC_SMPS_CHANGED); 3171 cfg80211_sta_opmode_change_notify(sdata->dev, 3172 rx->sta->addr, 3173 &sta_opmode, 3174 GFP_ATOMIC); 3175 goto handled; 3176 } 3177 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3178 struct ieee80211_supported_band *sband; 3179 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3180 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3181 struct sta_opmode_info sta_opmode = {}; 3182 3183 /* If it doesn't support 40 MHz it can't change ... */ 3184 if (!(rx->sta->sta.ht_cap.cap & 3185 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3186 goto handled; 3187 3188 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3189 max_bw = IEEE80211_STA_RX_BW_20; 3190 else 3191 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3192 3193 /* set cur_max_bandwidth and recalc sta bw */ 3194 rx->sta->cur_max_bandwidth = max_bw; 3195 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3196 3197 if (rx->sta->sta.bandwidth == new_bw) 3198 goto handled; 3199 3200 rx->sta->sta.bandwidth = new_bw; 3201 sband = rx->local->hw.wiphy->bands[status->band]; 3202 sta_opmode.bw = 3203 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3204 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3205 3206 rate_control_rate_update(local, sband, rx->sta, 3207 IEEE80211_RC_BW_CHANGED); 3208 cfg80211_sta_opmode_change_notify(sdata->dev, 3209 rx->sta->addr, 3210 &sta_opmode, 3211 GFP_ATOMIC); 3212 goto handled; 3213 } 3214 default: 3215 goto invalid; 3216 } 3217 3218 break; 3219 case WLAN_CATEGORY_PUBLIC: 3220 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3221 goto invalid; 3222 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3223 break; 3224 if (!rx->sta) 3225 break; 3226 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3227 break; 3228 if (mgmt->u.action.u.ext_chan_switch.action_code != 3229 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3230 break; 3231 if (len < offsetof(struct ieee80211_mgmt, 3232 u.action.u.ext_chan_switch.variable)) 3233 goto invalid; 3234 goto queue; 3235 case WLAN_CATEGORY_VHT: 3236 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3237 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3238 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3239 sdata->vif.type != NL80211_IFTYPE_AP && 3240 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3241 break; 3242 3243 /* verify action code is present */ 3244 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3245 goto invalid; 3246 3247 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3248 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3249 /* verify opmode is present */ 3250 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3251 goto invalid; 3252 goto queue; 3253 } 3254 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3255 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3256 goto invalid; 3257 goto queue; 3258 } 3259 default: 3260 break; 3261 } 3262 break; 3263 case WLAN_CATEGORY_BACK: 3264 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3265 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3266 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3267 sdata->vif.type != NL80211_IFTYPE_AP && 3268 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3269 break; 3270 3271 /* verify action_code is present */ 3272 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3273 break; 3274 3275 switch (mgmt->u.action.u.addba_req.action_code) { 3276 case WLAN_ACTION_ADDBA_REQ: 3277 if (len < (IEEE80211_MIN_ACTION_SIZE + 3278 sizeof(mgmt->u.action.u.addba_req))) 3279 goto invalid; 3280 break; 3281 case WLAN_ACTION_ADDBA_RESP: 3282 if (len < (IEEE80211_MIN_ACTION_SIZE + 3283 sizeof(mgmt->u.action.u.addba_resp))) 3284 goto invalid; 3285 break; 3286 case WLAN_ACTION_DELBA: 3287 if (len < (IEEE80211_MIN_ACTION_SIZE + 3288 sizeof(mgmt->u.action.u.delba))) 3289 goto invalid; 3290 break; 3291 default: 3292 goto invalid; 3293 } 3294 3295 goto queue; 3296 case WLAN_CATEGORY_SPECTRUM_MGMT: 3297 /* verify action_code is present */ 3298 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3299 break; 3300 3301 switch (mgmt->u.action.u.measurement.action_code) { 3302 case WLAN_ACTION_SPCT_MSR_REQ: 3303 if (status->band != NL80211_BAND_5GHZ) 3304 break; 3305 3306 if (len < (IEEE80211_MIN_ACTION_SIZE + 3307 sizeof(mgmt->u.action.u.measurement))) 3308 break; 3309 3310 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3311 break; 3312 3313 ieee80211_process_measurement_req(sdata, mgmt, len); 3314 goto handled; 3315 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3316 u8 *bssid; 3317 if (len < (IEEE80211_MIN_ACTION_SIZE + 3318 sizeof(mgmt->u.action.u.chan_switch))) 3319 break; 3320 3321 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3322 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3323 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3324 break; 3325 3326 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3327 bssid = sdata->u.mgd.bssid; 3328 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3329 bssid = sdata->u.ibss.bssid; 3330 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3331 bssid = mgmt->sa; 3332 else 3333 break; 3334 3335 if (!ether_addr_equal(mgmt->bssid, bssid)) 3336 break; 3337 3338 goto queue; 3339 } 3340 } 3341 break; 3342 case WLAN_CATEGORY_SA_QUERY: 3343 if (len < (IEEE80211_MIN_ACTION_SIZE + 3344 sizeof(mgmt->u.action.u.sa_query))) 3345 break; 3346 3347 switch (mgmt->u.action.u.sa_query.action) { 3348 case WLAN_ACTION_SA_QUERY_REQUEST: 3349 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3350 break; 3351 ieee80211_process_sa_query_req(sdata, mgmt, len); 3352 goto handled; 3353 } 3354 break; 3355 case WLAN_CATEGORY_SELF_PROTECTED: 3356 if (len < (IEEE80211_MIN_ACTION_SIZE + 3357 sizeof(mgmt->u.action.u.self_prot.action_code))) 3358 break; 3359 3360 switch (mgmt->u.action.u.self_prot.action_code) { 3361 case WLAN_SP_MESH_PEERING_OPEN: 3362 case WLAN_SP_MESH_PEERING_CLOSE: 3363 case WLAN_SP_MESH_PEERING_CONFIRM: 3364 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3365 goto invalid; 3366 if (sdata->u.mesh.user_mpm) 3367 /* userspace handles this frame */ 3368 break; 3369 goto queue; 3370 case WLAN_SP_MGK_INFORM: 3371 case WLAN_SP_MGK_ACK: 3372 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3373 goto invalid; 3374 break; 3375 } 3376 break; 3377 case WLAN_CATEGORY_MESH_ACTION: 3378 if (len < (IEEE80211_MIN_ACTION_SIZE + 3379 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3380 break; 3381 3382 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3383 break; 3384 if (mesh_action_is_path_sel(mgmt) && 3385 !mesh_path_sel_is_hwmp(sdata)) 3386 break; 3387 goto queue; 3388 } 3389 3390 return RX_CONTINUE; 3391 3392 invalid: 3393 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3394 /* will return in the next handlers */ 3395 return RX_CONTINUE; 3396 3397 handled: 3398 if (rx->sta) 3399 rx->sta->rx_stats.packets++; 3400 dev_kfree_skb(rx->skb); 3401 return RX_QUEUED; 3402 3403 queue: 3404 skb_queue_tail(&sdata->skb_queue, rx->skb); 3405 ieee80211_queue_work(&local->hw, &sdata->work); 3406 if (rx->sta) 3407 rx->sta->rx_stats.packets++; 3408 return RX_QUEUED; 3409 } 3410 3411 static ieee80211_rx_result debug_noinline 3412 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3413 { 3414 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3415 int sig = 0; 3416 3417 /* skip known-bad action frames and return them in the next handler */ 3418 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3419 return RX_CONTINUE; 3420 3421 /* 3422 * Getting here means the kernel doesn't know how to handle 3423 * it, but maybe userspace does ... include returned frames 3424 * so userspace can register for those to know whether ones 3425 * it transmitted were processed or returned. 3426 */ 3427 3428 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3429 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3430 sig = status->signal; 3431 3432 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3433 rx->skb->data, rx->skb->len, 0)) { 3434 if (rx->sta) 3435 rx->sta->rx_stats.packets++; 3436 dev_kfree_skb(rx->skb); 3437 return RX_QUEUED; 3438 } 3439 3440 return RX_CONTINUE; 3441 } 3442 3443 static ieee80211_rx_result debug_noinline 3444 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3445 { 3446 struct ieee80211_local *local = rx->local; 3447 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3448 struct sk_buff *nskb; 3449 struct ieee80211_sub_if_data *sdata = rx->sdata; 3450 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3451 3452 if (!ieee80211_is_action(mgmt->frame_control)) 3453 return RX_CONTINUE; 3454 3455 /* 3456 * For AP mode, hostapd is responsible for handling any action 3457 * frames that we didn't handle, including returning unknown 3458 * ones. For all other modes we will return them to the sender, 3459 * setting the 0x80 bit in the action category, as required by 3460 * 802.11-2012 9.24.4. 3461 * Newer versions of hostapd shall also use the management frame 3462 * registration mechanisms, but older ones still use cooked 3463 * monitor interfaces so push all frames there. 3464 */ 3465 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3466 (sdata->vif.type == NL80211_IFTYPE_AP || 3467 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3468 return RX_DROP_MONITOR; 3469 3470 if (is_multicast_ether_addr(mgmt->da)) 3471 return RX_DROP_MONITOR; 3472 3473 /* do not return rejected action frames */ 3474 if (mgmt->u.action.category & 0x80) 3475 return RX_DROP_UNUSABLE; 3476 3477 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3478 GFP_ATOMIC); 3479 if (nskb) { 3480 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3481 3482 nmgmt->u.action.category |= 0x80; 3483 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3484 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3485 3486 memset(nskb->cb, 0, sizeof(nskb->cb)); 3487 3488 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3489 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3490 3491 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3492 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3493 IEEE80211_TX_CTL_NO_CCK_RATE; 3494 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3495 info->hw_queue = 3496 local->hw.offchannel_tx_hw_queue; 3497 } 3498 3499 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3500 status->band, 0); 3501 } 3502 dev_kfree_skb(rx->skb); 3503 return RX_QUEUED; 3504 } 3505 3506 static ieee80211_rx_result debug_noinline 3507 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3508 { 3509 struct ieee80211_sub_if_data *sdata = rx->sdata; 3510 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3511 __le16 stype; 3512 3513 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3514 3515 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3516 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3517 sdata->vif.type != NL80211_IFTYPE_OCB && 3518 sdata->vif.type != NL80211_IFTYPE_STATION) 3519 return RX_DROP_MONITOR; 3520 3521 switch (stype) { 3522 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3523 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3524 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3525 /* process for all: mesh, mlme, ibss */ 3526 break; 3527 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3528 if (is_multicast_ether_addr(mgmt->da) && 3529 !is_broadcast_ether_addr(mgmt->da)) 3530 return RX_DROP_MONITOR; 3531 3532 /* process only for station/IBSS */ 3533 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3534 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3535 return RX_DROP_MONITOR; 3536 break; 3537 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3538 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3539 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3540 if (is_multicast_ether_addr(mgmt->da) && 3541 !is_broadcast_ether_addr(mgmt->da)) 3542 return RX_DROP_MONITOR; 3543 3544 /* process only for station */ 3545 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3546 return RX_DROP_MONITOR; 3547 break; 3548 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3549 /* process only for ibss and mesh */ 3550 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3551 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3552 return RX_DROP_MONITOR; 3553 break; 3554 default: 3555 return RX_DROP_MONITOR; 3556 } 3557 3558 /* queue up frame and kick off work to process it */ 3559 skb_queue_tail(&sdata->skb_queue, rx->skb); 3560 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3561 if (rx->sta) 3562 rx->sta->rx_stats.packets++; 3563 3564 return RX_QUEUED; 3565 } 3566 3567 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3568 struct ieee80211_rate *rate) 3569 { 3570 struct ieee80211_sub_if_data *sdata; 3571 struct ieee80211_local *local = rx->local; 3572 struct sk_buff *skb = rx->skb, *skb2; 3573 struct net_device *prev_dev = NULL; 3574 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3575 int needed_headroom; 3576 3577 /* 3578 * If cooked monitor has been processed already, then 3579 * don't do it again. If not, set the flag. 3580 */ 3581 if (rx->flags & IEEE80211_RX_CMNTR) 3582 goto out_free_skb; 3583 rx->flags |= IEEE80211_RX_CMNTR; 3584 3585 /* If there are no cooked monitor interfaces, just free the SKB */ 3586 if (!local->cooked_mntrs) 3587 goto out_free_skb; 3588 3589 /* vendor data is long removed here */ 3590 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3591 /* room for the radiotap header based on driver features */ 3592 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3593 3594 if (skb_headroom(skb) < needed_headroom && 3595 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3596 goto out_free_skb; 3597 3598 /* prepend radiotap information */ 3599 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3600 false); 3601 3602 skb_reset_mac_header(skb); 3603 skb->ip_summed = CHECKSUM_UNNECESSARY; 3604 skb->pkt_type = PACKET_OTHERHOST; 3605 skb->protocol = htons(ETH_P_802_2); 3606 3607 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3608 if (!ieee80211_sdata_running(sdata)) 3609 continue; 3610 3611 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3612 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3613 continue; 3614 3615 if (prev_dev) { 3616 skb2 = skb_clone(skb, GFP_ATOMIC); 3617 if (skb2) { 3618 skb2->dev = prev_dev; 3619 netif_receive_skb(skb2); 3620 } 3621 } 3622 3623 prev_dev = sdata->dev; 3624 ieee80211_rx_stats(sdata->dev, skb->len); 3625 } 3626 3627 if (prev_dev) { 3628 skb->dev = prev_dev; 3629 netif_receive_skb(skb); 3630 return; 3631 } 3632 3633 out_free_skb: 3634 dev_kfree_skb(skb); 3635 } 3636 3637 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3638 ieee80211_rx_result res) 3639 { 3640 switch (res) { 3641 case RX_DROP_MONITOR: 3642 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3643 if (rx->sta) 3644 rx->sta->rx_stats.dropped++; 3645 /* fall through */ 3646 case RX_CONTINUE: { 3647 struct ieee80211_rate *rate = NULL; 3648 struct ieee80211_supported_band *sband; 3649 struct ieee80211_rx_status *status; 3650 3651 status = IEEE80211_SKB_RXCB((rx->skb)); 3652 3653 sband = rx->local->hw.wiphy->bands[status->band]; 3654 if (status->encoding == RX_ENC_LEGACY) 3655 rate = &sband->bitrates[status->rate_idx]; 3656 3657 ieee80211_rx_cooked_monitor(rx, rate); 3658 break; 3659 } 3660 case RX_DROP_UNUSABLE: 3661 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3662 if (rx->sta) 3663 rx->sta->rx_stats.dropped++; 3664 dev_kfree_skb(rx->skb); 3665 break; 3666 case RX_QUEUED: 3667 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3668 break; 3669 } 3670 } 3671 3672 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3673 struct sk_buff_head *frames) 3674 { 3675 ieee80211_rx_result res = RX_DROP_MONITOR; 3676 struct sk_buff *skb; 3677 3678 #define CALL_RXH(rxh) \ 3679 do { \ 3680 res = rxh(rx); \ 3681 if (res != RX_CONTINUE) \ 3682 goto rxh_next; \ 3683 } while (0) 3684 3685 /* Lock here to avoid hitting all of the data used in the RX 3686 * path (e.g. key data, station data, ...) concurrently when 3687 * a frame is released from the reorder buffer due to timeout 3688 * from the timer, potentially concurrently with RX from the 3689 * driver. 3690 */ 3691 spin_lock_bh(&rx->local->rx_path_lock); 3692 3693 while ((skb = __skb_dequeue(frames))) { 3694 /* 3695 * all the other fields are valid across frames 3696 * that belong to an aMPDU since they are on the 3697 * same TID from the same station 3698 */ 3699 rx->skb = skb; 3700 3701 CALL_RXH(ieee80211_rx_h_check_more_data); 3702 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3703 CALL_RXH(ieee80211_rx_h_sta_process); 3704 CALL_RXH(ieee80211_rx_h_decrypt); 3705 CALL_RXH(ieee80211_rx_h_defragment); 3706 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3707 /* must be after MMIC verify so header is counted in MPDU mic */ 3708 #ifdef CONFIG_MAC80211_MESH 3709 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3710 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3711 #endif 3712 CALL_RXH(ieee80211_rx_h_amsdu); 3713 CALL_RXH(ieee80211_rx_h_data); 3714 3715 /* special treatment -- needs the queue */ 3716 res = ieee80211_rx_h_ctrl(rx, frames); 3717 if (res != RX_CONTINUE) 3718 goto rxh_next; 3719 3720 CALL_RXH(ieee80211_rx_h_mgmt_check); 3721 CALL_RXH(ieee80211_rx_h_action); 3722 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3723 CALL_RXH(ieee80211_rx_h_action_return); 3724 CALL_RXH(ieee80211_rx_h_mgmt); 3725 3726 rxh_next: 3727 ieee80211_rx_handlers_result(rx, res); 3728 3729 #undef CALL_RXH 3730 } 3731 3732 spin_unlock_bh(&rx->local->rx_path_lock); 3733 } 3734 3735 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3736 { 3737 struct sk_buff_head reorder_release; 3738 ieee80211_rx_result res = RX_DROP_MONITOR; 3739 3740 __skb_queue_head_init(&reorder_release); 3741 3742 #define CALL_RXH(rxh) \ 3743 do { \ 3744 res = rxh(rx); \ 3745 if (res != RX_CONTINUE) \ 3746 goto rxh_next; \ 3747 } while (0) 3748 3749 CALL_RXH(ieee80211_rx_h_check_dup); 3750 CALL_RXH(ieee80211_rx_h_check); 3751 3752 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3753 3754 ieee80211_rx_handlers(rx, &reorder_release); 3755 return; 3756 3757 rxh_next: 3758 ieee80211_rx_handlers_result(rx, res); 3759 3760 #undef CALL_RXH 3761 } 3762 3763 /* 3764 * This function makes calls into the RX path, therefore 3765 * it has to be invoked under RCU read lock. 3766 */ 3767 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3768 { 3769 struct sk_buff_head frames; 3770 struct ieee80211_rx_data rx = { 3771 .sta = sta, 3772 .sdata = sta->sdata, 3773 .local = sta->local, 3774 /* This is OK -- must be QoS data frame */ 3775 .security_idx = tid, 3776 .seqno_idx = tid, 3777 .napi = NULL, /* must be NULL to not have races */ 3778 }; 3779 struct tid_ampdu_rx *tid_agg_rx; 3780 3781 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3782 if (!tid_agg_rx) 3783 return; 3784 3785 __skb_queue_head_init(&frames); 3786 3787 spin_lock(&tid_agg_rx->reorder_lock); 3788 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3789 spin_unlock(&tid_agg_rx->reorder_lock); 3790 3791 if (!skb_queue_empty(&frames)) { 3792 struct ieee80211_event event = { 3793 .type = BA_FRAME_TIMEOUT, 3794 .u.ba.tid = tid, 3795 .u.ba.sta = &sta->sta, 3796 }; 3797 drv_event_callback(rx.local, rx.sdata, &event); 3798 } 3799 3800 ieee80211_rx_handlers(&rx, &frames); 3801 } 3802 3803 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3804 u16 ssn, u64 filtered, 3805 u16 received_mpdus) 3806 { 3807 struct sta_info *sta; 3808 struct tid_ampdu_rx *tid_agg_rx; 3809 struct sk_buff_head frames; 3810 struct ieee80211_rx_data rx = { 3811 /* This is OK -- must be QoS data frame */ 3812 .security_idx = tid, 3813 .seqno_idx = tid, 3814 }; 3815 int i, diff; 3816 3817 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3818 return; 3819 3820 __skb_queue_head_init(&frames); 3821 3822 sta = container_of(pubsta, struct sta_info, sta); 3823 3824 rx.sta = sta; 3825 rx.sdata = sta->sdata; 3826 rx.local = sta->local; 3827 3828 rcu_read_lock(); 3829 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3830 if (!tid_agg_rx) 3831 goto out; 3832 3833 spin_lock_bh(&tid_agg_rx->reorder_lock); 3834 3835 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3836 int release; 3837 3838 /* release all frames in the reorder buffer */ 3839 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3840 IEEE80211_SN_MODULO; 3841 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3842 release, &frames); 3843 /* update ssn to match received ssn */ 3844 tid_agg_rx->head_seq_num = ssn; 3845 } else { 3846 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3847 &frames); 3848 } 3849 3850 /* handle the case that received ssn is behind the mac ssn. 3851 * it can be tid_agg_rx->buf_size behind and still be valid */ 3852 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3853 if (diff >= tid_agg_rx->buf_size) { 3854 tid_agg_rx->reorder_buf_filtered = 0; 3855 goto release; 3856 } 3857 filtered = filtered >> diff; 3858 ssn += diff; 3859 3860 /* update bitmap */ 3861 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3862 int index = (ssn + i) % tid_agg_rx->buf_size; 3863 3864 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3865 if (filtered & BIT_ULL(i)) 3866 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3867 } 3868 3869 /* now process also frames that the filter marking released */ 3870 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3871 3872 release: 3873 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3874 3875 ieee80211_rx_handlers(&rx, &frames); 3876 3877 out: 3878 rcu_read_unlock(); 3879 } 3880 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3881 3882 /* main receive path */ 3883 3884 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3885 { 3886 struct ieee80211_sub_if_data *sdata = rx->sdata; 3887 struct sk_buff *skb = rx->skb; 3888 struct ieee80211_hdr *hdr = (void *)skb->data; 3889 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3890 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3891 bool multicast = is_multicast_ether_addr(hdr->addr1); 3892 3893 switch (sdata->vif.type) { 3894 case NL80211_IFTYPE_STATION: 3895 if (!bssid && !sdata->u.mgd.use_4addr) 3896 return false; 3897 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3898 return false; 3899 if (multicast) 3900 return true; 3901 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3902 case NL80211_IFTYPE_ADHOC: 3903 if (!bssid) 3904 return false; 3905 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3906 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3907 return false; 3908 if (ieee80211_is_beacon(hdr->frame_control)) 3909 return true; 3910 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3911 return false; 3912 if (!multicast && 3913 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3914 return false; 3915 if (!rx->sta) { 3916 int rate_idx; 3917 if (status->encoding != RX_ENC_LEGACY) 3918 rate_idx = 0; /* TODO: HT/VHT rates */ 3919 else 3920 rate_idx = status->rate_idx; 3921 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3922 BIT(rate_idx)); 3923 } 3924 return true; 3925 case NL80211_IFTYPE_OCB: 3926 if (!bssid) 3927 return false; 3928 if (!ieee80211_is_data_present(hdr->frame_control)) 3929 return false; 3930 if (!is_broadcast_ether_addr(bssid)) 3931 return false; 3932 if (!multicast && 3933 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3934 return false; 3935 if (!rx->sta) { 3936 int rate_idx; 3937 if (status->encoding != RX_ENC_LEGACY) 3938 rate_idx = 0; /* TODO: HT rates */ 3939 else 3940 rate_idx = status->rate_idx; 3941 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3942 BIT(rate_idx)); 3943 } 3944 return true; 3945 case NL80211_IFTYPE_MESH_POINT: 3946 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3947 return false; 3948 if (multicast) 3949 return true; 3950 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3951 case NL80211_IFTYPE_AP_VLAN: 3952 case NL80211_IFTYPE_AP: 3953 if (!bssid) 3954 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3955 3956 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3957 /* 3958 * Accept public action frames even when the 3959 * BSSID doesn't match, this is used for P2P 3960 * and location updates. Note that mac80211 3961 * itself never looks at these frames. 3962 */ 3963 if (!multicast && 3964 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3965 return false; 3966 if (ieee80211_is_public_action(hdr, skb->len)) 3967 return true; 3968 return ieee80211_is_beacon(hdr->frame_control); 3969 } 3970 3971 if (!ieee80211_has_tods(hdr->frame_control)) { 3972 /* ignore data frames to TDLS-peers */ 3973 if (ieee80211_is_data(hdr->frame_control)) 3974 return false; 3975 /* ignore action frames to TDLS-peers */ 3976 if (ieee80211_is_action(hdr->frame_control) && 3977 !is_broadcast_ether_addr(bssid) && 3978 !ether_addr_equal(bssid, hdr->addr1)) 3979 return false; 3980 } 3981 3982 /* 3983 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3984 * the BSSID - we've checked that already but may have accepted 3985 * the wildcard (ff:ff:ff:ff:ff:ff). 3986 * 3987 * It also says: 3988 * The BSSID of the Data frame is determined as follows: 3989 * a) If the STA is contained within an AP or is associated 3990 * with an AP, the BSSID is the address currently in use 3991 * by the STA contained in the AP. 3992 * 3993 * So we should not accept data frames with an address that's 3994 * multicast. 3995 * 3996 * Accepting it also opens a security problem because stations 3997 * could encrypt it with the GTK and inject traffic that way. 3998 */ 3999 if (ieee80211_is_data(hdr->frame_control) && multicast) 4000 return false; 4001 4002 return true; 4003 case NL80211_IFTYPE_WDS: 4004 if (bssid || !ieee80211_is_data(hdr->frame_control)) 4005 return false; 4006 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 4007 case NL80211_IFTYPE_P2P_DEVICE: 4008 return ieee80211_is_public_action(hdr, skb->len) || 4009 ieee80211_is_probe_req(hdr->frame_control) || 4010 ieee80211_is_probe_resp(hdr->frame_control) || 4011 ieee80211_is_beacon(hdr->frame_control); 4012 case NL80211_IFTYPE_NAN: 4013 /* Currently no frames on NAN interface are allowed */ 4014 return false; 4015 default: 4016 break; 4017 } 4018 4019 WARN_ON_ONCE(1); 4020 return false; 4021 } 4022 4023 void ieee80211_check_fast_rx(struct sta_info *sta) 4024 { 4025 struct ieee80211_sub_if_data *sdata = sta->sdata; 4026 struct ieee80211_local *local = sdata->local; 4027 struct ieee80211_key *key; 4028 struct ieee80211_fast_rx fastrx = { 4029 .dev = sdata->dev, 4030 .vif_type = sdata->vif.type, 4031 .control_port_protocol = sdata->control_port_protocol, 4032 }, *old, *new = NULL; 4033 bool assign = false; 4034 4035 /* use sparse to check that we don't return without updating */ 4036 __acquire(check_fast_rx); 4037 4038 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4039 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4040 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4041 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4042 4043 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4044 4045 /* fast-rx doesn't do reordering */ 4046 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4047 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4048 goto clear; 4049 4050 switch (sdata->vif.type) { 4051 case NL80211_IFTYPE_STATION: 4052 if (sta->sta.tdls) { 4053 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4054 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4055 fastrx.expected_ds_bits = 0; 4056 } else { 4057 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 4058 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4059 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4060 fastrx.expected_ds_bits = 4061 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4062 } 4063 4064 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4065 fastrx.expected_ds_bits |= 4066 cpu_to_le16(IEEE80211_FCTL_TODS); 4067 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4068 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4069 } 4070 4071 if (!sdata->u.mgd.powersave) 4072 break; 4073 4074 /* software powersave is a huge mess, avoid all of it */ 4075 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4076 goto clear; 4077 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4078 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4079 goto clear; 4080 break; 4081 case NL80211_IFTYPE_AP_VLAN: 4082 case NL80211_IFTYPE_AP: 4083 /* parallel-rx requires this, at least with calls to 4084 * ieee80211_sta_ps_transition() 4085 */ 4086 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4087 goto clear; 4088 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4089 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4090 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4091 4092 fastrx.internal_forward = 4093 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4094 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4095 !sdata->u.vlan.sta); 4096 4097 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4098 sdata->u.vlan.sta) { 4099 fastrx.expected_ds_bits |= 4100 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4101 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4102 fastrx.internal_forward = 0; 4103 } 4104 4105 break; 4106 default: 4107 goto clear; 4108 } 4109 4110 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4111 goto clear; 4112 4113 rcu_read_lock(); 4114 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4115 if (key) { 4116 switch (key->conf.cipher) { 4117 case WLAN_CIPHER_SUITE_TKIP: 4118 /* we don't want to deal with MMIC in fast-rx */ 4119 goto clear_rcu; 4120 case WLAN_CIPHER_SUITE_CCMP: 4121 case WLAN_CIPHER_SUITE_CCMP_256: 4122 case WLAN_CIPHER_SUITE_GCMP: 4123 case WLAN_CIPHER_SUITE_GCMP_256: 4124 break; 4125 default: 4126 /* We also don't want to deal with 4127 * WEP or cipher scheme. 4128 */ 4129 goto clear_rcu; 4130 } 4131 4132 fastrx.key = true; 4133 fastrx.icv_len = key->conf.icv_len; 4134 } 4135 4136 assign = true; 4137 clear_rcu: 4138 rcu_read_unlock(); 4139 clear: 4140 __release(check_fast_rx); 4141 4142 if (assign) 4143 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4144 4145 spin_lock_bh(&sta->lock); 4146 old = rcu_dereference_protected(sta->fast_rx, true); 4147 rcu_assign_pointer(sta->fast_rx, new); 4148 spin_unlock_bh(&sta->lock); 4149 4150 if (old) 4151 kfree_rcu(old, rcu_head); 4152 } 4153 4154 void ieee80211_clear_fast_rx(struct sta_info *sta) 4155 { 4156 struct ieee80211_fast_rx *old; 4157 4158 spin_lock_bh(&sta->lock); 4159 old = rcu_dereference_protected(sta->fast_rx, true); 4160 RCU_INIT_POINTER(sta->fast_rx, NULL); 4161 spin_unlock_bh(&sta->lock); 4162 4163 if (old) 4164 kfree_rcu(old, rcu_head); 4165 } 4166 4167 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4168 { 4169 struct ieee80211_local *local = sdata->local; 4170 struct sta_info *sta; 4171 4172 lockdep_assert_held(&local->sta_mtx); 4173 4174 list_for_each_entry(sta, &local->sta_list, list) { 4175 if (sdata != sta->sdata && 4176 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4177 continue; 4178 ieee80211_check_fast_rx(sta); 4179 } 4180 } 4181 4182 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4183 { 4184 struct ieee80211_local *local = sdata->local; 4185 4186 mutex_lock(&local->sta_mtx); 4187 __ieee80211_check_fast_rx_iface(sdata); 4188 mutex_unlock(&local->sta_mtx); 4189 } 4190 4191 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4192 struct ieee80211_fast_rx *fast_rx) 4193 { 4194 struct sk_buff *skb = rx->skb; 4195 struct ieee80211_hdr *hdr = (void *)skb->data; 4196 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4197 struct sta_info *sta = rx->sta; 4198 int orig_len = skb->len; 4199 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4200 int snap_offs = hdrlen; 4201 struct { 4202 u8 snap[sizeof(rfc1042_header)]; 4203 __be16 proto; 4204 } *payload __aligned(2); 4205 struct { 4206 u8 da[ETH_ALEN]; 4207 u8 sa[ETH_ALEN]; 4208 } addrs __aligned(2); 4209 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4210 4211 if (fast_rx->uses_rss) 4212 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4213 4214 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4215 * to a common data structure; drivers can implement that per queue 4216 * but we don't have that information in mac80211 4217 */ 4218 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4219 return false; 4220 4221 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4222 4223 /* If using encryption, we also need to have: 4224 * - PN_VALIDATED: similar, but the implementation is tricky 4225 * - DECRYPTED: necessary for PN_VALIDATED 4226 */ 4227 if (fast_rx->key && 4228 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4229 return false; 4230 4231 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4232 return false; 4233 4234 if (unlikely(ieee80211_is_frag(hdr))) 4235 return false; 4236 4237 /* Since our interface address cannot be multicast, this 4238 * implicitly also rejects multicast frames without the 4239 * explicit check. 4240 * 4241 * We shouldn't get any *data* frames not addressed to us 4242 * (AP mode will accept multicast *management* frames), but 4243 * punting here will make it go through the full checks in 4244 * ieee80211_accept_frame(). 4245 */ 4246 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4247 return false; 4248 4249 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4250 IEEE80211_FCTL_TODS)) != 4251 fast_rx->expected_ds_bits) 4252 return false; 4253 4254 /* assign the key to drop unencrypted frames (later) 4255 * and strip the IV/MIC if necessary 4256 */ 4257 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4258 /* GCMP header length is the same */ 4259 snap_offs += IEEE80211_CCMP_HDR_LEN; 4260 } 4261 4262 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4263 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4264 goto drop; 4265 4266 payload = (void *)(skb->data + snap_offs); 4267 4268 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4269 return false; 4270 4271 /* Don't handle these here since they require special code. 4272 * Accept AARP and IPX even though they should come with a 4273 * bridge-tunnel header - but if we get them this way then 4274 * there's little point in discarding them. 4275 */ 4276 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4277 payload->proto == fast_rx->control_port_protocol)) 4278 return false; 4279 } 4280 4281 /* after this point, don't punt to the slowpath! */ 4282 4283 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4284 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4285 goto drop; 4286 4287 if (unlikely(fast_rx->sta_notify)) { 4288 ieee80211_sta_rx_notify(rx->sdata, hdr); 4289 fast_rx->sta_notify = false; 4290 } 4291 4292 /* statistics part of ieee80211_rx_h_sta_process() */ 4293 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4294 stats->last_signal = status->signal; 4295 if (!fast_rx->uses_rss) 4296 ewma_signal_add(&sta->rx_stats_avg.signal, 4297 -status->signal); 4298 } 4299 4300 if (status->chains) { 4301 int i; 4302 4303 stats->chains = status->chains; 4304 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4305 int signal = status->chain_signal[i]; 4306 4307 if (!(status->chains & BIT(i))) 4308 continue; 4309 4310 stats->chain_signal_last[i] = signal; 4311 if (!fast_rx->uses_rss) 4312 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4313 -signal); 4314 } 4315 } 4316 /* end of statistics */ 4317 4318 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4319 goto drop; 4320 4321 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4322 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4323 RX_QUEUED) 4324 goto drop; 4325 4326 return true; 4327 } 4328 4329 stats->last_rx = jiffies; 4330 stats->last_rate = sta_stats_encode_rate(status); 4331 4332 stats->fragments++; 4333 stats->packets++; 4334 4335 /* do the header conversion - first grab the addresses */ 4336 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4337 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4338 /* remove the SNAP but leave the ethertype */ 4339 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4340 /* push the addresses in front */ 4341 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4342 4343 skb->dev = fast_rx->dev; 4344 4345 ieee80211_rx_stats(fast_rx->dev, skb->len); 4346 4347 /* The seqno index has the same property as needed 4348 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4349 * for non-QoS-data frames. Here we know it's a data 4350 * frame, so count MSDUs. 4351 */ 4352 u64_stats_update_begin(&stats->syncp); 4353 stats->msdu[rx->seqno_idx]++; 4354 stats->bytes += orig_len; 4355 u64_stats_update_end(&stats->syncp); 4356 4357 if (fast_rx->internal_forward) { 4358 struct sk_buff *xmit_skb = NULL; 4359 if (is_multicast_ether_addr(addrs.da)) { 4360 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4361 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4362 sta_info_get(rx->sdata, addrs.da)) { 4363 xmit_skb = skb; 4364 skb = NULL; 4365 } 4366 4367 if (xmit_skb) { 4368 /* 4369 * Send to wireless media and increase priority by 256 4370 * to keep the received priority instead of 4371 * reclassifying the frame (see cfg80211_classify8021d). 4372 */ 4373 xmit_skb->priority += 256; 4374 xmit_skb->protocol = htons(ETH_P_802_3); 4375 skb_reset_network_header(xmit_skb); 4376 skb_reset_mac_header(xmit_skb); 4377 dev_queue_xmit(xmit_skb); 4378 } 4379 4380 if (!skb) 4381 return true; 4382 } 4383 4384 /* deliver to local stack */ 4385 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4386 memset(skb->cb, 0, sizeof(skb->cb)); 4387 if (rx->napi) 4388 napi_gro_receive(rx->napi, skb); 4389 else 4390 netif_receive_skb(skb); 4391 4392 return true; 4393 drop: 4394 dev_kfree_skb(skb); 4395 stats->dropped++; 4396 return true; 4397 } 4398 4399 /* 4400 * This function returns whether or not the SKB 4401 * was destined for RX processing or not, which, 4402 * if consume is true, is equivalent to whether 4403 * or not the skb was consumed. 4404 */ 4405 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4406 struct sk_buff *skb, bool consume) 4407 { 4408 struct ieee80211_local *local = rx->local; 4409 struct ieee80211_sub_if_data *sdata = rx->sdata; 4410 4411 rx->skb = skb; 4412 4413 /* See if we can do fast-rx; if we have to copy we already lost, 4414 * so punt in that case. We should never have to deliver a data 4415 * frame to multiple interfaces anyway. 4416 * 4417 * We skip the ieee80211_accept_frame() call and do the necessary 4418 * checking inside ieee80211_invoke_fast_rx(). 4419 */ 4420 if (consume && rx->sta) { 4421 struct ieee80211_fast_rx *fast_rx; 4422 4423 fast_rx = rcu_dereference(rx->sta->fast_rx); 4424 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4425 return true; 4426 } 4427 4428 if (!ieee80211_accept_frame(rx)) 4429 return false; 4430 4431 if (!consume) { 4432 skb = skb_copy(skb, GFP_ATOMIC); 4433 if (!skb) { 4434 if (net_ratelimit()) 4435 wiphy_debug(local->hw.wiphy, 4436 "failed to copy skb for %s\n", 4437 sdata->name); 4438 return true; 4439 } 4440 4441 rx->skb = skb; 4442 } 4443 4444 ieee80211_invoke_rx_handlers(rx); 4445 return true; 4446 } 4447 4448 /* 4449 * This is the actual Rx frames handler. as it belongs to Rx path it must 4450 * be called with rcu_read_lock protection. 4451 */ 4452 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4453 struct ieee80211_sta *pubsta, 4454 struct sk_buff *skb, 4455 struct napi_struct *napi) 4456 { 4457 struct ieee80211_local *local = hw_to_local(hw); 4458 struct ieee80211_sub_if_data *sdata; 4459 struct ieee80211_hdr *hdr; 4460 __le16 fc; 4461 struct ieee80211_rx_data rx; 4462 struct ieee80211_sub_if_data *prev; 4463 struct rhlist_head *tmp; 4464 int err = 0; 4465 4466 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4467 memset(&rx, 0, sizeof(rx)); 4468 rx.skb = skb; 4469 rx.local = local; 4470 rx.napi = napi; 4471 4472 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4473 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4474 4475 if (ieee80211_is_mgmt(fc)) { 4476 /* drop frame if too short for header */ 4477 if (skb->len < ieee80211_hdrlen(fc)) 4478 err = -ENOBUFS; 4479 else 4480 err = skb_linearize(skb); 4481 } else { 4482 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4483 } 4484 4485 if (err) { 4486 dev_kfree_skb(skb); 4487 return; 4488 } 4489 4490 hdr = (struct ieee80211_hdr *)skb->data; 4491 ieee80211_parse_qos(&rx); 4492 ieee80211_verify_alignment(&rx); 4493 4494 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4495 ieee80211_is_beacon(hdr->frame_control))) 4496 ieee80211_scan_rx(local, skb); 4497 4498 if (ieee80211_is_data(fc)) { 4499 struct sta_info *sta, *prev_sta; 4500 4501 if (pubsta) { 4502 rx.sta = container_of(pubsta, struct sta_info, sta); 4503 rx.sdata = rx.sta->sdata; 4504 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4505 return; 4506 goto out; 4507 } 4508 4509 prev_sta = NULL; 4510 4511 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4512 if (!prev_sta) { 4513 prev_sta = sta; 4514 continue; 4515 } 4516 4517 rx.sta = prev_sta; 4518 rx.sdata = prev_sta->sdata; 4519 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4520 4521 prev_sta = sta; 4522 } 4523 4524 if (prev_sta) { 4525 rx.sta = prev_sta; 4526 rx.sdata = prev_sta->sdata; 4527 4528 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4529 return; 4530 goto out; 4531 } 4532 } 4533 4534 prev = NULL; 4535 4536 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4537 if (!ieee80211_sdata_running(sdata)) 4538 continue; 4539 4540 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4541 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4542 continue; 4543 4544 /* 4545 * frame is destined for this interface, but if it's 4546 * not also for the previous one we handle that after 4547 * the loop to avoid copying the SKB once too much 4548 */ 4549 4550 if (!prev) { 4551 prev = sdata; 4552 continue; 4553 } 4554 4555 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4556 rx.sdata = prev; 4557 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4558 4559 prev = sdata; 4560 } 4561 4562 if (prev) { 4563 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4564 rx.sdata = prev; 4565 4566 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4567 return; 4568 } 4569 4570 out: 4571 dev_kfree_skb(skb); 4572 } 4573 4574 /* 4575 * This is the receive path handler. It is called by a low level driver when an 4576 * 802.11 MPDU is received from the hardware. 4577 */ 4578 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4579 struct sk_buff *skb, struct napi_struct *napi) 4580 { 4581 struct ieee80211_local *local = hw_to_local(hw); 4582 struct ieee80211_rate *rate = NULL; 4583 struct ieee80211_supported_band *sband; 4584 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4585 4586 WARN_ON_ONCE(softirq_count() == 0); 4587 4588 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4589 goto drop; 4590 4591 sband = local->hw.wiphy->bands[status->band]; 4592 if (WARN_ON(!sband)) 4593 goto drop; 4594 4595 /* 4596 * If we're suspending, it is possible although not too likely 4597 * that we'd be receiving frames after having already partially 4598 * quiesced the stack. We can't process such frames then since 4599 * that might, for example, cause stations to be added or other 4600 * driver callbacks be invoked. 4601 */ 4602 if (unlikely(local->quiescing || local->suspended)) 4603 goto drop; 4604 4605 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4606 if (unlikely(local->in_reconfig)) 4607 goto drop; 4608 4609 /* 4610 * The same happens when we're not even started, 4611 * but that's worth a warning. 4612 */ 4613 if (WARN_ON(!local->started)) 4614 goto drop; 4615 4616 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4617 /* 4618 * Validate the rate, unless a PLCP error means that 4619 * we probably can't have a valid rate here anyway. 4620 */ 4621 4622 switch (status->encoding) { 4623 case RX_ENC_HT: 4624 /* 4625 * rate_idx is MCS index, which can be [0-76] 4626 * as documented on: 4627 * 4628 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4629 * 4630 * Anything else would be some sort of driver or 4631 * hardware error. The driver should catch hardware 4632 * errors. 4633 */ 4634 if (WARN(status->rate_idx > 76, 4635 "Rate marked as an HT rate but passed " 4636 "status->rate_idx is not " 4637 "an MCS index [0-76]: %d (0x%02x)\n", 4638 status->rate_idx, 4639 status->rate_idx)) 4640 goto drop; 4641 break; 4642 case RX_ENC_VHT: 4643 if (WARN_ONCE(status->rate_idx > 9 || 4644 !status->nss || 4645 status->nss > 8, 4646 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4647 status->rate_idx, status->nss)) 4648 goto drop; 4649 break; 4650 case RX_ENC_HE: 4651 if (WARN_ONCE(status->rate_idx > 11 || 4652 !status->nss || 4653 status->nss > 8, 4654 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4655 status->rate_idx, status->nss)) 4656 goto drop; 4657 break; 4658 default: 4659 WARN_ON_ONCE(1); 4660 /* fall through */ 4661 case RX_ENC_LEGACY: 4662 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4663 goto drop; 4664 rate = &sband->bitrates[status->rate_idx]; 4665 } 4666 } 4667 4668 status->rx_flags = 0; 4669 4670 /* 4671 * key references and virtual interfaces are protected using RCU 4672 * and this requires that we are in a read-side RCU section during 4673 * receive processing 4674 */ 4675 rcu_read_lock(); 4676 4677 /* 4678 * Frames with failed FCS/PLCP checksum are not returned, 4679 * all other frames are returned without radiotap header 4680 * if it was previously present. 4681 * Also, frames with less than 16 bytes are dropped. 4682 */ 4683 skb = ieee80211_rx_monitor(local, skb, rate); 4684 if (!skb) { 4685 rcu_read_unlock(); 4686 return; 4687 } 4688 4689 ieee80211_tpt_led_trig_rx(local, 4690 ((struct ieee80211_hdr *)skb->data)->frame_control, 4691 skb->len); 4692 4693 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4694 4695 rcu_read_unlock(); 4696 4697 return; 4698 drop: 4699 kfree_skb(skb); 4700 } 4701 EXPORT_SYMBOL(ieee80211_rx_napi); 4702 4703 /* This is a version of the rx handler that can be called from hard irq 4704 * context. Post the skb on the queue and schedule the tasklet */ 4705 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4706 { 4707 struct ieee80211_local *local = hw_to_local(hw); 4708 4709 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4710 4711 skb->pkt_type = IEEE80211_RX_MSG; 4712 skb_queue_tail(&local->skb_queue, skb); 4713 tasklet_schedule(&local->tasklet); 4714 } 4715 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4716