1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 44 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 if (status->vendor_radiotap_len) 57 __pskb_pull(skb, status->vendor_radiotap_len); 58 59 return skb; 60 } 61 62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + status->vendor_radiotap_len); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return 1; 73 if (unlikely(skb->len < 16 + present_fcs_len + 74 status->vendor_radiotap_len)) 75 return 1; 76 if (ieee80211_is_ctl(hdr->frame_control) && 77 !ieee80211_is_pspoll(hdr->frame_control) && 78 !ieee80211_is_back_req(hdr->frame_control)) 79 return 1; 80 return 0; 81 } 82 83 static int 84 ieee80211_rx_radiotap_space(struct ieee80211_local *local, 85 struct ieee80211_rx_status *status) 86 { 87 int len; 88 89 /* always present fields */ 90 len = sizeof(struct ieee80211_radiotap_header) + 9; 91 92 /* allocate extra bitmap */ 93 if (status->vendor_radiotap_len) 94 len += 4; 95 96 if (ieee80211_have_rx_timestamp(status)) { 97 len = ALIGN(len, 8); 98 len += 8; 99 } 100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 101 len += 1; 102 103 /* padding for RX_FLAGS if necessary */ 104 len = ALIGN(len, 2); 105 106 if (status->flag & RX_FLAG_HT) /* HT info */ 107 len += 3; 108 109 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 110 len = ALIGN(len, 4); 111 len += 8; 112 } 113 114 if (status->flag & RX_FLAG_VHT) { 115 len = ALIGN(len, 2); 116 len += 12; 117 } 118 119 if (status->vendor_radiotap_len) { 120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0)) 121 status->vendor_radiotap_align = 1; 122 /* align standard part of vendor namespace */ 123 len = ALIGN(len, 2); 124 /* allocate standard part of vendor namespace */ 125 len += 6; 126 /* align vendor-defined part */ 127 len = ALIGN(len, status->vendor_radiotap_align); 128 /* vendor-defined part is already in skb */ 129 } 130 131 return len; 132 } 133 134 /* 135 * ieee80211_add_rx_radiotap_header - add radiotap header 136 * 137 * add a radiotap header containing all the fields which the hardware provided. 138 */ 139 static void 140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 141 struct sk_buff *skb, 142 struct ieee80211_rate *rate, 143 int rtap_len, bool has_fcs) 144 { 145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 146 struct ieee80211_radiotap_header *rthdr; 147 unsigned char *pos; 148 u16 rx_flags = 0; 149 int mpdulen; 150 151 mpdulen = skb->len; 152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 153 mpdulen += FCS_LEN; 154 155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 156 memset(rthdr, 0, rtap_len); 157 158 /* radiotap header, set always present flags */ 159 rthdr->it_present = 160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 161 (1 << IEEE80211_RADIOTAP_CHANNEL) | 162 (1 << IEEE80211_RADIOTAP_ANTENNA) | 163 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len); 165 166 pos = (unsigned char *)(rthdr + 1); 167 168 if (status->vendor_radiotap_len) { 169 rthdr->it_present |= 170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) | 171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT)); 172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos); 173 pos += 4; 174 } 175 176 /* the order of the following fields is important */ 177 178 /* IEEE80211_RADIOTAP_TSFT */ 179 if (ieee80211_have_rx_timestamp(status)) { 180 /* padding */ 181 while ((pos - (u8 *)rthdr) & 7) 182 *pos++ = 0; 183 put_unaligned_le64( 184 ieee80211_calculate_rx_timestamp(local, status, 185 mpdulen, 0), 186 pos); 187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 188 pos += 8; 189 } 190 191 /* IEEE80211_RADIOTAP_FLAGS */ 192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 193 *pos |= IEEE80211_RADIOTAP_F_FCS; 194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 195 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 196 if (status->flag & RX_FLAG_SHORTPRE) 197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 198 pos++; 199 200 /* IEEE80211_RADIOTAP_RATE */ 201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 202 /* 203 * Without rate information don't add it. If we have, 204 * MCS information is a separate field in radiotap, 205 * added below. The byte here is needed as padding 206 * for the channel though, so initialise it to 0. 207 */ 208 *pos = 0; 209 } else { 210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 211 *pos = rate->bitrate / 5; 212 } 213 pos++; 214 215 /* IEEE80211_RADIOTAP_CHANNEL */ 216 put_unaligned_le16(status->freq, pos); 217 pos += 2; 218 if (status->band == IEEE80211_BAND_5GHZ) 219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 220 pos); 221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 223 pos); 224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 226 pos); 227 else if (rate) 228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 229 pos); 230 else 231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos); 232 pos += 2; 233 234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 237 *pos = status->signal; 238 rthdr->it_present |= 239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 240 pos++; 241 } 242 243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 244 245 /* IEEE80211_RADIOTAP_ANTENNA */ 246 *pos = status->antenna; 247 pos++; 248 249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 250 251 /* IEEE80211_RADIOTAP_RX_FLAGS */ 252 /* ensure 2 byte alignment for the 2 byte field as required */ 253 if ((pos - (u8 *)rthdr) & 1) 254 *pos++ = 0; 255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 257 put_unaligned_le16(rx_flags, pos); 258 pos += 2; 259 260 if (status->flag & RX_FLAG_HT) { 261 unsigned int stbc; 262 263 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 264 *pos++ = local->hw.radiotap_mcs_details; 265 *pos = 0; 266 if (status->flag & RX_FLAG_SHORT_GI) 267 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 268 if (status->flag & RX_FLAG_40MHZ) 269 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 270 if (status->flag & RX_FLAG_HT_GF) 271 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 272 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 273 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 274 pos++; 275 *pos++ = status->rate_idx; 276 } 277 278 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 279 u16 flags = 0; 280 281 /* ensure 4 byte alignment */ 282 while ((pos - (u8 *)rthdr) & 3) 283 pos++; 284 rthdr->it_present |= 285 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 286 put_unaligned_le32(status->ampdu_reference, pos); 287 pos += 4; 288 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 289 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 290 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 292 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 293 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 294 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 295 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 296 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 297 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 299 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 300 put_unaligned_le16(flags, pos); 301 pos += 2; 302 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 303 *pos++ = status->ampdu_delimiter_crc; 304 else 305 *pos++ = 0; 306 *pos++ = 0; 307 } 308 309 if (status->flag & RX_FLAG_VHT) { 310 u16 known = local->hw.radiotap_vht_details; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 313 /* known field - how to handle 80+80? */ 314 if (status->flag & RX_FLAG_80P80MHZ) 315 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 316 put_unaligned_le16(known, pos); 317 pos += 2; 318 /* flags */ 319 if (status->flag & RX_FLAG_SHORT_GI) 320 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 321 pos++; 322 /* bandwidth */ 323 if (status->flag & RX_FLAG_80MHZ) 324 *pos++ = 4; 325 else if (status->flag & RX_FLAG_80P80MHZ) 326 *pos++ = 0; /* marked not known above */ 327 else if (status->flag & RX_FLAG_160MHZ) 328 *pos++ = 11; 329 else if (status->flag & RX_FLAG_40MHZ) 330 *pos++ = 1; 331 else /* 20 MHz */ 332 *pos++ = 0; 333 /* MCS/NSS */ 334 *pos = (status->rate_idx << 4) | status->vht_nss; 335 pos += 4; 336 /* coding field */ 337 pos++; 338 /* group ID */ 339 pos++; 340 /* partial_aid */ 341 pos += 2; 342 } 343 344 if (status->vendor_radiotap_len) { 345 /* ensure 2 byte alignment for the vendor field as required */ 346 if ((pos - (u8 *)rthdr) & 1) 347 *pos++ = 0; 348 *pos++ = status->vendor_radiotap_oui[0]; 349 *pos++ = status->vendor_radiotap_oui[1]; 350 *pos++ = status->vendor_radiotap_oui[2]; 351 *pos++ = status->vendor_radiotap_subns; 352 put_unaligned_le16(status->vendor_radiotap_len, pos); 353 pos += 2; 354 /* align the actual payload as requested */ 355 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1)) 356 *pos++ = 0; 357 } 358 } 359 360 /* 361 * This function copies a received frame to all monitor interfaces and 362 * returns a cleaned-up SKB that no longer includes the FCS nor the 363 * radiotap header the driver might have added. 364 */ 365 static struct sk_buff * 366 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 367 struct ieee80211_rate *rate) 368 { 369 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 370 struct ieee80211_sub_if_data *sdata; 371 int needed_headroom; 372 struct sk_buff *skb, *skb2; 373 struct net_device *prev_dev = NULL; 374 int present_fcs_len = 0; 375 376 /* 377 * First, we may need to make a copy of the skb because 378 * (1) we need to modify it for radiotap (if not present), and 379 * (2) the other RX handlers will modify the skb we got. 380 * 381 * We don't need to, of course, if we aren't going to return 382 * the SKB because it has a bad FCS/PLCP checksum. 383 */ 384 385 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 386 present_fcs_len = FCS_LEN; 387 388 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 389 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) { 390 dev_kfree_skb(origskb); 391 return NULL; 392 } 393 394 if (!local->monitors) { 395 if (should_drop_frame(origskb, present_fcs_len)) { 396 dev_kfree_skb(origskb); 397 return NULL; 398 } 399 400 return remove_monitor_info(local, origskb); 401 } 402 403 /* room for the radiotap header based on driver features */ 404 needed_headroom = ieee80211_rx_radiotap_space(local, status); 405 406 if (should_drop_frame(origskb, present_fcs_len)) { 407 /* only need to expand headroom if necessary */ 408 skb = origskb; 409 origskb = NULL; 410 411 /* 412 * This shouldn't trigger often because most devices have an 413 * RX header they pull before we get here, and that should 414 * be big enough for our radiotap information. We should 415 * probably export the length to drivers so that we can have 416 * them allocate enough headroom to start with. 417 */ 418 if (skb_headroom(skb) < needed_headroom && 419 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 420 dev_kfree_skb(skb); 421 return NULL; 422 } 423 } else { 424 /* 425 * Need to make a copy and possibly remove radiotap header 426 * and FCS from the original. 427 */ 428 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 429 430 origskb = remove_monitor_info(local, origskb); 431 432 if (!skb) 433 return origskb; 434 } 435 436 /* prepend radiotap information */ 437 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 438 true); 439 440 skb_reset_mac_header(skb); 441 skb->ip_summed = CHECKSUM_UNNECESSARY; 442 skb->pkt_type = PACKET_OTHERHOST; 443 skb->protocol = htons(ETH_P_802_2); 444 445 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 446 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 447 continue; 448 449 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 450 continue; 451 452 if (!ieee80211_sdata_running(sdata)) 453 continue; 454 455 if (prev_dev) { 456 skb2 = skb_clone(skb, GFP_ATOMIC); 457 if (skb2) { 458 skb2->dev = prev_dev; 459 netif_receive_skb(skb2); 460 } 461 } 462 463 prev_dev = sdata->dev; 464 sdata->dev->stats.rx_packets++; 465 sdata->dev->stats.rx_bytes += skb->len; 466 } 467 468 if (prev_dev) { 469 skb->dev = prev_dev; 470 netif_receive_skb(skb); 471 } else 472 dev_kfree_skb(skb); 473 474 return origskb; 475 } 476 477 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 478 { 479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 481 int tid, seqno_idx, security_idx; 482 483 /* does the frame have a qos control field? */ 484 if (ieee80211_is_data_qos(hdr->frame_control)) { 485 u8 *qc = ieee80211_get_qos_ctl(hdr); 486 /* frame has qos control */ 487 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 488 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 489 status->rx_flags |= IEEE80211_RX_AMSDU; 490 491 seqno_idx = tid; 492 security_idx = tid; 493 } else { 494 /* 495 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 496 * 497 * Sequence numbers for management frames, QoS data 498 * frames with a broadcast/multicast address in the 499 * Address 1 field, and all non-QoS data frames sent 500 * by QoS STAs are assigned using an additional single 501 * modulo-4096 counter, [...] 502 * 503 * We also use that counter for non-QoS STAs. 504 */ 505 seqno_idx = IEEE80211_NUM_TIDS; 506 security_idx = 0; 507 if (ieee80211_is_mgmt(hdr->frame_control)) 508 security_idx = IEEE80211_NUM_TIDS; 509 tid = 0; 510 } 511 512 rx->seqno_idx = seqno_idx; 513 rx->security_idx = security_idx; 514 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 515 * For now, set skb->priority to 0 for other cases. */ 516 rx->skb->priority = (tid > 7) ? 0 : tid; 517 } 518 519 /** 520 * DOC: Packet alignment 521 * 522 * Drivers always need to pass packets that are aligned to two-byte boundaries 523 * to the stack. 524 * 525 * Additionally, should, if possible, align the payload data in a way that 526 * guarantees that the contained IP header is aligned to a four-byte 527 * boundary. In the case of regular frames, this simply means aligning the 528 * payload to a four-byte boundary (because either the IP header is directly 529 * contained, or IV/RFC1042 headers that have a length divisible by four are 530 * in front of it). If the payload data is not properly aligned and the 531 * architecture doesn't support efficient unaligned operations, mac80211 532 * will align the data. 533 * 534 * With A-MSDU frames, however, the payload data address must yield two modulo 535 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 536 * push the IP header further back to a multiple of four again. Thankfully, the 537 * specs were sane enough this time around to require padding each A-MSDU 538 * subframe to a length that is a multiple of four. 539 * 540 * Padding like Atheros hardware adds which is between the 802.11 header and 541 * the payload is not supported, the driver is required to move the 802.11 542 * header to be directly in front of the payload in that case. 543 */ 544 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 545 { 546 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 547 WARN_ONCE((unsigned long)rx->skb->data & 1, 548 "unaligned packet at 0x%p\n", rx->skb->data); 549 #endif 550 } 551 552 553 /* rx handlers */ 554 555 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 556 { 557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 558 559 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 560 return 0; 561 562 return ieee80211_is_robust_mgmt_frame(hdr); 563 } 564 565 566 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 567 { 568 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 569 570 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 571 return 0; 572 573 return ieee80211_is_robust_mgmt_frame(hdr); 574 } 575 576 577 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 578 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 579 { 580 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 581 struct ieee80211_mmie *mmie; 582 583 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 584 return -1; 585 586 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 587 return -1; /* not a robust management frame */ 588 589 mmie = (struct ieee80211_mmie *) 590 (skb->data + skb->len - sizeof(*mmie)); 591 if (mmie->element_id != WLAN_EID_MMIE || 592 mmie->length != sizeof(*mmie) - 2) 593 return -1; 594 595 return le16_to_cpu(mmie->key_id); 596 } 597 598 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 599 { 600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 601 char *dev_addr = rx->sdata->vif.addr; 602 603 if (ieee80211_is_data(hdr->frame_control)) { 604 if (is_multicast_ether_addr(hdr->addr1)) { 605 if (ieee80211_has_tods(hdr->frame_control) || 606 !ieee80211_has_fromds(hdr->frame_control)) 607 return RX_DROP_MONITOR; 608 if (ether_addr_equal(hdr->addr3, dev_addr)) 609 return RX_DROP_MONITOR; 610 } else { 611 if (!ieee80211_has_a4(hdr->frame_control)) 612 return RX_DROP_MONITOR; 613 if (ether_addr_equal(hdr->addr4, dev_addr)) 614 return RX_DROP_MONITOR; 615 } 616 } 617 618 /* If there is not an established peer link and this is not a peer link 619 * establisment frame, beacon or probe, drop the frame. 620 */ 621 622 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 623 struct ieee80211_mgmt *mgmt; 624 625 if (!ieee80211_is_mgmt(hdr->frame_control)) 626 return RX_DROP_MONITOR; 627 628 if (ieee80211_is_action(hdr->frame_control)) { 629 u8 category; 630 631 /* make sure category field is present */ 632 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 633 return RX_DROP_MONITOR; 634 635 mgmt = (struct ieee80211_mgmt *)hdr; 636 category = mgmt->u.action.category; 637 if (category != WLAN_CATEGORY_MESH_ACTION && 638 category != WLAN_CATEGORY_SELF_PROTECTED) 639 return RX_DROP_MONITOR; 640 return RX_CONTINUE; 641 } 642 643 if (ieee80211_is_probe_req(hdr->frame_control) || 644 ieee80211_is_probe_resp(hdr->frame_control) || 645 ieee80211_is_beacon(hdr->frame_control) || 646 ieee80211_is_auth(hdr->frame_control)) 647 return RX_CONTINUE; 648 649 return RX_DROP_MONITOR; 650 } 651 652 return RX_CONTINUE; 653 } 654 655 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 656 struct tid_ampdu_rx *tid_agg_rx, 657 int index, 658 struct sk_buff_head *frames) 659 { 660 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 661 struct ieee80211_rx_status *status; 662 663 lockdep_assert_held(&tid_agg_rx->reorder_lock); 664 665 if (!skb) 666 goto no_frame; 667 668 /* release the frame from the reorder ring buffer */ 669 tid_agg_rx->stored_mpdu_num--; 670 tid_agg_rx->reorder_buf[index] = NULL; 671 status = IEEE80211_SKB_RXCB(skb); 672 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 673 __skb_queue_tail(frames, skb); 674 675 no_frame: 676 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 677 } 678 679 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 680 struct tid_ampdu_rx *tid_agg_rx, 681 u16 head_seq_num, 682 struct sk_buff_head *frames) 683 { 684 int index; 685 686 lockdep_assert_held(&tid_agg_rx->reorder_lock); 687 688 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 689 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 690 tid_agg_rx->ssn) % 691 tid_agg_rx->buf_size; 692 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 693 frames); 694 } 695 } 696 697 /* 698 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 699 * the skb was added to the buffer longer than this time ago, the earlier 700 * frames that have not yet been received are assumed to be lost and the skb 701 * can be released for processing. This may also release other skb's from the 702 * reorder buffer if there are no additional gaps between the frames. 703 * 704 * Callers must hold tid_agg_rx->reorder_lock. 705 */ 706 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 707 708 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 709 struct tid_ampdu_rx *tid_agg_rx, 710 struct sk_buff_head *frames) 711 { 712 int index, j; 713 714 lockdep_assert_held(&tid_agg_rx->reorder_lock); 715 716 /* release the buffer until next missing frame */ 717 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 718 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 719 if (!tid_agg_rx->reorder_buf[index] && 720 tid_agg_rx->stored_mpdu_num) { 721 /* 722 * No buffers ready to be released, but check whether any 723 * frames in the reorder buffer have timed out. 724 */ 725 int skipped = 1; 726 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 727 j = (j + 1) % tid_agg_rx->buf_size) { 728 if (!tid_agg_rx->reorder_buf[j]) { 729 skipped++; 730 continue; 731 } 732 if (skipped && 733 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 734 HT_RX_REORDER_BUF_TIMEOUT)) 735 goto set_release_timer; 736 737 ht_dbg_ratelimited(sdata, 738 "release an RX reorder frame due to timeout on earlier frames\n"); 739 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 740 frames); 741 742 /* 743 * Increment the head seq# also for the skipped slots. 744 */ 745 tid_agg_rx->head_seq_num = 746 (tid_agg_rx->head_seq_num + 747 skipped) & IEEE80211_SN_MASK; 748 skipped = 0; 749 } 750 } else while (tid_agg_rx->reorder_buf[index]) { 751 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 752 frames); 753 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 754 tid_agg_rx->ssn) % 755 tid_agg_rx->buf_size; 756 } 757 758 if (tid_agg_rx->stored_mpdu_num) { 759 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 760 tid_agg_rx->ssn) % 761 tid_agg_rx->buf_size; 762 763 for (; j != (index - 1) % tid_agg_rx->buf_size; 764 j = (j + 1) % tid_agg_rx->buf_size) { 765 if (tid_agg_rx->reorder_buf[j]) 766 break; 767 } 768 769 set_release_timer: 770 771 mod_timer(&tid_agg_rx->reorder_timer, 772 tid_agg_rx->reorder_time[j] + 1 + 773 HT_RX_REORDER_BUF_TIMEOUT); 774 } else { 775 del_timer(&tid_agg_rx->reorder_timer); 776 } 777 } 778 779 /* 780 * As this function belongs to the RX path it must be under 781 * rcu_read_lock protection. It returns false if the frame 782 * can be processed immediately, true if it was consumed. 783 */ 784 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 785 struct tid_ampdu_rx *tid_agg_rx, 786 struct sk_buff *skb, 787 struct sk_buff_head *frames) 788 { 789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 790 u16 sc = le16_to_cpu(hdr->seq_ctrl); 791 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 792 u16 head_seq_num, buf_size; 793 int index; 794 bool ret = true; 795 796 spin_lock(&tid_agg_rx->reorder_lock); 797 798 buf_size = tid_agg_rx->buf_size; 799 head_seq_num = tid_agg_rx->head_seq_num; 800 801 /* frame with out of date sequence number */ 802 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 803 dev_kfree_skb(skb); 804 goto out; 805 } 806 807 /* 808 * If frame the sequence number exceeds our buffering window 809 * size release some previous frames to make room for this one. 810 */ 811 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 812 head_seq_num = ieee80211_sn_inc( 813 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 814 /* release stored frames up to new head to stack */ 815 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 816 head_seq_num, frames); 817 } 818 819 /* Now the new frame is always in the range of the reordering buffer */ 820 821 index = ieee80211_sn_sub(mpdu_seq_num, 822 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 823 824 /* check if we already stored this frame */ 825 if (tid_agg_rx->reorder_buf[index]) { 826 dev_kfree_skb(skb); 827 goto out; 828 } 829 830 /* 831 * If the current MPDU is in the right order and nothing else 832 * is stored we can process it directly, no need to buffer it. 833 * If it is first but there's something stored, we may be able 834 * to release frames after this one. 835 */ 836 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 837 tid_agg_rx->stored_mpdu_num == 0) { 838 tid_agg_rx->head_seq_num = 839 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 840 ret = false; 841 goto out; 842 } 843 844 /* put the frame in the reordering buffer */ 845 tid_agg_rx->reorder_buf[index] = skb; 846 tid_agg_rx->reorder_time[index] = jiffies; 847 tid_agg_rx->stored_mpdu_num++; 848 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 849 850 out: 851 spin_unlock(&tid_agg_rx->reorder_lock); 852 return ret; 853 } 854 855 /* 856 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 857 * true if the MPDU was buffered, false if it should be processed. 858 */ 859 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 860 struct sk_buff_head *frames) 861 { 862 struct sk_buff *skb = rx->skb; 863 struct ieee80211_local *local = rx->local; 864 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 866 struct sta_info *sta = rx->sta; 867 struct tid_ampdu_rx *tid_agg_rx; 868 u16 sc; 869 u8 tid, ack_policy; 870 871 if (!ieee80211_is_data_qos(hdr->frame_control)) 872 goto dont_reorder; 873 874 /* 875 * filter the QoS data rx stream according to 876 * STA/TID and check if this STA/TID is on aggregation 877 */ 878 879 if (!sta) 880 goto dont_reorder; 881 882 ack_policy = *ieee80211_get_qos_ctl(hdr) & 883 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 884 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 885 886 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 887 if (!tid_agg_rx) 888 goto dont_reorder; 889 890 /* qos null data frames are excluded */ 891 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 892 goto dont_reorder; 893 894 /* not part of a BA session */ 895 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 896 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 897 goto dont_reorder; 898 899 /* not actually part of this BA session */ 900 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 901 goto dont_reorder; 902 903 /* new, potentially un-ordered, ampdu frame - process it */ 904 905 /* reset session timer */ 906 if (tid_agg_rx->timeout) 907 tid_agg_rx->last_rx = jiffies; 908 909 /* if this mpdu is fragmented - terminate rx aggregation session */ 910 sc = le16_to_cpu(hdr->seq_ctrl); 911 if (sc & IEEE80211_SCTL_FRAG) { 912 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 913 skb_queue_tail(&rx->sdata->skb_queue, skb); 914 ieee80211_queue_work(&local->hw, &rx->sdata->work); 915 return; 916 } 917 918 /* 919 * No locking needed -- we will only ever process one 920 * RX packet at a time, and thus own tid_agg_rx. All 921 * other code manipulating it needs to (and does) make 922 * sure that we cannot get to it any more before doing 923 * anything with it. 924 */ 925 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 926 frames)) 927 return; 928 929 dont_reorder: 930 __skb_queue_tail(frames, skb); 931 } 932 933 static ieee80211_rx_result debug_noinline 934 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 935 { 936 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 937 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 938 939 /* 940 * Drop duplicate 802.11 retransmissions 941 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 942 */ 943 if (rx->skb->len >= 24 && rx->sta && 944 !ieee80211_is_ctl(hdr->frame_control) && 945 !ieee80211_is_qos_nullfunc(hdr->frame_control) && 946 !is_multicast_ether_addr(hdr->addr1)) { 947 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 948 rx->sta->last_seq_ctrl[rx->seqno_idx] == 949 hdr->seq_ctrl)) { 950 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 951 rx->local->dot11FrameDuplicateCount++; 952 rx->sta->num_duplicates++; 953 } 954 return RX_DROP_UNUSABLE; 955 } else 956 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 957 } 958 959 if (unlikely(rx->skb->len < 16)) { 960 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 961 return RX_DROP_MONITOR; 962 } 963 964 /* Drop disallowed frame classes based on STA auth/assoc state; 965 * IEEE 802.11, Chap 5.5. 966 * 967 * mac80211 filters only based on association state, i.e. it drops 968 * Class 3 frames from not associated stations. hostapd sends 969 * deauth/disassoc frames when needed. In addition, hostapd is 970 * responsible for filtering on both auth and assoc states. 971 */ 972 973 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 974 return ieee80211_rx_mesh_check(rx); 975 976 if (unlikely((ieee80211_is_data(hdr->frame_control) || 977 ieee80211_is_pspoll(hdr->frame_control)) && 978 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 979 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 980 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 981 /* 982 * accept port control frames from the AP even when it's not 983 * yet marked ASSOC to prevent a race where we don't set the 984 * assoc bit quickly enough before it sends the first frame 985 */ 986 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 987 ieee80211_is_data_present(hdr->frame_control)) { 988 unsigned int hdrlen; 989 __be16 ethertype; 990 991 hdrlen = ieee80211_hdrlen(hdr->frame_control); 992 993 if (rx->skb->len < hdrlen + 8) 994 return RX_DROP_MONITOR; 995 996 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 997 if (ethertype == rx->sdata->control_port_protocol) 998 return RX_CONTINUE; 999 } 1000 1001 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1002 cfg80211_rx_spurious_frame(rx->sdata->dev, 1003 hdr->addr2, 1004 GFP_ATOMIC)) 1005 return RX_DROP_UNUSABLE; 1006 1007 return RX_DROP_MONITOR; 1008 } 1009 1010 return RX_CONTINUE; 1011 } 1012 1013 1014 static ieee80211_rx_result debug_noinline 1015 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1016 { 1017 struct sk_buff *skb = rx->skb; 1018 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1019 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1020 int keyidx; 1021 int hdrlen; 1022 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1023 struct ieee80211_key *sta_ptk = NULL; 1024 int mmie_keyidx = -1; 1025 __le16 fc; 1026 1027 /* 1028 * Key selection 101 1029 * 1030 * There are four types of keys: 1031 * - GTK (group keys) 1032 * - IGTK (group keys for management frames) 1033 * - PTK (pairwise keys) 1034 * - STK (station-to-station pairwise keys) 1035 * 1036 * When selecting a key, we have to distinguish between multicast 1037 * (including broadcast) and unicast frames, the latter can only 1038 * use PTKs and STKs while the former always use GTKs and IGTKs. 1039 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1040 * unicast frames can also use key indices like GTKs. Hence, if we 1041 * don't have a PTK/STK we check the key index for a WEP key. 1042 * 1043 * Note that in a regular BSS, multicast frames are sent by the 1044 * AP only, associated stations unicast the frame to the AP first 1045 * which then multicasts it on their behalf. 1046 * 1047 * There is also a slight problem in IBSS mode: GTKs are negotiated 1048 * with each station, that is something we don't currently handle. 1049 * The spec seems to expect that one negotiates the same key with 1050 * every station but there's no such requirement; VLANs could be 1051 * possible. 1052 */ 1053 1054 /* 1055 * No point in finding a key and decrypting if the frame is neither 1056 * addressed to us nor a multicast frame. 1057 */ 1058 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1059 return RX_CONTINUE; 1060 1061 /* start without a key */ 1062 rx->key = NULL; 1063 1064 if (rx->sta) 1065 sta_ptk = rcu_dereference(rx->sta->ptk); 1066 1067 fc = hdr->frame_control; 1068 1069 if (!ieee80211_has_protected(fc)) 1070 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1071 1072 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1073 rx->key = sta_ptk; 1074 if ((status->flag & RX_FLAG_DECRYPTED) && 1075 (status->flag & RX_FLAG_IV_STRIPPED)) 1076 return RX_CONTINUE; 1077 /* Skip decryption if the frame is not protected. */ 1078 if (!ieee80211_has_protected(fc)) 1079 return RX_CONTINUE; 1080 } else if (mmie_keyidx >= 0) { 1081 /* Broadcast/multicast robust management frame / BIP */ 1082 if ((status->flag & RX_FLAG_DECRYPTED) && 1083 (status->flag & RX_FLAG_IV_STRIPPED)) 1084 return RX_CONTINUE; 1085 1086 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1087 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1088 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1089 if (rx->sta) 1090 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1091 if (!rx->key) 1092 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1093 } else if (!ieee80211_has_protected(fc)) { 1094 /* 1095 * The frame was not protected, so skip decryption. However, we 1096 * need to set rx->key if there is a key that could have been 1097 * used so that the frame may be dropped if encryption would 1098 * have been expected. 1099 */ 1100 struct ieee80211_key *key = NULL; 1101 struct ieee80211_sub_if_data *sdata = rx->sdata; 1102 int i; 1103 1104 if (ieee80211_is_mgmt(fc) && 1105 is_multicast_ether_addr(hdr->addr1) && 1106 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1107 rx->key = key; 1108 else { 1109 if (rx->sta) { 1110 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1111 key = rcu_dereference(rx->sta->gtk[i]); 1112 if (key) 1113 break; 1114 } 1115 } 1116 if (!key) { 1117 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1118 key = rcu_dereference(sdata->keys[i]); 1119 if (key) 1120 break; 1121 } 1122 } 1123 if (key) 1124 rx->key = key; 1125 } 1126 return RX_CONTINUE; 1127 } else { 1128 u8 keyid; 1129 /* 1130 * The device doesn't give us the IV so we won't be 1131 * able to look up the key. That's ok though, we 1132 * don't need to decrypt the frame, we just won't 1133 * be able to keep statistics accurate. 1134 * Except for key threshold notifications, should 1135 * we somehow allow the driver to tell us which key 1136 * the hardware used if this flag is set? 1137 */ 1138 if ((status->flag & RX_FLAG_DECRYPTED) && 1139 (status->flag & RX_FLAG_IV_STRIPPED)) 1140 return RX_CONTINUE; 1141 1142 hdrlen = ieee80211_hdrlen(fc); 1143 1144 if (rx->skb->len < 8 + hdrlen) 1145 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1146 1147 /* 1148 * no need to call ieee80211_wep_get_keyidx, 1149 * it verifies a bunch of things we've done already 1150 */ 1151 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1152 keyidx = keyid >> 6; 1153 1154 /* check per-station GTK first, if multicast packet */ 1155 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1156 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1157 1158 /* if not found, try default key */ 1159 if (!rx->key) { 1160 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1161 1162 /* 1163 * RSNA-protected unicast frames should always be 1164 * sent with pairwise or station-to-station keys, 1165 * but for WEP we allow using a key index as well. 1166 */ 1167 if (rx->key && 1168 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1169 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1170 !is_multicast_ether_addr(hdr->addr1)) 1171 rx->key = NULL; 1172 } 1173 } 1174 1175 if (rx->key) { 1176 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1177 return RX_DROP_MONITOR; 1178 1179 rx->key->tx_rx_count++; 1180 /* TODO: add threshold stuff again */ 1181 } else { 1182 return RX_DROP_MONITOR; 1183 } 1184 1185 switch (rx->key->conf.cipher) { 1186 case WLAN_CIPHER_SUITE_WEP40: 1187 case WLAN_CIPHER_SUITE_WEP104: 1188 result = ieee80211_crypto_wep_decrypt(rx); 1189 break; 1190 case WLAN_CIPHER_SUITE_TKIP: 1191 result = ieee80211_crypto_tkip_decrypt(rx); 1192 break; 1193 case WLAN_CIPHER_SUITE_CCMP: 1194 result = ieee80211_crypto_ccmp_decrypt(rx); 1195 break; 1196 case WLAN_CIPHER_SUITE_AES_CMAC: 1197 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1198 break; 1199 default: 1200 /* 1201 * We can reach here only with HW-only algorithms 1202 * but why didn't it decrypt the frame?! 1203 */ 1204 return RX_DROP_UNUSABLE; 1205 } 1206 1207 /* the hdr variable is invalid after the decrypt handlers */ 1208 1209 /* either the frame has been decrypted or will be dropped */ 1210 status->flag |= RX_FLAG_DECRYPTED; 1211 1212 return result; 1213 } 1214 1215 static ieee80211_rx_result debug_noinline 1216 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1217 { 1218 struct ieee80211_local *local; 1219 struct ieee80211_hdr *hdr; 1220 struct sk_buff *skb; 1221 1222 local = rx->local; 1223 skb = rx->skb; 1224 hdr = (struct ieee80211_hdr *) skb->data; 1225 1226 if (!local->pspolling) 1227 return RX_CONTINUE; 1228 1229 if (!ieee80211_has_fromds(hdr->frame_control)) 1230 /* this is not from AP */ 1231 return RX_CONTINUE; 1232 1233 if (!ieee80211_is_data(hdr->frame_control)) 1234 return RX_CONTINUE; 1235 1236 if (!ieee80211_has_moredata(hdr->frame_control)) { 1237 /* AP has no more frames buffered for us */ 1238 local->pspolling = false; 1239 return RX_CONTINUE; 1240 } 1241 1242 /* more data bit is set, let's request a new frame from the AP */ 1243 ieee80211_send_pspoll(local, rx->sdata); 1244 1245 return RX_CONTINUE; 1246 } 1247 1248 static void sta_ps_start(struct sta_info *sta) 1249 { 1250 struct ieee80211_sub_if_data *sdata = sta->sdata; 1251 struct ieee80211_local *local = sdata->local; 1252 struct ps_data *ps; 1253 1254 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1255 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1256 ps = &sdata->bss->ps; 1257 else 1258 return; 1259 1260 atomic_inc(&ps->num_sta_ps); 1261 set_sta_flag(sta, WLAN_STA_PS_STA); 1262 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1263 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1264 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1265 sta->sta.addr, sta->sta.aid); 1266 } 1267 1268 static void sta_ps_end(struct sta_info *sta) 1269 { 1270 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1271 sta->sta.addr, sta->sta.aid); 1272 1273 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1274 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1275 sta->sta.addr, sta->sta.aid); 1276 return; 1277 } 1278 1279 ieee80211_sta_ps_deliver_wakeup(sta); 1280 } 1281 1282 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1283 { 1284 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1285 bool in_ps; 1286 1287 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1288 1289 /* Don't let the same PS state be set twice */ 1290 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1291 if ((start && in_ps) || (!start && !in_ps)) 1292 return -EINVAL; 1293 1294 if (start) 1295 sta_ps_start(sta_inf); 1296 else 1297 sta_ps_end(sta_inf); 1298 1299 return 0; 1300 } 1301 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1302 1303 static ieee80211_rx_result debug_noinline 1304 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1305 { 1306 struct ieee80211_sub_if_data *sdata = rx->sdata; 1307 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1308 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1309 int tid, ac; 1310 1311 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1312 return RX_CONTINUE; 1313 1314 if (sdata->vif.type != NL80211_IFTYPE_AP && 1315 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1316 return RX_CONTINUE; 1317 1318 /* 1319 * The device handles station powersave, so don't do anything about 1320 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1321 * it to mac80211 since they're handled.) 1322 */ 1323 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1324 return RX_CONTINUE; 1325 1326 /* 1327 * Don't do anything if the station isn't already asleep. In 1328 * the uAPSD case, the station will probably be marked asleep, 1329 * in the PS-Poll case the station must be confused ... 1330 */ 1331 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1332 return RX_CONTINUE; 1333 1334 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1335 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1336 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1337 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1338 else 1339 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1340 } 1341 1342 /* Free PS Poll skb here instead of returning RX_DROP that would 1343 * count as an dropped frame. */ 1344 dev_kfree_skb(rx->skb); 1345 1346 return RX_QUEUED; 1347 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1348 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1349 ieee80211_has_pm(hdr->frame_control) && 1350 (ieee80211_is_data_qos(hdr->frame_control) || 1351 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1352 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1353 ac = ieee802_1d_to_ac[tid & 7]; 1354 1355 /* 1356 * If this AC is not trigger-enabled do nothing. 1357 * 1358 * NB: This could/should check a separate bitmap of trigger- 1359 * enabled queues, but for now we only implement uAPSD w/o 1360 * TSPEC changes to the ACs, so they're always the same. 1361 */ 1362 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1363 return RX_CONTINUE; 1364 1365 /* if we are in a service period, do nothing */ 1366 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1367 return RX_CONTINUE; 1368 1369 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1370 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1371 else 1372 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1373 } 1374 1375 return RX_CONTINUE; 1376 } 1377 1378 static ieee80211_rx_result debug_noinline 1379 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1380 { 1381 struct sta_info *sta = rx->sta; 1382 struct sk_buff *skb = rx->skb; 1383 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1384 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1385 int i; 1386 1387 if (!sta) 1388 return RX_CONTINUE; 1389 1390 /* 1391 * Update last_rx only for IBSS packets which are for the current 1392 * BSSID and for station already AUTHORIZED to avoid keeping the 1393 * current IBSS network alive in cases where other STAs start 1394 * using different BSSID. This will also give the station another 1395 * chance to restart the authentication/authorization in case 1396 * something went wrong the first time. 1397 */ 1398 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1399 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1400 NL80211_IFTYPE_ADHOC); 1401 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1402 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1403 sta->last_rx = jiffies; 1404 if (ieee80211_is_data(hdr->frame_control)) { 1405 sta->last_rx_rate_idx = status->rate_idx; 1406 sta->last_rx_rate_flag = status->flag; 1407 sta->last_rx_rate_vht_nss = status->vht_nss; 1408 } 1409 } 1410 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1411 /* 1412 * Mesh beacons will update last_rx when if they are found to 1413 * match the current local configuration when processed. 1414 */ 1415 sta->last_rx = jiffies; 1416 if (ieee80211_is_data(hdr->frame_control)) { 1417 sta->last_rx_rate_idx = status->rate_idx; 1418 sta->last_rx_rate_flag = status->flag; 1419 sta->last_rx_rate_vht_nss = status->vht_nss; 1420 } 1421 } 1422 1423 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1424 return RX_CONTINUE; 1425 1426 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1427 ieee80211_sta_rx_notify(rx->sdata, hdr); 1428 1429 sta->rx_fragments++; 1430 sta->rx_bytes += rx->skb->len; 1431 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1432 sta->last_signal = status->signal; 1433 ewma_add(&sta->avg_signal, -status->signal); 1434 } 1435 1436 if (status->chains) { 1437 sta->chains = status->chains; 1438 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1439 int signal = status->chain_signal[i]; 1440 1441 if (!(status->chains & BIT(i))) 1442 continue; 1443 1444 sta->chain_signal_last[i] = signal; 1445 ewma_add(&sta->chain_signal_avg[i], -signal); 1446 } 1447 } 1448 1449 /* 1450 * Change STA power saving mode only at the end of a frame 1451 * exchange sequence. 1452 */ 1453 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1454 !ieee80211_has_morefrags(hdr->frame_control) && 1455 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1456 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1457 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1458 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1459 /* 1460 * Ignore doze->wake transitions that are 1461 * indicated by non-data frames, the standard 1462 * is unclear here, but for example going to 1463 * PS mode and then scanning would cause a 1464 * doze->wake transition for the probe request, 1465 * and that is clearly undesirable. 1466 */ 1467 if (ieee80211_is_data(hdr->frame_control) && 1468 !ieee80211_has_pm(hdr->frame_control)) 1469 sta_ps_end(sta); 1470 } else { 1471 if (ieee80211_has_pm(hdr->frame_control)) 1472 sta_ps_start(sta); 1473 } 1474 } 1475 1476 /* mesh power save support */ 1477 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1478 ieee80211_mps_rx_h_sta_process(sta, hdr); 1479 1480 /* 1481 * Drop (qos-)data::nullfunc frames silently, since they 1482 * are used only to control station power saving mode. 1483 */ 1484 if (ieee80211_is_nullfunc(hdr->frame_control) || 1485 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1486 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1487 1488 /* 1489 * If we receive a 4-addr nullfunc frame from a STA 1490 * that was not moved to a 4-addr STA vlan yet send 1491 * the event to userspace and for older hostapd drop 1492 * the frame to the monitor interface. 1493 */ 1494 if (ieee80211_has_a4(hdr->frame_control) && 1495 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1496 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1497 !rx->sdata->u.vlan.sta))) { 1498 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1499 cfg80211_rx_unexpected_4addr_frame( 1500 rx->sdata->dev, sta->sta.addr, 1501 GFP_ATOMIC); 1502 return RX_DROP_MONITOR; 1503 } 1504 /* 1505 * Update counter and free packet here to avoid 1506 * counting this as a dropped packed. 1507 */ 1508 sta->rx_packets++; 1509 dev_kfree_skb(rx->skb); 1510 return RX_QUEUED; 1511 } 1512 1513 return RX_CONTINUE; 1514 } /* ieee80211_rx_h_sta_process */ 1515 1516 static inline struct ieee80211_fragment_entry * 1517 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1518 unsigned int frag, unsigned int seq, int rx_queue, 1519 struct sk_buff **skb) 1520 { 1521 struct ieee80211_fragment_entry *entry; 1522 1523 entry = &sdata->fragments[sdata->fragment_next++]; 1524 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1525 sdata->fragment_next = 0; 1526 1527 if (!skb_queue_empty(&entry->skb_list)) 1528 __skb_queue_purge(&entry->skb_list); 1529 1530 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1531 *skb = NULL; 1532 entry->first_frag_time = jiffies; 1533 entry->seq = seq; 1534 entry->rx_queue = rx_queue; 1535 entry->last_frag = frag; 1536 entry->ccmp = 0; 1537 entry->extra_len = 0; 1538 1539 return entry; 1540 } 1541 1542 static inline struct ieee80211_fragment_entry * 1543 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1544 unsigned int frag, unsigned int seq, 1545 int rx_queue, struct ieee80211_hdr *hdr) 1546 { 1547 struct ieee80211_fragment_entry *entry; 1548 int i, idx; 1549 1550 idx = sdata->fragment_next; 1551 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1552 struct ieee80211_hdr *f_hdr; 1553 1554 idx--; 1555 if (idx < 0) 1556 idx = IEEE80211_FRAGMENT_MAX - 1; 1557 1558 entry = &sdata->fragments[idx]; 1559 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1560 entry->rx_queue != rx_queue || 1561 entry->last_frag + 1 != frag) 1562 continue; 1563 1564 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1565 1566 /* 1567 * Check ftype and addresses are equal, else check next fragment 1568 */ 1569 if (((hdr->frame_control ^ f_hdr->frame_control) & 1570 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1571 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1572 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1573 continue; 1574 1575 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1576 __skb_queue_purge(&entry->skb_list); 1577 continue; 1578 } 1579 return entry; 1580 } 1581 1582 return NULL; 1583 } 1584 1585 static ieee80211_rx_result debug_noinline 1586 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1587 { 1588 struct ieee80211_hdr *hdr; 1589 u16 sc; 1590 __le16 fc; 1591 unsigned int frag, seq; 1592 struct ieee80211_fragment_entry *entry; 1593 struct sk_buff *skb; 1594 struct ieee80211_rx_status *status; 1595 1596 hdr = (struct ieee80211_hdr *)rx->skb->data; 1597 fc = hdr->frame_control; 1598 1599 if (ieee80211_is_ctl(fc)) 1600 return RX_CONTINUE; 1601 1602 sc = le16_to_cpu(hdr->seq_ctrl); 1603 frag = sc & IEEE80211_SCTL_FRAG; 1604 1605 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1606 is_multicast_ether_addr(hdr->addr1))) { 1607 /* not fragmented */ 1608 goto out; 1609 } 1610 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1611 1612 if (skb_linearize(rx->skb)) 1613 return RX_DROP_UNUSABLE; 1614 1615 /* 1616 * skb_linearize() might change the skb->data and 1617 * previously cached variables (in this case, hdr) need to 1618 * be refreshed with the new data. 1619 */ 1620 hdr = (struct ieee80211_hdr *)rx->skb->data; 1621 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1622 1623 if (frag == 0) { 1624 /* This is the first fragment of a new frame. */ 1625 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1626 rx->seqno_idx, &(rx->skb)); 1627 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1628 ieee80211_has_protected(fc)) { 1629 int queue = rx->security_idx; 1630 /* Store CCMP PN so that we can verify that the next 1631 * fragment has a sequential PN value. */ 1632 entry->ccmp = 1; 1633 memcpy(entry->last_pn, 1634 rx->key->u.ccmp.rx_pn[queue], 1635 IEEE80211_CCMP_PN_LEN); 1636 } 1637 return RX_QUEUED; 1638 } 1639 1640 /* This is a fragment for a frame that should already be pending in 1641 * fragment cache. Add this fragment to the end of the pending entry. 1642 */ 1643 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1644 rx->seqno_idx, hdr); 1645 if (!entry) { 1646 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1647 return RX_DROP_MONITOR; 1648 } 1649 1650 /* Verify that MPDUs within one MSDU have sequential PN values. 1651 * (IEEE 802.11i, 8.3.3.4.5) */ 1652 if (entry->ccmp) { 1653 int i; 1654 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1655 int queue; 1656 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1657 return RX_DROP_UNUSABLE; 1658 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1659 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1660 pn[i]++; 1661 if (pn[i]) 1662 break; 1663 } 1664 queue = rx->security_idx; 1665 rpn = rx->key->u.ccmp.rx_pn[queue]; 1666 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1667 return RX_DROP_UNUSABLE; 1668 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1669 } 1670 1671 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1672 __skb_queue_tail(&entry->skb_list, rx->skb); 1673 entry->last_frag = frag; 1674 entry->extra_len += rx->skb->len; 1675 if (ieee80211_has_morefrags(fc)) { 1676 rx->skb = NULL; 1677 return RX_QUEUED; 1678 } 1679 1680 rx->skb = __skb_dequeue(&entry->skb_list); 1681 if (skb_tailroom(rx->skb) < entry->extra_len) { 1682 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1683 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1684 GFP_ATOMIC))) { 1685 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1686 __skb_queue_purge(&entry->skb_list); 1687 return RX_DROP_UNUSABLE; 1688 } 1689 } 1690 while ((skb = __skb_dequeue(&entry->skb_list))) { 1691 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1692 dev_kfree_skb(skb); 1693 } 1694 1695 /* Complete frame has been reassembled - process it now */ 1696 status = IEEE80211_SKB_RXCB(rx->skb); 1697 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1698 1699 out: 1700 if (rx->sta) 1701 rx->sta->rx_packets++; 1702 if (is_multicast_ether_addr(hdr->addr1)) 1703 rx->local->dot11MulticastReceivedFrameCount++; 1704 else 1705 ieee80211_led_rx(rx->local); 1706 return RX_CONTINUE; 1707 } 1708 1709 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1710 { 1711 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1712 return -EACCES; 1713 1714 return 0; 1715 } 1716 1717 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1718 { 1719 struct sk_buff *skb = rx->skb; 1720 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1721 1722 /* 1723 * Pass through unencrypted frames if the hardware has 1724 * decrypted them already. 1725 */ 1726 if (status->flag & RX_FLAG_DECRYPTED) 1727 return 0; 1728 1729 /* Drop unencrypted frames if key is set. */ 1730 if (unlikely(!ieee80211_has_protected(fc) && 1731 !ieee80211_is_nullfunc(fc) && 1732 ieee80211_is_data(fc) && 1733 (rx->key || rx->sdata->drop_unencrypted))) 1734 return -EACCES; 1735 1736 return 0; 1737 } 1738 1739 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1740 { 1741 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1742 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1743 __le16 fc = hdr->frame_control; 1744 1745 /* 1746 * Pass through unencrypted frames if the hardware has 1747 * decrypted them already. 1748 */ 1749 if (status->flag & RX_FLAG_DECRYPTED) 1750 return 0; 1751 1752 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1753 if (unlikely(!ieee80211_has_protected(fc) && 1754 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1755 rx->key)) { 1756 if (ieee80211_is_deauth(fc) || 1757 ieee80211_is_disassoc(fc)) 1758 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1759 rx->skb->data, 1760 rx->skb->len); 1761 return -EACCES; 1762 } 1763 /* BIP does not use Protected field, so need to check MMIE */ 1764 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1765 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1766 if (ieee80211_is_deauth(fc) || 1767 ieee80211_is_disassoc(fc)) 1768 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1769 rx->skb->data, 1770 rx->skb->len); 1771 return -EACCES; 1772 } 1773 /* 1774 * When using MFP, Action frames are not allowed prior to 1775 * having configured keys. 1776 */ 1777 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1778 ieee80211_is_robust_mgmt_frame( 1779 (struct ieee80211_hdr *) rx->skb->data))) 1780 return -EACCES; 1781 } 1782 1783 return 0; 1784 } 1785 1786 static int 1787 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1788 { 1789 struct ieee80211_sub_if_data *sdata = rx->sdata; 1790 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1791 bool check_port_control = false; 1792 struct ethhdr *ehdr; 1793 int ret; 1794 1795 *port_control = false; 1796 if (ieee80211_has_a4(hdr->frame_control) && 1797 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1798 return -1; 1799 1800 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1801 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1802 1803 if (!sdata->u.mgd.use_4addr) 1804 return -1; 1805 else 1806 check_port_control = true; 1807 } 1808 1809 if (is_multicast_ether_addr(hdr->addr1) && 1810 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1811 return -1; 1812 1813 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1814 if (ret < 0) 1815 return ret; 1816 1817 ehdr = (struct ethhdr *) rx->skb->data; 1818 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1819 *port_control = true; 1820 else if (check_port_control) 1821 return -1; 1822 1823 return 0; 1824 } 1825 1826 /* 1827 * requires that rx->skb is a frame with ethernet header 1828 */ 1829 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1830 { 1831 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1832 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1833 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1834 1835 /* 1836 * Allow EAPOL frames to us/the PAE group address regardless 1837 * of whether the frame was encrypted or not. 1838 */ 1839 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1840 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1841 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1842 return true; 1843 1844 if (ieee80211_802_1x_port_control(rx) || 1845 ieee80211_drop_unencrypted(rx, fc)) 1846 return false; 1847 1848 return true; 1849 } 1850 1851 /* 1852 * requires that rx->skb is a frame with ethernet header 1853 */ 1854 static void 1855 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1856 { 1857 struct ieee80211_sub_if_data *sdata = rx->sdata; 1858 struct net_device *dev = sdata->dev; 1859 struct sk_buff *skb, *xmit_skb; 1860 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1861 struct sta_info *dsta; 1862 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1863 1864 skb = rx->skb; 1865 xmit_skb = NULL; 1866 1867 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1868 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1869 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1870 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1871 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1872 if (is_multicast_ether_addr(ehdr->h_dest)) { 1873 /* 1874 * send multicast frames both to higher layers in 1875 * local net stack and back to the wireless medium 1876 */ 1877 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1878 if (!xmit_skb) 1879 net_info_ratelimited("%s: failed to clone multicast frame\n", 1880 dev->name); 1881 } else { 1882 dsta = sta_info_get(sdata, skb->data); 1883 if (dsta) { 1884 /* 1885 * The destination station is associated to 1886 * this AP (in this VLAN), so send the frame 1887 * directly to it and do not pass it to local 1888 * net stack. 1889 */ 1890 xmit_skb = skb; 1891 skb = NULL; 1892 } 1893 } 1894 } 1895 1896 if (skb) { 1897 int align __maybe_unused; 1898 1899 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1900 /* 1901 * 'align' will only take the values 0 or 2 here 1902 * since all frames are required to be aligned 1903 * to 2-byte boundaries when being passed to 1904 * mac80211; the code here works just as well if 1905 * that isn't true, but mac80211 assumes it can 1906 * access fields as 2-byte aligned (e.g. for 1907 * compare_ether_addr) 1908 */ 1909 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1910 if (align) { 1911 if (WARN_ON(skb_headroom(skb) < 3)) { 1912 dev_kfree_skb(skb); 1913 skb = NULL; 1914 } else { 1915 u8 *data = skb->data; 1916 size_t len = skb_headlen(skb); 1917 skb->data -= align; 1918 memmove(skb->data, data, len); 1919 skb_set_tail_pointer(skb, len); 1920 } 1921 } 1922 #endif 1923 1924 if (skb) { 1925 /* deliver to local stack */ 1926 skb->protocol = eth_type_trans(skb, dev); 1927 memset(skb->cb, 0, sizeof(skb->cb)); 1928 netif_receive_skb(skb); 1929 } 1930 } 1931 1932 if (xmit_skb) { 1933 /* 1934 * Send to wireless media and increase priority by 256 to 1935 * keep the received priority instead of reclassifying 1936 * the frame (see cfg80211_classify8021d). 1937 */ 1938 xmit_skb->priority += 256; 1939 xmit_skb->protocol = htons(ETH_P_802_3); 1940 skb_reset_network_header(xmit_skb); 1941 skb_reset_mac_header(xmit_skb); 1942 dev_queue_xmit(xmit_skb); 1943 } 1944 } 1945 1946 static ieee80211_rx_result debug_noinline 1947 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1948 { 1949 struct net_device *dev = rx->sdata->dev; 1950 struct sk_buff *skb = rx->skb; 1951 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1952 __le16 fc = hdr->frame_control; 1953 struct sk_buff_head frame_list; 1954 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1955 1956 if (unlikely(!ieee80211_is_data(fc))) 1957 return RX_CONTINUE; 1958 1959 if (unlikely(!ieee80211_is_data_present(fc))) 1960 return RX_DROP_MONITOR; 1961 1962 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1963 return RX_CONTINUE; 1964 1965 if (ieee80211_has_a4(hdr->frame_control) && 1966 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1967 !rx->sdata->u.vlan.sta) 1968 return RX_DROP_UNUSABLE; 1969 1970 if (is_multicast_ether_addr(hdr->addr1) && 1971 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1972 rx->sdata->u.vlan.sta) || 1973 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1974 rx->sdata->u.mgd.use_4addr))) 1975 return RX_DROP_UNUSABLE; 1976 1977 skb->dev = dev; 1978 __skb_queue_head_init(&frame_list); 1979 1980 if (skb_linearize(skb)) 1981 return RX_DROP_UNUSABLE; 1982 1983 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1984 rx->sdata->vif.type, 1985 rx->local->hw.extra_tx_headroom, true); 1986 1987 while (!skb_queue_empty(&frame_list)) { 1988 rx->skb = __skb_dequeue(&frame_list); 1989 1990 if (!ieee80211_frame_allowed(rx, fc)) { 1991 dev_kfree_skb(rx->skb); 1992 continue; 1993 } 1994 dev->stats.rx_packets++; 1995 dev->stats.rx_bytes += rx->skb->len; 1996 1997 ieee80211_deliver_skb(rx); 1998 } 1999 2000 return RX_QUEUED; 2001 } 2002 2003 #ifdef CONFIG_MAC80211_MESH 2004 static ieee80211_rx_result 2005 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2006 { 2007 struct ieee80211_hdr *fwd_hdr, *hdr; 2008 struct ieee80211_tx_info *info; 2009 struct ieee80211s_hdr *mesh_hdr; 2010 struct sk_buff *skb = rx->skb, *fwd_skb; 2011 struct ieee80211_local *local = rx->local; 2012 struct ieee80211_sub_if_data *sdata = rx->sdata; 2013 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2014 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2015 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 2016 u16 q, hdrlen; 2017 2018 hdr = (struct ieee80211_hdr *) skb->data; 2019 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2020 2021 /* make sure fixed part of mesh header is there, also checks skb len */ 2022 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2023 return RX_DROP_MONITOR; 2024 2025 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2026 2027 /* make sure full mesh header is there, also checks skb len */ 2028 if (!pskb_may_pull(rx->skb, 2029 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2030 return RX_DROP_MONITOR; 2031 2032 /* reload pointers */ 2033 hdr = (struct ieee80211_hdr *) skb->data; 2034 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2035 2036 /* frame is in RMC, don't forward */ 2037 if (ieee80211_is_data(hdr->frame_control) && 2038 is_multicast_ether_addr(hdr->addr1) && 2039 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2040 return RX_DROP_MONITOR; 2041 2042 if (!ieee80211_is_data(hdr->frame_control) || 2043 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2044 return RX_CONTINUE; 2045 2046 if (!mesh_hdr->ttl) 2047 return RX_DROP_MONITOR; 2048 2049 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2050 struct mesh_path *mppath; 2051 char *proxied_addr; 2052 char *mpp_addr; 2053 2054 if (is_multicast_ether_addr(hdr->addr1)) { 2055 mpp_addr = hdr->addr3; 2056 proxied_addr = mesh_hdr->eaddr1; 2057 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2058 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2059 mpp_addr = hdr->addr4; 2060 proxied_addr = mesh_hdr->eaddr2; 2061 } else { 2062 return RX_DROP_MONITOR; 2063 } 2064 2065 rcu_read_lock(); 2066 mppath = mpp_path_lookup(sdata, proxied_addr); 2067 if (!mppath) { 2068 mpp_path_add(sdata, proxied_addr, mpp_addr); 2069 } else { 2070 spin_lock_bh(&mppath->state_lock); 2071 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2072 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2073 spin_unlock_bh(&mppath->state_lock); 2074 } 2075 rcu_read_unlock(); 2076 } 2077 2078 /* Frame has reached destination. Don't forward */ 2079 if (!is_multicast_ether_addr(hdr->addr1) && 2080 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2081 return RX_CONTINUE; 2082 2083 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2084 if (ieee80211_queue_stopped(&local->hw, q)) { 2085 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2086 return RX_DROP_MONITOR; 2087 } 2088 skb_set_queue_mapping(skb, q); 2089 2090 if (!--mesh_hdr->ttl) { 2091 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2092 goto out; 2093 } 2094 2095 if (!ifmsh->mshcfg.dot11MeshForwarding) 2096 goto out; 2097 2098 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2099 if (!fwd_skb) { 2100 net_info_ratelimited("%s: failed to clone mesh frame\n", 2101 sdata->name); 2102 goto out; 2103 } 2104 2105 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2106 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2107 info = IEEE80211_SKB_CB(fwd_skb); 2108 memset(info, 0, sizeof(*info)); 2109 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2110 info->control.vif = &rx->sdata->vif; 2111 info->control.jiffies = jiffies; 2112 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2113 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2114 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2115 /* update power mode indication when forwarding */ 2116 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2117 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2118 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2119 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2120 } else { 2121 /* unable to resolve next hop */ 2122 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2123 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2); 2124 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2125 kfree_skb(fwd_skb); 2126 return RX_DROP_MONITOR; 2127 } 2128 2129 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2130 ieee80211_add_pending_skb(local, fwd_skb); 2131 out: 2132 if (is_multicast_ether_addr(hdr->addr1) || 2133 sdata->dev->flags & IFF_PROMISC) 2134 return RX_CONTINUE; 2135 else 2136 return RX_DROP_MONITOR; 2137 } 2138 #endif 2139 2140 static ieee80211_rx_result debug_noinline 2141 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2142 { 2143 struct ieee80211_sub_if_data *sdata = rx->sdata; 2144 struct ieee80211_local *local = rx->local; 2145 struct net_device *dev = sdata->dev; 2146 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2147 __le16 fc = hdr->frame_control; 2148 bool port_control; 2149 int err; 2150 2151 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2152 return RX_CONTINUE; 2153 2154 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2155 return RX_DROP_MONITOR; 2156 2157 /* 2158 * Send unexpected-4addr-frame event to hostapd. For older versions, 2159 * also drop the frame to cooked monitor interfaces. 2160 */ 2161 if (ieee80211_has_a4(hdr->frame_control) && 2162 sdata->vif.type == NL80211_IFTYPE_AP) { 2163 if (rx->sta && 2164 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2165 cfg80211_rx_unexpected_4addr_frame( 2166 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2167 return RX_DROP_MONITOR; 2168 } 2169 2170 err = __ieee80211_data_to_8023(rx, &port_control); 2171 if (unlikely(err)) 2172 return RX_DROP_UNUSABLE; 2173 2174 if (!ieee80211_frame_allowed(rx, fc)) 2175 return RX_DROP_MONITOR; 2176 2177 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2178 unlikely(port_control) && sdata->bss) { 2179 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2180 u.ap); 2181 dev = sdata->dev; 2182 rx->sdata = sdata; 2183 } 2184 2185 rx->skb->dev = dev; 2186 2187 dev->stats.rx_packets++; 2188 dev->stats.rx_bytes += rx->skb->len; 2189 2190 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2191 !is_multicast_ether_addr( 2192 ((struct ethhdr *)rx->skb->data)->h_dest) && 2193 (!local->scanning && 2194 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2195 mod_timer(&local->dynamic_ps_timer, jiffies + 2196 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2197 } 2198 2199 ieee80211_deliver_skb(rx); 2200 2201 return RX_QUEUED; 2202 } 2203 2204 static ieee80211_rx_result debug_noinline 2205 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2206 { 2207 struct sk_buff *skb = rx->skb; 2208 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2209 struct tid_ampdu_rx *tid_agg_rx; 2210 u16 start_seq_num; 2211 u16 tid; 2212 2213 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2214 return RX_CONTINUE; 2215 2216 if (ieee80211_is_back_req(bar->frame_control)) { 2217 struct { 2218 __le16 control, start_seq_num; 2219 } __packed bar_data; 2220 2221 if (!rx->sta) 2222 return RX_DROP_MONITOR; 2223 2224 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2225 &bar_data, sizeof(bar_data))) 2226 return RX_DROP_MONITOR; 2227 2228 tid = le16_to_cpu(bar_data.control) >> 12; 2229 2230 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2231 if (!tid_agg_rx) 2232 return RX_DROP_MONITOR; 2233 2234 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2235 2236 /* reset session timer */ 2237 if (tid_agg_rx->timeout) 2238 mod_timer(&tid_agg_rx->session_timer, 2239 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2240 2241 spin_lock(&tid_agg_rx->reorder_lock); 2242 /* release stored frames up to start of BAR */ 2243 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2244 start_seq_num, frames); 2245 spin_unlock(&tid_agg_rx->reorder_lock); 2246 2247 kfree_skb(skb); 2248 return RX_QUEUED; 2249 } 2250 2251 /* 2252 * After this point, we only want management frames, 2253 * so we can drop all remaining control frames to 2254 * cooked monitor interfaces. 2255 */ 2256 return RX_DROP_MONITOR; 2257 } 2258 2259 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2260 struct ieee80211_mgmt *mgmt, 2261 size_t len) 2262 { 2263 struct ieee80211_local *local = sdata->local; 2264 struct sk_buff *skb; 2265 struct ieee80211_mgmt *resp; 2266 2267 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2268 /* Not to own unicast address */ 2269 return; 2270 } 2271 2272 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2273 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2274 /* Not from the current AP or not associated yet. */ 2275 return; 2276 } 2277 2278 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2279 /* Too short SA Query request frame */ 2280 return; 2281 } 2282 2283 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2284 if (skb == NULL) 2285 return; 2286 2287 skb_reserve(skb, local->hw.extra_tx_headroom); 2288 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2289 memset(resp, 0, 24); 2290 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2291 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2292 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2293 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2294 IEEE80211_STYPE_ACTION); 2295 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2296 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2297 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2298 memcpy(resp->u.action.u.sa_query.trans_id, 2299 mgmt->u.action.u.sa_query.trans_id, 2300 WLAN_SA_QUERY_TR_ID_LEN); 2301 2302 ieee80211_tx_skb(sdata, skb); 2303 } 2304 2305 static ieee80211_rx_result debug_noinline 2306 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2307 { 2308 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2309 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2310 2311 /* 2312 * From here on, look only at management frames. 2313 * Data and control frames are already handled, 2314 * and unknown (reserved) frames are useless. 2315 */ 2316 if (rx->skb->len < 24) 2317 return RX_DROP_MONITOR; 2318 2319 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2320 return RX_DROP_MONITOR; 2321 2322 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2323 ieee80211_is_beacon(mgmt->frame_control) && 2324 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2325 int sig = 0; 2326 2327 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2328 sig = status->signal; 2329 2330 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2331 rx->skb->data, rx->skb->len, 2332 status->freq, sig); 2333 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2334 } 2335 2336 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2337 return RX_DROP_MONITOR; 2338 2339 if (ieee80211_drop_unencrypted_mgmt(rx)) 2340 return RX_DROP_UNUSABLE; 2341 2342 return RX_CONTINUE; 2343 } 2344 2345 static ieee80211_rx_result debug_noinline 2346 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2347 { 2348 struct ieee80211_local *local = rx->local; 2349 struct ieee80211_sub_if_data *sdata = rx->sdata; 2350 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2351 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2352 int len = rx->skb->len; 2353 2354 if (!ieee80211_is_action(mgmt->frame_control)) 2355 return RX_CONTINUE; 2356 2357 /* drop too small frames */ 2358 if (len < IEEE80211_MIN_ACTION_SIZE) 2359 return RX_DROP_UNUSABLE; 2360 2361 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2362 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED) 2363 return RX_DROP_UNUSABLE; 2364 2365 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2366 return RX_DROP_UNUSABLE; 2367 2368 switch (mgmt->u.action.category) { 2369 case WLAN_CATEGORY_HT: 2370 /* reject HT action frames from stations not supporting HT */ 2371 if (!rx->sta->sta.ht_cap.ht_supported) 2372 goto invalid; 2373 2374 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2375 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2376 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2377 sdata->vif.type != NL80211_IFTYPE_AP && 2378 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2379 break; 2380 2381 /* verify action & smps_control/chanwidth are present */ 2382 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2383 goto invalid; 2384 2385 switch (mgmt->u.action.u.ht_smps.action) { 2386 case WLAN_HT_ACTION_SMPS: { 2387 struct ieee80211_supported_band *sband; 2388 enum ieee80211_smps_mode smps_mode; 2389 2390 /* convert to HT capability */ 2391 switch (mgmt->u.action.u.ht_smps.smps_control) { 2392 case WLAN_HT_SMPS_CONTROL_DISABLED: 2393 smps_mode = IEEE80211_SMPS_OFF; 2394 break; 2395 case WLAN_HT_SMPS_CONTROL_STATIC: 2396 smps_mode = IEEE80211_SMPS_STATIC; 2397 break; 2398 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2399 smps_mode = IEEE80211_SMPS_DYNAMIC; 2400 break; 2401 default: 2402 goto invalid; 2403 } 2404 2405 /* if no change do nothing */ 2406 if (rx->sta->sta.smps_mode == smps_mode) 2407 goto handled; 2408 rx->sta->sta.smps_mode = smps_mode; 2409 2410 sband = rx->local->hw.wiphy->bands[status->band]; 2411 2412 rate_control_rate_update(local, sband, rx->sta, 2413 IEEE80211_RC_SMPS_CHANGED); 2414 goto handled; 2415 } 2416 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2417 struct ieee80211_supported_band *sband; 2418 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2419 enum ieee80211_sta_rx_bandwidth new_bw; 2420 2421 /* If it doesn't support 40 MHz it can't change ... */ 2422 if (!(rx->sta->sta.ht_cap.cap & 2423 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2424 goto handled; 2425 2426 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2427 new_bw = IEEE80211_STA_RX_BW_20; 2428 else 2429 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2430 2431 if (rx->sta->sta.bandwidth == new_bw) 2432 goto handled; 2433 2434 sband = rx->local->hw.wiphy->bands[status->band]; 2435 2436 rate_control_rate_update(local, sband, rx->sta, 2437 IEEE80211_RC_BW_CHANGED); 2438 goto handled; 2439 } 2440 default: 2441 goto invalid; 2442 } 2443 2444 break; 2445 case WLAN_CATEGORY_PUBLIC: 2446 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2447 goto invalid; 2448 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2449 break; 2450 if (!rx->sta) 2451 break; 2452 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2453 break; 2454 if (mgmt->u.action.u.ext_chan_switch.action_code != 2455 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2456 break; 2457 if (len < offsetof(struct ieee80211_mgmt, 2458 u.action.u.ext_chan_switch.variable)) 2459 goto invalid; 2460 goto queue; 2461 case WLAN_CATEGORY_VHT: 2462 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2463 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2464 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2465 sdata->vif.type != NL80211_IFTYPE_AP && 2466 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2467 break; 2468 2469 /* verify action code is present */ 2470 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2471 goto invalid; 2472 2473 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2474 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2475 u8 opmode; 2476 2477 /* verify opmode is present */ 2478 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2479 goto invalid; 2480 2481 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2482 2483 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2484 opmode, status->band, 2485 false); 2486 goto handled; 2487 } 2488 default: 2489 break; 2490 } 2491 break; 2492 case WLAN_CATEGORY_BACK: 2493 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2494 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2495 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2496 sdata->vif.type != NL80211_IFTYPE_AP && 2497 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2498 break; 2499 2500 /* verify action_code is present */ 2501 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2502 break; 2503 2504 switch (mgmt->u.action.u.addba_req.action_code) { 2505 case WLAN_ACTION_ADDBA_REQ: 2506 if (len < (IEEE80211_MIN_ACTION_SIZE + 2507 sizeof(mgmt->u.action.u.addba_req))) 2508 goto invalid; 2509 break; 2510 case WLAN_ACTION_ADDBA_RESP: 2511 if (len < (IEEE80211_MIN_ACTION_SIZE + 2512 sizeof(mgmt->u.action.u.addba_resp))) 2513 goto invalid; 2514 break; 2515 case WLAN_ACTION_DELBA: 2516 if (len < (IEEE80211_MIN_ACTION_SIZE + 2517 sizeof(mgmt->u.action.u.delba))) 2518 goto invalid; 2519 break; 2520 default: 2521 goto invalid; 2522 } 2523 2524 goto queue; 2525 case WLAN_CATEGORY_SPECTRUM_MGMT: 2526 if (status->band != IEEE80211_BAND_5GHZ) 2527 break; 2528 2529 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2530 break; 2531 2532 /* verify action_code is present */ 2533 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2534 break; 2535 2536 switch (mgmt->u.action.u.measurement.action_code) { 2537 case WLAN_ACTION_SPCT_MSR_REQ: 2538 if (len < (IEEE80211_MIN_ACTION_SIZE + 2539 sizeof(mgmt->u.action.u.measurement))) 2540 break; 2541 ieee80211_process_measurement_req(sdata, mgmt, len); 2542 goto handled; 2543 case WLAN_ACTION_SPCT_CHL_SWITCH: 2544 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2545 break; 2546 2547 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2548 break; 2549 2550 goto queue; 2551 } 2552 break; 2553 case WLAN_CATEGORY_SA_QUERY: 2554 if (len < (IEEE80211_MIN_ACTION_SIZE + 2555 sizeof(mgmt->u.action.u.sa_query))) 2556 break; 2557 2558 switch (mgmt->u.action.u.sa_query.action) { 2559 case WLAN_ACTION_SA_QUERY_REQUEST: 2560 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2561 break; 2562 ieee80211_process_sa_query_req(sdata, mgmt, len); 2563 goto handled; 2564 } 2565 break; 2566 case WLAN_CATEGORY_SELF_PROTECTED: 2567 if (len < (IEEE80211_MIN_ACTION_SIZE + 2568 sizeof(mgmt->u.action.u.self_prot.action_code))) 2569 break; 2570 2571 switch (mgmt->u.action.u.self_prot.action_code) { 2572 case WLAN_SP_MESH_PEERING_OPEN: 2573 case WLAN_SP_MESH_PEERING_CLOSE: 2574 case WLAN_SP_MESH_PEERING_CONFIRM: 2575 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2576 goto invalid; 2577 if (sdata->u.mesh.user_mpm) 2578 /* userspace handles this frame */ 2579 break; 2580 goto queue; 2581 case WLAN_SP_MGK_INFORM: 2582 case WLAN_SP_MGK_ACK: 2583 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2584 goto invalid; 2585 break; 2586 } 2587 break; 2588 case WLAN_CATEGORY_MESH_ACTION: 2589 if (len < (IEEE80211_MIN_ACTION_SIZE + 2590 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2591 break; 2592 2593 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2594 break; 2595 if (mesh_action_is_path_sel(mgmt) && 2596 !mesh_path_sel_is_hwmp(sdata)) 2597 break; 2598 goto queue; 2599 } 2600 2601 return RX_CONTINUE; 2602 2603 invalid: 2604 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2605 /* will return in the next handlers */ 2606 return RX_CONTINUE; 2607 2608 handled: 2609 if (rx->sta) 2610 rx->sta->rx_packets++; 2611 dev_kfree_skb(rx->skb); 2612 return RX_QUEUED; 2613 2614 queue: 2615 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2616 skb_queue_tail(&sdata->skb_queue, rx->skb); 2617 ieee80211_queue_work(&local->hw, &sdata->work); 2618 if (rx->sta) 2619 rx->sta->rx_packets++; 2620 return RX_QUEUED; 2621 } 2622 2623 static ieee80211_rx_result debug_noinline 2624 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2625 { 2626 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2627 int sig = 0; 2628 2629 /* skip known-bad action frames and return them in the next handler */ 2630 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2631 return RX_CONTINUE; 2632 2633 /* 2634 * Getting here means the kernel doesn't know how to handle 2635 * it, but maybe userspace does ... include returned frames 2636 * so userspace can register for those to know whether ones 2637 * it transmitted were processed or returned. 2638 */ 2639 2640 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2641 sig = status->signal; 2642 2643 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2644 rx->skb->data, rx->skb->len, 2645 GFP_ATOMIC)) { 2646 if (rx->sta) 2647 rx->sta->rx_packets++; 2648 dev_kfree_skb(rx->skb); 2649 return RX_QUEUED; 2650 } 2651 2652 return RX_CONTINUE; 2653 } 2654 2655 static ieee80211_rx_result debug_noinline 2656 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2657 { 2658 struct ieee80211_local *local = rx->local; 2659 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2660 struct sk_buff *nskb; 2661 struct ieee80211_sub_if_data *sdata = rx->sdata; 2662 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2663 2664 if (!ieee80211_is_action(mgmt->frame_control)) 2665 return RX_CONTINUE; 2666 2667 /* 2668 * For AP mode, hostapd is responsible for handling any action 2669 * frames that we didn't handle, including returning unknown 2670 * ones. For all other modes we will return them to the sender, 2671 * setting the 0x80 bit in the action category, as required by 2672 * 802.11-2012 9.24.4. 2673 * Newer versions of hostapd shall also use the management frame 2674 * registration mechanisms, but older ones still use cooked 2675 * monitor interfaces so push all frames there. 2676 */ 2677 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2678 (sdata->vif.type == NL80211_IFTYPE_AP || 2679 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2680 return RX_DROP_MONITOR; 2681 2682 if (is_multicast_ether_addr(mgmt->da)) 2683 return RX_DROP_MONITOR; 2684 2685 /* do not return rejected action frames */ 2686 if (mgmt->u.action.category & 0x80) 2687 return RX_DROP_UNUSABLE; 2688 2689 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2690 GFP_ATOMIC); 2691 if (nskb) { 2692 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2693 2694 nmgmt->u.action.category |= 0x80; 2695 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2696 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2697 2698 memset(nskb->cb, 0, sizeof(nskb->cb)); 2699 2700 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2701 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2702 2703 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2704 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2705 IEEE80211_TX_CTL_NO_CCK_RATE; 2706 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2707 info->hw_queue = 2708 local->hw.offchannel_tx_hw_queue; 2709 } 2710 2711 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2712 status->band); 2713 } 2714 dev_kfree_skb(rx->skb); 2715 return RX_QUEUED; 2716 } 2717 2718 static ieee80211_rx_result debug_noinline 2719 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2720 { 2721 struct ieee80211_sub_if_data *sdata = rx->sdata; 2722 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2723 __le16 stype; 2724 2725 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2726 2727 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2728 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2729 sdata->vif.type != NL80211_IFTYPE_STATION) 2730 return RX_DROP_MONITOR; 2731 2732 switch (stype) { 2733 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2734 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2735 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2736 /* process for all: mesh, mlme, ibss */ 2737 break; 2738 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2739 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2740 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2741 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2742 if (is_multicast_ether_addr(mgmt->da) && 2743 !is_broadcast_ether_addr(mgmt->da)) 2744 return RX_DROP_MONITOR; 2745 2746 /* process only for station */ 2747 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2748 return RX_DROP_MONITOR; 2749 break; 2750 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2751 /* process only for ibss and mesh */ 2752 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2753 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2754 return RX_DROP_MONITOR; 2755 break; 2756 default: 2757 return RX_DROP_MONITOR; 2758 } 2759 2760 /* queue up frame and kick off work to process it */ 2761 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2762 skb_queue_tail(&sdata->skb_queue, rx->skb); 2763 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2764 if (rx->sta) 2765 rx->sta->rx_packets++; 2766 2767 return RX_QUEUED; 2768 } 2769 2770 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2771 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2772 struct ieee80211_rate *rate) 2773 { 2774 struct ieee80211_sub_if_data *sdata; 2775 struct ieee80211_local *local = rx->local; 2776 struct sk_buff *skb = rx->skb, *skb2; 2777 struct net_device *prev_dev = NULL; 2778 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2779 int needed_headroom; 2780 2781 /* 2782 * If cooked monitor has been processed already, then 2783 * don't do it again. If not, set the flag. 2784 */ 2785 if (rx->flags & IEEE80211_RX_CMNTR) 2786 goto out_free_skb; 2787 rx->flags |= IEEE80211_RX_CMNTR; 2788 2789 /* If there are no cooked monitor interfaces, just free the SKB */ 2790 if (!local->cooked_mntrs) 2791 goto out_free_skb; 2792 2793 /* room for the radiotap header based on driver features */ 2794 needed_headroom = ieee80211_rx_radiotap_space(local, status); 2795 2796 if (skb_headroom(skb) < needed_headroom && 2797 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2798 goto out_free_skb; 2799 2800 /* prepend radiotap information */ 2801 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2802 false); 2803 2804 skb_set_mac_header(skb, 0); 2805 skb->ip_summed = CHECKSUM_UNNECESSARY; 2806 skb->pkt_type = PACKET_OTHERHOST; 2807 skb->protocol = htons(ETH_P_802_2); 2808 2809 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2810 if (!ieee80211_sdata_running(sdata)) 2811 continue; 2812 2813 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2814 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2815 continue; 2816 2817 if (prev_dev) { 2818 skb2 = skb_clone(skb, GFP_ATOMIC); 2819 if (skb2) { 2820 skb2->dev = prev_dev; 2821 netif_receive_skb(skb2); 2822 } 2823 } 2824 2825 prev_dev = sdata->dev; 2826 sdata->dev->stats.rx_packets++; 2827 sdata->dev->stats.rx_bytes += skb->len; 2828 } 2829 2830 if (prev_dev) { 2831 skb->dev = prev_dev; 2832 netif_receive_skb(skb); 2833 return; 2834 } 2835 2836 out_free_skb: 2837 dev_kfree_skb(skb); 2838 } 2839 2840 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2841 ieee80211_rx_result res) 2842 { 2843 switch (res) { 2844 case RX_DROP_MONITOR: 2845 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2846 if (rx->sta) 2847 rx->sta->rx_dropped++; 2848 /* fall through */ 2849 case RX_CONTINUE: { 2850 struct ieee80211_rate *rate = NULL; 2851 struct ieee80211_supported_band *sband; 2852 struct ieee80211_rx_status *status; 2853 2854 status = IEEE80211_SKB_RXCB((rx->skb)); 2855 2856 sband = rx->local->hw.wiphy->bands[status->band]; 2857 if (!(status->flag & RX_FLAG_HT) && 2858 !(status->flag & RX_FLAG_VHT)) 2859 rate = &sband->bitrates[status->rate_idx]; 2860 2861 ieee80211_rx_cooked_monitor(rx, rate); 2862 break; 2863 } 2864 case RX_DROP_UNUSABLE: 2865 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2866 if (rx->sta) 2867 rx->sta->rx_dropped++; 2868 dev_kfree_skb(rx->skb); 2869 break; 2870 case RX_QUEUED: 2871 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2872 break; 2873 } 2874 } 2875 2876 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 2877 struct sk_buff_head *frames) 2878 { 2879 ieee80211_rx_result res = RX_DROP_MONITOR; 2880 struct sk_buff *skb; 2881 2882 #define CALL_RXH(rxh) \ 2883 do { \ 2884 res = rxh(rx); \ 2885 if (res != RX_CONTINUE) \ 2886 goto rxh_next; \ 2887 } while (0); 2888 2889 spin_lock_bh(&rx->local->rx_path_lock); 2890 2891 while ((skb = __skb_dequeue(frames))) { 2892 /* 2893 * all the other fields are valid across frames 2894 * that belong to an aMPDU since they are on the 2895 * same TID from the same station 2896 */ 2897 rx->skb = skb; 2898 2899 CALL_RXH(ieee80211_rx_h_decrypt) 2900 CALL_RXH(ieee80211_rx_h_check_more_data) 2901 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2902 CALL_RXH(ieee80211_rx_h_sta_process) 2903 CALL_RXH(ieee80211_rx_h_defragment) 2904 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2905 /* must be after MMIC verify so header is counted in MPDU mic */ 2906 #ifdef CONFIG_MAC80211_MESH 2907 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2908 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2909 #endif 2910 CALL_RXH(ieee80211_rx_h_amsdu) 2911 CALL_RXH(ieee80211_rx_h_data) 2912 2913 /* special treatment -- needs the queue */ 2914 res = ieee80211_rx_h_ctrl(rx, frames); 2915 if (res != RX_CONTINUE) 2916 goto rxh_next; 2917 2918 CALL_RXH(ieee80211_rx_h_mgmt_check) 2919 CALL_RXH(ieee80211_rx_h_action) 2920 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2921 CALL_RXH(ieee80211_rx_h_action_return) 2922 CALL_RXH(ieee80211_rx_h_mgmt) 2923 2924 rxh_next: 2925 ieee80211_rx_handlers_result(rx, res); 2926 2927 #undef CALL_RXH 2928 } 2929 2930 spin_unlock_bh(&rx->local->rx_path_lock); 2931 } 2932 2933 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2934 { 2935 struct sk_buff_head reorder_release; 2936 ieee80211_rx_result res = RX_DROP_MONITOR; 2937 2938 __skb_queue_head_init(&reorder_release); 2939 2940 #define CALL_RXH(rxh) \ 2941 do { \ 2942 res = rxh(rx); \ 2943 if (res != RX_CONTINUE) \ 2944 goto rxh_next; \ 2945 } while (0); 2946 2947 CALL_RXH(ieee80211_rx_h_check) 2948 2949 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 2950 2951 ieee80211_rx_handlers(rx, &reorder_release); 2952 return; 2953 2954 rxh_next: 2955 ieee80211_rx_handlers_result(rx, res); 2956 2957 #undef CALL_RXH 2958 } 2959 2960 /* 2961 * This function makes calls into the RX path, therefore 2962 * it has to be invoked under RCU read lock. 2963 */ 2964 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2965 { 2966 struct sk_buff_head frames; 2967 struct ieee80211_rx_data rx = { 2968 .sta = sta, 2969 .sdata = sta->sdata, 2970 .local = sta->local, 2971 /* This is OK -- must be QoS data frame */ 2972 .security_idx = tid, 2973 .seqno_idx = tid, 2974 .flags = 0, 2975 }; 2976 struct tid_ampdu_rx *tid_agg_rx; 2977 2978 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2979 if (!tid_agg_rx) 2980 return; 2981 2982 __skb_queue_head_init(&frames); 2983 2984 spin_lock(&tid_agg_rx->reorder_lock); 2985 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 2986 spin_unlock(&tid_agg_rx->reorder_lock); 2987 2988 ieee80211_rx_handlers(&rx, &frames); 2989 } 2990 2991 /* main receive path */ 2992 2993 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2994 struct ieee80211_hdr *hdr) 2995 { 2996 struct ieee80211_sub_if_data *sdata = rx->sdata; 2997 struct sk_buff *skb = rx->skb; 2998 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2999 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3000 int multicast = is_multicast_ether_addr(hdr->addr1); 3001 3002 switch (sdata->vif.type) { 3003 case NL80211_IFTYPE_STATION: 3004 if (!bssid && !sdata->u.mgd.use_4addr) 3005 return 0; 3006 if (!multicast && 3007 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3008 if (!(sdata->dev->flags & IFF_PROMISC) || 3009 sdata->u.mgd.use_4addr) 3010 return 0; 3011 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3012 } 3013 break; 3014 case NL80211_IFTYPE_ADHOC: 3015 if (!bssid) 3016 return 0; 3017 if (ieee80211_is_beacon(hdr->frame_control)) { 3018 return 1; 3019 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3020 return 0; 3021 } else if (!multicast && 3022 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3023 if (!(sdata->dev->flags & IFF_PROMISC)) 3024 return 0; 3025 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3026 } else if (!rx->sta) { 3027 int rate_idx; 3028 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3029 rate_idx = 0; /* TODO: HT/VHT rates */ 3030 else 3031 rate_idx = status->rate_idx; 3032 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3033 BIT(rate_idx)); 3034 } 3035 break; 3036 case NL80211_IFTYPE_MESH_POINT: 3037 if (!multicast && 3038 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3039 if (!(sdata->dev->flags & IFF_PROMISC)) 3040 return 0; 3041 3042 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3043 } 3044 break; 3045 case NL80211_IFTYPE_AP_VLAN: 3046 case NL80211_IFTYPE_AP: 3047 if (!bssid) { 3048 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3049 return 0; 3050 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3051 /* 3052 * Accept public action frames even when the 3053 * BSSID doesn't match, this is used for P2P 3054 * and location updates. Note that mac80211 3055 * itself never looks at these frames. 3056 */ 3057 if (!multicast && 3058 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3059 return 0; 3060 if (ieee80211_is_public_action(hdr, skb->len)) 3061 return 1; 3062 if (!ieee80211_is_beacon(hdr->frame_control)) 3063 return 0; 3064 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3065 } 3066 break; 3067 case NL80211_IFTYPE_WDS: 3068 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3069 return 0; 3070 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3071 return 0; 3072 break; 3073 case NL80211_IFTYPE_P2P_DEVICE: 3074 if (!ieee80211_is_public_action(hdr, skb->len) && 3075 !ieee80211_is_probe_req(hdr->frame_control) && 3076 !ieee80211_is_probe_resp(hdr->frame_control) && 3077 !ieee80211_is_beacon(hdr->frame_control)) 3078 return 0; 3079 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3080 !multicast) 3081 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3082 break; 3083 default: 3084 /* should never get here */ 3085 WARN_ON_ONCE(1); 3086 break; 3087 } 3088 3089 return 1; 3090 } 3091 3092 /* 3093 * This function returns whether or not the SKB 3094 * was destined for RX processing or not, which, 3095 * if consume is true, is equivalent to whether 3096 * or not the skb was consumed. 3097 */ 3098 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3099 struct sk_buff *skb, bool consume) 3100 { 3101 struct ieee80211_local *local = rx->local; 3102 struct ieee80211_sub_if_data *sdata = rx->sdata; 3103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3104 struct ieee80211_hdr *hdr = (void *)skb->data; 3105 int prepares; 3106 3107 rx->skb = skb; 3108 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3109 prepares = prepare_for_handlers(rx, hdr); 3110 3111 if (!prepares) 3112 return false; 3113 3114 if (!consume) { 3115 skb = skb_copy(skb, GFP_ATOMIC); 3116 if (!skb) { 3117 if (net_ratelimit()) 3118 wiphy_debug(local->hw.wiphy, 3119 "failed to copy skb for %s\n", 3120 sdata->name); 3121 return true; 3122 } 3123 3124 rx->skb = skb; 3125 } 3126 3127 ieee80211_invoke_rx_handlers(rx); 3128 return true; 3129 } 3130 3131 /* 3132 * This is the actual Rx frames handler. as it blongs to Rx path it must 3133 * be called with rcu_read_lock protection. 3134 */ 3135 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3136 struct sk_buff *skb) 3137 { 3138 struct ieee80211_local *local = hw_to_local(hw); 3139 struct ieee80211_sub_if_data *sdata; 3140 struct ieee80211_hdr *hdr; 3141 __le16 fc; 3142 struct ieee80211_rx_data rx; 3143 struct ieee80211_sub_if_data *prev; 3144 struct sta_info *sta, *tmp, *prev_sta; 3145 int err = 0; 3146 3147 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3148 memset(&rx, 0, sizeof(rx)); 3149 rx.skb = skb; 3150 rx.local = local; 3151 3152 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3153 local->dot11ReceivedFragmentCount++; 3154 3155 if (ieee80211_is_mgmt(fc)) { 3156 /* drop frame if too short for header */ 3157 if (skb->len < ieee80211_hdrlen(fc)) 3158 err = -ENOBUFS; 3159 else 3160 err = skb_linearize(skb); 3161 } else { 3162 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3163 } 3164 3165 if (err) { 3166 dev_kfree_skb(skb); 3167 return; 3168 } 3169 3170 hdr = (struct ieee80211_hdr *)skb->data; 3171 ieee80211_parse_qos(&rx); 3172 ieee80211_verify_alignment(&rx); 3173 3174 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3175 ieee80211_is_beacon(hdr->frame_control))) 3176 ieee80211_scan_rx(local, skb); 3177 3178 if (ieee80211_is_data(fc)) { 3179 prev_sta = NULL; 3180 3181 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3182 if (!prev_sta) { 3183 prev_sta = sta; 3184 continue; 3185 } 3186 3187 rx.sta = prev_sta; 3188 rx.sdata = prev_sta->sdata; 3189 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3190 3191 prev_sta = sta; 3192 } 3193 3194 if (prev_sta) { 3195 rx.sta = prev_sta; 3196 rx.sdata = prev_sta->sdata; 3197 3198 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3199 return; 3200 goto out; 3201 } 3202 } 3203 3204 prev = NULL; 3205 3206 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3207 if (!ieee80211_sdata_running(sdata)) 3208 continue; 3209 3210 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3211 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3212 continue; 3213 3214 /* 3215 * frame is destined for this interface, but if it's 3216 * not also for the previous one we handle that after 3217 * the loop to avoid copying the SKB once too much 3218 */ 3219 3220 if (!prev) { 3221 prev = sdata; 3222 continue; 3223 } 3224 3225 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3226 rx.sdata = prev; 3227 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3228 3229 prev = sdata; 3230 } 3231 3232 if (prev) { 3233 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3234 rx.sdata = prev; 3235 3236 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3237 return; 3238 } 3239 3240 out: 3241 dev_kfree_skb(skb); 3242 } 3243 3244 /* 3245 * This is the receive path handler. It is called by a low level driver when an 3246 * 802.11 MPDU is received from the hardware. 3247 */ 3248 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3249 { 3250 struct ieee80211_local *local = hw_to_local(hw); 3251 struct ieee80211_rate *rate = NULL; 3252 struct ieee80211_supported_band *sband; 3253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3254 3255 WARN_ON_ONCE(softirq_count() == 0); 3256 3257 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3258 goto drop; 3259 3260 sband = local->hw.wiphy->bands[status->band]; 3261 if (WARN_ON(!sband)) 3262 goto drop; 3263 3264 /* 3265 * If we're suspending, it is possible although not too likely 3266 * that we'd be receiving frames after having already partially 3267 * quiesced the stack. We can't process such frames then since 3268 * that might, for example, cause stations to be added or other 3269 * driver callbacks be invoked. 3270 */ 3271 if (unlikely(local->quiescing || local->suspended)) 3272 goto drop; 3273 3274 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3275 if (unlikely(local->in_reconfig)) 3276 goto drop; 3277 3278 /* 3279 * The same happens when we're not even started, 3280 * but that's worth a warning. 3281 */ 3282 if (WARN_ON(!local->started)) 3283 goto drop; 3284 3285 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3286 /* 3287 * Validate the rate, unless a PLCP error means that 3288 * we probably can't have a valid rate here anyway. 3289 */ 3290 3291 if (status->flag & RX_FLAG_HT) { 3292 /* 3293 * rate_idx is MCS index, which can be [0-76] 3294 * as documented on: 3295 * 3296 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3297 * 3298 * Anything else would be some sort of driver or 3299 * hardware error. The driver should catch hardware 3300 * errors. 3301 */ 3302 if (WARN(status->rate_idx > 76, 3303 "Rate marked as an HT rate but passed " 3304 "status->rate_idx is not " 3305 "an MCS index [0-76]: %d (0x%02x)\n", 3306 status->rate_idx, 3307 status->rate_idx)) 3308 goto drop; 3309 } else if (status->flag & RX_FLAG_VHT) { 3310 if (WARN_ONCE(status->rate_idx > 9 || 3311 !status->vht_nss || 3312 status->vht_nss > 8, 3313 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3314 status->rate_idx, status->vht_nss)) 3315 goto drop; 3316 } else { 3317 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3318 goto drop; 3319 rate = &sband->bitrates[status->rate_idx]; 3320 } 3321 } 3322 3323 status->rx_flags = 0; 3324 3325 /* 3326 * key references and virtual interfaces are protected using RCU 3327 * and this requires that we are in a read-side RCU section during 3328 * receive processing 3329 */ 3330 rcu_read_lock(); 3331 3332 /* 3333 * Frames with failed FCS/PLCP checksum are not returned, 3334 * all other frames are returned without radiotap header 3335 * if it was previously present. 3336 * Also, frames with less than 16 bytes are dropped. 3337 */ 3338 skb = ieee80211_rx_monitor(local, skb, rate); 3339 if (!skb) { 3340 rcu_read_unlock(); 3341 return; 3342 } 3343 3344 ieee80211_tpt_led_trig_rx(local, 3345 ((struct ieee80211_hdr *)skb->data)->frame_control, 3346 skb->len); 3347 __ieee80211_rx_handle_packet(hw, skb); 3348 3349 rcu_read_unlock(); 3350 3351 return; 3352 drop: 3353 kfree_skb(skb); 3354 } 3355 EXPORT_SYMBOL(ieee80211_rx); 3356 3357 /* This is a version of the rx handler that can be called from hard irq 3358 * context. Post the skb on the queue and schedule the tasklet */ 3359 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3360 { 3361 struct ieee80211_local *local = hw_to_local(hw); 3362 3363 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3364 3365 skb->pkt_type = IEEE80211_RX_MSG; 3366 skb_queue_tail(&local->skb_queue, skb); 3367 tasklet_schedule(&local->tasklet); 3368 } 3369 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3370