1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/jiffies.h> 14 #include <linux/slab.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 42 struct sk_buff *skb, 43 unsigned int rtap_vendor_space) 44 { 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 __pskb_pull(skb, rtap_vendor_space); 57 58 return skb; 59 } 60 61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 62 unsigned int rtap_vendor_space) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + rtap_vendor_space); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return true; 73 74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 75 return true; 76 77 if (ieee80211_is_ctl(hdr->frame_control) && 78 !ieee80211_is_pspoll(hdr->frame_control) && 79 !ieee80211_is_back_req(hdr->frame_control)) 80 return true; 81 82 return false; 83 } 84 85 static int 86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 87 struct ieee80211_rx_status *status, 88 struct sk_buff *skb) 89 { 90 int len; 91 92 /* always present fields */ 93 len = sizeof(struct ieee80211_radiotap_header) + 8; 94 95 /* allocate extra bitmaps */ 96 if (status->chains) 97 len += 4 * hweight8(status->chains); 98 99 if (ieee80211_have_rx_timestamp(status)) { 100 len = ALIGN(len, 8); 101 len += 8; 102 } 103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 104 len += 1; 105 106 /* antenna field, if we don't have per-chain info */ 107 if (!status->chains) 108 len += 1; 109 110 /* padding for RX_FLAGS if necessary */ 111 len = ALIGN(len, 2); 112 113 if (status->flag & RX_FLAG_HT) /* HT info */ 114 len += 3; 115 116 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 117 len = ALIGN(len, 4); 118 len += 8; 119 } 120 121 if (status->flag & RX_FLAG_VHT) { 122 len = ALIGN(len, 2); 123 len += 12; 124 } 125 126 if (status->chains) { 127 /* antenna and antenna signal fields */ 128 len += 2 * hweight8(status->chains); 129 } 130 131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 133 134 /* vendor presence bitmap */ 135 len += 4; 136 /* alignment for fixed 6-byte vendor data header */ 137 len = ALIGN(len, 2); 138 /* vendor data header */ 139 len += 6; 140 if (WARN_ON(rtap->align == 0)) 141 rtap->align = 1; 142 len = ALIGN(len, rtap->align); 143 len += rtap->len + rtap->pad; 144 } 145 146 return len; 147 } 148 149 /* 150 * ieee80211_add_rx_radiotap_header - add radiotap header 151 * 152 * add a radiotap header containing all the fields which the hardware provided. 153 */ 154 static void 155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 156 struct sk_buff *skb, 157 struct ieee80211_rate *rate, 158 int rtap_len, bool has_fcs) 159 { 160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 161 struct ieee80211_radiotap_header *rthdr; 162 unsigned char *pos; 163 __le32 *it_present; 164 u32 it_present_val; 165 u16 rx_flags = 0; 166 u16 channel_flags = 0; 167 int mpdulen, chain; 168 unsigned long chains = status->chains; 169 struct ieee80211_vendor_radiotap rtap = {}; 170 171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 173 /* rtap.len and rtap.pad are undone immediately */ 174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 175 } 176 177 mpdulen = skb->len; 178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 179 mpdulen += FCS_LEN; 180 181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 183 it_present = &rthdr->it_present; 184 185 /* radiotap header, set always present flags */ 186 rthdr->it_len = cpu_to_le16(rtap_len); 187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 188 BIT(IEEE80211_RADIOTAP_CHANNEL) | 189 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 190 191 if (!status->chains) 192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 193 194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 195 it_present_val |= 196 BIT(IEEE80211_RADIOTAP_EXT) | 197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 198 put_unaligned_le32(it_present_val, it_present); 199 it_present++; 200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 202 } 203 204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 206 BIT(IEEE80211_RADIOTAP_EXT); 207 put_unaligned_le32(it_present_val, it_present); 208 it_present++; 209 it_present_val = rtap.present; 210 } 211 212 put_unaligned_le32(it_present_val, it_present); 213 214 pos = (void *)(it_present + 1); 215 216 /* the order of the following fields is important */ 217 218 /* IEEE80211_RADIOTAP_TSFT */ 219 if (ieee80211_have_rx_timestamp(status)) { 220 /* padding */ 221 while ((pos - (u8 *)rthdr) & 7) 222 *pos++ = 0; 223 put_unaligned_le64( 224 ieee80211_calculate_rx_timestamp(local, status, 225 mpdulen, 0), 226 pos); 227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 228 pos += 8; 229 } 230 231 /* IEEE80211_RADIOTAP_FLAGS */ 232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 233 *pos |= IEEE80211_RADIOTAP_F_FCS; 234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 235 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 236 if (status->flag & RX_FLAG_SHORTPRE) 237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 238 pos++; 239 240 /* IEEE80211_RADIOTAP_RATE */ 241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 242 /* 243 * Without rate information don't add it. If we have, 244 * MCS information is a separate field in radiotap, 245 * added below. The byte here is needed as padding 246 * for the channel though, so initialise it to 0. 247 */ 248 *pos = 0; 249 } else { 250 int shift = 0; 251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 252 if (status->flag & RX_FLAG_10MHZ) 253 shift = 1; 254 else if (status->flag & RX_FLAG_5MHZ) 255 shift = 2; 256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 257 } 258 pos++; 259 260 /* IEEE80211_RADIOTAP_CHANNEL */ 261 put_unaligned_le16(status->freq, pos); 262 pos += 2; 263 if (status->flag & RX_FLAG_10MHZ) 264 channel_flags |= IEEE80211_CHAN_HALF; 265 else if (status->flag & RX_FLAG_5MHZ) 266 channel_flags |= IEEE80211_CHAN_QUARTER; 267 268 if (status->band == IEEE80211_BAND_5GHZ) 269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 274 else if (rate) 275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 276 else 277 channel_flags |= IEEE80211_CHAN_2GHZ; 278 put_unaligned_le16(channel_flags, pos); 279 pos += 2; 280 281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 284 *pos = status->signal; 285 rthdr->it_present |= 286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 287 pos++; 288 } 289 290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 291 292 if (!status->chains) { 293 /* IEEE80211_RADIOTAP_ANTENNA */ 294 *pos = status->antenna; 295 pos++; 296 } 297 298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 299 300 /* IEEE80211_RADIOTAP_RX_FLAGS */ 301 /* ensure 2 byte alignment for the 2 byte field as required */ 302 if ((pos - (u8 *)rthdr) & 1) 303 *pos++ = 0; 304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 306 put_unaligned_le16(rx_flags, pos); 307 pos += 2; 308 309 if (status->flag & RX_FLAG_HT) { 310 unsigned int stbc; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 313 *pos++ = local->hw.radiotap_mcs_details; 314 *pos = 0; 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 317 if (status->flag & RX_FLAG_40MHZ) 318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 319 if (status->flag & RX_FLAG_HT_GF) 320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 321 if (status->flag & RX_FLAG_LDPC) 322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 325 pos++; 326 *pos++ = status->rate_idx; 327 } 328 329 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 330 u16 flags = 0; 331 332 /* ensure 4 byte alignment */ 333 while ((pos - (u8 *)rthdr) & 3) 334 pos++; 335 rthdr->it_present |= 336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 337 put_unaligned_le32(status->ampdu_reference, pos); 338 pos += 4; 339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 345 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 351 put_unaligned_le16(flags, pos); 352 pos += 2; 353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 354 *pos++ = status->ampdu_delimiter_crc; 355 else 356 *pos++ = 0; 357 *pos++ = 0; 358 } 359 360 if (status->flag & RX_FLAG_VHT) { 361 u16 known = local->hw.radiotap_vht_details; 362 363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 364 put_unaligned_le16(known, pos); 365 pos += 2; 366 /* flags */ 367 if (status->flag & RX_FLAG_SHORT_GI) 368 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 369 /* in VHT, STBC is binary */ 370 if (status->flag & RX_FLAG_STBC_MASK) 371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 372 if (status->vht_flag & RX_VHT_FLAG_BF) 373 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 374 pos++; 375 /* bandwidth */ 376 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 377 *pos++ = 4; 378 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 379 *pos++ = 11; 380 else if (status->flag & RX_FLAG_40MHZ) 381 *pos++ = 1; 382 else /* 20 MHz */ 383 *pos++ = 0; 384 /* MCS/NSS */ 385 *pos = (status->rate_idx << 4) | status->vht_nss; 386 pos += 4; 387 /* coding field */ 388 if (status->flag & RX_FLAG_LDPC) 389 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 390 pos++; 391 /* group ID */ 392 pos++; 393 /* partial_aid */ 394 pos += 2; 395 } 396 397 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 398 *pos++ = status->chain_signal[chain]; 399 *pos++ = chain; 400 } 401 402 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 403 /* ensure 2 byte alignment for the vendor field as required */ 404 if ((pos - (u8 *)rthdr) & 1) 405 *pos++ = 0; 406 *pos++ = rtap.oui[0]; 407 *pos++ = rtap.oui[1]; 408 *pos++ = rtap.oui[2]; 409 *pos++ = rtap.subns; 410 put_unaligned_le16(rtap.len, pos); 411 pos += 2; 412 /* align the actual payload as requested */ 413 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 414 *pos++ = 0; 415 /* data (and possible padding) already follows */ 416 } 417 } 418 419 /* 420 * This function copies a received frame to all monitor interfaces and 421 * returns a cleaned-up SKB that no longer includes the FCS nor the 422 * radiotap header the driver might have added. 423 */ 424 static struct sk_buff * 425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 426 struct ieee80211_rate *rate) 427 { 428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 429 struct ieee80211_sub_if_data *sdata; 430 int rt_hdrlen, needed_headroom; 431 struct sk_buff *skb, *skb2; 432 struct net_device *prev_dev = NULL; 433 int present_fcs_len = 0; 434 unsigned int rtap_vendor_space = 0; 435 436 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 437 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 438 439 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 440 } 441 442 /* 443 * First, we may need to make a copy of the skb because 444 * (1) we need to modify it for radiotap (if not present), and 445 * (2) the other RX handlers will modify the skb we got. 446 * 447 * We don't need to, of course, if we aren't going to return 448 * the SKB because it has a bad FCS/PLCP checksum. 449 */ 450 451 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 452 present_fcs_len = FCS_LEN; 453 454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 455 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 456 dev_kfree_skb(origskb); 457 return NULL; 458 } 459 460 if (!local->monitors) { 461 if (should_drop_frame(origskb, present_fcs_len, 462 rtap_vendor_space)) { 463 dev_kfree_skb(origskb); 464 return NULL; 465 } 466 467 return remove_monitor_info(local, origskb, rtap_vendor_space); 468 } 469 470 /* room for the radiotap header based on driver features */ 471 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 472 needed_headroom = rt_hdrlen - rtap_vendor_space; 473 474 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 475 /* only need to expand headroom if necessary */ 476 skb = origskb; 477 origskb = NULL; 478 479 /* 480 * This shouldn't trigger often because most devices have an 481 * RX header they pull before we get here, and that should 482 * be big enough for our radiotap information. We should 483 * probably export the length to drivers so that we can have 484 * them allocate enough headroom to start with. 485 */ 486 if (skb_headroom(skb) < needed_headroom && 487 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 488 dev_kfree_skb(skb); 489 return NULL; 490 } 491 } else { 492 /* 493 * Need to make a copy and possibly remove radiotap header 494 * and FCS from the original. 495 */ 496 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 497 498 origskb = remove_monitor_info(local, origskb, 499 rtap_vendor_space); 500 501 if (!skb) 502 return origskb; 503 } 504 505 /* prepend radiotap information */ 506 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 507 508 skb_reset_mac_header(skb); 509 skb->ip_summed = CHECKSUM_UNNECESSARY; 510 skb->pkt_type = PACKET_OTHERHOST; 511 skb->protocol = htons(ETH_P_802_2); 512 513 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 514 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 515 continue; 516 517 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 518 continue; 519 520 if (!ieee80211_sdata_running(sdata)) 521 continue; 522 523 if (prev_dev) { 524 skb2 = skb_clone(skb, GFP_ATOMIC); 525 if (skb2) { 526 skb2->dev = prev_dev; 527 netif_receive_skb(skb2); 528 } 529 } 530 531 prev_dev = sdata->dev; 532 sdata->dev->stats.rx_packets++; 533 sdata->dev->stats.rx_bytes += skb->len; 534 } 535 536 if (prev_dev) { 537 skb->dev = prev_dev; 538 netif_receive_skb(skb); 539 } else 540 dev_kfree_skb(skb); 541 542 return origskb; 543 } 544 545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 546 { 547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 549 int tid, seqno_idx, security_idx; 550 551 /* does the frame have a qos control field? */ 552 if (ieee80211_is_data_qos(hdr->frame_control)) { 553 u8 *qc = ieee80211_get_qos_ctl(hdr); 554 /* frame has qos control */ 555 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 556 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 557 status->rx_flags |= IEEE80211_RX_AMSDU; 558 559 seqno_idx = tid; 560 security_idx = tid; 561 } else { 562 /* 563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 564 * 565 * Sequence numbers for management frames, QoS data 566 * frames with a broadcast/multicast address in the 567 * Address 1 field, and all non-QoS data frames sent 568 * by QoS STAs are assigned using an additional single 569 * modulo-4096 counter, [...] 570 * 571 * We also use that counter for non-QoS STAs. 572 */ 573 seqno_idx = IEEE80211_NUM_TIDS; 574 security_idx = 0; 575 if (ieee80211_is_mgmt(hdr->frame_control)) 576 security_idx = IEEE80211_NUM_TIDS; 577 tid = 0; 578 } 579 580 rx->seqno_idx = seqno_idx; 581 rx->security_idx = security_idx; 582 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 583 * For now, set skb->priority to 0 for other cases. */ 584 rx->skb->priority = (tid > 7) ? 0 : tid; 585 } 586 587 /** 588 * DOC: Packet alignment 589 * 590 * Drivers always need to pass packets that are aligned to two-byte boundaries 591 * to the stack. 592 * 593 * Additionally, should, if possible, align the payload data in a way that 594 * guarantees that the contained IP header is aligned to a four-byte 595 * boundary. In the case of regular frames, this simply means aligning the 596 * payload to a four-byte boundary (because either the IP header is directly 597 * contained, or IV/RFC1042 headers that have a length divisible by four are 598 * in front of it). If the payload data is not properly aligned and the 599 * architecture doesn't support efficient unaligned operations, mac80211 600 * will align the data. 601 * 602 * With A-MSDU frames, however, the payload data address must yield two modulo 603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 604 * push the IP header further back to a multiple of four again. Thankfully, the 605 * specs were sane enough this time around to require padding each A-MSDU 606 * subframe to a length that is a multiple of four. 607 * 608 * Padding like Atheros hardware adds which is between the 802.11 header and 609 * the payload is not supported, the driver is required to move the 802.11 610 * header to be directly in front of the payload in that case. 611 */ 612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 613 { 614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 615 WARN_ONCE((unsigned long)rx->skb->data & 1, 616 "unaligned packet at 0x%p\n", rx->skb->data); 617 #endif 618 } 619 620 621 /* rx handlers */ 622 623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 624 { 625 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 626 627 if (is_multicast_ether_addr(hdr->addr1)) 628 return 0; 629 630 return ieee80211_is_robust_mgmt_frame(skb); 631 } 632 633 634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 635 { 636 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 637 638 if (!is_multicast_ether_addr(hdr->addr1)) 639 return 0; 640 641 return ieee80211_is_robust_mgmt_frame(skb); 642 } 643 644 645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 647 { 648 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 649 struct ieee80211_mmie *mmie; 650 struct ieee80211_mmie_16 *mmie16; 651 652 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 653 return -1; 654 655 if (!ieee80211_is_robust_mgmt_frame(skb)) 656 return -1; /* not a robust management frame */ 657 658 mmie = (struct ieee80211_mmie *) 659 (skb->data + skb->len - sizeof(*mmie)); 660 if (mmie->element_id == WLAN_EID_MMIE && 661 mmie->length == sizeof(*mmie) - 2) 662 return le16_to_cpu(mmie->key_id); 663 664 mmie16 = (struct ieee80211_mmie_16 *) 665 (skb->data + skb->len - sizeof(*mmie16)); 666 if (skb->len >= 24 + sizeof(*mmie16) && 667 mmie16->element_id == WLAN_EID_MMIE && 668 mmie16->length == sizeof(*mmie16) - 2) 669 return le16_to_cpu(mmie16->key_id); 670 671 return -1; 672 } 673 674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 675 struct sk_buff *skb) 676 { 677 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 678 __le16 fc; 679 int hdrlen; 680 u8 keyid; 681 682 fc = hdr->frame_control; 683 hdrlen = ieee80211_hdrlen(fc); 684 685 if (skb->len < hdrlen + cs->hdr_len) 686 return -EINVAL; 687 688 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 689 keyid &= cs->key_idx_mask; 690 keyid >>= cs->key_idx_shift; 691 692 return keyid; 693 } 694 695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 696 { 697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 698 char *dev_addr = rx->sdata->vif.addr; 699 700 if (ieee80211_is_data(hdr->frame_control)) { 701 if (is_multicast_ether_addr(hdr->addr1)) { 702 if (ieee80211_has_tods(hdr->frame_control) || 703 !ieee80211_has_fromds(hdr->frame_control)) 704 return RX_DROP_MONITOR; 705 if (ether_addr_equal(hdr->addr3, dev_addr)) 706 return RX_DROP_MONITOR; 707 } else { 708 if (!ieee80211_has_a4(hdr->frame_control)) 709 return RX_DROP_MONITOR; 710 if (ether_addr_equal(hdr->addr4, dev_addr)) 711 return RX_DROP_MONITOR; 712 } 713 } 714 715 /* If there is not an established peer link and this is not a peer link 716 * establisment frame, beacon or probe, drop the frame. 717 */ 718 719 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 720 struct ieee80211_mgmt *mgmt; 721 722 if (!ieee80211_is_mgmt(hdr->frame_control)) 723 return RX_DROP_MONITOR; 724 725 if (ieee80211_is_action(hdr->frame_control)) { 726 u8 category; 727 728 /* make sure category field is present */ 729 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 730 return RX_DROP_MONITOR; 731 732 mgmt = (struct ieee80211_mgmt *)hdr; 733 category = mgmt->u.action.category; 734 if (category != WLAN_CATEGORY_MESH_ACTION && 735 category != WLAN_CATEGORY_SELF_PROTECTED) 736 return RX_DROP_MONITOR; 737 return RX_CONTINUE; 738 } 739 740 if (ieee80211_is_probe_req(hdr->frame_control) || 741 ieee80211_is_probe_resp(hdr->frame_control) || 742 ieee80211_is_beacon(hdr->frame_control) || 743 ieee80211_is_auth(hdr->frame_control)) 744 return RX_CONTINUE; 745 746 return RX_DROP_MONITOR; 747 } 748 749 return RX_CONTINUE; 750 } 751 752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 753 struct tid_ampdu_rx *tid_agg_rx, 754 int index, 755 struct sk_buff_head *frames) 756 { 757 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 758 struct sk_buff *skb; 759 struct ieee80211_rx_status *status; 760 761 lockdep_assert_held(&tid_agg_rx->reorder_lock); 762 763 if (skb_queue_empty(skb_list)) 764 goto no_frame; 765 766 if (!ieee80211_rx_reorder_ready(skb_list)) { 767 __skb_queue_purge(skb_list); 768 goto no_frame; 769 } 770 771 /* release frames from the reorder ring buffer */ 772 tid_agg_rx->stored_mpdu_num--; 773 while ((skb = __skb_dequeue(skb_list))) { 774 status = IEEE80211_SKB_RXCB(skb); 775 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 776 __skb_queue_tail(frames, skb); 777 } 778 779 no_frame: 780 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 781 } 782 783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 784 struct tid_ampdu_rx *tid_agg_rx, 785 u16 head_seq_num, 786 struct sk_buff_head *frames) 787 { 788 int index; 789 790 lockdep_assert_held(&tid_agg_rx->reorder_lock); 791 792 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 795 frames); 796 } 797 } 798 799 /* 800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 801 * the skb was added to the buffer longer than this time ago, the earlier 802 * frames that have not yet been received are assumed to be lost and the skb 803 * can be released for processing. This may also release other skb's from the 804 * reorder buffer if there are no additional gaps between the frames. 805 * 806 * Callers must hold tid_agg_rx->reorder_lock. 807 */ 808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 809 810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 811 struct tid_ampdu_rx *tid_agg_rx, 812 struct sk_buff_head *frames) 813 { 814 int index, i, j; 815 816 lockdep_assert_held(&tid_agg_rx->reorder_lock); 817 818 /* release the buffer until next missing frame */ 819 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && 821 tid_agg_rx->stored_mpdu_num) { 822 /* 823 * No buffers ready to be released, but check whether any 824 * frames in the reorder buffer have timed out. 825 */ 826 int skipped = 1; 827 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 828 j = (j + 1) % tid_agg_rx->buf_size) { 829 if (!ieee80211_rx_reorder_ready( 830 &tid_agg_rx->reorder_buf[j])) { 831 skipped++; 832 continue; 833 } 834 if (skipped && 835 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 836 HT_RX_REORDER_BUF_TIMEOUT)) 837 goto set_release_timer; 838 839 /* don't leave incomplete A-MSDUs around */ 840 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 841 i = (i + 1) % tid_agg_rx->buf_size) 842 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 843 844 ht_dbg_ratelimited(sdata, 845 "release an RX reorder frame due to timeout on earlier frames\n"); 846 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 847 frames); 848 849 /* 850 * Increment the head seq# also for the skipped slots. 851 */ 852 tid_agg_rx->head_seq_num = 853 (tid_agg_rx->head_seq_num + 854 skipped) & IEEE80211_SN_MASK; 855 skipped = 0; 856 } 857 } else while (ieee80211_rx_reorder_ready( 858 &tid_agg_rx->reorder_buf[index])) { 859 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 860 frames); 861 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 862 } 863 864 if (tid_agg_rx->stored_mpdu_num) { 865 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 866 867 for (; j != (index - 1) % tid_agg_rx->buf_size; 868 j = (j + 1) % tid_agg_rx->buf_size) { 869 if (ieee80211_rx_reorder_ready( 870 &tid_agg_rx->reorder_buf[j])) 871 break; 872 } 873 874 set_release_timer: 875 876 mod_timer(&tid_agg_rx->reorder_timer, 877 tid_agg_rx->reorder_time[j] + 1 + 878 HT_RX_REORDER_BUF_TIMEOUT); 879 } else { 880 del_timer(&tid_agg_rx->reorder_timer); 881 } 882 } 883 884 /* 885 * As this function belongs to the RX path it must be under 886 * rcu_read_lock protection. It returns false if the frame 887 * can be processed immediately, true if it was consumed. 888 */ 889 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 890 struct tid_ampdu_rx *tid_agg_rx, 891 struct sk_buff *skb, 892 struct sk_buff_head *frames) 893 { 894 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 895 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 896 u16 sc = le16_to_cpu(hdr->seq_ctrl); 897 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 898 u16 head_seq_num, buf_size; 899 int index; 900 bool ret = true; 901 902 spin_lock(&tid_agg_rx->reorder_lock); 903 904 /* 905 * Offloaded BA sessions have no known starting sequence number so pick 906 * one from first Rxed frame for this tid after BA was started. 907 */ 908 if (unlikely(tid_agg_rx->auto_seq)) { 909 tid_agg_rx->auto_seq = false; 910 tid_agg_rx->ssn = mpdu_seq_num; 911 tid_agg_rx->head_seq_num = mpdu_seq_num; 912 } 913 914 buf_size = tid_agg_rx->buf_size; 915 head_seq_num = tid_agg_rx->head_seq_num; 916 917 /* frame with out of date sequence number */ 918 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 919 dev_kfree_skb(skb); 920 goto out; 921 } 922 923 /* 924 * If frame the sequence number exceeds our buffering window 925 * size release some previous frames to make room for this one. 926 */ 927 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 928 head_seq_num = ieee80211_sn_inc( 929 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 930 /* release stored frames up to new head to stack */ 931 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 932 head_seq_num, frames); 933 } 934 935 /* Now the new frame is always in the range of the reordering buffer */ 936 937 index = mpdu_seq_num % tid_agg_rx->buf_size; 938 939 /* check if we already stored this frame */ 940 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { 941 dev_kfree_skb(skb); 942 goto out; 943 } 944 945 /* 946 * If the current MPDU is in the right order and nothing else 947 * is stored we can process it directly, no need to buffer it. 948 * If it is first but there's something stored, we may be able 949 * to release frames after this one. 950 */ 951 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 952 tid_agg_rx->stored_mpdu_num == 0) { 953 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 954 tid_agg_rx->head_seq_num = 955 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 956 ret = false; 957 goto out; 958 } 959 960 /* put the frame in the reordering buffer */ 961 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 962 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 963 tid_agg_rx->reorder_time[index] = jiffies; 964 tid_agg_rx->stored_mpdu_num++; 965 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 966 } 967 968 out: 969 spin_unlock(&tid_agg_rx->reorder_lock); 970 return ret; 971 } 972 973 /* 974 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 975 * true if the MPDU was buffered, false if it should be processed. 976 */ 977 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 978 struct sk_buff_head *frames) 979 { 980 struct sk_buff *skb = rx->skb; 981 struct ieee80211_local *local = rx->local; 982 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 983 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 984 struct sta_info *sta = rx->sta; 985 struct tid_ampdu_rx *tid_agg_rx; 986 u16 sc; 987 u8 tid, ack_policy; 988 989 if (!ieee80211_is_data_qos(hdr->frame_control) || 990 is_multicast_ether_addr(hdr->addr1)) 991 goto dont_reorder; 992 993 /* 994 * filter the QoS data rx stream according to 995 * STA/TID and check if this STA/TID is on aggregation 996 */ 997 998 if (!sta) 999 goto dont_reorder; 1000 1001 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1002 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1003 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1004 1005 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1006 if (!tid_agg_rx) 1007 goto dont_reorder; 1008 1009 /* qos null data frames are excluded */ 1010 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1011 goto dont_reorder; 1012 1013 /* not part of a BA session */ 1014 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1015 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1016 goto dont_reorder; 1017 1018 /* not actually part of this BA session */ 1019 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1020 goto dont_reorder; 1021 1022 /* new, potentially un-ordered, ampdu frame - process it */ 1023 1024 /* reset session timer */ 1025 if (tid_agg_rx->timeout) 1026 tid_agg_rx->last_rx = jiffies; 1027 1028 /* if this mpdu is fragmented - terminate rx aggregation session */ 1029 sc = le16_to_cpu(hdr->seq_ctrl); 1030 if (sc & IEEE80211_SCTL_FRAG) { 1031 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1032 skb_queue_tail(&rx->sdata->skb_queue, skb); 1033 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1034 return; 1035 } 1036 1037 /* 1038 * No locking needed -- we will only ever process one 1039 * RX packet at a time, and thus own tid_agg_rx. All 1040 * other code manipulating it needs to (and does) make 1041 * sure that we cannot get to it any more before doing 1042 * anything with it. 1043 */ 1044 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1045 frames)) 1046 return; 1047 1048 dont_reorder: 1049 __skb_queue_tail(frames, skb); 1050 } 1051 1052 static ieee80211_rx_result debug_noinline 1053 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1054 { 1055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1056 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1057 1058 /* 1059 * Drop duplicate 802.11 retransmissions 1060 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1061 */ 1062 1063 if (rx->skb->len < 24) 1064 return RX_CONTINUE; 1065 1066 if (ieee80211_is_ctl(hdr->frame_control) || 1067 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1068 is_multicast_ether_addr(hdr->addr1)) 1069 return RX_CONTINUE; 1070 1071 if (rx->sta) { 1072 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1073 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1074 hdr->seq_ctrl)) { 1075 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1076 rx->local->dot11FrameDuplicateCount++; 1077 rx->sta->num_duplicates++; 1078 } 1079 return RX_DROP_UNUSABLE; 1080 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1081 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1082 } 1083 } 1084 1085 return RX_CONTINUE; 1086 } 1087 1088 static ieee80211_rx_result debug_noinline 1089 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1090 { 1091 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1092 1093 if (unlikely(rx->skb->len < 16)) { 1094 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1095 return RX_DROP_MONITOR; 1096 } 1097 1098 /* Drop disallowed frame classes based on STA auth/assoc state; 1099 * IEEE 802.11, Chap 5.5. 1100 * 1101 * mac80211 filters only based on association state, i.e. it drops 1102 * Class 3 frames from not associated stations. hostapd sends 1103 * deauth/disassoc frames when needed. In addition, hostapd is 1104 * responsible for filtering on both auth and assoc states. 1105 */ 1106 1107 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1108 return ieee80211_rx_mesh_check(rx); 1109 1110 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1111 ieee80211_is_pspoll(hdr->frame_control)) && 1112 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1113 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1114 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1115 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1116 /* 1117 * accept port control frames from the AP even when it's not 1118 * yet marked ASSOC to prevent a race where we don't set the 1119 * assoc bit quickly enough before it sends the first frame 1120 */ 1121 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1122 ieee80211_is_data_present(hdr->frame_control)) { 1123 unsigned int hdrlen; 1124 __be16 ethertype; 1125 1126 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1127 1128 if (rx->skb->len < hdrlen + 8) 1129 return RX_DROP_MONITOR; 1130 1131 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1132 if (ethertype == rx->sdata->control_port_protocol) 1133 return RX_CONTINUE; 1134 } 1135 1136 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1137 cfg80211_rx_spurious_frame(rx->sdata->dev, 1138 hdr->addr2, 1139 GFP_ATOMIC)) 1140 return RX_DROP_UNUSABLE; 1141 1142 return RX_DROP_MONITOR; 1143 } 1144 1145 return RX_CONTINUE; 1146 } 1147 1148 1149 static ieee80211_rx_result debug_noinline 1150 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1151 { 1152 struct ieee80211_local *local; 1153 struct ieee80211_hdr *hdr; 1154 struct sk_buff *skb; 1155 1156 local = rx->local; 1157 skb = rx->skb; 1158 hdr = (struct ieee80211_hdr *) skb->data; 1159 1160 if (!local->pspolling) 1161 return RX_CONTINUE; 1162 1163 if (!ieee80211_has_fromds(hdr->frame_control)) 1164 /* this is not from AP */ 1165 return RX_CONTINUE; 1166 1167 if (!ieee80211_is_data(hdr->frame_control)) 1168 return RX_CONTINUE; 1169 1170 if (!ieee80211_has_moredata(hdr->frame_control)) { 1171 /* AP has no more frames buffered for us */ 1172 local->pspolling = false; 1173 return RX_CONTINUE; 1174 } 1175 1176 /* more data bit is set, let's request a new frame from the AP */ 1177 ieee80211_send_pspoll(local, rx->sdata); 1178 1179 return RX_CONTINUE; 1180 } 1181 1182 static void sta_ps_start(struct sta_info *sta) 1183 { 1184 struct ieee80211_sub_if_data *sdata = sta->sdata; 1185 struct ieee80211_local *local = sdata->local; 1186 struct ps_data *ps; 1187 1188 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1189 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1190 ps = &sdata->bss->ps; 1191 else 1192 return; 1193 1194 atomic_inc(&ps->num_sta_ps); 1195 set_sta_flag(sta, WLAN_STA_PS_STA); 1196 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1197 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1198 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1199 sta->sta.addr, sta->sta.aid); 1200 } 1201 1202 static void sta_ps_end(struct sta_info *sta) 1203 { 1204 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1205 sta->sta.addr, sta->sta.aid); 1206 1207 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1208 /* 1209 * Clear the flag only if the other one is still set 1210 * so that the TX path won't start TX'ing new frames 1211 * directly ... In the case that the driver flag isn't 1212 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1213 */ 1214 clear_sta_flag(sta, WLAN_STA_PS_STA); 1215 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1216 sta->sta.addr, sta->sta.aid); 1217 return; 1218 } 1219 1220 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1221 clear_sta_flag(sta, WLAN_STA_PS_STA); 1222 ieee80211_sta_ps_deliver_wakeup(sta); 1223 } 1224 1225 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1226 { 1227 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1228 bool in_ps; 1229 1230 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1231 1232 /* Don't let the same PS state be set twice */ 1233 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1234 if ((start && in_ps) || (!start && !in_ps)) 1235 return -EINVAL; 1236 1237 if (start) 1238 sta_ps_start(sta_inf); 1239 else 1240 sta_ps_end(sta_inf); 1241 1242 return 0; 1243 } 1244 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1245 1246 static ieee80211_rx_result debug_noinline 1247 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1248 { 1249 struct ieee80211_sub_if_data *sdata = rx->sdata; 1250 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1252 int tid, ac; 1253 1254 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1255 return RX_CONTINUE; 1256 1257 if (sdata->vif.type != NL80211_IFTYPE_AP && 1258 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1259 return RX_CONTINUE; 1260 1261 /* 1262 * The device handles station powersave, so don't do anything about 1263 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1264 * it to mac80211 since they're handled.) 1265 */ 1266 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1267 return RX_CONTINUE; 1268 1269 /* 1270 * Don't do anything if the station isn't already asleep. In 1271 * the uAPSD case, the station will probably be marked asleep, 1272 * in the PS-Poll case the station must be confused ... 1273 */ 1274 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1275 return RX_CONTINUE; 1276 1277 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1278 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1279 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1280 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1281 else 1282 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1283 } 1284 1285 /* Free PS Poll skb here instead of returning RX_DROP that would 1286 * count as an dropped frame. */ 1287 dev_kfree_skb(rx->skb); 1288 1289 return RX_QUEUED; 1290 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1291 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1292 ieee80211_has_pm(hdr->frame_control) && 1293 (ieee80211_is_data_qos(hdr->frame_control) || 1294 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1295 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1296 ac = ieee802_1d_to_ac[tid & 7]; 1297 1298 /* 1299 * If this AC is not trigger-enabled do nothing. 1300 * 1301 * NB: This could/should check a separate bitmap of trigger- 1302 * enabled queues, but for now we only implement uAPSD w/o 1303 * TSPEC changes to the ACs, so they're always the same. 1304 */ 1305 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1306 return RX_CONTINUE; 1307 1308 /* if we are in a service period, do nothing */ 1309 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1310 return RX_CONTINUE; 1311 1312 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1313 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1314 else 1315 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1316 } 1317 1318 return RX_CONTINUE; 1319 } 1320 1321 static ieee80211_rx_result debug_noinline 1322 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1323 { 1324 struct sta_info *sta = rx->sta; 1325 struct sk_buff *skb = rx->skb; 1326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1327 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1328 int i; 1329 1330 if (!sta) 1331 return RX_CONTINUE; 1332 1333 /* 1334 * Update last_rx only for IBSS packets which are for the current 1335 * BSSID and for station already AUTHORIZED to avoid keeping the 1336 * current IBSS network alive in cases where other STAs start 1337 * using different BSSID. This will also give the station another 1338 * chance to restart the authentication/authorization in case 1339 * something went wrong the first time. 1340 */ 1341 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1342 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1343 NL80211_IFTYPE_ADHOC); 1344 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1345 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1346 sta->last_rx = jiffies; 1347 if (ieee80211_is_data(hdr->frame_control) && 1348 !is_multicast_ether_addr(hdr->addr1)) { 1349 sta->last_rx_rate_idx = status->rate_idx; 1350 sta->last_rx_rate_flag = status->flag; 1351 sta->last_rx_rate_vht_flag = status->vht_flag; 1352 sta->last_rx_rate_vht_nss = status->vht_nss; 1353 } 1354 } 1355 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1356 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1357 NL80211_IFTYPE_OCB); 1358 /* OCB uses wild-card BSSID */ 1359 if (is_broadcast_ether_addr(bssid)) 1360 sta->last_rx = jiffies; 1361 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1362 /* 1363 * Mesh beacons will update last_rx when if they are found to 1364 * match the current local configuration when processed. 1365 */ 1366 sta->last_rx = jiffies; 1367 if (ieee80211_is_data(hdr->frame_control)) { 1368 sta->last_rx_rate_idx = status->rate_idx; 1369 sta->last_rx_rate_flag = status->flag; 1370 sta->last_rx_rate_vht_flag = status->vht_flag; 1371 sta->last_rx_rate_vht_nss = status->vht_nss; 1372 } 1373 } 1374 1375 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1376 return RX_CONTINUE; 1377 1378 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1379 ieee80211_sta_rx_notify(rx->sdata, hdr); 1380 1381 sta->rx_fragments++; 1382 sta->rx_bytes += rx->skb->len; 1383 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1384 sta->last_signal = status->signal; 1385 ewma_add(&sta->avg_signal, -status->signal); 1386 } 1387 1388 if (status->chains) { 1389 sta->chains = status->chains; 1390 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1391 int signal = status->chain_signal[i]; 1392 1393 if (!(status->chains & BIT(i))) 1394 continue; 1395 1396 sta->chain_signal_last[i] = signal; 1397 ewma_add(&sta->chain_signal_avg[i], -signal); 1398 } 1399 } 1400 1401 /* 1402 * Change STA power saving mode only at the end of a frame 1403 * exchange sequence. 1404 */ 1405 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1406 !ieee80211_has_morefrags(hdr->frame_control) && 1407 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1408 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1409 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1410 /* PM bit is only checked in frames where it isn't reserved, 1411 * in AP mode it's reserved in non-bufferable management frames 1412 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1413 */ 1414 (!ieee80211_is_mgmt(hdr->frame_control) || 1415 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1416 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1417 if (!ieee80211_has_pm(hdr->frame_control)) 1418 sta_ps_end(sta); 1419 } else { 1420 if (ieee80211_has_pm(hdr->frame_control)) 1421 sta_ps_start(sta); 1422 } 1423 } 1424 1425 /* mesh power save support */ 1426 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1427 ieee80211_mps_rx_h_sta_process(sta, hdr); 1428 1429 /* 1430 * Drop (qos-)data::nullfunc frames silently, since they 1431 * are used only to control station power saving mode. 1432 */ 1433 if (ieee80211_is_nullfunc(hdr->frame_control) || 1434 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1435 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1436 1437 /* 1438 * If we receive a 4-addr nullfunc frame from a STA 1439 * that was not moved to a 4-addr STA vlan yet send 1440 * the event to userspace and for older hostapd drop 1441 * the frame to the monitor interface. 1442 */ 1443 if (ieee80211_has_a4(hdr->frame_control) && 1444 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1445 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1446 !rx->sdata->u.vlan.sta))) { 1447 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1448 cfg80211_rx_unexpected_4addr_frame( 1449 rx->sdata->dev, sta->sta.addr, 1450 GFP_ATOMIC); 1451 return RX_DROP_MONITOR; 1452 } 1453 /* 1454 * Update counter and free packet here to avoid 1455 * counting this as a dropped packed. 1456 */ 1457 sta->rx_packets++; 1458 dev_kfree_skb(rx->skb); 1459 return RX_QUEUED; 1460 } 1461 1462 return RX_CONTINUE; 1463 } /* ieee80211_rx_h_sta_process */ 1464 1465 static ieee80211_rx_result debug_noinline 1466 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1467 { 1468 struct sk_buff *skb = rx->skb; 1469 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1471 int keyidx; 1472 int hdrlen; 1473 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1474 struct ieee80211_key *sta_ptk = NULL; 1475 int mmie_keyidx = -1; 1476 __le16 fc; 1477 const struct ieee80211_cipher_scheme *cs = NULL; 1478 1479 /* 1480 * Key selection 101 1481 * 1482 * There are four types of keys: 1483 * - GTK (group keys) 1484 * - IGTK (group keys for management frames) 1485 * - PTK (pairwise keys) 1486 * - STK (station-to-station pairwise keys) 1487 * 1488 * When selecting a key, we have to distinguish between multicast 1489 * (including broadcast) and unicast frames, the latter can only 1490 * use PTKs and STKs while the former always use GTKs and IGTKs. 1491 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1492 * unicast frames can also use key indices like GTKs. Hence, if we 1493 * don't have a PTK/STK we check the key index for a WEP key. 1494 * 1495 * Note that in a regular BSS, multicast frames are sent by the 1496 * AP only, associated stations unicast the frame to the AP first 1497 * which then multicasts it on their behalf. 1498 * 1499 * There is also a slight problem in IBSS mode: GTKs are negotiated 1500 * with each station, that is something we don't currently handle. 1501 * The spec seems to expect that one negotiates the same key with 1502 * every station but there's no such requirement; VLANs could be 1503 * possible. 1504 */ 1505 1506 /* 1507 * No point in finding a key and decrypting if the frame is neither 1508 * addressed to us nor a multicast frame. 1509 */ 1510 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1511 return RX_CONTINUE; 1512 1513 /* start without a key */ 1514 rx->key = NULL; 1515 fc = hdr->frame_control; 1516 1517 if (rx->sta) { 1518 int keyid = rx->sta->ptk_idx; 1519 1520 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1521 cs = rx->sta->cipher_scheme; 1522 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1523 if (unlikely(keyid < 0)) 1524 return RX_DROP_UNUSABLE; 1525 } 1526 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1527 } 1528 1529 if (!ieee80211_has_protected(fc)) 1530 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1531 1532 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1533 rx->key = sta_ptk; 1534 if ((status->flag & RX_FLAG_DECRYPTED) && 1535 (status->flag & RX_FLAG_IV_STRIPPED)) 1536 return RX_CONTINUE; 1537 /* Skip decryption if the frame is not protected. */ 1538 if (!ieee80211_has_protected(fc)) 1539 return RX_CONTINUE; 1540 } else if (mmie_keyidx >= 0) { 1541 /* Broadcast/multicast robust management frame / BIP */ 1542 if ((status->flag & RX_FLAG_DECRYPTED) && 1543 (status->flag & RX_FLAG_IV_STRIPPED)) 1544 return RX_CONTINUE; 1545 1546 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1547 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1548 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1549 if (rx->sta) 1550 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1551 if (!rx->key) 1552 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1553 } else if (!ieee80211_has_protected(fc)) { 1554 /* 1555 * The frame was not protected, so skip decryption. However, we 1556 * need to set rx->key if there is a key that could have been 1557 * used so that the frame may be dropped if encryption would 1558 * have been expected. 1559 */ 1560 struct ieee80211_key *key = NULL; 1561 struct ieee80211_sub_if_data *sdata = rx->sdata; 1562 int i; 1563 1564 if (ieee80211_is_mgmt(fc) && 1565 is_multicast_ether_addr(hdr->addr1) && 1566 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1567 rx->key = key; 1568 else { 1569 if (rx->sta) { 1570 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1571 key = rcu_dereference(rx->sta->gtk[i]); 1572 if (key) 1573 break; 1574 } 1575 } 1576 if (!key) { 1577 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1578 key = rcu_dereference(sdata->keys[i]); 1579 if (key) 1580 break; 1581 } 1582 } 1583 if (key) 1584 rx->key = key; 1585 } 1586 return RX_CONTINUE; 1587 } else { 1588 u8 keyid; 1589 1590 /* 1591 * The device doesn't give us the IV so we won't be 1592 * able to look up the key. That's ok though, we 1593 * don't need to decrypt the frame, we just won't 1594 * be able to keep statistics accurate. 1595 * Except for key threshold notifications, should 1596 * we somehow allow the driver to tell us which key 1597 * the hardware used if this flag is set? 1598 */ 1599 if ((status->flag & RX_FLAG_DECRYPTED) && 1600 (status->flag & RX_FLAG_IV_STRIPPED)) 1601 return RX_CONTINUE; 1602 1603 hdrlen = ieee80211_hdrlen(fc); 1604 1605 if (cs) { 1606 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1607 1608 if (unlikely(keyidx < 0)) 1609 return RX_DROP_UNUSABLE; 1610 } else { 1611 if (rx->skb->len < 8 + hdrlen) 1612 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1613 /* 1614 * no need to call ieee80211_wep_get_keyidx, 1615 * it verifies a bunch of things we've done already 1616 */ 1617 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1618 keyidx = keyid >> 6; 1619 } 1620 1621 /* check per-station GTK first, if multicast packet */ 1622 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1623 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1624 1625 /* if not found, try default key */ 1626 if (!rx->key) { 1627 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1628 1629 /* 1630 * RSNA-protected unicast frames should always be 1631 * sent with pairwise or station-to-station keys, 1632 * but for WEP we allow using a key index as well. 1633 */ 1634 if (rx->key && 1635 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1636 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1637 !is_multicast_ether_addr(hdr->addr1)) 1638 rx->key = NULL; 1639 } 1640 } 1641 1642 if (rx->key) { 1643 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1644 return RX_DROP_MONITOR; 1645 1646 rx->key->tx_rx_count++; 1647 /* TODO: add threshold stuff again */ 1648 } else { 1649 return RX_DROP_MONITOR; 1650 } 1651 1652 switch (rx->key->conf.cipher) { 1653 case WLAN_CIPHER_SUITE_WEP40: 1654 case WLAN_CIPHER_SUITE_WEP104: 1655 result = ieee80211_crypto_wep_decrypt(rx); 1656 break; 1657 case WLAN_CIPHER_SUITE_TKIP: 1658 result = ieee80211_crypto_tkip_decrypt(rx); 1659 break; 1660 case WLAN_CIPHER_SUITE_CCMP: 1661 result = ieee80211_crypto_ccmp_decrypt( 1662 rx, IEEE80211_CCMP_MIC_LEN); 1663 break; 1664 case WLAN_CIPHER_SUITE_CCMP_256: 1665 result = ieee80211_crypto_ccmp_decrypt( 1666 rx, IEEE80211_CCMP_256_MIC_LEN); 1667 break; 1668 case WLAN_CIPHER_SUITE_AES_CMAC: 1669 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1670 break; 1671 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1672 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1673 break; 1674 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1675 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1676 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1677 break; 1678 case WLAN_CIPHER_SUITE_GCMP: 1679 case WLAN_CIPHER_SUITE_GCMP_256: 1680 result = ieee80211_crypto_gcmp_decrypt(rx); 1681 break; 1682 default: 1683 result = ieee80211_crypto_hw_decrypt(rx); 1684 } 1685 1686 /* the hdr variable is invalid after the decrypt handlers */ 1687 1688 /* either the frame has been decrypted or will be dropped */ 1689 status->flag |= RX_FLAG_DECRYPTED; 1690 1691 return result; 1692 } 1693 1694 static inline struct ieee80211_fragment_entry * 1695 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1696 unsigned int frag, unsigned int seq, int rx_queue, 1697 struct sk_buff **skb) 1698 { 1699 struct ieee80211_fragment_entry *entry; 1700 1701 entry = &sdata->fragments[sdata->fragment_next++]; 1702 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1703 sdata->fragment_next = 0; 1704 1705 if (!skb_queue_empty(&entry->skb_list)) 1706 __skb_queue_purge(&entry->skb_list); 1707 1708 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1709 *skb = NULL; 1710 entry->first_frag_time = jiffies; 1711 entry->seq = seq; 1712 entry->rx_queue = rx_queue; 1713 entry->last_frag = frag; 1714 entry->ccmp = 0; 1715 entry->extra_len = 0; 1716 1717 return entry; 1718 } 1719 1720 static inline struct ieee80211_fragment_entry * 1721 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1722 unsigned int frag, unsigned int seq, 1723 int rx_queue, struct ieee80211_hdr *hdr) 1724 { 1725 struct ieee80211_fragment_entry *entry; 1726 int i, idx; 1727 1728 idx = sdata->fragment_next; 1729 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1730 struct ieee80211_hdr *f_hdr; 1731 1732 idx--; 1733 if (idx < 0) 1734 idx = IEEE80211_FRAGMENT_MAX - 1; 1735 1736 entry = &sdata->fragments[idx]; 1737 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1738 entry->rx_queue != rx_queue || 1739 entry->last_frag + 1 != frag) 1740 continue; 1741 1742 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1743 1744 /* 1745 * Check ftype and addresses are equal, else check next fragment 1746 */ 1747 if (((hdr->frame_control ^ f_hdr->frame_control) & 1748 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1749 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1750 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1751 continue; 1752 1753 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1754 __skb_queue_purge(&entry->skb_list); 1755 continue; 1756 } 1757 return entry; 1758 } 1759 1760 return NULL; 1761 } 1762 1763 static ieee80211_rx_result debug_noinline 1764 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1765 { 1766 struct ieee80211_hdr *hdr; 1767 u16 sc; 1768 __le16 fc; 1769 unsigned int frag, seq; 1770 struct ieee80211_fragment_entry *entry; 1771 struct sk_buff *skb; 1772 struct ieee80211_rx_status *status; 1773 1774 hdr = (struct ieee80211_hdr *)rx->skb->data; 1775 fc = hdr->frame_control; 1776 1777 if (ieee80211_is_ctl(fc)) 1778 return RX_CONTINUE; 1779 1780 sc = le16_to_cpu(hdr->seq_ctrl); 1781 frag = sc & IEEE80211_SCTL_FRAG; 1782 1783 if (is_multicast_ether_addr(hdr->addr1)) { 1784 rx->local->dot11MulticastReceivedFrameCount++; 1785 goto out_no_led; 1786 } 1787 1788 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1789 goto out; 1790 1791 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1792 1793 if (skb_linearize(rx->skb)) 1794 return RX_DROP_UNUSABLE; 1795 1796 /* 1797 * skb_linearize() might change the skb->data and 1798 * previously cached variables (in this case, hdr) need to 1799 * be refreshed with the new data. 1800 */ 1801 hdr = (struct ieee80211_hdr *)rx->skb->data; 1802 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1803 1804 if (frag == 0) { 1805 /* This is the first fragment of a new frame. */ 1806 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1807 rx->seqno_idx, &(rx->skb)); 1808 if (rx->key && 1809 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1810 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) && 1811 ieee80211_has_protected(fc)) { 1812 int queue = rx->security_idx; 1813 /* Store CCMP PN so that we can verify that the next 1814 * fragment has a sequential PN value. */ 1815 entry->ccmp = 1; 1816 memcpy(entry->last_pn, 1817 rx->key->u.ccmp.rx_pn[queue], 1818 IEEE80211_CCMP_PN_LEN); 1819 } 1820 return RX_QUEUED; 1821 } 1822 1823 /* This is a fragment for a frame that should already be pending in 1824 * fragment cache. Add this fragment to the end of the pending entry. 1825 */ 1826 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1827 rx->seqno_idx, hdr); 1828 if (!entry) { 1829 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1830 return RX_DROP_MONITOR; 1831 } 1832 1833 /* Verify that MPDUs within one MSDU have sequential PN values. 1834 * (IEEE 802.11i, 8.3.3.4.5) */ 1835 if (entry->ccmp) { 1836 int i; 1837 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1838 int queue; 1839 if (!rx->key || 1840 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1841 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256)) 1842 return RX_DROP_UNUSABLE; 1843 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1844 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1845 pn[i]++; 1846 if (pn[i]) 1847 break; 1848 } 1849 queue = rx->security_idx; 1850 rpn = rx->key->u.ccmp.rx_pn[queue]; 1851 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1852 return RX_DROP_UNUSABLE; 1853 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1854 } 1855 1856 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1857 __skb_queue_tail(&entry->skb_list, rx->skb); 1858 entry->last_frag = frag; 1859 entry->extra_len += rx->skb->len; 1860 if (ieee80211_has_morefrags(fc)) { 1861 rx->skb = NULL; 1862 return RX_QUEUED; 1863 } 1864 1865 rx->skb = __skb_dequeue(&entry->skb_list); 1866 if (skb_tailroom(rx->skb) < entry->extra_len) { 1867 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1868 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1869 GFP_ATOMIC))) { 1870 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1871 __skb_queue_purge(&entry->skb_list); 1872 return RX_DROP_UNUSABLE; 1873 } 1874 } 1875 while ((skb = __skb_dequeue(&entry->skb_list))) { 1876 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1877 dev_kfree_skb(skb); 1878 } 1879 1880 /* Complete frame has been reassembled - process it now */ 1881 status = IEEE80211_SKB_RXCB(rx->skb); 1882 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1883 1884 out: 1885 ieee80211_led_rx(rx->local); 1886 out_no_led: 1887 if (rx->sta) 1888 rx->sta->rx_packets++; 1889 return RX_CONTINUE; 1890 } 1891 1892 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1893 { 1894 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1895 return -EACCES; 1896 1897 return 0; 1898 } 1899 1900 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1901 { 1902 struct sk_buff *skb = rx->skb; 1903 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1904 1905 /* 1906 * Pass through unencrypted frames if the hardware has 1907 * decrypted them already. 1908 */ 1909 if (status->flag & RX_FLAG_DECRYPTED) 1910 return 0; 1911 1912 /* Drop unencrypted frames if key is set. */ 1913 if (unlikely(!ieee80211_has_protected(fc) && 1914 !ieee80211_is_nullfunc(fc) && 1915 ieee80211_is_data(fc) && 1916 (rx->key || rx->sdata->drop_unencrypted))) 1917 return -EACCES; 1918 1919 return 0; 1920 } 1921 1922 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1923 { 1924 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1925 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1926 __le16 fc = hdr->frame_control; 1927 1928 /* 1929 * Pass through unencrypted frames if the hardware has 1930 * decrypted them already. 1931 */ 1932 if (status->flag & RX_FLAG_DECRYPTED) 1933 return 0; 1934 1935 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1936 if (unlikely(!ieee80211_has_protected(fc) && 1937 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1938 rx->key)) { 1939 if (ieee80211_is_deauth(fc) || 1940 ieee80211_is_disassoc(fc)) 1941 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1942 rx->skb->data, 1943 rx->skb->len); 1944 return -EACCES; 1945 } 1946 /* BIP does not use Protected field, so need to check MMIE */ 1947 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1948 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1949 if (ieee80211_is_deauth(fc) || 1950 ieee80211_is_disassoc(fc)) 1951 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1952 rx->skb->data, 1953 rx->skb->len); 1954 return -EACCES; 1955 } 1956 /* 1957 * When using MFP, Action frames are not allowed prior to 1958 * having configured keys. 1959 */ 1960 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1961 ieee80211_is_robust_mgmt_frame(rx->skb))) 1962 return -EACCES; 1963 } 1964 1965 return 0; 1966 } 1967 1968 static int 1969 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1970 { 1971 struct ieee80211_sub_if_data *sdata = rx->sdata; 1972 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1973 bool check_port_control = false; 1974 struct ethhdr *ehdr; 1975 int ret; 1976 1977 *port_control = false; 1978 if (ieee80211_has_a4(hdr->frame_control) && 1979 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1980 return -1; 1981 1982 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1983 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1984 1985 if (!sdata->u.mgd.use_4addr) 1986 return -1; 1987 else 1988 check_port_control = true; 1989 } 1990 1991 if (is_multicast_ether_addr(hdr->addr1) && 1992 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1993 return -1; 1994 1995 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1996 if (ret < 0) 1997 return ret; 1998 1999 ehdr = (struct ethhdr *) rx->skb->data; 2000 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2001 *port_control = true; 2002 else if (check_port_control) 2003 return -1; 2004 2005 return 0; 2006 } 2007 2008 /* 2009 * requires that rx->skb is a frame with ethernet header 2010 */ 2011 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2012 { 2013 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2014 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2015 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2016 2017 /* 2018 * Allow EAPOL frames to us/the PAE group address regardless 2019 * of whether the frame was encrypted or not. 2020 */ 2021 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2022 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2023 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2024 return true; 2025 2026 if (ieee80211_802_1x_port_control(rx) || 2027 ieee80211_drop_unencrypted(rx, fc)) 2028 return false; 2029 2030 return true; 2031 } 2032 2033 /* 2034 * requires that rx->skb is a frame with ethernet header 2035 */ 2036 static void 2037 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2038 { 2039 struct ieee80211_sub_if_data *sdata = rx->sdata; 2040 struct net_device *dev = sdata->dev; 2041 struct sk_buff *skb, *xmit_skb; 2042 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2043 struct sta_info *dsta; 2044 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2045 2046 skb = rx->skb; 2047 xmit_skb = NULL; 2048 2049 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2050 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2051 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2052 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 2053 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2054 if (is_multicast_ether_addr(ehdr->h_dest)) { 2055 /* 2056 * send multicast frames both to higher layers in 2057 * local net stack and back to the wireless medium 2058 */ 2059 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2060 if (!xmit_skb) 2061 net_info_ratelimited("%s: failed to clone multicast frame\n", 2062 dev->name); 2063 } else { 2064 dsta = sta_info_get(sdata, skb->data); 2065 if (dsta) { 2066 /* 2067 * The destination station is associated to 2068 * this AP (in this VLAN), so send the frame 2069 * directly to it and do not pass it to local 2070 * net stack. 2071 */ 2072 xmit_skb = skb; 2073 skb = NULL; 2074 } 2075 } 2076 } 2077 2078 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2079 if (skb) { 2080 /* 'align' will only take the values 0 or 2 here since all 2081 * frames are required to be aligned to 2-byte boundaries 2082 * when being passed to mac80211; the code here works just 2083 * as well if that isn't true, but mac80211 assumes it can 2084 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2085 */ 2086 int align; 2087 2088 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2089 if (align) { 2090 if (WARN_ON(skb_headroom(skb) < 3)) { 2091 dev_kfree_skb(skb); 2092 skb = NULL; 2093 } else { 2094 u8 *data = skb->data; 2095 size_t len = skb_headlen(skb); 2096 skb->data -= align; 2097 memmove(skb->data, data, len); 2098 skb_set_tail_pointer(skb, len); 2099 } 2100 } 2101 } 2102 #endif 2103 2104 if (skb) { 2105 /* deliver to local stack */ 2106 skb->protocol = eth_type_trans(skb, dev); 2107 memset(skb->cb, 0, sizeof(skb->cb)); 2108 if (rx->local->napi) 2109 napi_gro_receive(rx->local->napi, skb); 2110 else 2111 netif_receive_skb(skb); 2112 } 2113 2114 if (xmit_skb) { 2115 /* 2116 * Send to wireless media and increase priority by 256 to 2117 * keep the received priority instead of reclassifying 2118 * the frame (see cfg80211_classify8021d). 2119 */ 2120 xmit_skb->priority += 256; 2121 xmit_skb->protocol = htons(ETH_P_802_3); 2122 skb_reset_network_header(xmit_skb); 2123 skb_reset_mac_header(xmit_skb); 2124 dev_queue_xmit(xmit_skb); 2125 } 2126 } 2127 2128 static ieee80211_rx_result debug_noinline 2129 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2130 { 2131 struct net_device *dev = rx->sdata->dev; 2132 struct sk_buff *skb = rx->skb; 2133 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2134 __le16 fc = hdr->frame_control; 2135 struct sk_buff_head frame_list; 2136 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2137 2138 if (unlikely(!ieee80211_is_data(fc))) 2139 return RX_CONTINUE; 2140 2141 if (unlikely(!ieee80211_is_data_present(fc))) 2142 return RX_DROP_MONITOR; 2143 2144 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2145 return RX_CONTINUE; 2146 2147 if (ieee80211_has_a4(hdr->frame_control) && 2148 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2149 !rx->sdata->u.vlan.sta) 2150 return RX_DROP_UNUSABLE; 2151 2152 if (is_multicast_ether_addr(hdr->addr1) && 2153 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2154 rx->sdata->u.vlan.sta) || 2155 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2156 rx->sdata->u.mgd.use_4addr))) 2157 return RX_DROP_UNUSABLE; 2158 2159 skb->dev = dev; 2160 __skb_queue_head_init(&frame_list); 2161 2162 if (skb_linearize(skb)) 2163 return RX_DROP_UNUSABLE; 2164 2165 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2166 rx->sdata->vif.type, 2167 rx->local->hw.extra_tx_headroom, true); 2168 2169 while (!skb_queue_empty(&frame_list)) { 2170 rx->skb = __skb_dequeue(&frame_list); 2171 2172 if (!ieee80211_frame_allowed(rx, fc)) { 2173 dev_kfree_skb(rx->skb); 2174 continue; 2175 } 2176 dev->stats.rx_packets++; 2177 dev->stats.rx_bytes += rx->skb->len; 2178 2179 ieee80211_deliver_skb(rx); 2180 } 2181 2182 return RX_QUEUED; 2183 } 2184 2185 #ifdef CONFIG_MAC80211_MESH 2186 static ieee80211_rx_result 2187 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2188 { 2189 struct ieee80211_hdr *fwd_hdr, *hdr; 2190 struct ieee80211_tx_info *info; 2191 struct ieee80211s_hdr *mesh_hdr; 2192 struct sk_buff *skb = rx->skb, *fwd_skb; 2193 struct ieee80211_local *local = rx->local; 2194 struct ieee80211_sub_if_data *sdata = rx->sdata; 2195 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2196 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2197 u16 q, hdrlen; 2198 2199 hdr = (struct ieee80211_hdr *) skb->data; 2200 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2201 2202 /* make sure fixed part of mesh header is there, also checks skb len */ 2203 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2204 return RX_DROP_MONITOR; 2205 2206 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2207 2208 /* make sure full mesh header is there, also checks skb len */ 2209 if (!pskb_may_pull(rx->skb, 2210 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2211 return RX_DROP_MONITOR; 2212 2213 /* reload pointers */ 2214 hdr = (struct ieee80211_hdr *) skb->data; 2215 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2216 2217 /* frame is in RMC, don't forward */ 2218 if (ieee80211_is_data(hdr->frame_control) && 2219 is_multicast_ether_addr(hdr->addr1) && 2220 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2221 return RX_DROP_MONITOR; 2222 2223 if (!ieee80211_is_data(hdr->frame_control) || 2224 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2225 return RX_CONTINUE; 2226 2227 if (!mesh_hdr->ttl) 2228 return RX_DROP_MONITOR; 2229 2230 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2231 struct mesh_path *mppath; 2232 char *proxied_addr; 2233 char *mpp_addr; 2234 2235 if (is_multicast_ether_addr(hdr->addr1)) { 2236 mpp_addr = hdr->addr3; 2237 proxied_addr = mesh_hdr->eaddr1; 2238 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2239 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2240 mpp_addr = hdr->addr4; 2241 proxied_addr = mesh_hdr->eaddr2; 2242 } else { 2243 return RX_DROP_MONITOR; 2244 } 2245 2246 rcu_read_lock(); 2247 mppath = mpp_path_lookup(sdata, proxied_addr); 2248 if (!mppath) { 2249 mpp_path_add(sdata, proxied_addr, mpp_addr); 2250 } else { 2251 spin_lock_bh(&mppath->state_lock); 2252 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2253 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2254 spin_unlock_bh(&mppath->state_lock); 2255 } 2256 rcu_read_unlock(); 2257 } 2258 2259 /* Frame has reached destination. Don't forward */ 2260 if (!is_multicast_ether_addr(hdr->addr1) && 2261 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2262 return RX_CONTINUE; 2263 2264 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2265 if (ieee80211_queue_stopped(&local->hw, q)) { 2266 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2267 return RX_DROP_MONITOR; 2268 } 2269 skb_set_queue_mapping(skb, q); 2270 2271 if (!--mesh_hdr->ttl) { 2272 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2273 goto out; 2274 } 2275 2276 if (!ifmsh->mshcfg.dot11MeshForwarding) 2277 goto out; 2278 2279 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2280 if (!fwd_skb) { 2281 net_info_ratelimited("%s: failed to clone mesh frame\n", 2282 sdata->name); 2283 goto out; 2284 } 2285 2286 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2287 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2288 info = IEEE80211_SKB_CB(fwd_skb); 2289 memset(info, 0, sizeof(*info)); 2290 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2291 info->control.vif = &rx->sdata->vif; 2292 info->control.jiffies = jiffies; 2293 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2294 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2295 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2296 /* update power mode indication when forwarding */ 2297 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2298 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2299 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2300 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2301 } else { 2302 /* unable to resolve next hop */ 2303 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2304 fwd_hdr->addr3, 0, 2305 WLAN_REASON_MESH_PATH_NOFORWARD, 2306 fwd_hdr->addr2); 2307 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2308 kfree_skb(fwd_skb); 2309 return RX_DROP_MONITOR; 2310 } 2311 2312 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2313 ieee80211_add_pending_skb(local, fwd_skb); 2314 out: 2315 if (is_multicast_ether_addr(hdr->addr1) || 2316 sdata->dev->flags & IFF_PROMISC) 2317 return RX_CONTINUE; 2318 else 2319 return RX_DROP_MONITOR; 2320 } 2321 #endif 2322 2323 static ieee80211_rx_result debug_noinline 2324 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2325 { 2326 struct ieee80211_sub_if_data *sdata = rx->sdata; 2327 struct ieee80211_local *local = rx->local; 2328 struct net_device *dev = sdata->dev; 2329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2330 __le16 fc = hdr->frame_control; 2331 bool port_control; 2332 int err; 2333 2334 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2335 return RX_CONTINUE; 2336 2337 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2338 return RX_DROP_MONITOR; 2339 2340 if (rx->sta) { 2341 /* The seqno index has the same property as needed 2342 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2343 * for non-QoS-data frames. Here we know it's a data 2344 * frame, so count MSDUs. 2345 */ 2346 rx->sta->rx_msdu[rx->seqno_idx]++; 2347 } 2348 2349 /* 2350 * Send unexpected-4addr-frame event to hostapd. For older versions, 2351 * also drop the frame to cooked monitor interfaces. 2352 */ 2353 if (ieee80211_has_a4(hdr->frame_control) && 2354 sdata->vif.type == NL80211_IFTYPE_AP) { 2355 if (rx->sta && 2356 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2357 cfg80211_rx_unexpected_4addr_frame( 2358 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2359 return RX_DROP_MONITOR; 2360 } 2361 2362 err = __ieee80211_data_to_8023(rx, &port_control); 2363 if (unlikely(err)) 2364 return RX_DROP_UNUSABLE; 2365 2366 if (!ieee80211_frame_allowed(rx, fc)) 2367 return RX_DROP_MONITOR; 2368 2369 /* directly handle TDLS channel switch requests/responses */ 2370 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2371 cpu_to_be16(ETH_P_TDLS))) { 2372 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2373 2374 if (pskb_may_pull(rx->skb, 2375 offsetof(struct ieee80211_tdls_data, u)) && 2376 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2377 tf->category == WLAN_CATEGORY_TDLS && 2378 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2379 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2380 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW; 2381 skb_queue_tail(&sdata->skb_queue, rx->skb); 2382 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2383 if (rx->sta) 2384 rx->sta->rx_packets++; 2385 2386 return RX_QUEUED; 2387 } 2388 } 2389 2390 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2391 unlikely(port_control) && sdata->bss) { 2392 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2393 u.ap); 2394 dev = sdata->dev; 2395 rx->sdata = sdata; 2396 } 2397 2398 rx->skb->dev = dev; 2399 2400 dev->stats.rx_packets++; 2401 dev->stats.rx_bytes += rx->skb->len; 2402 2403 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2404 !is_multicast_ether_addr( 2405 ((struct ethhdr *)rx->skb->data)->h_dest) && 2406 (!local->scanning && 2407 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2408 mod_timer(&local->dynamic_ps_timer, jiffies + 2409 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2410 } 2411 2412 ieee80211_deliver_skb(rx); 2413 2414 return RX_QUEUED; 2415 } 2416 2417 static ieee80211_rx_result debug_noinline 2418 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2419 { 2420 struct sk_buff *skb = rx->skb; 2421 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2422 struct tid_ampdu_rx *tid_agg_rx; 2423 u16 start_seq_num; 2424 u16 tid; 2425 2426 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2427 return RX_CONTINUE; 2428 2429 if (ieee80211_is_back_req(bar->frame_control)) { 2430 struct { 2431 __le16 control, start_seq_num; 2432 } __packed bar_data; 2433 2434 if (!rx->sta) 2435 return RX_DROP_MONITOR; 2436 2437 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2438 &bar_data, sizeof(bar_data))) 2439 return RX_DROP_MONITOR; 2440 2441 tid = le16_to_cpu(bar_data.control) >> 12; 2442 2443 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2444 if (!tid_agg_rx) 2445 return RX_DROP_MONITOR; 2446 2447 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2448 2449 /* reset session timer */ 2450 if (tid_agg_rx->timeout) 2451 mod_timer(&tid_agg_rx->session_timer, 2452 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2453 2454 spin_lock(&tid_agg_rx->reorder_lock); 2455 /* release stored frames up to start of BAR */ 2456 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2457 start_seq_num, frames); 2458 spin_unlock(&tid_agg_rx->reorder_lock); 2459 2460 kfree_skb(skb); 2461 return RX_QUEUED; 2462 } 2463 2464 /* 2465 * After this point, we only want management frames, 2466 * so we can drop all remaining control frames to 2467 * cooked monitor interfaces. 2468 */ 2469 return RX_DROP_MONITOR; 2470 } 2471 2472 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2473 struct ieee80211_mgmt *mgmt, 2474 size_t len) 2475 { 2476 struct ieee80211_local *local = sdata->local; 2477 struct sk_buff *skb; 2478 struct ieee80211_mgmt *resp; 2479 2480 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2481 /* Not to own unicast address */ 2482 return; 2483 } 2484 2485 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2486 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2487 /* Not from the current AP or not associated yet. */ 2488 return; 2489 } 2490 2491 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2492 /* Too short SA Query request frame */ 2493 return; 2494 } 2495 2496 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2497 if (skb == NULL) 2498 return; 2499 2500 skb_reserve(skb, local->hw.extra_tx_headroom); 2501 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2502 memset(resp, 0, 24); 2503 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2504 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2505 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2506 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2507 IEEE80211_STYPE_ACTION); 2508 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2509 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2510 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2511 memcpy(resp->u.action.u.sa_query.trans_id, 2512 mgmt->u.action.u.sa_query.trans_id, 2513 WLAN_SA_QUERY_TR_ID_LEN); 2514 2515 ieee80211_tx_skb(sdata, skb); 2516 } 2517 2518 static ieee80211_rx_result debug_noinline 2519 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2520 { 2521 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2522 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2523 2524 /* 2525 * From here on, look only at management frames. 2526 * Data and control frames are already handled, 2527 * and unknown (reserved) frames are useless. 2528 */ 2529 if (rx->skb->len < 24) 2530 return RX_DROP_MONITOR; 2531 2532 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2533 return RX_DROP_MONITOR; 2534 2535 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2536 ieee80211_is_beacon(mgmt->frame_control) && 2537 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2538 int sig = 0; 2539 2540 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2541 sig = status->signal; 2542 2543 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2544 rx->skb->data, rx->skb->len, 2545 status->freq, sig); 2546 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2547 } 2548 2549 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2550 return RX_DROP_MONITOR; 2551 2552 if (ieee80211_drop_unencrypted_mgmt(rx)) 2553 return RX_DROP_UNUSABLE; 2554 2555 return RX_CONTINUE; 2556 } 2557 2558 static ieee80211_rx_result debug_noinline 2559 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2560 { 2561 struct ieee80211_local *local = rx->local; 2562 struct ieee80211_sub_if_data *sdata = rx->sdata; 2563 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2564 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2565 int len = rx->skb->len; 2566 2567 if (!ieee80211_is_action(mgmt->frame_control)) 2568 return RX_CONTINUE; 2569 2570 /* drop too small frames */ 2571 if (len < IEEE80211_MIN_ACTION_SIZE) 2572 return RX_DROP_UNUSABLE; 2573 2574 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2575 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2576 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2577 return RX_DROP_UNUSABLE; 2578 2579 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2580 return RX_DROP_UNUSABLE; 2581 2582 switch (mgmt->u.action.category) { 2583 case WLAN_CATEGORY_HT: 2584 /* reject HT action frames from stations not supporting HT */ 2585 if (!rx->sta->sta.ht_cap.ht_supported) 2586 goto invalid; 2587 2588 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2589 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2590 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2591 sdata->vif.type != NL80211_IFTYPE_AP && 2592 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2593 break; 2594 2595 /* verify action & smps_control/chanwidth are present */ 2596 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2597 goto invalid; 2598 2599 switch (mgmt->u.action.u.ht_smps.action) { 2600 case WLAN_HT_ACTION_SMPS: { 2601 struct ieee80211_supported_band *sband; 2602 enum ieee80211_smps_mode smps_mode; 2603 2604 /* convert to HT capability */ 2605 switch (mgmt->u.action.u.ht_smps.smps_control) { 2606 case WLAN_HT_SMPS_CONTROL_DISABLED: 2607 smps_mode = IEEE80211_SMPS_OFF; 2608 break; 2609 case WLAN_HT_SMPS_CONTROL_STATIC: 2610 smps_mode = IEEE80211_SMPS_STATIC; 2611 break; 2612 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2613 smps_mode = IEEE80211_SMPS_DYNAMIC; 2614 break; 2615 default: 2616 goto invalid; 2617 } 2618 2619 /* if no change do nothing */ 2620 if (rx->sta->sta.smps_mode == smps_mode) 2621 goto handled; 2622 rx->sta->sta.smps_mode = smps_mode; 2623 2624 sband = rx->local->hw.wiphy->bands[status->band]; 2625 2626 rate_control_rate_update(local, sband, rx->sta, 2627 IEEE80211_RC_SMPS_CHANGED); 2628 goto handled; 2629 } 2630 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2631 struct ieee80211_supported_band *sband; 2632 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2633 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2634 2635 /* If it doesn't support 40 MHz it can't change ... */ 2636 if (!(rx->sta->sta.ht_cap.cap & 2637 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2638 goto handled; 2639 2640 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2641 max_bw = IEEE80211_STA_RX_BW_20; 2642 else 2643 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2644 2645 /* set cur_max_bandwidth and recalc sta bw */ 2646 rx->sta->cur_max_bandwidth = max_bw; 2647 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2648 2649 if (rx->sta->sta.bandwidth == new_bw) 2650 goto handled; 2651 2652 rx->sta->sta.bandwidth = new_bw; 2653 sband = rx->local->hw.wiphy->bands[status->band]; 2654 2655 rate_control_rate_update(local, sband, rx->sta, 2656 IEEE80211_RC_BW_CHANGED); 2657 goto handled; 2658 } 2659 default: 2660 goto invalid; 2661 } 2662 2663 break; 2664 case WLAN_CATEGORY_PUBLIC: 2665 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2666 goto invalid; 2667 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2668 break; 2669 if (!rx->sta) 2670 break; 2671 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2672 break; 2673 if (mgmt->u.action.u.ext_chan_switch.action_code != 2674 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2675 break; 2676 if (len < offsetof(struct ieee80211_mgmt, 2677 u.action.u.ext_chan_switch.variable)) 2678 goto invalid; 2679 goto queue; 2680 case WLAN_CATEGORY_VHT: 2681 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2682 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2683 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2684 sdata->vif.type != NL80211_IFTYPE_AP && 2685 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2686 break; 2687 2688 /* verify action code is present */ 2689 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2690 goto invalid; 2691 2692 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2693 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2694 u8 opmode; 2695 2696 /* verify opmode is present */ 2697 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2698 goto invalid; 2699 2700 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2701 2702 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2703 opmode, status->band, 2704 false); 2705 goto handled; 2706 } 2707 default: 2708 break; 2709 } 2710 break; 2711 case WLAN_CATEGORY_BACK: 2712 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2713 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2714 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2715 sdata->vif.type != NL80211_IFTYPE_AP && 2716 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2717 break; 2718 2719 /* verify action_code is present */ 2720 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2721 break; 2722 2723 switch (mgmt->u.action.u.addba_req.action_code) { 2724 case WLAN_ACTION_ADDBA_REQ: 2725 if (len < (IEEE80211_MIN_ACTION_SIZE + 2726 sizeof(mgmt->u.action.u.addba_req))) 2727 goto invalid; 2728 break; 2729 case WLAN_ACTION_ADDBA_RESP: 2730 if (len < (IEEE80211_MIN_ACTION_SIZE + 2731 sizeof(mgmt->u.action.u.addba_resp))) 2732 goto invalid; 2733 break; 2734 case WLAN_ACTION_DELBA: 2735 if (len < (IEEE80211_MIN_ACTION_SIZE + 2736 sizeof(mgmt->u.action.u.delba))) 2737 goto invalid; 2738 break; 2739 default: 2740 goto invalid; 2741 } 2742 2743 goto queue; 2744 case WLAN_CATEGORY_SPECTRUM_MGMT: 2745 /* verify action_code is present */ 2746 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2747 break; 2748 2749 switch (mgmt->u.action.u.measurement.action_code) { 2750 case WLAN_ACTION_SPCT_MSR_REQ: 2751 if (status->band != IEEE80211_BAND_5GHZ) 2752 break; 2753 2754 if (len < (IEEE80211_MIN_ACTION_SIZE + 2755 sizeof(mgmt->u.action.u.measurement))) 2756 break; 2757 2758 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2759 break; 2760 2761 ieee80211_process_measurement_req(sdata, mgmt, len); 2762 goto handled; 2763 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2764 u8 *bssid; 2765 if (len < (IEEE80211_MIN_ACTION_SIZE + 2766 sizeof(mgmt->u.action.u.chan_switch))) 2767 break; 2768 2769 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2770 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2771 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2772 break; 2773 2774 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2775 bssid = sdata->u.mgd.bssid; 2776 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2777 bssid = sdata->u.ibss.bssid; 2778 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2779 bssid = mgmt->sa; 2780 else 2781 break; 2782 2783 if (!ether_addr_equal(mgmt->bssid, bssid)) 2784 break; 2785 2786 goto queue; 2787 } 2788 } 2789 break; 2790 case WLAN_CATEGORY_SA_QUERY: 2791 if (len < (IEEE80211_MIN_ACTION_SIZE + 2792 sizeof(mgmt->u.action.u.sa_query))) 2793 break; 2794 2795 switch (mgmt->u.action.u.sa_query.action) { 2796 case WLAN_ACTION_SA_QUERY_REQUEST: 2797 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2798 break; 2799 ieee80211_process_sa_query_req(sdata, mgmt, len); 2800 goto handled; 2801 } 2802 break; 2803 case WLAN_CATEGORY_SELF_PROTECTED: 2804 if (len < (IEEE80211_MIN_ACTION_SIZE + 2805 sizeof(mgmt->u.action.u.self_prot.action_code))) 2806 break; 2807 2808 switch (mgmt->u.action.u.self_prot.action_code) { 2809 case WLAN_SP_MESH_PEERING_OPEN: 2810 case WLAN_SP_MESH_PEERING_CLOSE: 2811 case WLAN_SP_MESH_PEERING_CONFIRM: 2812 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2813 goto invalid; 2814 if (sdata->u.mesh.user_mpm) 2815 /* userspace handles this frame */ 2816 break; 2817 goto queue; 2818 case WLAN_SP_MGK_INFORM: 2819 case WLAN_SP_MGK_ACK: 2820 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2821 goto invalid; 2822 break; 2823 } 2824 break; 2825 case WLAN_CATEGORY_MESH_ACTION: 2826 if (len < (IEEE80211_MIN_ACTION_SIZE + 2827 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2828 break; 2829 2830 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2831 break; 2832 if (mesh_action_is_path_sel(mgmt) && 2833 !mesh_path_sel_is_hwmp(sdata)) 2834 break; 2835 goto queue; 2836 } 2837 2838 return RX_CONTINUE; 2839 2840 invalid: 2841 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2842 /* will return in the next handlers */ 2843 return RX_CONTINUE; 2844 2845 handled: 2846 if (rx->sta) 2847 rx->sta->rx_packets++; 2848 dev_kfree_skb(rx->skb); 2849 return RX_QUEUED; 2850 2851 queue: 2852 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2853 skb_queue_tail(&sdata->skb_queue, rx->skb); 2854 ieee80211_queue_work(&local->hw, &sdata->work); 2855 if (rx->sta) 2856 rx->sta->rx_packets++; 2857 return RX_QUEUED; 2858 } 2859 2860 static ieee80211_rx_result debug_noinline 2861 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2862 { 2863 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2864 int sig = 0; 2865 2866 /* skip known-bad action frames and return them in the next handler */ 2867 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2868 return RX_CONTINUE; 2869 2870 /* 2871 * Getting here means the kernel doesn't know how to handle 2872 * it, but maybe userspace does ... include returned frames 2873 * so userspace can register for those to know whether ones 2874 * it transmitted were processed or returned. 2875 */ 2876 2877 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2878 sig = status->signal; 2879 2880 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2881 rx->skb->data, rx->skb->len, 0)) { 2882 if (rx->sta) 2883 rx->sta->rx_packets++; 2884 dev_kfree_skb(rx->skb); 2885 return RX_QUEUED; 2886 } 2887 2888 return RX_CONTINUE; 2889 } 2890 2891 static ieee80211_rx_result debug_noinline 2892 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2893 { 2894 struct ieee80211_local *local = rx->local; 2895 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2896 struct sk_buff *nskb; 2897 struct ieee80211_sub_if_data *sdata = rx->sdata; 2898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2899 2900 if (!ieee80211_is_action(mgmt->frame_control)) 2901 return RX_CONTINUE; 2902 2903 /* 2904 * For AP mode, hostapd is responsible for handling any action 2905 * frames that we didn't handle, including returning unknown 2906 * ones. For all other modes we will return them to the sender, 2907 * setting the 0x80 bit in the action category, as required by 2908 * 802.11-2012 9.24.4. 2909 * Newer versions of hostapd shall also use the management frame 2910 * registration mechanisms, but older ones still use cooked 2911 * monitor interfaces so push all frames there. 2912 */ 2913 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2914 (sdata->vif.type == NL80211_IFTYPE_AP || 2915 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2916 return RX_DROP_MONITOR; 2917 2918 if (is_multicast_ether_addr(mgmt->da)) 2919 return RX_DROP_MONITOR; 2920 2921 /* do not return rejected action frames */ 2922 if (mgmt->u.action.category & 0x80) 2923 return RX_DROP_UNUSABLE; 2924 2925 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2926 GFP_ATOMIC); 2927 if (nskb) { 2928 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2929 2930 nmgmt->u.action.category |= 0x80; 2931 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2932 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2933 2934 memset(nskb->cb, 0, sizeof(nskb->cb)); 2935 2936 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2937 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2938 2939 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2940 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2941 IEEE80211_TX_CTL_NO_CCK_RATE; 2942 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2943 info->hw_queue = 2944 local->hw.offchannel_tx_hw_queue; 2945 } 2946 2947 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2948 status->band); 2949 } 2950 dev_kfree_skb(rx->skb); 2951 return RX_QUEUED; 2952 } 2953 2954 static ieee80211_rx_result debug_noinline 2955 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2956 { 2957 struct ieee80211_sub_if_data *sdata = rx->sdata; 2958 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2959 __le16 stype; 2960 2961 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2962 2963 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2964 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2965 sdata->vif.type != NL80211_IFTYPE_OCB && 2966 sdata->vif.type != NL80211_IFTYPE_STATION) 2967 return RX_DROP_MONITOR; 2968 2969 switch (stype) { 2970 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2971 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2972 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2973 /* process for all: mesh, mlme, ibss */ 2974 break; 2975 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2976 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2977 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2978 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2979 if (is_multicast_ether_addr(mgmt->da) && 2980 !is_broadcast_ether_addr(mgmt->da)) 2981 return RX_DROP_MONITOR; 2982 2983 /* process only for station */ 2984 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2985 return RX_DROP_MONITOR; 2986 break; 2987 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2988 /* process only for ibss and mesh */ 2989 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2990 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2991 return RX_DROP_MONITOR; 2992 break; 2993 default: 2994 return RX_DROP_MONITOR; 2995 } 2996 2997 /* queue up frame and kick off work to process it */ 2998 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2999 skb_queue_tail(&sdata->skb_queue, rx->skb); 3000 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3001 if (rx->sta) 3002 rx->sta->rx_packets++; 3003 3004 return RX_QUEUED; 3005 } 3006 3007 /* TODO: use IEEE80211_RX_FRAGMENTED */ 3008 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3009 struct ieee80211_rate *rate) 3010 { 3011 struct ieee80211_sub_if_data *sdata; 3012 struct ieee80211_local *local = rx->local; 3013 struct sk_buff *skb = rx->skb, *skb2; 3014 struct net_device *prev_dev = NULL; 3015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3016 int needed_headroom; 3017 3018 /* 3019 * If cooked monitor has been processed already, then 3020 * don't do it again. If not, set the flag. 3021 */ 3022 if (rx->flags & IEEE80211_RX_CMNTR) 3023 goto out_free_skb; 3024 rx->flags |= IEEE80211_RX_CMNTR; 3025 3026 /* If there are no cooked monitor interfaces, just free the SKB */ 3027 if (!local->cooked_mntrs) 3028 goto out_free_skb; 3029 3030 /* vendor data is long removed here */ 3031 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3032 /* room for the radiotap header based on driver features */ 3033 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3034 3035 if (skb_headroom(skb) < needed_headroom && 3036 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3037 goto out_free_skb; 3038 3039 /* prepend radiotap information */ 3040 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3041 false); 3042 3043 skb_set_mac_header(skb, 0); 3044 skb->ip_summed = CHECKSUM_UNNECESSARY; 3045 skb->pkt_type = PACKET_OTHERHOST; 3046 skb->protocol = htons(ETH_P_802_2); 3047 3048 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3049 if (!ieee80211_sdata_running(sdata)) 3050 continue; 3051 3052 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3053 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3054 continue; 3055 3056 if (prev_dev) { 3057 skb2 = skb_clone(skb, GFP_ATOMIC); 3058 if (skb2) { 3059 skb2->dev = prev_dev; 3060 netif_receive_skb(skb2); 3061 } 3062 } 3063 3064 prev_dev = sdata->dev; 3065 sdata->dev->stats.rx_packets++; 3066 sdata->dev->stats.rx_bytes += skb->len; 3067 } 3068 3069 if (prev_dev) { 3070 skb->dev = prev_dev; 3071 netif_receive_skb(skb); 3072 return; 3073 } 3074 3075 out_free_skb: 3076 dev_kfree_skb(skb); 3077 } 3078 3079 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3080 ieee80211_rx_result res) 3081 { 3082 switch (res) { 3083 case RX_DROP_MONITOR: 3084 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3085 if (rx->sta) 3086 rx->sta->rx_dropped++; 3087 /* fall through */ 3088 case RX_CONTINUE: { 3089 struct ieee80211_rate *rate = NULL; 3090 struct ieee80211_supported_band *sband; 3091 struct ieee80211_rx_status *status; 3092 3093 status = IEEE80211_SKB_RXCB((rx->skb)); 3094 3095 sband = rx->local->hw.wiphy->bands[status->band]; 3096 if (!(status->flag & RX_FLAG_HT) && 3097 !(status->flag & RX_FLAG_VHT)) 3098 rate = &sband->bitrates[status->rate_idx]; 3099 3100 ieee80211_rx_cooked_monitor(rx, rate); 3101 break; 3102 } 3103 case RX_DROP_UNUSABLE: 3104 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3105 if (rx->sta) 3106 rx->sta->rx_dropped++; 3107 dev_kfree_skb(rx->skb); 3108 break; 3109 case RX_QUEUED: 3110 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3111 break; 3112 } 3113 } 3114 3115 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3116 struct sk_buff_head *frames) 3117 { 3118 ieee80211_rx_result res = RX_DROP_MONITOR; 3119 struct sk_buff *skb; 3120 3121 #define CALL_RXH(rxh) \ 3122 do { \ 3123 res = rxh(rx); \ 3124 if (res != RX_CONTINUE) \ 3125 goto rxh_next; \ 3126 } while (0); 3127 3128 spin_lock_bh(&rx->local->rx_path_lock); 3129 3130 while ((skb = __skb_dequeue(frames))) { 3131 /* 3132 * all the other fields are valid across frames 3133 * that belong to an aMPDU since they are on the 3134 * same TID from the same station 3135 */ 3136 rx->skb = skb; 3137 3138 CALL_RXH(ieee80211_rx_h_check_more_data) 3139 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 3140 CALL_RXH(ieee80211_rx_h_sta_process) 3141 CALL_RXH(ieee80211_rx_h_decrypt) 3142 CALL_RXH(ieee80211_rx_h_defragment) 3143 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 3144 /* must be after MMIC verify so header is counted in MPDU mic */ 3145 #ifdef CONFIG_MAC80211_MESH 3146 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3147 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3148 #endif 3149 CALL_RXH(ieee80211_rx_h_amsdu) 3150 CALL_RXH(ieee80211_rx_h_data) 3151 3152 /* special treatment -- needs the queue */ 3153 res = ieee80211_rx_h_ctrl(rx, frames); 3154 if (res != RX_CONTINUE) 3155 goto rxh_next; 3156 3157 CALL_RXH(ieee80211_rx_h_mgmt_check) 3158 CALL_RXH(ieee80211_rx_h_action) 3159 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3160 CALL_RXH(ieee80211_rx_h_action_return) 3161 CALL_RXH(ieee80211_rx_h_mgmt) 3162 3163 rxh_next: 3164 ieee80211_rx_handlers_result(rx, res); 3165 3166 #undef CALL_RXH 3167 } 3168 3169 spin_unlock_bh(&rx->local->rx_path_lock); 3170 } 3171 3172 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3173 { 3174 struct sk_buff_head reorder_release; 3175 ieee80211_rx_result res = RX_DROP_MONITOR; 3176 3177 __skb_queue_head_init(&reorder_release); 3178 3179 #define CALL_RXH(rxh) \ 3180 do { \ 3181 res = rxh(rx); \ 3182 if (res != RX_CONTINUE) \ 3183 goto rxh_next; \ 3184 } while (0); 3185 3186 CALL_RXH(ieee80211_rx_h_check_dup) 3187 CALL_RXH(ieee80211_rx_h_check) 3188 3189 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3190 3191 ieee80211_rx_handlers(rx, &reorder_release); 3192 return; 3193 3194 rxh_next: 3195 ieee80211_rx_handlers_result(rx, res); 3196 3197 #undef CALL_RXH 3198 } 3199 3200 /* 3201 * This function makes calls into the RX path, therefore 3202 * it has to be invoked under RCU read lock. 3203 */ 3204 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3205 { 3206 struct sk_buff_head frames; 3207 struct ieee80211_rx_data rx = { 3208 .sta = sta, 3209 .sdata = sta->sdata, 3210 .local = sta->local, 3211 /* This is OK -- must be QoS data frame */ 3212 .security_idx = tid, 3213 .seqno_idx = tid, 3214 .flags = 0, 3215 }; 3216 struct tid_ampdu_rx *tid_agg_rx; 3217 3218 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3219 if (!tid_agg_rx) 3220 return; 3221 3222 __skb_queue_head_init(&frames); 3223 3224 spin_lock(&tid_agg_rx->reorder_lock); 3225 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3226 spin_unlock(&tid_agg_rx->reorder_lock); 3227 3228 ieee80211_rx_handlers(&rx, &frames); 3229 } 3230 3231 /* main receive path */ 3232 3233 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3234 struct ieee80211_hdr *hdr) 3235 { 3236 struct ieee80211_sub_if_data *sdata = rx->sdata; 3237 struct sk_buff *skb = rx->skb; 3238 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3239 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3240 int multicast = is_multicast_ether_addr(hdr->addr1); 3241 3242 switch (sdata->vif.type) { 3243 case NL80211_IFTYPE_STATION: 3244 if (!bssid && !sdata->u.mgd.use_4addr) 3245 return false; 3246 if (!multicast && 3247 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3248 if (!(sdata->dev->flags & IFF_PROMISC) || 3249 sdata->u.mgd.use_4addr) 3250 return false; 3251 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3252 } 3253 break; 3254 case NL80211_IFTYPE_ADHOC: 3255 if (!bssid) 3256 return false; 3257 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3258 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3259 return false; 3260 if (ieee80211_is_beacon(hdr->frame_control)) { 3261 return true; 3262 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3263 return false; 3264 } else if (!multicast && 3265 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3266 if (!(sdata->dev->flags & IFF_PROMISC)) 3267 return false; 3268 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3269 } else if (!rx->sta) { 3270 int rate_idx; 3271 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3272 rate_idx = 0; /* TODO: HT/VHT rates */ 3273 else 3274 rate_idx = status->rate_idx; 3275 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3276 BIT(rate_idx)); 3277 } 3278 break; 3279 case NL80211_IFTYPE_OCB: 3280 if (!bssid) 3281 return false; 3282 if (ieee80211_is_beacon(hdr->frame_control)) { 3283 return false; 3284 } else if (!is_broadcast_ether_addr(bssid)) { 3285 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n"); 3286 return false; 3287 } else if (!multicast && 3288 !ether_addr_equal(sdata->dev->dev_addr, 3289 hdr->addr1)) { 3290 /* if we are in promisc mode we also accept 3291 * packets not destined for us 3292 */ 3293 if (!(sdata->dev->flags & IFF_PROMISC)) 3294 return false; 3295 rx->flags &= ~IEEE80211_RX_RA_MATCH; 3296 } else if (!rx->sta) { 3297 int rate_idx; 3298 if (status->flag & RX_FLAG_HT) 3299 rate_idx = 0; /* TODO: HT rates */ 3300 else 3301 rate_idx = status->rate_idx; 3302 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3303 BIT(rate_idx)); 3304 } 3305 break; 3306 case NL80211_IFTYPE_MESH_POINT: 3307 if (!multicast && 3308 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3309 if (!(sdata->dev->flags & IFF_PROMISC)) 3310 return false; 3311 3312 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3313 } 3314 break; 3315 case NL80211_IFTYPE_AP_VLAN: 3316 case NL80211_IFTYPE_AP: 3317 if (!bssid) { 3318 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3319 return false; 3320 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3321 /* 3322 * Accept public action frames even when the 3323 * BSSID doesn't match, this is used for P2P 3324 * and location updates. Note that mac80211 3325 * itself never looks at these frames. 3326 */ 3327 if (!multicast && 3328 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3329 return false; 3330 if (ieee80211_is_public_action(hdr, skb->len)) 3331 return true; 3332 if (!ieee80211_is_beacon(hdr->frame_control)) 3333 return false; 3334 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3335 } else if (!ieee80211_has_tods(hdr->frame_control)) { 3336 /* ignore data frames to TDLS-peers */ 3337 if (ieee80211_is_data(hdr->frame_control)) 3338 return false; 3339 /* ignore action frames to TDLS-peers */ 3340 if (ieee80211_is_action(hdr->frame_control) && 3341 !ether_addr_equal(bssid, hdr->addr1)) 3342 return false; 3343 } 3344 break; 3345 case NL80211_IFTYPE_WDS: 3346 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3347 return false; 3348 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3349 return false; 3350 break; 3351 case NL80211_IFTYPE_P2P_DEVICE: 3352 if (!ieee80211_is_public_action(hdr, skb->len) && 3353 !ieee80211_is_probe_req(hdr->frame_control) && 3354 !ieee80211_is_probe_resp(hdr->frame_control) && 3355 !ieee80211_is_beacon(hdr->frame_control)) 3356 return false; 3357 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3358 !multicast) 3359 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3360 break; 3361 default: 3362 /* should never get here */ 3363 WARN_ON_ONCE(1); 3364 break; 3365 } 3366 3367 return true; 3368 } 3369 3370 /* 3371 * This function returns whether or not the SKB 3372 * was destined for RX processing or not, which, 3373 * if consume is true, is equivalent to whether 3374 * or not the skb was consumed. 3375 */ 3376 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3377 struct sk_buff *skb, bool consume) 3378 { 3379 struct ieee80211_local *local = rx->local; 3380 struct ieee80211_sub_if_data *sdata = rx->sdata; 3381 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3382 struct ieee80211_hdr *hdr = (void *)skb->data; 3383 3384 rx->skb = skb; 3385 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3386 3387 if (!prepare_for_handlers(rx, hdr)) 3388 return false; 3389 3390 if (!consume) { 3391 skb = skb_copy(skb, GFP_ATOMIC); 3392 if (!skb) { 3393 if (net_ratelimit()) 3394 wiphy_debug(local->hw.wiphy, 3395 "failed to copy skb for %s\n", 3396 sdata->name); 3397 return true; 3398 } 3399 3400 rx->skb = skb; 3401 } 3402 3403 ieee80211_invoke_rx_handlers(rx); 3404 return true; 3405 } 3406 3407 /* 3408 * This is the actual Rx frames handler. as it belongs to Rx path it must 3409 * be called with rcu_read_lock protection. 3410 */ 3411 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3412 struct sk_buff *skb) 3413 { 3414 struct ieee80211_local *local = hw_to_local(hw); 3415 struct ieee80211_sub_if_data *sdata; 3416 struct ieee80211_hdr *hdr; 3417 __le16 fc; 3418 struct ieee80211_rx_data rx; 3419 struct ieee80211_sub_if_data *prev; 3420 struct sta_info *sta, *tmp, *prev_sta; 3421 int err = 0; 3422 3423 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3424 memset(&rx, 0, sizeof(rx)); 3425 rx.skb = skb; 3426 rx.local = local; 3427 3428 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3429 local->dot11ReceivedFragmentCount++; 3430 3431 if (ieee80211_is_mgmt(fc)) { 3432 /* drop frame if too short for header */ 3433 if (skb->len < ieee80211_hdrlen(fc)) 3434 err = -ENOBUFS; 3435 else 3436 err = skb_linearize(skb); 3437 } else { 3438 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3439 } 3440 3441 if (err) { 3442 dev_kfree_skb(skb); 3443 return; 3444 } 3445 3446 hdr = (struct ieee80211_hdr *)skb->data; 3447 ieee80211_parse_qos(&rx); 3448 ieee80211_verify_alignment(&rx); 3449 3450 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3451 ieee80211_is_beacon(hdr->frame_control))) 3452 ieee80211_scan_rx(local, skb); 3453 3454 if (ieee80211_is_data(fc)) { 3455 prev_sta = NULL; 3456 3457 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3458 if (!prev_sta) { 3459 prev_sta = sta; 3460 continue; 3461 } 3462 3463 rx.sta = prev_sta; 3464 rx.sdata = prev_sta->sdata; 3465 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3466 3467 prev_sta = sta; 3468 } 3469 3470 if (prev_sta) { 3471 rx.sta = prev_sta; 3472 rx.sdata = prev_sta->sdata; 3473 3474 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3475 return; 3476 goto out; 3477 } 3478 } 3479 3480 prev = NULL; 3481 3482 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3483 if (!ieee80211_sdata_running(sdata)) 3484 continue; 3485 3486 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3487 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3488 continue; 3489 3490 /* 3491 * frame is destined for this interface, but if it's 3492 * not also for the previous one we handle that after 3493 * the loop to avoid copying the SKB once too much 3494 */ 3495 3496 if (!prev) { 3497 prev = sdata; 3498 continue; 3499 } 3500 3501 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3502 rx.sdata = prev; 3503 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3504 3505 prev = sdata; 3506 } 3507 3508 if (prev) { 3509 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3510 rx.sdata = prev; 3511 3512 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3513 return; 3514 } 3515 3516 out: 3517 dev_kfree_skb(skb); 3518 } 3519 3520 /* 3521 * This is the receive path handler. It is called by a low level driver when an 3522 * 802.11 MPDU is received from the hardware. 3523 */ 3524 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3525 { 3526 struct ieee80211_local *local = hw_to_local(hw); 3527 struct ieee80211_rate *rate = NULL; 3528 struct ieee80211_supported_band *sband; 3529 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3530 3531 WARN_ON_ONCE(softirq_count() == 0); 3532 3533 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3534 goto drop; 3535 3536 sband = local->hw.wiphy->bands[status->band]; 3537 if (WARN_ON(!sband)) 3538 goto drop; 3539 3540 /* 3541 * If we're suspending, it is possible although not too likely 3542 * that we'd be receiving frames after having already partially 3543 * quiesced the stack. We can't process such frames then since 3544 * that might, for example, cause stations to be added or other 3545 * driver callbacks be invoked. 3546 */ 3547 if (unlikely(local->quiescing || local->suspended)) 3548 goto drop; 3549 3550 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3551 if (unlikely(local->in_reconfig)) 3552 goto drop; 3553 3554 /* 3555 * The same happens when we're not even started, 3556 * but that's worth a warning. 3557 */ 3558 if (WARN_ON(!local->started)) 3559 goto drop; 3560 3561 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3562 /* 3563 * Validate the rate, unless a PLCP error means that 3564 * we probably can't have a valid rate here anyway. 3565 */ 3566 3567 if (status->flag & RX_FLAG_HT) { 3568 /* 3569 * rate_idx is MCS index, which can be [0-76] 3570 * as documented on: 3571 * 3572 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3573 * 3574 * Anything else would be some sort of driver or 3575 * hardware error. The driver should catch hardware 3576 * errors. 3577 */ 3578 if (WARN(status->rate_idx > 76, 3579 "Rate marked as an HT rate but passed " 3580 "status->rate_idx is not " 3581 "an MCS index [0-76]: %d (0x%02x)\n", 3582 status->rate_idx, 3583 status->rate_idx)) 3584 goto drop; 3585 } else if (status->flag & RX_FLAG_VHT) { 3586 if (WARN_ONCE(status->rate_idx > 9 || 3587 !status->vht_nss || 3588 status->vht_nss > 8, 3589 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3590 status->rate_idx, status->vht_nss)) 3591 goto drop; 3592 } else { 3593 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3594 goto drop; 3595 rate = &sband->bitrates[status->rate_idx]; 3596 } 3597 } 3598 3599 status->rx_flags = 0; 3600 3601 /* 3602 * key references and virtual interfaces are protected using RCU 3603 * and this requires that we are in a read-side RCU section during 3604 * receive processing 3605 */ 3606 rcu_read_lock(); 3607 3608 /* 3609 * Frames with failed FCS/PLCP checksum are not returned, 3610 * all other frames are returned without radiotap header 3611 * if it was previously present. 3612 * Also, frames with less than 16 bytes are dropped. 3613 */ 3614 skb = ieee80211_rx_monitor(local, skb, rate); 3615 if (!skb) { 3616 rcu_read_unlock(); 3617 return; 3618 } 3619 3620 ieee80211_tpt_led_trig_rx(local, 3621 ((struct ieee80211_hdr *)skb->data)->frame_control, 3622 skb->len); 3623 __ieee80211_rx_handle_packet(hw, skb); 3624 3625 rcu_read_unlock(); 3626 3627 return; 3628 drop: 3629 kfree_skb(skb); 3630 } 3631 EXPORT_SYMBOL(ieee80211_rx); 3632 3633 /* This is a version of the rx handler that can be called from hard irq 3634 * context. Post the skb on the queue and schedule the tasklet */ 3635 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3636 { 3637 struct ieee80211_local *local = hw_to_local(hw); 3638 3639 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3640 3641 skb->pkt_type = IEEE80211_RX_MSG; 3642 skb_queue_tail(&local->skb_queue, skb); 3643 tasklet_schedule(&local->tasklet); 3644 } 3645 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3646