xref: /openbmc/linux/net/mac80211/rx.c (revision 84953f96)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23 
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33 
34 /*
35  * monitor mode reception
36  *
37  * This function cleans up the SKB, i.e. it removes all the stuff
38  * only useful for monitoring.
39  */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 					   struct sk_buff *skb)
42 {
43 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44 
45 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 		if (likely(skb->len > FCS_LEN))
47 			__pskb_trim(skb, skb->len - FCS_LEN);
48 		else {
49 			/* driver bug */
50 			WARN_ON(1);
51 			dev_kfree_skb(skb);
52 			return NULL;
53 		}
54 	}
55 
56 	if (status->vendor_radiotap_len)
57 		__pskb_pull(skb, status->vendor_radiotap_len);
58 
59 	return skb;
60 }
61 
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 	struct ieee80211_hdr *hdr;
66 
67 	hdr = (void *)(skb->data + status->vendor_radiotap_len);
68 
69 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 			    RX_FLAG_FAILED_PLCP_CRC |
71 			    RX_FLAG_AMPDU_IS_ZEROLEN))
72 		return 1;
73 	if (unlikely(skb->len < 16 + present_fcs_len +
74 				status->vendor_radiotap_len))
75 		return 1;
76 	if (ieee80211_is_ctl(hdr->frame_control) &&
77 	    !ieee80211_is_pspoll(hdr->frame_control) &&
78 	    !ieee80211_is_back_req(hdr->frame_control))
79 		return 1;
80 	return 0;
81 }
82 
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 			    struct ieee80211_rx_status *status)
86 {
87 	int len;
88 
89 	/* always present fields */
90 	len = sizeof(struct ieee80211_radiotap_header) + 8;
91 
92 	/* allocate extra bitmaps */
93 	if (status->vendor_radiotap_len)
94 		len += 4;
95 	if (status->chains)
96 		len += 4 * hweight8(status->chains);
97 
98 	if (ieee80211_have_rx_timestamp(status)) {
99 		len = ALIGN(len, 8);
100 		len += 8;
101 	}
102 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
103 		len += 1;
104 
105 	/* antenna field, if we don't have per-chain info */
106 	if (!status->chains)
107 		len += 1;
108 
109 	/* padding for RX_FLAGS if necessary */
110 	len = ALIGN(len, 2);
111 
112 	if (status->flag & RX_FLAG_HT) /* HT info */
113 		len += 3;
114 
115 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
116 		len = ALIGN(len, 4);
117 		len += 8;
118 	}
119 
120 	if (status->flag & RX_FLAG_VHT) {
121 		len = ALIGN(len, 2);
122 		len += 12;
123 	}
124 
125 	if (status->chains) {
126 		/* antenna and antenna signal fields */
127 		len += 2 * hweight8(status->chains);
128 	}
129 
130 	if (status->vendor_radiotap_len) {
131 		if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
132 			status->vendor_radiotap_align = 1;
133 		/* align standard part of vendor namespace */
134 		len = ALIGN(len, 2);
135 		/* allocate standard part of vendor namespace */
136 		len += 6;
137 		/* align vendor-defined part */
138 		len = ALIGN(len, status->vendor_radiotap_align);
139 		/* vendor-defined part is already in skb */
140 	}
141 
142 	return len;
143 }
144 
145 /*
146  * ieee80211_add_rx_radiotap_header - add radiotap header
147  *
148  * add a radiotap header containing all the fields which the hardware provided.
149  */
150 static void
151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
152 				 struct sk_buff *skb,
153 				 struct ieee80211_rate *rate,
154 				 int rtap_len, bool has_fcs)
155 {
156 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
157 	struct ieee80211_radiotap_header *rthdr;
158 	unsigned char *pos;
159 	__le32 *it_present;
160 	u32 it_present_val;
161 	u16 rx_flags = 0;
162 	u16 channel_flags = 0;
163 	int mpdulen, chain;
164 	unsigned long chains = status->chains;
165 
166 	mpdulen = skb->len;
167 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
168 		mpdulen += FCS_LEN;
169 
170 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
171 	memset(rthdr, 0, rtap_len);
172 	it_present = &rthdr->it_present;
173 
174 	/* radiotap header, set always present flags */
175 	rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
176 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
177 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
178 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
179 
180 	if (!status->chains)
181 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
182 
183 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
184 		it_present_val |=
185 			BIT(IEEE80211_RADIOTAP_EXT) |
186 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
187 		put_unaligned_le32(it_present_val, it_present);
188 		it_present++;
189 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
190 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
191 	}
192 
193 	if (status->vendor_radiotap_len) {
194 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
195 				  BIT(IEEE80211_RADIOTAP_EXT);
196 		put_unaligned_le32(it_present_val, it_present);
197 		it_present++;
198 		it_present_val = status->vendor_radiotap_bitmap;
199 	}
200 
201 	put_unaligned_le32(it_present_val, it_present);
202 
203 	pos = (void *)(it_present + 1);
204 
205 	/* the order of the following fields is important */
206 
207 	/* IEEE80211_RADIOTAP_TSFT */
208 	if (ieee80211_have_rx_timestamp(status)) {
209 		/* padding */
210 		while ((pos - (u8 *)rthdr) & 7)
211 			*pos++ = 0;
212 		put_unaligned_le64(
213 			ieee80211_calculate_rx_timestamp(local, status,
214 							 mpdulen, 0),
215 			pos);
216 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
217 		pos += 8;
218 	}
219 
220 	/* IEEE80211_RADIOTAP_FLAGS */
221 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
222 		*pos |= IEEE80211_RADIOTAP_F_FCS;
223 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
224 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
225 	if (status->flag & RX_FLAG_SHORTPRE)
226 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
227 	pos++;
228 
229 	/* IEEE80211_RADIOTAP_RATE */
230 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
231 		/*
232 		 * Without rate information don't add it. If we have,
233 		 * MCS information is a separate field in radiotap,
234 		 * added below. The byte here is needed as padding
235 		 * for the channel though, so initialise it to 0.
236 		 */
237 		*pos = 0;
238 	} else {
239 		int shift = 0;
240 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
241 		if (status->flag & RX_FLAG_10MHZ)
242 			shift = 1;
243 		else if (status->flag & RX_FLAG_5MHZ)
244 			shift = 2;
245 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
246 	}
247 	pos++;
248 
249 	/* IEEE80211_RADIOTAP_CHANNEL */
250 	put_unaligned_le16(status->freq, pos);
251 	pos += 2;
252 	if (status->flag & RX_FLAG_10MHZ)
253 		channel_flags |= IEEE80211_CHAN_HALF;
254 	else if (status->flag & RX_FLAG_5MHZ)
255 		channel_flags |= IEEE80211_CHAN_QUARTER;
256 
257 	if (status->band == IEEE80211_BAND_5GHZ)
258 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
259 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
260 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
261 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
262 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
263 	else if (rate)
264 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
265 	else
266 		channel_flags |= IEEE80211_CHAN_2GHZ;
267 	put_unaligned_le16(channel_flags, pos);
268 	pos += 2;
269 
270 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
271 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
272 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
273 		*pos = status->signal;
274 		rthdr->it_present |=
275 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
276 		pos++;
277 	}
278 
279 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
280 
281 	if (!status->chains) {
282 		/* IEEE80211_RADIOTAP_ANTENNA */
283 		*pos = status->antenna;
284 		pos++;
285 	}
286 
287 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
288 
289 	/* IEEE80211_RADIOTAP_RX_FLAGS */
290 	/* ensure 2 byte alignment for the 2 byte field as required */
291 	if ((pos - (u8 *)rthdr) & 1)
292 		*pos++ = 0;
293 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
294 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
295 	put_unaligned_le16(rx_flags, pos);
296 	pos += 2;
297 
298 	if (status->flag & RX_FLAG_HT) {
299 		unsigned int stbc;
300 
301 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
302 		*pos++ = local->hw.radiotap_mcs_details;
303 		*pos = 0;
304 		if (status->flag & RX_FLAG_SHORT_GI)
305 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
306 		if (status->flag & RX_FLAG_40MHZ)
307 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
308 		if (status->flag & RX_FLAG_HT_GF)
309 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
310 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
311 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
312 		pos++;
313 		*pos++ = status->rate_idx;
314 	}
315 
316 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
317 		u16 flags = 0;
318 
319 		/* ensure 4 byte alignment */
320 		while ((pos - (u8 *)rthdr) & 3)
321 			pos++;
322 		rthdr->it_present |=
323 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
324 		put_unaligned_le32(status->ampdu_reference, pos);
325 		pos += 4;
326 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
327 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
328 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
329 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
330 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
331 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
332 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
333 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
334 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
335 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
336 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
337 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
338 		put_unaligned_le16(flags, pos);
339 		pos += 2;
340 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
341 			*pos++ = status->ampdu_delimiter_crc;
342 		else
343 			*pos++ = 0;
344 		*pos++ = 0;
345 	}
346 
347 	if (status->flag & RX_FLAG_VHT) {
348 		u16 known = local->hw.radiotap_vht_details;
349 
350 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
351 		/* known field - how to handle 80+80? */
352 		if (status->flag & RX_FLAG_80P80MHZ)
353 			known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
354 		put_unaligned_le16(known, pos);
355 		pos += 2;
356 		/* flags */
357 		if (status->flag & RX_FLAG_SHORT_GI)
358 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
359 		pos++;
360 		/* bandwidth */
361 		if (status->flag & RX_FLAG_80MHZ)
362 			*pos++ = 4;
363 		else if (status->flag & RX_FLAG_80P80MHZ)
364 			*pos++ = 0; /* marked not known above */
365 		else if (status->flag & RX_FLAG_160MHZ)
366 			*pos++ = 11;
367 		else if (status->flag & RX_FLAG_40MHZ)
368 			*pos++ = 1;
369 		else /* 20 MHz */
370 			*pos++ = 0;
371 		/* MCS/NSS */
372 		*pos = (status->rate_idx << 4) | status->vht_nss;
373 		pos += 4;
374 		/* coding field */
375 		pos++;
376 		/* group ID */
377 		pos++;
378 		/* partial_aid */
379 		pos += 2;
380 	}
381 
382 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
383 		*pos++ = status->chain_signal[chain];
384 		*pos++ = chain;
385 	}
386 
387 	if (status->vendor_radiotap_len) {
388 		/* ensure 2 byte alignment for the vendor field as required */
389 		if ((pos - (u8 *)rthdr) & 1)
390 			*pos++ = 0;
391 		*pos++ = status->vendor_radiotap_oui[0];
392 		*pos++ = status->vendor_radiotap_oui[1];
393 		*pos++ = status->vendor_radiotap_oui[2];
394 		*pos++ = status->vendor_radiotap_subns;
395 		put_unaligned_le16(status->vendor_radiotap_len, pos);
396 		pos += 2;
397 		/* align the actual payload as requested */
398 		while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
399 			*pos++ = 0;
400 	}
401 }
402 
403 /*
404  * This function copies a received frame to all monitor interfaces and
405  * returns a cleaned-up SKB that no longer includes the FCS nor the
406  * radiotap header the driver might have added.
407  */
408 static struct sk_buff *
409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
410 		     struct ieee80211_rate *rate)
411 {
412 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
413 	struct ieee80211_sub_if_data *sdata;
414 	int needed_headroom;
415 	struct sk_buff *skb, *skb2;
416 	struct net_device *prev_dev = NULL;
417 	int present_fcs_len = 0;
418 
419 	/*
420 	 * First, we may need to make a copy of the skb because
421 	 *  (1) we need to modify it for radiotap (if not present), and
422 	 *  (2) the other RX handlers will modify the skb we got.
423 	 *
424 	 * We don't need to, of course, if we aren't going to return
425 	 * the SKB because it has a bad FCS/PLCP checksum.
426 	 */
427 
428 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
429 		present_fcs_len = FCS_LEN;
430 
431 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
432 	if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
433 		dev_kfree_skb(origskb);
434 		return NULL;
435 	}
436 
437 	if (!local->monitors) {
438 		if (should_drop_frame(origskb, present_fcs_len)) {
439 			dev_kfree_skb(origskb);
440 			return NULL;
441 		}
442 
443 		return remove_monitor_info(local, origskb);
444 	}
445 
446 	/* room for the radiotap header based on driver features */
447 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
448 
449 	if (should_drop_frame(origskb, present_fcs_len)) {
450 		/* only need to expand headroom if necessary */
451 		skb = origskb;
452 		origskb = NULL;
453 
454 		/*
455 		 * This shouldn't trigger often because most devices have an
456 		 * RX header they pull before we get here, and that should
457 		 * be big enough for our radiotap information. We should
458 		 * probably export the length to drivers so that we can have
459 		 * them allocate enough headroom to start with.
460 		 */
461 		if (skb_headroom(skb) < needed_headroom &&
462 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
463 			dev_kfree_skb(skb);
464 			return NULL;
465 		}
466 	} else {
467 		/*
468 		 * Need to make a copy and possibly remove radiotap header
469 		 * and FCS from the original.
470 		 */
471 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
472 
473 		origskb = remove_monitor_info(local, origskb);
474 
475 		if (!skb)
476 			return origskb;
477 	}
478 
479 	/* prepend radiotap information */
480 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
481 					 true);
482 
483 	skb_reset_mac_header(skb);
484 	skb->ip_summed = CHECKSUM_UNNECESSARY;
485 	skb->pkt_type = PACKET_OTHERHOST;
486 	skb->protocol = htons(ETH_P_802_2);
487 
488 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
489 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
490 			continue;
491 
492 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
493 			continue;
494 
495 		if (!ieee80211_sdata_running(sdata))
496 			continue;
497 
498 		if (prev_dev) {
499 			skb2 = skb_clone(skb, GFP_ATOMIC);
500 			if (skb2) {
501 				skb2->dev = prev_dev;
502 				netif_receive_skb(skb2);
503 			}
504 		}
505 
506 		prev_dev = sdata->dev;
507 		sdata->dev->stats.rx_packets++;
508 		sdata->dev->stats.rx_bytes += skb->len;
509 	}
510 
511 	if (prev_dev) {
512 		skb->dev = prev_dev;
513 		netif_receive_skb(skb);
514 	} else
515 		dev_kfree_skb(skb);
516 
517 	return origskb;
518 }
519 
520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
521 {
522 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
523 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
524 	int tid, seqno_idx, security_idx;
525 
526 	/* does the frame have a qos control field? */
527 	if (ieee80211_is_data_qos(hdr->frame_control)) {
528 		u8 *qc = ieee80211_get_qos_ctl(hdr);
529 		/* frame has qos control */
530 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
531 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
532 			status->rx_flags |= IEEE80211_RX_AMSDU;
533 
534 		seqno_idx = tid;
535 		security_idx = tid;
536 	} else {
537 		/*
538 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
539 		 *
540 		 *	Sequence numbers for management frames, QoS data
541 		 *	frames with a broadcast/multicast address in the
542 		 *	Address 1 field, and all non-QoS data frames sent
543 		 *	by QoS STAs are assigned using an additional single
544 		 *	modulo-4096 counter, [...]
545 		 *
546 		 * We also use that counter for non-QoS STAs.
547 		 */
548 		seqno_idx = IEEE80211_NUM_TIDS;
549 		security_idx = 0;
550 		if (ieee80211_is_mgmt(hdr->frame_control))
551 			security_idx = IEEE80211_NUM_TIDS;
552 		tid = 0;
553 	}
554 
555 	rx->seqno_idx = seqno_idx;
556 	rx->security_idx = security_idx;
557 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
558 	 * For now, set skb->priority to 0 for other cases. */
559 	rx->skb->priority = (tid > 7) ? 0 : tid;
560 }
561 
562 /**
563  * DOC: Packet alignment
564  *
565  * Drivers always need to pass packets that are aligned to two-byte boundaries
566  * to the stack.
567  *
568  * Additionally, should, if possible, align the payload data in a way that
569  * guarantees that the contained IP header is aligned to a four-byte
570  * boundary. In the case of regular frames, this simply means aligning the
571  * payload to a four-byte boundary (because either the IP header is directly
572  * contained, or IV/RFC1042 headers that have a length divisible by four are
573  * in front of it).  If the payload data is not properly aligned and the
574  * architecture doesn't support efficient unaligned operations, mac80211
575  * will align the data.
576  *
577  * With A-MSDU frames, however, the payload data address must yield two modulo
578  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
579  * push the IP header further back to a multiple of four again. Thankfully, the
580  * specs were sane enough this time around to require padding each A-MSDU
581  * subframe to a length that is a multiple of four.
582  *
583  * Padding like Atheros hardware adds which is between the 802.11 header and
584  * the payload is not supported, the driver is required to move the 802.11
585  * header to be directly in front of the payload in that case.
586  */
587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
588 {
589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
590 	WARN_ONCE((unsigned long)rx->skb->data & 1,
591 		  "unaligned packet at 0x%p\n", rx->skb->data);
592 #endif
593 }
594 
595 
596 /* rx handlers */
597 
598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
599 {
600 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
601 
602 	if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
603 		return 0;
604 
605 	return ieee80211_is_robust_mgmt_frame(hdr);
606 }
607 
608 
609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
610 {
611 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
612 
613 	if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
614 		return 0;
615 
616 	return ieee80211_is_robust_mgmt_frame(hdr);
617 }
618 
619 
620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
622 {
623 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
624 	struct ieee80211_mmie *mmie;
625 
626 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
627 		return -1;
628 
629 	if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
630 		return -1; /* not a robust management frame */
631 
632 	mmie = (struct ieee80211_mmie *)
633 		(skb->data + skb->len - sizeof(*mmie));
634 	if (mmie->element_id != WLAN_EID_MMIE ||
635 	    mmie->length != sizeof(*mmie) - 2)
636 		return -1;
637 
638 	return le16_to_cpu(mmie->key_id);
639 }
640 
641 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
642 {
643 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
644 	char *dev_addr = rx->sdata->vif.addr;
645 
646 	if (ieee80211_is_data(hdr->frame_control)) {
647 		if (is_multicast_ether_addr(hdr->addr1)) {
648 			if (ieee80211_has_tods(hdr->frame_control) ||
649 			    !ieee80211_has_fromds(hdr->frame_control))
650 				return RX_DROP_MONITOR;
651 			if (ether_addr_equal(hdr->addr3, dev_addr))
652 				return RX_DROP_MONITOR;
653 		} else {
654 			if (!ieee80211_has_a4(hdr->frame_control))
655 				return RX_DROP_MONITOR;
656 			if (ether_addr_equal(hdr->addr4, dev_addr))
657 				return RX_DROP_MONITOR;
658 		}
659 	}
660 
661 	/* If there is not an established peer link and this is not a peer link
662 	 * establisment frame, beacon or probe, drop the frame.
663 	 */
664 
665 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
666 		struct ieee80211_mgmt *mgmt;
667 
668 		if (!ieee80211_is_mgmt(hdr->frame_control))
669 			return RX_DROP_MONITOR;
670 
671 		if (ieee80211_is_action(hdr->frame_control)) {
672 			u8 category;
673 
674 			/* make sure category field is present */
675 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
676 				return RX_DROP_MONITOR;
677 
678 			mgmt = (struct ieee80211_mgmt *)hdr;
679 			category = mgmt->u.action.category;
680 			if (category != WLAN_CATEGORY_MESH_ACTION &&
681 			    category != WLAN_CATEGORY_SELF_PROTECTED)
682 				return RX_DROP_MONITOR;
683 			return RX_CONTINUE;
684 		}
685 
686 		if (ieee80211_is_probe_req(hdr->frame_control) ||
687 		    ieee80211_is_probe_resp(hdr->frame_control) ||
688 		    ieee80211_is_beacon(hdr->frame_control) ||
689 		    ieee80211_is_auth(hdr->frame_control))
690 			return RX_CONTINUE;
691 
692 		return RX_DROP_MONITOR;
693 	}
694 
695 	return RX_CONTINUE;
696 }
697 
698 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
699 					    struct tid_ampdu_rx *tid_agg_rx,
700 					    int index,
701 					    struct sk_buff_head *frames)
702 {
703 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
704 	struct ieee80211_rx_status *status;
705 
706 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
707 
708 	if (!skb)
709 		goto no_frame;
710 
711 	/* release the frame from the reorder ring buffer */
712 	tid_agg_rx->stored_mpdu_num--;
713 	tid_agg_rx->reorder_buf[index] = NULL;
714 	status = IEEE80211_SKB_RXCB(skb);
715 	status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
716 	__skb_queue_tail(frames, skb);
717 
718 no_frame:
719 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
720 }
721 
722 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
723 					     struct tid_ampdu_rx *tid_agg_rx,
724 					     u16 head_seq_num,
725 					     struct sk_buff_head *frames)
726 {
727 	int index;
728 
729 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
730 
731 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
732 		index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
733 					 tid_agg_rx->ssn) %
734 							tid_agg_rx->buf_size;
735 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
736 						frames);
737 	}
738 }
739 
740 /*
741  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
742  * the skb was added to the buffer longer than this time ago, the earlier
743  * frames that have not yet been received are assumed to be lost and the skb
744  * can be released for processing. This may also release other skb's from the
745  * reorder buffer if there are no additional gaps between the frames.
746  *
747  * Callers must hold tid_agg_rx->reorder_lock.
748  */
749 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
750 
751 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
752 					  struct tid_ampdu_rx *tid_agg_rx,
753 					  struct sk_buff_head *frames)
754 {
755 	int index, j;
756 
757 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
758 
759 	/* release the buffer until next missing frame */
760 	index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
761 				 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
762 	if (!tid_agg_rx->reorder_buf[index] &&
763 	    tid_agg_rx->stored_mpdu_num) {
764 		/*
765 		 * No buffers ready to be released, but check whether any
766 		 * frames in the reorder buffer have timed out.
767 		 */
768 		int skipped = 1;
769 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
770 		     j = (j + 1) % tid_agg_rx->buf_size) {
771 			if (!tid_agg_rx->reorder_buf[j]) {
772 				skipped++;
773 				continue;
774 			}
775 			if (skipped &&
776 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
777 					HT_RX_REORDER_BUF_TIMEOUT))
778 				goto set_release_timer;
779 
780 			ht_dbg_ratelimited(sdata,
781 					   "release an RX reorder frame due to timeout on earlier frames\n");
782 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
783 							frames);
784 
785 			/*
786 			 * Increment the head seq# also for the skipped slots.
787 			 */
788 			tid_agg_rx->head_seq_num =
789 				(tid_agg_rx->head_seq_num +
790 				 skipped) & IEEE80211_SN_MASK;
791 			skipped = 0;
792 		}
793 	} else while (tid_agg_rx->reorder_buf[index]) {
794 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 						frames);
796 		index =	ieee80211_sn_sub(tid_agg_rx->head_seq_num,
797 					 tid_agg_rx->ssn) %
798 							tid_agg_rx->buf_size;
799 	}
800 
801 	if (tid_agg_rx->stored_mpdu_num) {
802 		j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
803 					     tid_agg_rx->ssn) %
804 							tid_agg_rx->buf_size;
805 
806 		for (; j != (index - 1) % tid_agg_rx->buf_size;
807 		     j = (j + 1) % tid_agg_rx->buf_size) {
808 			if (tid_agg_rx->reorder_buf[j])
809 				break;
810 		}
811 
812  set_release_timer:
813 
814 		mod_timer(&tid_agg_rx->reorder_timer,
815 			  tid_agg_rx->reorder_time[j] + 1 +
816 			  HT_RX_REORDER_BUF_TIMEOUT);
817 	} else {
818 		del_timer(&tid_agg_rx->reorder_timer);
819 	}
820 }
821 
822 /*
823  * As this function belongs to the RX path it must be under
824  * rcu_read_lock protection. It returns false if the frame
825  * can be processed immediately, true if it was consumed.
826  */
827 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
828 					     struct tid_ampdu_rx *tid_agg_rx,
829 					     struct sk_buff *skb,
830 					     struct sk_buff_head *frames)
831 {
832 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
833 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
834 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
835 	u16 head_seq_num, buf_size;
836 	int index;
837 	bool ret = true;
838 
839 	spin_lock(&tid_agg_rx->reorder_lock);
840 
841 	buf_size = tid_agg_rx->buf_size;
842 	head_seq_num = tid_agg_rx->head_seq_num;
843 
844 	/* frame with out of date sequence number */
845 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
846 		dev_kfree_skb(skb);
847 		goto out;
848 	}
849 
850 	/*
851 	 * If frame the sequence number exceeds our buffering window
852 	 * size release some previous frames to make room for this one.
853 	 */
854 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
855 		head_seq_num = ieee80211_sn_inc(
856 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
857 		/* release stored frames up to new head to stack */
858 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
859 						 head_seq_num, frames);
860 	}
861 
862 	/* Now the new frame is always in the range of the reordering buffer */
863 
864 	index = ieee80211_sn_sub(mpdu_seq_num,
865 				 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
866 
867 	/* check if we already stored this frame */
868 	if (tid_agg_rx->reorder_buf[index]) {
869 		dev_kfree_skb(skb);
870 		goto out;
871 	}
872 
873 	/*
874 	 * If the current MPDU is in the right order and nothing else
875 	 * is stored we can process it directly, no need to buffer it.
876 	 * If it is first but there's something stored, we may be able
877 	 * to release frames after this one.
878 	 */
879 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
880 	    tid_agg_rx->stored_mpdu_num == 0) {
881 		tid_agg_rx->head_seq_num =
882 			ieee80211_sn_inc(tid_agg_rx->head_seq_num);
883 		ret = false;
884 		goto out;
885 	}
886 
887 	/* put the frame in the reordering buffer */
888 	tid_agg_rx->reorder_buf[index] = skb;
889 	tid_agg_rx->reorder_time[index] = jiffies;
890 	tid_agg_rx->stored_mpdu_num++;
891 	ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
892 
893  out:
894 	spin_unlock(&tid_agg_rx->reorder_lock);
895 	return ret;
896 }
897 
898 /*
899  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
900  * true if the MPDU was buffered, false if it should be processed.
901  */
902 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
903 				       struct sk_buff_head *frames)
904 {
905 	struct sk_buff *skb = rx->skb;
906 	struct ieee80211_local *local = rx->local;
907 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
908 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
909 	struct sta_info *sta = rx->sta;
910 	struct tid_ampdu_rx *tid_agg_rx;
911 	u16 sc;
912 	u8 tid, ack_policy;
913 
914 	if (!ieee80211_is_data_qos(hdr->frame_control))
915 		goto dont_reorder;
916 
917 	/*
918 	 * filter the QoS data rx stream according to
919 	 * STA/TID and check if this STA/TID is on aggregation
920 	 */
921 
922 	if (!sta)
923 		goto dont_reorder;
924 
925 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
926 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
927 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
928 
929 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
930 	if (!tid_agg_rx)
931 		goto dont_reorder;
932 
933 	/* qos null data frames are excluded */
934 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
935 		goto dont_reorder;
936 
937 	/* not part of a BA session */
938 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
939 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
940 		goto dont_reorder;
941 
942 	/* not actually part of this BA session */
943 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
944 		goto dont_reorder;
945 
946 	/* new, potentially un-ordered, ampdu frame - process it */
947 
948 	/* reset session timer */
949 	if (tid_agg_rx->timeout)
950 		tid_agg_rx->last_rx = jiffies;
951 
952 	/* if this mpdu is fragmented - terminate rx aggregation session */
953 	sc = le16_to_cpu(hdr->seq_ctrl);
954 	if (sc & IEEE80211_SCTL_FRAG) {
955 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
956 		skb_queue_tail(&rx->sdata->skb_queue, skb);
957 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
958 		return;
959 	}
960 
961 	/*
962 	 * No locking needed -- we will only ever process one
963 	 * RX packet at a time, and thus own tid_agg_rx. All
964 	 * other code manipulating it needs to (and does) make
965 	 * sure that we cannot get to it any more before doing
966 	 * anything with it.
967 	 */
968 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
969 					     frames))
970 		return;
971 
972  dont_reorder:
973 	__skb_queue_tail(frames, skb);
974 }
975 
976 static ieee80211_rx_result debug_noinline
977 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
978 {
979 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
980 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
981 
982 	/*
983 	 * Drop duplicate 802.11 retransmissions
984 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
985 	 */
986 	if (rx->skb->len >= 24 && rx->sta &&
987 	    !ieee80211_is_ctl(hdr->frame_control) &&
988 	    !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
989 	    !is_multicast_ether_addr(hdr->addr1)) {
990 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
991 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
992 			     hdr->seq_ctrl)) {
993 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
994 				rx->local->dot11FrameDuplicateCount++;
995 				rx->sta->num_duplicates++;
996 			}
997 			return RX_DROP_UNUSABLE;
998 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
999 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1000 		}
1001 	}
1002 
1003 	if (unlikely(rx->skb->len < 16)) {
1004 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1005 		return RX_DROP_MONITOR;
1006 	}
1007 
1008 	/* Drop disallowed frame classes based on STA auth/assoc state;
1009 	 * IEEE 802.11, Chap 5.5.
1010 	 *
1011 	 * mac80211 filters only based on association state, i.e. it drops
1012 	 * Class 3 frames from not associated stations. hostapd sends
1013 	 * deauth/disassoc frames when needed. In addition, hostapd is
1014 	 * responsible for filtering on both auth and assoc states.
1015 	 */
1016 
1017 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1018 		return ieee80211_rx_mesh_check(rx);
1019 
1020 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1021 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1022 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1023 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1024 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1025 		/*
1026 		 * accept port control frames from the AP even when it's not
1027 		 * yet marked ASSOC to prevent a race where we don't set the
1028 		 * assoc bit quickly enough before it sends the first frame
1029 		 */
1030 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1031 		    ieee80211_is_data_present(hdr->frame_control)) {
1032 			unsigned int hdrlen;
1033 			__be16 ethertype;
1034 
1035 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1036 
1037 			if (rx->skb->len < hdrlen + 8)
1038 				return RX_DROP_MONITOR;
1039 
1040 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1041 			if (ethertype == rx->sdata->control_port_protocol)
1042 				return RX_CONTINUE;
1043 		}
1044 
1045 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1046 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1047 					       hdr->addr2,
1048 					       GFP_ATOMIC))
1049 			return RX_DROP_UNUSABLE;
1050 
1051 		return RX_DROP_MONITOR;
1052 	}
1053 
1054 	return RX_CONTINUE;
1055 }
1056 
1057 
1058 static ieee80211_rx_result debug_noinline
1059 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1060 {
1061 	struct ieee80211_local *local;
1062 	struct ieee80211_hdr *hdr;
1063 	struct sk_buff *skb;
1064 
1065 	local = rx->local;
1066 	skb = rx->skb;
1067 	hdr = (struct ieee80211_hdr *) skb->data;
1068 
1069 	if (!local->pspolling)
1070 		return RX_CONTINUE;
1071 
1072 	if (!ieee80211_has_fromds(hdr->frame_control))
1073 		/* this is not from AP */
1074 		return RX_CONTINUE;
1075 
1076 	if (!ieee80211_is_data(hdr->frame_control))
1077 		return RX_CONTINUE;
1078 
1079 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1080 		/* AP has no more frames buffered for us */
1081 		local->pspolling = false;
1082 		return RX_CONTINUE;
1083 	}
1084 
1085 	/* more data bit is set, let's request a new frame from the AP */
1086 	ieee80211_send_pspoll(local, rx->sdata);
1087 
1088 	return RX_CONTINUE;
1089 }
1090 
1091 static void sta_ps_start(struct sta_info *sta)
1092 {
1093 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1094 	struct ieee80211_local *local = sdata->local;
1095 	struct ps_data *ps;
1096 
1097 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1098 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1099 		ps = &sdata->bss->ps;
1100 	else
1101 		return;
1102 
1103 	atomic_inc(&ps->num_sta_ps);
1104 	set_sta_flag(sta, WLAN_STA_PS_STA);
1105 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1106 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1107 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1108 	       sta->sta.addr, sta->sta.aid);
1109 }
1110 
1111 static void sta_ps_end(struct sta_info *sta)
1112 {
1113 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1114 	       sta->sta.addr, sta->sta.aid);
1115 
1116 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1117 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1118 		       sta->sta.addr, sta->sta.aid);
1119 		return;
1120 	}
1121 
1122 	ieee80211_sta_ps_deliver_wakeup(sta);
1123 }
1124 
1125 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1126 {
1127 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1128 	bool in_ps;
1129 
1130 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1131 
1132 	/* Don't let the same PS state be set twice */
1133 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1134 	if ((start && in_ps) || (!start && !in_ps))
1135 		return -EINVAL;
1136 
1137 	if (start)
1138 		sta_ps_start(sta_inf);
1139 	else
1140 		sta_ps_end(sta_inf);
1141 
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1145 
1146 static ieee80211_rx_result debug_noinline
1147 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1148 {
1149 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1150 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1151 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1152 	int tid, ac;
1153 
1154 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1155 		return RX_CONTINUE;
1156 
1157 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1158 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1159 		return RX_CONTINUE;
1160 
1161 	/*
1162 	 * The device handles station powersave, so don't do anything about
1163 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1164 	 * it to mac80211 since they're handled.)
1165 	 */
1166 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1167 		return RX_CONTINUE;
1168 
1169 	/*
1170 	 * Don't do anything if the station isn't already asleep. In
1171 	 * the uAPSD case, the station will probably be marked asleep,
1172 	 * in the PS-Poll case the station must be confused ...
1173 	 */
1174 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1175 		return RX_CONTINUE;
1176 
1177 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1178 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1179 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1180 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1181 			else
1182 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1183 		}
1184 
1185 		/* Free PS Poll skb here instead of returning RX_DROP that would
1186 		 * count as an dropped frame. */
1187 		dev_kfree_skb(rx->skb);
1188 
1189 		return RX_QUEUED;
1190 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1191 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1192 		   ieee80211_has_pm(hdr->frame_control) &&
1193 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1194 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1195 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1196 		ac = ieee802_1d_to_ac[tid & 7];
1197 
1198 		/*
1199 		 * If this AC is not trigger-enabled do nothing.
1200 		 *
1201 		 * NB: This could/should check a separate bitmap of trigger-
1202 		 * enabled queues, but for now we only implement uAPSD w/o
1203 		 * TSPEC changes to the ACs, so they're always the same.
1204 		 */
1205 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1206 			return RX_CONTINUE;
1207 
1208 		/* if we are in a service period, do nothing */
1209 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1210 			return RX_CONTINUE;
1211 
1212 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1213 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1214 		else
1215 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1216 	}
1217 
1218 	return RX_CONTINUE;
1219 }
1220 
1221 static ieee80211_rx_result debug_noinline
1222 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1223 {
1224 	struct sta_info *sta = rx->sta;
1225 	struct sk_buff *skb = rx->skb;
1226 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1227 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1228 	int i;
1229 
1230 	if (!sta)
1231 		return RX_CONTINUE;
1232 
1233 	/*
1234 	 * Update last_rx only for IBSS packets which are for the current
1235 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1236 	 * current IBSS network alive in cases where other STAs start
1237 	 * using different BSSID. This will also give the station another
1238 	 * chance to restart the authentication/authorization in case
1239 	 * something went wrong the first time.
1240 	 */
1241 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1242 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1243 						NL80211_IFTYPE_ADHOC);
1244 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1245 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1246 			sta->last_rx = jiffies;
1247 			if (ieee80211_is_data(hdr->frame_control)) {
1248 				sta->last_rx_rate_idx = status->rate_idx;
1249 				sta->last_rx_rate_flag = status->flag;
1250 				sta->last_rx_rate_vht_nss = status->vht_nss;
1251 			}
1252 		}
1253 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1254 		/*
1255 		 * Mesh beacons will update last_rx when if they are found to
1256 		 * match the current local configuration when processed.
1257 		 */
1258 		sta->last_rx = jiffies;
1259 		if (ieee80211_is_data(hdr->frame_control)) {
1260 			sta->last_rx_rate_idx = status->rate_idx;
1261 			sta->last_rx_rate_flag = status->flag;
1262 			sta->last_rx_rate_vht_nss = status->vht_nss;
1263 		}
1264 	}
1265 
1266 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1267 		return RX_CONTINUE;
1268 
1269 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1270 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1271 
1272 	sta->rx_fragments++;
1273 	sta->rx_bytes += rx->skb->len;
1274 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1275 		sta->last_signal = status->signal;
1276 		ewma_add(&sta->avg_signal, -status->signal);
1277 	}
1278 
1279 	if (status->chains) {
1280 		sta->chains = status->chains;
1281 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1282 			int signal = status->chain_signal[i];
1283 
1284 			if (!(status->chains & BIT(i)))
1285 				continue;
1286 
1287 			sta->chain_signal_last[i] = signal;
1288 			ewma_add(&sta->chain_signal_avg[i], -signal);
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * Change STA power saving mode only at the end of a frame
1294 	 * exchange sequence.
1295 	 */
1296 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1297 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1298 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1299 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1300 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1301 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1302 			/*
1303 			 * Ignore doze->wake transitions that are
1304 			 * indicated by non-data frames, the standard
1305 			 * is unclear here, but for example going to
1306 			 * PS mode and then scanning would cause a
1307 			 * doze->wake transition for the probe request,
1308 			 * and that is clearly undesirable.
1309 			 */
1310 			if (ieee80211_is_data(hdr->frame_control) &&
1311 			    !ieee80211_has_pm(hdr->frame_control))
1312 				sta_ps_end(sta);
1313 		} else {
1314 			if (ieee80211_has_pm(hdr->frame_control))
1315 				sta_ps_start(sta);
1316 		}
1317 	}
1318 
1319 	/* mesh power save support */
1320 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1321 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1322 
1323 	/*
1324 	 * Drop (qos-)data::nullfunc frames silently, since they
1325 	 * are used only to control station power saving mode.
1326 	 */
1327 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1328 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1329 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1330 
1331 		/*
1332 		 * If we receive a 4-addr nullfunc frame from a STA
1333 		 * that was not moved to a 4-addr STA vlan yet send
1334 		 * the event to userspace and for older hostapd drop
1335 		 * the frame to the monitor interface.
1336 		 */
1337 		if (ieee80211_has_a4(hdr->frame_control) &&
1338 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1339 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1340 		      !rx->sdata->u.vlan.sta))) {
1341 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1342 				cfg80211_rx_unexpected_4addr_frame(
1343 					rx->sdata->dev, sta->sta.addr,
1344 					GFP_ATOMIC);
1345 			return RX_DROP_MONITOR;
1346 		}
1347 		/*
1348 		 * Update counter and free packet here to avoid
1349 		 * counting this as a dropped packed.
1350 		 */
1351 		sta->rx_packets++;
1352 		dev_kfree_skb(rx->skb);
1353 		return RX_QUEUED;
1354 	}
1355 
1356 	return RX_CONTINUE;
1357 } /* ieee80211_rx_h_sta_process */
1358 
1359 static ieee80211_rx_result debug_noinline
1360 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1361 {
1362 	struct sk_buff *skb = rx->skb;
1363 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1364 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1365 	int keyidx;
1366 	int hdrlen;
1367 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1368 	struct ieee80211_key *sta_ptk = NULL;
1369 	int mmie_keyidx = -1;
1370 	__le16 fc;
1371 
1372 	/*
1373 	 * Key selection 101
1374 	 *
1375 	 * There are four types of keys:
1376 	 *  - GTK (group keys)
1377 	 *  - IGTK (group keys for management frames)
1378 	 *  - PTK (pairwise keys)
1379 	 *  - STK (station-to-station pairwise keys)
1380 	 *
1381 	 * When selecting a key, we have to distinguish between multicast
1382 	 * (including broadcast) and unicast frames, the latter can only
1383 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1384 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1385 	 * unicast frames can also use key indices like GTKs. Hence, if we
1386 	 * don't have a PTK/STK we check the key index for a WEP key.
1387 	 *
1388 	 * Note that in a regular BSS, multicast frames are sent by the
1389 	 * AP only, associated stations unicast the frame to the AP first
1390 	 * which then multicasts it on their behalf.
1391 	 *
1392 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1393 	 * with each station, that is something we don't currently handle.
1394 	 * The spec seems to expect that one negotiates the same key with
1395 	 * every station but there's no such requirement; VLANs could be
1396 	 * possible.
1397 	 */
1398 
1399 	/*
1400 	 * No point in finding a key and decrypting if the frame is neither
1401 	 * addressed to us nor a multicast frame.
1402 	 */
1403 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1404 		return RX_CONTINUE;
1405 
1406 	/* start without a key */
1407 	rx->key = NULL;
1408 
1409 	if (rx->sta)
1410 		sta_ptk = rcu_dereference(rx->sta->ptk);
1411 
1412 	fc = hdr->frame_control;
1413 
1414 	if (!ieee80211_has_protected(fc))
1415 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1416 
1417 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1418 		rx->key = sta_ptk;
1419 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1420 		    (status->flag & RX_FLAG_IV_STRIPPED))
1421 			return RX_CONTINUE;
1422 		/* Skip decryption if the frame is not protected. */
1423 		if (!ieee80211_has_protected(fc))
1424 			return RX_CONTINUE;
1425 	} else if (mmie_keyidx >= 0) {
1426 		/* Broadcast/multicast robust management frame / BIP */
1427 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1428 		    (status->flag & RX_FLAG_IV_STRIPPED))
1429 			return RX_CONTINUE;
1430 
1431 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1432 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1433 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1434 		if (rx->sta)
1435 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1436 		if (!rx->key)
1437 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1438 	} else if (!ieee80211_has_protected(fc)) {
1439 		/*
1440 		 * The frame was not protected, so skip decryption. However, we
1441 		 * need to set rx->key if there is a key that could have been
1442 		 * used so that the frame may be dropped if encryption would
1443 		 * have been expected.
1444 		 */
1445 		struct ieee80211_key *key = NULL;
1446 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1447 		int i;
1448 
1449 		if (ieee80211_is_mgmt(fc) &&
1450 		    is_multicast_ether_addr(hdr->addr1) &&
1451 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1452 			rx->key = key;
1453 		else {
1454 			if (rx->sta) {
1455 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1456 					key = rcu_dereference(rx->sta->gtk[i]);
1457 					if (key)
1458 						break;
1459 				}
1460 			}
1461 			if (!key) {
1462 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1463 					key = rcu_dereference(sdata->keys[i]);
1464 					if (key)
1465 						break;
1466 				}
1467 			}
1468 			if (key)
1469 				rx->key = key;
1470 		}
1471 		return RX_CONTINUE;
1472 	} else {
1473 		u8 keyid;
1474 		/*
1475 		 * The device doesn't give us the IV so we won't be
1476 		 * able to look up the key. That's ok though, we
1477 		 * don't need to decrypt the frame, we just won't
1478 		 * be able to keep statistics accurate.
1479 		 * Except for key threshold notifications, should
1480 		 * we somehow allow the driver to tell us which key
1481 		 * the hardware used if this flag is set?
1482 		 */
1483 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1484 		    (status->flag & RX_FLAG_IV_STRIPPED))
1485 			return RX_CONTINUE;
1486 
1487 		hdrlen = ieee80211_hdrlen(fc);
1488 
1489 		if (rx->skb->len < 8 + hdrlen)
1490 			return RX_DROP_UNUSABLE; /* TODO: count this? */
1491 
1492 		/*
1493 		 * no need to call ieee80211_wep_get_keyidx,
1494 		 * it verifies a bunch of things we've done already
1495 		 */
1496 		skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1497 		keyidx = keyid >> 6;
1498 
1499 		/* check per-station GTK first, if multicast packet */
1500 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1501 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1502 
1503 		/* if not found, try default key */
1504 		if (!rx->key) {
1505 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1506 
1507 			/*
1508 			 * RSNA-protected unicast frames should always be
1509 			 * sent with pairwise or station-to-station keys,
1510 			 * but for WEP we allow using a key index as well.
1511 			 */
1512 			if (rx->key &&
1513 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1514 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1515 			    !is_multicast_ether_addr(hdr->addr1))
1516 				rx->key = NULL;
1517 		}
1518 	}
1519 
1520 	if (rx->key) {
1521 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1522 			return RX_DROP_MONITOR;
1523 
1524 		rx->key->tx_rx_count++;
1525 		/* TODO: add threshold stuff again */
1526 	} else {
1527 		return RX_DROP_MONITOR;
1528 	}
1529 
1530 	switch (rx->key->conf.cipher) {
1531 	case WLAN_CIPHER_SUITE_WEP40:
1532 	case WLAN_CIPHER_SUITE_WEP104:
1533 		result = ieee80211_crypto_wep_decrypt(rx);
1534 		break;
1535 	case WLAN_CIPHER_SUITE_TKIP:
1536 		result = ieee80211_crypto_tkip_decrypt(rx);
1537 		break;
1538 	case WLAN_CIPHER_SUITE_CCMP:
1539 		result = ieee80211_crypto_ccmp_decrypt(rx);
1540 		break;
1541 	case WLAN_CIPHER_SUITE_AES_CMAC:
1542 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1543 		break;
1544 	default:
1545 		/*
1546 		 * We can reach here only with HW-only algorithms
1547 		 * but why didn't it decrypt the frame?!
1548 		 */
1549 		return RX_DROP_UNUSABLE;
1550 	}
1551 
1552 	/* the hdr variable is invalid after the decrypt handlers */
1553 
1554 	/* either the frame has been decrypted or will be dropped */
1555 	status->flag |= RX_FLAG_DECRYPTED;
1556 
1557 	return result;
1558 }
1559 
1560 static inline struct ieee80211_fragment_entry *
1561 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1562 			 unsigned int frag, unsigned int seq, int rx_queue,
1563 			 struct sk_buff **skb)
1564 {
1565 	struct ieee80211_fragment_entry *entry;
1566 
1567 	entry = &sdata->fragments[sdata->fragment_next++];
1568 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1569 		sdata->fragment_next = 0;
1570 
1571 	if (!skb_queue_empty(&entry->skb_list))
1572 		__skb_queue_purge(&entry->skb_list);
1573 
1574 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1575 	*skb = NULL;
1576 	entry->first_frag_time = jiffies;
1577 	entry->seq = seq;
1578 	entry->rx_queue = rx_queue;
1579 	entry->last_frag = frag;
1580 	entry->ccmp = 0;
1581 	entry->extra_len = 0;
1582 
1583 	return entry;
1584 }
1585 
1586 static inline struct ieee80211_fragment_entry *
1587 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1588 			  unsigned int frag, unsigned int seq,
1589 			  int rx_queue, struct ieee80211_hdr *hdr)
1590 {
1591 	struct ieee80211_fragment_entry *entry;
1592 	int i, idx;
1593 
1594 	idx = sdata->fragment_next;
1595 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1596 		struct ieee80211_hdr *f_hdr;
1597 
1598 		idx--;
1599 		if (idx < 0)
1600 			idx = IEEE80211_FRAGMENT_MAX - 1;
1601 
1602 		entry = &sdata->fragments[idx];
1603 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1604 		    entry->rx_queue != rx_queue ||
1605 		    entry->last_frag + 1 != frag)
1606 			continue;
1607 
1608 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1609 
1610 		/*
1611 		 * Check ftype and addresses are equal, else check next fragment
1612 		 */
1613 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1614 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1615 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1616 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1617 			continue;
1618 
1619 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1620 			__skb_queue_purge(&entry->skb_list);
1621 			continue;
1622 		}
1623 		return entry;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 static ieee80211_rx_result debug_noinline
1630 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1631 {
1632 	struct ieee80211_hdr *hdr;
1633 	u16 sc;
1634 	__le16 fc;
1635 	unsigned int frag, seq;
1636 	struct ieee80211_fragment_entry *entry;
1637 	struct sk_buff *skb;
1638 	struct ieee80211_rx_status *status;
1639 
1640 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1641 	fc = hdr->frame_control;
1642 
1643 	if (ieee80211_is_ctl(fc))
1644 		return RX_CONTINUE;
1645 
1646 	sc = le16_to_cpu(hdr->seq_ctrl);
1647 	frag = sc & IEEE80211_SCTL_FRAG;
1648 
1649 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1650 		   is_multicast_ether_addr(hdr->addr1))) {
1651 		/* not fragmented */
1652 		goto out;
1653 	}
1654 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1655 
1656 	if (skb_linearize(rx->skb))
1657 		return RX_DROP_UNUSABLE;
1658 
1659 	/*
1660 	 *  skb_linearize() might change the skb->data and
1661 	 *  previously cached variables (in this case, hdr) need to
1662 	 *  be refreshed with the new data.
1663 	 */
1664 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1665 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1666 
1667 	if (frag == 0) {
1668 		/* This is the first fragment of a new frame. */
1669 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1670 						 rx->seqno_idx, &(rx->skb));
1671 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1672 		    ieee80211_has_protected(fc)) {
1673 			int queue = rx->security_idx;
1674 			/* Store CCMP PN so that we can verify that the next
1675 			 * fragment has a sequential PN value. */
1676 			entry->ccmp = 1;
1677 			memcpy(entry->last_pn,
1678 			       rx->key->u.ccmp.rx_pn[queue],
1679 			       IEEE80211_CCMP_PN_LEN);
1680 		}
1681 		return RX_QUEUED;
1682 	}
1683 
1684 	/* This is a fragment for a frame that should already be pending in
1685 	 * fragment cache. Add this fragment to the end of the pending entry.
1686 	 */
1687 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1688 					  rx->seqno_idx, hdr);
1689 	if (!entry) {
1690 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1691 		return RX_DROP_MONITOR;
1692 	}
1693 
1694 	/* Verify that MPDUs within one MSDU have sequential PN values.
1695 	 * (IEEE 802.11i, 8.3.3.4.5) */
1696 	if (entry->ccmp) {
1697 		int i;
1698 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1699 		int queue;
1700 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1701 			return RX_DROP_UNUSABLE;
1702 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1703 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1704 			pn[i]++;
1705 			if (pn[i])
1706 				break;
1707 		}
1708 		queue = rx->security_idx;
1709 		rpn = rx->key->u.ccmp.rx_pn[queue];
1710 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1711 			return RX_DROP_UNUSABLE;
1712 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1713 	}
1714 
1715 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1716 	__skb_queue_tail(&entry->skb_list, rx->skb);
1717 	entry->last_frag = frag;
1718 	entry->extra_len += rx->skb->len;
1719 	if (ieee80211_has_morefrags(fc)) {
1720 		rx->skb = NULL;
1721 		return RX_QUEUED;
1722 	}
1723 
1724 	rx->skb = __skb_dequeue(&entry->skb_list);
1725 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1726 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1727 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1728 					      GFP_ATOMIC))) {
1729 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1730 			__skb_queue_purge(&entry->skb_list);
1731 			return RX_DROP_UNUSABLE;
1732 		}
1733 	}
1734 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1735 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1736 		dev_kfree_skb(skb);
1737 	}
1738 
1739 	/* Complete frame has been reassembled - process it now */
1740 	status = IEEE80211_SKB_RXCB(rx->skb);
1741 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1742 
1743  out:
1744 	if (rx->sta)
1745 		rx->sta->rx_packets++;
1746 	if (is_multicast_ether_addr(hdr->addr1))
1747 		rx->local->dot11MulticastReceivedFrameCount++;
1748 	else
1749 		ieee80211_led_rx(rx->local);
1750 	return RX_CONTINUE;
1751 }
1752 
1753 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1754 {
1755 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1756 		return -EACCES;
1757 
1758 	return 0;
1759 }
1760 
1761 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1762 {
1763 	struct sk_buff *skb = rx->skb;
1764 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1765 
1766 	/*
1767 	 * Pass through unencrypted frames if the hardware has
1768 	 * decrypted them already.
1769 	 */
1770 	if (status->flag & RX_FLAG_DECRYPTED)
1771 		return 0;
1772 
1773 	/* Drop unencrypted frames if key is set. */
1774 	if (unlikely(!ieee80211_has_protected(fc) &&
1775 		     !ieee80211_is_nullfunc(fc) &&
1776 		     ieee80211_is_data(fc) &&
1777 		     (rx->key || rx->sdata->drop_unencrypted)))
1778 		return -EACCES;
1779 
1780 	return 0;
1781 }
1782 
1783 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1784 {
1785 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1786 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1787 	__le16 fc = hdr->frame_control;
1788 
1789 	/*
1790 	 * Pass through unencrypted frames if the hardware has
1791 	 * decrypted them already.
1792 	 */
1793 	if (status->flag & RX_FLAG_DECRYPTED)
1794 		return 0;
1795 
1796 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1797 		if (unlikely(!ieee80211_has_protected(fc) &&
1798 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1799 			     rx->key)) {
1800 			if (ieee80211_is_deauth(fc) ||
1801 			    ieee80211_is_disassoc(fc))
1802 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1803 							     rx->skb->data,
1804 							     rx->skb->len);
1805 			return -EACCES;
1806 		}
1807 		/* BIP does not use Protected field, so need to check MMIE */
1808 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1809 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1810 			if (ieee80211_is_deauth(fc) ||
1811 			    ieee80211_is_disassoc(fc))
1812 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1813 							     rx->skb->data,
1814 							     rx->skb->len);
1815 			return -EACCES;
1816 		}
1817 		/*
1818 		 * When using MFP, Action frames are not allowed prior to
1819 		 * having configured keys.
1820 		 */
1821 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1822 			     ieee80211_is_robust_mgmt_frame(
1823 				     (struct ieee80211_hdr *) rx->skb->data)))
1824 			return -EACCES;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static int
1831 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1832 {
1833 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1834 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1835 	bool check_port_control = false;
1836 	struct ethhdr *ehdr;
1837 	int ret;
1838 
1839 	*port_control = false;
1840 	if (ieee80211_has_a4(hdr->frame_control) &&
1841 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1842 		return -1;
1843 
1844 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1845 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1846 
1847 		if (!sdata->u.mgd.use_4addr)
1848 			return -1;
1849 		else
1850 			check_port_control = true;
1851 	}
1852 
1853 	if (is_multicast_ether_addr(hdr->addr1) &&
1854 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1855 		return -1;
1856 
1857 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1858 	if (ret < 0)
1859 		return ret;
1860 
1861 	ehdr = (struct ethhdr *) rx->skb->data;
1862 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1863 		*port_control = true;
1864 	else if (check_port_control)
1865 		return -1;
1866 
1867 	return 0;
1868 }
1869 
1870 /*
1871  * requires that rx->skb is a frame with ethernet header
1872  */
1873 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1874 {
1875 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1876 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1877 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1878 
1879 	/*
1880 	 * Allow EAPOL frames to us/the PAE group address regardless
1881 	 * of whether the frame was encrypted or not.
1882 	 */
1883 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1884 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1885 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1886 		return true;
1887 
1888 	if (ieee80211_802_1x_port_control(rx) ||
1889 	    ieee80211_drop_unencrypted(rx, fc))
1890 		return false;
1891 
1892 	return true;
1893 }
1894 
1895 /*
1896  * requires that rx->skb is a frame with ethernet header
1897  */
1898 static void
1899 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1900 {
1901 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1902 	struct net_device *dev = sdata->dev;
1903 	struct sk_buff *skb, *xmit_skb;
1904 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1905 	struct sta_info *dsta;
1906 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1907 
1908 	skb = rx->skb;
1909 	xmit_skb = NULL;
1910 
1911 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1912 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1913 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1914 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1915 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1916 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1917 			/*
1918 			 * send multicast frames both to higher layers in
1919 			 * local net stack and back to the wireless medium
1920 			 */
1921 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1922 			if (!xmit_skb)
1923 				net_info_ratelimited("%s: failed to clone multicast frame\n",
1924 						    dev->name);
1925 		} else {
1926 			dsta = sta_info_get(sdata, skb->data);
1927 			if (dsta) {
1928 				/*
1929 				 * The destination station is associated to
1930 				 * this AP (in this VLAN), so send the frame
1931 				 * directly to it and do not pass it to local
1932 				 * net stack.
1933 				 */
1934 				xmit_skb = skb;
1935 				skb = NULL;
1936 			}
1937 		}
1938 	}
1939 
1940 	if (skb) {
1941 		int align __maybe_unused;
1942 
1943 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1944 		/*
1945 		 * 'align' will only take the values 0 or 2 here
1946 		 * since all frames are required to be aligned
1947 		 * to 2-byte boundaries when being passed to
1948 		 * mac80211; the code here works just as well if
1949 		 * that isn't true, but mac80211 assumes it can
1950 		 * access fields as 2-byte aligned (e.g. for
1951 		 * compare_ether_addr)
1952 		 */
1953 		align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1954 		if (align) {
1955 			if (WARN_ON(skb_headroom(skb) < 3)) {
1956 				dev_kfree_skb(skb);
1957 				skb = NULL;
1958 			} else {
1959 				u8 *data = skb->data;
1960 				size_t len = skb_headlen(skb);
1961 				skb->data -= align;
1962 				memmove(skb->data, data, len);
1963 				skb_set_tail_pointer(skb, len);
1964 			}
1965 		}
1966 #endif
1967 
1968 		if (skb) {
1969 			/* deliver to local stack */
1970 			skb->protocol = eth_type_trans(skb, dev);
1971 			memset(skb->cb, 0, sizeof(skb->cb));
1972 			netif_receive_skb(skb);
1973 		}
1974 	}
1975 
1976 	if (xmit_skb) {
1977 		/*
1978 		 * Send to wireless media and increase priority by 256 to
1979 		 * keep the received priority instead of reclassifying
1980 		 * the frame (see cfg80211_classify8021d).
1981 		 */
1982 		xmit_skb->priority += 256;
1983 		xmit_skb->protocol = htons(ETH_P_802_3);
1984 		skb_reset_network_header(xmit_skb);
1985 		skb_reset_mac_header(xmit_skb);
1986 		dev_queue_xmit(xmit_skb);
1987 	}
1988 }
1989 
1990 static ieee80211_rx_result debug_noinline
1991 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1992 {
1993 	struct net_device *dev = rx->sdata->dev;
1994 	struct sk_buff *skb = rx->skb;
1995 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1996 	__le16 fc = hdr->frame_control;
1997 	struct sk_buff_head frame_list;
1998 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1999 
2000 	if (unlikely(!ieee80211_is_data(fc)))
2001 		return RX_CONTINUE;
2002 
2003 	if (unlikely(!ieee80211_is_data_present(fc)))
2004 		return RX_DROP_MONITOR;
2005 
2006 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2007 		return RX_CONTINUE;
2008 
2009 	if (ieee80211_has_a4(hdr->frame_control) &&
2010 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2011 	    !rx->sdata->u.vlan.sta)
2012 		return RX_DROP_UNUSABLE;
2013 
2014 	if (is_multicast_ether_addr(hdr->addr1) &&
2015 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2016 	      rx->sdata->u.vlan.sta) ||
2017 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2018 	      rx->sdata->u.mgd.use_4addr)))
2019 		return RX_DROP_UNUSABLE;
2020 
2021 	skb->dev = dev;
2022 	__skb_queue_head_init(&frame_list);
2023 
2024 	if (skb_linearize(skb))
2025 		return RX_DROP_UNUSABLE;
2026 
2027 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2028 				 rx->sdata->vif.type,
2029 				 rx->local->hw.extra_tx_headroom, true);
2030 
2031 	while (!skb_queue_empty(&frame_list)) {
2032 		rx->skb = __skb_dequeue(&frame_list);
2033 
2034 		if (!ieee80211_frame_allowed(rx, fc)) {
2035 			dev_kfree_skb(rx->skb);
2036 			continue;
2037 		}
2038 		dev->stats.rx_packets++;
2039 		dev->stats.rx_bytes += rx->skb->len;
2040 
2041 		ieee80211_deliver_skb(rx);
2042 	}
2043 
2044 	return RX_QUEUED;
2045 }
2046 
2047 #ifdef CONFIG_MAC80211_MESH
2048 static ieee80211_rx_result
2049 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2050 {
2051 	struct ieee80211_hdr *fwd_hdr, *hdr;
2052 	struct ieee80211_tx_info *info;
2053 	struct ieee80211s_hdr *mesh_hdr;
2054 	struct sk_buff *skb = rx->skb, *fwd_skb;
2055 	struct ieee80211_local *local = rx->local;
2056 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2057 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2058 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2059 	__le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2060 	u16 q, hdrlen;
2061 
2062 	hdr = (struct ieee80211_hdr *) skb->data;
2063 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2064 
2065 	/* make sure fixed part of mesh header is there, also checks skb len */
2066 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2067 		return RX_DROP_MONITOR;
2068 
2069 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2070 
2071 	/* make sure full mesh header is there, also checks skb len */
2072 	if (!pskb_may_pull(rx->skb,
2073 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2074 		return RX_DROP_MONITOR;
2075 
2076 	/* reload pointers */
2077 	hdr = (struct ieee80211_hdr *) skb->data;
2078 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2079 
2080 	/* frame is in RMC, don't forward */
2081 	if (ieee80211_is_data(hdr->frame_control) &&
2082 	    is_multicast_ether_addr(hdr->addr1) &&
2083 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2084 		return RX_DROP_MONITOR;
2085 
2086 	if (!ieee80211_is_data(hdr->frame_control) ||
2087 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2088 		return RX_CONTINUE;
2089 
2090 	if (!mesh_hdr->ttl)
2091 		return RX_DROP_MONITOR;
2092 
2093 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2094 		struct mesh_path *mppath;
2095 		char *proxied_addr;
2096 		char *mpp_addr;
2097 
2098 		if (is_multicast_ether_addr(hdr->addr1)) {
2099 			mpp_addr = hdr->addr3;
2100 			proxied_addr = mesh_hdr->eaddr1;
2101 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2102 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2103 			mpp_addr = hdr->addr4;
2104 			proxied_addr = mesh_hdr->eaddr2;
2105 		} else {
2106 			return RX_DROP_MONITOR;
2107 		}
2108 
2109 		rcu_read_lock();
2110 		mppath = mpp_path_lookup(sdata, proxied_addr);
2111 		if (!mppath) {
2112 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2113 		} else {
2114 			spin_lock_bh(&mppath->state_lock);
2115 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2116 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2117 			spin_unlock_bh(&mppath->state_lock);
2118 		}
2119 		rcu_read_unlock();
2120 	}
2121 
2122 	/* Frame has reached destination.  Don't forward */
2123 	if (!is_multicast_ether_addr(hdr->addr1) &&
2124 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2125 		return RX_CONTINUE;
2126 
2127 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2128 	if (ieee80211_queue_stopped(&local->hw, q)) {
2129 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2130 		return RX_DROP_MONITOR;
2131 	}
2132 	skb_set_queue_mapping(skb, q);
2133 
2134 	if (!--mesh_hdr->ttl) {
2135 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2136 		goto out;
2137 	}
2138 
2139 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2140 		goto out;
2141 
2142 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2143 	if (!fwd_skb) {
2144 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2145 				    sdata->name);
2146 		goto out;
2147 	}
2148 
2149 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2150 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2151 	info = IEEE80211_SKB_CB(fwd_skb);
2152 	memset(info, 0, sizeof(*info));
2153 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2154 	info->control.vif = &rx->sdata->vif;
2155 	info->control.jiffies = jiffies;
2156 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2157 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2158 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2159 		/* update power mode indication when forwarding */
2160 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2161 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2162 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2163 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2164 	} else {
2165 		/* unable to resolve next hop */
2166 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2167 				   fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2168 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2169 		kfree_skb(fwd_skb);
2170 		return RX_DROP_MONITOR;
2171 	}
2172 
2173 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2174 	ieee80211_add_pending_skb(local, fwd_skb);
2175  out:
2176 	if (is_multicast_ether_addr(hdr->addr1) ||
2177 	    sdata->dev->flags & IFF_PROMISC)
2178 		return RX_CONTINUE;
2179 	else
2180 		return RX_DROP_MONITOR;
2181 }
2182 #endif
2183 
2184 static ieee80211_rx_result debug_noinline
2185 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2186 {
2187 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2188 	struct ieee80211_local *local = rx->local;
2189 	struct net_device *dev = sdata->dev;
2190 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2191 	__le16 fc = hdr->frame_control;
2192 	bool port_control;
2193 	int err;
2194 
2195 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2196 		return RX_CONTINUE;
2197 
2198 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2199 		return RX_DROP_MONITOR;
2200 
2201 	/*
2202 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2203 	 * also drop the frame to cooked monitor interfaces.
2204 	 */
2205 	if (ieee80211_has_a4(hdr->frame_control) &&
2206 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2207 		if (rx->sta &&
2208 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2209 			cfg80211_rx_unexpected_4addr_frame(
2210 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2211 		return RX_DROP_MONITOR;
2212 	}
2213 
2214 	err = __ieee80211_data_to_8023(rx, &port_control);
2215 	if (unlikely(err))
2216 		return RX_DROP_UNUSABLE;
2217 
2218 	if (!ieee80211_frame_allowed(rx, fc))
2219 		return RX_DROP_MONITOR;
2220 
2221 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2222 	    unlikely(port_control) && sdata->bss) {
2223 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2224 				     u.ap);
2225 		dev = sdata->dev;
2226 		rx->sdata = sdata;
2227 	}
2228 
2229 	rx->skb->dev = dev;
2230 
2231 	dev->stats.rx_packets++;
2232 	dev->stats.rx_bytes += rx->skb->len;
2233 
2234 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2235 	    !is_multicast_ether_addr(
2236 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2237 	    (!local->scanning &&
2238 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2239 			mod_timer(&local->dynamic_ps_timer, jiffies +
2240 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2241 	}
2242 
2243 	ieee80211_deliver_skb(rx);
2244 
2245 	return RX_QUEUED;
2246 }
2247 
2248 static ieee80211_rx_result debug_noinline
2249 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2250 {
2251 	struct sk_buff *skb = rx->skb;
2252 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2253 	struct tid_ampdu_rx *tid_agg_rx;
2254 	u16 start_seq_num;
2255 	u16 tid;
2256 
2257 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2258 		return RX_CONTINUE;
2259 
2260 	if (ieee80211_is_back_req(bar->frame_control)) {
2261 		struct {
2262 			__le16 control, start_seq_num;
2263 		} __packed bar_data;
2264 
2265 		if (!rx->sta)
2266 			return RX_DROP_MONITOR;
2267 
2268 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2269 				  &bar_data, sizeof(bar_data)))
2270 			return RX_DROP_MONITOR;
2271 
2272 		tid = le16_to_cpu(bar_data.control) >> 12;
2273 
2274 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2275 		if (!tid_agg_rx)
2276 			return RX_DROP_MONITOR;
2277 
2278 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2279 
2280 		/* reset session timer */
2281 		if (tid_agg_rx->timeout)
2282 			mod_timer(&tid_agg_rx->session_timer,
2283 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2284 
2285 		spin_lock(&tid_agg_rx->reorder_lock);
2286 		/* release stored frames up to start of BAR */
2287 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2288 						 start_seq_num, frames);
2289 		spin_unlock(&tid_agg_rx->reorder_lock);
2290 
2291 		kfree_skb(skb);
2292 		return RX_QUEUED;
2293 	}
2294 
2295 	/*
2296 	 * After this point, we only want management frames,
2297 	 * so we can drop all remaining control frames to
2298 	 * cooked monitor interfaces.
2299 	 */
2300 	return RX_DROP_MONITOR;
2301 }
2302 
2303 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2304 					   struct ieee80211_mgmt *mgmt,
2305 					   size_t len)
2306 {
2307 	struct ieee80211_local *local = sdata->local;
2308 	struct sk_buff *skb;
2309 	struct ieee80211_mgmt *resp;
2310 
2311 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2312 		/* Not to own unicast address */
2313 		return;
2314 	}
2315 
2316 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2317 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2318 		/* Not from the current AP or not associated yet. */
2319 		return;
2320 	}
2321 
2322 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2323 		/* Too short SA Query request frame */
2324 		return;
2325 	}
2326 
2327 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2328 	if (skb == NULL)
2329 		return;
2330 
2331 	skb_reserve(skb, local->hw.extra_tx_headroom);
2332 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2333 	memset(resp, 0, 24);
2334 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2335 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2336 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2337 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2338 					  IEEE80211_STYPE_ACTION);
2339 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2340 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2341 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2342 	memcpy(resp->u.action.u.sa_query.trans_id,
2343 	       mgmt->u.action.u.sa_query.trans_id,
2344 	       WLAN_SA_QUERY_TR_ID_LEN);
2345 
2346 	ieee80211_tx_skb(sdata, skb);
2347 }
2348 
2349 static ieee80211_rx_result debug_noinline
2350 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2351 {
2352 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2353 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2354 
2355 	/*
2356 	 * From here on, look only at management frames.
2357 	 * Data and control frames are already handled,
2358 	 * and unknown (reserved) frames are useless.
2359 	 */
2360 	if (rx->skb->len < 24)
2361 		return RX_DROP_MONITOR;
2362 
2363 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2364 		return RX_DROP_MONITOR;
2365 
2366 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2367 	    ieee80211_is_beacon(mgmt->frame_control) &&
2368 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2369 		int sig = 0;
2370 
2371 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2372 			sig = status->signal;
2373 
2374 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2375 					    rx->skb->data, rx->skb->len,
2376 					    status->freq, sig);
2377 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2378 	}
2379 
2380 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2381 		return RX_DROP_MONITOR;
2382 
2383 	if (ieee80211_drop_unencrypted_mgmt(rx))
2384 		return RX_DROP_UNUSABLE;
2385 
2386 	return RX_CONTINUE;
2387 }
2388 
2389 static ieee80211_rx_result debug_noinline
2390 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2391 {
2392 	struct ieee80211_local *local = rx->local;
2393 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2394 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2395 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2396 	int len = rx->skb->len;
2397 
2398 	if (!ieee80211_is_action(mgmt->frame_control))
2399 		return RX_CONTINUE;
2400 
2401 	/* drop too small frames */
2402 	if (len < IEEE80211_MIN_ACTION_SIZE)
2403 		return RX_DROP_UNUSABLE;
2404 
2405 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2406 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2407 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2408 		return RX_DROP_UNUSABLE;
2409 
2410 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2411 		return RX_DROP_UNUSABLE;
2412 
2413 	switch (mgmt->u.action.category) {
2414 	case WLAN_CATEGORY_HT:
2415 		/* reject HT action frames from stations not supporting HT */
2416 		if (!rx->sta->sta.ht_cap.ht_supported)
2417 			goto invalid;
2418 
2419 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2420 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2421 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2422 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2423 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2424 			break;
2425 
2426 		/* verify action & smps_control/chanwidth are present */
2427 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2428 			goto invalid;
2429 
2430 		switch (mgmt->u.action.u.ht_smps.action) {
2431 		case WLAN_HT_ACTION_SMPS: {
2432 			struct ieee80211_supported_band *sband;
2433 			enum ieee80211_smps_mode smps_mode;
2434 
2435 			/* convert to HT capability */
2436 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2437 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2438 				smps_mode = IEEE80211_SMPS_OFF;
2439 				break;
2440 			case WLAN_HT_SMPS_CONTROL_STATIC:
2441 				smps_mode = IEEE80211_SMPS_STATIC;
2442 				break;
2443 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2444 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2445 				break;
2446 			default:
2447 				goto invalid;
2448 			}
2449 
2450 			/* if no change do nothing */
2451 			if (rx->sta->sta.smps_mode == smps_mode)
2452 				goto handled;
2453 			rx->sta->sta.smps_mode = smps_mode;
2454 
2455 			sband = rx->local->hw.wiphy->bands[status->band];
2456 
2457 			rate_control_rate_update(local, sband, rx->sta,
2458 						 IEEE80211_RC_SMPS_CHANGED);
2459 			goto handled;
2460 		}
2461 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2462 			struct ieee80211_supported_band *sband;
2463 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2464 			enum ieee80211_sta_rx_bandwidth new_bw;
2465 
2466 			/* If it doesn't support 40 MHz it can't change ... */
2467 			if (!(rx->sta->sta.ht_cap.cap &
2468 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2469 				goto handled;
2470 
2471 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2472 				new_bw = IEEE80211_STA_RX_BW_20;
2473 			else
2474 				new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2475 
2476 			if (rx->sta->sta.bandwidth == new_bw)
2477 				goto handled;
2478 
2479 			sband = rx->local->hw.wiphy->bands[status->band];
2480 
2481 			rate_control_rate_update(local, sband, rx->sta,
2482 						 IEEE80211_RC_BW_CHANGED);
2483 			goto handled;
2484 		}
2485 		default:
2486 			goto invalid;
2487 		}
2488 
2489 		break;
2490 	case WLAN_CATEGORY_PUBLIC:
2491 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2492 			goto invalid;
2493 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2494 			break;
2495 		if (!rx->sta)
2496 			break;
2497 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2498 			break;
2499 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2500 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2501 			break;
2502 		if (len < offsetof(struct ieee80211_mgmt,
2503 				   u.action.u.ext_chan_switch.variable))
2504 			goto invalid;
2505 		goto queue;
2506 	case WLAN_CATEGORY_VHT:
2507 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2508 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2509 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2510 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2511 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2512 			break;
2513 
2514 		/* verify action code is present */
2515 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2516 			goto invalid;
2517 
2518 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2519 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2520 			u8 opmode;
2521 
2522 			/* verify opmode is present */
2523 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2524 				goto invalid;
2525 
2526 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2527 
2528 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2529 						    opmode, status->band,
2530 						    false);
2531 			goto handled;
2532 		}
2533 		default:
2534 			break;
2535 		}
2536 		break;
2537 	case WLAN_CATEGORY_BACK:
2538 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2539 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2540 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2541 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2542 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2543 			break;
2544 
2545 		/* verify action_code is present */
2546 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2547 			break;
2548 
2549 		switch (mgmt->u.action.u.addba_req.action_code) {
2550 		case WLAN_ACTION_ADDBA_REQ:
2551 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2552 				   sizeof(mgmt->u.action.u.addba_req)))
2553 				goto invalid;
2554 			break;
2555 		case WLAN_ACTION_ADDBA_RESP:
2556 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2557 				   sizeof(mgmt->u.action.u.addba_resp)))
2558 				goto invalid;
2559 			break;
2560 		case WLAN_ACTION_DELBA:
2561 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2562 				   sizeof(mgmt->u.action.u.delba)))
2563 				goto invalid;
2564 			break;
2565 		default:
2566 			goto invalid;
2567 		}
2568 
2569 		goto queue;
2570 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2571 		/* verify action_code is present */
2572 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2573 			break;
2574 
2575 		switch (mgmt->u.action.u.measurement.action_code) {
2576 		case WLAN_ACTION_SPCT_MSR_REQ:
2577 			if (status->band != IEEE80211_BAND_5GHZ)
2578 				break;
2579 
2580 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2581 				   sizeof(mgmt->u.action.u.measurement)))
2582 				break;
2583 
2584 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2585 				break;
2586 
2587 			ieee80211_process_measurement_req(sdata, mgmt, len);
2588 			goto handled;
2589 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2590 			u8 *bssid;
2591 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2592 				   sizeof(mgmt->u.action.u.chan_switch)))
2593 				break;
2594 
2595 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2596 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2597 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2598 				break;
2599 
2600 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2601 				bssid = sdata->u.mgd.bssid;
2602 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2603 				bssid = sdata->u.ibss.bssid;
2604 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2605 				bssid = mgmt->sa;
2606 			else
2607 				break;
2608 
2609 			if (!ether_addr_equal(mgmt->bssid, bssid))
2610 				break;
2611 
2612 			goto queue;
2613 			}
2614 		}
2615 		break;
2616 	case WLAN_CATEGORY_SA_QUERY:
2617 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2618 			   sizeof(mgmt->u.action.u.sa_query)))
2619 			break;
2620 
2621 		switch (mgmt->u.action.u.sa_query.action) {
2622 		case WLAN_ACTION_SA_QUERY_REQUEST:
2623 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2624 				break;
2625 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2626 			goto handled;
2627 		}
2628 		break;
2629 	case WLAN_CATEGORY_SELF_PROTECTED:
2630 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2631 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2632 			break;
2633 
2634 		switch (mgmt->u.action.u.self_prot.action_code) {
2635 		case WLAN_SP_MESH_PEERING_OPEN:
2636 		case WLAN_SP_MESH_PEERING_CLOSE:
2637 		case WLAN_SP_MESH_PEERING_CONFIRM:
2638 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2639 				goto invalid;
2640 			if (sdata->u.mesh.user_mpm)
2641 				/* userspace handles this frame */
2642 				break;
2643 			goto queue;
2644 		case WLAN_SP_MGK_INFORM:
2645 		case WLAN_SP_MGK_ACK:
2646 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2647 				goto invalid;
2648 			break;
2649 		}
2650 		break;
2651 	case WLAN_CATEGORY_MESH_ACTION:
2652 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2653 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2654 			break;
2655 
2656 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2657 			break;
2658 		if (mesh_action_is_path_sel(mgmt) &&
2659 		    !mesh_path_sel_is_hwmp(sdata))
2660 			break;
2661 		goto queue;
2662 	}
2663 
2664 	return RX_CONTINUE;
2665 
2666  invalid:
2667 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2668 	/* will return in the next handlers */
2669 	return RX_CONTINUE;
2670 
2671  handled:
2672 	if (rx->sta)
2673 		rx->sta->rx_packets++;
2674 	dev_kfree_skb(rx->skb);
2675 	return RX_QUEUED;
2676 
2677  queue:
2678 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2679 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2680 	ieee80211_queue_work(&local->hw, &sdata->work);
2681 	if (rx->sta)
2682 		rx->sta->rx_packets++;
2683 	return RX_QUEUED;
2684 }
2685 
2686 static ieee80211_rx_result debug_noinline
2687 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2688 {
2689 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2690 	int sig = 0;
2691 
2692 	/* skip known-bad action frames and return them in the next handler */
2693 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2694 		return RX_CONTINUE;
2695 
2696 	/*
2697 	 * Getting here means the kernel doesn't know how to handle
2698 	 * it, but maybe userspace does ... include returned frames
2699 	 * so userspace can register for those to know whether ones
2700 	 * it transmitted were processed or returned.
2701 	 */
2702 
2703 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2704 		sig = status->signal;
2705 
2706 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2707 			     rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2708 		if (rx->sta)
2709 			rx->sta->rx_packets++;
2710 		dev_kfree_skb(rx->skb);
2711 		return RX_QUEUED;
2712 	}
2713 
2714 	return RX_CONTINUE;
2715 }
2716 
2717 static ieee80211_rx_result debug_noinline
2718 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2719 {
2720 	struct ieee80211_local *local = rx->local;
2721 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2722 	struct sk_buff *nskb;
2723 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2724 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2725 
2726 	if (!ieee80211_is_action(mgmt->frame_control))
2727 		return RX_CONTINUE;
2728 
2729 	/*
2730 	 * For AP mode, hostapd is responsible for handling any action
2731 	 * frames that we didn't handle, including returning unknown
2732 	 * ones. For all other modes we will return them to the sender,
2733 	 * setting the 0x80 bit in the action category, as required by
2734 	 * 802.11-2012 9.24.4.
2735 	 * Newer versions of hostapd shall also use the management frame
2736 	 * registration mechanisms, but older ones still use cooked
2737 	 * monitor interfaces so push all frames there.
2738 	 */
2739 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2740 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2741 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2742 		return RX_DROP_MONITOR;
2743 
2744 	if (is_multicast_ether_addr(mgmt->da))
2745 		return RX_DROP_MONITOR;
2746 
2747 	/* do not return rejected action frames */
2748 	if (mgmt->u.action.category & 0x80)
2749 		return RX_DROP_UNUSABLE;
2750 
2751 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2752 			       GFP_ATOMIC);
2753 	if (nskb) {
2754 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2755 
2756 		nmgmt->u.action.category |= 0x80;
2757 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2758 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2759 
2760 		memset(nskb->cb, 0, sizeof(nskb->cb));
2761 
2762 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2763 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2764 
2765 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2766 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2767 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2768 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2769 				info->hw_queue =
2770 					local->hw.offchannel_tx_hw_queue;
2771 		}
2772 
2773 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2774 					    status->band);
2775 	}
2776 	dev_kfree_skb(rx->skb);
2777 	return RX_QUEUED;
2778 }
2779 
2780 static ieee80211_rx_result debug_noinline
2781 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2782 {
2783 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2784 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2785 	__le16 stype;
2786 
2787 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2788 
2789 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2790 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2791 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2792 		return RX_DROP_MONITOR;
2793 
2794 	switch (stype) {
2795 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2796 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2797 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2798 		/* process for all: mesh, mlme, ibss */
2799 		break;
2800 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2801 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2802 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2803 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2804 		if (is_multicast_ether_addr(mgmt->da) &&
2805 		    !is_broadcast_ether_addr(mgmt->da))
2806 			return RX_DROP_MONITOR;
2807 
2808 		/* process only for station */
2809 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2810 			return RX_DROP_MONITOR;
2811 		break;
2812 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2813 		/* process only for ibss and mesh */
2814 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2815 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2816 			return RX_DROP_MONITOR;
2817 		break;
2818 	default:
2819 		return RX_DROP_MONITOR;
2820 	}
2821 
2822 	/* queue up frame and kick off work to process it */
2823 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2824 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2825 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2826 	if (rx->sta)
2827 		rx->sta->rx_packets++;
2828 
2829 	return RX_QUEUED;
2830 }
2831 
2832 /* TODO: use IEEE80211_RX_FRAGMENTED */
2833 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2834 					struct ieee80211_rate *rate)
2835 {
2836 	struct ieee80211_sub_if_data *sdata;
2837 	struct ieee80211_local *local = rx->local;
2838 	struct sk_buff *skb = rx->skb, *skb2;
2839 	struct net_device *prev_dev = NULL;
2840 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2841 	int needed_headroom;
2842 
2843 	/*
2844 	 * If cooked monitor has been processed already, then
2845 	 * don't do it again. If not, set the flag.
2846 	 */
2847 	if (rx->flags & IEEE80211_RX_CMNTR)
2848 		goto out_free_skb;
2849 	rx->flags |= IEEE80211_RX_CMNTR;
2850 
2851 	/* If there are no cooked monitor interfaces, just free the SKB */
2852 	if (!local->cooked_mntrs)
2853 		goto out_free_skb;
2854 
2855 	/* room for the radiotap header based on driver features */
2856 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
2857 
2858 	if (skb_headroom(skb) < needed_headroom &&
2859 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2860 		goto out_free_skb;
2861 
2862 	/* prepend radiotap information */
2863 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2864 					 false);
2865 
2866 	skb_set_mac_header(skb, 0);
2867 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2868 	skb->pkt_type = PACKET_OTHERHOST;
2869 	skb->protocol = htons(ETH_P_802_2);
2870 
2871 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2872 		if (!ieee80211_sdata_running(sdata))
2873 			continue;
2874 
2875 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2876 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2877 			continue;
2878 
2879 		if (prev_dev) {
2880 			skb2 = skb_clone(skb, GFP_ATOMIC);
2881 			if (skb2) {
2882 				skb2->dev = prev_dev;
2883 				netif_receive_skb(skb2);
2884 			}
2885 		}
2886 
2887 		prev_dev = sdata->dev;
2888 		sdata->dev->stats.rx_packets++;
2889 		sdata->dev->stats.rx_bytes += skb->len;
2890 	}
2891 
2892 	if (prev_dev) {
2893 		skb->dev = prev_dev;
2894 		netif_receive_skb(skb);
2895 		return;
2896 	}
2897 
2898  out_free_skb:
2899 	dev_kfree_skb(skb);
2900 }
2901 
2902 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2903 					 ieee80211_rx_result res)
2904 {
2905 	switch (res) {
2906 	case RX_DROP_MONITOR:
2907 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2908 		if (rx->sta)
2909 			rx->sta->rx_dropped++;
2910 		/* fall through */
2911 	case RX_CONTINUE: {
2912 		struct ieee80211_rate *rate = NULL;
2913 		struct ieee80211_supported_band *sband;
2914 		struct ieee80211_rx_status *status;
2915 
2916 		status = IEEE80211_SKB_RXCB((rx->skb));
2917 
2918 		sband = rx->local->hw.wiphy->bands[status->band];
2919 		if (!(status->flag & RX_FLAG_HT) &&
2920 		    !(status->flag & RX_FLAG_VHT))
2921 			rate = &sband->bitrates[status->rate_idx];
2922 
2923 		ieee80211_rx_cooked_monitor(rx, rate);
2924 		break;
2925 		}
2926 	case RX_DROP_UNUSABLE:
2927 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2928 		if (rx->sta)
2929 			rx->sta->rx_dropped++;
2930 		dev_kfree_skb(rx->skb);
2931 		break;
2932 	case RX_QUEUED:
2933 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2934 		break;
2935 	}
2936 }
2937 
2938 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2939 				  struct sk_buff_head *frames)
2940 {
2941 	ieee80211_rx_result res = RX_DROP_MONITOR;
2942 	struct sk_buff *skb;
2943 
2944 #define CALL_RXH(rxh)			\
2945 	do {				\
2946 		res = rxh(rx);		\
2947 		if (res != RX_CONTINUE)	\
2948 			goto rxh_next;  \
2949 	} while (0);
2950 
2951 	spin_lock_bh(&rx->local->rx_path_lock);
2952 
2953 	while ((skb = __skb_dequeue(frames))) {
2954 		/*
2955 		 * all the other fields are valid across frames
2956 		 * that belong to an aMPDU since they are on the
2957 		 * same TID from the same station
2958 		 */
2959 		rx->skb = skb;
2960 
2961 		CALL_RXH(ieee80211_rx_h_check_more_data)
2962 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2963 		CALL_RXH(ieee80211_rx_h_sta_process)
2964 		CALL_RXH(ieee80211_rx_h_decrypt)
2965 		CALL_RXH(ieee80211_rx_h_defragment)
2966 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2967 		/* must be after MMIC verify so header is counted in MPDU mic */
2968 #ifdef CONFIG_MAC80211_MESH
2969 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2970 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2971 #endif
2972 		CALL_RXH(ieee80211_rx_h_amsdu)
2973 		CALL_RXH(ieee80211_rx_h_data)
2974 
2975 		/* special treatment -- needs the queue */
2976 		res = ieee80211_rx_h_ctrl(rx, frames);
2977 		if (res != RX_CONTINUE)
2978 			goto rxh_next;
2979 
2980 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2981 		CALL_RXH(ieee80211_rx_h_action)
2982 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2983 		CALL_RXH(ieee80211_rx_h_action_return)
2984 		CALL_RXH(ieee80211_rx_h_mgmt)
2985 
2986  rxh_next:
2987 		ieee80211_rx_handlers_result(rx, res);
2988 
2989 #undef CALL_RXH
2990 	}
2991 
2992 	spin_unlock_bh(&rx->local->rx_path_lock);
2993 }
2994 
2995 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2996 {
2997 	struct sk_buff_head reorder_release;
2998 	ieee80211_rx_result res = RX_DROP_MONITOR;
2999 
3000 	__skb_queue_head_init(&reorder_release);
3001 
3002 #define CALL_RXH(rxh)			\
3003 	do {				\
3004 		res = rxh(rx);		\
3005 		if (res != RX_CONTINUE)	\
3006 			goto rxh_next;  \
3007 	} while (0);
3008 
3009 	CALL_RXH(ieee80211_rx_h_check)
3010 
3011 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3012 
3013 	ieee80211_rx_handlers(rx, &reorder_release);
3014 	return;
3015 
3016  rxh_next:
3017 	ieee80211_rx_handlers_result(rx, res);
3018 
3019 #undef CALL_RXH
3020 }
3021 
3022 /*
3023  * This function makes calls into the RX path, therefore
3024  * it has to be invoked under RCU read lock.
3025  */
3026 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3027 {
3028 	struct sk_buff_head frames;
3029 	struct ieee80211_rx_data rx = {
3030 		.sta = sta,
3031 		.sdata = sta->sdata,
3032 		.local = sta->local,
3033 		/* This is OK -- must be QoS data frame */
3034 		.security_idx = tid,
3035 		.seqno_idx = tid,
3036 		.flags = 0,
3037 	};
3038 	struct tid_ampdu_rx *tid_agg_rx;
3039 
3040 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3041 	if (!tid_agg_rx)
3042 		return;
3043 
3044 	__skb_queue_head_init(&frames);
3045 
3046 	spin_lock(&tid_agg_rx->reorder_lock);
3047 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3048 	spin_unlock(&tid_agg_rx->reorder_lock);
3049 
3050 	ieee80211_rx_handlers(&rx, &frames);
3051 }
3052 
3053 /* main receive path */
3054 
3055 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
3056 				struct ieee80211_hdr *hdr)
3057 {
3058 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3059 	struct sk_buff *skb = rx->skb;
3060 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3061 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3062 	int multicast = is_multicast_ether_addr(hdr->addr1);
3063 
3064 	switch (sdata->vif.type) {
3065 	case NL80211_IFTYPE_STATION:
3066 		if (!bssid && !sdata->u.mgd.use_4addr)
3067 			return 0;
3068 		if (!multicast &&
3069 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3070 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3071 			    sdata->u.mgd.use_4addr)
3072 				return 0;
3073 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3074 		}
3075 		break;
3076 	case NL80211_IFTYPE_ADHOC:
3077 		if (!bssid)
3078 			return 0;
3079 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3080 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3081 			return 0;
3082 		if (ieee80211_is_beacon(hdr->frame_control)) {
3083 			return 1;
3084 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3085 			return 0;
3086 		} else if (!multicast &&
3087 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3088 			if (!(sdata->dev->flags & IFF_PROMISC))
3089 				return 0;
3090 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3091 		} else if (!rx->sta) {
3092 			int rate_idx;
3093 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3094 				rate_idx = 0; /* TODO: HT/VHT rates */
3095 			else
3096 				rate_idx = status->rate_idx;
3097 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3098 						 BIT(rate_idx));
3099 		}
3100 		break;
3101 	case NL80211_IFTYPE_MESH_POINT:
3102 		if (!multicast &&
3103 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3104 			if (!(sdata->dev->flags & IFF_PROMISC))
3105 				return 0;
3106 
3107 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3108 		}
3109 		break;
3110 	case NL80211_IFTYPE_AP_VLAN:
3111 	case NL80211_IFTYPE_AP:
3112 		if (!bssid) {
3113 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3114 				return 0;
3115 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3116 			/*
3117 			 * Accept public action frames even when the
3118 			 * BSSID doesn't match, this is used for P2P
3119 			 * and location updates. Note that mac80211
3120 			 * itself never looks at these frames.
3121 			 */
3122 			if (!multicast &&
3123 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3124 				return 0;
3125 			if (ieee80211_is_public_action(hdr, skb->len))
3126 				return 1;
3127 			if (!ieee80211_is_beacon(hdr->frame_control))
3128 				return 0;
3129 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3130 		}
3131 		break;
3132 	case NL80211_IFTYPE_WDS:
3133 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3134 			return 0;
3135 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3136 			return 0;
3137 		break;
3138 	case NL80211_IFTYPE_P2P_DEVICE:
3139 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3140 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3141 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3142 		    !ieee80211_is_beacon(hdr->frame_control))
3143 			return 0;
3144 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3145 		    !multicast)
3146 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3147 		break;
3148 	default:
3149 		/* should never get here */
3150 		WARN_ON_ONCE(1);
3151 		break;
3152 	}
3153 
3154 	return 1;
3155 }
3156 
3157 /*
3158  * This function returns whether or not the SKB
3159  * was destined for RX processing or not, which,
3160  * if consume is true, is equivalent to whether
3161  * or not the skb was consumed.
3162  */
3163 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3164 					    struct sk_buff *skb, bool consume)
3165 {
3166 	struct ieee80211_local *local = rx->local;
3167 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3168 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3169 	struct ieee80211_hdr *hdr = (void *)skb->data;
3170 	int prepares;
3171 
3172 	rx->skb = skb;
3173 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3174 	prepares = prepare_for_handlers(rx, hdr);
3175 
3176 	if (!prepares)
3177 		return false;
3178 
3179 	if (!consume) {
3180 		skb = skb_copy(skb, GFP_ATOMIC);
3181 		if (!skb) {
3182 			if (net_ratelimit())
3183 				wiphy_debug(local->hw.wiphy,
3184 					"failed to copy skb for %s\n",
3185 					sdata->name);
3186 			return true;
3187 		}
3188 
3189 		rx->skb = skb;
3190 	}
3191 
3192 	ieee80211_invoke_rx_handlers(rx);
3193 	return true;
3194 }
3195 
3196 /*
3197  * This is the actual Rx frames handler. as it blongs to Rx path it must
3198  * be called with rcu_read_lock protection.
3199  */
3200 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3201 					 struct sk_buff *skb)
3202 {
3203 	struct ieee80211_local *local = hw_to_local(hw);
3204 	struct ieee80211_sub_if_data *sdata;
3205 	struct ieee80211_hdr *hdr;
3206 	__le16 fc;
3207 	struct ieee80211_rx_data rx;
3208 	struct ieee80211_sub_if_data *prev;
3209 	struct sta_info *sta, *tmp, *prev_sta;
3210 	int err = 0;
3211 
3212 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3213 	memset(&rx, 0, sizeof(rx));
3214 	rx.skb = skb;
3215 	rx.local = local;
3216 
3217 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3218 		local->dot11ReceivedFragmentCount++;
3219 
3220 	if (ieee80211_is_mgmt(fc)) {
3221 		/* drop frame if too short for header */
3222 		if (skb->len < ieee80211_hdrlen(fc))
3223 			err = -ENOBUFS;
3224 		else
3225 			err = skb_linearize(skb);
3226 	} else {
3227 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3228 	}
3229 
3230 	if (err) {
3231 		dev_kfree_skb(skb);
3232 		return;
3233 	}
3234 
3235 	hdr = (struct ieee80211_hdr *)skb->data;
3236 	ieee80211_parse_qos(&rx);
3237 	ieee80211_verify_alignment(&rx);
3238 
3239 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3240 		     ieee80211_is_beacon(hdr->frame_control)))
3241 		ieee80211_scan_rx(local, skb);
3242 
3243 	if (ieee80211_is_data(fc)) {
3244 		prev_sta = NULL;
3245 
3246 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
3247 			if (!prev_sta) {
3248 				prev_sta = sta;
3249 				continue;
3250 			}
3251 
3252 			rx.sta = prev_sta;
3253 			rx.sdata = prev_sta->sdata;
3254 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3255 
3256 			prev_sta = sta;
3257 		}
3258 
3259 		if (prev_sta) {
3260 			rx.sta = prev_sta;
3261 			rx.sdata = prev_sta->sdata;
3262 
3263 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3264 				return;
3265 			goto out;
3266 		}
3267 	}
3268 
3269 	prev = NULL;
3270 
3271 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3272 		if (!ieee80211_sdata_running(sdata))
3273 			continue;
3274 
3275 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3276 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3277 			continue;
3278 
3279 		/*
3280 		 * frame is destined for this interface, but if it's
3281 		 * not also for the previous one we handle that after
3282 		 * the loop to avoid copying the SKB once too much
3283 		 */
3284 
3285 		if (!prev) {
3286 			prev = sdata;
3287 			continue;
3288 		}
3289 
3290 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3291 		rx.sdata = prev;
3292 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3293 
3294 		prev = sdata;
3295 	}
3296 
3297 	if (prev) {
3298 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3299 		rx.sdata = prev;
3300 
3301 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3302 			return;
3303 	}
3304 
3305  out:
3306 	dev_kfree_skb(skb);
3307 }
3308 
3309 /*
3310  * This is the receive path handler. It is called by a low level driver when an
3311  * 802.11 MPDU is received from the hardware.
3312  */
3313 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3314 {
3315 	struct ieee80211_local *local = hw_to_local(hw);
3316 	struct ieee80211_rate *rate = NULL;
3317 	struct ieee80211_supported_band *sband;
3318 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3319 
3320 	WARN_ON_ONCE(softirq_count() == 0);
3321 
3322 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3323 		goto drop;
3324 
3325 	sband = local->hw.wiphy->bands[status->band];
3326 	if (WARN_ON(!sband))
3327 		goto drop;
3328 
3329 	/*
3330 	 * If we're suspending, it is possible although not too likely
3331 	 * that we'd be receiving frames after having already partially
3332 	 * quiesced the stack. We can't process such frames then since
3333 	 * that might, for example, cause stations to be added or other
3334 	 * driver callbacks be invoked.
3335 	 */
3336 	if (unlikely(local->quiescing || local->suspended))
3337 		goto drop;
3338 
3339 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3340 	if (unlikely(local->in_reconfig))
3341 		goto drop;
3342 
3343 	/*
3344 	 * The same happens when we're not even started,
3345 	 * but that's worth a warning.
3346 	 */
3347 	if (WARN_ON(!local->started))
3348 		goto drop;
3349 
3350 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3351 		/*
3352 		 * Validate the rate, unless a PLCP error means that
3353 		 * we probably can't have a valid rate here anyway.
3354 		 */
3355 
3356 		if (status->flag & RX_FLAG_HT) {
3357 			/*
3358 			 * rate_idx is MCS index, which can be [0-76]
3359 			 * as documented on:
3360 			 *
3361 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3362 			 *
3363 			 * Anything else would be some sort of driver or
3364 			 * hardware error. The driver should catch hardware
3365 			 * errors.
3366 			 */
3367 			if (WARN(status->rate_idx > 76,
3368 				 "Rate marked as an HT rate but passed "
3369 				 "status->rate_idx is not "
3370 				 "an MCS index [0-76]: %d (0x%02x)\n",
3371 				 status->rate_idx,
3372 				 status->rate_idx))
3373 				goto drop;
3374 		} else if (status->flag & RX_FLAG_VHT) {
3375 			if (WARN_ONCE(status->rate_idx > 9 ||
3376 				      !status->vht_nss ||
3377 				      status->vht_nss > 8,
3378 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3379 				      status->rate_idx, status->vht_nss))
3380 				goto drop;
3381 		} else {
3382 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3383 				goto drop;
3384 			rate = &sband->bitrates[status->rate_idx];
3385 		}
3386 	}
3387 
3388 	status->rx_flags = 0;
3389 
3390 	/*
3391 	 * key references and virtual interfaces are protected using RCU
3392 	 * and this requires that we are in a read-side RCU section during
3393 	 * receive processing
3394 	 */
3395 	rcu_read_lock();
3396 
3397 	/*
3398 	 * Frames with failed FCS/PLCP checksum are not returned,
3399 	 * all other frames are returned without radiotap header
3400 	 * if it was previously present.
3401 	 * Also, frames with less than 16 bytes are dropped.
3402 	 */
3403 	skb = ieee80211_rx_monitor(local, skb, rate);
3404 	if (!skb) {
3405 		rcu_read_unlock();
3406 		return;
3407 	}
3408 
3409 	ieee80211_tpt_led_trig_rx(local,
3410 			((struct ieee80211_hdr *)skb->data)->frame_control,
3411 			skb->len);
3412 	__ieee80211_rx_handle_packet(hw, skb);
3413 
3414 	rcu_read_unlock();
3415 
3416 	return;
3417  drop:
3418 	kfree_skb(skb);
3419 }
3420 EXPORT_SYMBOL(ieee80211_rx);
3421 
3422 /* This is a version of the rx handler that can be called from hard irq
3423  * context. Post the skb on the queue and schedule the tasklet */
3424 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3425 {
3426 	struct ieee80211_local *local = hw_to_local(hw);
3427 
3428 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3429 
3430 	skb->pkt_type = IEEE80211_RX_MSG;
3431 	skb_queue_tail(&local->skb_queue, skb);
3432 	tasklet_schedule(&local->tasklet);
3433 }
3434 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3435