xref: /openbmc/linux/net/mac80211/rx.c (revision 84d517f3)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23 
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33 
34 /*
35  * monitor mode reception
36  *
37  * This function cleans up the SKB, i.e. it removes all the stuff
38  * only useful for monitoring.
39  */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 					   struct sk_buff *skb)
42 {
43 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 		if (likely(skb->len > FCS_LEN))
45 			__pskb_trim(skb, skb->len - FCS_LEN);
46 		else {
47 			/* driver bug */
48 			WARN_ON(1);
49 			dev_kfree_skb(skb);
50 			return NULL;
51 		}
52 	}
53 
54 	return skb;
55 }
56 
57 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
58 {
59 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 	struct ieee80211_hdr *hdr;
61 
62 	hdr = (void *)(skb->data);
63 
64 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
65 			    RX_FLAG_FAILED_PLCP_CRC |
66 			    RX_FLAG_AMPDU_IS_ZEROLEN))
67 		return 1;
68 	if (unlikely(skb->len < 16 + present_fcs_len))
69 		return 1;
70 	if (ieee80211_is_ctl(hdr->frame_control) &&
71 	    !ieee80211_is_pspoll(hdr->frame_control) &&
72 	    !ieee80211_is_back_req(hdr->frame_control))
73 		return 1;
74 	return 0;
75 }
76 
77 static int
78 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
79 			    struct ieee80211_rx_status *status)
80 {
81 	int len;
82 
83 	/* always present fields */
84 	len = sizeof(struct ieee80211_radiotap_header) + 8;
85 
86 	/* allocate extra bitmaps */
87 	if (status->chains)
88 		len += 4 * hweight8(status->chains);
89 
90 	if (ieee80211_have_rx_timestamp(status)) {
91 		len = ALIGN(len, 8);
92 		len += 8;
93 	}
94 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
95 		len += 1;
96 
97 	/* antenna field, if we don't have per-chain info */
98 	if (!status->chains)
99 		len += 1;
100 
101 	/* padding for RX_FLAGS if necessary */
102 	len = ALIGN(len, 2);
103 
104 	if (status->flag & RX_FLAG_HT) /* HT info */
105 		len += 3;
106 
107 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
108 		len = ALIGN(len, 4);
109 		len += 8;
110 	}
111 
112 	if (status->flag & RX_FLAG_VHT) {
113 		len = ALIGN(len, 2);
114 		len += 12;
115 	}
116 
117 	if (status->chains) {
118 		/* antenna and antenna signal fields */
119 		len += 2 * hweight8(status->chains);
120 	}
121 
122 	return len;
123 }
124 
125 /*
126  * ieee80211_add_rx_radiotap_header - add radiotap header
127  *
128  * add a radiotap header containing all the fields which the hardware provided.
129  */
130 static void
131 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
132 				 struct sk_buff *skb,
133 				 struct ieee80211_rate *rate,
134 				 int rtap_len, bool has_fcs)
135 {
136 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
137 	struct ieee80211_radiotap_header *rthdr;
138 	unsigned char *pos;
139 	__le32 *it_present;
140 	u32 it_present_val;
141 	u16 rx_flags = 0;
142 	u16 channel_flags = 0;
143 	int mpdulen, chain;
144 	unsigned long chains = status->chains;
145 
146 	mpdulen = skb->len;
147 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
148 		mpdulen += FCS_LEN;
149 
150 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
151 	memset(rthdr, 0, rtap_len);
152 	it_present = &rthdr->it_present;
153 
154 	/* radiotap header, set always present flags */
155 	rthdr->it_len = cpu_to_le16(rtap_len);
156 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
157 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
158 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
159 
160 	if (!status->chains)
161 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
162 
163 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
164 		it_present_val |=
165 			BIT(IEEE80211_RADIOTAP_EXT) |
166 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
167 		put_unaligned_le32(it_present_val, it_present);
168 		it_present++;
169 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
170 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
171 	}
172 
173 	put_unaligned_le32(it_present_val, it_present);
174 
175 	pos = (void *)(it_present + 1);
176 
177 	/* the order of the following fields is important */
178 
179 	/* IEEE80211_RADIOTAP_TSFT */
180 	if (ieee80211_have_rx_timestamp(status)) {
181 		/* padding */
182 		while ((pos - (u8 *)rthdr) & 7)
183 			*pos++ = 0;
184 		put_unaligned_le64(
185 			ieee80211_calculate_rx_timestamp(local, status,
186 							 mpdulen, 0),
187 			pos);
188 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
189 		pos += 8;
190 	}
191 
192 	/* IEEE80211_RADIOTAP_FLAGS */
193 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
194 		*pos |= IEEE80211_RADIOTAP_F_FCS;
195 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
196 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
197 	if (status->flag & RX_FLAG_SHORTPRE)
198 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
199 	pos++;
200 
201 	/* IEEE80211_RADIOTAP_RATE */
202 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
203 		/*
204 		 * Without rate information don't add it. If we have,
205 		 * MCS information is a separate field in radiotap,
206 		 * added below. The byte here is needed as padding
207 		 * for the channel though, so initialise it to 0.
208 		 */
209 		*pos = 0;
210 	} else {
211 		int shift = 0;
212 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
213 		if (status->flag & RX_FLAG_10MHZ)
214 			shift = 1;
215 		else if (status->flag & RX_FLAG_5MHZ)
216 			shift = 2;
217 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
218 	}
219 	pos++;
220 
221 	/* IEEE80211_RADIOTAP_CHANNEL */
222 	put_unaligned_le16(status->freq, pos);
223 	pos += 2;
224 	if (status->flag & RX_FLAG_10MHZ)
225 		channel_flags |= IEEE80211_CHAN_HALF;
226 	else if (status->flag & RX_FLAG_5MHZ)
227 		channel_flags |= IEEE80211_CHAN_QUARTER;
228 
229 	if (status->band == IEEE80211_BAND_5GHZ)
230 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
231 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
232 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
233 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
234 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
235 	else if (rate)
236 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
237 	else
238 		channel_flags |= IEEE80211_CHAN_2GHZ;
239 	put_unaligned_le16(channel_flags, pos);
240 	pos += 2;
241 
242 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
243 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
244 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
245 		*pos = status->signal;
246 		rthdr->it_present |=
247 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
248 		pos++;
249 	}
250 
251 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
252 
253 	if (!status->chains) {
254 		/* IEEE80211_RADIOTAP_ANTENNA */
255 		*pos = status->antenna;
256 		pos++;
257 	}
258 
259 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
260 
261 	/* IEEE80211_RADIOTAP_RX_FLAGS */
262 	/* ensure 2 byte alignment for the 2 byte field as required */
263 	if ((pos - (u8 *)rthdr) & 1)
264 		*pos++ = 0;
265 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
266 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
267 	put_unaligned_le16(rx_flags, pos);
268 	pos += 2;
269 
270 	if (status->flag & RX_FLAG_HT) {
271 		unsigned int stbc;
272 
273 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
274 		*pos++ = local->hw.radiotap_mcs_details;
275 		*pos = 0;
276 		if (status->flag & RX_FLAG_SHORT_GI)
277 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
278 		if (status->flag & RX_FLAG_40MHZ)
279 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
280 		if (status->flag & RX_FLAG_HT_GF)
281 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
282 		if (status->flag & RX_FLAG_LDPC)
283 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
284 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
285 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
286 		pos++;
287 		*pos++ = status->rate_idx;
288 	}
289 
290 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
291 		u16 flags = 0;
292 
293 		/* ensure 4 byte alignment */
294 		while ((pos - (u8 *)rthdr) & 3)
295 			pos++;
296 		rthdr->it_present |=
297 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
298 		put_unaligned_le32(status->ampdu_reference, pos);
299 		pos += 4;
300 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
301 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
302 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
303 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
304 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
305 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
306 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
307 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
308 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
309 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
310 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
311 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
312 		put_unaligned_le16(flags, pos);
313 		pos += 2;
314 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
315 			*pos++ = status->ampdu_delimiter_crc;
316 		else
317 			*pos++ = 0;
318 		*pos++ = 0;
319 	}
320 
321 	if (status->flag & RX_FLAG_VHT) {
322 		u16 known = local->hw.radiotap_vht_details;
323 
324 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
325 		/* known field - how to handle 80+80? */
326 		if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
327 			known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
328 		put_unaligned_le16(known, pos);
329 		pos += 2;
330 		/* flags */
331 		if (status->flag & RX_FLAG_SHORT_GI)
332 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
333 		/* in VHT, STBC is binary */
334 		if (status->flag & RX_FLAG_STBC_MASK)
335 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
336 		if (status->vht_flag & RX_VHT_FLAG_BF)
337 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
338 		pos++;
339 		/* bandwidth */
340 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
341 			*pos++ = 4;
342 		else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
343 			*pos++ = 0; /* marked not known above */
344 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
345 			*pos++ = 11;
346 		else if (status->flag & RX_FLAG_40MHZ)
347 			*pos++ = 1;
348 		else /* 20 MHz */
349 			*pos++ = 0;
350 		/* MCS/NSS */
351 		*pos = (status->rate_idx << 4) | status->vht_nss;
352 		pos += 4;
353 		/* coding field */
354 		if (status->flag & RX_FLAG_LDPC)
355 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
356 		pos++;
357 		/* group ID */
358 		pos++;
359 		/* partial_aid */
360 		pos += 2;
361 	}
362 
363 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
364 		*pos++ = status->chain_signal[chain];
365 		*pos++ = chain;
366 	}
367 }
368 
369 /*
370  * This function copies a received frame to all monitor interfaces and
371  * returns a cleaned-up SKB that no longer includes the FCS nor the
372  * radiotap header the driver might have added.
373  */
374 static struct sk_buff *
375 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
376 		     struct ieee80211_rate *rate)
377 {
378 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
379 	struct ieee80211_sub_if_data *sdata;
380 	int needed_headroom;
381 	struct sk_buff *skb, *skb2;
382 	struct net_device *prev_dev = NULL;
383 	int present_fcs_len = 0;
384 
385 	/*
386 	 * First, we may need to make a copy of the skb because
387 	 *  (1) we need to modify it for radiotap (if not present), and
388 	 *  (2) the other RX handlers will modify the skb we got.
389 	 *
390 	 * We don't need to, of course, if we aren't going to return
391 	 * the SKB because it has a bad FCS/PLCP checksum.
392 	 */
393 
394 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
395 		present_fcs_len = FCS_LEN;
396 
397 	/* ensure hdr->frame_control is in skb head */
398 	if (!pskb_may_pull(origskb, 2)) {
399 		dev_kfree_skb(origskb);
400 		return NULL;
401 	}
402 
403 	if (!local->monitors) {
404 		if (should_drop_frame(origskb, present_fcs_len)) {
405 			dev_kfree_skb(origskb);
406 			return NULL;
407 		}
408 
409 		return remove_monitor_info(local, origskb);
410 	}
411 
412 	/* room for the radiotap header based on driver features */
413 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
414 
415 	if (should_drop_frame(origskb, present_fcs_len)) {
416 		/* only need to expand headroom if necessary */
417 		skb = origskb;
418 		origskb = NULL;
419 
420 		/*
421 		 * This shouldn't trigger often because most devices have an
422 		 * RX header they pull before we get here, and that should
423 		 * be big enough for our radiotap information. We should
424 		 * probably export the length to drivers so that we can have
425 		 * them allocate enough headroom to start with.
426 		 */
427 		if (skb_headroom(skb) < needed_headroom &&
428 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
429 			dev_kfree_skb(skb);
430 			return NULL;
431 		}
432 	} else {
433 		/*
434 		 * Need to make a copy and possibly remove radiotap header
435 		 * and FCS from the original.
436 		 */
437 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
438 
439 		origskb = remove_monitor_info(local, origskb);
440 
441 		if (!skb)
442 			return origskb;
443 	}
444 
445 	/* prepend radiotap information */
446 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
447 					 true);
448 
449 	skb_reset_mac_header(skb);
450 	skb->ip_summed = CHECKSUM_UNNECESSARY;
451 	skb->pkt_type = PACKET_OTHERHOST;
452 	skb->protocol = htons(ETH_P_802_2);
453 
454 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
455 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
456 			continue;
457 
458 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
459 			continue;
460 
461 		if (!ieee80211_sdata_running(sdata))
462 			continue;
463 
464 		if (prev_dev) {
465 			skb2 = skb_clone(skb, GFP_ATOMIC);
466 			if (skb2) {
467 				skb2->dev = prev_dev;
468 				netif_receive_skb(skb2);
469 			}
470 		}
471 
472 		prev_dev = sdata->dev;
473 		sdata->dev->stats.rx_packets++;
474 		sdata->dev->stats.rx_bytes += skb->len;
475 	}
476 
477 	if (prev_dev) {
478 		skb->dev = prev_dev;
479 		netif_receive_skb(skb);
480 	} else
481 		dev_kfree_skb(skb);
482 
483 	return origskb;
484 }
485 
486 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
487 {
488 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
489 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
490 	int tid, seqno_idx, security_idx;
491 
492 	/* does the frame have a qos control field? */
493 	if (ieee80211_is_data_qos(hdr->frame_control)) {
494 		u8 *qc = ieee80211_get_qos_ctl(hdr);
495 		/* frame has qos control */
496 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
497 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
498 			status->rx_flags |= IEEE80211_RX_AMSDU;
499 
500 		seqno_idx = tid;
501 		security_idx = tid;
502 	} else {
503 		/*
504 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
505 		 *
506 		 *	Sequence numbers for management frames, QoS data
507 		 *	frames with a broadcast/multicast address in the
508 		 *	Address 1 field, and all non-QoS data frames sent
509 		 *	by QoS STAs are assigned using an additional single
510 		 *	modulo-4096 counter, [...]
511 		 *
512 		 * We also use that counter for non-QoS STAs.
513 		 */
514 		seqno_idx = IEEE80211_NUM_TIDS;
515 		security_idx = 0;
516 		if (ieee80211_is_mgmt(hdr->frame_control))
517 			security_idx = IEEE80211_NUM_TIDS;
518 		tid = 0;
519 	}
520 
521 	rx->seqno_idx = seqno_idx;
522 	rx->security_idx = security_idx;
523 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
524 	 * For now, set skb->priority to 0 for other cases. */
525 	rx->skb->priority = (tid > 7) ? 0 : tid;
526 }
527 
528 /**
529  * DOC: Packet alignment
530  *
531  * Drivers always need to pass packets that are aligned to two-byte boundaries
532  * to the stack.
533  *
534  * Additionally, should, if possible, align the payload data in a way that
535  * guarantees that the contained IP header is aligned to a four-byte
536  * boundary. In the case of regular frames, this simply means aligning the
537  * payload to a four-byte boundary (because either the IP header is directly
538  * contained, or IV/RFC1042 headers that have a length divisible by four are
539  * in front of it).  If the payload data is not properly aligned and the
540  * architecture doesn't support efficient unaligned operations, mac80211
541  * will align the data.
542  *
543  * With A-MSDU frames, however, the payload data address must yield two modulo
544  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
545  * push the IP header further back to a multiple of four again. Thankfully, the
546  * specs were sane enough this time around to require padding each A-MSDU
547  * subframe to a length that is a multiple of four.
548  *
549  * Padding like Atheros hardware adds which is between the 802.11 header and
550  * the payload is not supported, the driver is required to move the 802.11
551  * header to be directly in front of the payload in that case.
552  */
553 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
554 {
555 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
556 	WARN_ONCE((unsigned long)rx->skb->data & 1,
557 		  "unaligned packet at 0x%p\n", rx->skb->data);
558 #endif
559 }
560 
561 
562 /* rx handlers */
563 
564 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
565 {
566 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
567 
568 	if (is_multicast_ether_addr(hdr->addr1))
569 		return 0;
570 
571 	return ieee80211_is_robust_mgmt_frame(skb);
572 }
573 
574 
575 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
576 {
577 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
578 
579 	if (!is_multicast_ether_addr(hdr->addr1))
580 		return 0;
581 
582 	return ieee80211_is_robust_mgmt_frame(skb);
583 }
584 
585 
586 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
587 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
588 {
589 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
590 	struct ieee80211_mmie *mmie;
591 
592 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
593 		return -1;
594 
595 	if (!ieee80211_is_robust_mgmt_frame(skb))
596 		return -1; /* not a robust management frame */
597 
598 	mmie = (struct ieee80211_mmie *)
599 		(skb->data + skb->len - sizeof(*mmie));
600 	if (mmie->element_id != WLAN_EID_MMIE ||
601 	    mmie->length != sizeof(*mmie) - 2)
602 		return -1;
603 
604 	return le16_to_cpu(mmie->key_id);
605 }
606 
607 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
608 				 struct sk_buff *skb)
609 {
610 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
611 	__le16 fc;
612 	int hdrlen;
613 	u8 keyid;
614 
615 	fc = hdr->frame_control;
616 	hdrlen = ieee80211_hdrlen(fc);
617 
618 	if (skb->len < hdrlen + cs->hdr_len)
619 		return -EINVAL;
620 
621 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
622 	keyid &= cs->key_idx_mask;
623 	keyid >>= cs->key_idx_shift;
624 
625 	return keyid;
626 }
627 
628 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
629 {
630 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
631 	char *dev_addr = rx->sdata->vif.addr;
632 
633 	if (ieee80211_is_data(hdr->frame_control)) {
634 		if (is_multicast_ether_addr(hdr->addr1)) {
635 			if (ieee80211_has_tods(hdr->frame_control) ||
636 			    !ieee80211_has_fromds(hdr->frame_control))
637 				return RX_DROP_MONITOR;
638 			if (ether_addr_equal(hdr->addr3, dev_addr))
639 				return RX_DROP_MONITOR;
640 		} else {
641 			if (!ieee80211_has_a4(hdr->frame_control))
642 				return RX_DROP_MONITOR;
643 			if (ether_addr_equal(hdr->addr4, dev_addr))
644 				return RX_DROP_MONITOR;
645 		}
646 	}
647 
648 	/* If there is not an established peer link and this is not a peer link
649 	 * establisment frame, beacon or probe, drop the frame.
650 	 */
651 
652 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
653 		struct ieee80211_mgmt *mgmt;
654 
655 		if (!ieee80211_is_mgmt(hdr->frame_control))
656 			return RX_DROP_MONITOR;
657 
658 		if (ieee80211_is_action(hdr->frame_control)) {
659 			u8 category;
660 
661 			/* make sure category field is present */
662 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
663 				return RX_DROP_MONITOR;
664 
665 			mgmt = (struct ieee80211_mgmt *)hdr;
666 			category = mgmt->u.action.category;
667 			if (category != WLAN_CATEGORY_MESH_ACTION &&
668 			    category != WLAN_CATEGORY_SELF_PROTECTED)
669 				return RX_DROP_MONITOR;
670 			return RX_CONTINUE;
671 		}
672 
673 		if (ieee80211_is_probe_req(hdr->frame_control) ||
674 		    ieee80211_is_probe_resp(hdr->frame_control) ||
675 		    ieee80211_is_beacon(hdr->frame_control) ||
676 		    ieee80211_is_auth(hdr->frame_control))
677 			return RX_CONTINUE;
678 
679 		return RX_DROP_MONITOR;
680 	}
681 
682 	return RX_CONTINUE;
683 }
684 
685 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
686 					    struct tid_ampdu_rx *tid_agg_rx,
687 					    int index,
688 					    struct sk_buff_head *frames)
689 {
690 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
691 	struct ieee80211_rx_status *status;
692 
693 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
694 
695 	if (!skb)
696 		goto no_frame;
697 
698 	/* release the frame from the reorder ring buffer */
699 	tid_agg_rx->stored_mpdu_num--;
700 	tid_agg_rx->reorder_buf[index] = NULL;
701 	status = IEEE80211_SKB_RXCB(skb);
702 	status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
703 	__skb_queue_tail(frames, skb);
704 
705 no_frame:
706 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
707 }
708 
709 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
710 					     struct tid_ampdu_rx *tid_agg_rx,
711 					     u16 head_seq_num,
712 					     struct sk_buff_head *frames)
713 {
714 	int index;
715 
716 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
717 
718 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
719 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
720 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
721 						frames);
722 	}
723 }
724 
725 /*
726  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
727  * the skb was added to the buffer longer than this time ago, the earlier
728  * frames that have not yet been received are assumed to be lost and the skb
729  * can be released for processing. This may also release other skb's from the
730  * reorder buffer if there are no additional gaps between the frames.
731  *
732  * Callers must hold tid_agg_rx->reorder_lock.
733  */
734 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
735 
736 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
737 					  struct tid_ampdu_rx *tid_agg_rx,
738 					  struct sk_buff_head *frames)
739 {
740 	int index, j;
741 
742 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
743 
744 	/* release the buffer until next missing frame */
745 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
746 	if (!tid_agg_rx->reorder_buf[index] &&
747 	    tid_agg_rx->stored_mpdu_num) {
748 		/*
749 		 * No buffers ready to be released, but check whether any
750 		 * frames in the reorder buffer have timed out.
751 		 */
752 		int skipped = 1;
753 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
754 		     j = (j + 1) % tid_agg_rx->buf_size) {
755 			if (!tid_agg_rx->reorder_buf[j]) {
756 				skipped++;
757 				continue;
758 			}
759 			if (skipped &&
760 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
761 					HT_RX_REORDER_BUF_TIMEOUT))
762 				goto set_release_timer;
763 
764 			ht_dbg_ratelimited(sdata,
765 					   "release an RX reorder frame due to timeout on earlier frames\n");
766 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
767 							frames);
768 
769 			/*
770 			 * Increment the head seq# also for the skipped slots.
771 			 */
772 			tid_agg_rx->head_seq_num =
773 				(tid_agg_rx->head_seq_num +
774 				 skipped) & IEEE80211_SN_MASK;
775 			skipped = 0;
776 		}
777 	} else while (tid_agg_rx->reorder_buf[index]) {
778 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
779 						frames);
780 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
781 	}
782 
783 	if (tid_agg_rx->stored_mpdu_num) {
784 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
785 
786 		for (; j != (index - 1) % tid_agg_rx->buf_size;
787 		     j = (j + 1) % tid_agg_rx->buf_size) {
788 			if (tid_agg_rx->reorder_buf[j])
789 				break;
790 		}
791 
792  set_release_timer:
793 
794 		mod_timer(&tid_agg_rx->reorder_timer,
795 			  tid_agg_rx->reorder_time[j] + 1 +
796 			  HT_RX_REORDER_BUF_TIMEOUT);
797 	} else {
798 		del_timer(&tid_agg_rx->reorder_timer);
799 	}
800 }
801 
802 /*
803  * As this function belongs to the RX path it must be under
804  * rcu_read_lock protection. It returns false if the frame
805  * can be processed immediately, true if it was consumed.
806  */
807 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
808 					     struct tid_ampdu_rx *tid_agg_rx,
809 					     struct sk_buff *skb,
810 					     struct sk_buff_head *frames)
811 {
812 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
813 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
814 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
815 	u16 head_seq_num, buf_size;
816 	int index;
817 	bool ret = true;
818 
819 	spin_lock(&tid_agg_rx->reorder_lock);
820 
821 	buf_size = tid_agg_rx->buf_size;
822 	head_seq_num = tid_agg_rx->head_seq_num;
823 
824 	/* frame with out of date sequence number */
825 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
826 		dev_kfree_skb(skb);
827 		goto out;
828 	}
829 
830 	/*
831 	 * If frame the sequence number exceeds our buffering window
832 	 * size release some previous frames to make room for this one.
833 	 */
834 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
835 		head_seq_num = ieee80211_sn_inc(
836 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
837 		/* release stored frames up to new head to stack */
838 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
839 						 head_seq_num, frames);
840 	}
841 
842 	/* Now the new frame is always in the range of the reordering buffer */
843 
844 	index = mpdu_seq_num % tid_agg_rx->buf_size;
845 
846 	/* check if we already stored this frame */
847 	if (tid_agg_rx->reorder_buf[index]) {
848 		dev_kfree_skb(skb);
849 		goto out;
850 	}
851 
852 	/*
853 	 * If the current MPDU is in the right order and nothing else
854 	 * is stored we can process it directly, no need to buffer it.
855 	 * If it is first but there's something stored, we may be able
856 	 * to release frames after this one.
857 	 */
858 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
859 	    tid_agg_rx->stored_mpdu_num == 0) {
860 		tid_agg_rx->head_seq_num =
861 			ieee80211_sn_inc(tid_agg_rx->head_seq_num);
862 		ret = false;
863 		goto out;
864 	}
865 
866 	/* put the frame in the reordering buffer */
867 	tid_agg_rx->reorder_buf[index] = skb;
868 	tid_agg_rx->reorder_time[index] = jiffies;
869 	tid_agg_rx->stored_mpdu_num++;
870 	ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
871 
872  out:
873 	spin_unlock(&tid_agg_rx->reorder_lock);
874 	return ret;
875 }
876 
877 /*
878  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
879  * true if the MPDU was buffered, false if it should be processed.
880  */
881 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
882 				       struct sk_buff_head *frames)
883 {
884 	struct sk_buff *skb = rx->skb;
885 	struct ieee80211_local *local = rx->local;
886 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
887 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
888 	struct sta_info *sta = rx->sta;
889 	struct tid_ampdu_rx *tid_agg_rx;
890 	u16 sc;
891 	u8 tid, ack_policy;
892 
893 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
894 	    is_multicast_ether_addr(hdr->addr1))
895 		goto dont_reorder;
896 
897 	/*
898 	 * filter the QoS data rx stream according to
899 	 * STA/TID and check if this STA/TID is on aggregation
900 	 */
901 
902 	if (!sta)
903 		goto dont_reorder;
904 
905 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
906 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
907 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
908 
909 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
910 	if (!tid_agg_rx)
911 		goto dont_reorder;
912 
913 	/* qos null data frames are excluded */
914 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
915 		goto dont_reorder;
916 
917 	/* not part of a BA session */
918 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
919 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
920 		goto dont_reorder;
921 
922 	/* not actually part of this BA session */
923 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
924 		goto dont_reorder;
925 
926 	/* new, potentially un-ordered, ampdu frame - process it */
927 
928 	/* reset session timer */
929 	if (tid_agg_rx->timeout)
930 		tid_agg_rx->last_rx = jiffies;
931 
932 	/* if this mpdu is fragmented - terminate rx aggregation session */
933 	sc = le16_to_cpu(hdr->seq_ctrl);
934 	if (sc & IEEE80211_SCTL_FRAG) {
935 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
936 		skb_queue_tail(&rx->sdata->skb_queue, skb);
937 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
938 		return;
939 	}
940 
941 	/*
942 	 * No locking needed -- we will only ever process one
943 	 * RX packet at a time, and thus own tid_agg_rx. All
944 	 * other code manipulating it needs to (and does) make
945 	 * sure that we cannot get to it any more before doing
946 	 * anything with it.
947 	 */
948 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
949 					     frames))
950 		return;
951 
952  dont_reorder:
953 	__skb_queue_tail(frames, skb);
954 }
955 
956 static ieee80211_rx_result debug_noinline
957 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
958 {
959 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
960 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
961 
962 	/*
963 	 * Drop duplicate 802.11 retransmissions
964 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
965 	 */
966 	if (rx->skb->len >= 24 && rx->sta &&
967 	    !ieee80211_is_ctl(hdr->frame_control) &&
968 	    !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
969 	    !is_multicast_ether_addr(hdr->addr1)) {
970 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
971 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
972 			     hdr->seq_ctrl)) {
973 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
974 				rx->local->dot11FrameDuplicateCount++;
975 				rx->sta->num_duplicates++;
976 			}
977 			return RX_DROP_UNUSABLE;
978 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
979 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
980 		}
981 	}
982 
983 	if (unlikely(rx->skb->len < 16)) {
984 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
985 		return RX_DROP_MONITOR;
986 	}
987 
988 	/* Drop disallowed frame classes based on STA auth/assoc state;
989 	 * IEEE 802.11, Chap 5.5.
990 	 *
991 	 * mac80211 filters only based on association state, i.e. it drops
992 	 * Class 3 frames from not associated stations. hostapd sends
993 	 * deauth/disassoc frames when needed. In addition, hostapd is
994 	 * responsible for filtering on both auth and assoc states.
995 	 */
996 
997 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
998 		return ieee80211_rx_mesh_check(rx);
999 
1000 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1001 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1002 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1003 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1004 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1005 		/*
1006 		 * accept port control frames from the AP even when it's not
1007 		 * yet marked ASSOC to prevent a race where we don't set the
1008 		 * assoc bit quickly enough before it sends the first frame
1009 		 */
1010 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1011 		    ieee80211_is_data_present(hdr->frame_control)) {
1012 			unsigned int hdrlen;
1013 			__be16 ethertype;
1014 
1015 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1016 
1017 			if (rx->skb->len < hdrlen + 8)
1018 				return RX_DROP_MONITOR;
1019 
1020 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1021 			if (ethertype == rx->sdata->control_port_protocol)
1022 				return RX_CONTINUE;
1023 		}
1024 
1025 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1026 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1027 					       hdr->addr2,
1028 					       GFP_ATOMIC))
1029 			return RX_DROP_UNUSABLE;
1030 
1031 		return RX_DROP_MONITOR;
1032 	}
1033 
1034 	return RX_CONTINUE;
1035 }
1036 
1037 
1038 static ieee80211_rx_result debug_noinline
1039 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1040 {
1041 	struct ieee80211_local *local;
1042 	struct ieee80211_hdr *hdr;
1043 	struct sk_buff *skb;
1044 
1045 	local = rx->local;
1046 	skb = rx->skb;
1047 	hdr = (struct ieee80211_hdr *) skb->data;
1048 
1049 	if (!local->pspolling)
1050 		return RX_CONTINUE;
1051 
1052 	if (!ieee80211_has_fromds(hdr->frame_control))
1053 		/* this is not from AP */
1054 		return RX_CONTINUE;
1055 
1056 	if (!ieee80211_is_data(hdr->frame_control))
1057 		return RX_CONTINUE;
1058 
1059 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1060 		/* AP has no more frames buffered for us */
1061 		local->pspolling = false;
1062 		return RX_CONTINUE;
1063 	}
1064 
1065 	/* more data bit is set, let's request a new frame from the AP */
1066 	ieee80211_send_pspoll(local, rx->sdata);
1067 
1068 	return RX_CONTINUE;
1069 }
1070 
1071 static void sta_ps_start(struct sta_info *sta)
1072 {
1073 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1074 	struct ieee80211_local *local = sdata->local;
1075 	struct ps_data *ps;
1076 
1077 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1078 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1079 		ps = &sdata->bss->ps;
1080 	else
1081 		return;
1082 
1083 	atomic_inc(&ps->num_sta_ps);
1084 	set_sta_flag(sta, WLAN_STA_PS_STA);
1085 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1086 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1087 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1088 	       sta->sta.addr, sta->sta.aid);
1089 }
1090 
1091 static void sta_ps_end(struct sta_info *sta)
1092 {
1093 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1094 	       sta->sta.addr, sta->sta.aid);
1095 
1096 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1097 		/*
1098 		 * Clear the flag only if the other one is still set
1099 		 * so that the TX path won't start TX'ing new frames
1100 		 * directly ... In the case that the driver flag isn't
1101 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1102 		 */
1103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1104 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1105 		       sta->sta.addr, sta->sta.aid);
1106 		return;
1107 	}
1108 
1109 	ieee80211_sta_ps_deliver_wakeup(sta);
1110 }
1111 
1112 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1113 {
1114 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1115 	bool in_ps;
1116 
1117 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1118 
1119 	/* Don't let the same PS state be set twice */
1120 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1121 	if ((start && in_ps) || (!start && !in_ps))
1122 		return -EINVAL;
1123 
1124 	if (start)
1125 		sta_ps_start(sta_inf);
1126 	else
1127 		sta_ps_end(sta_inf);
1128 
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1132 
1133 static ieee80211_rx_result debug_noinline
1134 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1135 {
1136 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1137 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1138 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1139 	int tid, ac;
1140 
1141 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1142 		return RX_CONTINUE;
1143 
1144 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1145 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1146 		return RX_CONTINUE;
1147 
1148 	/*
1149 	 * The device handles station powersave, so don't do anything about
1150 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1151 	 * it to mac80211 since they're handled.)
1152 	 */
1153 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1154 		return RX_CONTINUE;
1155 
1156 	/*
1157 	 * Don't do anything if the station isn't already asleep. In
1158 	 * the uAPSD case, the station will probably be marked asleep,
1159 	 * in the PS-Poll case the station must be confused ...
1160 	 */
1161 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1162 		return RX_CONTINUE;
1163 
1164 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1165 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1166 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1167 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1168 			else
1169 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1170 		}
1171 
1172 		/* Free PS Poll skb here instead of returning RX_DROP that would
1173 		 * count as an dropped frame. */
1174 		dev_kfree_skb(rx->skb);
1175 
1176 		return RX_QUEUED;
1177 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1178 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1179 		   ieee80211_has_pm(hdr->frame_control) &&
1180 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1181 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1182 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1183 		ac = ieee802_1d_to_ac[tid & 7];
1184 
1185 		/*
1186 		 * If this AC is not trigger-enabled do nothing.
1187 		 *
1188 		 * NB: This could/should check a separate bitmap of trigger-
1189 		 * enabled queues, but for now we only implement uAPSD w/o
1190 		 * TSPEC changes to the ACs, so they're always the same.
1191 		 */
1192 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1193 			return RX_CONTINUE;
1194 
1195 		/* if we are in a service period, do nothing */
1196 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1197 			return RX_CONTINUE;
1198 
1199 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1200 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1201 		else
1202 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1203 	}
1204 
1205 	return RX_CONTINUE;
1206 }
1207 
1208 static ieee80211_rx_result debug_noinline
1209 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1210 {
1211 	struct sta_info *sta = rx->sta;
1212 	struct sk_buff *skb = rx->skb;
1213 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1214 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1215 	int i;
1216 
1217 	if (!sta)
1218 		return RX_CONTINUE;
1219 
1220 	/*
1221 	 * Update last_rx only for IBSS packets which are for the current
1222 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1223 	 * current IBSS network alive in cases where other STAs start
1224 	 * using different BSSID. This will also give the station another
1225 	 * chance to restart the authentication/authorization in case
1226 	 * something went wrong the first time.
1227 	 */
1228 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1229 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1230 						NL80211_IFTYPE_ADHOC);
1231 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1232 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1233 			sta->last_rx = jiffies;
1234 			if (ieee80211_is_data(hdr->frame_control) &&
1235 			    !is_multicast_ether_addr(hdr->addr1)) {
1236 				sta->last_rx_rate_idx = status->rate_idx;
1237 				sta->last_rx_rate_flag = status->flag;
1238 				sta->last_rx_rate_vht_flag = status->vht_flag;
1239 				sta->last_rx_rate_vht_nss = status->vht_nss;
1240 			}
1241 		}
1242 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1243 		/*
1244 		 * Mesh beacons will update last_rx when if they are found to
1245 		 * match the current local configuration when processed.
1246 		 */
1247 		sta->last_rx = jiffies;
1248 		if (ieee80211_is_data(hdr->frame_control)) {
1249 			sta->last_rx_rate_idx = status->rate_idx;
1250 			sta->last_rx_rate_flag = status->flag;
1251 			sta->last_rx_rate_vht_flag = status->vht_flag;
1252 			sta->last_rx_rate_vht_nss = status->vht_nss;
1253 		}
1254 	}
1255 
1256 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1257 		return RX_CONTINUE;
1258 
1259 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1260 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1261 
1262 	sta->rx_fragments++;
1263 	sta->rx_bytes += rx->skb->len;
1264 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1265 		sta->last_signal = status->signal;
1266 		ewma_add(&sta->avg_signal, -status->signal);
1267 	}
1268 
1269 	if (status->chains) {
1270 		sta->chains = status->chains;
1271 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1272 			int signal = status->chain_signal[i];
1273 
1274 			if (!(status->chains & BIT(i)))
1275 				continue;
1276 
1277 			sta->chain_signal_last[i] = signal;
1278 			ewma_add(&sta->chain_signal_avg[i], -signal);
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * Change STA power saving mode only at the end of a frame
1284 	 * exchange sequence.
1285 	 */
1286 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1287 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1288 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1289 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1290 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1291 	    /* PM bit is only checked in frames where it isn't reserved,
1292 	     * in AP mode it's reserved in non-bufferable management frames
1293 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1294 	     */
1295 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1296 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1297 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1298 			if (!ieee80211_has_pm(hdr->frame_control))
1299 				sta_ps_end(sta);
1300 		} else {
1301 			if (ieee80211_has_pm(hdr->frame_control))
1302 				sta_ps_start(sta);
1303 		}
1304 	}
1305 
1306 	/* mesh power save support */
1307 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1308 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1309 
1310 	/*
1311 	 * Drop (qos-)data::nullfunc frames silently, since they
1312 	 * are used only to control station power saving mode.
1313 	 */
1314 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1315 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1316 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1317 
1318 		/*
1319 		 * If we receive a 4-addr nullfunc frame from a STA
1320 		 * that was not moved to a 4-addr STA vlan yet send
1321 		 * the event to userspace and for older hostapd drop
1322 		 * the frame to the monitor interface.
1323 		 */
1324 		if (ieee80211_has_a4(hdr->frame_control) &&
1325 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1326 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1327 		      !rx->sdata->u.vlan.sta))) {
1328 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1329 				cfg80211_rx_unexpected_4addr_frame(
1330 					rx->sdata->dev, sta->sta.addr,
1331 					GFP_ATOMIC);
1332 			return RX_DROP_MONITOR;
1333 		}
1334 		/*
1335 		 * Update counter and free packet here to avoid
1336 		 * counting this as a dropped packed.
1337 		 */
1338 		sta->rx_packets++;
1339 		dev_kfree_skb(rx->skb);
1340 		return RX_QUEUED;
1341 	}
1342 
1343 	return RX_CONTINUE;
1344 } /* ieee80211_rx_h_sta_process */
1345 
1346 static ieee80211_rx_result debug_noinline
1347 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1348 {
1349 	struct sk_buff *skb = rx->skb;
1350 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1351 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1352 	int keyidx;
1353 	int hdrlen;
1354 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1355 	struct ieee80211_key *sta_ptk = NULL;
1356 	int mmie_keyidx = -1;
1357 	__le16 fc;
1358 	const struct ieee80211_cipher_scheme *cs = NULL;
1359 
1360 	/*
1361 	 * Key selection 101
1362 	 *
1363 	 * There are four types of keys:
1364 	 *  - GTK (group keys)
1365 	 *  - IGTK (group keys for management frames)
1366 	 *  - PTK (pairwise keys)
1367 	 *  - STK (station-to-station pairwise keys)
1368 	 *
1369 	 * When selecting a key, we have to distinguish between multicast
1370 	 * (including broadcast) and unicast frames, the latter can only
1371 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1372 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1373 	 * unicast frames can also use key indices like GTKs. Hence, if we
1374 	 * don't have a PTK/STK we check the key index for a WEP key.
1375 	 *
1376 	 * Note that in a regular BSS, multicast frames are sent by the
1377 	 * AP only, associated stations unicast the frame to the AP first
1378 	 * which then multicasts it on their behalf.
1379 	 *
1380 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1381 	 * with each station, that is something we don't currently handle.
1382 	 * The spec seems to expect that one negotiates the same key with
1383 	 * every station but there's no such requirement; VLANs could be
1384 	 * possible.
1385 	 */
1386 
1387 	/*
1388 	 * No point in finding a key and decrypting if the frame is neither
1389 	 * addressed to us nor a multicast frame.
1390 	 */
1391 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1392 		return RX_CONTINUE;
1393 
1394 	/* start without a key */
1395 	rx->key = NULL;
1396 	fc = hdr->frame_control;
1397 
1398 	if (rx->sta) {
1399 		int keyid = rx->sta->ptk_idx;
1400 
1401 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1402 			cs = rx->sta->cipher_scheme;
1403 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1404 			if (unlikely(keyid < 0))
1405 				return RX_DROP_UNUSABLE;
1406 		}
1407 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1408 	}
1409 
1410 	if (!ieee80211_has_protected(fc))
1411 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1412 
1413 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1414 		rx->key = sta_ptk;
1415 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1416 		    (status->flag & RX_FLAG_IV_STRIPPED))
1417 			return RX_CONTINUE;
1418 		/* Skip decryption if the frame is not protected. */
1419 		if (!ieee80211_has_protected(fc))
1420 			return RX_CONTINUE;
1421 	} else if (mmie_keyidx >= 0) {
1422 		/* Broadcast/multicast robust management frame / BIP */
1423 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1424 		    (status->flag & RX_FLAG_IV_STRIPPED))
1425 			return RX_CONTINUE;
1426 
1427 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1428 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1429 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1430 		if (rx->sta)
1431 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1432 		if (!rx->key)
1433 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1434 	} else if (!ieee80211_has_protected(fc)) {
1435 		/*
1436 		 * The frame was not protected, so skip decryption. However, we
1437 		 * need to set rx->key if there is a key that could have been
1438 		 * used so that the frame may be dropped if encryption would
1439 		 * have been expected.
1440 		 */
1441 		struct ieee80211_key *key = NULL;
1442 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1443 		int i;
1444 
1445 		if (ieee80211_is_mgmt(fc) &&
1446 		    is_multicast_ether_addr(hdr->addr1) &&
1447 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1448 			rx->key = key;
1449 		else {
1450 			if (rx->sta) {
1451 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1452 					key = rcu_dereference(rx->sta->gtk[i]);
1453 					if (key)
1454 						break;
1455 				}
1456 			}
1457 			if (!key) {
1458 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1459 					key = rcu_dereference(sdata->keys[i]);
1460 					if (key)
1461 						break;
1462 				}
1463 			}
1464 			if (key)
1465 				rx->key = key;
1466 		}
1467 		return RX_CONTINUE;
1468 	} else {
1469 		u8 keyid;
1470 
1471 		/*
1472 		 * The device doesn't give us the IV so we won't be
1473 		 * able to look up the key. That's ok though, we
1474 		 * don't need to decrypt the frame, we just won't
1475 		 * be able to keep statistics accurate.
1476 		 * Except for key threshold notifications, should
1477 		 * we somehow allow the driver to tell us which key
1478 		 * the hardware used if this flag is set?
1479 		 */
1480 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1481 		    (status->flag & RX_FLAG_IV_STRIPPED))
1482 			return RX_CONTINUE;
1483 
1484 		hdrlen = ieee80211_hdrlen(fc);
1485 
1486 		if (cs) {
1487 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1488 
1489 			if (unlikely(keyidx < 0))
1490 				return RX_DROP_UNUSABLE;
1491 		} else {
1492 			if (rx->skb->len < 8 + hdrlen)
1493 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1494 			/*
1495 			 * no need to call ieee80211_wep_get_keyidx,
1496 			 * it verifies a bunch of things we've done already
1497 			 */
1498 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1499 			keyidx = keyid >> 6;
1500 		}
1501 
1502 		/* check per-station GTK first, if multicast packet */
1503 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1504 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1505 
1506 		/* if not found, try default key */
1507 		if (!rx->key) {
1508 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1509 
1510 			/*
1511 			 * RSNA-protected unicast frames should always be
1512 			 * sent with pairwise or station-to-station keys,
1513 			 * but for WEP we allow using a key index as well.
1514 			 */
1515 			if (rx->key &&
1516 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1517 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1518 			    !is_multicast_ether_addr(hdr->addr1))
1519 				rx->key = NULL;
1520 		}
1521 	}
1522 
1523 	if (rx->key) {
1524 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1525 			return RX_DROP_MONITOR;
1526 
1527 		rx->key->tx_rx_count++;
1528 		/* TODO: add threshold stuff again */
1529 	} else {
1530 		return RX_DROP_MONITOR;
1531 	}
1532 
1533 	switch (rx->key->conf.cipher) {
1534 	case WLAN_CIPHER_SUITE_WEP40:
1535 	case WLAN_CIPHER_SUITE_WEP104:
1536 		result = ieee80211_crypto_wep_decrypt(rx);
1537 		break;
1538 	case WLAN_CIPHER_SUITE_TKIP:
1539 		result = ieee80211_crypto_tkip_decrypt(rx);
1540 		break;
1541 	case WLAN_CIPHER_SUITE_CCMP:
1542 		result = ieee80211_crypto_ccmp_decrypt(rx);
1543 		break;
1544 	case WLAN_CIPHER_SUITE_AES_CMAC:
1545 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1546 		break;
1547 	default:
1548 		result = ieee80211_crypto_hw_decrypt(rx);
1549 	}
1550 
1551 	/* the hdr variable is invalid after the decrypt handlers */
1552 
1553 	/* either the frame has been decrypted or will be dropped */
1554 	status->flag |= RX_FLAG_DECRYPTED;
1555 
1556 	return result;
1557 }
1558 
1559 static inline struct ieee80211_fragment_entry *
1560 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1561 			 unsigned int frag, unsigned int seq, int rx_queue,
1562 			 struct sk_buff **skb)
1563 {
1564 	struct ieee80211_fragment_entry *entry;
1565 
1566 	entry = &sdata->fragments[sdata->fragment_next++];
1567 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1568 		sdata->fragment_next = 0;
1569 
1570 	if (!skb_queue_empty(&entry->skb_list))
1571 		__skb_queue_purge(&entry->skb_list);
1572 
1573 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1574 	*skb = NULL;
1575 	entry->first_frag_time = jiffies;
1576 	entry->seq = seq;
1577 	entry->rx_queue = rx_queue;
1578 	entry->last_frag = frag;
1579 	entry->ccmp = 0;
1580 	entry->extra_len = 0;
1581 
1582 	return entry;
1583 }
1584 
1585 static inline struct ieee80211_fragment_entry *
1586 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1587 			  unsigned int frag, unsigned int seq,
1588 			  int rx_queue, struct ieee80211_hdr *hdr)
1589 {
1590 	struct ieee80211_fragment_entry *entry;
1591 	int i, idx;
1592 
1593 	idx = sdata->fragment_next;
1594 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1595 		struct ieee80211_hdr *f_hdr;
1596 
1597 		idx--;
1598 		if (idx < 0)
1599 			idx = IEEE80211_FRAGMENT_MAX - 1;
1600 
1601 		entry = &sdata->fragments[idx];
1602 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1603 		    entry->rx_queue != rx_queue ||
1604 		    entry->last_frag + 1 != frag)
1605 			continue;
1606 
1607 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1608 
1609 		/*
1610 		 * Check ftype and addresses are equal, else check next fragment
1611 		 */
1612 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1613 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1614 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1615 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1616 			continue;
1617 
1618 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1619 			__skb_queue_purge(&entry->skb_list);
1620 			continue;
1621 		}
1622 		return entry;
1623 	}
1624 
1625 	return NULL;
1626 }
1627 
1628 static ieee80211_rx_result debug_noinline
1629 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1630 {
1631 	struct ieee80211_hdr *hdr;
1632 	u16 sc;
1633 	__le16 fc;
1634 	unsigned int frag, seq;
1635 	struct ieee80211_fragment_entry *entry;
1636 	struct sk_buff *skb;
1637 	struct ieee80211_rx_status *status;
1638 
1639 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1640 	fc = hdr->frame_control;
1641 
1642 	if (ieee80211_is_ctl(fc))
1643 		return RX_CONTINUE;
1644 
1645 	sc = le16_to_cpu(hdr->seq_ctrl);
1646 	frag = sc & IEEE80211_SCTL_FRAG;
1647 
1648 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1649 		   is_multicast_ether_addr(hdr->addr1))) {
1650 		/* not fragmented */
1651 		goto out;
1652 	}
1653 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1654 
1655 	if (skb_linearize(rx->skb))
1656 		return RX_DROP_UNUSABLE;
1657 
1658 	/*
1659 	 *  skb_linearize() might change the skb->data and
1660 	 *  previously cached variables (in this case, hdr) need to
1661 	 *  be refreshed with the new data.
1662 	 */
1663 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1664 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1665 
1666 	if (frag == 0) {
1667 		/* This is the first fragment of a new frame. */
1668 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1669 						 rx->seqno_idx, &(rx->skb));
1670 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1671 		    ieee80211_has_protected(fc)) {
1672 			int queue = rx->security_idx;
1673 			/* Store CCMP PN so that we can verify that the next
1674 			 * fragment has a sequential PN value. */
1675 			entry->ccmp = 1;
1676 			memcpy(entry->last_pn,
1677 			       rx->key->u.ccmp.rx_pn[queue],
1678 			       IEEE80211_CCMP_PN_LEN);
1679 		}
1680 		return RX_QUEUED;
1681 	}
1682 
1683 	/* This is a fragment for a frame that should already be pending in
1684 	 * fragment cache. Add this fragment to the end of the pending entry.
1685 	 */
1686 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1687 					  rx->seqno_idx, hdr);
1688 	if (!entry) {
1689 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1690 		return RX_DROP_MONITOR;
1691 	}
1692 
1693 	/* Verify that MPDUs within one MSDU have sequential PN values.
1694 	 * (IEEE 802.11i, 8.3.3.4.5) */
1695 	if (entry->ccmp) {
1696 		int i;
1697 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1698 		int queue;
1699 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1700 			return RX_DROP_UNUSABLE;
1701 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1702 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1703 			pn[i]++;
1704 			if (pn[i])
1705 				break;
1706 		}
1707 		queue = rx->security_idx;
1708 		rpn = rx->key->u.ccmp.rx_pn[queue];
1709 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1710 			return RX_DROP_UNUSABLE;
1711 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1712 	}
1713 
1714 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1715 	__skb_queue_tail(&entry->skb_list, rx->skb);
1716 	entry->last_frag = frag;
1717 	entry->extra_len += rx->skb->len;
1718 	if (ieee80211_has_morefrags(fc)) {
1719 		rx->skb = NULL;
1720 		return RX_QUEUED;
1721 	}
1722 
1723 	rx->skb = __skb_dequeue(&entry->skb_list);
1724 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1725 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1726 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1727 					      GFP_ATOMIC))) {
1728 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1729 			__skb_queue_purge(&entry->skb_list);
1730 			return RX_DROP_UNUSABLE;
1731 		}
1732 	}
1733 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1734 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1735 		dev_kfree_skb(skb);
1736 	}
1737 
1738 	/* Complete frame has been reassembled - process it now */
1739 	status = IEEE80211_SKB_RXCB(rx->skb);
1740 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1741 
1742  out:
1743 	if (rx->sta)
1744 		rx->sta->rx_packets++;
1745 	if (is_multicast_ether_addr(hdr->addr1))
1746 		rx->local->dot11MulticastReceivedFrameCount++;
1747 	else
1748 		ieee80211_led_rx(rx->local);
1749 	return RX_CONTINUE;
1750 }
1751 
1752 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1753 {
1754 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1755 		return -EACCES;
1756 
1757 	return 0;
1758 }
1759 
1760 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1761 {
1762 	struct sk_buff *skb = rx->skb;
1763 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1764 
1765 	/*
1766 	 * Pass through unencrypted frames if the hardware has
1767 	 * decrypted them already.
1768 	 */
1769 	if (status->flag & RX_FLAG_DECRYPTED)
1770 		return 0;
1771 
1772 	/* Drop unencrypted frames if key is set. */
1773 	if (unlikely(!ieee80211_has_protected(fc) &&
1774 		     !ieee80211_is_nullfunc(fc) &&
1775 		     ieee80211_is_data(fc) &&
1776 		     (rx->key || rx->sdata->drop_unencrypted)))
1777 		return -EACCES;
1778 
1779 	return 0;
1780 }
1781 
1782 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1783 {
1784 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1785 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1786 	__le16 fc = hdr->frame_control;
1787 
1788 	/*
1789 	 * Pass through unencrypted frames if the hardware has
1790 	 * decrypted them already.
1791 	 */
1792 	if (status->flag & RX_FLAG_DECRYPTED)
1793 		return 0;
1794 
1795 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1796 		if (unlikely(!ieee80211_has_protected(fc) &&
1797 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1798 			     rx->key)) {
1799 			if (ieee80211_is_deauth(fc) ||
1800 			    ieee80211_is_disassoc(fc))
1801 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1802 							     rx->skb->data,
1803 							     rx->skb->len);
1804 			return -EACCES;
1805 		}
1806 		/* BIP does not use Protected field, so need to check MMIE */
1807 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1808 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1809 			if (ieee80211_is_deauth(fc) ||
1810 			    ieee80211_is_disassoc(fc))
1811 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1812 							     rx->skb->data,
1813 							     rx->skb->len);
1814 			return -EACCES;
1815 		}
1816 		/*
1817 		 * When using MFP, Action frames are not allowed prior to
1818 		 * having configured keys.
1819 		 */
1820 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1821 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
1822 			return -EACCES;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 static int
1829 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1830 {
1831 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1832 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1833 	bool check_port_control = false;
1834 	struct ethhdr *ehdr;
1835 	int ret;
1836 
1837 	*port_control = false;
1838 	if (ieee80211_has_a4(hdr->frame_control) &&
1839 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1840 		return -1;
1841 
1842 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1843 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1844 
1845 		if (!sdata->u.mgd.use_4addr)
1846 			return -1;
1847 		else
1848 			check_port_control = true;
1849 	}
1850 
1851 	if (is_multicast_ether_addr(hdr->addr1) &&
1852 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1853 		return -1;
1854 
1855 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1856 	if (ret < 0)
1857 		return ret;
1858 
1859 	ehdr = (struct ethhdr *) rx->skb->data;
1860 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1861 		*port_control = true;
1862 	else if (check_port_control)
1863 		return -1;
1864 
1865 	return 0;
1866 }
1867 
1868 /*
1869  * requires that rx->skb is a frame with ethernet header
1870  */
1871 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1872 {
1873 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1874 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1875 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1876 
1877 	/*
1878 	 * Allow EAPOL frames to us/the PAE group address regardless
1879 	 * of whether the frame was encrypted or not.
1880 	 */
1881 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1882 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1883 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1884 		return true;
1885 
1886 	if (ieee80211_802_1x_port_control(rx) ||
1887 	    ieee80211_drop_unencrypted(rx, fc))
1888 		return false;
1889 
1890 	return true;
1891 }
1892 
1893 /*
1894  * requires that rx->skb is a frame with ethernet header
1895  */
1896 static void
1897 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1898 {
1899 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1900 	struct net_device *dev = sdata->dev;
1901 	struct sk_buff *skb, *xmit_skb;
1902 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1903 	struct sta_info *dsta;
1904 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1905 
1906 	skb = rx->skb;
1907 	xmit_skb = NULL;
1908 
1909 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1910 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1911 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1912 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1913 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1914 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1915 			/*
1916 			 * send multicast frames both to higher layers in
1917 			 * local net stack and back to the wireless medium
1918 			 */
1919 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1920 			if (!xmit_skb)
1921 				net_info_ratelimited("%s: failed to clone multicast frame\n",
1922 						    dev->name);
1923 		} else {
1924 			dsta = sta_info_get(sdata, skb->data);
1925 			if (dsta) {
1926 				/*
1927 				 * The destination station is associated to
1928 				 * this AP (in this VLAN), so send the frame
1929 				 * directly to it and do not pass it to local
1930 				 * net stack.
1931 				 */
1932 				xmit_skb = skb;
1933 				skb = NULL;
1934 			}
1935 		}
1936 	}
1937 
1938 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1939 	if (skb) {
1940 		/* 'align' will only take the values 0 or 2 here since all
1941 		 * frames are required to be aligned to 2-byte boundaries
1942 		 * when being passed to mac80211; the code here works just
1943 		 * as well if that isn't true, but mac80211 assumes it can
1944 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1945 		 */
1946 		int align;
1947 
1948 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1949 		if (align) {
1950 			if (WARN_ON(skb_headroom(skb) < 3)) {
1951 				dev_kfree_skb(skb);
1952 				skb = NULL;
1953 			} else {
1954 				u8 *data = skb->data;
1955 				size_t len = skb_headlen(skb);
1956 				skb->data -= align;
1957 				memmove(skb->data, data, len);
1958 				skb_set_tail_pointer(skb, len);
1959 			}
1960 		}
1961 	}
1962 #endif
1963 
1964 	if (skb) {
1965 		/* deliver to local stack */
1966 		skb->protocol = eth_type_trans(skb, dev);
1967 		memset(skb->cb, 0, sizeof(skb->cb));
1968 		if (rx->local->napi)
1969 			napi_gro_receive(rx->local->napi, skb);
1970 		else
1971 			netif_receive_skb(skb);
1972 	}
1973 
1974 	if (xmit_skb) {
1975 		/*
1976 		 * Send to wireless media and increase priority by 256 to
1977 		 * keep the received priority instead of reclassifying
1978 		 * the frame (see cfg80211_classify8021d).
1979 		 */
1980 		xmit_skb->priority += 256;
1981 		xmit_skb->protocol = htons(ETH_P_802_3);
1982 		skb_reset_network_header(xmit_skb);
1983 		skb_reset_mac_header(xmit_skb);
1984 		dev_queue_xmit(xmit_skb);
1985 	}
1986 }
1987 
1988 static ieee80211_rx_result debug_noinline
1989 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1990 {
1991 	struct net_device *dev = rx->sdata->dev;
1992 	struct sk_buff *skb = rx->skb;
1993 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1994 	__le16 fc = hdr->frame_control;
1995 	struct sk_buff_head frame_list;
1996 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1997 
1998 	if (unlikely(!ieee80211_is_data(fc)))
1999 		return RX_CONTINUE;
2000 
2001 	if (unlikely(!ieee80211_is_data_present(fc)))
2002 		return RX_DROP_MONITOR;
2003 
2004 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2005 		return RX_CONTINUE;
2006 
2007 	if (ieee80211_has_a4(hdr->frame_control) &&
2008 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2009 	    !rx->sdata->u.vlan.sta)
2010 		return RX_DROP_UNUSABLE;
2011 
2012 	if (is_multicast_ether_addr(hdr->addr1) &&
2013 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2014 	      rx->sdata->u.vlan.sta) ||
2015 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2016 	      rx->sdata->u.mgd.use_4addr)))
2017 		return RX_DROP_UNUSABLE;
2018 
2019 	skb->dev = dev;
2020 	__skb_queue_head_init(&frame_list);
2021 
2022 	if (skb_linearize(skb))
2023 		return RX_DROP_UNUSABLE;
2024 
2025 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2026 				 rx->sdata->vif.type,
2027 				 rx->local->hw.extra_tx_headroom, true);
2028 
2029 	while (!skb_queue_empty(&frame_list)) {
2030 		rx->skb = __skb_dequeue(&frame_list);
2031 
2032 		if (!ieee80211_frame_allowed(rx, fc)) {
2033 			dev_kfree_skb(rx->skb);
2034 			continue;
2035 		}
2036 		dev->stats.rx_packets++;
2037 		dev->stats.rx_bytes += rx->skb->len;
2038 
2039 		ieee80211_deliver_skb(rx);
2040 	}
2041 
2042 	return RX_QUEUED;
2043 }
2044 
2045 #ifdef CONFIG_MAC80211_MESH
2046 static ieee80211_rx_result
2047 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2048 {
2049 	struct ieee80211_hdr *fwd_hdr, *hdr;
2050 	struct ieee80211_tx_info *info;
2051 	struct ieee80211s_hdr *mesh_hdr;
2052 	struct sk_buff *skb = rx->skb, *fwd_skb;
2053 	struct ieee80211_local *local = rx->local;
2054 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2055 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2056 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2057 	u16 q, hdrlen;
2058 
2059 	hdr = (struct ieee80211_hdr *) skb->data;
2060 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2061 
2062 	/* make sure fixed part of mesh header is there, also checks skb len */
2063 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2064 		return RX_DROP_MONITOR;
2065 
2066 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2067 
2068 	/* make sure full mesh header is there, also checks skb len */
2069 	if (!pskb_may_pull(rx->skb,
2070 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2071 		return RX_DROP_MONITOR;
2072 
2073 	/* reload pointers */
2074 	hdr = (struct ieee80211_hdr *) skb->data;
2075 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2076 
2077 	/* frame is in RMC, don't forward */
2078 	if (ieee80211_is_data(hdr->frame_control) &&
2079 	    is_multicast_ether_addr(hdr->addr1) &&
2080 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2081 		return RX_DROP_MONITOR;
2082 
2083 	if (!ieee80211_is_data(hdr->frame_control) ||
2084 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2085 		return RX_CONTINUE;
2086 
2087 	if (!mesh_hdr->ttl)
2088 		return RX_DROP_MONITOR;
2089 
2090 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2091 		struct mesh_path *mppath;
2092 		char *proxied_addr;
2093 		char *mpp_addr;
2094 
2095 		if (is_multicast_ether_addr(hdr->addr1)) {
2096 			mpp_addr = hdr->addr3;
2097 			proxied_addr = mesh_hdr->eaddr1;
2098 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2099 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2100 			mpp_addr = hdr->addr4;
2101 			proxied_addr = mesh_hdr->eaddr2;
2102 		} else {
2103 			return RX_DROP_MONITOR;
2104 		}
2105 
2106 		rcu_read_lock();
2107 		mppath = mpp_path_lookup(sdata, proxied_addr);
2108 		if (!mppath) {
2109 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2110 		} else {
2111 			spin_lock_bh(&mppath->state_lock);
2112 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2113 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2114 			spin_unlock_bh(&mppath->state_lock);
2115 		}
2116 		rcu_read_unlock();
2117 	}
2118 
2119 	/* Frame has reached destination.  Don't forward */
2120 	if (!is_multicast_ether_addr(hdr->addr1) &&
2121 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2122 		return RX_CONTINUE;
2123 
2124 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2125 	if (ieee80211_queue_stopped(&local->hw, q)) {
2126 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2127 		return RX_DROP_MONITOR;
2128 	}
2129 	skb_set_queue_mapping(skb, q);
2130 
2131 	if (!--mesh_hdr->ttl) {
2132 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2133 		goto out;
2134 	}
2135 
2136 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2137 		goto out;
2138 
2139 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2140 	if (!fwd_skb) {
2141 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2142 				    sdata->name);
2143 		goto out;
2144 	}
2145 
2146 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2147 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2148 	info = IEEE80211_SKB_CB(fwd_skb);
2149 	memset(info, 0, sizeof(*info));
2150 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2151 	info->control.vif = &rx->sdata->vif;
2152 	info->control.jiffies = jiffies;
2153 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2154 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2155 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2156 		/* update power mode indication when forwarding */
2157 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2158 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2159 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2160 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2161 	} else {
2162 		/* unable to resolve next hop */
2163 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2164 				   fwd_hdr->addr3, 0,
2165 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2166 				   fwd_hdr->addr2);
2167 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2168 		kfree_skb(fwd_skb);
2169 		return RX_DROP_MONITOR;
2170 	}
2171 
2172 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2173 	ieee80211_add_pending_skb(local, fwd_skb);
2174  out:
2175 	if (is_multicast_ether_addr(hdr->addr1) ||
2176 	    sdata->dev->flags & IFF_PROMISC)
2177 		return RX_CONTINUE;
2178 	else
2179 		return RX_DROP_MONITOR;
2180 }
2181 #endif
2182 
2183 static ieee80211_rx_result debug_noinline
2184 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2185 {
2186 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2187 	struct ieee80211_local *local = rx->local;
2188 	struct net_device *dev = sdata->dev;
2189 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2190 	__le16 fc = hdr->frame_control;
2191 	bool port_control;
2192 	int err;
2193 
2194 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2195 		return RX_CONTINUE;
2196 
2197 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2198 		return RX_DROP_MONITOR;
2199 
2200 	/*
2201 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2202 	 * also drop the frame to cooked monitor interfaces.
2203 	 */
2204 	if (ieee80211_has_a4(hdr->frame_control) &&
2205 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2206 		if (rx->sta &&
2207 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2208 			cfg80211_rx_unexpected_4addr_frame(
2209 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2210 		return RX_DROP_MONITOR;
2211 	}
2212 
2213 	err = __ieee80211_data_to_8023(rx, &port_control);
2214 	if (unlikely(err))
2215 		return RX_DROP_UNUSABLE;
2216 
2217 	if (!ieee80211_frame_allowed(rx, fc))
2218 		return RX_DROP_MONITOR;
2219 
2220 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2221 	    unlikely(port_control) && sdata->bss) {
2222 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2223 				     u.ap);
2224 		dev = sdata->dev;
2225 		rx->sdata = sdata;
2226 	}
2227 
2228 	rx->skb->dev = dev;
2229 
2230 	dev->stats.rx_packets++;
2231 	dev->stats.rx_bytes += rx->skb->len;
2232 
2233 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2234 	    !is_multicast_ether_addr(
2235 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2236 	    (!local->scanning &&
2237 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2238 			mod_timer(&local->dynamic_ps_timer, jiffies +
2239 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2240 	}
2241 
2242 	ieee80211_deliver_skb(rx);
2243 
2244 	return RX_QUEUED;
2245 }
2246 
2247 static ieee80211_rx_result debug_noinline
2248 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2249 {
2250 	struct sk_buff *skb = rx->skb;
2251 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2252 	struct tid_ampdu_rx *tid_agg_rx;
2253 	u16 start_seq_num;
2254 	u16 tid;
2255 
2256 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2257 		return RX_CONTINUE;
2258 
2259 	if (ieee80211_is_back_req(bar->frame_control)) {
2260 		struct {
2261 			__le16 control, start_seq_num;
2262 		} __packed bar_data;
2263 
2264 		if (!rx->sta)
2265 			return RX_DROP_MONITOR;
2266 
2267 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2268 				  &bar_data, sizeof(bar_data)))
2269 			return RX_DROP_MONITOR;
2270 
2271 		tid = le16_to_cpu(bar_data.control) >> 12;
2272 
2273 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2274 		if (!tid_agg_rx)
2275 			return RX_DROP_MONITOR;
2276 
2277 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2278 
2279 		/* reset session timer */
2280 		if (tid_agg_rx->timeout)
2281 			mod_timer(&tid_agg_rx->session_timer,
2282 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2283 
2284 		spin_lock(&tid_agg_rx->reorder_lock);
2285 		/* release stored frames up to start of BAR */
2286 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2287 						 start_seq_num, frames);
2288 		spin_unlock(&tid_agg_rx->reorder_lock);
2289 
2290 		kfree_skb(skb);
2291 		return RX_QUEUED;
2292 	}
2293 
2294 	/*
2295 	 * After this point, we only want management frames,
2296 	 * so we can drop all remaining control frames to
2297 	 * cooked monitor interfaces.
2298 	 */
2299 	return RX_DROP_MONITOR;
2300 }
2301 
2302 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2303 					   struct ieee80211_mgmt *mgmt,
2304 					   size_t len)
2305 {
2306 	struct ieee80211_local *local = sdata->local;
2307 	struct sk_buff *skb;
2308 	struct ieee80211_mgmt *resp;
2309 
2310 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2311 		/* Not to own unicast address */
2312 		return;
2313 	}
2314 
2315 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2316 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2317 		/* Not from the current AP or not associated yet. */
2318 		return;
2319 	}
2320 
2321 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2322 		/* Too short SA Query request frame */
2323 		return;
2324 	}
2325 
2326 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2327 	if (skb == NULL)
2328 		return;
2329 
2330 	skb_reserve(skb, local->hw.extra_tx_headroom);
2331 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2332 	memset(resp, 0, 24);
2333 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2334 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2335 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2336 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2337 					  IEEE80211_STYPE_ACTION);
2338 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2339 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2340 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2341 	memcpy(resp->u.action.u.sa_query.trans_id,
2342 	       mgmt->u.action.u.sa_query.trans_id,
2343 	       WLAN_SA_QUERY_TR_ID_LEN);
2344 
2345 	ieee80211_tx_skb(sdata, skb);
2346 }
2347 
2348 static ieee80211_rx_result debug_noinline
2349 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2350 {
2351 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2352 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2353 
2354 	/*
2355 	 * From here on, look only at management frames.
2356 	 * Data and control frames are already handled,
2357 	 * and unknown (reserved) frames are useless.
2358 	 */
2359 	if (rx->skb->len < 24)
2360 		return RX_DROP_MONITOR;
2361 
2362 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2363 		return RX_DROP_MONITOR;
2364 
2365 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2366 	    ieee80211_is_beacon(mgmt->frame_control) &&
2367 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2368 		int sig = 0;
2369 
2370 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2371 			sig = status->signal;
2372 
2373 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2374 					    rx->skb->data, rx->skb->len,
2375 					    status->freq, sig);
2376 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2377 	}
2378 
2379 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2380 		return RX_DROP_MONITOR;
2381 
2382 	if (ieee80211_drop_unencrypted_mgmt(rx))
2383 		return RX_DROP_UNUSABLE;
2384 
2385 	return RX_CONTINUE;
2386 }
2387 
2388 static ieee80211_rx_result debug_noinline
2389 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2390 {
2391 	struct ieee80211_local *local = rx->local;
2392 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2393 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2394 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2395 	int len = rx->skb->len;
2396 
2397 	if (!ieee80211_is_action(mgmt->frame_control))
2398 		return RX_CONTINUE;
2399 
2400 	/* drop too small frames */
2401 	if (len < IEEE80211_MIN_ACTION_SIZE)
2402 		return RX_DROP_UNUSABLE;
2403 
2404 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2405 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2406 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2407 		return RX_DROP_UNUSABLE;
2408 
2409 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2410 		return RX_DROP_UNUSABLE;
2411 
2412 	switch (mgmt->u.action.category) {
2413 	case WLAN_CATEGORY_HT:
2414 		/* reject HT action frames from stations not supporting HT */
2415 		if (!rx->sta->sta.ht_cap.ht_supported)
2416 			goto invalid;
2417 
2418 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2419 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2420 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2421 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2422 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2423 			break;
2424 
2425 		/* verify action & smps_control/chanwidth are present */
2426 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2427 			goto invalid;
2428 
2429 		switch (mgmt->u.action.u.ht_smps.action) {
2430 		case WLAN_HT_ACTION_SMPS: {
2431 			struct ieee80211_supported_band *sband;
2432 			enum ieee80211_smps_mode smps_mode;
2433 
2434 			/* convert to HT capability */
2435 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2436 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2437 				smps_mode = IEEE80211_SMPS_OFF;
2438 				break;
2439 			case WLAN_HT_SMPS_CONTROL_STATIC:
2440 				smps_mode = IEEE80211_SMPS_STATIC;
2441 				break;
2442 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2443 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2444 				break;
2445 			default:
2446 				goto invalid;
2447 			}
2448 
2449 			/* if no change do nothing */
2450 			if (rx->sta->sta.smps_mode == smps_mode)
2451 				goto handled;
2452 			rx->sta->sta.smps_mode = smps_mode;
2453 
2454 			sband = rx->local->hw.wiphy->bands[status->band];
2455 
2456 			rate_control_rate_update(local, sband, rx->sta,
2457 						 IEEE80211_RC_SMPS_CHANGED);
2458 			goto handled;
2459 		}
2460 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2461 			struct ieee80211_supported_band *sband;
2462 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2463 			enum ieee80211_sta_rx_bandwidth new_bw;
2464 
2465 			/* If it doesn't support 40 MHz it can't change ... */
2466 			if (!(rx->sta->sta.ht_cap.cap &
2467 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2468 				goto handled;
2469 
2470 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2471 				new_bw = IEEE80211_STA_RX_BW_20;
2472 			else
2473 				new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2474 
2475 			if (rx->sta->sta.bandwidth == new_bw)
2476 				goto handled;
2477 
2478 			sband = rx->local->hw.wiphy->bands[status->band];
2479 
2480 			rate_control_rate_update(local, sband, rx->sta,
2481 						 IEEE80211_RC_BW_CHANGED);
2482 			goto handled;
2483 		}
2484 		default:
2485 			goto invalid;
2486 		}
2487 
2488 		break;
2489 	case WLAN_CATEGORY_PUBLIC:
2490 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2491 			goto invalid;
2492 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2493 			break;
2494 		if (!rx->sta)
2495 			break;
2496 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2497 			break;
2498 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2499 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2500 			break;
2501 		if (len < offsetof(struct ieee80211_mgmt,
2502 				   u.action.u.ext_chan_switch.variable))
2503 			goto invalid;
2504 		goto queue;
2505 	case WLAN_CATEGORY_VHT:
2506 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2507 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2508 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2509 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2510 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2511 			break;
2512 
2513 		/* verify action code is present */
2514 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2515 			goto invalid;
2516 
2517 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2518 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2519 			u8 opmode;
2520 
2521 			/* verify opmode is present */
2522 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2523 				goto invalid;
2524 
2525 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2526 
2527 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2528 						    opmode, status->band,
2529 						    false);
2530 			goto handled;
2531 		}
2532 		default:
2533 			break;
2534 		}
2535 		break;
2536 	case WLAN_CATEGORY_BACK:
2537 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2538 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2539 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2540 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2541 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2542 			break;
2543 
2544 		/* verify action_code is present */
2545 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2546 			break;
2547 
2548 		switch (mgmt->u.action.u.addba_req.action_code) {
2549 		case WLAN_ACTION_ADDBA_REQ:
2550 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2551 				   sizeof(mgmt->u.action.u.addba_req)))
2552 				goto invalid;
2553 			break;
2554 		case WLAN_ACTION_ADDBA_RESP:
2555 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2556 				   sizeof(mgmt->u.action.u.addba_resp)))
2557 				goto invalid;
2558 			break;
2559 		case WLAN_ACTION_DELBA:
2560 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2561 				   sizeof(mgmt->u.action.u.delba)))
2562 				goto invalid;
2563 			break;
2564 		default:
2565 			goto invalid;
2566 		}
2567 
2568 		goto queue;
2569 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2570 		/* verify action_code is present */
2571 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2572 			break;
2573 
2574 		switch (mgmt->u.action.u.measurement.action_code) {
2575 		case WLAN_ACTION_SPCT_MSR_REQ:
2576 			if (status->band != IEEE80211_BAND_5GHZ)
2577 				break;
2578 
2579 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2580 				   sizeof(mgmt->u.action.u.measurement)))
2581 				break;
2582 
2583 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2584 				break;
2585 
2586 			ieee80211_process_measurement_req(sdata, mgmt, len);
2587 			goto handled;
2588 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2589 			u8 *bssid;
2590 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2591 				   sizeof(mgmt->u.action.u.chan_switch)))
2592 				break;
2593 
2594 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2595 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2596 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2597 				break;
2598 
2599 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2600 				bssid = sdata->u.mgd.bssid;
2601 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2602 				bssid = sdata->u.ibss.bssid;
2603 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2604 				bssid = mgmt->sa;
2605 			else
2606 				break;
2607 
2608 			if (!ether_addr_equal(mgmt->bssid, bssid))
2609 				break;
2610 
2611 			goto queue;
2612 			}
2613 		}
2614 		break;
2615 	case WLAN_CATEGORY_SA_QUERY:
2616 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2617 			   sizeof(mgmt->u.action.u.sa_query)))
2618 			break;
2619 
2620 		switch (mgmt->u.action.u.sa_query.action) {
2621 		case WLAN_ACTION_SA_QUERY_REQUEST:
2622 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2623 				break;
2624 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2625 			goto handled;
2626 		}
2627 		break;
2628 	case WLAN_CATEGORY_SELF_PROTECTED:
2629 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2630 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2631 			break;
2632 
2633 		switch (mgmt->u.action.u.self_prot.action_code) {
2634 		case WLAN_SP_MESH_PEERING_OPEN:
2635 		case WLAN_SP_MESH_PEERING_CLOSE:
2636 		case WLAN_SP_MESH_PEERING_CONFIRM:
2637 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2638 				goto invalid;
2639 			if (sdata->u.mesh.user_mpm)
2640 				/* userspace handles this frame */
2641 				break;
2642 			goto queue;
2643 		case WLAN_SP_MGK_INFORM:
2644 		case WLAN_SP_MGK_ACK:
2645 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2646 				goto invalid;
2647 			break;
2648 		}
2649 		break;
2650 	case WLAN_CATEGORY_MESH_ACTION:
2651 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2652 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2653 			break;
2654 
2655 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2656 			break;
2657 		if (mesh_action_is_path_sel(mgmt) &&
2658 		    !mesh_path_sel_is_hwmp(sdata))
2659 			break;
2660 		goto queue;
2661 	}
2662 
2663 	return RX_CONTINUE;
2664 
2665  invalid:
2666 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2667 	/* will return in the next handlers */
2668 	return RX_CONTINUE;
2669 
2670  handled:
2671 	if (rx->sta)
2672 		rx->sta->rx_packets++;
2673 	dev_kfree_skb(rx->skb);
2674 	return RX_QUEUED;
2675 
2676  queue:
2677 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2678 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2679 	ieee80211_queue_work(&local->hw, &sdata->work);
2680 	if (rx->sta)
2681 		rx->sta->rx_packets++;
2682 	return RX_QUEUED;
2683 }
2684 
2685 static ieee80211_rx_result debug_noinline
2686 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2687 {
2688 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2689 	int sig = 0;
2690 
2691 	/* skip known-bad action frames and return them in the next handler */
2692 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2693 		return RX_CONTINUE;
2694 
2695 	/*
2696 	 * Getting here means the kernel doesn't know how to handle
2697 	 * it, but maybe userspace does ... include returned frames
2698 	 * so userspace can register for those to know whether ones
2699 	 * it transmitted were processed or returned.
2700 	 */
2701 
2702 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2703 		sig = status->signal;
2704 
2705 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2706 			     rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2707 		if (rx->sta)
2708 			rx->sta->rx_packets++;
2709 		dev_kfree_skb(rx->skb);
2710 		return RX_QUEUED;
2711 	}
2712 
2713 	return RX_CONTINUE;
2714 }
2715 
2716 static ieee80211_rx_result debug_noinline
2717 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2718 {
2719 	struct ieee80211_local *local = rx->local;
2720 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2721 	struct sk_buff *nskb;
2722 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2723 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2724 
2725 	if (!ieee80211_is_action(mgmt->frame_control))
2726 		return RX_CONTINUE;
2727 
2728 	/*
2729 	 * For AP mode, hostapd is responsible for handling any action
2730 	 * frames that we didn't handle, including returning unknown
2731 	 * ones. For all other modes we will return them to the sender,
2732 	 * setting the 0x80 bit in the action category, as required by
2733 	 * 802.11-2012 9.24.4.
2734 	 * Newer versions of hostapd shall also use the management frame
2735 	 * registration mechanisms, but older ones still use cooked
2736 	 * monitor interfaces so push all frames there.
2737 	 */
2738 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2739 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2740 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2741 		return RX_DROP_MONITOR;
2742 
2743 	if (is_multicast_ether_addr(mgmt->da))
2744 		return RX_DROP_MONITOR;
2745 
2746 	/* do not return rejected action frames */
2747 	if (mgmt->u.action.category & 0x80)
2748 		return RX_DROP_UNUSABLE;
2749 
2750 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2751 			       GFP_ATOMIC);
2752 	if (nskb) {
2753 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2754 
2755 		nmgmt->u.action.category |= 0x80;
2756 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2757 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2758 
2759 		memset(nskb->cb, 0, sizeof(nskb->cb));
2760 
2761 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2762 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2763 
2764 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2765 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2766 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2767 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2768 				info->hw_queue =
2769 					local->hw.offchannel_tx_hw_queue;
2770 		}
2771 
2772 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2773 					    status->band);
2774 	}
2775 	dev_kfree_skb(rx->skb);
2776 	return RX_QUEUED;
2777 }
2778 
2779 static ieee80211_rx_result debug_noinline
2780 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2781 {
2782 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2783 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2784 	__le16 stype;
2785 
2786 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2787 
2788 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2789 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2790 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2791 		return RX_DROP_MONITOR;
2792 
2793 	switch (stype) {
2794 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2795 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2796 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2797 		/* process for all: mesh, mlme, ibss */
2798 		break;
2799 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2800 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2801 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2802 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2803 		if (is_multicast_ether_addr(mgmt->da) &&
2804 		    !is_broadcast_ether_addr(mgmt->da))
2805 			return RX_DROP_MONITOR;
2806 
2807 		/* process only for station */
2808 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2809 			return RX_DROP_MONITOR;
2810 		break;
2811 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2812 		/* process only for ibss and mesh */
2813 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2814 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2815 			return RX_DROP_MONITOR;
2816 		break;
2817 	default:
2818 		return RX_DROP_MONITOR;
2819 	}
2820 
2821 	/* queue up frame and kick off work to process it */
2822 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2823 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2824 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2825 	if (rx->sta)
2826 		rx->sta->rx_packets++;
2827 
2828 	return RX_QUEUED;
2829 }
2830 
2831 /* TODO: use IEEE80211_RX_FRAGMENTED */
2832 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2833 					struct ieee80211_rate *rate)
2834 {
2835 	struct ieee80211_sub_if_data *sdata;
2836 	struct ieee80211_local *local = rx->local;
2837 	struct sk_buff *skb = rx->skb, *skb2;
2838 	struct net_device *prev_dev = NULL;
2839 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2840 	int needed_headroom;
2841 
2842 	/*
2843 	 * If cooked monitor has been processed already, then
2844 	 * don't do it again. If not, set the flag.
2845 	 */
2846 	if (rx->flags & IEEE80211_RX_CMNTR)
2847 		goto out_free_skb;
2848 	rx->flags |= IEEE80211_RX_CMNTR;
2849 
2850 	/* If there are no cooked monitor interfaces, just free the SKB */
2851 	if (!local->cooked_mntrs)
2852 		goto out_free_skb;
2853 
2854 	/* room for the radiotap header based on driver features */
2855 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
2856 
2857 	if (skb_headroom(skb) < needed_headroom &&
2858 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2859 		goto out_free_skb;
2860 
2861 	/* prepend radiotap information */
2862 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2863 					 false);
2864 
2865 	skb_set_mac_header(skb, 0);
2866 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2867 	skb->pkt_type = PACKET_OTHERHOST;
2868 	skb->protocol = htons(ETH_P_802_2);
2869 
2870 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2871 		if (!ieee80211_sdata_running(sdata))
2872 			continue;
2873 
2874 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2875 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2876 			continue;
2877 
2878 		if (prev_dev) {
2879 			skb2 = skb_clone(skb, GFP_ATOMIC);
2880 			if (skb2) {
2881 				skb2->dev = prev_dev;
2882 				netif_receive_skb(skb2);
2883 			}
2884 		}
2885 
2886 		prev_dev = sdata->dev;
2887 		sdata->dev->stats.rx_packets++;
2888 		sdata->dev->stats.rx_bytes += skb->len;
2889 	}
2890 
2891 	if (prev_dev) {
2892 		skb->dev = prev_dev;
2893 		netif_receive_skb(skb);
2894 		return;
2895 	}
2896 
2897  out_free_skb:
2898 	dev_kfree_skb(skb);
2899 }
2900 
2901 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2902 					 ieee80211_rx_result res)
2903 {
2904 	switch (res) {
2905 	case RX_DROP_MONITOR:
2906 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2907 		if (rx->sta)
2908 			rx->sta->rx_dropped++;
2909 		/* fall through */
2910 	case RX_CONTINUE: {
2911 		struct ieee80211_rate *rate = NULL;
2912 		struct ieee80211_supported_band *sband;
2913 		struct ieee80211_rx_status *status;
2914 
2915 		status = IEEE80211_SKB_RXCB((rx->skb));
2916 
2917 		sband = rx->local->hw.wiphy->bands[status->band];
2918 		if (!(status->flag & RX_FLAG_HT) &&
2919 		    !(status->flag & RX_FLAG_VHT))
2920 			rate = &sband->bitrates[status->rate_idx];
2921 
2922 		ieee80211_rx_cooked_monitor(rx, rate);
2923 		break;
2924 		}
2925 	case RX_DROP_UNUSABLE:
2926 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2927 		if (rx->sta)
2928 			rx->sta->rx_dropped++;
2929 		dev_kfree_skb(rx->skb);
2930 		break;
2931 	case RX_QUEUED:
2932 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2933 		break;
2934 	}
2935 }
2936 
2937 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2938 				  struct sk_buff_head *frames)
2939 {
2940 	ieee80211_rx_result res = RX_DROP_MONITOR;
2941 	struct sk_buff *skb;
2942 
2943 #define CALL_RXH(rxh)			\
2944 	do {				\
2945 		res = rxh(rx);		\
2946 		if (res != RX_CONTINUE)	\
2947 			goto rxh_next;  \
2948 	} while (0);
2949 
2950 	spin_lock_bh(&rx->local->rx_path_lock);
2951 
2952 	while ((skb = __skb_dequeue(frames))) {
2953 		/*
2954 		 * all the other fields are valid across frames
2955 		 * that belong to an aMPDU since they are on the
2956 		 * same TID from the same station
2957 		 */
2958 		rx->skb = skb;
2959 
2960 		CALL_RXH(ieee80211_rx_h_check_more_data)
2961 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2962 		CALL_RXH(ieee80211_rx_h_sta_process)
2963 		CALL_RXH(ieee80211_rx_h_decrypt)
2964 		CALL_RXH(ieee80211_rx_h_defragment)
2965 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2966 		/* must be after MMIC verify so header is counted in MPDU mic */
2967 #ifdef CONFIG_MAC80211_MESH
2968 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2969 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2970 #endif
2971 		CALL_RXH(ieee80211_rx_h_amsdu)
2972 		CALL_RXH(ieee80211_rx_h_data)
2973 
2974 		/* special treatment -- needs the queue */
2975 		res = ieee80211_rx_h_ctrl(rx, frames);
2976 		if (res != RX_CONTINUE)
2977 			goto rxh_next;
2978 
2979 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2980 		CALL_RXH(ieee80211_rx_h_action)
2981 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2982 		CALL_RXH(ieee80211_rx_h_action_return)
2983 		CALL_RXH(ieee80211_rx_h_mgmt)
2984 
2985  rxh_next:
2986 		ieee80211_rx_handlers_result(rx, res);
2987 
2988 #undef CALL_RXH
2989 	}
2990 
2991 	spin_unlock_bh(&rx->local->rx_path_lock);
2992 }
2993 
2994 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2995 {
2996 	struct sk_buff_head reorder_release;
2997 	ieee80211_rx_result res = RX_DROP_MONITOR;
2998 
2999 	__skb_queue_head_init(&reorder_release);
3000 
3001 #define CALL_RXH(rxh)			\
3002 	do {				\
3003 		res = rxh(rx);		\
3004 		if (res != RX_CONTINUE)	\
3005 			goto rxh_next;  \
3006 	} while (0);
3007 
3008 	CALL_RXH(ieee80211_rx_h_check)
3009 
3010 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3011 
3012 	ieee80211_rx_handlers(rx, &reorder_release);
3013 	return;
3014 
3015  rxh_next:
3016 	ieee80211_rx_handlers_result(rx, res);
3017 
3018 #undef CALL_RXH
3019 }
3020 
3021 /*
3022  * This function makes calls into the RX path, therefore
3023  * it has to be invoked under RCU read lock.
3024  */
3025 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3026 {
3027 	struct sk_buff_head frames;
3028 	struct ieee80211_rx_data rx = {
3029 		.sta = sta,
3030 		.sdata = sta->sdata,
3031 		.local = sta->local,
3032 		/* This is OK -- must be QoS data frame */
3033 		.security_idx = tid,
3034 		.seqno_idx = tid,
3035 		.flags = 0,
3036 	};
3037 	struct tid_ampdu_rx *tid_agg_rx;
3038 
3039 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3040 	if (!tid_agg_rx)
3041 		return;
3042 
3043 	__skb_queue_head_init(&frames);
3044 
3045 	spin_lock(&tid_agg_rx->reorder_lock);
3046 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3047 	spin_unlock(&tid_agg_rx->reorder_lock);
3048 
3049 	ieee80211_rx_handlers(&rx, &frames);
3050 }
3051 
3052 /* main receive path */
3053 
3054 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3055 				 struct ieee80211_hdr *hdr)
3056 {
3057 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3058 	struct sk_buff *skb = rx->skb;
3059 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3060 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3061 	int multicast = is_multicast_ether_addr(hdr->addr1);
3062 
3063 	switch (sdata->vif.type) {
3064 	case NL80211_IFTYPE_STATION:
3065 		if (!bssid && !sdata->u.mgd.use_4addr)
3066 			return false;
3067 		if (!multicast &&
3068 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3069 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3070 			    sdata->u.mgd.use_4addr)
3071 				return false;
3072 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3073 		}
3074 		break;
3075 	case NL80211_IFTYPE_ADHOC:
3076 		if (!bssid)
3077 			return false;
3078 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3079 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3080 			return false;
3081 		if (ieee80211_is_beacon(hdr->frame_control)) {
3082 			return true;
3083 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3084 			return false;
3085 		} else if (!multicast &&
3086 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3087 			if (!(sdata->dev->flags & IFF_PROMISC))
3088 				return false;
3089 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3090 		} else if (!rx->sta) {
3091 			int rate_idx;
3092 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3093 				rate_idx = 0; /* TODO: HT/VHT rates */
3094 			else
3095 				rate_idx = status->rate_idx;
3096 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3097 						 BIT(rate_idx));
3098 		}
3099 		break;
3100 	case NL80211_IFTYPE_MESH_POINT:
3101 		if (!multicast &&
3102 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3103 			if (!(sdata->dev->flags & IFF_PROMISC))
3104 				return false;
3105 
3106 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3107 		}
3108 		break;
3109 	case NL80211_IFTYPE_AP_VLAN:
3110 	case NL80211_IFTYPE_AP:
3111 		if (!bssid) {
3112 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3113 				return false;
3114 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3115 			/*
3116 			 * Accept public action frames even when the
3117 			 * BSSID doesn't match, this is used for P2P
3118 			 * and location updates. Note that mac80211
3119 			 * itself never looks at these frames.
3120 			 */
3121 			if (!multicast &&
3122 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3123 				return false;
3124 			if (ieee80211_is_public_action(hdr, skb->len))
3125 				return true;
3126 			if (!ieee80211_is_beacon(hdr->frame_control))
3127 				return false;
3128 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3129 		}
3130 		break;
3131 	case NL80211_IFTYPE_WDS:
3132 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3133 			return false;
3134 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3135 			return false;
3136 		break;
3137 	case NL80211_IFTYPE_P2P_DEVICE:
3138 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3139 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3140 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3141 		    !ieee80211_is_beacon(hdr->frame_control))
3142 			return false;
3143 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3144 		    !multicast)
3145 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3146 		break;
3147 	default:
3148 		/* should never get here */
3149 		WARN_ON_ONCE(1);
3150 		break;
3151 	}
3152 
3153 	return true;
3154 }
3155 
3156 /*
3157  * This function returns whether or not the SKB
3158  * was destined for RX processing or not, which,
3159  * if consume is true, is equivalent to whether
3160  * or not the skb was consumed.
3161  */
3162 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3163 					    struct sk_buff *skb, bool consume)
3164 {
3165 	struct ieee80211_local *local = rx->local;
3166 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3167 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3168 	struct ieee80211_hdr *hdr = (void *)skb->data;
3169 
3170 	rx->skb = skb;
3171 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3172 
3173 	if (!prepare_for_handlers(rx, hdr))
3174 		return false;
3175 
3176 	if (!consume) {
3177 		skb = skb_copy(skb, GFP_ATOMIC);
3178 		if (!skb) {
3179 			if (net_ratelimit())
3180 				wiphy_debug(local->hw.wiphy,
3181 					"failed to copy skb for %s\n",
3182 					sdata->name);
3183 			return true;
3184 		}
3185 
3186 		rx->skb = skb;
3187 	}
3188 
3189 	ieee80211_invoke_rx_handlers(rx);
3190 	return true;
3191 }
3192 
3193 /*
3194  * This is the actual Rx frames handler. as it blongs to Rx path it must
3195  * be called with rcu_read_lock protection.
3196  */
3197 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3198 					 struct sk_buff *skb)
3199 {
3200 	struct ieee80211_local *local = hw_to_local(hw);
3201 	struct ieee80211_sub_if_data *sdata;
3202 	struct ieee80211_hdr *hdr;
3203 	__le16 fc;
3204 	struct ieee80211_rx_data rx;
3205 	struct ieee80211_sub_if_data *prev;
3206 	struct sta_info *sta, *tmp, *prev_sta;
3207 	int err = 0;
3208 
3209 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3210 	memset(&rx, 0, sizeof(rx));
3211 	rx.skb = skb;
3212 	rx.local = local;
3213 
3214 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3215 		local->dot11ReceivedFragmentCount++;
3216 
3217 	if (ieee80211_is_mgmt(fc)) {
3218 		/* drop frame if too short for header */
3219 		if (skb->len < ieee80211_hdrlen(fc))
3220 			err = -ENOBUFS;
3221 		else
3222 			err = skb_linearize(skb);
3223 	} else {
3224 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3225 	}
3226 
3227 	if (err) {
3228 		dev_kfree_skb(skb);
3229 		return;
3230 	}
3231 
3232 	hdr = (struct ieee80211_hdr *)skb->data;
3233 	ieee80211_parse_qos(&rx);
3234 	ieee80211_verify_alignment(&rx);
3235 
3236 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3237 		     ieee80211_is_beacon(hdr->frame_control)))
3238 		ieee80211_scan_rx(local, skb);
3239 
3240 	if (ieee80211_is_data(fc)) {
3241 		prev_sta = NULL;
3242 
3243 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
3244 			if (!prev_sta) {
3245 				prev_sta = sta;
3246 				continue;
3247 			}
3248 
3249 			rx.sta = prev_sta;
3250 			rx.sdata = prev_sta->sdata;
3251 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3252 
3253 			prev_sta = sta;
3254 		}
3255 
3256 		if (prev_sta) {
3257 			rx.sta = prev_sta;
3258 			rx.sdata = prev_sta->sdata;
3259 
3260 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3261 				return;
3262 			goto out;
3263 		}
3264 	}
3265 
3266 	prev = NULL;
3267 
3268 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3269 		if (!ieee80211_sdata_running(sdata))
3270 			continue;
3271 
3272 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3273 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3274 			continue;
3275 
3276 		/*
3277 		 * frame is destined for this interface, but if it's
3278 		 * not also for the previous one we handle that after
3279 		 * the loop to avoid copying the SKB once too much
3280 		 */
3281 
3282 		if (!prev) {
3283 			prev = sdata;
3284 			continue;
3285 		}
3286 
3287 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3288 		rx.sdata = prev;
3289 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3290 
3291 		prev = sdata;
3292 	}
3293 
3294 	if (prev) {
3295 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3296 		rx.sdata = prev;
3297 
3298 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3299 			return;
3300 	}
3301 
3302  out:
3303 	dev_kfree_skb(skb);
3304 }
3305 
3306 /*
3307  * This is the receive path handler. It is called by a low level driver when an
3308  * 802.11 MPDU is received from the hardware.
3309  */
3310 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3311 {
3312 	struct ieee80211_local *local = hw_to_local(hw);
3313 	struct ieee80211_rate *rate = NULL;
3314 	struct ieee80211_supported_band *sband;
3315 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3316 
3317 	WARN_ON_ONCE(softirq_count() == 0);
3318 
3319 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3320 		goto drop;
3321 
3322 	sband = local->hw.wiphy->bands[status->band];
3323 	if (WARN_ON(!sband))
3324 		goto drop;
3325 
3326 	/*
3327 	 * If we're suspending, it is possible although not too likely
3328 	 * that we'd be receiving frames after having already partially
3329 	 * quiesced the stack. We can't process such frames then since
3330 	 * that might, for example, cause stations to be added or other
3331 	 * driver callbacks be invoked.
3332 	 */
3333 	if (unlikely(local->quiescing || local->suspended))
3334 		goto drop;
3335 
3336 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3337 	if (unlikely(local->in_reconfig))
3338 		goto drop;
3339 
3340 	/*
3341 	 * The same happens when we're not even started,
3342 	 * but that's worth a warning.
3343 	 */
3344 	if (WARN_ON(!local->started))
3345 		goto drop;
3346 
3347 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3348 		/*
3349 		 * Validate the rate, unless a PLCP error means that
3350 		 * we probably can't have a valid rate here anyway.
3351 		 */
3352 
3353 		if (status->flag & RX_FLAG_HT) {
3354 			/*
3355 			 * rate_idx is MCS index, which can be [0-76]
3356 			 * as documented on:
3357 			 *
3358 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3359 			 *
3360 			 * Anything else would be some sort of driver or
3361 			 * hardware error. The driver should catch hardware
3362 			 * errors.
3363 			 */
3364 			if (WARN(status->rate_idx > 76,
3365 				 "Rate marked as an HT rate but passed "
3366 				 "status->rate_idx is not "
3367 				 "an MCS index [0-76]: %d (0x%02x)\n",
3368 				 status->rate_idx,
3369 				 status->rate_idx))
3370 				goto drop;
3371 		} else if (status->flag & RX_FLAG_VHT) {
3372 			if (WARN_ONCE(status->rate_idx > 9 ||
3373 				      !status->vht_nss ||
3374 				      status->vht_nss > 8,
3375 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3376 				      status->rate_idx, status->vht_nss))
3377 				goto drop;
3378 		} else {
3379 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3380 				goto drop;
3381 			rate = &sband->bitrates[status->rate_idx];
3382 		}
3383 	}
3384 
3385 	status->rx_flags = 0;
3386 
3387 	/*
3388 	 * key references and virtual interfaces are protected using RCU
3389 	 * and this requires that we are in a read-side RCU section during
3390 	 * receive processing
3391 	 */
3392 	rcu_read_lock();
3393 
3394 	/*
3395 	 * Frames with failed FCS/PLCP checksum are not returned,
3396 	 * all other frames are returned without radiotap header
3397 	 * if it was previously present.
3398 	 * Also, frames with less than 16 bytes are dropped.
3399 	 */
3400 	skb = ieee80211_rx_monitor(local, skb, rate);
3401 	if (!skb) {
3402 		rcu_read_unlock();
3403 		return;
3404 	}
3405 
3406 	ieee80211_tpt_led_trig_rx(local,
3407 			((struct ieee80211_hdr *)skb->data)->frame_control,
3408 			skb->len);
3409 	__ieee80211_rx_handle_packet(hw, skb);
3410 
3411 	rcu_read_unlock();
3412 
3413 	return;
3414  drop:
3415 	kfree_skb(skb);
3416 }
3417 EXPORT_SYMBOL(ieee80211_rx);
3418 
3419 /* This is a version of the rx handler that can be called from hard irq
3420  * context. Post the skb on the queue and schedule the tasklet */
3421 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3422 {
3423 	struct ieee80211_local *local = hw_to_local(hw);
3424 
3425 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3426 
3427 	skb->pkt_type = IEEE80211_RX_MSG;
3428 	skb_queue_tail(&local->skb_queue, skb);
3429 	tasklet_schedule(&local->tasklet);
3430 }
3431 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3432