xref: /openbmc/linux/net/mac80211/rx.c (revision 83c2b54b)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
37 
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 {
40 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 
42 	u64_stats_update_begin(&tstats->syncp);
43 	tstats->rx_packets++;
44 	tstats->rx_bytes += len;
45 	u64_stats_update_end(&tstats->syncp);
46 }
47 
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			       enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_mgmt(fc)) {
68 		if (len < 24) /* drop incorrect hdr len (mgmt) */
69 			return NULL;
70 		return hdr->addr3;
71 	}
72 
73 	if (ieee80211_is_ctl(fc)) {
74 		if (ieee80211_is_pspoll(fc))
75 			return hdr->addr1;
76 
77 		if (ieee80211_is_back_req(fc)) {
78 			switch (type) {
79 			case NL80211_IFTYPE_STATION:
80 				return hdr->addr2;
81 			case NL80211_IFTYPE_AP:
82 			case NL80211_IFTYPE_AP_VLAN:
83 				return hdr->addr1;
84 			default:
85 				break; /* fall through to the return */
86 			}
87 		}
88 	}
89 
90 	return NULL;
91 }
92 
93 /*
94  * monitor mode reception
95  *
96  * This function cleans up the SKB, i.e. it removes all the stuff
97  * only useful for monitoring.
98  */
99 static void remove_monitor_info(struct sk_buff *skb,
100 				unsigned int present_fcs_len,
101 				unsigned int rtap_space)
102 {
103 	if (present_fcs_len)
104 		__pskb_trim(skb, skb->len - present_fcs_len);
105 	__pskb_pull(skb, rtap_space);
106 }
107 
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 				     unsigned int rtap_space)
110 {
111 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 	struct ieee80211_hdr *hdr;
113 
114 	hdr = (void *)(skb->data + rtap_space);
115 
116 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 			    RX_FLAG_FAILED_PLCP_CRC |
118 			    RX_FLAG_ONLY_MONITOR))
119 		return true;
120 
121 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
122 		return true;
123 
124 	if (ieee80211_is_ctl(hdr->frame_control) &&
125 	    !ieee80211_is_pspoll(hdr->frame_control) &&
126 	    !ieee80211_is_back_req(hdr->frame_control))
127 		return true;
128 
129 	return false;
130 }
131 
132 static int
133 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
134 			     struct ieee80211_rx_status *status,
135 			     struct sk_buff *skb)
136 {
137 	int len;
138 
139 	/* always present fields */
140 	len = sizeof(struct ieee80211_radiotap_header) + 8;
141 
142 	/* allocate extra bitmaps */
143 	if (status->chains)
144 		len += 4 * hweight8(status->chains);
145 
146 	if (ieee80211_have_rx_timestamp(status)) {
147 		len = ALIGN(len, 8);
148 		len += 8;
149 	}
150 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
151 		len += 1;
152 
153 	/* antenna field, if we don't have per-chain info */
154 	if (!status->chains)
155 		len += 1;
156 
157 	/* padding for RX_FLAGS if necessary */
158 	len = ALIGN(len, 2);
159 
160 	if (status->encoding == RX_ENC_HT) /* HT info */
161 		len += 3;
162 
163 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
164 		len = ALIGN(len, 4);
165 		len += 8;
166 	}
167 
168 	if (status->encoding == RX_ENC_VHT) {
169 		len = ALIGN(len, 2);
170 		len += 12;
171 	}
172 
173 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
174 		len = ALIGN(len, 8);
175 		len += 12;
176 	}
177 
178 	if (status->chains) {
179 		/* antenna and antenna signal fields */
180 		len += 2 * hweight8(status->chains);
181 	}
182 
183 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
184 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
185 
186 		/* vendor presence bitmap */
187 		len += 4;
188 		/* alignment for fixed 6-byte vendor data header */
189 		len = ALIGN(len, 2);
190 		/* vendor data header */
191 		len += 6;
192 		if (WARN_ON(rtap->align == 0))
193 			rtap->align = 1;
194 		len = ALIGN(len, rtap->align);
195 		len += rtap->len + rtap->pad;
196 	}
197 
198 	return len;
199 }
200 
201 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
202 					 struct sk_buff *skb,
203 					 int rtap_space)
204 {
205 	struct {
206 		struct ieee80211_hdr_3addr hdr;
207 		u8 category;
208 		u8 action_code;
209 	} __packed action;
210 
211 	if (!sdata)
212 		return;
213 
214 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
215 
216 	if (skb->len < rtap_space + sizeof(action) +
217 		       VHT_MUMIMO_GROUPS_DATA_LEN)
218 		return;
219 
220 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
221 		return;
222 
223 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
224 
225 	if (!ieee80211_is_action(action.hdr.frame_control))
226 		return;
227 
228 	if (action.category != WLAN_CATEGORY_VHT)
229 		return;
230 
231 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
232 		return;
233 
234 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
235 		return;
236 
237 	skb = skb_copy(skb, GFP_ATOMIC);
238 	if (!skb)
239 		return;
240 
241 	skb_queue_tail(&sdata->skb_queue, skb);
242 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
243 }
244 
245 /*
246  * ieee80211_add_rx_radiotap_header - add radiotap header
247  *
248  * add a radiotap header containing all the fields which the hardware provided.
249  */
250 static void
251 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
252 				 struct sk_buff *skb,
253 				 struct ieee80211_rate *rate,
254 				 int rtap_len, bool has_fcs)
255 {
256 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
257 	struct ieee80211_radiotap_header *rthdr;
258 	unsigned char *pos;
259 	__le32 *it_present;
260 	u32 it_present_val;
261 	u16 rx_flags = 0;
262 	u16 channel_flags = 0;
263 	int mpdulen, chain;
264 	unsigned long chains = status->chains;
265 	struct ieee80211_vendor_radiotap rtap = {};
266 
267 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
268 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
269 		/* rtap.len and rtap.pad are undone immediately */
270 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
271 	}
272 
273 	mpdulen = skb->len;
274 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
275 		mpdulen += FCS_LEN;
276 
277 	rthdr = skb_push(skb, rtap_len);
278 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
279 	it_present = &rthdr->it_present;
280 
281 	/* radiotap header, set always present flags */
282 	rthdr->it_len = cpu_to_le16(rtap_len);
283 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
284 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
285 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
286 
287 	if (!status->chains)
288 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
289 
290 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
291 		it_present_val |=
292 			BIT(IEEE80211_RADIOTAP_EXT) |
293 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
294 		put_unaligned_le32(it_present_val, it_present);
295 		it_present++;
296 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
297 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
298 	}
299 
300 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
301 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
302 				  BIT(IEEE80211_RADIOTAP_EXT);
303 		put_unaligned_le32(it_present_val, it_present);
304 		it_present++;
305 		it_present_val = rtap.present;
306 	}
307 
308 	put_unaligned_le32(it_present_val, it_present);
309 
310 	pos = (void *)(it_present + 1);
311 
312 	/* the order of the following fields is important */
313 
314 	/* IEEE80211_RADIOTAP_TSFT */
315 	if (ieee80211_have_rx_timestamp(status)) {
316 		/* padding */
317 		while ((pos - (u8 *)rthdr) & 7)
318 			*pos++ = 0;
319 		put_unaligned_le64(
320 			ieee80211_calculate_rx_timestamp(local, status,
321 							 mpdulen, 0),
322 			pos);
323 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
324 		pos += 8;
325 	}
326 
327 	/* IEEE80211_RADIOTAP_FLAGS */
328 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
329 		*pos |= IEEE80211_RADIOTAP_F_FCS;
330 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
331 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
332 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
333 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
334 	pos++;
335 
336 	/* IEEE80211_RADIOTAP_RATE */
337 	if (!rate || status->encoding != RX_ENC_LEGACY) {
338 		/*
339 		 * Without rate information don't add it. If we have,
340 		 * MCS information is a separate field in radiotap,
341 		 * added below. The byte here is needed as padding
342 		 * for the channel though, so initialise it to 0.
343 		 */
344 		*pos = 0;
345 	} else {
346 		int shift = 0;
347 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
348 		if (status->bw == RATE_INFO_BW_10)
349 			shift = 1;
350 		else if (status->bw == RATE_INFO_BW_5)
351 			shift = 2;
352 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
353 	}
354 	pos++;
355 
356 	/* IEEE80211_RADIOTAP_CHANNEL */
357 	put_unaligned_le16(status->freq, pos);
358 	pos += 2;
359 	if (status->bw == RATE_INFO_BW_10)
360 		channel_flags |= IEEE80211_CHAN_HALF;
361 	else if (status->bw == RATE_INFO_BW_5)
362 		channel_flags |= IEEE80211_CHAN_QUARTER;
363 
364 	if (status->band == NL80211_BAND_5GHZ)
365 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
366 	else if (status->encoding != RX_ENC_LEGACY)
367 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
368 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
369 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
370 	else if (rate)
371 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
372 	else
373 		channel_flags |= IEEE80211_CHAN_2GHZ;
374 	put_unaligned_le16(channel_flags, pos);
375 	pos += 2;
376 
377 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
378 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
379 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
380 		*pos = status->signal;
381 		rthdr->it_present |=
382 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
383 		pos++;
384 	}
385 
386 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
387 
388 	if (!status->chains) {
389 		/* IEEE80211_RADIOTAP_ANTENNA */
390 		*pos = status->antenna;
391 		pos++;
392 	}
393 
394 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
395 
396 	/* IEEE80211_RADIOTAP_RX_FLAGS */
397 	/* ensure 2 byte alignment for the 2 byte field as required */
398 	if ((pos - (u8 *)rthdr) & 1)
399 		*pos++ = 0;
400 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
401 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
402 	put_unaligned_le16(rx_flags, pos);
403 	pos += 2;
404 
405 	if (status->encoding == RX_ENC_HT) {
406 		unsigned int stbc;
407 
408 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
409 		*pos++ = local->hw.radiotap_mcs_details;
410 		*pos = 0;
411 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
412 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
413 		if (status->bw == RATE_INFO_BW_40)
414 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
415 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
416 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
417 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
418 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
419 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
420 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
421 		pos++;
422 		*pos++ = status->rate_idx;
423 	}
424 
425 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
426 		u16 flags = 0;
427 
428 		/* ensure 4 byte alignment */
429 		while ((pos - (u8 *)rthdr) & 3)
430 			pos++;
431 		rthdr->it_present |=
432 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
433 		put_unaligned_le32(status->ampdu_reference, pos);
434 		pos += 4;
435 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
436 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
437 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
438 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
439 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
440 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
441 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
442 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
443 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
444 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
445 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
446 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
447 		put_unaligned_le16(flags, pos);
448 		pos += 2;
449 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
450 			*pos++ = status->ampdu_delimiter_crc;
451 		else
452 			*pos++ = 0;
453 		*pos++ = 0;
454 	}
455 
456 	if (status->encoding == RX_ENC_VHT) {
457 		u16 known = local->hw.radiotap_vht_details;
458 
459 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
460 		put_unaligned_le16(known, pos);
461 		pos += 2;
462 		/* flags */
463 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
464 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
465 		/* in VHT, STBC is binary */
466 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
467 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
468 		if (status->enc_flags & RX_ENC_FLAG_BF)
469 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
470 		pos++;
471 		/* bandwidth */
472 		switch (status->bw) {
473 		case RATE_INFO_BW_80:
474 			*pos++ = 4;
475 			break;
476 		case RATE_INFO_BW_160:
477 			*pos++ = 11;
478 			break;
479 		case RATE_INFO_BW_40:
480 			*pos++ = 1;
481 			break;
482 		default:
483 			*pos++ = 0;
484 		}
485 		/* MCS/NSS */
486 		*pos = (status->rate_idx << 4) | status->nss;
487 		pos += 4;
488 		/* coding field */
489 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
490 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
491 		pos++;
492 		/* group ID */
493 		pos++;
494 		/* partial_aid */
495 		pos += 2;
496 	}
497 
498 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
499 		u16 accuracy = 0;
500 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
501 
502 		rthdr->it_present |=
503 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
504 
505 		/* ensure 8 byte alignment */
506 		while ((pos - (u8 *)rthdr) & 7)
507 			pos++;
508 
509 		put_unaligned_le64(status->device_timestamp, pos);
510 		pos += sizeof(u64);
511 
512 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
513 			accuracy = local->hw.radiotap_timestamp.accuracy;
514 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
515 		}
516 		put_unaligned_le16(accuracy, pos);
517 		pos += sizeof(u16);
518 
519 		*pos++ = local->hw.radiotap_timestamp.units_pos;
520 		*pos++ = flags;
521 	}
522 
523 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
524 		*pos++ = status->chain_signal[chain];
525 		*pos++ = chain;
526 	}
527 
528 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
529 		/* ensure 2 byte alignment for the vendor field as required */
530 		if ((pos - (u8 *)rthdr) & 1)
531 			*pos++ = 0;
532 		*pos++ = rtap.oui[0];
533 		*pos++ = rtap.oui[1];
534 		*pos++ = rtap.oui[2];
535 		*pos++ = rtap.subns;
536 		put_unaligned_le16(rtap.len, pos);
537 		pos += 2;
538 		/* align the actual payload as requested */
539 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
540 			*pos++ = 0;
541 		/* data (and possible padding) already follows */
542 	}
543 }
544 
545 static struct sk_buff *
546 ieee80211_make_monitor_skb(struct ieee80211_local *local,
547 			   struct sk_buff **origskb,
548 			   struct ieee80211_rate *rate,
549 			   int rtap_space, bool use_origskb)
550 {
551 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
552 	int rt_hdrlen, needed_headroom;
553 	struct sk_buff *skb;
554 
555 	/* room for the radiotap header based on driver features */
556 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
557 	needed_headroom = rt_hdrlen - rtap_space;
558 
559 	if (use_origskb) {
560 		/* only need to expand headroom if necessary */
561 		skb = *origskb;
562 		*origskb = NULL;
563 
564 		/*
565 		 * This shouldn't trigger often because most devices have an
566 		 * RX header they pull before we get here, and that should
567 		 * be big enough for our radiotap information. We should
568 		 * probably export the length to drivers so that we can have
569 		 * them allocate enough headroom to start with.
570 		 */
571 		if (skb_headroom(skb) < needed_headroom &&
572 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
573 			dev_kfree_skb(skb);
574 			return NULL;
575 		}
576 	} else {
577 		/*
578 		 * Need to make a copy and possibly remove radiotap header
579 		 * and FCS from the original.
580 		 */
581 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
582 
583 		if (!skb)
584 			return NULL;
585 	}
586 
587 	/* prepend radiotap information */
588 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
589 
590 	skb_reset_mac_header(skb);
591 	skb->ip_summed = CHECKSUM_UNNECESSARY;
592 	skb->pkt_type = PACKET_OTHERHOST;
593 	skb->protocol = htons(ETH_P_802_2);
594 
595 	return skb;
596 }
597 
598 /*
599  * This function copies a received frame to all monitor interfaces and
600  * returns a cleaned-up SKB that no longer includes the FCS nor the
601  * radiotap header the driver might have added.
602  */
603 static struct sk_buff *
604 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
605 		     struct ieee80211_rate *rate)
606 {
607 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
608 	struct ieee80211_sub_if_data *sdata;
609 	struct sk_buff *monskb = NULL;
610 	int present_fcs_len = 0;
611 	unsigned int rtap_space = 0;
612 	struct ieee80211_sub_if_data *monitor_sdata =
613 		rcu_dereference(local->monitor_sdata);
614 	bool only_monitor = false;
615 
616 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
617 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
618 
619 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
620 	}
621 
622 	/*
623 	 * First, we may need to make a copy of the skb because
624 	 *  (1) we need to modify it for radiotap (if not present), and
625 	 *  (2) the other RX handlers will modify the skb we got.
626 	 *
627 	 * We don't need to, of course, if we aren't going to return
628 	 * the SKB because it has a bad FCS/PLCP checksum.
629 	 */
630 
631 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
632 		if (unlikely(origskb->len <= FCS_LEN)) {
633 			/* driver bug */
634 			WARN_ON(1);
635 			dev_kfree_skb(origskb);
636 			return NULL;
637 		}
638 		present_fcs_len = FCS_LEN;
639 	}
640 
641 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
642 	if (!pskb_may_pull(origskb, 2 + rtap_space)) {
643 		dev_kfree_skb(origskb);
644 		return NULL;
645 	}
646 
647 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
648 
649 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
650 		if (only_monitor) {
651 			dev_kfree_skb(origskb);
652 			return NULL;
653 		}
654 
655 		remove_monitor_info(origskb, present_fcs_len, rtap_space);
656 		return origskb;
657 	}
658 
659 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
660 
661 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
662 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
663 						 &local->mon_list);
664 
665 		if (!monskb)
666 			monskb = ieee80211_make_monitor_skb(local, &origskb,
667 							    rate, rtap_space,
668 							    only_monitor &&
669 							    last_monitor);
670 
671 		if (monskb) {
672 			struct sk_buff *skb;
673 
674 			if (last_monitor) {
675 				skb = monskb;
676 				monskb = NULL;
677 			} else {
678 				skb = skb_clone(monskb, GFP_ATOMIC);
679 			}
680 
681 			if (skb) {
682 				skb->dev = sdata->dev;
683 				ieee80211_rx_stats(skb->dev, skb->len);
684 				netif_receive_skb(skb);
685 			}
686 		}
687 
688 		if (last_monitor)
689 			break;
690 	}
691 
692 	/* this happens if last_monitor was erroneously false */
693 	dev_kfree_skb(monskb);
694 
695 	/* ditto */
696 	if (!origskb)
697 		return NULL;
698 
699 	remove_monitor_info(origskb, present_fcs_len, rtap_space);
700 	return origskb;
701 }
702 
703 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
704 {
705 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
706 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
707 	int tid, seqno_idx, security_idx;
708 
709 	/* does the frame have a qos control field? */
710 	if (ieee80211_is_data_qos(hdr->frame_control)) {
711 		u8 *qc = ieee80211_get_qos_ctl(hdr);
712 		/* frame has qos control */
713 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
714 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
715 			status->rx_flags |= IEEE80211_RX_AMSDU;
716 
717 		seqno_idx = tid;
718 		security_idx = tid;
719 	} else {
720 		/*
721 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
722 		 *
723 		 *	Sequence numbers for management frames, QoS data
724 		 *	frames with a broadcast/multicast address in the
725 		 *	Address 1 field, and all non-QoS data frames sent
726 		 *	by QoS STAs are assigned using an additional single
727 		 *	modulo-4096 counter, [...]
728 		 *
729 		 * We also use that counter for non-QoS STAs.
730 		 */
731 		seqno_idx = IEEE80211_NUM_TIDS;
732 		security_idx = 0;
733 		if (ieee80211_is_mgmt(hdr->frame_control))
734 			security_idx = IEEE80211_NUM_TIDS;
735 		tid = 0;
736 	}
737 
738 	rx->seqno_idx = seqno_idx;
739 	rx->security_idx = security_idx;
740 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
741 	 * For now, set skb->priority to 0 for other cases. */
742 	rx->skb->priority = (tid > 7) ? 0 : tid;
743 }
744 
745 /**
746  * DOC: Packet alignment
747  *
748  * Drivers always need to pass packets that are aligned to two-byte boundaries
749  * to the stack.
750  *
751  * Additionally, should, if possible, align the payload data in a way that
752  * guarantees that the contained IP header is aligned to a four-byte
753  * boundary. In the case of regular frames, this simply means aligning the
754  * payload to a four-byte boundary (because either the IP header is directly
755  * contained, or IV/RFC1042 headers that have a length divisible by four are
756  * in front of it).  If the payload data is not properly aligned and the
757  * architecture doesn't support efficient unaligned operations, mac80211
758  * will align the data.
759  *
760  * With A-MSDU frames, however, the payload data address must yield two modulo
761  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
762  * push the IP header further back to a multiple of four again. Thankfully, the
763  * specs were sane enough this time around to require padding each A-MSDU
764  * subframe to a length that is a multiple of four.
765  *
766  * Padding like Atheros hardware adds which is between the 802.11 header and
767  * the payload is not supported, the driver is required to move the 802.11
768  * header to be directly in front of the payload in that case.
769  */
770 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
771 {
772 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
773 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
774 #endif
775 }
776 
777 
778 /* rx handlers */
779 
780 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
781 {
782 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
783 
784 	if (is_multicast_ether_addr(hdr->addr1))
785 		return 0;
786 
787 	return ieee80211_is_robust_mgmt_frame(skb);
788 }
789 
790 
791 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
792 {
793 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
794 
795 	if (!is_multicast_ether_addr(hdr->addr1))
796 		return 0;
797 
798 	return ieee80211_is_robust_mgmt_frame(skb);
799 }
800 
801 
802 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
803 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
804 {
805 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
806 	struct ieee80211_mmie *mmie;
807 	struct ieee80211_mmie_16 *mmie16;
808 
809 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
810 		return -1;
811 
812 	if (!ieee80211_is_robust_mgmt_frame(skb))
813 		return -1; /* not a robust management frame */
814 
815 	mmie = (struct ieee80211_mmie *)
816 		(skb->data + skb->len - sizeof(*mmie));
817 	if (mmie->element_id == WLAN_EID_MMIE &&
818 	    mmie->length == sizeof(*mmie) - 2)
819 		return le16_to_cpu(mmie->key_id);
820 
821 	mmie16 = (struct ieee80211_mmie_16 *)
822 		(skb->data + skb->len - sizeof(*mmie16));
823 	if (skb->len >= 24 + sizeof(*mmie16) &&
824 	    mmie16->element_id == WLAN_EID_MMIE &&
825 	    mmie16->length == sizeof(*mmie16) - 2)
826 		return le16_to_cpu(mmie16->key_id);
827 
828 	return -1;
829 }
830 
831 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
832 				  struct sk_buff *skb)
833 {
834 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
835 	__le16 fc;
836 	int hdrlen;
837 	u8 keyid;
838 
839 	fc = hdr->frame_control;
840 	hdrlen = ieee80211_hdrlen(fc);
841 
842 	if (skb->len < hdrlen + cs->hdr_len)
843 		return -EINVAL;
844 
845 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
846 	keyid &= cs->key_idx_mask;
847 	keyid >>= cs->key_idx_shift;
848 
849 	return keyid;
850 }
851 
852 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
853 {
854 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
855 	char *dev_addr = rx->sdata->vif.addr;
856 
857 	if (ieee80211_is_data(hdr->frame_control)) {
858 		if (is_multicast_ether_addr(hdr->addr1)) {
859 			if (ieee80211_has_tods(hdr->frame_control) ||
860 			    !ieee80211_has_fromds(hdr->frame_control))
861 				return RX_DROP_MONITOR;
862 			if (ether_addr_equal(hdr->addr3, dev_addr))
863 				return RX_DROP_MONITOR;
864 		} else {
865 			if (!ieee80211_has_a4(hdr->frame_control))
866 				return RX_DROP_MONITOR;
867 			if (ether_addr_equal(hdr->addr4, dev_addr))
868 				return RX_DROP_MONITOR;
869 		}
870 	}
871 
872 	/* If there is not an established peer link and this is not a peer link
873 	 * establisment frame, beacon or probe, drop the frame.
874 	 */
875 
876 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
877 		struct ieee80211_mgmt *mgmt;
878 
879 		if (!ieee80211_is_mgmt(hdr->frame_control))
880 			return RX_DROP_MONITOR;
881 
882 		if (ieee80211_is_action(hdr->frame_control)) {
883 			u8 category;
884 
885 			/* make sure category field is present */
886 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
887 				return RX_DROP_MONITOR;
888 
889 			mgmt = (struct ieee80211_mgmt *)hdr;
890 			category = mgmt->u.action.category;
891 			if (category != WLAN_CATEGORY_MESH_ACTION &&
892 			    category != WLAN_CATEGORY_SELF_PROTECTED)
893 				return RX_DROP_MONITOR;
894 			return RX_CONTINUE;
895 		}
896 
897 		if (ieee80211_is_probe_req(hdr->frame_control) ||
898 		    ieee80211_is_probe_resp(hdr->frame_control) ||
899 		    ieee80211_is_beacon(hdr->frame_control) ||
900 		    ieee80211_is_auth(hdr->frame_control))
901 			return RX_CONTINUE;
902 
903 		return RX_DROP_MONITOR;
904 	}
905 
906 	return RX_CONTINUE;
907 }
908 
909 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
910 					      int index)
911 {
912 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
913 	struct sk_buff *tail = skb_peek_tail(frames);
914 	struct ieee80211_rx_status *status;
915 
916 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
917 		return true;
918 
919 	if (!tail)
920 		return false;
921 
922 	status = IEEE80211_SKB_RXCB(tail);
923 	if (status->flag & RX_FLAG_AMSDU_MORE)
924 		return false;
925 
926 	return true;
927 }
928 
929 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
930 					    struct tid_ampdu_rx *tid_agg_rx,
931 					    int index,
932 					    struct sk_buff_head *frames)
933 {
934 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
935 	struct sk_buff *skb;
936 	struct ieee80211_rx_status *status;
937 
938 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
939 
940 	if (skb_queue_empty(skb_list))
941 		goto no_frame;
942 
943 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
944 		__skb_queue_purge(skb_list);
945 		goto no_frame;
946 	}
947 
948 	/* release frames from the reorder ring buffer */
949 	tid_agg_rx->stored_mpdu_num--;
950 	while ((skb = __skb_dequeue(skb_list))) {
951 		status = IEEE80211_SKB_RXCB(skb);
952 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
953 		__skb_queue_tail(frames, skb);
954 	}
955 
956 no_frame:
957 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
958 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
959 }
960 
961 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
962 					     struct tid_ampdu_rx *tid_agg_rx,
963 					     u16 head_seq_num,
964 					     struct sk_buff_head *frames)
965 {
966 	int index;
967 
968 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
969 
970 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
971 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
972 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
973 						frames);
974 	}
975 }
976 
977 /*
978  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
979  * the skb was added to the buffer longer than this time ago, the earlier
980  * frames that have not yet been received are assumed to be lost and the skb
981  * can be released for processing. This may also release other skb's from the
982  * reorder buffer if there are no additional gaps between the frames.
983  *
984  * Callers must hold tid_agg_rx->reorder_lock.
985  */
986 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
987 
988 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
989 					  struct tid_ampdu_rx *tid_agg_rx,
990 					  struct sk_buff_head *frames)
991 {
992 	int index, i, j;
993 
994 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
995 
996 	/* release the buffer until next missing frame */
997 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
998 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
999 	    tid_agg_rx->stored_mpdu_num) {
1000 		/*
1001 		 * No buffers ready to be released, but check whether any
1002 		 * frames in the reorder buffer have timed out.
1003 		 */
1004 		int skipped = 1;
1005 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1006 		     j = (j + 1) % tid_agg_rx->buf_size) {
1007 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1008 				skipped++;
1009 				continue;
1010 			}
1011 			if (skipped &&
1012 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1013 					HT_RX_REORDER_BUF_TIMEOUT))
1014 				goto set_release_timer;
1015 
1016 			/* don't leave incomplete A-MSDUs around */
1017 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1018 			     i = (i + 1) % tid_agg_rx->buf_size)
1019 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1020 
1021 			ht_dbg_ratelimited(sdata,
1022 					   "release an RX reorder frame due to timeout on earlier frames\n");
1023 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1024 							frames);
1025 
1026 			/*
1027 			 * Increment the head seq# also for the skipped slots.
1028 			 */
1029 			tid_agg_rx->head_seq_num =
1030 				(tid_agg_rx->head_seq_num +
1031 				 skipped) & IEEE80211_SN_MASK;
1032 			skipped = 0;
1033 		}
1034 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1035 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1036 						frames);
1037 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1038 	}
1039 
1040 	if (tid_agg_rx->stored_mpdu_num) {
1041 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1042 
1043 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1044 		     j = (j + 1) % tid_agg_rx->buf_size) {
1045 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1046 				break;
1047 		}
1048 
1049  set_release_timer:
1050 
1051 		if (!tid_agg_rx->removed)
1052 			mod_timer(&tid_agg_rx->reorder_timer,
1053 				  tid_agg_rx->reorder_time[j] + 1 +
1054 				  HT_RX_REORDER_BUF_TIMEOUT);
1055 	} else {
1056 		del_timer(&tid_agg_rx->reorder_timer);
1057 	}
1058 }
1059 
1060 /*
1061  * As this function belongs to the RX path it must be under
1062  * rcu_read_lock protection. It returns false if the frame
1063  * can be processed immediately, true if it was consumed.
1064  */
1065 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1066 					     struct tid_ampdu_rx *tid_agg_rx,
1067 					     struct sk_buff *skb,
1068 					     struct sk_buff_head *frames)
1069 {
1070 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1071 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1072 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1073 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1074 	u16 head_seq_num, buf_size;
1075 	int index;
1076 	bool ret = true;
1077 
1078 	spin_lock(&tid_agg_rx->reorder_lock);
1079 
1080 	/*
1081 	 * Offloaded BA sessions have no known starting sequence number so pick
1082 	 * one from first Rxed frame for this tid after BA was started.
1083 	 */
1084 	if (unlikely(tid_agg_rx->auto_seq)) {
1085 		tid_agg_rx->auto_seq = false;
1086 		tid_agg_rx->ssn = mpdu_seq_num;
1087 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1088 	}
1089 
1090 	buf_size = tid_agg_rx->buf_size;
1091 	head_seq_num = tid_agg_rx->head_seq_num;
1092 
1093 	/*
1094 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1095 	 * be reordered.
1096 	 */
1097 	if (unlikely(!tid_agg_rx->started)) {
1098 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1099 			ret = false;
1100 			goto out;
1101 		}
1102 		tid_agg_rx->started = true;
1103 	}
1104 
1105 	/* frame with out of date sequence number */
1106 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1107 		dev_kfree_skb(skb);
1108 		goto out;
1109 	}
1110 
1111 	/*
1112 	 * If frame the sequence number exceeds our buffering window
1113 	 * size release some previous frames to make room for this one.
1114 	 */
1115 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1116 		head_seq_num = ieee80211_sn_inc(
1117 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1118 		/* release stored frames up to new head to stack */
1119 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1120 						 head_seq_num, frames);
1121 	}
1122 
1123 	/* Now the new frame is always in the range of the reordering buffer */
1124 
1125 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1126 
1127 	/* check if we already stored this frame */
1128 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1129 		dev_kfree_skb(skb);
1130 		goto out;
1131 	}
1132 
1133 	/*
1134 	 * If the current MPDU is in the right order and nothing else
1135 	 * is stored we can process it directly, no need to buffer it.
1136 	 * If it is first but there's something stored, we may be able
1137 	 * to release frames after this one.
1138 	 */
1139 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1140 	    tid_agg_rx->stored_mpdu_num == 0) {
1141 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1142 			tid_agg_rx->head_seq_num =
1143 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1144 		ret = false;
1145 		goto out;
1146 	}
1147 
1148 	/* put the frame in the reordering buffer */
1149 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1150 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1151 		tid_agg_rx->reorder_time[index] = jiffies;
1152 		tid_agg_rx->stored_mpdu_num++;
1153 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1154 	}
1155 
1156  out:
1157 	spin_unlock(&tid_agg_rx->reorder_lock);
1158 	return ret;
1159 }
1160 
1161 /*
1162  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1163  * true if the MPDU was buffered, false if it should be processed.
1164  */
1165 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1166 				       struct sk_buff_head *frames)
1167 {
1168 	struct sk_buff *skb = rx->skb;
1169 	struct ieee80211_local *local = rx->local;
1170 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1171 	struct sta_info *sta = rx->sta;
1172 	struct tid_ampdu_rx *tid_agg_rx;
1173 	u16 sc;
1174 	u8 tid, ack_policy;
1175 
1176 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1177 	    is_multicast_ether_addr(hdr->addr1))
1178 		goto dont_reorder;
1179 
1180 	/*
1181 	 * filter the QoS data rx stream according to
1182 	 * STA/TID and check if this STA/TID is on aggregation
1183 	 */
1184 
1185 	if (!sta)
1186 		goto dont_reorder;
1187 
1188 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1189 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1190 	tid = ieee80211_get_tid(hdr);
1191 
1192 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1193 	if (!tid_agg_rx) {
1194 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1195 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1196 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1197 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1198 					     WLAN_BACK_RECIPIENT,
1199 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1200 		goto dont_reorder;
1201 	}
1202 
1203 	/* qos null data frames are excluded */
1204 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1205 		goto dont_reorder;
1206 
1207 	/* not part of a BA session */
1208 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1209 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1210 		goto dont_reorder;
1211 
1212 	/* new, potentially un-ordered, ampdu frame - process it */
1213 
1214 	/* reset session timer */
1215 	if (tid_agg_rx->timeout)
1216 		tid_agg_rx->last_rx = jiffies;
1217 
1218 	/* if this mpdu is fragmented - terminate rx aggregation session */
1219 	sc = le16_to_cpu(hdr->seq_ctrl);
1220 	if (sc & IEEE80211_SCTL_FRAG) {
1221 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1222 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * No locking needed -- we will only ever process one
1228 	 * RX packet at a time, and thus own tid_agg_rx. All
1229 	 * other code manipulating it needs to (and does) make
1230 	 * sure that we cannot get to it any more before doing
1231 	 * anything with it.
1232 	 */
1233 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1234 					     frames))
1235 		return;
1236 
1237  dont_reorder:
1238 	__skb_queue_tail(frames, skb);
1239 }
1240 
1241 static ieee80211_rx_result debug_noinline
1242 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1243 {
1244 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1245 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1246 
1247 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1248 		return RX_CONTINUE;
1249 
1250 	/*
1251 	 * Drop duplicate 802.11 retransmissions
1252 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1253 	 */
1254 
1255 	if (rx->skb->len < 24)
1256 		return RX_CONTINUE;
1257 
1258 	if (ieee80211_is_ctl(hdr->frame_control) ||
1259 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1260 	    is_multicast_ether_addr(hdr->addr1))
1261 		return RX_CONTINUE;
1262 
1263 	if (!rx->sta)
1264 		return RX_CONTINUE;
1265 
1266 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1267 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1268 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1269 		rx->sta->rx_stats.num_duplicates++;
1270 		return RX_DROP_UNUSABLE;
1271 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1272 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1273 	}
1274 
1275 	return RX_CONTINUE;
1276 }
1277 
1278 static ieee80211_rx_result debug_noinline
1279 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1280 {
1281 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1282 
1283 	/* Drop disallowed frame classes based on STA auth/assoc state;
1284 	 * IEEE 802.11, Chap 5.5.
1285 	 *
1286 	 * mac80211 filters only based on association state, i.e. it drops
1287 	 * Class 3 frames from not associated stations. hostapd sends
1288 	 * deauth/disassoc frames when needed. In addition, hostapd is
1289 	 * responsible for filtering on both auth and assoc states.
1290 	 */
1291 
1292 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1293 		return ieee80211_rx_mesh_check(rx);
1294 
1295 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1296 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1297 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1298 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1299 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1300 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1301 		/*
1302 		 * accept port control frames from the AP even when it's not
1303 		 * yet marked ASSOC to prevent a race where we don't set the
1304 		 * assoc bit quickly enough before it sends the first frame
1305 		 */
1306 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1307 		    ieee80211_is_data_present(hdr->frame_control)) {
1308 			unsigned int hdrlen;
1309 			__be16 ethertype;
1310 
1311 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1312 
1313 			if (rx->skb->len < hdrlen + 8)
1314 				return RX_DROP_MONITOR;
1315 
1316 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1317 			if (ethertype == rx->sdata->control_port_protocol)
1318 				return RX_CONTINUE;
1319 		}
1320 
1321 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1322 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1323 					       hdr->addr2,
1324 					       GFP_ATOMIC))
1325 			return RX_DROP_UNUSABLE;
1326 
1327 		return RX_DROP_MONITOR;
1328 	}
1329 
1330 	return RX_CONTINUE;
1331 }
1332 
1333 
1334 static ieee80211_rx_result debug_noinline
1335 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1336 {
1337 	struct ieee80211_local *local;
1338 	struct ieee80211_hdr *hdr;
1339 	struct sk_buff *skb;
1340 
1341 	local = rx->local;
1342 	skb = rx->skb;
1343 	hdr = (struct ieee80211_hdr *) skb->data;
1344 
1345 	if (!local->pspolling)
1346 		return RX_CONTINUE;
1347 
1348 	if (!ieee80211_has_fromds(hdr->frame_control))
1349 		/* this is not from AP */
1350 		return RX_CONTINUE;
1351 
1352 	if (!ieee80211_is_data(hdr->frame_control))
1353 		return RX_CONTINUE;
1354 
1355 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1356 		/* AP has no more frames buffered for us */
1357 		local->pspolling = false;
1358 		return RX_CONTINUE;
1359 	}
1360 
1361 	/* more data bit is set, let's request a new frame from the AP */
1362 	ieee80211_send_pspoll(local, rx->sdata);
1363 
1364 	return RX_CONTINUE;
1365 }
1366 
1367 static void sta_ps_start(struct sta_info *sta)
1368 {
1369 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1370 	struct ieee80211_local *local = sdata->local;
1371 	struct ps_data *ps;
1372 	int tid;
1373 
1374 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1375 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1376 		ps = &sdata->bss->ps;
1377 	else
1378 		return;
1379 
1380 	atomic_inc(&ps->num_sta_ps);
1381 	set_sta_flag(sta, WLAN_STA_PS_STA);
1382 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1383 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1384 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1385 	       sta->sta.addr, sta->sta.aid);
1386 
1387 	ieee80211_clear_fast_xmit(sta);
1388 
1389 	if (!sta->sta.txq[0])
1390 		return;
1391 
1392 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1393 		if (txq_has_queue(sta->sta.txq[tid]))
1394 			set_bit(tid, &sta->txq_buffered_tids);
1395 		else
1396 			clear_bit(tid, &sta->txq_buffered_tids);
1397 	}
1398 }
1399 
1400 static void sta_ps_end(struct sta_info *sta)
1401 {
1402 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1403 	       sta->sta.addr, sta->sta.aid);
1404 
1405 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1406 		/*
1407 		 * Clear the flag only if the other one is still set
1408 		 * so that the TX path won't start TX'ing new frames
1409 		 * directly ... In the case that the driver flag isn't
1410 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1411 		 */
1412 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1413 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1414 		       sta->sta.addr, sta->sta.aid);
1415 		return;
1416 	}
1417 
1418 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1419 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1420 	ieee80211_sta_ps_deliver_wakeup(sta);
1421 }
1422 
1423 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1424 {
1425 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1426 	bool in_ps;
1427 
1428 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1429 
1430 	/* Don't let the same PS state be set twice */
1431 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1432 	if ((start && in_ps) || (!start && !in_ps))
1433 		return -EINVAL;
1434 
1435 	if (start)
1436 		sta_ps_start(sta);
1437 	else
1438 		sta_ps_end(sta);
1439 
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1443 
1444 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1445 {
1446 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1447 
1448 	if (test_sta_flag(sta, WLAN_STA_SP))
1449 		return;
1450 
1451 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1452 		ieee80211_sta_ps_deliver_poll_response(sta);
1453 	else
1454 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1455 }
1456 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1457 
1458 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1459 {
1460 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1461 	int ac = ieee80211_ac_from_tid(tid);
1462 
1463 	/*
1464 	 * If this AC is not trigger-enabled do nothing unless the
1465 	 * driver is calling us after it already checked.
1466 	 *
1467 	 * NB: This could/should check a separate bitmap of trigger-
1468 	 * enabled queues, but for now we only implement uAPSD w/o
1469 	 * TSPEC changes to the ACs, so they're always the same.
1470 	 */
1471 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1472 	    tid != IEEE80211_NUM_TIDS)
1473 		return;
1474 
1475 	/* if we are in a service period, do nothing */
1476 	if (test_sta_flag(sta, WLAN_STA_SP))
1477 		return;
1478 
1479 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1480 		ieee80211_sta_ps_deliver_uapsd(sta);
1481 	else
1482 		set_sta_flag(sta, WLAN_STA_UAPSD);
1483 }
1484 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1485 
1486 static ieee80211_rx_result debug_noinline
1487 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1488 {
1489 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1490 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1491 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1492 
1493 	if (!rx->sta)
1494 		return RX_CONTINUE;
1495 
1496 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1497 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1498 		return RX_CONTINUE;
1499 
1500 	/*
1501 	 * The device handles station powersave, so don't do anything about
1502 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1503 	 * it to mac80211 since they're handled.)
1504 	 */
1505 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1506 		return RX_CONTINUE;
1507 
1508 	/*
1509 	 * Don't do anything if the station isn't already asleep. In
1510 	 * the uAPSD case, the station will probably be marked asleep,
1511 	 * in the PS-Poll case the station must be confused ...
1512 	 */
1513 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1514 		return RX_CONTINUE;
1515 
1516 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1517 		ieee80211_sta_pspoll(&rx->sta->sta);
1518 
1519 		/* Free PS Poll skb here instead of returning RX_DROP that would
1520 		 * count as an dropped frame. */
1521 		dev_kfree_skb(rx->skb);
1522 
1523 		return RX_QUEUED;
1524 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1525 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1526 		   ieee80211_has_pm(hdr->frame_control) &&
1527 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1528 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1529 		u8 tid = ieee80211_get_tid(hdr);
1530 
1531 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1532 	}
1533 
1534 	return RX_CONTINUE;
1535 }
1536 
1537 static ieee80211_rx_result debug_noinline
1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1539 {
1540 	struct sta_info *sta = rx->sta;
1541 	struct sk_buff *skb = rx->skb;
1542 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1543 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1544 	int i;
1545 
1546 	if (!sta)
1547 		return RX_CONTINUE;
1548 
1549 	/*
1550 	 * Update last_rx only for IBSS packets which are for the current
1551 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1552 	 * current IBSS network alive in cases where other STAs start
1553 	 * using different BSSID. This will also give the station another
1554 	 * chance to restart the authentication/authorization in case
1555 	 * something went wrong the first time.
1556 	 */
1557 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1558 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1559 						NL80211_IFTYPE_ADHOC);
1560 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1561 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1562 			sta->rx_stats.last_rx = jiffies;
1563 			if (ieee80211_is_data(hdr->frame_control) &&
1564 			    !is_multicast_ether_addr(hdr->addr1))
1565 				sta->rx_stats.last_rate =
1566 					sta_stats_encode_rate(status);
1567 		}
1568 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1569 		sta->rx_stats.last_rx = jiffies;
1570 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1571 		/*
1572 		 * Mesh beacons will update last_rx when if they are found to
1573 		 * match the current local configuration when processed.
1574 		 */
1575 		sta->rx_stats.last_rx = jiffies;
1576 		if (ieee80211_is_data(hdr->frame_control))
1577 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1578 	}
1579 
1580 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1581 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1582 
1583 	sta->rx_stats.fragments++;
1584 
1585 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1586 	sta->rx_stats.bytes += rx->skb->len;
1587 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1588 
1589 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1590 		sta->rx_stats.last_signal = status->signal;
1591 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1592 	}
1593 
1594 	if (status->chains) {
1595 		sta->rx_stats.chains = status->chains;
1596 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1597 			int signal = status->chain_signal[i];
1598 
1599 			if (!(status->chains & BIT(i)))
1600 				continue;
1601 
1602 			sta->rx_stats.chain_signal_last[i] = signal;
1603 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1604 					-signal);
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * Change STA power saving mode only at the end of a frame
1610 	 * exchange sequence, and only for a data or management
1611 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1612 	 */
1613 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1614 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1615 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1616 	     ieee80211_is_data(hdr->frame_control)) &&
1617 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1618 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1619 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1620 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1621 			if (!ieee80211_has_pm(hdr->frame_control))
1622 				sta_ps_end(sta);
1623 		} else {
1624 			if (ieee80211_has_pm(hdr->frame_control))
1625 				sta_ps_start(sta);
1626 		}
1627 	}
1628 
1629 	/* mesh power save support */
1630 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1631 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1632 
1633 	/*
1634 	 * Drop (qos-)data::nullfunc frames silently, since they
1635 	 * are used only to control station power saving mode.
1636 	 */
1637 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1638 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1639 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1640 
1641 		/*
1642 		 * If we receive a 4-addr nullfunc frame from a STA
1643 		 * that was not moved to a 4-addr STA vlan yet send
1644 		 * the event to userspace and for older hostapd drop
1645 		 * the frame to the monitor interface.
1646 		 */
1647 		if (ieee80211_has_a4(hdr->frame_control) &&
1648 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1649 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1650 		      !rx->sdata->u.vlan.sta))) {
1651 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1652 				cfg80211_rx_unexpected_4addr_frame(
1653 					rx->sdata->dev, sta->sta.addr,
1654 					GFP_ATOMIC);
1655 			return RX_DROP_MONITOR;
1656 		}
1657 		/*
1658 		 * Update counter and free packet here to avoid
1659 		 * counting this as a dropped packed.
1660 		 */
1661 		sta->rx_stats.packets++;
1662 		dev_kfree_skb(rx->skb);
1663 		return RX_QUEUED;
1664 	}
1665 
1666 	return RX_CONTINUE;
1667 } /* ieee80211_rx_h_sta_process */
1668 
1669 static ieee80211_rx_result debug_noinline
1670 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1671 {
1672 	struct sk_buff *skb = rx->skb;
1673 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1674 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1675 	int keyidx;
1676 	int hdrlen;
1677 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1678 	struct ieee80211_key *sta_ptk = NULL;
1679 	int mmie_keyidx = -1;
1680 	__le16 fc;
1681 	const struct ieee80211_cipher_scheme *cs = NULL;
1682 
1683 	/*
1684 	 * Key selection 101
1685 	 *
1686 	 * There are four types of keys:
1687 	 *  - GTK (group keys)
1688 	 *  - IGTK (group keys for management frames)
1689 	 *  - PTK (pairwise keys)
1690 	 *  - STK (station-to-station pairwise keys)
1691 	 *
1692 	 * When selecting a key, we have to distinguish between multicast
1693 	 * (including broadcast) and unicast frames, the latter can only
1694 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1695 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1696 	 * unicast frames can also use key indices like GTKs. Hence, if we
1697 	 * don't have a PTK/STK we check the key index for a WEP key.
1698 	 *
1699 	 * Note that in a regular BSS, multicast frames are sent by the
1700 	 * AP only, associated stations unicast the frame to the AP first
1701 	 * which then multicasts it on their behalf.
1702 	 *
1703 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1704 	 * with each station, that is something we don't currently handle.
1705 	 * The spec seems to expect that one negotiates the same key with
1706 	 * every station but there's no such requirement; VLANs could be
1707 	 * possible.
1708 	 */
1709 
1710 	/* start without a key */
1711 	rx->key = NULL;
1712 	fc = hdr->frame_control;
1713 
1714 	if (rx->sta) {
1715 		int keyid = rx->sta->ptk_idx;
1716 
1717 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1718 			cs = rx->sta->cipher_scheme;
1719 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1720 			if (unlikely(keyid < 0))
1721 				return RX_DROP_UNUSABLE;
1722 		}
1723 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1724 	}
1725 
1726 	if (!ieee80211_has_protected(fc))
1727 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1728 
1729 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1730 		rx->key = sta_ptk;
1731 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1732 		    (status->flag & RX_FLAG_IV_STRIPPED))
1733 			return RX_CONTINUE;
1734 		/* Skip decryption if the frame is not protected. */
1735 		if (!ieee80211_has_protected(fc))
1736 			return RX_CONTINUE;
1737 	} else if (mmie_keyidx >= 0) {
1738 		/* Broadcast/multicast robust management frame / BIP */
1739 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1740 		    (status->flag & RX_FLAG_IV_STRIPPED))
1741 			return RX_CONTINUE;
1742 
1743 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1744 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1745 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1746 		if (rx->sta) {
1747 			if (ieee80211_is_group_privacy_action(skb) &&
1748 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1749 				return RX_DROP_MONITOR;
1750 
1751 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1752 		}
1753 		if (!rx->key)
1754 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1755 	} else if (!ieee80211_has_protected(fc)) {
1756 		/*
1757 		 * The frame was not protected, so skip decryption. However, we
1758 		 * need to set rx->key if there is a key that could have been
1759 		 * used so that the frame may be dropped if encryption would
1760 		 * have been expected.
1761 		 */
1762 		struct ieee80211_key *key = NULL;
1763 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1764 		int i;
1765 
1766 		if (ieee80211_is_mgmt(fc) &&
1767 		    is_multicast_ether_addr(hdr->addr1) &&
1768 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1769 			rx->key = key;
1770 		else {
1771 			if (rx->sta) {
1772 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1773 					key = rcu_dereference(rx->sta->gtk[i]);
1774 					if (key)
1775 						break;
1776 				}
1777 			}
1778 			if (!key) {
1779 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1780 					key = rcu_dereference(sdata->keys[i]);
1781 					if (key)
1782 						break;
1783 				}
1784 			}
1785 			if (key)
1786 				rx->key = key;
1787 		}
1788 		return RX_CONTINUE;
1789 	} else {
1790 		u8 keyid;
1791 
1792 		/*
1793 		 * The device doesn't give us the IV so we won't be
1794 		 * able to look up the key. That's ok though, we
1795 		 * don't need to decrypt the frame, we just won't
1796 		 * be able to keep statistics accurate.
1797 		 * Except for key threshold notifications, should
1798 		 * we somehow allow the driver to tell us which key
1799 		 * the hardware used if this flag is set?
1800 		 */
1801 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1802 		    (status->flag & RX_FLAG_IV_STRIPPED))
1803 			return RX_CONTINUE;
1804 
1805 		hdrlen = ieee80211_hdrlen(fc);
1806 
1807 		if (cs) {
1808 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1809 
1810 			if (unlikely(keyidx < 0))
1811 				return RX_DROP_UNUSABLE;
1812 		} else {
1813 			if (rx->skb->len < 8 + hdrlen)
1814 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1815 			/*
1816 			 * no need to call ieee80211_wep_get_keyidx,
1817 			 * it verifies a bunch of things we've done already
1818 			 */
1819 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1820 			keyidx = keyid >> 6;
1821 		}
1822 
1823 		/* check per-station GTK first, if multicast packet */
1824 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1825 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1826 
1827 		/* if not found, try default key */
1828 		if (!rx->key) {
1829 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1830 
1831 			/*
1832 			 * RSNA-protected unicast frames should always be
1833 			 * sent with pairwise or station-to-station keys,
1834 			 * but for WEP we allow using a key index as well.
1835 			 */
1836 			if (rx->key &&
1837 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1838 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1839 			    !is_multicast_ether_addr(hdr->addr1))
1840 				rx->key = NULL;
1841 		}
1842 	}
1843 
1844 	if (rx->key) {
1845 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1846 			return RX_DROP_MONITOR;
1847 
1848 		/* TODO: add threshold stuff again */
1849 	} else {
1850 		return RX_DROP_MONITOR;
1851 	}
1852 
1853 	switch (rx->key->conf.cipher) {
1854 	case WLAN_CIPHER_SUITE_WEP40:
1855 	case WLAN_CIPHER_SUITE_WEP104:
1856 		result = ieee80211_crypto_wep_decrypt(rx);
1857 		break;
1858 	case WLAN_CIPHER_SUITE_TKIP:
1859 		result = ieee80211_crypto_tkip_decrypt(rx);
1860 		break;
1861 	case WLAN_CIPHER_SUITE_CCMP:
1862 		result = ieee80211_crypto_ccmp_decrypt(
1863 			rx, IEEE80211_CCMP_MIC_LEN);
1864 		break;
1865 	case WLAN_CIPHER_SUITE_CCMP_256:
1866 		result = ieee80211_crypto_ccmp_decrypt(
1867 			rx, IEEE80211_CCMP_256_MIC_LEN);
1868 		break;
1869 	case WLAN_CIPHER_SUITE_AES_CMAC:
1870 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1871 		break;
1872 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1873 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1874 		break;
1875 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1876 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1877 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1878 		break;
1879 	case WLAN_CIPHER_SUITE_GCMP:
1880 	case WLAN_CIPHER_SUITE_GCMP_256:
1881 		result = ieee80211_crypto_gcmp_decrypt(rx);
1882 		break;
1883 	default:
1884 		result = ieee80211_crypto_hw_decrypt(rx);
1885 	}
1886 
1887 	/* the hdr variable is invalid after the decrypt handlers */
1888 
1889 	/* either the frame has been decrypted or will be dropped */
1890 	status->flag |= RX_FLAG_DECRYPTED;
1891 
1892 	return result;
1893 }
1894 
1895 static inline struct ieee80211_fragment_entry *
1896 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1897 			 unsigned int frag, unsigned int seq, int rx_queue,
1898 			 struct sk_buff **skb)
1899 {
1900 	struct ieee80211_fragment_entry *entry;
1901 
1902 	entry = &sdata->fragments[sdata->fragment_next++];
1903 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1904 		sdata->fragment_next = 0;
1905 
1906 	if (!skb_queue_empty(&entry->skb_list))
1907 		__skb_queue_purge(&entry->skb_list);
1908 
1909 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1910 	*skb = NULL;
1911 	entry->first_frag_time = jiffies;
1912 	entry->seq = seq;
1913 	entry->rx_queue = rx_queue;
1914 	entry->last_frag = frag;
1915 	entry->check_sequential_pn = false;
1916 	entry->extra_len = 0;
1917 
1918 	return entry;
1919 }
1920 
1921 static inline struct ieee80211_fragment_entry *
1922 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1923 			  unsigned int frag, unsigned int seq,
1924 			  int rx_queue, struct ieee80211_hdr *hdr)
1925 {
1926 	struct ieee80211_fragment_entry *entry;
1927 	int i, idx;
1928 
1929 	idx = sdata->fragment_next;
1930 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1931 		struct ieee80211_hdr *f_hdr;
1932 
1933 		idx--;
1934 		if (idx < 0)
1935 			idx = IEEE80211_FRAGMENT_MAX - 1;
1936 
1937 		entry = &sdata->fragments[idx];
1938 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1939 		    entry->rx_queue != rx_queue ||
1940 		    entry->last_frag + 1 != frag)
1941 			continue;
1942 
1943 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1944 
1945 		/*
1946 		 * Check ftype and addresses are equal, else check next fragment
1947 		 */
1948 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1949 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1950 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1951 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1952 			continue;
1953 
1954 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1955 			__skb_queue_purge(&entry->skb_list);
1956 			continue;
1957 		}
1958 		return entry;
1959 	}
1960 
1961 	return NULL;
1962 }
1963 
1964 static ieee80211_rx_result debug_noinline
1965 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1966 {
1967 	struct ieee80211_hdr *hdr;
1968 	u16 sc;
1969 	__le16 fc;
1970 	unsigned int frag, seq;
1971 	struct ieee80211_fragment_entry *entry;
1972 	struct sk_buff *skb;
1973 
1974 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1975 	fc = hdr->frame_control;
1976 
1977 	if (ieee80211_is_ctl(fc))
1978 		return RX_CONTINUE;
1979 
1980 	sc = le16_to_cpu(hdr->seq_ctrl);
1981 	frag = sc & IEEE80211_SCTL_FRAG;
1982 
1983 	if (is_multicast_ether_addr(hdr->addr1)) {
1984 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1985 		goto out_no_led;
1986 	}
1987 
1988 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1989 		goto out;
1990 
1991 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1992 
1993 	if (skb_linearize(rx->skb))
1994 		return RX_DROP_UNUSABLE;
1995 
1996 	/*
1997 	 *  skb_linearize() might change the skb->data and
1998 	 *  previously cached variables (in this case, hdr) need to
1999 	 *  be refreshed with the new data.
2000 	 */
2001 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2002 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2003 
2004 	if (frag == 0) {
2005 		/* This is the first fragment of a new frame. */
2006 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2007 						 rx->seqno_idx, &(rx->skb));
2008 		if (rx->key &&
2009 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2010 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2011 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2012 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2013 		    ieee80211_has_protected(fc)) {
2014 			int queue = rx->security_idx;
2015 
2016 			/* Store CCMP/GCMP PN so that we can verify that the
2017 			 * next fragment has a sequential PN value.
2018 			 */
2019 			entry->check_sequential_pn = true;
2020 			memcpy(entry->last_pn,
2021 			       rx->key->u.ccmp.rx_pn[queue],
2022 			       IEEE80211_CCMP_PN_LEN);
2023 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2024 					      u.ccmp.rx_pn) !=
2025 				     offsetof(struct ieee80211_key,
2026 					      u.gcmp.rx_pn));
2027 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2028 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2029 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2030 				     IEEE80211_GCMP_PN_LEN);
2031 		}
2032 		return RX_QUEUED;
2033 	}
2034 
2035 	/* This is a fragment for a frame that should already be pending in
2036 	 * fragment cache. Add this fragment to the end of the pending entry.
2037 	 */
2038 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2039 					  rx->seqno_idx, hdr);
2040 	if (!entry) {
2041 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2042 		return RX_DROP_MONITOR;
2043 	}
2044 
2045 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2046 	 *  MPDU PN values are not incrementing in steps of 1."
2047 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2048 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2049 	 */
2050 	if (entry->check_sequential_pn) {
2051 		int i;
2052 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2053 		int queue;
2054 
2055 		if (!rx->key ||
2056 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2057 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2058 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2059 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2060 			return RX_DROP_UNUSABLE;
2061 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2062 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2063 			pn[i]++;
2064 			if (pn[i])
2065 				break;
2066 		}
2067 		queue = rx->security_idx;
2068 		rpn = rx->key->u.ccmp.rx_pn[queue];
2069 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2070 			return RX_DROP_UNUSABLE;
2071 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2072 	}
2073 
2074 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2075 	__skb_queue_tail(&entry->skb_list, rx->skb);
2076 	entry->last_frag = frag;
2077 	entry->extra_len += rx->skb->len;
2078 	if (ieee80211_has_morefrags(fc)) {
2079 		rx->skb = NULL;
2080 		return RX_QUEUED;
2081 	}
2082 
2083 	rx->skb = __skb_dequeue(&entry->skb_list);
2084 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2085 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2086 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2087 					      GFP_ATOMIC))) {
2088 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2089 			__skb_queue_purge(&entry->skb_list);
2090 			return RX_DROP_UNUSABLE;
2091 		}
2092 	}
2093 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2094 		skb_put_data(rx->skb, skb->data, skb->len);
2095 		dev_kfree_skb(skb);
2096 	}
2097 
2098  out:
2099 	ieee80211_led_rx(rx->local);
2100  out_no_led:
2101 	if (rx->sta)
2102 		rx->sta->rx_stats.packets++;
2103 	return RX_CONTINUE;
2104 }
2105 
2106 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2107 {
2108 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2109 		return -EACCES;
2110 
2111 	return 0;
2112 }
2113 
2114 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2115 {
2116 	struct sk_buff *skb = rx->skb;
2117 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2118 
2119 	/*
2120 	 * Pass through unencrypted frames if the hardware has
2121 	 * decrypted them already.
2122 	 */
2123 	if (status->flag & RX_FLAG_DECRYPTED)
2124 		return 0;
2125 
2126 	/* Drop unencrypted frames if key is set. */
2127 	if (unlikely(!ieee80211_has_protected(fc) &&
2128 		     !ieee80211_is_nullfunc(fc) &&
2129 		     ieee80211_is_data(fc) && rx->key))
2130 		return -EACCES;
2131 
2132 	return 0;
2133 }
2134 
2135 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2136 {
2137 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2138 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2139 	__le16 fc = hdr->frame_control;
2140 
2141 	/*
2142 	 * Pass through unencrypted frames if the hardware has
2143 	 * decrypted them already.
2144 	 */
2145 	if (status->flag & RX_FLAG_DECRYPTED)
2146 		return 0;
2147 
2148 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2149 		if (unlikely(!ieee80211_has_protected(fc) &&
2150 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2151 			     rx->key)) {
2152 			if (ieee80211_is_deauth(fc) ||
2153 			    ieee80211_is_disassoc(fc))
2154 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2155 							     rx->skb->data,
2156 							     rx->skb->len);
2157 			return -EACCES;
2158 		}
2159 		/* BIP does not use Protected field, so need to check MMIE */
2160 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2161 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2162 			if (ieee80211_is_deauth(fc) ||
2163 			    ieee80211_is_disassoc(fc))
2164 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2165 							     rx->skb->data,
2166 							     rx->skb->len);
2167 			return -EACCES;
2168 		}
2169 		/*
2170 		 * When using MFP, Action frames are not allowed prior to
2171 		 * having configured keys.
2172 		 */
2173 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2174 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2175 			return -EACCES;
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 static int
2182 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2183 {
2184 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2185 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2186 	bool check_port_control = false;
2187 	struct ethhdr *ehdr;
2188 	int ret;
2189 
2190 	*port_control = false;
2191 	if (ieee80211_has_a4(hdr->frame_control) &&
2192 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2193 		return -1;
2194 
2195 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2196 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2197 
2198 		if (!sdata->u.mgd.use_4addr)
2199 			return -1;
2200 		else
2201 			check_port_control = true;
2202 	}
2203 
2204 	if (is_multicast_ether_addr(hdr->addr1) &&
2205 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2206 		return -1;
2207 
2208 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2209 	if (ret < 0)
2210 		return ret;
2211 
2212 	ehdr = (struct ethhdr *) rx->skb->data;
2213 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2214 		*port_control = true;
2215 	else if (check_port_control)
2216 		return -1;
2217 
2218 	return 0;
2219 }
2220 
2221 /*
2222  * requires that rx->skb is a frame with ethernet header
2223  */
2224 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2225 {
2226 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2227 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2228 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2229 
2230 	/*
2231 	 * Allow EAPOL frames to us/the PAE group address regardless
2232 	 * of whether the frame was encrypted or not.
2233 	 */
2234 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2235 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2236 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2237 		return true;
2238 
2239 	if (ieee80211_802_1x_port_control(rx) ||
2240 	    ieee80211_drop_unencrypted(rx, fc))
2241 		return false;
2242 
2243 	return true;
2244 }
2245 
2246 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2247 						 struct ieee80211_rx_data *rx)
2248 {
2249 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2250 	struct net_device *dev = sdata->dev;
2251 
2252 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2253 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2254 		     sdata->control_port_over_nl80211)) {
2255 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2256 		bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2257 		struct ethhdr *ehdr = eth_hdr(skb);
2258 
2259 		cfg80211_rx_control_port(dev, skb->data, skb->len,
2260 					 ehdr->h_source,
2261 					 be16_to_cpu(skb->protocol), noencrypt);
2262 		dev_kfree_skb(skb);
2263 	} else {
2264 		/* deliver to local stack */
2265 		if (rx->napi)
2266 			napi_gro_receive(rx->napi, skb);
2267 		else
2268 			netif_receive_skb(skb);
2269 	}
2270 }
2271 
2272 /*
2273  * requires that rx->skb is a frame with ethernet header
2274  */
2275 static void
2276 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2277 {
2278 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2279 	struct net_device *dev = sdata->dev;
2280 	struct sk_buff *skb, *xmit_skb;
2281 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2282 	struct sta_info *dsta;
2283 
2284 	skb = rx->skb;
2285 	xmit_skb = NULL;
2286 
2287 	ieee80211_rx_stats(dev, skb->len);
2288 
2289 	if (rx->sta) {
2290 		/* The seqno index has the same property as needed
2291 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2292 		 * for non-QoS-data frames. Here we know it's a data
2293 		 * frame, so count MSDUs.
2294 		 */
2295 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2296 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2297 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2298 	}
2299 
2300 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2301 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2302 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2303 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2304 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2305 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2306 			/*
2307 			 * send multicast frames both to higher layers in
2308 			 * local net stack and back to the wireless medium
2309 			 */
2310 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2311 			if (!xmit_skb)
2312 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2313 						    dev->name);
2314 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2315 			dsta = sta_info_get(sdata, skb->data);
2316 			if (dsta) {
2317 				/*
2318 				 * The destination station is associated to
2319 				 * this AP (in this VLAN), so send the frame
2320 				 * directly to it and do not pass it to local
2321 				 * net stack.
2322 				 */
2323 				xmit_skb = skb;
2324 				skb = NULL;
2325 			}
2326 		}
2327 	}
2328 
2329 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2330 	if (skb) {
2331 		/* 'align' will only take the values 0 or 2 here since all
2332 		 * frames are required to be aligned to 2-byte boundaries
2333 		 * when being passed to mac80211; the code here works just
2334 		 * as well if that isn't true, but mac80211 assumes it can
2335 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2336 		 */
2337 		int align;
2338 
2339 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2340 		if (align) {
2341 			if (WARN_ON(skb_headroom(skb) < 3)) {
2342 				dev_kfree_skb(skb);
2343 				skb = NULL;
2344 			} else {
2345 				u8 *data = skb->data;
2346 				size_t len = skb_headlen(skb);
2347 				skb->data -= align;
2348 				memmove(skb->data, data, len);
2349 				skb_set_tail_pointer(skb, len);
2350 			}
2351 		}
2352 	}
2353 #endif
2354 
2355 	if (skb) {
2356 		skb->protocol = eth_type_trans(skb, dev);
2357 		memset(skb->cb, 0, sizeof(skb->cb));
2358 
2359 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2360 	}
2361 
2362 	if (xmit_skb) {
2363 		/*
2364 		 * Send to wireless media and increase priority by 256 to
2365 		 * keep the received priority instead of reclassifying
2366 		 * the frame (see cfg80211_classify8021d).
2367 		 */
2368 		xmit_skb->priority += 256;
2369 		xmit_skb->protocol = htons(ETH_P_802_3);
2370 		skb_reset_network_header(xmit_skb);
2371 		skb_reset_mac_header(xmit_skb);
2372 		dev_queue_xmit(xmit_skb);
2373 	}
2374 }
2375 
2376 static ieee80211_rx_result debug_noinline
2377 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2378 {
2379 	struct net_device *dev = rx->sdata->dev;
2380 	struct sk_buff *skb = rx->skb;
2381 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2382 	__le16 fc = hdr->frame_control;
2383 	struct sk_buff_head frame_list;
2384 	struct ethhdr ethhdr;
2385 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2386 
2387 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2388 		check_da = NULL;
2389 		check_sa = NULL;
2390 	} else switch (rx->sdata->vif.type) {
2391 		case NL80211_IFTYPE_AP:
2392 		case NL80211_IFTYPE_AP_VLAN:
2393 			check_da = NULL;
2394 			break;
2395 		case NL80211_IFTYPE_STATION:
2396 			if (!rx->sta ||
2397 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2398 				check_sa = NULL;
2399 			break;
2400 		case NL80211_IFTYPE_MESH_POINT:
2401 			check_sa = NULL;
2402 			break;
2403 		default:
2404 			break;
2405 	}
2406 
2407 	skb->dev = dev;
2408 	__skb_queue_head_init(&frame_list);
2409 
2410 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2411 					  rx->sdata->vif.addr,
2412 					  rx->sdata->vif.type,
2413 					  data_offset))
2414 		return RX_DROP_UNUSABLE;
2415 
2416 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2417 				 rx->sdata->vif.type,
2418 				 rx->local->hw.extra_tx_headroom,
2419 				 check_da, check_sa);
2420 
2421 	while (!skb_queue_empty(&frame_list)) {
2422 		rx->skb = __skb_dequeue(&frame_list);
2423 
2424 		if (!ieee80211_frame_allowed(rx, fc)) {
2425 			dev_kfree_skb(rx->skb);
2426 			continue;
2427 		}
2428 
2429 		ieee80211_deliver_skb(rx);
2430 	}
2431 
2432 	return RX_QUEUED;
2433 }
2434 
2435 static ieee80211_rx_result debug_noinline
2436 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2437 {
2438 	struct sk_buff *skb = rx->skb;
2439 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2440 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2441 	__le16 fc = hdr->frame_control;
2442 
2443 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2444 		return RX_CONTINUE;
2445 
2446 	if (unlikely(!ieee80211_is_data(fc)))
2447 		return RX_CONTINUE;
2448 
2449 	if (unlikely(!ieee80211_is_data_present(fc)))
2450 		return RX_DROP_MONITOR;
2451 
2452 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2453 		switch (rx->sdata->vif.type) {
2454 		case NL80211_IFTYPE_AP_VLAN:
2455 			if (!rx->sdata->u.vlan.sta)
2456 				return RX_DROP_UNUSABLE;
2457 			break;
2458 		case NL80211_IFTYPE_STATION:
2459 			if (!rx->sdata->u.mgd.use_4addr)
2460 				return RX_DROP_UNUSABLE;
2461 			break;
2462 		default:
2463 			return RX_DROP_UNUSABLE;
2464 		}
2465 	}
2466 
2467 	if (is_multicast_ether_addr(hdr->addr1))
2468 		return RX_DROP_UNUSABLE;
2469 
2470 	return __ieee80211_rx_h_amsdu(rx, 0);
2471 }
2472 
2473 #ifdef CONFIG_MAC80211_MESH
2474 static ieee80211_rx_result
2475 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2476 {
2477 	struct ieee80211_hdr *fwd_hdr, *hdr;
2478 	struct ieee80211_tx_info *info;
2479 	struct ieee80211s_hdr *mesh_hdr;
2480 	struct sk_buff *skb = rx->skb, *fwd_skb;
2481 	struct ieee80211_local *local = rx->local;
2482 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2483 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2484 	u16 ac, q, hdrlen;
2485 
2486 	hdr = (struct ieee80211_hdr *) skb->data;
2487 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2488 
2489 	/* make sure fixed part of mesh header is there, also checks skb len */
2490 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2491 		return RX_DROP_MONITOR;
2492 
2493 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2494 
2495 	/* make sure full mesh header is there, also checks skb len */
2496 	if (!pskb_may_pull(rx->skb,
2497 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2498 		return RX_DROP_MONITOR;
2499 
2500 	/* reload pointers */
2501 	hdr = (struct ieee80211_hdr *) skb->data;
2502 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2503 
2504 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2505 		return RX_DROP_MONITOR;
2506 
2507 	/* frame is in RMC, don't forward */
2508 	if (ieee80211_is_data(hdr->frame_control) &&
2509 	    is_multicast_ether_addr(hdr->addr1) &&
2510 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2511 		return RX_DROP_MONITOR;
2512 
2513 	if (!ieee80211_is_data(hdr->frame_control))
2514 		return RX_CONTINUE;
2515 
2516 	if (!mesh_hdr->ttl)
2517 		return RX_DROP_MONITOR;
2518 
2519 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2520 		struct mesh_path *mppath;
2521 		char *proxied_addr;
2522 		char *mpp_addr;
2523 
2524 		if (is_multicast_ether_addr(hdr->addr1)) {
2525 			mpp_addr = hdr->addr3;
2526 			proxied_addr = mesh_hdr->eaddr1;
2527 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2528 			    MESH_FLAGS_AE_A5_A6) {
2529 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2530 			mpp_addr = hdr->addr4;
2531 			proxied_addr = mesh_hdr->eaddr2;
2532 		} else {
2533 			return RX_DROP_MONITOR;
2534 		}
2535 
2536 		rcu_read_lock();
2537 		mppath = mpp_path_lookup(sdata, proxied_addr);
2538 		if (!mppath) {
2539 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2540 		} else {
2541 			spin_lock_bh(&mppath->state_lock);
2542 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2543 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2544 			mppath->exp_time = jiffies;
2545 			spin_unlock_bh(&mppath->state_lock);
2546 		}
2547 		rcu_read_unlock();
2548 	}
2549 
2550 	/* Frame has reached destination.  Don't forward */
2551 	if (!is_multicast_ether_addr(hdr->addr1) &&
2552 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2553 		return RX_CONTINUE;
2554 
2555 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2556 	q = sdata->vif.hw_queue[ac];
2557 	if (ieee80211_queue_stopped(&local->hw, q)) {
2558 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2559 		return RX_DROP_MONITOR;
2560 	}
2561 	skb_set_queue_mapping(skb, q);
2562 
2563 	if (!--mesh_hdr->ttl) {
2564 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2565 		goto out;
2566 	}
2567 
2568 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2569 		goto out;
2570 
2571 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2572 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2573 	if (!fwd_skb)
2574 		goto out;
2575 
2576 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2577 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2578 	info = IEEE80211_SKB_CB(fwd_skb);
2579 	memset(info, 0, sizeof(*info));
2580 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2581 	info->control.vif = &rx->sdata->vif;
2582 	info->control.jiffies = jiffies;
2583 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2584 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2585 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2586 		/* update power mode indication when forwarding */
2587 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2588 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2589 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2590 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2591 	} else {
2592 		/* unable to resolve next hop */
2593 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2594 				   fwd_hdr->addr3, 0,
2595 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2596 				   fwd_hdr->addr2);
2597 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2598 		kfree_skb(fwd_skb);
2599 		return RX_DROP_MONITOR;
2600 	}
2601 
2602 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2603 	ieee80211_add_pending_skb(local, fwd_skb);
2604  out:
2605 	if (is_multicast_ether_addr(hdr->addr1))
2606 		return RX_CONTINUE;
2607 	return RX_DROP_MONITOR;
2608 }
2609 #endif
2610 
2611 static ieee80211_rx_result debug_noinline
2612 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2613 {
2614 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2615 	struct ieee80211_local *local = rx->local;
2616 	struct net_device *dev = sdata->dev;
2617 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2618 	__le16 fc = hdr->frame_control;
2619 	bool port_control;
2620 	int err;
2621 
2622 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2623 		return RX_CONTINUE;
2624 
2625 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2626 		return RX_DROP_MONITOR;
2627 
2628 	/*
2629 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2630 	 * also drop the frame to cooked monitor interfaces.
2631 	 */
2632 	if (ieee80211_has_a4(hdr->frame_control) &&
2633 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2634 		if (rx->sta &&
2635 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2636 			cfg80211_rx_unexpected_4addr_frame(
2637 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2638 		return RX_DROP_MONITOR;
2639 	}
2640 
2641 	err = __ieee80211_data_to_8023(rx, &port_control);
2642 	if (unlikely(err))
2643 		return RX_DROP_UNUSABLE;
2644 
2645 	if (!ieee80211_frame_allowed(rx, fc))
2646 		return RX_DROP_MONITOR;
2647 
2648 	/* directly handle TDLS channel switch requests/responses */
2649 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2650 						cpu_to_be16(ETH_P_TDLS))) {
2651 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2652 
2653 		if (pskb_may_pull(rx->skb,
2654 				  offsetof(struct ieee80211_tdls_data, u)) &&
2655 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2656 		    tf->category == WLAN_CATEGORY_TDLS &&
2657 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2658 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2659 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2660 			schedule_work(&local->tdls_chsw_work);
2661 			if (rx->sta)
2662 				rx->sta->rx_stats.packets++;
2663 
2664 			return RX_QUEUED;
2665 		}
2666 	}
2667 
2668 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2669 	    unlikely(port_control) && sdata->bss) {
2670 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2671 				     u.ap);
2672 		dev = sdata->dev;
2673 		rx->sdata = sdata;
2674 	}
2675 
2676 	rx->skb->dev = dev;
2677 
2678 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2679 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2680 	    !is_multicast_ether_addr(
2681 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2682 	    (!local->scanning &&
2683 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2684 		mod_timer(&local->dynamic_ps_timer, jiffies +
2685 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2686 
2687 	ieee80211_deliver_skb(rx);
2688 
2689 	return RX_QUEUED;
2690 }
2691 
2692 static ieee80211_rx_result debug_noinline
2693 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2694 {
2695 	struct sk_buff *skb = rx->skb;
2696 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2697 	struct tid_ampdu_rx *tid_agg_rx;
2698 	u16 start_seq_num;
2699 	u16 tid;
2700 
2701 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2702 		return RX_CONTINUE;
2703 
2704 	if (ieee80211_is_back_req(bar->frame_control)) {
2705 		struct {
2706 			__le16 control, start_seq_num;
2707 		} __packed bar_data;
2708 		struct ieee80211_event event = {
2709 			.type = BAR_RX_EVENT,
2710 		};
2711 
2712 		if (!rx->sta)
2713 			return RX_DROP_MONITOR;
2714 
2715 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2716 				  &bar_data, sizeof(bar_data)))
2717 			return RX_DROP_MONITOR;
2718 
2719 		tid = le16_to_cpu(bar_data.control) >> 12;
2720 
2721 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2722 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2723 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2724 					     WLAN_BACK_RECIPIENT,
2725 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2726 
2727 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2728 		if (!tid_agg_rx)
2729 			return RX_DROP_MONITOR;
2730 
2731 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2732 		event.u.ba.tid = tid;
2733 		event.u.ba.ssn = start_seq_num;
2734 		event.u.ba.sta = &rx->sta->sta;
2735 
2736 		/* reset session timer */
2737 		if (tid_agg_rx->timeout)
2738 			mod_timer(&tid_agg_rx->session_timer,
2739 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2740 
2741 		spin_lock(&tid_agg_rx->reorder_lock);
2742 		/* release stored frames up to start of BAR */
2743 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2744 						 start_seq_num, frames);
2745 		spin_unlock(&tid_agg_rx->reorder_lock);
2746 
2747 		drv_event_callback(rx->local, rx->sdata, &event);
2748 
2749 		kfree_skb(skb);
2750 		return RX_QUEUED;
2751 	}
2752 
2753 	/*
2754 	 * After this point, we only want management frames,
2755 	 * so we can drop all remaining control frames to
2756 	 * cooked monitor interfaces.
2757 	 */
2758 	return RX_DROP_MONITOR;
2759 }
2760 
2761 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2762 					   struct ieee80211_mgmt *mgmt,
2763 					   size_t len)
2764 {
2765 	struct ieee80211_local *local = sdata->local;
2766 	struct sk_buff *skb;
2767 	struct ieee80211_mgmt *resp;
2768 
2769 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2770 		/* Not to own unicast address */
2771 		return;
2772 	}
2773 
2774 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2775 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2776 		/* Not from the current AP or not associated yet. */
2777 		return;
2778 	}
2779 
2780 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2781 		/* Too short SA Query request frame */
2782 		return;
2783 	}
2784 
2785 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2786 	if (skb == NULL)
2787 		return;
2788 
2789 	skb_reserve(skb, local->hw.extra_tx_headroom);
2790 	resp = skb_put_zero(skb, 24);
2791 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2792 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2793 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2794 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2795 					  IEEE80211_STYPE_ACTION);
2796 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2797 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2798 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2799 	memcpy(resp->u.action.u.sa_query.trans_id,
2800 	       mgmt->u.action.u.sa_query.trans_id,
2801 	       WLAN_SA_QUERY_TR_ID_LEN);
2802 
2803 	ieee80211_tx_skb(sdata, skb);
2804 }
2805 
2806 static ieee80211_rx_result debug_noinline
2807 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2808 {
2809 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2810 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2811 
2812 	/*
2813 	 * From here on, look only at management frames.
2814 	 * Data and control frames are already handled,
2815 	 * and unknown (reserved) frames are useless.
2816 	 */
2817 	if (rx->skb->len < 24)
2818 		return RX_DROP_MONITOR;
2819 
2820 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2821 		return RX_DROP_MONITOR;
2822 
2823 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2824 	    ieee80211_is_beacon(mgmt->frame_control) &&
2825 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2826 		int sig = 0;
2827 
2828 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
2829 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
2830 			sig = status->signal;
2831 
2832 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2833 					    rx->skb->data, rx->skb->len,
2834 					    status->freq, sig);
2835 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2836 	}
2837 
2838 	if (ieee80211_drop_unencrypted_mgmt(rx))
2839 		return RX_DROP_UNUSABLE;
2840 
2841 	return RX_CONTINUE;
2842 }
2843 
2844 static ieee80211_rx_result debug_noinline
2845 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2846 {
2847 	struct ieee80211_local *local = rx->local;
2848 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2849 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2850 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2851 	int len = rx->skb->len;
2852 
2853 	if (!ieee80211_is_action(mgmt->frame_control))
2854 		return RX_CONTINUE;
2855 
2856 	/* drop too small frames */
2857 	if (len < IEEE80211_MIN_ACTION_SIZE)
2858 		return RX_DROP_UNUSABLE;
2859 
2860 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2861 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2862 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2863 		return RX_DROP_UNUSABLE;
2864 
2865 	switch (mgmt->u.action.category) {
2866 	case WLAN_CATEGORY_HT:
2867 		/* reject HT action frames from stations not supporting HT */
2868 		if (!rx->sta->sta.ht_cap.ht_supported)
2869 			goto invalid;
2870 
2871 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2872 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2873 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2874 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2875 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2876 			break;
2877 
2878 		/* verify action & smps_control/chanwidth are present */
2879 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2880 			goto invalid;
2881 
2882 		switch (mgmt->u.action.u.ht_smps.action) {
2883 		case WLAN_HT_ACTION_SMPS: {
2884 			struct ieee80211_supported_band *sband;
2885 			enum ieee80211_smps_mode smps_mode;
2886 			struct sta_opmode_info sta_opmode = {};
2887 
2888 			/* convert to HT capability */
2889 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2890 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2891 				smps_mode = IEEE80211_SMPS_OFF;
2892 				break;
2893 			case WLAN_HT_SMPS_CONTROL_STATIC:
2894 				smps_mode = IEEE80211_SMPS_STATIC;
2895 				break;
2896 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2897 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2898 				break;
2899 			default:
2900 				goto invalid;
2901 			}
2902 
2903 			/* if no change do nothing */
2904 			if (rx->sta->sta.smps_mode == smps_mode)
2905 				goto handled;
2906 			rx->sta->sta.smps_mode = smps_mode;
2907 			sta_opmode.smps_mode =
2908 				ieee80211_smps_mode_to_smps_mode(smps_mode);
2909 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
2910 
2911 			sband = rx->local->hw.wiphy->bands[status->band];
2912 
2913 			rate_control_rate_update(local, sband, rx->sta,
2914 						 IEEE80211_RC_SMPS_CHANGED);
2915 			cfg80211_sta_opmode_change_notify(sdata->dev,
2916 							  rx->sta->addr,
2917 							  &sta_opmode,
2918 							  GFP_KERNEL);
2919 			goto handled;
2920 		}
2921 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2922 			struct ieee80211_supported_band *sband;
2923 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2924 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2925 			struct sta_opmode_info sta_opmode = {};
2926 
2927 			/* If it doesn't support 40 MHz it can't change ... */
2928 			if (!(rx->sta->sta.ht_cap.cap &
2929 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2930 				goto handled;
2931 
2932 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2933 				max_bw = IEEE80211_STA_RX_BW_20;
2934 			else
2935 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2936 
2937 			/* set cur_max_bandwidth and recalc sta bw */
2938 			rx->sta->cur_max_bandwidth = max_bw;
2939 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2940 
2941 			if (rx->sta->sta.bandwidth == new_bw)
2942 				goto handled;
2943 
2944 			rx->sta->sta.bandwidth = new_bw;
2945 			sband = rx->local->hw.wiphy->bands[status->band];
2946 			sta_opmode.bw =
2947 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
2948 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
2949 
2950 			rate_control_rate_update(local, sband, rx->sta,
2951 						 IEEE80211_RC_BW_CHANGED);
2952 			cfg80211_sta_opmode_change_notify(sdata->dev,
2953 							  rx->sta->addr,
2954 							  &sta_opmode,
2955 							  GFP_KERNEL);
2956 			goto handled;
2957 		}
2958 		default:
2959 			goto invalid;
2960 		}
2961 
2962 		break;
2963 	case WLAN_CATEGORY_PUBLIC:
2964 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2965 			goto invalid;
2966 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2967 			break;
2968 		if (!rx->sta)
2969 			break;
2970 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2971 			break;
2972 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2973 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2974 			break;
2975 		if (len < offsetof(struct ieee80211_mgmt,
2976 				   u.action.u.ext_chan_switch.variable))
2977 			goto invalid;
2978 		goto queue;
2979 	case WLAN_CATEGORY_VHT:
2980 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2981 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2982 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2983 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2984 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2985 			break;
2986 
2987 		/* verify action code is present */
2988 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2989 			goto invalid;
2990 
2991 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2992 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2993 			/* verify opmode is present */
2994 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2995 				goto invalid;
2996 			goto queue;
2997 		}
2998 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2999 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3000 				goto invalid;
3001 			goto queue;
3002 		}
3003 		default:
3004 			break;
3005 		}
3006 		break;
3007 	case WLAN_CATEGORY_BACK:
3008 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3009 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3010 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3011 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3012 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3013 			break;
3014 
3015 		/* verify action_code is present */
3016 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3017 			break;
3018 
3019 		switch (mgmt->u.action.u.addba_req.action_code) {
3020 		case WLAN_ACTION_ADDBA_REQ:
3021 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3022 				   sizeof(mgmt->u.action.u.addba_req)))
3023 				goto invalid;
3024 			break;
3025 		case WLAN_ACTION_ADDBA_RESP:
3026 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3027 				   sizeof(mgmt->u.action.u.addba_resp)))
3028 				goto invalid;
3029 			break;
3030 		case WLAN_ACTION_DELBA:
3031 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3032 				   sizeof(mgmt->u.action.u.delba)))
3033 				goto invalid;
3034 			break;
3035 		default:
3036 			goto invalid;
3037 		}
3038 
3039 		goto queue;
3040 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3041 		/* verify action_code is present */
3042 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3043 			break;
3044 
3045 		switch (mgmt->u.action.u.measurement.action_code) {
3046 		case WLAN_ACTION_SPCT_MSR_REQ:
3047 			if (status->band != NL80211_BAND_5GHZ)
3048 				break;
3049 
3050 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3051 				   sizeof(mgmt->u.action.u.measurement)))
3052 				break;
3053 
3054 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3055 				break;
3056 
3057 			ieee80211_process_measurement_req(sdata, mgmt, len);
3058 			goto handled;
3059 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3060 			u8 *bssid;
3061 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3062 				   sizeof(mgmt->u.action.u.chan_switch)))
3063 				break;
3064 
3065 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3066 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3067 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3068 				break;
3069 
3070 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3071 				bssid = sdata->u.mgd.bssid;
3072 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3073 				bssid = sdata->u.ibss.bssid;
3074 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3075 				bssid = mgmt->sa;
3076 			else
3077 				break;
3078 
3079 			if (!ether_addr_equal(mgmt->bssid, bssid))
3080 				break;
3081 
3082 			goto queue;
3083 			}
3084 		}
3085 		break;
3086 	case WLAN_CATEGORY_SA_QUERY:
3087 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3088 			   sizeof(mgmt->u.action.u.sa_query)))
3089 			break;
3090 
3091 		switch (mgmt->u.action.u.sa_query.action) {
3092 		case WLAN_ACTION_SA_QUERY_REQUEST:
3093 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3094 				break;
3095 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3096 			goto handled;
3097 		}
3098 		break;
3099 	case WLAN_CATEGORY_SELF_PROTECTED:
3100 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3101 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3102 			break;
3103 
3104 		switch (mgmt->u.action.u.self_prot.action_code) {
3105 		case WLAN_SP_MESH_PEERING_OPEN:
3106 		case WLAN_SP_MESH_PEERING_CLOSE:
3107 		case WLAN_SP_MESH_PEERING_CONFIRM:
3108 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3109 				goto invalid;
3110 			if (sdata->u.mesh.user_mpm)
3111 				/* userspace handles this frame */
3112 				break;
3113 			goto queue;
3114 		case WLAN_SP_MGK_INFORM:
3115 		case WLAN_SP_MGK_ACK:
3116 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3117 				goto invalid;
3118 			break;
3119 		}
3120 		break;
3121 	case WLAN_CATEGORY_MESH_ACTION:
3122 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3123 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3124 			break;
3125 
3126 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3127 			break;
3128 		if (mesh_action_is_path_sel(mgmt) &&
3129 		    !mesh_path_sel_is_hwmp(sdata))
3130 			break;
3131 		goto queue;
3132 	}
3133 
3134 	return RX_CONTINUE;
3135 
3136  invalid:
3137 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3138 	/* will return in the next handlers */
3139 	return RX_CONTINUE;
3140 
3141  handled:
3142 	if (rx->sta)
3143 		rx->sta->rx_stats.packets++;
3144 	dev_kfree_skb(rx->skb);
3145 	return RX_QUEUED;
3146 
3147  queue:
3148 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3149 	ieee80211_queue_work(&local->hw, &sdata->work);
3150 	if (rx->sta)
3151 		rx->sta->rx_stats.packets++;
3152 	return RX_QUEUED;
3153 }
3154 
3155 static ieee80211_rx_result debug_noinline
3156 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3157 {
3158 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3159 	int sig = 0;
3160 
3161 	/* skip known-bad action frames and return them in the next handler */
3162 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3163 		return RX_CONTINUE;
3164 
3165 	/*
3166 	 * Getting here means the kernel doesn't know how to handle
3167 	 * it, but maybe userspace does ... include returned frames
3168 	 * so userspace can register for those to know whether ones
3169 	 * it transmitted were processed or returned.
3170 	 */
3171 
3172 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3173 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3174 		sig = status->signal;
3175 
3176 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3177 			     rx->skb->data, rx->skb->len, 0)) {
3178 		if (rx->sta)
3179 			rx->sta->rx_stats.packets++;
3180 		dev_kfree_skb(rx->skb);
3181 		return RX_QUEUED;
3182 	}
3183 
3184 	return RX_CONTINUE;
3185 }
3186 
3187 static ieee80211_rx_result debug_noinline
3188 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3189 {
3190 	struct ieee80211_local *local = rx->local;
3191 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3192 	struct sk_buff *nskb;
3193 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3194 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3195 
3196 	if (!ieee80211_is_action(mgmt->frame_control))
3197 		return RX_CONTINUE;
3198 
3199 	/*
3200 	 * For AP mode, hostapd is responsible for handling any action
3201 	 * frames that we didn't handle, including returning unknown
3202 	 * ones. For all other modes we will return them to the sender,
3203 	 * setting the 0x80 bit in the action category, as required by
3204 	 * 802.11-2012 9.24.4.
3205 	 * Newer versions of hostapd shall also use the management frame
3206 	 * registration mechanisms, but older ones still use cooked
3207 	 * monitor interfaces so push all frames there.
3208 	 */
3209 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3210 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3211 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3212 		return RX_DROP_MONITOR;
3213 
3214 	if (is_multicast_ether_addr(mgmt->da))
3215 		return RX_DROP_MONITOR;
3216 
3217 	/* do not return rejected action frames */
3218 	if (mgmt->u.action.category & 0x80)
3219 		return RX_DROP_UNUSABLE;
3220 
3221 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3222 			       GFP_ATOMIC);
3223 	if (nskb) {
3224 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3225 
3226 		nmgmt->u.action.category |= 0x80;
3227 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3228 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3229 
3230 		memset(nskb->cb, 0, sizeof(nskb->cb));
3231 
3232 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3233 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3234 
3235 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3236 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3237 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3238 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3239 				info->hw_queue =
3240 					local->hw.offchannel_tx_hw_queue;
3241 		}
3242 
3243 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3244 					    status->band);
3245 	}
3246 	dev_kfree_skb(rx->skb);
3247 	return RX_QUEUED;
3248 }
3249 
3250 static ieee80211_rx_result debug_noinline
3251 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3252 {
3253 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3254 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3255 	__le16 stype;
3256 
3257 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3258 
3259 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3260 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3261 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3262 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3263 		return RX_DROP_MONITOR;
3264 
3265 	switch (stype) {
3266 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3267 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3268 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3269 		/* process for all: mesh, mlme, ibss */
3270 		break;
3271 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3272 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3273 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3274 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3275 		if (is_multicast_ether_addr(mgmt->da) &&
3276 		    !is_broadcast_ether_addr(mgmt->da))
3277 			return RX_DROP_MONITOR;
3278 
3279 		/* process only for station */
3280 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3281 			return RX_DROP_MONITOR;
3282 		break;
3283 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3284 		/* process only for ibss and mesh */
3285 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3286 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3287 			return RX_DROP_MONITOR;
3288 		break;
3289 	default:
3290 		return RX_DROP_MONITOR;
3291 	}
3292 
3293 	/* queue up frame and kick off work to process it */
3294 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3295 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3296 	if (rx->sta)
3297 		rx->sta->rx_stats.packets++;
3298 
3299 	return RX_QUEUED;
3300 }
3301 
3302 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3303 					struct ieee80211_rate *rate)
3304 {
3305 	struct ieee80211_sub_if_data *sdata;
3306 	struct ieee80211_local *local = rx->local;
3307 	struct sk_buff *skb = rx->skb, *skb2;
3308 	struct net_device *prev_dev = NULL;
3309 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3310 	int needed_headroom;
3311 
3312 	/*
3313 	 * If cooked monitor has been processed already, then
3314 	 * don't do it again. If not, set the flag.
3315 	 */
3316 	if (rx->flags & IEEE80211_RX_CMNTR)
3317 		goto out_free_skb;
3318 	rx->flags |= IEEE80211_RX_CMNTR;
3319 
3320 	/* If there are no cooked monitor interfaces, just free the SKB */
3321 	if (!local->cooked_mntrs)
3322 		goto out_free_skb;
3323 
3324 	/* vendor data is long removed here */
3325 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3326 	/* room for the radiotap header based on driver features */
3327 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3328 
3329 	if (skb_headroom(skb) < needed_headroom &&
3330 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3331 		goto out_free_skb;
3332 
3333 	/* prepend radiotap information */
3334 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3335 					 false);
3336 
3337 	skb_reset_mac_header(skb);
3338 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3339 	skb->pkt_type = PACKET_OTHERHOST;
3340 	skb->protocol = htons(ETH_P_802_2);
3341 
3342 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3343 		if (!ieee80211_sdata_running(sdata))
3344 			continue;
3345 
3346 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3347 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3348 			continue;
3349 
3350 		if (prev_dev) {
3351 			skb2 = skb_clone(skb, GFP_ATOMIC);
3352 			if (skb2) {
3353 				skb2->dev = prev_dev;
3354 				netif_receive_skb(skb2);
3355 			}
3356 		}
3357 
3358 		prev_dev = sdata->dev;
3359 		ieee80211_rx_stats(sdata->dev, skb->len);
3360 	}
3361 
3362 	if (prev_dev) {
3363 		skb->dev = prev_dev;
3364 		netif_receive_skb(skb);
3365 		return;
3366 	}
3367 
3368  out_free_skb:
3369 	dev_kfree_skb(skb);
3370 }
3371 
3372 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3373 					 ieee80211_rx_result res)
3374 {
3375 	switch (res) {
3376 	case RX_DROP_MONITOR:
3377 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3378 		if (rx->sta)
3379 			rx->sta->rx_stats.dropped++;
3380 		/* fall through */
3381 	case RX_CONTINUE: {
3382 		struct ieee80211_rate *rate = NULL;
3383 		struct ieee80211_supported_band *sband;
3384 		struct ieee80211_rx_status *status;
3385 
3386 		status = IEEE80211_SKB_RXCB((rx->skb));
3387 
3388 		sband = rx->local->hw.wiphy->bands[status->band];
3389 		if (!(status->encoding == RX_ENC_HT) &&
3390 		    !(status->encoding == RX_ENC_VHT))
3391 			rate = &sband->bitrates[status->rate_idx];
3392 
3393 		ieee80211_rx_cooked_monitor(rx, rate);
3394 		break;
3395 		}
3396 	case RX_DROP_UNUSABLE:
3397 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3398 		if (rx->sta)
3399 			rx->sta->rx_stats.dropped++;
3400 		dev_kfree_skb(rx->skb);
3401 		break;
3402 	case RX_QUEUED:
3403 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3404 		break;
3405 	}
3406 }
3407 
3408 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3409 				  struct sk_buff_head *frames)
3410 {
3411 	ieee80211_rx_result res = RX_DROP_MONITOR;
3412 	struct sk_buff *skb;
3413 
3414 #define CALL_RXH(rxh)			\
3415 	do {				\
3416 		res = rxh(rx);		\
3417 		if (res != RX_CONTINUE)	\
3418 			goto rxh_next;  \
3419 	} while (0)
3420 
3421 	/* Lock here to avoid hitting all of the data used in the RX
3422 	 * path (e.g. key data, station data, ...) concurrently when
3423 	 * a frame is released from the reorder buffer due to timeout
3424 	 * from the timer, potentially concurrently with RX from the
3425 	 * driver.
3426 	 */
3427 	spin_lock_bh(&rx->local->rx_path_lock);
3428 
3429 	while ((skb = __skb_dequeue(frames))) {
3430 		/*
3431 		 * all the other fields are valid across frames
3432 		 * that belong to an aMPDU since they are on the
3433 		 * same TID from the same station
3434 		 */
3435 		rx->skb = skb;
3436 
3437 		CALL_RXH(ieee80211_rx_h_check_more_data);
3438 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3439 		CALL_RXH(ieee80211_rx_h_sta_process);
3440 		CALL_RXH(ieee80211_rx_h_decrypt);
3441 		CALL_RXH(ieee80211_rx_h_defragment);
3442 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3443 		/* must be after MMIC verify so header is counted in MPDU mic */
3444 #ifdef CONFIG_MAC80211_MESH
3445 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3446 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3447 #endif
3448 		CALL_RXH(ieee80211_rx_h_amsdu);
3449 		CALL_RXH(ieee80211_rx_h_data);
3450 
3451 		/* special treatment -- needs the queue */
3452 		res = ieee80211_rx_h_ctrl(rx, frames);
3453 		if (res != RX_CONTINUE)
3454 			goto rxh_next;
3455 
3456 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3457 		CALL_RXH(ieee80211_rx_h_action);
3458 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3459 		CALL_RXH(ieee80211_rx_h_action_return);
3460 		CALL_RXH(ieee80211_rx_h_mgmt);
3461 
3462  rxh_next:
3463 		ieee80211_rx_handlers_result(rx, res);
3464 
3465 #undef CALL_RXH
3466 	}
3467 
3468 	spin_unlock_bh(&rx->local->rx_path_lock);
3469 }
3470 
3471 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3472 {
3473 	struct sk_buff_head reorder_release;
3474 	ieee80211_rx_result res = RX_DROP_MONITOR;
3475 
3476 	__skb_queue_head_init(&reorder_release);
3477 
3478 #define CALL_RXH(rxh)			\
3479 	do {				\
3480 		res = rxh(rx);		\
3481 		if (res != RX_CONTINUE)	\
3482 			goto rxh_next;  \
3483 	} while (0)
3484 
3485 	CALL_RXH(ieee80211_rx_h_check_dup);
3486 	CALL_RXH(ieee80211_rx_h_check);
3487 
3488 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3489 
3490 	ieee80211_rx_handlers(rx, &reorder_release);
3491 	return;
3492 
3493  rxh_next:
3494 	ieee80211_rx_handlers_result(rx, res);
3495 
3496 #undef CALL_RXH
3497 }
3498 
3499 /*
3500  * This function makes calls into the RX path, therefore
3501  * it has to be invoked under RCU read lock.
3502  */
3503 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3504 {
3505 	struct sk_buff_head frames;
3506 	struct ieee80211_rx_data rx = {
3507 		.sta = sta,
3508 		.sdata = sta->sdata,
3509 		.local = sta->local,
3510 		/* This is OK -- must be QoS data frame */
3511 		.security_idx = tid,
3512 		.seqno_idx = tid,
3513 		.napi = NULL, /* must be NULL to not have races */
3514 	};
3515 	struct tid_ampdu_rx *tid_agg_rx;
3516 
3517 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3518 	if (!tid_agg_rx)
3519 		return;
3520 
3521 	__skb_queue_head_init(&frames);
3522 
3523 	spin_lock(&tid_agg_rx->reorder_lock);
3524 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3525 	spin_unlock(&tid_agg_rx->reorder_lock);
3526 
3527 	if (!skb_queue_empty(&frames)) {
3528 		struct ieee80211_event event = {
3529 			.type = BA_FRAME_TIMEOUT,
3530 			.u.ba.tid = tid,
3531 			.u.ba.sta = &sta->sta,
3532 		};
3533 		drv_event_callback(rx.local, rx.sdata, &event);
3534 	}
3535 
3536 	ieee80211_rx_handlers(&rx, &frames);
3537 }
3538 
3539 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3540 					  u16 ssn, u64 filtered,
3541 					  u16 received_mpdus)
3542 {
3543 	struct sta_info *sta;
3544 	struct tid_ampdu_rx *tid_agg_rx;
3545 	struct sk_buff_head frames;
3546 	struct ieee80211_rx_data rx = {
3547 		/* This is OK -- must be QoS data frame */
3548 		.security_idx = tid,
3549 		.seqno_idx = tid,
3550 	};
3551 	int i, diff;
3552 
3553 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3554 		return;
3555 
3556 	__skb_queue_head_init(&frames);
3557 
3558 	sta = container_of(pubsta, struct sta_info, sta);
3559 
3560 	rx.sta = sta;
3561 	rx.sdata = sta->sdata;
3562 	rx.local = sta->local;
3563 
3564 	rcu_read_lock();
3565 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3566 	if (!tid_agg_rx)
3567 		goto out;
3568 
3569 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3570 
3571 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3572 		int release;
3573 
3574 		/* release all frames in the reorder buffer */
3575 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3576 			   IEEE80211_SN_MODULO;
3577 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3578 						 release, &frames);
3579 		/* update ssn to match received ssn */
3580 		tid_agg_rx->head_seq_num = ssn;
3581 	} else {
3582 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3583 						 &frames);
3584 	}
3585 
3586 	/* handle the case that received ssn is behind the mac ssn.
3587 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3588 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3589 	if (diff >= tid_agg_rx->buf_size) {
3590 		tid_agg_rx->reorder_buf_filtered = 0;
3591 		goto release;
3592 	}
3593 	filtered = filtered >> diff;
3594 	ssn += diff;
3595 
3596 	/* update bitmap */
3597 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3598 		int index = (ssn + i) % tid_agg_rx->buf_size;
3599 
3600 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3601 		if (filtered & BIT_ULL(i))
3602 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3603 	}
3604 
3605 	/* now process also frames that the filter marking released */
3606 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3607 
3608 release:
3609 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3610 
3611 	ieee80211_rx_handlers(&rx, &frames);
3612 
3613  out:
3614 	rcu_read_unlock();
3615 }
3616 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3617 
3618 /* main receive path */
3619 
3620 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3621 {
3622 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3623 	struct sk_buff *skb = rx->skb;
3624 	struct ieee80211_hdr *hdr = (void *)skb->data;
3625 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3626 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3627 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3628 
3629 	switch (sdata->vif.type) {
3630 	case NL80211_IFTYPE_STATION:
3631 		if (!bssid && !sdata->u.mgd.use_4addr)
3632 			return false;
3633 		if (multicast)
3634 			return true;
3635 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3636 	case NL80211_IFTYPE_ADHOC:
3637 		if (!bssid)
3638 			return false;
3639 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3640 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3641 			return false;
3642 		if (ieee80211_is_beacon(hdr->frame_control))
3643 			return true;
3644 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3645 			return false;
3646 		if (!multicast &&
3647 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3648 			return false;
3649 		if (!rx->sta) {
3650 			int rate_idx;
3651 			if (status->encoding != RX_ENC_LEGACY)
3652 				rate_idx = 0; /* TODO: HT/VHT rates */
3653 			else
3654 				rate_idx = status->rate_idx;
3655 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3656 						 BIT(rate_idx));
3657 		}
3658 		return true;
3659 	case NL80211_IFTYPE_OCB:
3660 		if (!bssid)
3661 			return false;
3662 		if (!ieee80211_is_data_present(hdr->frame_control))
3663 			return false;
3664 		if (!is_broadcast_ether_addr(bssid))
3665 			return false;
3666 		if (!multicast &&
3667 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3668 			return false;
3669 		if (!rx->sta) {
3670 			int rate_idx;
3671 			if (status->encoding != RX_ENC_LEGACY)
3672 				rate_idx = 0; /* TODO: HT rates */
3673 			else
3674 				rate_idx = status->rate_idx;
3675 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3676 						BIT(rate_idx));
3677 		}
3678 		return true;
3679 	case NL80211_IFTYPE_MESH_POINT:
3680 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3681 			return false;
3682 		if (multicast)
3683 			return true;
3684 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3685 	case NL80211_IFTYPE_AP_VLAN:
3686 	case NL80211_IFTYPE_AP:
3687 		if (!bssid)
3688 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3689 
3690 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3691 			/*
3692 			 * Accept public action frames even when the
3693 			 * BSSID doesn't match, this is used for P2P
3694 			 * and location updates. Note that mac80211
3695 			 * itself never looks at these frames.
3696 			 */
3697 			if (!multicast &&
3698 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3699 				return false;
3700 			if (ieee80211_is_public_action(hdr, skb->len))
3701 				return true;
3702 			return ieee80211_is_beacon(hdr->frame_control);
3703 		}
3704 
3705 		if (!ieee80211_has_tods(hdr->frame_control)) {
3706 			/* ignore data frames to TDLS-peers */
3707 			if (ieee80211_is_data(hdr->frame_control))
3708 				return false;
3709 			/* ignore action frames to TDLS-peers */
3710 			if (ieee80211_is_action(hdr->frame_control) &&
3711 			    !is_broadcast_ether_addr(bssid) &&
3712 			    !ether_addr_equal(bssid, hdr->addr1))
3713 				return false;
3714 		}
3715 
3716 		/*
3717 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3718 		 * the BSSID - we've checked that already but may have accepted
3719 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3720 		 *
3721 		 * It also says:
3722 		 *	The BSSID of the Data frame is determined as follows:
3723 		 *	a) If the STA is contained within an AP or is associated
3724 		 *	   with an AP, the BSSID is the address currently in use
3725 		 *	   by the STA contained in the AP.
3726 		 *
3727 		 * So we should not accept data frames with an address that's
3728 		 * multicast.
3729 		 *
3730 		 * Accepting it also opens a security problem because stations
3731 		 * could encrypt it with the GTK and inject traffic that way.
3732 		 */
3733 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3734 			return false;
3735 
3736 		return true;
3737 	case NL80211_IFTYPE_WDS:
3738 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3739 			return false;
3740 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3741 	case NL80211_IFTYPE_P2P_DEVICE:
3742 		return ieee80211_is_public_action(hdr, skb->len) ||
3743 		       ieee80211_is_probe_req(hdr->frame_control) ||
3744 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3745 		       ieee80211_is_beacon(hdr->frame_control);
3746 	case NL80211_IFTYPE_NAN:
3747 		/* Currently no frames on NAN interface are allowed */
3748 		return false;
3749 	default:
3750 		break;
3751 	}
3752 
3753 	WARN_ON_ONCE(1);
3754 	return false;
3755 }
3756 
3757 void ieee80211_check_fast_rx(struct sta_info *sta)
3758 {
3759 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3760 	struct ieee80211_local *local = sdata->local;
3761 	struct ieee80211_key *key;
3762 	struct ieee80211_fast_rx fastrx = {
3763 		.dev = sdata->dev,
3764 		.vif_type = sdata->vif.type,
3765 		.control_port_protocol = sdata->control_port_protocol,
3766 	}, *old, *new = NULL;
3767 	bool assign = false;
3768 
3769 	/* use sparse to check that we don't return without updating */
3770 	__acquire(check_fast_rx);
3771 
3772 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3773 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3774 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3775 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3776 
3777 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3778 
3779 	/* fast-rx doesn't do reordering */
3780 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3781 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3782 		goto clear;
3783 
3784 	switch (sdata->vif.type) {
3785 	case NL80211_IFTYPE_STATION:
3786 		if (sta->sta.tdls) {
3787 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3788 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3789 			fastrx.expected_ds_bits = 0;
3790 		} else {
3791 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3792 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3793 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3794 			fastrx.expected_ds_bits =
3795 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3796 		}
3797 
3798 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3799 			fastrx.expected_ds_bits |=
3800 				cpu_to_le16(IEEE80211_FCTL_TODS);
3801 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3802 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3803 		}
3804 
3805 		if (!sdata->u.mgd.powersave)
3806 			break;
3807 
3808 		/* software powersave is a huge mess, avoid all of it */
3809 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3810 			goto clear;
3811 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3812 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3813 			goto clear;
3814 		break;
3815 	case NL80211_IFTYPE_AP_VLAN:
3816 	case NL80211_IFTYPE_AP:
3817 		/* parallel-rx requires this, at least with calls to
3818 		 * ieee80211_sta_ps_transition()
3819 		 */
3820 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3821 			goto clear;
3822 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3823 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3824 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3825 
3826 		fastrx.internal_forward =
3827 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3828 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3829 			 !sdata->u.vlan.sta);
3830 
3831 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3832 		    sdata->u.vlan.sta) {
3833 			fastrx.expected_ds_bits |=
3834 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3835 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3836 			fastrx.internal_forward = 0;
3837 		}
3838 
3839 		break;
3840 	default:
3841 		goto clear;
3842 	}
3843 
3844 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3845 		goto clear;
3846 
3847 	rcu_read_lock();
3848 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3849 	if (key) {
3850 		switch (key->conf.cipher) {
3851 		case WLAN_CIPHER_SUITE_TKIP:
3852 			/* we don't want to deal with MMIC in fast-rx */
3853 			goto clear_rcu;
3854 		case WLAN_CIPHER_SUITE_CCMP:
3855 		case WLAN_CIPHER_SUITE_CCMP_256:
3856 		case WLAN_CIPHER_SUITE_GCMP:
3857 		case WLAN_CIPHER_SUITE_GCMP_256:
3858 			break;
3859 		default:
3860 			/* we also don't want to deal with WEP or cipher scheme
3861 			 * since those require looking up the key idx in the
3862 			 * frame, rather than assuming the PTK is used
3863 			 * (we need to revisit this once we implement the real
3864 			 * PTK index, which is now valid in the spec, but we
3865 			 * haven't implemented that part yet)
3866 			 */
3867 			goto clear_rcu;
3868 		}
3869 
3870 		fastrx.key = true;
3871 		fastrx.icv_len = key->conf.icv_len;
3872 	}
3873 
3874 	assign = true;
3875  clear_rcu:
3876 	rcu_read_unlock();
3877  clear:
3878 	__release(check_fast_rx);
3879 
3880 	if (assign)
3881 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3882 
3883 	spin_lock_bh(&sta->lock);
3884 	old = rcu_dereference_protected(sta->fast_rx, true);
3885 	rcu_assign_pointer(sta->fast_rx, new);
3886 	spin_unlock_bh(&sta->lock);
3887 
3888 	if (old)
3889 		kfree_rcu(old, rcu_head);
3890 }
3891 
3892 void ieee80211_clear_fast_rx(struct sta_info *sta)
3893 {
3894 	struct ieee80211_fast_rx *old;
3895 
3896 	spin_lock_bh(&sta->lock);
3897 	old = rcu_dereference_protected(sta->fast_rx, true);
3898 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3899 	spin_unlock_bh(&sta->lock);
3900 
3901 	if (old)
3902 		kfree_rcu(old, rcu_head);
3903 }
3904 
3905 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3906 {
3907 	struct ieee80211_local *local = sdata->local;
3908 	struct sta_info *sta;
3909 
3910 	lockdep_assert_held(&local->sta_mtx);
3911 
3912 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3913 		if (sdata != sta->sdata &&
3914 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3915 			continue;
3916 		ieee80211_check_fast_rx(sta);
3917 	}
3918 }
3919 
3920 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3921 {
3922 	struct ieee80211_local *local = sdata->local;
3923 
3924 	mutex_lock(&local->sta_mtx);
3925 	__ieee80211_check_fast_rx_iface(sdata);
3926 	mutex_unlock(&local->sta_mtx);
3927 }
3928 
3929 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3930 				     struct ieee80211_fast_rx *fast_rx)
3931 {
3932 	struct sk_buff *skb = rx->skb;
3933 	struct ieee80211_hdr *hdr = (void *)skb->data;
3934 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3935 	struct sta_info *sta = rx->sta;
3936 	int orig_len = skb->len;
3937 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
3938 	int snap_offs = hdrlen;
3939 	struct {
3940 		u8 snap[sizeof(rfc1042_header)];
3941 		__be16 proto;
3942 	} *payload __aligned(2);
3943 	struct {
3944 		u8 da[ETH_ALEN];
3945 		u8 sa[ETH_ALEN];
3946 	} addrs __aligned(2);
3947 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3948 
3949 	if (fast_rx->uses_rss)
3950 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3951 
3952 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3953 	 * to a common data structure; drivers can implement that per queue
3954 	 * but we don't have that information in mac80211
3955 	 */
3956 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3957 		return false;
3958 
3959 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3960 
3961 	/* If using encryption, we also need to have:
3962 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3963 	 *  - DECRYPTED: necessary for PN_VALIDATED
3964 	 */
3965 	if (fast_rx->key &&
3966 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3967 		return false;
3968 
3969 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3970 		return false;
3971 
3972 	if (unlikely(ieee80211_is_frag(hdr)))
3973 		return false;
3974 
3975 	/* Since our interface address cannot be multicast, this
3976 	 * implicitly also rejects multicast frames without the
3977 	 * explicit check.
3978 	 *
3979 	 * We shouldn't get any *data* frames not addressed to us
3980 	 * (AP mode will accept multicast *management* frames), but
3981 	 * punting here will make it go through the full checks in
3982 	 * ieee80211_accept_frame().
3983 	 */
3984 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3985 		return false;
3986 
3987 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3988 					      IEEE80211_FCTL_TODS)) !=
3989 	    fast_rx->expected_ds_bits)
3990 		return false;
3991 
3992 	/* assign the key to drop unencrypted frames (later)
3993 	 * and strip the IV/MIC if necessary
3994 	 */
3995 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3996 		/* GCMP header length is the same */
3997 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3998 	}
3999 
4000 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4001 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4002 			goto drop;
4003 
4004 		payload = (void *)(skb->data + snap_offs);
4005 
4006 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4007 			return false;
4008 
4009 		/* Don't handle these here since they require special code.
4010 		 * Accept AARP and IPX even though they should come with a
4011 		 * bridge-tunnel header - but if we get them this way then
4012 		 * there's little point in discarding them.
4013 		 */
4014 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4015 			     payload->proto == fast_rx->control_port_protocol))
4016 			return false;
4017 	}
4018 
4019 	/* after this point, don't punt to the slowpath! */
4020 
4021 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4022 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4023 		goto drop;
4024 
4025 	if (unlikely(fast_rx->sta_notify)) {
4026 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4027 		fast_rx->sta_notify = false;
4028 	}
4029 
4030 	/* statistics part of ieee80211_rx_h_sta_process() */
4031 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4032 		stats->last_signal = status->signal;
4033 		if (!fast_rx->uses_rss)
4034 			ewma_signal_add(&sta->rx_stats_avg.signal,
4035 					-status->signal);
4036 	}
4037 
4038 	if (status->chains) {
4039 		int i;
4040 
4041 		stats->chains = status->chains;
4042 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4043 			int signal = status->chain_signal[i];
4044 
4045 			if (!(status->chains & BIT(i)))
4046 				continue;
4047 
4048 			stats->chain_signal_last[i] = signal;
4049 			if (!fast_rx->uses_rss)
4050 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4051 						-signal);
4052 		}
4053 	}
4054 	/* end of statistics */
4055 
4056 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4057 		goto drop;
4058 
4059 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4060 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4061 		    RX_QUEUED)
4062 			goto drop;
4063 
4064 		return true;
4065 	}
4066 
4067 	stats->last_rx = jiffies;
4068 	stats->last_rate = sta_stats_encode_rate(status);
4069 
4070 	stats->fragments++;
4071 	stats->packets++;
4072 
4073 	/* do the header conversion - first grab the addresses */
4074 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4075 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4076 	/* remove the SNAP but leave the ethertype */
4077 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4078 	/* push the addresses in front */
4079 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4080 
4081 	skb->dev = fast_rx->dev;
4082 
4083 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4084 
4085 	/* The seqno index has the same property as needed
4086 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4087 	 * for non-QoS-data frames. Here we know it's a data
4088 	 * frame, so count MSDUs.
4089 	 */
4090 	u64_stats_update_begin(&stats->syncp);
4091 	stats->msdu[rx->seqno_idx]++;
4092 	stats->bytes += orig_len;
4093 	u64_stats_update_end(&stats->syncp);
4094 
4095 	if (fast_rx->internal_forward) {
4096 		struct sk_buff *xmit_skb = NULL;
4097 		bool multicast = is_multicast_ether_addr(skb->data);
4098 
4099 		if (multicast) {
4100 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4101 		} else if (sta_info_get(rx->sdata, skb->data)) {
4102 			xmit_skb = skb;
4103 			skb = NULL;
4104 		}
4105 
4106 		if (xmit_skb) {
4107 			/*
4108 			 * Send to wireless media and increase priority by 256
4109 			 * to keep the received priority instead of
4110 			 * reclassifying the frame (see cfg80211_classify8021d).
4111 			 */
4112 			xmit_skb->priority += 256;
4113 			xmit_skb->protocol = htons(ETH_P_802_3);
4114 			skb_reset_network_header(xmit_skb);
4115 			skb_reset_mac_header(xmit_skb);
4116 			dev_queue_xmit(xmit_skb);
4117 		}
4118 
4119 		if (!skb)
4120 			return true;
4121 	}
4122 
4123 	/* deliver to local stack */
4124 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4125 	memset(skb->cb, 0, sizeof(skb->cb));
4126 	if (rx->napi)
4127 		napi_gro_receive(rx->napi, skb);
4128 	else
4129 		netif_receive_skb(skb);
4130 
4131 	return true;
4132  drop:
4133 	dev_kfree_skb(skb);
4134 	stats->dropped++;
4135 	return true;
4136 }
4137 
4138 /*
4139  * This function returns whether or not the SKB
4140  * was destined for RX processing or not, which,
4141  * if consume is true, is equivalent to whether
4142  * or not the skb was consumed.
4143  */
4144 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4145 					    struct sk_buff *skb, bool consume)
4146 {
4147 	struct ieee80211_local *local = rx->local;
4148 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4149 
4150 	rx->skb = skb;
4151 
4152 	/* See if we can do fast-rx; if we have to copy we already lost,
4153 	 * so punt in that case. We should never have to deliver a data
4154 	 * frame to multiple interfaces anyway.
4155 	 *
4156 	 * We skip the ieee80211_accept_frame() call and do the necessary
4157 	 * checking inside ieee80211_invoke_fast_rx().
4158 	 */
4159 	if (consume && rx->sta) {
4160 		struct ieee80211_fast_rx *fast_rx;
4161 
4162 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4163 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4164 			return true;
4165 	}
4166 
4167 	if (!ieee80211_accept_frame(rx))
4168 		return false;
4169 
4170 	if (!consume) {
4171 		skb = skb_copy(skb, GFP_ATOMIC);
4172 		if (!skb) {
4173 			if (net_ratelimit())
4174 				wiphy_debug(local->hw.wiphy,
4175 					"failed to copy skb for %s\n",
4176 					sdata->name);
4177 			return true;
4178 		}
4179 
4180 		rx->skb = skb;
4181 	}
4182 
4183 	ieee80211_invoke_rx_handlers(rx);
4184 	return true;
4185 }
4186 
4187 /*
4188  * This is the actual Rx frames handler. as it belongs to Rx path it must
4189  * be called with rcu_read_lock protection.
4190  */
4191 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4192 					 struct ieee80211_sta *pubsta,
4193 					 struct sk_buff *skb,
4194 					 struct napi_struct *napi)
4195 {
4196 	struct ieee80211_local *local = hw_to_local(hw);
4197 	struct ieee80211_sub_if_data *sdata;
4198 	struct ieee80211_hdr *hdr;
4199 	__le16 fc;
4200 	struct ieee80211_rx_data rx;
4201 	struct ieee80211_sub_if_data *prev;
4202 	struct rhlist_head *tmp;
4203 	int err = 0;
4204 
4205 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4206 	memset(&rx, 0, sizeof(rx));
4207 	rx.skb = skb;
4208 	rx.local = local;
4209 	rx.napi = napi;
4210 
4211 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4212 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4213 
4214 	if (ieee80211_is_mgmt(fc)) {
4215 		/* drop frame if too short for header */
4216 		if (skb->len < ieee80211_hdrlen(fc))
4217 			err = -ENOBUFS;
4218 		else
4219 			err = skb_linearize(skb);
4220 	} else {
4221 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4222 	}
4223 
4224 	if (err) {
4225 		dev_kfree_skb(skb);
4226 		return;
4227 	}
4228 
4229 	hdr = (struct ieee80211_hdr *)skb->data;
4230 	ieee80211_parse_qos(&rx);
4231 	ieee80211_verify_alignment(&rx);
4232 
4233 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4234 		     ieee80211_is_beacon(hdr->frame_control)))
4235 		ieee80211_scan_rx(local, skb);
4236 
4237 	if (ieee80211_is_data(fc)) {
4238 		struct sta_info *sta, *prev_sta;
4239 
4240 		if (pubsta) {
4241 			rx.sta = container_of(pubsta, struct sta_info, sta);
4242 			rx.sdata = rx.sta->sdata;
4243 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4244 				return;
4245 			goto out;
4246 		}
4247 
4248 		prev_sta = NULL;
4249 
4250 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4251 			if (!prev_sta) {
4252 				prev_sta = sta;
4253 				continue;
4254 			}
4255 
4256 			rx.sta = prev_sta;
4257 			rx.sdata = prev_sta->sdata;
4258 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4259 
4260 			prev_sta = sta;
4261 		}
4262 
4263 		if (prev_sta) {
4264 			rx.sta = prev_sta;
4265 			rx.sdata = prev_sta->sdata;
4266 
4267 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4268 				return;
4269 			goto out;
4270 		}
4271 	}
4272 
4273 	prev = NULL;
4274 
4275 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4276 		if (!ieee80211_sdata_running(sdata))
4277 			continue;
4278 
4279 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4280 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4281 			continue;
4282 
4283 		/*
4284 		 * frame is destined for this interface, but if it's
4285 		 * not also for the previous one we handle that after
4286 		 * the loop to avoid copying the SKB once too much
4287 		 */
4288 
4289 		if (!prev) {
4290 			prev = sdata;
4291 			continue;
4292 		}
4293 
4294 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4295 		rx.sdata = prev;
4296 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4297 
4298 		prev = sdata;
4299 	}
4300 
4301 	if (prev) {
4302 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4303 		rx.sdata = prev;
4304 
4305 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4306 			return;
4307 	}
4308 
4309  out:
4310 	dev_kfree_skb(skb);
4311 }
4312 
4313 /*
4314  * This is the receive path handler. It is called by a low level driver when an
4315  * 802.11 MPDU is received from the hardware.
4316  */
4317 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4318 		       struct sk_buff *skb, struct napi_struct *napi)
4319 {
4320 	struct ieee80211_local *local = hw_to_local(hw);
4321 	struct ieee80211_rate *rate = NULL;
4322 	struct ieee80211_supported_band *sband;
4323 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4324 
4325 	WARN_ON_ONCE(softirq_count() == 0);
4326 
4327 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4328 		goto drop;
4329 
4330 	sband = local->hw.wiphy->bands[status->band];
4331 	if (WARN_ON(!sband))
4332 		goto drop;
4333 
4334 	/*
4335 	 * If we're suspending, it is possible although not too likely
4336 	 * that we'd be receiving frames after having already partially
4337 	 * quiesced the stack. We can't process such frames then since
4338 	 * that might, for example, cause stations to be added or other
4339 	 * driver callbacks be invoked.
4340 	 */
4341 	if (unlikely(local->quiescing || local->suspended))
4342 		goto drop;
4343 
4344 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4345 	if (unlikely(local->in_reconfig))
4346 		goto drop;
4347 
4348 	/*
4349 	 * The same happens when we're not even started,
4350 	 * but that's worth a warning.
4351 	 */
4352 	if (WARN_ON(!local->started))
4353 		goto drop;
4354 
4355 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4356 		/*
4357 		 * Validate the rate, unless a PLCP error means that
4358 		 * we probably can't have a valid rate here anyway.
4359 		 */
4360 
4361 		switch (status->encoding) {
4362 		case RX_ENC_HT:
4363 			/*
4364 			 * rate_idx is MCS index, which can be [0-76]
4365 			 * as documented on:
4366 			 *
4367 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4368 			 *
4369 			 * Anything else would be some sort of driver or
4370 			 * hardware error. The driver should catch hardware
4371 			 * errors.
4372 			 */
4373 			if (WARN(status->rate_idx > 76,
4374 				 "Rate marked as an HT rate but passed "
4375 				 "status->rate_idx is not "
4376 				 "an MCS index [0-76]: %d (0x%02x)\n",
4377 				 status->rate_idx,
4378 				 status->rate_idx))
4379 				goto drop;
4380 			break;
4381 		case RX_ENC_VHT:
4382 			if (WARN_ONCE(status->rate_idx > 9 ||
4383 				      !status->nss ||
4384 				      status->nss > 8,
4385 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4386 				      status->rate_idx, status->nss))
4387 				goto drop;
4388 			break;
4389 		default:
4390 			WARN_ON_ONCE(1);
4391 			/* fall through */
4392 		case RX_ENC_LEGACY:
4393 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4394 				goto drop;
4395 			rate = &sband->bitrates[status->rate_idx];
4396 		}
4397 	}
4398 
4399 	status->rx_flags = 0;
4400 
4401 	/*
4402 	 * key references and virtual interfaces are protected using RCU
4403 	 * and this requires that we are in a read-side RCU section during
4404 	 * receive processing
4405 	 */
4406 	rcu_read_lock();
4407 
4408 	/*
4409 	 * Frames with failed FCS/PLCP checksum are not returned,
4410 	 * all other frames are returned without radiotap header
4411 	 * if it was previously present.
4412 	 * Also, frames with less than 16 bytes are dropped.
4413 	 */
4414 	skb = ieee80211_rx_monitor(local, skb, rate);
4415 	if (!skb) {
4416 		rcu_read_unlock();
4417 		return;
4418 	}
4419 
4420 	ieee80211_tpt_led_trig_rx(local,
4421 			((struct ieee80211_hdr *)skb->data)->frame_control,
4422 			skb->len);
4423 
4424 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4425 
4426 	rcu_read_unlock();
4427 
4428 	return;
4429  drop:
4430 	kfree_skb(skb);
4431 }
4432 EXPORT_SYMBOL(ieee80211_rx_napi);
4433 
4434 /* This is a version of the rx handler that can be called from hard irq
4435  * context. Post the skb on the queue and schedule the tasklet */
4436 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4437 {
4438 	struct ieee80211_local *local = hw_to_local(hw);
4439 
4440 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4441 
4442 	skb->pkt_type = IEEE80211_RX_MSG;
4443 	skb_queue_tail(&local->skb_queue, skb);
4444 	tasklet_schedule(&local->tasklet);
4445 }
4446 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4447