1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 struct sta_info *sta, 219 struct sk_buff *skb) 220 { 221 skb_queue_tail(&sdata->skb_queue, skb); 222 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 223 if (sta) 224 sta->rx_stats.packets++; 225 } 226 227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 228 struct sta_info *sta, 229 struct sk_buff *skb) 230 { 231 skb->protocol = 0; 232 __ieee80211_queue_skb_to_iface(sdata, sta, skb); 233 } 234 235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 236 struct sk_buff *skb, 237 int rtap_space) 238 { 239 struct { 240 struct ieee80211_hdr_3addr hdr; 241 u8 category; 242 u8 action_code; 243 } __packed __aligned(2) action; 244 245 if (!sdata) 246 return; 247 248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 249 250 if (skb->len < rtap_space + sizeof(action) + 251 VHT_MUMIMO_GROUPS_DATA_LEN) 252 return; 253 254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 255 return; 256 257 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 258 259 if (!ieee80211_is_action(action.hdr.frame_control)) 260 return; 261 262 if (action.category != WLAN_CATEGORY_VHT) 263 return; 264 265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 266 return; 267 268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 269 return; 270 271 skb = skb_copy(skb, GFP_ATOMIC); 272 if (!skb) 273 return; 274 275 ieee80211_queue_skb_to_iface(sdata, NULL, skb); 276 } 277 278 /* 279 * ieee80211_add_rx_radiotap_header - add radiotap header 280 * 281 * add a radiotap header containing all the fields which the hardware provided. 282 */ 283 static void 284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 285 struct sk_buff *skb, 286 struct ieee80211_rate *rate, 287 int rtap_len, bool has_fcs) 288 { 289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 290 struct ieee80211_radiotap_header *rthdr; 291 unsigned char *pos; 292 __le32 *it_present; 293 u32 it_present_val; 294 u16 rx_flags = 0; 295 u16 channel_flags = 0; 296 int mpdulen, chain; 297 unsigned long chains = status->chains; 298 struct ieee80211_vendor_radiotap rtap = {}; 299 struct ieee80211_radiotap_he he = {}; 300 struct ieee80211_radiotap_he_mu he_mu = {}; 301 struct ieee80211_radiotap_lsig lsig = {}; 302 303 if (status->flag & RX_FLAG_RADIOTAP_HE) { 304 he = *(struct ieee80211_radiotap_he *)skb->data; 305 skb_pull(skb, sizeof(he)); 306 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 307 } 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 311 skb_pull(skb, sizeof(he_mu)); 312 } 313 314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 316 skb_pull(skb, sizeof(lsig)); 317 } 318 319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 321 /* rtap.len and rtap.pad are undone immediately */ 322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 323 } 324 325 mpdulen = skb->len; 326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 327 mpdulen += FCS_LEN; 328 329 rthdr = skb_push(skb, rtap_len); 330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 331 it_present = &rthdr->it_present; 332 333 /* radiotap header, set always present flags */ 334 rthdr->it_len = cpu_to_le16(rtap_len); 335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 336 BIT(IEEE80211_RADIOTAP_CHANNEL) | 337 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 338 339 if (!status->chains) 340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 341 342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 343 it_present_val |= 344 BIT(IEEE80211_RADIOTAP_EXT) | 345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 350 } 351 352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 354 BIT(IEEE80211_RADIOTAP_EXT); 355 put_unaligned_le32(it_present_val, it_present); 356 it_present++; 357 it_present_val = rtap.present; 358 } 359 360 put_unaligned_le32(it_present_val, it_present); 361 362 /* This references through an offset into it_optional[] rather 363 * than via it_present otherwise later uses of pos will cause 364 * the compiler to think we have walked past the end of the 365 * struct member. 366 */ 367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 368 369 /* the order of the following fields is important */ 370 371 /* IEEE80211_RADIOTAP_TSFT */ 372 if (ieee80211_have_rx_timestamp(status)) { 373 /* padding */ 374 while ((pos - (u8 *)rthdr) & 7) 375 *pos++ = 0; 376 put_unaligned_le64( 377 ieee80211_calculate_rx_timestamp(local, status, 378 mpdulen, 0), 379 pos); 380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 381 pos += 8; 382 } 383 384 /* IEEE80211_RADIOTAP_FLAGS */ 385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 386 *pos |= IEEE80211_RADIOTAP_F_FCS; 387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 388 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 391 pos++; 392 393 /* IEEE80211_RADIOTAP_RATE */ 394 if (!rate || status->encoding != RX_ENC_LEGACY) { 395 /* 396 * Without rate information don't add it. If we have, 397 * MCS information is a separate field in radiotap, 398 * added below. The byte here is needed as padding 399 * for the channel though, so initialise it to 0. 400 */ 401 *pos = 0; 402 } else { 403 int shift = 0; 404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 405 if (status->bw == RATE_INFO_BW_10) 406 shift = 1; 407 else if (status->bw == RATE_INFO_BW_5) 408 shift = 2; 409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 410 } 411 pos++; 412 413 /* IEEE80211_RADIOTAP_CHANNEL */ 414 /* TODO: frequency offset in KHz */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ || 423 status->band == NL80211_BAND_6GHZ) 424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 425 else if (status->encoding != RX_ENC_LEGACY) 426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 429 else if (rate) 430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 431 else 432 channel_flags |= IEEE80211_CHAN_2GHZ; 433 put_unaligned_le16(channel_flags, pos); 434 pos += 2; 435 436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 439 *pos = status->signal; 440 rthdr->it_present |= 441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 442 pos++; 443 } 444 445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 446 447 if (!status->chains) { 448 /* IEEE80211_RADIOTAP_ANTENNA */ 449 *pos = status->antenna; 450 pos++; 451 } 452 453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 454 455 /* IEEE80211_RADIOTAP_RX_FLAGS */ 456 /* ensure 2 byte alignment for the 2 byte field as required */ 457 if ((pos - (u8 *)rthdr) & 1) 458 *pos++ = 0; 459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 461 put_unaligned_le16(rx_flags, pos); 462 pos += 2; 463 464 if (status->encoding == RX_ENC_HT) { 465 unsigned int stbc; 466 467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 468 *pos = local->hw.radiotap_mcs_details; 469 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 470 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 471 if (status->enc_flags & RX_ENC_FLAG_LDPC) 472 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 473 pos++; 474 *pos = 0; 475 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 476 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 477 if (status->bw == RATE_INFO_BW_40) 478 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 479 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 480 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 481 if (status->enc_flags & RX_ENC_FLAG_LDPC) 482 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 483 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 484 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 485 pos++; 486 *pos++ = status->rate_idx; 487 } 488 489 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 490 u16 flags = 0; 491 492 /* ensure 4 byte alignment */ 493 while ((pos - (u8 *)rthdr) & 3) 494 pos++; 495 rthdr->it_present |= 496 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 497 put_unaligned_le32(status->ampdu_reference, pos); 498 pos += 4; 499 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 502 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 503 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 504 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 505 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 506 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 507 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 508 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 509 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 510 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 511 put_unaligned_le16(flags, pos); 512 pos += 2; 513 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 514 *pos++ = status->ampdu_delimiter_crc; 515 else 516 *pos++ = 0; 517 *pos++ = 0; 518 } 519 520 if (status->encoding == RX_ENC_VHT) { 521 u16 known = local->hw.radiotap_vht_details; 522 523 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 524 put_unaligned_le16(known, pos); 525 pos += 2; 526 /* flags */ 527 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 529 /* in VHT, STBC is binary */ 530 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 531 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 532 if (status->enc_flags & RX_ENC_FLAG_BF) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 534 pos++; 535 /* bandwidth */ 536 switch (status->bw) { 537 case RATE_INFO_BW_80: 538 *pos++ = 4; 539 break; 540 case RATE_INFO_BW_160: 541 *pos++ = 11; 542 break; 543 case RATE_INFO_BW_40: 544 *pos++ = 1; 545 break; 546 default: 547 *pos++ = 0; 548 } 549 /* MCS/NSS */ 550 *pos = (status->rate_idx << 4) | status->nss; 551 pos += 4; 552 /* coding field */ 553 if (status->enc_flags & RX_ENC_FLAG_LDPC) 554 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 555 pos++; 556 /* group ID */ 557 pos++; 558 /* partial_aid */ 559 pos += 2; 560 } 561 562 if (local->hw.radiotap_timestamp.units_pos >= 0) { 563 u16 accuracy = 0; 564 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 565 566 rthdr->it_present |= 567 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 568 569 /* ensure 8 byte alignment */ 570 while ((pos - (u8 *)rthdr) & 7) 571 pos++; 572 573 put_unaligned_le64(status->device_timestamp, pos); 574 pos += sizeof(u64); 575 576 if (local->hw.radiotap_timestamp.accuracy >= 0) { 577 accuracy = local->hw.radiotap_timestamp.accuracy; 578 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 579 } 580 put_unaligned_le16(accuracy, pos); 581 pos += sizeof(u16); 582 583 *pos++ = local->hw.radiotap_timestamp.units_pos; 584 *pos++ = flags; 585 } 586 587 if (status->encoding == RX_ENC_HE && 588 status->flag & RX_FLAG_RADIOTAP_HE) { 589 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 590 591 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 592 he.data6 |= HE_PREP(DATA6_NSTS, 593 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 594 status->enc_flags)); 595 he.data3 |= HE_PREP(DATA3_STBC, 1); 596 } else { 597 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 598 } 599 600 #define CHECK_GI(s) \ 601 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 602 (int)NL80211_RATE_INFO_HE_GI_##s) 603 604 CHECK_GI(0_8); 605 CHECK_GI(1_6); 606 CHECK_GI(3_2); 607 608 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 609 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 610 he.data3 |= HE_PREP(DATA3_CODING, 611 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 612 613 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 614 615 switch (status->bw) { 616 case RATE_INFO_BW_20: 617 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 618 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 619 break; 620 case RATE_INFO_BW_40: 621 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 622 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 623 break; 624 case RATE_INFO_BW_80: 625 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 626 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 627 break; 628 case RATE_INFO_BW_160: 629 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 630 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 631 break; 632 case RATE_INFO_BW_HE_RU: 633 #define CHECK_RU_ALLOC(s) \ 634 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 635 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 636 637 CHECK_RU_ALLOC(26); 638 CHECK_RU_ALLOC(52); 639 CHECK_RU_ALLOC(106); 640 CHECK_RU_ALLOC(242); 641 CHECK_RU_ALLOC(484); 642 CHECK_RU_ALLOC(996); 643 CHECK_RU_ALLOC(2x996); 644 645 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 646 status->he_ru + 4); 647 break; 648 default: 649 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 650 } 651 652 /* ensure 2 byte alignment */ 653 while ((pos - (u8 *)rthdr) & 1) 654 pos++; 655 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 656 memcpy(pos, &he, sizeof(he)); 657 pos += sizeof(he); 658 } 659 660 if (status->encoding == RX_ENC_HE && 661 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 662 /* ensure 2 byte alignment */ 663 while ((pos - (u8 *)rthdr) & 1) 664 pos++; 665 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 666 memcpy(pos, &he_mu, sizeof(he_mu)); 667 pos += sizeof(he_mu); 668 } 669 670 if (status->flag & RX_FLAG_NO_PSDU) { 671 rthdr->it_present |= 672 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 673 *pos++ = status->zero_length_psdu_type; 674 } 675 676 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 677 /* ensure 2 byte alignment */ 678 while ((pos - (u8 *)rthdr) & 1) 679 pos++; 680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 681 memcpy(pos, &lsig, sizeof(lsig)); 682 pos += sizeof(lsig); 683 } 684 685 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 686 *pos++ = status->chain_signal[chain]; 687 *pos++ = chain; 688 } 689 690 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 691 /* ensure 2 byte alignment for the vendor field as required */ 692 if ((pos - (u8 *)rthdr) & 1) 693 *pos++ = 0; 694 *pos++ = rtap.oui[0]; 695 *pos++ = rtap.oui[1]; 696 *pos++ = rtap.oui[2]; 697 *pos++ = rtap.subns; 698 put_unaligned_le16(rtap.len, pos); 699 pos += 2; 700 /* align the actual payload as requested */ 701 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 702 *pos++ = 0; 703 /* data (and possible padding) already follows */ 704 } 705 } 706 707 static struct sk_buff * 708 ieee80211_make_monitor_skb(struct ieee80211_local *local, 709 struct sk_buff **origskb, 710 struct ieee80211_rate *rate, 711 int rtap_space, bool use_origskb) 712 { 713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 714 int rt_hdrlen, needed_headroom; 715 struct sk_buff *skb; 716 717 /* room for the radiotap header based on driver features */ 718 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 719 needed_headroom = rt_hdrlen - rtap_space; 720 721 if (use_origskb) { 722 /* only need to expand headroom if necessary */ 723 skb = *origskb; 724 *origskb = NULL; 725 726 /* 727 * This shouldn't trigger often because most devices have an 728 * RX header they pull before we get here, and that should 729 * be big enough for our radiotap information. We should 730 * probably export the length to drivers so that we can have 731 * them allocate enough headroom to start with. 732 */ 733 if (skb_headroom(skb) < needed_headroom && 734 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 735 dev_kfree_skb(skb); 736 return NULL; 737 } 738 } else { 739 /* 740 * Need to make a copy and possibly remove radiotap header 741 * and FCS from the original. 742 */ 743 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 744 0, GFP_ATOMIC); 745 746 if (!skb) 747 return NULL; 748 } 749 750 /* prepend radiotap information */ 751 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 752 753 skb_reset_mac_header(skb); 754 skb->ip_summed = CHECKSUM_UNNECESSARY; 755 skb->pkt_type = PACKET_OTHERHOST; 756 skb->protocol = htons(ETH_P_802_2); 757 758 return skb; 759 } 760 761 /* 762 * This function copies a received frame to all monitor interfaces and 763 * returns a cleaned-up SKB that no longer includes the FCS nor the 764 * radiotap header the driver might have added. 765 */ 766 static struct sk_buff * 767 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 768 struct ieee80211_rate *rate) 769 { 770 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 771 struct ieee80211_sub_if_data *sdata; 772 struct sk_buff *monskb = NULL; 773 int present_fcs_len = 0; 774 unsigned int rtap_space = 0; 775 struct ieee80211_sub_if_data *monitor_sdata = 776 rcu_dereference(local->monitor_sdata); 777 bool only_monitor = false; 778 unsigned int min_head_len; 779 780 if (status->flag & RX_FLAG_RADIOTAP_HE) 781 rtap_space += sizeof(struct ieee80211_radiotap_he); 782 783 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 784 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 785 786 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 787 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 788 789 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 790 struct ieee80211_vendor_radiotap *rtap = 791 (void *)(origskb->data + rtap_space); 792 793 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 794 } 795 796 min_head_len = rtap_space; 797 798 /* 799 * First, we may need to make a copy of the skb because 800 * (1) we need to modify it for radiotap (if not present), and 801 * (2) the other RX handlers will modify the skb we got. 802 * 803 * We don't need to, of course, if we aren't going to return 804 * the SKB because it has a bad FCS/PLCP checksum. 805 */ 806 807 if (!(status->flag & RX_FLAG_NO_PSDU)) { 808 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 809 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 810 /* driver bug */ 811 WARN_ON(1); 812 dev_kfree_skb(origskb); 813 return NULL; 814 } 815 present_fcs_len = FCS_LEN; 816 } 817 818 /* also consider the hdr->frame_control */ 819 min_head_len += 2; 820 } 821 822 /* ensure that the expected data elements are in skb head */ 823 if (!pskb_may_pull(origskb, min_head_len)) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 829 830 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 831 if (only_monitor) { 832 dev_kfree_skb(origskb); 833 return NULL; 834 } 835 836 return ieee80211_clean_skb(origskb, present_fcs_len, 837 rtap_space); 838 } 839 840 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 841 842 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 843 bool last_monitor = list_is_last(&sdata->u.mntr.list, 844 &local->mon_list); 845 846 if (!monskb) 847 monskb = ieee80211_make_monitor_skb(local, &origskb, 848 rate, rtap_space, 849 only_monitor && 850 last_monitor); 851 852 if (monskb) { 853 struct sk_buff *skb; 854 855 if (last_monitor) { 856 skb = monskb; 857 monskb = NULL; 858 } else { 859 skb = skb_clone(monskb, GFP_ATOMIC); 860 } 861 862 if (skb) { 863 skb->dev = sdata->dev; 864 dev_sw_netstats_rx_add(skb->dev, skb->len); 865 netif_receive_skb(skb); 866 } 867 } 868 869 if (last_monitor) 870 break; 871 } 872 873 /* this happens if last_monitor was erroneously false */ 874 dev_kfree_skb(monskb); 875 876 /* ditto */ 877 if (!origskb) 878 return NULL; 879 880 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 881 } 882 883 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 884 { 885 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 886 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 887 int tid, seqno_idx, security_idx; 888 889 /* does the frame have a qos control field? */ 890 if (ieee80211_is_data_qos(hdr->frame_control)) { 891 u8 *qc = ieee80211_get_qos_ctl(hdr); 892 /* frame has qos control */ 893 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 894 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 895 status->rx_flags |= IEEE80211_RX_AMSDU; 896 897 seqno_idx = tid; 898 security_idx = tid; 899 } else { 900 /* 901 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 902 * 903 * Sequence numbers for management frames, QoS data 904 * frames with a broadcast/multicast address in the 905 * Address 1 field, and all non-QoS data frames sent 906 * by QoS STAs are assigned using an additional single 907 * modulo-4096 counter, [...] 908 * 909 * We also use that counter for non-QoS STAs. 910 */ 911 seqno_idx = IEEE80211_NUM_TIDS; 912 security_idx = 0; 913 if (ieee80211_is_mgmt(hdr->frame_control)) 914 security_idx = IEEE80211_NUM_TIDS; 915 tid = 0; 916 } 917 918 rx->seqno_idx = seqno_idx; 919 rx->security_idx = security_idx; 920 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 921 * For now, set skb->priority to 0 for other cases. */ 922 rx->skb->priority = (tid > 7) ? 0 : tid; 923 } 924 925 /** 926 * DOC: Packet alignment 927 * 928 * Drivers always need to pass packets that are aligned to two-byte boundaries 929 * to the stack. 930 * 931 * Additionally, should, if possible, align the payload data in a way that 932 * guarantees that the contained IP header is aligned to a four-byte 933 * boundary. In the case of regular frames, this simply means aligning the 934 * payload to a four-byte boundary (because either the IP header is directly 935 * contained, or IV/RFC1042 headers that have a length divisible by four are 936 * in front of it). If the payload data is not properly aligned and the 937 * architecture doesn't support efficient unaligned operations, mac80211 938 * will align the data. 939 * 940 * With A-MSDU frames, however, the payload data address must yield two modulo 941 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 942 * push the IP header further back to a multiple of four again. Thankfully, the 943 * specs were sane enough this time around to require padding each A-MSDU 944 * subframe to a length that is a multiple of four. 945 * 946 * Padding like Atheros hardware adds which is between the 802.11 header and 947 * the payload is not supported, the driver is required to move the 802.11 948 * header to be directly in front of the payload in that case. 949 */ 950 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 951 { 952 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 953 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 954 #endif 955 } 956 957 958 /* rx handlers */ 959 960 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 961 { 962 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 963 964 if (is_multicast_ether_addr(hdr->addr1)) 965 return 0; 966 967 return ieee80211_is_robust_mgmt_frame(skb); 968 } 969 970 971 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 972 { 973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 974 975 if (!is_multicast_ether_addr(hdr->addr1)) 976 return 0; 977 978 return ieee80211_is_robust_mgmt_frame(skb); 979 } 980 981 982 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 983 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 984 { 985 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 986 struct ieee80211_mmie *mmie; 987 struct ieee80211_mmie_16 *mmie16; 988 989 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 990 return -1; 991 992 if (!ieee80211_is_robust_mgmt_frame(skb) && 993 !ieee80211_is_beacon(hdr->frame_control)) 994 return -1; /* not a robust management frame */ 995 996 mmie = (struct ieee80211_mmie *) 997 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id == WLAN_EID_MMIE && 999 mmie->length == sizeof(*mmie) - 2) 1000 return le16_to_cpu(mmie->key_id); 1001 1002 mmie16 = (struct ieee80211_mmie_16 *) 1003 (skb->data + skb->len - sizeof(*mmie16)); 1004 if (skb->len >= 24 + sizeof(*mmie16) && 1005 mmie16->element_id == WLAN_EID_MMIE && 1006 mmie16->length == sizeof(*mmie16) - 2) 1007 return le16_to_cpu(mmie16->key_id); 1008 1009 return -1; 1010 } 1011 1012 static int ieee80211_get_keyid(struct sk_buff *skb, 1013 const struct ieee80211_cipher_scheme *cs) 1014 { 1015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1016 __le16 fc; 1017 int hdrlen; 1018 int minlen; 1019 u8 key_idx_off; 1020 u8 key_idx_shift; 1021 u8 keyid; 1022 1023 fc = hdr->frame_control; 1024 hdrlen = ieee80211_hdrlen(fc); 1025 1026 if (cs) { 1027 minlen = hdrlen + cs->hdr_len; 1028 key_idx_off = hdrlen + cs->key_idx_off; 1029 key_idx_shift = cs->key_idx_shift; 1030 } else { 1031 /* WEP, TKIP, CCMP and GCMP */ 1032 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1033 key_idx_off = hdrlen + 3; 1034 key_idx_shift = 6; 1035 } 1036 1037 if (unlikely(skb->len < minlen)) 1038 return -EINVAL; 1039 1040 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1041 1042 if (cs) 1043 keyid &= cs->key_idx_mask; 1044 keyid >>= key_idx_shift; 1045 1046 /* cs could use more than the usual two bits for the keyid */ 1047 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1048 return -EINVAL; 1049 1050 return keyid; 1051 } 1052 1053 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1054 { 1055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1056 char *dev_addr = rx->sdata->vif.addr; 1057 1058 if (ieee80211_is_data(hdr->frame_control)) { 1059 if (is_multicast_ether_addr(hdr->addr1)) { 1060 if (ieee80211_has_tods(hdr->frame_control) || 1061 !ieee80211_has_fromds(hdr->frame_control)) 1062 return RX_DROP_MONITOR; 1063 if (ether_addr_equal(hdr->addr3, dev_addr)) 1064 return RX_DROP_MONITOR; 1065 } else { 1066 if (!ieee80211_has_a4(hdr->frame_control)) 1067 return RX_DROP_MONITOR; 1068 if (ether_addr_equal(hdr->addr4, dev_addr)) 1069 return RX_DROP_MONITOR; 1070 } 1071 } 1072 1073 /* If there is not an established peer link and this is not a peer link 1074 * establisment frame, beacon or probe, drop the frame. 1075 */ 1076 1077 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1078 struct ieee80211_mgmt *mgmt; 1079 1080 if (!ieee80211_is_mgmt(hdr->frame_control)) 1081 return RX_DROP_MONITOR; 1082 1083 if (ieee80211_is_action(hdr->frame_control)) { 1084 u8 category; 1085 1086 /* make sure category field is present */ 1087 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1088 return RX_DROP_MONITOR; 1089 1090 mgmt = (struct ieee80211_mgmt *)hdr; 1091 category = mgmt->u.action.category; 1092 if (category != WLAN_CATEGORY_MESH_ACTION && 1093 category != WLAN_CATEGORY_SELF_PROTECTED) 1094 return RX_DROP_MONITOR; 1095 return RX_CONTINUE; 1096 } 1097 1098 if (ieee80211_is_probe_req(hdr->frame_control) || 1099 ieee80211_is_probe_resp(hdr->frame_control) || 1100 ieee80211_is_beacon(hdr->frame_control) || 1101 ieee80211_is_auth(hdr->frame_control)) 1102 return RX_CONTINUE; 1103 1104 return RX_DROP_MONITOR; 1105 } 1106 1107 return RX_CONTINUE; 1108 } 1109 1110 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1111 int index) 1112 { 1113 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1114 struct sk_buff *tail = skb_peek_tail(frames); 1115 struct ieee80211_rx_status *status; 1116 1117 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1118 return true; 1119 1120 if (!tail) 1121 return false; 1122 1123 status = IEEE80211_SKB_RXCB(tail); 1124 if (status->flag & RX_FLAG_AMSDU_MORE) 1125 return false; 1126 1127 return true; 1128 } 1129 1130 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1131 struct tid_ampdu_rx *tid_agg_rx, 1132 int index, 1133 struct sk_buff_head *frames) 1134 { 1135 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1136 struct sk_buff *skb; 1137 struct ieee80211_rx_status *status; 1138 1139 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1140 1141 if (skb_queue_empty(skb_list)) 1142 goto no_frame; 1143 1144 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1145 __skb_queue_purge(skb_list); 1146 goto no_frame; 1147 } 1148 1149 /* release frames from the reorder ring buffer */ 1150 tid_agg_rx->stored_mpdu_num--; 1151 while ((skb = __skb_dequeue(skb_list))) { 1152 status = IEEE80211_SKB_RXCB(skb); 1153 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1154 __skb_queue_tail(frames, skb); 1155 } 1156 1157 no_frame: 1158 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1159 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1160 } 1161 1162 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1163 struct tid_ampdu_rx *tid_agg_rx, 1164 u16 head_seq_num, 1165 struct sk_buff_head *frames) 1166 { 1167 int index; 1168 1169 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1170 1171 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1172 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1173 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1174 frames); 1175 } 1176 } 1177 1178 /* 1179 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1180 * the skb was added to the buffer longer than this time ago, the earlier 1181 * frames that have not yet been received are assumed to be lost and the skb 1182 * can be released for processing. This may also release other skb's from the 1183 * reorder buffer if there are no additional gaps between the frames. 1184 * 1185 * Callers must hold tid_agg_rx->reorder_lock. 1186 */ 1187 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1188 1189 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1190 struct tid_ampdu_rx *tid_agg_rx, 1191 struct sk_buff_head *frames) 1192 { 1193 int index, i, j; 1194 1195 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1196 1197 /* release the buffer until next missing frame */ 1198 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1199 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1200 tid_agg_rx->stored_mpdu_num) { 1201 /* 1202 * No buffers ready to be released, but check whether any 1203 * frames in the reorder buffer have timed out. 1204 */ 1205 int skipped = 1; 1206 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1207 j = (j + 1) % tid_agg_rx->buf_size) { 1208 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1209 skipped++; 1210 continue; 1211 } 1212 if (skipped && 1213 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1214 HT_RX_REORDER_BUF_TIMEOUT)) 1215 goto set_release_timer; 1216 1217 /* don't leave incomplete A-MSDUs around */ 1218 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1219 i = (i + 1) % tid_agg_rx->buf_size) 1220 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1221 1222 ht_dbg_ratelimited(sdata, 1223 "release an RX reorder frame due to timeout on earlier frames\n"); 1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1225 frames); 1226 1227 /* 1228 * Increment the head seq# also for the skipped slots. 1229 */ 1230 tid_agg_rx->head_seq_num = 1231 (tid_agg_rx->head_seq_num + 1232 skipped) & IEEE80211_SN_MASK; 1233 skipped = 0; 1234 } 1235 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1236 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1237 frames); 1238 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1239 } 1240 1241 if (tid_agg_rx->stored_mpdu_num) { 1242 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1243 1244 for (; j != (index - 1) % tid_agg_rx->buf_size; 1245 j = (j + 1) % tid_agg_rx->buf_size) { 1246 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1247 break; 1248 } 1249 1250 set_release_timer: 1251 1252 if (!tid_agg_rx->removed) 1253 mod_timer(&tid_agg_rx->reorder_timer, 1254 tid_agg_rx->reorder_time[j] + 1 + 1255 HT_RX_REORDER_BUF_TIMEOUT); 1256 } else { 1257 del_timer(&tid_agg_rx->reorder_timer); 1258 } 1259 } 1260 1261 /* 1262 * As this function belongs to the RX path it must be under 1263 * rcu_read_lock protection. It returns false if the frame 1264 * can be processed immediately, true if it was consumed. 1265 */ 1266 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1267 struct tid_ampdu_rx *tid_agg_rx, 1268 struct sk_buff *skb, 1269 struct sk_buff_head *frames) 1270 { 1271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1272 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1273 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1274 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1275 u16 head_seq_num, buf_size; 1276 int index; 1277 bool ret = true; 1278 1279 spin_lock(&tid_agg_rx->reorder_lock); 1280 1281 /* 1282 * Offloaded BA sessions have no known starting sequence number so pick 1283 * one from first Rxed frame for this tid after BA was started. 1284 */ 1285 if (unlikely(tid_agg_rx->auto_seq)) { 1286 tid_agg_rx->auto_seq = false; 1287 tid_agg_rx->ssn = mpdu_seq_num; 1288 tid_agg_rx->head_seq_num = mpdu_seq_num; 1289 } 1290 1291 buf_size = tid_agg_rx->buf_size; 1292 head_seq_num = tid_agg_rx->head_seq_num; 1293 1294 /* 1295 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1296 * be reordered. 1297 */ 1298 if (unlikely(!tid_agg_rx->started)) { 1299 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1300 ret = false; 1301 goto out; 1302 } 1303 tid_agg_rx->started = true; 1304 } 1305 1306 /* frame with out of date sequence number */ 1307 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1308 dev_kfree_skb(skb); 1309 goto out; 1310 } 1311 1312 /* 1313 * If frame the sequence number exceeds our buffering window 1314 * size release some previous frames to make room for this one. 1315 */ 1316 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1317 head_seq_num = ieee80211_sn_inc( 1318 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1319 /* release stored frames up to new head to stack */ 1320 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1321 head_seq_num, frames); 1322 } 1323 1324 /* Now the new frame is always in the range of the reordering buffer */ 1325 1326 index = mpdu_seq_num % tid_agg_rx->buf_size; 1327 1328 /* check if we already stored this frame */ 1329 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1330 dev_kfree_skb(skb); 1331 goto out; 1332 } 1333 1334 /* 1335 * If the current MPDU is in the right order and nothing else 1336 * is stored we can process it directly, no need to buffer it. 1337 * If it is first but there's something stored, we may be able 1338 * to release frames after this one. 1339 */ 1340 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1341 tid_agg_rx->stored_mpdu_num == 0) { 1342 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1343 tid_agg_rx->head_seq_num = 1344 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1345 ret = false; 1346 goto out; 1347 } 1348 1349 /* put the frame in the reordering buffer */ 1350 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1351 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1352 tid_agg_rx->reorder_time[index] = jiffies; 1353 tid_agg_rx->stored_mpdu_num++; 1354 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1355 } 1356 1357 out: 1358 spin_unlock(&tid_agg_rx->reorder_lock); 1359 return ret; 1360 } 1361 1362 /* 1363 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1364 * true if the MPDU was buffered, false if it should be processed. 1365 */ 1366 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1367 struct sk_buff_head *frames) 1368 { 1369 struct sk_buff *skb = rx->skb; 1370 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1371 struct sta_info *sta = rx->sta; 1372 struct tid_ampdu_rx *tid_agg_rx; 1373 u16 sc; 1374 u8 tid, ack_policy; 1375 1376 if (!ieee80211_is_data_qos(hdr->frame_control) || 1377 is_multicast_ether_addr(hdr->addr1)) 1378 goto dont_reorder; 1379 1380 /* 1381 * filter the QoS data rx stream according to 1382 * STA/TID and check if this STA/TID is on aggregation 1383 */ 1384 1385 if (!sta) 1386 goto dont_reorder; 1387 1388 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1389 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1390 tid = ieee80211_get_tid(hdr); 1391 1392 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1393 if (!tid_agg_rx) { 1394 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1395 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1396 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1397 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1398 WLAN_BACK_RECIPIENT, 1399 WLAN_REASON_QSTA_REQUIRE_SETUP); 1400 goto dont_reorder; 1401 } 1402 1403 /* qos null data frames are excluded */ 1404 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1405 goto dont_reorder; 1406 1407 /* not part of a BA session */ 1408 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1409 goto dont_reorder; 1410 1411 /* new, potentially un-ordered, ampdu frame - process it */ 1412 1413 /* reset session timer */ 1414 if (tid_agg_rx->timeout) 1415 tid_agg_rx->last_rx = jiffies; 1416 1417 /* if this mpdu is fragmented - terminate rx aggregation session */ 1418 sc = le16_to_cpu(hdr->seq_ctrl); 1419 if (sc & IEEE80211_SCTL_FRAG) { 1420 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); 1421 return; 1422 } 1423 1424 /* 1425 * No locking needed -- we will only ever process one 1426 * RX packet at a time, and thus own tid_agg_rx. All 1427 * other code manipulating it needs to (and does) make 1428 * sure that we cannot get to it any more before doing 1429 * anything with it. 1430 */ 1431 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1432 frames)) 1433 return; 1434 1435 dont_reorder: 1436 __skb_queue_tail(frames, skb); 1437 } 1438 1439 static ieee80211_rx_result debug_noinline 1440 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1441 { 1442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1443 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1444 1445 if (status->flag & RX_FLAG_DUP_VALIDATED) 1446 return RX_CONTINUE; 1447 1448 /* 1449 * Drop duplicate 802.11 retransmissions 1450 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1451 */ 1452 1453 if (rx->skb->len < 24) 1454 return RX_CONTINUE; 1455 1456 if (ieee80211_is_ctl(hdr->frame_control) || 1457 ieee80211_is_any_nullfunc(hdr->frame_control) || 1458 is_multicast_ether_addr(hdr->addr1)) 1459 return RX_CONTINUE; 1460 1461 if (!rx->sta) 1462 return RX_CONTINUE; 1463 1464 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1465 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1466 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1467 rx->sta->rx_stats.num_duplicates++; 1468 return RX_DROP_UNUSABLE; 1469 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1470 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1471 } 1472 1473 return RX_CONTINUE; 1474 } 1475 1476 static ieee80211_rx_result debug_noinline 1477 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1478 { 1479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1480 1481 /* Drop disallowed frame classes based on STA auth/assoc state; 1482 * IEEE 802.11, Chap 5.5. 1483 * 1484 * mac80211 filters only based on association state, i.e. it drops 1485 * Class 3 frames from not associated stations. hostapd sends 1486 * deauth/disassoc frames when needed. In addition, hostapd is 1487 * responsible for filtering on both auth and assoc states. 1488 */ 1489 1490 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1491 return ieee80211_rx_mesh_check(rx); 1492 1493 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1494 ieee80211_is_pspoll(hdr->frame_control)) && 1495 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1496 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1497 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1498 /* 1499 * accept port control frames from the AP even when it's not 1500 * yet marked ASSOC to prevent a race where we don't set the 1501 * assoc bit quickly enough before it sends the first frame 1502 */ 1503 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1504 ieee80211_is_data_present(hdr->frame_control)) { 1505 unsigned int hdrlen; 1506 __be16 ethertype; 1507 1508 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1509 1510 if (rx->skb->len < hdrlen + 8) 1511 return RX_DROP_MONITOR; 1512 1513 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1514 if (ethertype == rx->sdata->control_port_protocol) 1515 return RX_CONTINUE; 1516 } 1517 1518 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1519 cfg80211_rx_spurious_frame(rx->sdata->dev, 1520 hdr->addr2, 1521 GFP_ATOMIC)) 1522 return RX_DROP_UNUSABLE; 1523 1524 return RX_DROP_MONITOR; 1525 } 1526 1527 return RX_CONTINUE; 1528 } 1529 1530 1531 static ieee80211_rx_result debug_noinline 1532 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1533 { 1534 struct ieee80211_local *local; 1535 struct ieee80211_hdr *hdr; 1536 struct sk_buff *skb; 1537 1538 local = rx->local; 1539 skb = rx->skb; 1540 hdr = (struct ieee80211_hdr *) skb->data; 1541 1542 if (!local->pspolling) 1543 return RX_CONTINUE; 1544 1545 if (!ieee80211_has_fromds(hdr->frame_control)) 1546 /* this is not from AP */ 1547 return RX_CONTINUE; 1548 1549 if (!ieee80211_is_data(hdr->frame_control)) 1550 return RX_CONTINUE; 1551 1552 if (!ieee80211_has_moredata(hdr->frame_control)) { 1553 /* AP has no more frames buffered for us */ 1554 local->pspolling = false; 1555 return RX_CONTINUE; 1556 } 1557 1558 /* more data bit is set, let's request a new frame from the AP */ 1559 ieee80211_send_pspoll(local, rx->sdata); 1560 1561 return RX_CONTINUE; 1562 } 1563 1564 static void sta_ps_start(struct sta_info *sta) 1565 { 1566 struct ieee80211_sub_if_data *sdata = sta->sdata; 1567 struct ieee80211_local *local = sdata->local; 1568 struct ps_data *ps; 1569 int tid; 1570 1571 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1572 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1573 ps = &sdata->bss->ps; 1574 else 1575 return; 1576 1577 atomic_inc(&ps->num_sta_ps); 1578 set_sta_flag(sta, WLAN_STA_PS_STA); 1579 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1580 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1581 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1582 sta->sta.addr, sta->sta.aid); 1583 1584 ieee80211_clear_fast_xmit(sta); 1585 1586 if (!sta->sta.txq[0]) 1587 return; 1588 1589 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1590 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1591 1592 ieee80211_unschedule_txq(&local->hw, txq, false); 1593 1594 if (txq_has_queue(txq)) 1595 set_bit(tid, &sta->txq_buffered_tids); 1596 else 1597 clear_bit(tid, &sta->txq_buffered_tids); 1598 } 1599 } 1600 1601 static void sta_ps_end(struct sta_info *sta) 1602 { 1603 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1604 sta->sta.addr, sta->sta.aid); 1605 1606 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1607 /* 1608 * Clear the flag only if the other one is still set 1609 * so that the TX path won't start TX'ing new frames 1610 * directly ... In the case that the driver flag isn't 1611 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1612 */ 1613 clear_sta_flag(sta, WLAN_STA_PS_STA); 1614 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1615 sta->sta.addr, sta->sta.aid); 1616 return; 1617 } 1618 1619 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1620 clear_sta_flag(sta, WLAN_STA_PS_STA); 1621 ieee80211_sta_ps_deliver_wakeup(sta); 1622 } 1623 1624 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1625 { 1626 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1627 bool in_ps; 1628 1629 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1630 1631 /* Don't let the same PS state be set twice */ 1632 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1633 if ((start && in_ps) || (!start && !in_ps)) 1634 return -EINVAL; 1635 1636 if (start) 1637 sta_ps_start(sta); 1638 else 1639 sta_ps_end(sta); 1640 1641 return 0; 1642 } 1643 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1644 1645 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1646 { 1647 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1648 1649 if (test_sta_flag(sta, WLAN_STA_SP)) 1650 return; 1651 1652 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1653 ieee80211_sta_ps_deliver_poll_response(sta); 1654 else 1655 set_sta_flag(sta, WLAN_STA_PSPOLL); 1656 } 1657 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1658 1659 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1660 { 1661 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1662 int ac = ieee80211_ac_from_tid(tid); 1663 1664 /* 1665 * If this AC is not trigger-enabled do nothing unless the 1666 * driver is calling us after it already checked. 1667 * 1668 * NB: This could/should check a separate bitmap of trigger- 1669 * enabled queues, but for now we only implement uAPSD w/o 1670 * TSPEC changes to the ACs, so they're always the same. 1671 */ 1672 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1673 tid != IEEE80211_NUM_TIDS) 1674 return; 1675 1676 /* if we are in a service period, do nothing */ 1677 if (test_sta_flag(sta, WLAN_STA_SP)) 1678 return; 1679 1680 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1681 ieee80211_sta_ps_deliver_uapsd(sta); 1682 else 1683 set_sta_flag(sta, WLAN_STA_UAPSD); 1684 } 1685 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1686 1687 static ieee80211_rx_result debug_noinline 1688 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1689 { 1690 struct ieee80211_sub_if_data *sdata = rx->sdata; 1691 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1692 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1693 1694 if (!rx->sta) 1695 return RX_CONTINUE; 1696 1697 if (sdata->vif.type != NL80211_IFTYPE_AP && 1698 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1699 return RX_CONTINUE; 1700 1701 /* 1702 * The device handles station powersave, so don't do anything about 1703 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1704 * it to mac80211 since they're handled.) 1705 */ 1706 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1707 return RX_CONTINUE; 1708 1709 /* 1710 * Don't do anything if the station isn't already asleep. In 1711 * the uAPSD case, the station will probably be marked asleep, 1712 * in the PS-Poll case the station must be confused ... 1713 */ 1714 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1715 return RX_CONTINUE; 1716 1717 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1718 ieee80211_sta_pspoll(&rx->sta->sta); 1719 1720 /* Free PS Poll skb here instead of returning RX_DROP that would 1721 * count as an dropped frame. */ 1722 dev_kfree_skb(rx->skb); 1723 1724 return RX_QUEUED; 1725 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1726 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1727 ieee80211_has_pm(hdr->frame_control) && 1728 (ieee80211_is_data_qos(hdr->frame_control) || 1729 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1730 u8 tid = ieee80211_get_tid(hdr); 1731 1732 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1733 } 1734 1735 return RX_CONTINUE; 1736 } 1737 1738 static ieee80211_rx_result debug_noinline 1739 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1740 { 1741 struct sta_info *sta = rx->sta; 1742 struct sk_buff *skb = rx->skb; 1743 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1744 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1745 int i; 1746 1747 if (!sta) 1748 return RX_CONTINUE; 1749 1750 /* 1751 * Update last_rx only for IBSS packets which are for the current 1752 * BSSID and for station already AUTHORIZED to avoid keeping the 1753 * current IBSS network alive in cases where other STAs start 1754 * using different BSSID. This will also give the station another 1755 * chance to restart the authentication/authorization in case 1756 * something went wrong the first time. 1757 */ 1758 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1759 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1760 NL80211_IFTYPE_ADHOC); 1761 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1762 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1763 sta->rx_stats.last_rx = jiffies; 1764 if (ieee80211_is_data(hdr->frame_control) && 1765 !is_multicast_ether_addr(hdr->addr1)) 1766 sta->rx_stats.last_rate = 1767 sta_stats_encode_rate(status); 1768 } 1769 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1770 sta->rx_stats.last_rx = jiffies; 1771 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1772 !is_multicast_ether_addr(hdr->addr1)) { 1773 /* 1774 * Mesh beacons will update last_rx when if they are found to 1775 * match the current local configuration when processed. 1776 */ 1777 sta->rx_stats.last_rx = jiffies; 1778 if (ieee80211_is_data(hdr->frame_control)) 1779 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1780 } 1781 1782 sta->rx_stats.fragments++; 1783 1784 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1785 sta->rx_stats.bytes += rx->skb->len; 1786 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1787 1788 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1789 sta->rx_stats.last_signal = status->signal; 1790 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1791 } 1792 1793 if (status->chains) { 1794 sta->rx_stats.chains = status->chains; 1795 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1796 int signal = status->chain_signal[i]; 1797 1798 if (!(status->chains & BIT(i))) 1799 continue; 1800 1801 sta->rx_stats.chain_signal_last[i] = signal; 1802 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1803 -signal); 1804 } 1805 } 1806 1807 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1808 return RX_CONTINUE; 1809 1810 /* 1811 * Change STA power saving mode only at the end of a frame 1812 * exchange sequence, and only for a data or management 1813 * frame as specified in IEEE 802.11-2016 11.2.3.2 1814 */ 1815 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1816 !ieee80211_has_morefrags(hdr->frame_control) && 1817 !is_multicast_ether_addr(hdr->addr1) && 1818 (ieee80211_is_mgmt(hdr->frame_control) || 1819 ieee80211_is_data(hdr->frame_control)) && 1820 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1821 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1822 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1823 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1824 if (!ieee80211_has_pm(hdr->frame_control)) 1825 sta_ps_end(sta); 1826 } else { 1827 if (ieee80211_has_pm(hdr->frame_control)) 1828 sta_ps_start(sta); 1829 } 1830 } 1831 1832 /* mesh power save support */ 1833 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1834 ieee80211_mps_rx_h_sta_process(sta, hdr); 1835 1836 /* 1837 * Drop (qos-)data::nullfunc frames silently, since they 1838 * are used only to control station power saving mode. 1839 */ 1840 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1841 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1842 1843 /* 1844 * If we receive a 4-addr nullfunc frame from a STA 1845 * that was not moved to a 4-addr STA vlan yet send 1846 * the event to userspace and for older hostapd drop 1847 * the frame to the monitor interface. 1848 */ 1849 if (ieee80211_has_a4(hdr->frame_control) && 1850 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1852 !rx->sdata->u.vlan.sta))) { 1853 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1854 cfg80211_rx_unexpected_4addr_frame( 1855 rx->sdata->dev, sta->sta.addr, 1856 GFP_ATOMIC); 1857 return RX_DROP_MONITOR; 1858 } 1859 /* 1860 * Update counter and free packet here to avoid 1861 * counting this as a dropped packed. 1862 */ 1863 sta->rx_stats.packets++; 1864 dev_kfree_skb(rx->skb); 1865 return RX_QUEUED; 1866 } 1867 1868 return RX_CONTINUE; 1869 } /* ieee80211_rx_h_sta_process */ 1870 1871 static struct ieee80211_key * 1872 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1873 { 1874 struct ieee80211_key *key = NULL; 1875 struct ieee80211_sub_if_data *sdata = rx->sdata; 1876 int idx2; 1877 1878 /* Make sure key gets set if either BIGTK key index is set so that 1879 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1880 * Beacon frames and Beacon frames that claim to use another BIGTK key 1881 * index (i.e., a key that we do not have). 1882 */ 1883 1884 if (idx < 0) { 1885 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1886 idx2 = idx + 1; 1887 } else { 1888 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1889 idx2 = idx + 1; 1890 else 1891 idx2 = idx - 1; 1892 } 1893 1894 if (rx->sta) 1895 key = rcu_dereference(rx->sta->gtk[idx]); 1896 if (!key) 1897 key = rcu_dereference(sdata->keys[idx]); 1898 if (!key && rx->sta) 1899 key = rcu_dereference(rx->sta->gtk[idx2]); 1900 if (!key) 1901 key = rcu_dereference(sdata->keys[idx2]); 1902 1903 return key; 1904 } 1905 1906 static ieee80211_rx_result debug_noinline 1907 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1908 { 1909 struct sk_buff *skb = rx->skb; 1910 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1911 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1912 int keyidx; 1913 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1914 struct ieee80211_key *sta_ptk = NULL; 1915 struct ieee80211_key *ptk_idx = NULL; 1916 int mmie_keyidx = -1; 1917 __le16 fc; 1918 const struct ieee80211_cipher_scheme *cs = NULL; 1919 1920 if (ieee80211_is_ext(hdr->frame_control)) 1921 return RX_CONTINUE; 1922 1923 /* 1924 * Key selection 101 1925 * 1926 * There are five types of keys: 1927 * - GTK (group keys) 1928 * - IGTK (group keys for management frames) 1929 * - BIGTK (group keys for Beacon frames) 1930 * - PTK (pairwise keys) 1931 * - STK (station-to-station pairwise keys) 1932 * 1933 * When selecting a key, we have to distinguish between multicast 1934 * (including broadcast) and unicast frames, the latter can only 1935 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1936 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1937 * then unicast frames can also use key indices like GTKs. Hence, if we 1938 * don't have a PTK/STK we check the key index for a WEP key. 1939 * 1940 * Note that in a regular BSS, multicast frames are sent by the 1941 * AP only, associated stations unicast the frame to the AP first 1942 * which then multicasts it on their behalf. 1943 * 1944 * There is also a slight problem in IBSS mode: GTKs are negotiated 1945 * with each station, that is something we don't currently handle. 1946 * The spec seems to expect that one negotiates the same key with 1947 * every station but there's no such requirement; VLANs could be 1948 * possible. 1949 */ 1950 1951 /* start without a key */ 1952 rx->key = NULL; 1953 fc = hdr->frame_control; 1954 1955 if (rx->sta) { 1956 int keyid = rx->sta->ptk_idx; 1957 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1958 1959 if (ieee80211_has_protected(fc) && 1960 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1961 cs = rx->sta->cipher_scheme; 1962 keyid = ieee80211_get_keyid(rx->skb, cs); 1963 1964 if (unlikely(keyid < 0)) 1965 return RX_DROP_UNUSABLE; 1966 1967 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1968 } 1969 } 1970 1971 if (!ieee80211_has_protected(fc)) 1972 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1973 1974 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1975 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1976 if ((status->flag & RX_FLAG_DECRYPTED) && 1977 (status->flag & RX_FLAG_IV_STRIPPED)) 1978 return RX_CONTINUE; 1979 /* Skip decryption if the frame is not protected. */ 1980 if (!ieee80211_has_protected(fc)) 1981 return RX_CONTINUE; 1982 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1983 /* Broadcast/multicast robust management frame / BIP */ 1984 if ((status->flag & RX_FLAG_DECRYPTED) && 1985 (status->flag & RX_FLAG_IV_STRIPPED)) 1986 return RX_CONTINUE; 1987 1988 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1989 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1990 NUM_DEFAULT_BEACON_KEYS) { 1991 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1992 skb->data, 1993 skb->len); 1994 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1995 } 1996 1997 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1998 if (!rx->key) 1999 return RX_CONTINUE; /* Beacon protection not in use */ 2000 } else if (mmie_keyidx >= 0) { 2001 /* Broadcast/multicast robust management frame / BIP */ 2002 if ((status->flag & RX_FLAG_DECRYPTED) && 2003 (status->flag & RX_FLAG_IV_STRIPPED)) 2004 return RX_CONTINUE; 2005 2006 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2007 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2008 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2009 if (rx->sta) { 2010 if (ieee80211_is_group_privacy_action(skb) && 2011 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2012 return RX_DROP_MONITOR; 2013 2014 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2015 } 2016 if (!rx->key) 2017 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2018 } else if (!ieee80211_has_protected(fc)) { 2019 /* 2020 * The frame was not protected, so skip decryption. However, we 2021 * need to set rx->key if there is a key that could have been 2022 * used so that the frame may be dropped if encryption would 2023 * have been expected. 2024 */ 2025 struct ieee80211_key *key = NULL; 2026 struct ieee80211_sub_if_data *sdata = rx->sdata; 2027 int i; 2028 2029 if (ieee80211_is_beacon(fc)) { 2030 key = ieee80211_rx_get_bigtk(rx, -1); 2031 } else if (ieee80211_is_mgmt(fc) && 2032 is_multicast_ether_addr(hdr->addr1)) { 2033 key = rcu_dereference(rx->sdata->default_mgmt_key); 2034 } else { 2035 if (rx->sta) { 2036 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2037 key = rcu_dereference(rx->sta->gtk[i]); 2038 if (key) 2039 break; 2040 } 2041 } 2042 if (!key) { 2043 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2044 key = rcu_dereference(sdata->keys[i]); 2045 if (key) 2046 break; 2047 } 2048 } 2049 } 2050 if (key) 2051 rx->key = key; 2052 return RX_CONTINUE; 2053 } else { 2054 /* 2055 * The device doesn't give us the IV so we won't be 2056 * able to look up the key. That's ok though, we 2057 * don't need to decrypt the frame, we just won't 2058 * be able to keep statistics accurate. 2059 * Except for key threshold notifications, should 2060 * we somehow allow the driver to tell us which key 2061 * the hardware used if this flag is set? 2062 */ 2063 if ((status->flag & RX_FLAG_DECRYPTED) && 2064 (status->flag & RX_FLAG_IV_STRIPPED)) 2065 return RX_CONTINUE; 2066 2067 keyidx = ieee80211_get_keyid(rx->skb, cs); 2068 2069 if (unlikely(keyidx < 0)) 2070 return RX_DROP_UNUSABLE; 2071 2072 /* check per-station GTK first, if multicast packet */ 2073 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2074 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2075 2076 /* if not found, try default key */ 2077 if (!rx->key) { 2078 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2079 2080 /* 2081 * RSNA-protected unicast frames should always be 2082 * sent with pairwise or station-to-station keys, 2083 * but for WEP we allow using a key index as well. 2084 */ 2085 if (rx->key && 2086 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2087 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2088 !is_multicast_ether_addr(hdr->addr1)) 2089 rx->key = NULL; 2090 } 2091 } 2092 2093 if (rx->key) { 2094 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2095 return RX_DROP_MONITOR; 2096 2097 /* TODO: add threshold stuff again */ 2098 } else { 2099 return RX_DROP_MONITOR; 2100 } 2101 2102 switch (rx->key->conf.cipher) { 2103 case WLAN_CIPHER_SUITE_WEP40: 2104 case WLAN_CIPHER_SUITE_WEP104: 2105 result = ieee80211_crypto_wep_decrypt(rx); 2106 break; 2107 case WLAN_CIPHER_SUITE_TKIP: 2108 result = ieee80211_crypto_tkip_decrypt(rx); 2109 break; 2110 case WLAN_CIPHER_SUITE_CCMP: 2111 result = ieee80211_crypto_ccmp_decrypt( 2112 rx, IEEE80211_CCMP_MIC_LEN); 2113 break; 2114 case WLAN_CIPHER_SUITE_CCMP_256: 2115 result = ieee80211_crypto_ccmp_decrypt( 2116 rx, IEEE80211_CCMP_256_MIC_LEN); 2117 break; 2118 case WLAN_CIPHER_SUITE_AES_CMAC: 2119 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2120 break; 2121 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2122 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2123 break; 2124 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2125 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2126 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2127 break; 2128 case WLAN_CIPHER_SUITE_GCMP: 2129 case WLAN_CIPHER_SUITE_GCMP_256: 2130 result = ieee80211_crypto_gcmp_decrypt(rx); 2131 break; 2132 default: 2133 result = ieee80211_crypto_hw_decrypt(rx); 2134 } 2135 2136 /* the hdr variable is invalid after the decrypt handlers */ 2137 2138 /* either the frame has been decrypted or will be dropped */ 2139 status->flag |= RX_FLAG_DECRYPTED; 2140 2141 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2142 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2143 skb->data, skb->len); 2144 2145 return result; 2146 } 2147 2148 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2149 { 2150 int i; 2151 2152 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2153 skb_queue_head_init(&cache->entries[i].skb_list); 2154 } 2155 2156 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2157 { 2158 int i; 2159 2160 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2161 __skb_queue_purge(&cache->entries[i].skb_list); 2162 } 2163 2164 static inline struct ieee80211_fragment_entry * 2165 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2166 unsigned int frag, unsigned int seq, int rx_queue, 2167 struct sk_buff **skb) 2168 { 2169 struct ieee80211_fragment_entry *entry; 2170 2171 entry = &cache->entries[cache->next++]; 2172 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2173 cache->next = 0; 2174 2175 __skb_queue_purge(&entry->skb_list); 2176 2177 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2178 *skb = NULL; 2179 entry->first_frag_time = jiffies; 2180 entry->seq = seq; 2181 entry->rx_queue = rx_queue; 2182 entry->last_frag = frag; 2183 entry->check_sequential_pn = false; 2184 entry->extra_len = 0; 2185 2186 return entry; 2187 } 2188 2189 static inline struct ieee80211_fragment_entry * 2190 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2191 unsigned int frag, unsigned int seq, 2192 int rx_queue, struct ieee80211_hdr *hdr) 2193 { 2194 struct ieee80211_fragment_entry *entry; 2195 int i, idx; 2196 2197 idx = cache->next; 2198 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2199 struct ieee80211_hdr *f_hdr; 2200 struct sk_buff *f_skb; 2201 2202 idx--; 2203 if (idx < 0) 2204 idx = IEEE80211_FRAGMENT_MAX - 1; 2205 2206 entry = &cache->entries[idx]; 2207 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2208 entry->rx_queue != rx_queue || 2209 entry->last_frag + 1 != frag) 2210 continue; 2211 2212 f_skb = __skb_peek(&entry->skb_list); 2213 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2214 2215 /* 2216 * Check ftype and addresses are equal, else check next fragment 2217 */ 2218 if (((hdr->frame_control ^ f_hdr->frame_control) & 2219 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2220 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2221 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2222 continue; 2223 2224 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2225 __skb_queue_purge(&entry->skb_list); 2226 continue; 2227 } 2228 return entry; 2229 } 2230 2231 return NULL; 2232 } 2233 2234 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2235 { 2236 return rx->key && 2237 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2238 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2239 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2240 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2241 ieee80211_has_protected(fc); 2242 } 2243 2244 static ieee80211_rx_result debug_noinline 2245 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2246 { 2247 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2248 struct ieee80211_hdr *hdr; 2249 u16 sc; 2250 __le16 fc; 2251 unsigned int frag, seq; 2252 struct ieee80211_fragment_entry *entry; 2253 struct sk_buff *skb; 2254 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2255 2256 hdr = (struct ieee80211_hdr *)rx->skb->data; 2257 fc = hdr->frame_control; 2258 2259 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2260 return RX_CONTINUE; 2261 2262 sc = le16_to_cpu(hdr->seq_ctrl); 2263 frag = sc & IEEE80211_SCTL_FRAG; 2264 2265 if (rx->sta) 2266 cache = &rx->sta->frags; 2267 2268 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2269 goto out; 2270 2271 if (is_multicast_ether_addr(hdr->addr1)) 2272 return RX_DROP_MONITOR; 2273 2274 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2275 2276 if (skb_linearize(rx->skb)) 2277 return RX_DROP_UNUSABLE; 2278 2279 /* 2280 * skb_linearize() might change the skb->data and 2281 * previously cached variables (in this case, hdr) need to 2282 * be refreshed with the new data. 2283 */ 2284 hdr = (struct ieee80211_hdr *)rx->skb->data; 2285 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2286 2287 if (frag == 0) { 2288 /* This is the first fragment of a new frame. */ 2289 entry = ieee80211_reassemble_add(cache, frag, seq, 2290 rx->seqno_idx, &(rx->skb)); 2291 if (requires_sequential_pn(rx, fc)) { 2292 int queue = rx->security_idx; 2293 2294 /* Store CCMP/GCMP PN so that we can verify that the 2295 * next fragment has a sequential PN value. 2296 */ 2297 entry->check_sequential_pn = true; 2298 entry->is_protected = true; 2299 entry->key_color = rx->key->color; 2300 memcpy(entry->last_pn, 2301 rx->key->u.ccmp.rx_pn[queue], 2302 IEEE80211_CCMP_PN_LEN); 2303 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2304 u.ccmp.rx_pn) != 2305 offsetof(struct ieee80211_key, 2306 u.gcmp.rx_pn)); 2307 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2308 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2309 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2310 IEEE80211_GCMP_PN_LEN); 2311 } else if (rx->key && 2312 (ieee80211_has_protected(fc) || 2313 (status->flag & RX_FLAG_DECRYPTED))) { 2314 entry->is_protected = true; 2315 entry->key_color = rx->key->color; 2316 } 2317 return RX_QUEUED; 2318 } 2319 2320 /* This is a fragment for a frame that should already be pending in 2321 * fragment cache. Add this fragment to the end of the pending entry. 2322 */ 2323 entry = ieee80211_reassemble_find(cache, frag, seq, 2324 rx->seqno_idx, hdr); 2325 if (!entry) { 2326 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2327 return RX_DROP_MONITOR; 2328 } 2329 2330 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2331 * MPDU PN values are not incrementing in steps of 1." 2332 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2333 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2334 */ 2335 if (entry->check_sequential_pn) { 2336 int i; 2337 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2338 2339 if (!requires_sequential_pn(rx, fc)) 2340 return RX_DROP_UNUSABLE; 2341 2342 /* Prevent mixed key and fragment cache attacks */ 2343 if (entry->key_color != rx->key->color) 2344 return RX_DROP_UNUSABLE; 2345 2346 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2347 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2348 pn[i]++; 2349 if (pn[i]) 2350 break; 2351 } 2352 2353 rpn = rx->ccm_gcm.pn; 2354 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2355 return RX_DROP_UNUSABLE; 2356 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2357 } else if (entry->is_protected && 2358 (!rx->key || 2359 (!ieee80211_has_protected(fc) && 2360 !(status->flag & RX_FLAG_DECRYPTED)) || 2361 rx->key->color != entry->key_color)) { 2362 /* Drop this as a mixed key or fragment cache attack, even 2363 * if for TKIP Michael MIC should protect us, and WEP is a 2364 * lost cause anyway. 2365 */ 2366 return RX_DROP_UNUSABLE; 2367 } else if (entry->is_protected && rx->key && 2368 entry->key_color != rx->key->color && 2369 (status->flag & RX_FLAG_DECRYPTED)) { 2370 return RX_DROP_UNUSABLE; 2371 } 2372 2373 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2374 __skb_queue_tail(&entry->skb_list, rx->skb); 2375 entry->last_frag = frag; 2376 entry->extra_len += rx->skb->len; 2377 if (ieee80211_has_morefrags(fc)) { 2378 rx->skb = NULL; 2379 return RX_QUEUED; 2380 } 2381 2382 rx->skb = __skb_dequeue(&entry->skb_list); 2383 if (skb_tailroom(rx->skb) < entry->extra_len) { 2384 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2385 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2386 GFP_ATOMIC))) { 2387 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2388 __skb_queue_purge(&entry->skb_list); 2389 return RX_DROP_UNUSABLE; 2390 } 2391 } 2392 while ((skb = __skb_dequeue(&entry->skb_list))) { 2393 skb_put_data(rx->skb, skb->data, skb->len); 2394 dev_kfree_skb(skb); 2395 } 2396 2397 out: 2398 ieee80211_led_rx(rx->local); 2399 if (rx->sta) 2400 rx->sta->rx_stats.packets++; 2401 return RX_CONTINUE; 2402 } 2403 2404 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2405 { 2406 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2407 return -EACCES; 2408 2409 return 0; 2410 } 2411 2412 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2413 { 2414 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2415 struct sk_buff *skb = rx->skb; 2416 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2417 2418 /* 2419 * Pass through unencrypted frames if the hardware has 2420 * decrypted them already. 2421 */ 2422 if (status->flag & RX_FLAG_DECRYPTED) 2423 return 0; 2424 2425 /* check mesh EAPOL frames first */ 2426 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2427 ieee80211_is_data(fc))) { 2428 struct ieee80211s_hdr *mesh_hdr; 2429 u16 hdr_len = ieee80211_hdrlen(fc); 2430 u16 ethertype_offset; 2431 __be16 ethertype; 2432 2433 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2434 goto drop_check; 2435 2436 /* make sure fixed part of mesh header is there, also checks skb len */ 2437 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2438 goto drop_check; 2439 2440 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2441 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2442 sizeof(rfc1042_header); 2443 2444 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2445 ethertype == rx->sdata->control_port_protocol) 2446 return 0; 2447 } 2448 2449 drop_check: 2450 /* Drop unencrypted frames if key is set. */ 2451 if (unlikely(!ieee80211_has_protected(fc) && 2452 !ieee80211_is_any_nullfunc(fc) && 2453 ieee80211_is_data(fc) && rx->key)) 2454 return -EACCES; 2455 2456 return 0; 2457 } 2458 2459 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2460 { 2461 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2462 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2463 __le16 fc = hdr->frame_control; 2464 2465 /* 2466 * Pass through unencrypted frames if the hardware has 2467 * decrypted them already. 2468 */ 2469 if (status->flag & RX_FLAG_DECRYPTED) 2470 return 0; 2471 2472 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2473 if (unlikely(!ieee80211_has_protected(fc) && 2474 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2475 rx->key)) { 2476 if (ieee80211_is_deauth(fc) || 2477 ieee80211_is_disassoc(fc)) 2478 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2479 rx->skb->data, 2480 rx->skb->len); 2481 return -EACCES; 2482 } 2483 /* BIP does not use Protected field, so need to check MMIE */ 2484 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2485 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2486 if (ieee80211_is_deauth(fc) || 2487 ieee80211_is_disassoc(fc)) 2488 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2489 rx->skb->data, 2490 rx->skb->len); 2491 return -EACCES; 2492 } 2493 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2494 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2495 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2496 rx->skb->data, 2497 rx->skb->len); 2498 return -EACCES; 2499 } 2500 /* 2501 * When using MFP, Action frames are not allowed prior to 2502 * having configured keys. 2503 */ 2504 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2505 ieee80211_is_robust_mgmt_frame(rx->skb))) 2506 return -EACCES; 2507 } 2508 2509 return 0; 2510 } 2511 2512 static int 2513 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2514 { 2515 struct ieee80211_sub_if_data *sdata = rx->sdata; 2516 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2517 bool check_port_control = false; 2518 struct ethhdr *ehdr; 2519 int ret; 2520 2521 *port_control = false; 2522 if (ieee80211_has_a4(hdr->frame_control) && 2523 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2524 return -1; 2525 2526 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2527 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2528 2529 if (!sdata->u.mgd.use_4addr) 2530 return -1; 2531 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2532 check_port_control = true; 2533 } 2534 2535 if (is_multicast_ether_addr(hdr->addr1) && 2536 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2537 return -1; 2538 2539 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2540 if (ret < 0) 2541 return ret; 2542 2543 ehdr = (struct ethhdr *) rx->skb->data; 2544 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2545 *port_control = true; 2546 else if (check_port_control) 2547 return -1; 2548 2549 return 0; 2550 } 2551 2552 /* 2553 * requires that rx->skb is a frame with ethernet header 2554 */ 2555 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2556 { 2557 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2558 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2559 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2560 2561 /* 2562 * Allow EAPOL frames to us/the PAE group address regardless of 2563 * whether the frame was encrypted or not, and always disallow 2564 * all other destination addresses for them. 2565 */ 2566 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2567 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2568 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2569 2570 if (ieee80211_802_1x_port_control(rx) || 2571 ieee80211_drop_unencrypted(rx, fc)) 2572 return false; 2573 2574 return true; 2575 } 2576 2577 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2578 struct ieee80211_rx_data *rx) 2579 { 2580 struct ieee80211_sub_if_data *sdata = rx->sdata; 2581 struct net_device *dev = sdata->dev; 2582 2583 if (unlikely((skb->protocol == sdata->control_port_protocol || 2584 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2585 !sdata->control_port_no_preauth)) && 2586 sdata->control_port_over_nl80211)) { 2587 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2588 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2589 2590 cfg80211_rx_control_port(dev, skb, noencrypt); 2591 dev_kfree_skb(skb); 2592 } else { 2593 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2594 2595 memset(skb->cb, 0, sizeof(skb->cb)); 2596 2597 /* 2598 * 802.1X over 802.11 requires that the authenticator address 2599 * be used for EAPOL frames. However, 802.1X allows the use of 2600 * the PAE group address instead. If the interface is part of 2601 * a bridge and we pass the frame with the PAE group address, 2602 * then the bridge will forward it to the network (even if the 2603 * client was not associated yet), which isn't supposed to 2604 * happen. 2605 * To avoid that, rewrite the destination address to our own 2606 * address, so that the authenticator (e.g. hostapd) will see 2607 * the frame, but bridge won't forward it anywhere else. Note 2608 * that due to earlier filtering, the only other address can 2609 * be the PAE group address, unless the hardware allowed them 2610 * through in 802.3 offloaded mode. 2611 */ 2612 if (unlikely(skb->protocol == sdata->control_port_protocol && 2613 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2614 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2615 2616 /* deliver to local stack */ 2617 if (rx->list) 2618 list_add_tail(&skb->list, rx->list); 2619 else 2620 netif_receive_skb(skb); 2621 } 2622 } 2623 2624 /* 2625 * requires that rx->skb is a frame with ethernet header 2626 */ 2627 static void 2628 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2629 { 2630 struct ieee80211_sub_if_data *sdata = rx->sdata; 2631 struct net_device *dev = sdata->dev; 2632 struct sk_buff *skb, *xmit_skb; 2633 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2634 struct sta_info *dsta; 2635 2636 skb = rx->skb; 2637 xmit_skb = NULL; 2638 2639 dev_sw_netstats_rx_add(dev, skb->len); 2640 2641 if (rx->sta) { 2642 /* The seqno index has the same property as needed 2643 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2644 * for non-QoS-data frames. Here we know it's a data 2645 * frame, so count MSDUs. 2646 */ 2647 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2648 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2649 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2650 } 2651 2652 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2653 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2654 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2655 ehdr->h_proto != rx->sdata->control_port_protocol && 2656 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2657 if (is_multicast_ether_addr(ehdr->h_dest) && 2658 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2659 /* 2660 * send multicast frames both to higher layers in 2661 * local net stack and back to the wireless medium 2662 */ 2663 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2664 if (!xmit_skb) 2665 net_info_ratelimited("%s: failed to clone multicast frame\n", 2666 dev->name); 2667 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2668 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2669 dsta = sta_info_get(sdata, ehdr->h_dest); 2670 if (dsta) { 2671 /* 2672 * The destination station is associated to 2673 * this AP (in this VLAN), so send the frame 2674 * directly to it and do not pass it to local 2675 * net stack. 2676 */ 2677 xmit_skb = skb; 2678 skb = NULL; 2679 } 2680 } 2681 } 2682 2683 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2684 if (skb) { 2685 /* 'align' will only take the values 0 or 2 here since all 2686 * frames are required to be aligned to 2-byte boundaries 2687 * when being passed to mac80211; the code here works just 2688 * as well if that isn't true, but mac80211 assumes it can 2689 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2690 */ 2691 int align; 2692 2693 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2694 if (align) { 2695 if (WARN_ON(skb_headroom(skb) < 3)) { 2696 dev_kfree_skb(skb); 2697 skb = NULL; 2698 } else { 2699 u8 *data = skb->data; 2700 size_t len = skb_headlen(skb); 2701 skb->data -= align; 2702 memmove(skb->data, data, len); 2703 skb_set_tail_pointer(skb, len); 2704 } 2705 } 2706 } 2707 #endif 2708 2709 if (skb) { 2710 skb->protocol = eth_type_trans(skb, dev); 2711 ieee80211_deliver_skb_to_local_stack(skb, rx); 2712 } 2713 2714 if (xmit_skb) { 2715 /* 2716 * Send to wireless media and increase priority by 256 to 2717 * keep the received priority instead of reclassifying 2718 * the frame (see cfg80211_classify8021d). 2719 */ 2720 xmit_skb->priority += 256; 2721 xmit_skb->protocol = htons(ETH_P_802_3); 2722 skb_reset_network_header(xmit_skb); 2723 skb_reset_mac_header(xmit_skb); 2724 dev_queue_xmit(xmit_skb); 2725 } 2726 } 2727 2728 static ieee80211_rx_result debug_noinline 2729 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2730 { 2731 struct net_device *dev = rx->sdata->dev; 2732 struct sk_buff *skb = rx->skb; 2733 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2734 __le16 fc = hdr->frame_control; 2735 struct sk_buff_head frame_list; 2736 struct ethhdr ethhdr; 2737 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2738 2739 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2740 check_da = NULL; 2741 check_sa = NULL; 2742 } else switch (rx->sdata->vif.type) { 2743 case NL80211_IFTYPE_AP: 2744 case NL80211_IFTYPE_AP_VLAN: 2745 check_da = NULL; 2746 break; 2747 case NL80211_IFTYPE_STATION: 2748 if (!rx->sta || 2749 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2750 check_sa = NULL; 2751 break; 2752 case NL80211_IFTYPE_MESH_POINT: 2753 check_sa = NULL; 2754 break; 2755 default: 2756 break; 2757 } 2758 2759 skb->dev = dev; 2760 __skb_queue_head_init(&frame_list); 2761 2762 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2763 rx->sdata->vif.addr, 2764 rx->sdata->vif.type, 2765 data_offset, true)) 2766 return RX_DROP_UNUSABLE; 2767 2768 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2769 rx->sdata->vif.type, 2770 rx->local->hw.extra_tx_headroom, 2771 check_da, check_sa); 2772 2773 while (!skb_queue_empty(&frame_list)) { 2774 rx->skb = __skb_dequeue(&frame_list); 2775 2776 if (!ieee80211_frame_allowed(rx, fc)) { 2777 dev_kfree_skb(rx->skb); 2778 continue; 2779 } 2780 2781 ieee80211_deliver_skb(rx); 2782 } 2783 2784 return RX_QUEUED; 2785 } 2786 2787 static ieee80211_rx_result debug_noinline 2788 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2789 { 2790 struct sk_buff *skb = rx->skb; 2791 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2792 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2793 __le16 fc = hdr->frame_control; 2794 2795 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2796 return RX_CONTINUE; 2797 2798 if (unlikely(!ieee80211_is_data(fc))) 2799 return RX_CONTINUE; 2800 2801 if (unlikely(!ieee80211_is_data_present(fc))) 2802 return RX_DROP_MONITOR; 2803 2804 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2805 switch (rx->sdata->vif.type) { 2806 case NL80211_IFTYPE_AP_VLAN: 2807 if (!rx->sdata->u.vlan.sta) 2808 return RX_DROP_UNUSABLE; 2809 break; 2810 case NL80211_IFTYPE_STATION: 2811 if (!rx->sdata->u.mgd.use_4addr) 2812 return RX_DROP_UNUSABLE; 2813 break; 2814 default: 2815 return RX_DROP_UNUSABLE; 2816 } 2817 } 2818 2819 if (is_multicast_ether_addr(hdr->addr1)) 2820 return RX_DROP_UNUSABLE; 2821 2822 if (rx->key) { 2823 /* 2824 * We should not receive A-MSDUs on pre-HT connections, 2825 * and HT connections cannot use old ciphers. Thus drop 2826 * them, as in those cases we couldn't even have SPP 2827 * A-MSDUs or such. 2828 */ 2829 switch (rx->key->conf.cipher) { 2830 case WLAN_CIPHER_SUITE_WEP40: 2831 case WLAN_CIPHER_SUITE_WEP104: 2832 case WLAN_CIPHER_SUITE_TKIP: 2833 return RX_DROP_UNUSABLE; 2834 default: 2835 break; 2836 } 2837 } 2838 2839 return __ieee80211_rx_h_amsdu(rx, 0); 2840 } 2841 2842 #ifdef CONFIG_MAC80211_MESH 2843 static ieee80211_rx_result 2844 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2845 { 2846 struct ieee80211_hdr *fwd_hdr, *hdr; 2847 struct ieee80211_tx_info *info; 2848 struct ieee80211s_hdr *mesh_hdr; 2849 struct sk_buff *skb = rx->skb, *fwd_skb; 2850 struct ieee80211_local *local = rx->local; 2851 struct ieee80211_sub_if_data *sdata = rx->sdata; 2852 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2853 u16 ac, q, hdrlen; 2854 int tailroom = 0; 2855 2856 hdr = (struct ieee80211_hdr *) skb->data; 2857 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2858 2859 /* make sure fixed part of mesh header is there, also checks skb len */ 2860 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2861 return RX_DROP_MONITOR; 2862 2863 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2864 2865 /* make sure full mesh header is there, also checks skb len */ 2866 if (!pskb_may_pull(rx->skb, 2867 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2868 return RX_DROP_MONITOR; 2869 2870 /* reload pointers */ 2871 hdr = (struct ieee80211_hdr *) skb->data; 2872 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2873 2874 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2875 return RX_DROP_MONITOR; 2876 2877 /* frame is in RMC, don't forward */ 2878 if (ieee80211_is_data(hdr->frame_control) && 2879 is_multicast_ether_addr(hdr->addr1) && 2880 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2881 return RX_DROP_MONITOR; 2882 2883 if (!ieee80211_is_data(hdr->frame_control)) 2884 return RX_CONTINUE; 2885 2886 if (!mesh_hdr->ttl) 2887 return RX_DROP_MONITOR; 2888 2889 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2890 struct mesh_path *mppath; 2891 char *proxied_addr; 2892 char *mpp_addr; 2893 2894 if (is_multicast_ether_addr(hdr->addr1)) { 2895 mpp_addr = hdr->addr3; 2896 proxied_addr = mesh_hdr->eaddr1; 2897 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2898 MESH_FLAGS_AE_A5_A6) { 2899 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2900 mpp_addr = hdr->addr4; 2901 proxied_addr = mesh_hdr->eaddr2; 2902 } else { 2903 return RX_DROP_MONITOR; 2904 } 2905 2906 rcu_read_lock(); 2907 mppath = mpp_path_lookup(sdata, proxied_addr); 2908 if (!mppath) { 2909 mpp_path_add(sdata, proxied_addr, mpp_addr); 2910 } else { 2911 spin_lock_bh(&mppath->state_lock); 2912 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2913 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2914 mppath->exp_time = jiffies; 2915 spin_unlock_bh(&mppath->state_lock); 2916 } 2917 rcu_read_unlock(); 2918 } 2919 2920 /* Frame has reached destination. Don't forward */ 2921 if (!is_multicast_ether_addr(hdr->addr1) && 2922 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2923 return RX_CONTINUE; 2924 2925 ac = ieee802_1d_to_ac[skb->priority]; 2926 q = sdata->vif.hw_queue[ac]; 2927 if (ieee80211_queue_stopped(&local->hw, q)) { 2928 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2929 return RX_DROP_MONITOR; 2930 } 2931 skb_set_queue_mapping(skb, ac); 2932 2933 if (!--mesh_hdr->ttl) { 2934 if (!is_multicast_ether_addr(hdr->addr1)) 2935 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2936 dropped_frames_ttl); 2937 goto out; 2938 } 2939 2940 if (!ifmsh->mshcfg.dot11MeshForwarding) 2941 goto out; 2942 2943 if (sdata->crypto_tx_tailroom_needed_cnt) 2944 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2945 2946 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2947 sdata->encrypt_headroom, 2948 tailroom, GFP_ATOMIC); 2949 if (!fwd_skb) 2950 goto out; 2951 2952 fwd_skb->dev = sdata->dev; 2953 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2954 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2955 info = IEEE80211_SKB_CB(fwd_skb); 2956 memset(info, 0, sizeof(*info)); 2957 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2958 info->control.vif = &rx->sdata->vif; 2959 info->control.jiffies = jiffies; 2960 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2961 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2962 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2963 /* update power mode indication when forwarding */ 2964 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2965 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2966 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2967 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2968 } else { 2969 /* unable to resolve next hop */ 2970 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2971 fwd_hdr->addr3, 0, 2972 WLAN_REASON_MESH_PATH_NOFORWARD, 2973 fwd_hdr->addr2); 2974 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2975 kfree_skb(fwd_skb); 2976 return RX_DROP_MONITOR; 2977 } 2978 2979 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2980 ieee80211_add_pending_skb(local, fwd_skb); 2981 out: 2982 if (is_multicast_ether_addr(hdr->addr1)) 2983 return RX_CONTINUE; 2984 return RX_DROP_MONITOR; 2985 } 2986 #endif 2987 2988 static ieee80211_rx_result debug_noinline 2989 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2990 { 2991 struct ieee80211_sub_if_data *sdata = rx->sdata; 2992 struct ieee80211_local *local = rx->local; 2993 struct net_device *dev = sdata->dev; 2994 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2995 __le16 fc = hdr->frame_control; 2996 bool port_control; 2997 int err; 2998 2999 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3000 return RX_CONTINUE; 3001 3002 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3003 return RX_DROP_MONITOR; 3004 3005 /* 3006 * Send unexpected-4addr-frame event to hostapd. For older versions, 3007 * also drop the frame to cooked monitor interfaces. 3008 */ 3009 if (ieee80211_has_a4(hdr->frame_control) && 3010 sdata->vif.type == NL80211_IFTYPE_AP) { 3011 if (rx->sta && 3012 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3013 cfg80211_rx_unexpected_4addr_frame( 3014 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3015 return RX_DROP_MONITOR; 3016 } 3017 3018 err = __ieee80211_data_to_8023(rx, &port_control); 3019 if (unlikely(err)) 3020 return RX_DROP_UNUSABLE; 3021 3022 if (!ieee80211_frame_allowed(rx, fc)) 3023 return RX_DROP_MONITOR; 3024 3025 /* directly handle TDLS channel switch requests/responses */ 3026 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3027 cpu_to_be16(ETH_P_TDLS))) { 3028 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3029 3030 if (pskb_may_pull(rx->skb, 3031 offsetof(struct ieee80211_tdls_data, u)) && 3032 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3033 tf->category == WLAN_CATEGORY_TDLS && 3034 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3035 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3036 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3037 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3038 return RX_QUEUED; 3039 } 3040 } 3041 3042 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3043 unlikely(port_control) && sdata->bss) { 3044 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3045 u.ap); 3046 dev = sdata->dev; 3047 rx->sdata = sdata; 3048 } 3049 3050 rx->skb->dev = dev; 3051 3052 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3053 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3054 !is_multicast_ether_addr( 3055 ((struct ethhdr *)rx->skb->data)->h_dest) && 3056 (!local->scanning && 3057 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3058 mod_timer(&local->dynamic_ps_timer, jiffies + 3059 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3060 3061 ieee80211_deliver_skb(rx); 3062 3063 return RX_QUEUED; 3064 } 3065 3066 static ieee80211_rx_result debug_noinline 3067 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3068 { 3069 struct sk_buff *skb = rx->skb; 3070 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3071 struct tid_ampdu_rx *tid_agg_rx; 3072 u16 start_seq_num; 3073 u16 tid; 3074 3075 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3076 return RX_CONTINUE; 3077 3078 if (ieee80211_is_back_req(bar->frame_control)) { 3079 struct { 3080 __le16 control, start_seq_num; 3081 } __packed bar_data; 3082 struct ieee80211_event event = { 3083 .type = BAR_RX_EVENT, 3084 }; 3085 3086 if (!rx->sta) 3087 return RX_DROP_MONITOR; 3088 3089 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3090 &bar_data, sizeof(bar_data))) 3091 return RX_DROP_MONITOR; 3092 3093 tid = le16_to_cpu(bar_data.control) >> 12; 3094 3095 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3096 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3097 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3098 WLAN_BACK_RECIPIENT, 3099 WLAN_REASON_QSTA_REQUIRE_SETUP); 3100 3101 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3102 if (!tid_agg_rx) 3103 return RX_DROP_MONITOR; 3104 3105 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3106 event.u.ba.tid = tid; 3107 event.u.ba.ssn = start_seq_num; 3108 event.u.ba.sta = &rx->sta->sta; 3109 3110 /* reset session timer */ 3111 if (tid_agg_rx->timeout) 3112 mod_timer(&tid_agg_rx->session_timer, 3113 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3114 3115 spin_lock(&tid_agg_rx->reorder_lock); 3116 /* release stored frames up to start of BAR */ 3117 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3118 start_seq_num, frames); 3119 spin_unlock(&tid_agg_rx->reorder_lock); 3120 3121 drv_event_callback(rx->local, rx->sdata, &event); 3122 3123 kfree_skb(skb); 3124 return RX_QUEUED; 3125 } 3126 3127 /* 3128 * After this point, we only want management frames, 3129 * so we can drop all remaining control frames to 3130 * cooked monitor interfaces. 3131 */ 3132 return RX_DROP_MONITOR; 3133 } 3134 3135 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3136 struct ieee80211_mgmt *mgmt, 3137 size_t len) 3138 { 3139 struct ieee80211_local *local = sdata->local; 3140 struct sk_buff *skb; 3141 struct ieee80211_mgmt *resp; 3142 3143 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3144 /* Not to own unicast address */ 3145 return; 3146 } 3147 3148 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3149 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3150 /* Not from the current AP or not associated yet. */ 3151 return; 3152 } 3153 3154 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3155 /* Too short SA Query request frame */ 3156 return; 3157 } 3158 3159 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3160 if (skb == NULL) 3161 return; 3162 3163 skb_reserve(skb, local->hw.extra_tx_headroom); 3164 resp = skb_put_zero(skb, 24); 3165 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3166 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3167 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3168 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3169 IEEE80211_STYPE_ACTION); 3170 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3171 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3172 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3173 memcpy(resp->u.action.u.sa_query.trans_id, 3174 mgmt->u.action.u.sa_query.trans_id, 3175 WLAN_SA_QUERY_TR_ID_LEN); 3176 3177 ieee80211_tx_skb(sdata, skb); 3178 } 3179 3180 static ieee80211_rx_result debug_noinline 3181 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3182 { 3183 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3184 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3185 3186 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3187 return RX_CONTINUE; 3188 3189 /* 3190 * From here on, look only at management frames. 3191 * Data and control frames are already handled, 3192 * and unknown (reserved) frames are useless. 3193 */ 3194 if (rx->skb->len < 24) 3195 return RX_DROP_MONITOR; 3196 3197 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3198 return RX_DROP_MONITOR; 3199 3200 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3201 ieee80211_is_beacon(mgmt->frame_control) && 3202 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3203 int sig = 0; 3204 3205 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3206 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3207 sig = status->signal; 3208 3209 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3210 rx->skb->data, rx->skb->len, 3211 ieee80211_rx_status_to_khz(status), 3212 sig); 3213 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3214 } 3215 3216 if (ieee80211_drop_unencrypted_mgmt(rx)) 3217 return RX_DROP_UNUSABLE; 3218 3219 return RX_CONTINUE; 3220 } 3221 3222 static bool 3223 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3224 { 3225 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3226 struct ieee80211_sub_if_data *sdata = rx->sdata; 3227 3228 /* TWT actions are only supported in AP for the moment */ 3229 if (sdata->vif.type != NL80211_IFTYPE_AP) 3230 return false; 3231 3232 if (!rx->local->ops->add_twt_setup) 3233 return false; 3234 3235 if (!sdata->vif.bss_conf.twt_responder) 3236 return false; 3237 3238 if (!rx->sta) 3239 return false; 3240 3241 switch (mgmt->u.action.u.s1g.action_code) { 3242 case WLAN_S1G_TWT_SETUP: { 3243 struct ieee80211_twt_setup *twt; 3244 3245 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3246 1 + /* action code */ 3247 sizeof(struct ieee80211_twt_setup) + 3248 2 /* TWT req_type agrt */) 3249 break; 3250 3251 twt = (void *)mgmt->u.action.u.s1g.variable; 3252 if (twt->element_id != WLAN_EID_S1G_TWT) 3253 break; 3254 3255 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3256 4 + /* action code + token + tlv */ 3257 twt->length) 3258 break; 3259 3260 return true; /* queue the frame */ 3261 } 3262 case WLAN_S1G_TWT_TEARDOWN: 3263 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3264 break; 3265 3266 return true; /* queue the frame */ 3267 default: 3268 break; 3269 } 3270 3271 return false; 3272 } 3273 3274 static ieee80211_rx_result debug_noinline 3275 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3276 { 3277 struct ieee80211_local *local = rx->local; 3278 struct ieee80211_sub_if_data *sdata = rx->sdata; 3279 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3280 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3281 int len = rx->skb->len; 3282 3283 if (!ieee80211_is_action(mgmt->frame_control)) 3284 return RX_CONTINUE; 3285 3286 /* drop too small frames */ 3287 if (len < IEEE80211_MIN_ACTION_SIZE) 3288 return RX_DROP_UNUSABLE; 3289 3290 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3291 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3292 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3293 return RX_DROP_UNUSABLE; 3294 3295 switch (mgmt->u.action.category) { 3296 case WLAN_CATEGORY_HT: 3297 /* reject HT action frames from stations not supporting HT */ 3298 if (!rx->sta->sta.ht_cap.ht_supported) 3299 goto invalid; 3300 3301 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3302 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3303 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3304 sdata->vif.type != NL80211_IFTYPE_AP && 3305 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3306 break; 3307 3308 /* verify action & smps_control/chanwidth are present */ 3309 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3310 goto invalid; 3311 3312 switch (mgmt->u.action.u.ht_smps.action) { 3313 case WLAN_HT_ACTION_SMPS: { 3314 struct ieee80211_supported_band *sband; 3315 enum ieee80211_smps_mode smps_mode; 3316 struct sta_opmode_info sta_opmode = {}; 3317 3318 if (sdata->vif.type != NL80211_IFTYPE_AP && 3319 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3320 goto handled; 3321 3322 /* convert to HT capability */ 3323 switch (mgmt->u.action.u.ht_smps.smps_control) { 3324 case WLAN_HT_SMPS_CONTROL_DISABLED: 3325 smps_mode = IEEE80211_SMPS_OFF; 3326 break; 3327 case WLAN_HT_SMPS_CONTROL_STATIC: 3328 smps_mode = IEEE80211_SMPS_STATIC; 3329 break; 3330 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3331 smps_mode = IEEE80211_SMPS_DYNAMIC; 3332 break; 3333 default: 3334 goto invalid; 3335 } 3336 3337 /* if no change do nothing */ 3338 if (rx->sta->sta.smps_mode == smps_mode) 3339 goto handled; 3340 rx->sta->sta.smps_mode = smps_mode; 3341 sta_opmode.smps_mode = 3342 ieee80211_smps_mode_to_smps_mode(smps_mode); 3343 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3344 3345 sband = rx->local->hw.wiphy->bands[status->band]; 3346 3347 rate_control_rate_update(local, sband, rx->sta, 3348 IEEE80211_RC_SMPS_CHANGED); 3349 cfg80211_sta_opmode_change_notify(sdata->dev, 3350 rx->sta->addr, 3351 &sta_opmode, 3352 GFP_ATOMIC); 3353 goto handled; 3354 } 3355 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3356 struct ieee80211_supported_band *sband; 3357 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3358 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3359 struct sta_opmode_info sta_opmode = {}; 3360 3361 /* If it doesn't support 40 MHz it can't change ... */ 3362 if (!(rx->sta->sta.ht_cap.cap & 3363 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3364 goto handled; 3365 3366 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3367 max_bw = IEEE80211_STA_RX_BW_20; 3368 else 3369 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3370 3371 /* set cur_max_bandwidth and recalc sta bw */ 3372 rx->sta->cur_max_bandwidth = max_bw; 3373 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3374 3375 if (rx->sta->sta.bandwidth == new_bw) 3376 goto handled; 3377 3378 rx->sta->sta.bandwidth = new_bw; 3379 sband = rx->local->hw.wiphy->bands[status->band]; 3380 sta_opmode.bw = 3381 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3382 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3383 3384 rate_control_rate_update(local, sband, rx->sta, 3385 IEEE80211_RC_BW_CHANGED); 3386 cfg80211_sta_opmode_change_notify(sdata->dev, 3387 rx->sta->addr, 3388 &sta_opmode, 3389 GFP_ATOMIC); 3390 goto handled; 3391 } 3392 default: 3393 goto invalid; 3394 } 3395 3396 break; 3397 case WLAN_CATEGORY_PUBLIC: 3398 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3399 goto invalid; 3400 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3401 break; 3402 if (!rx->sta) 3403 break; 3404 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3405 break; 3406 if (mgmt->u.action.u.ext_chan_switch.action_code != 3407 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3408 break; 3409 if (len < offsetof(struct ieee80211_mgmt, 3410 u.action.u.ext_chan_switch.variable)) 3411 goto invalid; 3412 goto queue; 3413 case WLAN_CATEGORY_VHT: 3414 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3415 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3416 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3417 sdata->vif.type != NL80211_IFTYPE_AP && 3418 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3419 break; 3420 3421 /* verify action code is present */ 3422 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3423 goto invalid; 3424 3425 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3426 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3427 /* verify opmode is present */ 3428 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3429 goto invalid; 3430 goto queue; 3431 } 3432 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3433 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3434 goto invalid; 3435 goto queue; 3436 } 3437 default: 3438 break; 3439 } 3440 break; 3441 case WLAN_CATEGORY_BACK: 3442 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3443 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3444 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3445 sdata->vif.type != NL80211_IFTYPE_AP && 3446 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3447 break; 3448 3449 /* verify action_code is present */ 3450 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3451 break; 3452 3453 switch (mgmt->u.action.u.addba_req.action_code) { 3454 case WLAN_ACTION_ADDBA_REQ: 3455 if (len < (IEEE80211_MIN_ACTION_SIZE + 3456 sizeof(mgmt->u.action.u.addba_req))) 3457 goto invalid; 3458 break; 3459 case WLAN_ACTION_ADDBA_RESP: 3460 if (len < (IEEE80211_MIN_ACTION_SIZE + 3461 sizeof(mgmt->u.action.u.addba_resp))) 3462 goto invalid; 3463 break; 3464 case WLAN_ACTION_DELBA: 3465 if (len < (IEEE80211_MIN_ACTION_SIZE + 3466 sizeof(mgmt->u.action.u.delba))) 3467 goto invalid; 3468 break; 3469 default: 3470 goto invalid; 3471 } 3472 3473 goto queue; 3474 case WLAN_CATEGORY_SPECTRUM_MGMT: 3475 /* verify action_code is present */ 3476 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3477 break; 3478 3479 switch (mgmt->u.action.u.measurement.action_code) { 3480 case WLAN_ACTION_SPCT_MSR_REQ: 3481 if (status->band != NL80211_BAND_5GHZ) 3482 break; 3483 3484 if (len < (IEEE80211_MIN_ACTION_SIZE + 3485 sizeof(mgmt->u.action.u.measurement))) 3486 break; 3487 3488 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3489 break; 3490 3491 ieee80211_process_measurement_req(sdata, mgmt, len); 3492 goto handled; 3493 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3494 u8 *bssid; 3495 if (len < (IEEE80211_MIN_ACTION_SIZE + 3496 sizeof(mgmt->u.action.u.chan_switch))) 3497 break; 3498 3499 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3500 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3501 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3502 break; 3503 3504 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3505 bssid = sdata->u.mgd.bssid; 3506 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3507 bssid = sdata->u.ibss.bssid; 3508 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3509 bssid = mgmt->sa; 3510 else 3511 break; 3512 3513 if (!ether_addr_equal(mgmt->bssid, bssid)) 3514 break; 3515 3516 goto queue; 3517 } 3518 } 3519 break; 3520 case WLAN_CATEGORY_SELF_PROTECTED: 3521 if (len < (IEEE80211_MIN_ACTION_SIZE + 3522 sizeof(mgmt->u.action.u.self_prot.action_code))) 3523 break; 3524 3525 switch (mgmt->u.action.u.self_prot.action_code) { 3526 case WLAN_SP_MESH_PEERING_OPEN: 3527 case WLAN_SP_MESH_PEERING_CLOSE: 3528 case WLAN_SP_MESH_PEERING_CONFIRM: 3529 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3530 goto invalid; 3531 if (sdata->u.mesh.user_mpm) 3532 /* userspace handles this frame */ 3533 break; 3534 goto queue; 3535 case WLAN_SP_MGK_INFORM: 3536 case WLAN_SP_MGK_ACK: 3537 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3538 goto invalid; 3539 break; 3540 } 3541 break; 3542 case WLAN_CATEGORY_MESH_ACTION: 3543 if (len < (IEEE80211_MIN_ACTION_SIZE + 3544 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3545 break; 3546 3547 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3548 break; 3549 if (mesh_action_is_path_sel(mgmt) && 3550 !mesh_path_sel_is_hwmp(sdata)) 3551 break; 3552 goto queue; 3553 case WLAN_CATEGORY_S1G: 3554 switch (mgmt->u.action.u.s1g.action_code) { 3555 case WLAN_S1G_TWT_SETUP: 3556 case WLAN_S1G_TWT_TEARDOWN: 3557 if (ieee80211_process_rx_twt_action(rx)) 3558 goto queue; 3559 break; 3560 default: 3561 break; 3562 } 3563 break; 3564 } 3565 3566 return RX_CONTINUE; 3567 3568 invalid: 3569 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3570 /* will return in the next handlers */ 3571 return RX_CONTINUE; 3572 3573 handled: 3574 if (rx->sta) 3575 rx->sta->rx_stats.packets++; 3576 dev_kfree_skb(rx->skb); 3577 return RX_QUEUED; 3578 3579 queue: 3580 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3581 return RX_QUEUED; 3582 } 3583 3584 static ieee80211_rx_result debug_noinline 3585 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3586 { 3587 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3588 int sig = 0; 3589 3590 /* skip known-bad action frames and return them in the next handler */ 3591 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3592 return RX_CONTINUE; 3593 3594 /* 3595 * Getting here means the kernel doesn't know how to handle 3596 * it, but maybe userspace does ... include returned frames 3597 * so userspace can register for those to know whether ones 3598 * it transmitted were processed or returned. 3599 */ 3600 3601 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3602 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3603 sig = status->signal; 3604 3605 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3606 ieee80211_rx_status_to_khz(status), sig, 3607 rx->skb->data, rx->skb->len, 0)) { 3608 if (rx->sta) 3609 rx->sta->rx_stats.packets++; 3610 dev_kfree_skb(rx->skb); 3611 return RX_QUEUED; 3612 } 3613 3614 return RX_CONTINUE; 3615 } 3616 3617 static ieee80211_rx_result debug_noinline 3618 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3619 { 3620 struct ieee80211_sub_if_data *sdata = rx->sdata; 3621 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3622 int len = rx->skb->len; 3623 3624 if (!ieee80211_is_action(mgmt->frame_control)) 3625 return RX_CONTINUE; 3626 3627 switch (mgmt->u.action.category) { 3628 case WLAN_CATEGORY_SA_QUERY: 3629 if (len < (IEEE80211_MIN_ACTION_SIZE + 3630 sizeof(mgmt->u.action.u.sa_query))) 3631 break; 3632 3633 switch (mgmt->u.action.u.sa_query.action) { 3634 case WLAN_ACTION_SA_QUERY_REQUEST: 3635 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3636 break; 3637 ieee80211_process_sa_query_req(sdata, mgmt, len); 3638 goto handled; 3639 } 3640 break; 3641 } 3642 3643 return RX_CONTINUE; 3644 3645 handled: 3646 if (rx->sta) 3647 rx->sta->rx_stats.packets++; 3648 dev_kfree_skb(rx->skb); 3649 return RX_QUEUED; 3650 } 3651 3652 static ieee80211_rx_result debug_noinline 3653 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3654 { 3655 struct ieee80211_local *local = rx->local; 3656 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3657 struct sk_buff *nskb; 3658 struct ieee80211_sub_if_data *sdata = rx->sdata; 3659 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3660 3661 if (!ieee80211_is_action(mgmt->frame_control)) 3662 return RX_CONTINUE; 3663 3664 /* 3665 * For AP mode, hostapd is responsible for handling any action 3666 * frames that we didn't handle, including returning unknown 3667 * ones. For all other modes we will return them to the sender, 3668 * setting the 0x80 bit in the action category, as required by 3669 * 802.11-2012 9.24.4. 3670 * Newer versions of hostapd shall also use the management frame 3671 * registration mechanisms, but older ones still use cooked 3672 * monitor interfaces so push all frames there. 3673 */ 3674 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3675 (sdata->vif.type == NL80211_IFTYPE_AP || 3676 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3677 return RX_DROP_MONITOR; 3678 3679 if (is_multicast_ether_addr(mgmt->da)) 3680 return RX_DROP_MONITOR; 3681 3682 /* do not return rejected action frames */ 3683 if (mgmt->u.action.category & 0x80) 3684 return RX_DROP_UNUSABLE; 3685 3686 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3687 GFP_ATOMIC); 3688 if (nskb) { 3689 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3690 3691 nmgmt->u.action.category |= 0x80; 3692 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3693 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3694 3695 memset(nskb->cb, 0, sizeof(nskb->cb)); 3696 3697 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3698 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3699 3700 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3701 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3702 IEEE80211_TX_CTL_NO_CCK_RATE; 3703 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3704 info->hw_queue = 3705 local->hw.offchannel_tx_hw_queue; 3706 } 3707 3708 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3709 status->band); 3710 } 3711 dev_kfree_skb(rx->skb); 3712 return RX_QUEUED; 3713 } 3714 3715 static ieee80211_rx_result debug_noinline 3716 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3717 { 3718 struct ieee80211_sub_if_data *sdata = rx->sdata; 3719 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3720 3721 if (!ieee80211_is_ext(hdr->frame_control)) 3722 return RX_CONTINUE; 3723 3724 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3725 return RX_DROP_MONITOR; 3726 3727 /* for now only beacons are ext, so queue them */ 3728 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3729 3730 return RX_QUEUED; 3731 } 3732 3733 static ieee80211_rx_result debug_noinline 3734 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3735 { 3736 struct ieee80211_sub_if_data *sdata = rx->sdata; 3737 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3738 __le16 stype; 3739 3740 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3741 3742 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3743 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3744 sdata->vif.type != NL80211_IFTYPE_OCB && 3745 sdata->vif.type != NL80211_IFTYPE_STATION) 3746 return RX_DROP_MONITOR; 3747 3748 switch (stype) { 3749 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3750 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3751 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3752 /* process for all: mesh, mlme, ibss */ 3753 break; 3754 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3755 if (is_multicast_ether_addr(mgmt->da) && 3756 !is_broadcast_ether_addr(mgmt->da)) 3757 return RX_DROP_MONITOR; 3758 3759 /* process only for station/IBSS */ 3760 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3761 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3762 return RX_DROP_MONITOR; 3763 break; 3764 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3765 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3766 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3767 if (is_multicast_ether_addr(mgmt->da) && 3768 !is_broadcast_ether_addr(mgmt->da)) 3769 return RX_DROP_MONITOR; 3770 3771 /* process only for station */ 3772 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3773 return RX_DROP_MONITOR; 3774 break; 3775 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3776 /* process only for ibss and mesh */ 3777 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3778 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3779 return RX_DROP_MONITOR; 3780 break; 3781 default: 3782 return RX_DROP_MONITOR; 3783 } 3784 3785 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3786 3787 return RX_QUEUED; 3788 } 3789 3790 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3791 struct ieee80211_rate *rate) 3792 { 3793 struct ieee80211_sub_if_data *sdata; 3794 struct ieee80211_local *local = rx->local; 3795 struct sk_buff *skb = rx->skb, *skb2; 3796 struct net_device *prev_dev = NULL; 3797 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3798 int needed_headroom; 3799 3800 /* 3801 * If cooked monitor has been processed already, then 3802 * don't do it again. If not, set the flag. 3803 */ 3804 if (rx->flags & IEEE80211_RX_CMNTR) 3805 goto out_free_skb; 3806 rx->flags |= IEEE80211_RX_CMNTR; 3807 3808 /* If there are no cooked monitor interfaces, just free the SKB */ 3809 if (!local->cooked_mntrs) 3810 goto out_free_skb; 3811 3812 /* vendor data is long removed here */ 3813 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3814 /* room for the radiotap header based on driver features */ 3815 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3816 3817 if (skb_headroom(skb) < needed_headroom && 3818 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3819 goto out_free_skb; 3820 3821 /* prepend radiotap information */ 3822 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3823 false); 3824 3825 skb_reset_mac_header(skb); 3826 skb->ip_summed = CHECKSUM_UNNECESSARY; 3827 skb->pkt_type = PACKET_OTHERHOST; 3828 skb->protocol = htons(ETH_P_802_2); 3829 3830 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3831 if (!ieee80211_sdata_running(sdata)) 3832 continue; 3833 3834 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3835 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3836 continue; 3837 3838 if (prev_dev) { 3839 skb2 = skb_clone(skb, GFP_ATOMIC); 3840 if (skb2) { 3841 skb2->dev = prev_dev; 3842 netif_receive_skb(skb2); 3843 } 3844 } 3845 3846 prev_dev = sdata->dev; 3847 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3848 } 3849 3850 if (prev_dev) { 3851 skb->dev = prev_dev; 3852 netif_receive_skb(skb); 3853 return; 3854 } 3855 3856 out_free_skb: 3857 dev_kfree_skb(skb); 3858 } 3859 3860 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3861 ieee80211_rx_result res) 3862 { 3863 switch (res) { 3864 case RX_DROP_MONITOR: 3865 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3866 if (rx->sta) 3867 rx->sta->rx_stats.dropped++; 3868 fallthrough; 3869 case RX_CONTINUE: { 3870 struct ieee80211_rate *rate = NULL; 3871 struct ieee80211_supported_band *sband; 3872 struct ieee80211_rx_status *status; 3873 3874 status = IEEE80211_SKB_RXCB((rx->skb)); 3875 3876 sband = rx->local->hw.wiphy->bands[status->band]; 3877 if (status->encoding == RX_ENC_LEGACY) 3878 rate = &sband->bitrates[status->rate_idx]; 3879 3880 ieee80211_rx_cooked_monitor(rx, rate); 3881 break; 3882 } 3883 case RX_DROP_UNUSABLE: 3884 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3885 if (rx->sta) 3886 rx->sta->rx_stats.dropped++; 3887 dev_kfree_skb(rx->skb); 3888 break; 3889 case RX_QUEUED: 3890 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3891 break; 3892 } 3893 } 3894 3895 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3896 struct sk_buff_head *frames) 3897 { 3898 ieee80211_rx_result res = RX_DROP_MONITOR; 3899 struct sk_buff *skb; 3900 3901 #define CALL_RXH(rxh) \ 3902 do { \ 3903 res = rxh(rx); \ 3904 if (res != RX_CONTINUE) \ 3905 goto rxh_next; \ 3906 } while (0) 3907 3908 /* Lock here to avoid hitting all of the data used in the RX 3909 * path (e.g. key data, station data, ...) concurrently when 3910 * a frame is released from the reorder buffer due to timeout 3911 * from the timer, potentially concurrently with RX from the 3912 * driver. 3913 */ 3914 spin_lock_bh(&rx->local->rx_path_lock); 3915 3916 while ((skb = __skb_dequeue(frames))) { 3917 /* 3918 * all the other fields are valid across frames 3919 * that belong to an aMPDU since they are on the 3920 * same TID from the same station 3921 */ 3922 rx->skb = skb; 3923 3924 CALL_RXH(ieee80211_rx_h_check_more_data); 3925 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3926 CALL_RXH(ieee80211_rx_h_sta_process); 3927 CALL_RXH(ieee80211_rx_h_decrypt); 3928 CALL_RXH(ieee80211_rx_h_defragment); 3929 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3930 /* must be after MMIC verify so header is counted in MPDU mic */ 3931 #ifdef CONFIG_MAC80211_MESH 3932 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3933 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3934 #endif 3935 CALL_RXH(ieee80211_rx_h_amsdu); 3936 CALL_RXH(ieee80211_rx_h_data); 3937 3938 /* special treatment -- needs the queue */ 3939 res = ieee80211_rx_h_ctrl(rx, frames); 3940 if (res != RX_CONTINUE) 3941 goto rxh_next; 3942 3943 CALL_RXH(ieee80211_rx_h_mgmt_check); 3944 CALL_RXH(ieee80211_rx_h_action); 3945 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3946 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3947 CALL_RXH(ieee80211_rx_h_action_return); 3948 CALL_RXH(ieee80211_rx_h_ext); 3949 CALL_RXH(ieee80211_rx_h_mgmt); 3950 3951 rxh_next: 3952 ieee80211_rx_handlers_result(rx, res); 3953 3954 #undef CALL_RXH 3955 } 3956 3957 spin_unlock_bh(&rx->local->rx_path_lock); 3958 } 3959 3960 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3961 { 3962 struct sk_buff_head reorder_release; 3963 ieee80211_rx_result res = RX_DROP_MONITOR; 3964 3965 __skb_queue_head_init(&reorder_release); 3966 3967 #define CALL_RXH(rxh) \ 3968 do { \ 3969 res = rxh(rx); \ 3970 if (res != RX_CONTINUE) \ 3971 goto rxh_next; \ 3972 } while (0) 3973 3974 CALL_RXH(ieee80211_rx_h_check_dup); 3975 CALL_RXH(ieee80211_rx_h_check); 3976 3977 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3978 3979 ieee80211_rx_handlers(rx, &reorder_release); 3980 return; 3981 3982 rxh_next: 3983 ieee80211_rx_handlers_result(rx, res); 3984 3985 #undef CALL_RXH 3986 } 3987 3988 /* 3989 * This function makes calls into the RX path, therefore 3990 * it has to be invoked under RCU read lock. 3991 */ 3992 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3993 { 3994 struct sk_buff_head frames; 3995 struct ieee80211_rx_data rx = { 3996 .sta = sta, 3997 .sdata = sta->sdata, 3998 .local = sta->local, 3999 /* This is OK -- must be QoS data frame */ 4000 .security_idx = tid, 4001 .seqno_idx = tid, 4002 }; 4003 struct tid_ampdu_rx *tid_agg_rx; 4004 4005 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4006 if (!tid_agg_rx) 4007 return; 4008 4009 __skb_queue_head_init(&frames); 4010 4011 spin_lock(&tid_agg_rx->reorder_lock); 4012 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4013 spin_unlock(&tid_agg_rx->reorder_lock); 4014 4015 if (!skb_queue_empty(&frames)) { 4016 struct ieee80211_event event = { 4017 .type = BA_FRAME_TIMEOUT, 4018 .u.ba.tid = tid, 4019 .u.ba.sta = &sta->sta, 4020 }; 4021 drv_event_callback(rx.local, rx.sdata, &event); 4022 } 4023 4024 ieee80211_rx_handlers(&rx, &frames); 4025 } 4026 4027 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4028 u16 ssn, u64 filtered, 4029 u16 received_mpdus) 4030 { 4031 struct sta_info *sta; 4032 struct tid_ampdu_rx *tid_agg_rx; 4033 struct sk_buff_head frames; 4034 struct ieee80211_rx_data rx = { 4035 /* This is OK -- must be QoS data frame */ 4036 .security_idx = tid, 4037 .seqno_idx = tid, 4038 }; 4039 int i, diff; 4040 4041 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4042 return; 4043 4044 __skb_queue_head_init(&frames); 4045 4046 sta = container_of(pubsta, struct sta_info, sta); 4047 4048 rx.sta = sta; 4049 rx.sdata = sta->sdata; 4050 rx.local = sta->local; 4051 4052 rcu_read_lock(); 4053 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4054 if (!tid_agg_rx) 4055 goto out; 4056 4057 spin_lock_bh(&tid_agg_rx->reorder_lock); 4058 4059 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4060 int release; 4061 4062 /* release all frames in the reorder buffer */ 4063 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4064 IEEE80211_SN_MODULO; 4065 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4066 release, &frames); 4067 /* update ssn to match received ssn */ 4068 tid_agg_rx->head_seq_num = ssn; 4069 } else { 4070 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4071 &frames); 4072 } 4073 4074 /* handle the case that received ssn is behind the mac ssn. 4075 * it can be tid_agg_rx->buf_size behind and still be valid */ 4076 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4077 if (diff >= tid_agg_rx->buf_size) { 4078 tid_agg_rx->reorder_buf_filtered = 0; 4079 goto release; 4080 } 4081 filtered = filtered >> diff; 4082 ssn += diff; 4083 4084 /* update bitmap */ 4085 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4086 int index = (ssn + i) % tid_agg_rx->buf_size; 4087 4088 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4089 if (filtered & BIT_ULL(i)) 4090 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4091 } 4092 4093 /* now process also frames that the filter marking released */ 4094 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4095 4096 release: 4097 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4098 4099 ieee80211_rx_handlers(&rx, &frames); 4100 4101 out: 4102 rcu_read_unlock(); 4103 } 4104 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4105 4106 /* main receive path */ 4107 4108 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4109 { 4110 struct ieee80211_sub_if_data *sdata = rx->sdata; 4111 struct sk_buff *skb = rx->skb; 4112 struct ieee80211_hdr *hdr = (void *)skb->data; 4113 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4114 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4115 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4116 ieee80211_is_s1g_beacon(hdr->frame_control); 4117 4118 switch (sdata->vif.type) { 4119 case NL80211_IFTYPE_STATION: 4120 if (!bssid && !sdata->u.mgd.use_4addr) 4121 return false; 4122 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4123 return false; 4124 if (multicast) 4125 return true; 4126 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4127 case NL80211_IFTYPE_ADHOC: 4128 if (!bssid) 4129 return false; 4130 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4131 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4132 !is_valid_ether_addr(hdr->addr2)) 4133 return false; 4134 if (ieee80211_is_beacon(hdr->frame_control)) 4135 return true; 4136 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4137 return false; 4138 if (!multicast && 4139 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4140 return false; 4141 if (!rx->sta) { 4142 int rate_idx; 4143 if (status->encoding != RX_ENC_LEGACY) 4144 rate_idx = 0; /* TODO: HT/VHT rates */ 4145 else 4146 rate_idx = status->rate_idx; 4147 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4148 BIT(rate_idx)); 4149 } 4150 return true; 4151 case NL80211_IFTYPE_OCB: 4152 if (!bssid) 4153 return false; 4154 if (!ieee80211_is_data_present(hdr->frame_control)) 4155 return false; 4156 if (!is_broadcast_ether_addr(bssid)) 4157 return false; 4158 if (!multicast && 4159 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4160 return false; 4161 if (!rx->sta) { 4162 int rate_idx; 4163 if (status->encoding != RX_ENC_LEGACY) 4164 rate_idx = 0; /* TODO: HT rates */ 4165 else 4166 rate_idx = status->rate_idx; 4167 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4168 BIT(rate_idx)); 4169 } 4170 return true; 4171 case NL80211_IFTYPE_MESH_POINT: 4172 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4173 return false; 4174 if (multicast) 4175 return true; 4176 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4177 case NL80211_IFTYPE_AP_VLAN: 4178 case NL80211_IFTYPE_AP: 4179 if (!bssid) 4180 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4181 4182 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4183 /* 4184 * Accept public action frames even when the 4185 * BSSID doesn't match, this is used for P2P 4186 * and location updates. Note that mac80211 4187 * itself never looks at these frames. 4188 */ 4189 if (!multicast && 4190 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4191 return false; 4192 if (ieee80211_is_public_action(hdr, skb->len)) 4193 return true; 4194 return ieee80211_is_beacon(hdr->frame_control); 4195 } 4196 4197 if (!ieee80211_has_tods(hdr->frame_control)) { 4198 /* ignore data frames to TDLS-peers */ 4199 if (ieee80211_is_data(hdr->frame_control)) 4200 return false; 4201 /* ignore action frames to TDLS-peers */ 4202 if (ieee80211_is_action(hdr->frame_control) && 4203 !is_broadcast_ether_addr(bssid) && 4204 !ether_addr_equal(bssid, hdr->addr1)) 4205 return false; 4206 } 4207 4208 /* 4209 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4210 * the BSSID - we've checked that already but may have accepted 4211 * the wildcard (ff:ff:ff:ff:ff:ff). 4212 * 4213 * It also says: 4214 * The BSSID of the Data frame is determined as follows: 4215 * a) If the STA is contained within an AP or is associated 4216 * with an AP, the BSSID is the address currently in use 4217 * by the STA contained in the AP. 4218 * 4219 * So we should not accept data frames with an address that's 4220 * multicast. 4221 * 4222 * Accepting it also opens a security problem because stations 4223 * could encrypt it with the GTK and inject traffic that way. 4224 */ 4225 if (ieee80211_is_data(hdr->frame_control) && multicast) 4226 return false; 4227 4228 return true; 4229 case NL80211_IFTYPE_P2P_DEVICE: 4230 return ieee80211_is_public_action(hdr, skb->len) || 4231 ieee80211_is_probe_req(hdr->frame_control) || 4232 ieee80211_is_probe_resp(hdr->frame_control) || 4233 ieee80211_is_beacon(hdr->frame_control); 4234 case NL80211_IFTYPE_NAN: 4235 /* Currently no frames on NAN interface are allowed */ 4236 return false; 4237 default: 4238 break; 4239 } 4240 4241 WARN_ON_ONCE(1); 4242 return false; 4243 } 4244 4245 void ieee80211_check_fast_rx(struct sta_info *sta) 4246 { 4247 struct ieee80211_sub_if_data *sdata = sta->sdata; 4248 struct ieee80211_local *local = sdata->local; 4249 struct ieee80211_key *key; 4250 struct ieee80211_fast_rx fastrx = { 4251 .dev = sdata->dev, 4252 .vif_type = sdata->vif.type, 4253 .control_port_protocol = sdata->control_port_protocol, 4254 }, *old, *new = NULL; 4255 bool set_offload = false; 4256 bool assign = false; 4257 bool offload; 4258 4259 /* use sparse to check that we don't return without updating */ 4260 __acquire(check_fast_rx); 4261 4262 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4263 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4264 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4265 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4266 4267 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4268 4269 /* fast-rx doesn't do reordering */ 4270 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4271 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4272 goto clear; 4273 4274 switch (sdata->vif.type) { 4275 case NL80211_IFTYPE_STATION: 4276 if (sta->sta.tdls) { 4277 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4278 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4279 fastrx.expected_ds_bits = 0; 4280 } else { 4281 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4282 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4283 fastrx.expected_ds_bits = 4284 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4285 } 4286 4287 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4288 fastrx.expected_ds_bits |= 4289 cpu_to_le16(IEEE80211_FCTL_TODS); 4290 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4291 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4292 } 4293 4294 if (!sdata->u.mgd.powersave) 4295 break; 4296 4297 /* software powersave is a huge mess, avoid all of it */ 4298 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4299 goto clear; 4300 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4301 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4302 goto clear; 4303 break; 4304 case NL80211_IFTYPE_AP_VLAN: 4305 case NL80211_IFTYPE_AP: 4306 /* parallel-rx requires this, at least with calls to 4307 * ieee80211_sta_ps_transition() 4308 */ 4309 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4310 goto clear; 4311 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4312 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4313 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4314 4315 fastrx.internal_forward = 4316 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4317 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4318 !sdata->u.vlan.sta); 4319 4320 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4321 sdata->u.vlan.sta) { 4322 fastrx.expected_ds_bits |= 4323 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4324 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4325 fastrx.internal_forward = 0; 4326 } 4327 4328 break; 4329 default: 4330 goto clear; 4331 } 4332 4333 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4334 goto clear; 4335 4336 rcu_read_lock(); 4337 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4338 if (!key) 4339 key = rcu_dereference(sdata->default_unicast_key); 4340 if (key) { 4341 switch (key->conf.cipher) { 4342 case WLAN_CIPHER_SUITE_TKIP: 4343 /* we don't want to deal with MMIC in fast-rx */ 4344 goto clear_rcu; 4345 case WLAN_CIPHER_SUITE_CCMP: 4346 case WLAN_CIPHER_SUITE_CCMP_256: 4347 case WLAN_CIPHER_SUITE_GCMP: 4348 case WLAN_CIPHER_SUITE_GCMP_256: 4349 break; 4350 default: 4351 /* We also don't want to deal with 4352 * WEP or cipher scheme. 4353 */ 4354 goto clear_rcu; 4355 } 4356 4357 fastrx.key = true; 4358 fastrx.icv_len = key->conf.icv_len; 4359 } 4360 4361 assign = true; 4362 clear_rcu: 4363 rcu_read_unlock(); 4364 clear: 4365 __release(check_fast_rx); 4366 4367 if (assign) 4368 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4369 4370 offload = assign && 4371 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4372 4373 if (offload) 4374 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4375 else 4376 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4377 4378 if (set_offload) 4379 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4380 4381 spin_lock_bh(&sta->lock); 4382 old = rcu_dereference_protected(sta->fast_rx, true); 4383 rcu_assign_pointer(sta->fast_rx, new); 4384 spin_unlock_bh(&sta->lock); 4385 4386 if (old) 4387 kfree_rcu(old, rcu_head); 4388 } 4389 4390 void ieee80211_clear_fast_rx(struct sta_info *sta) 4391 { 4392 struct ieee80211_fast_rx *old; 4393 4394 spin_lock_bh(&sta->lock); 4395 old = rcu_dereference_protected(sta->fast_rx, true); 4396 RCU_INIT_POINTER(sta->fast_rx, NULL); 4397 spin_unlock_bh(&sta->lock); 4398 4399 if (old) 4400 kfree_rcu(old, rcu_head); 4401 } 4402 4403 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4404 { 4405 struct ieee80211_local *local = sdata->local; 4406 struct sta_info *sta; 4407 4408 lockdep_assert_held(&local->sta_mtx); 4409 4410 list_for_each_entry(sta, &local->sta_list, list) { 4411 if (sdata != sta->sdata && 4412 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4413 continue; 4414 ieee80211_check_fast_rx(sta); 4415 } 4416 } 4417 4418 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4419 { 4420 struct ieee80211_local *local = sdata->local; 4421 4422 mutex_lock(&local->sta_mtx); 4423 __ieee80211_check_fast_rx_iface(sdata); 4424 mutex_unlock(&local->sta_mtx); 4425 } 4426 4427 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4428 struct ieee80211_fast_rx *fast_rx, 4429 int orig_len) 4430 { 4431 struct ieee80211_sta_rx_stats *stats; 4432 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4433 struct sta_info *sta = rx->sta; 4434 struct sk_buff *skb = rx->skb; 4435 void *sa = skb->data + ETH_ALEN; 4436 void *da = skb->data; 4437 4438 stats = &sta->rx_stats; 4439 if (fast_rx->uses_rss) 4440 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4441 4442 /* statistics part of ieee80211_rx_h_sta_process() */ 4443 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4444 stats->last_signal = status->signal; 4445 if (!fast_rx->uses_rss) 4446 ewma_signal_add(&sta->rx_stats_avg.signal, 4447 -status->signal); 4448 } 4449 4450 if (status->chains) { 4451 int i; 4452 4453 stats->chains = status->chains; 4454 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4455 int signal = status->chain_signal[i]; 4456 4457 if (!(status->chains & BIT(i))) 4458 continue; 4459 4460 stats->chain_signal_last[i] = signal; 4461 if (!fast_rx->uses_rss) 4462 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4463 -signal); 4464 } 4465 } 4466 /* end of statistics */ 4467 4468 stats->last_rx = jiffies; 4469 stats->last_rate = sta_stats_encode_rate(status); 4470 4471 stats->fragments++; 4472 stats->packets++; 4473 4474 skb->dev = fast_rx->dev; 4475 4476 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4477 4478 /* The seqno index has the same property as needed 4479 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4480 * for non-QoS-data frames. Here we know it's a data 4481 * frame, so count MSDUs. 4482 */ 4483 u64_stats_update_begin(&stats->syncp); 4484 stats->msdu[rx->seqno_idx]++; 4485 stats->bytes += orig_len; 4486 u64_stats_update_end(&stats->syncp); 4487 4488 if (fast_rx->internal_forward) { 4489 struct sk_buff *xmit_skb = NULL; 4490 if (is_multicast_ether_addr(da)) { 4491 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4492 } else if (!ether_addr_equal(da, sa) && 4493 sta_info_get(rx->sdata, da)) { 4494 xmit_skb = skb; 4495 skb = NULL; 4496 } 4497 4498 if (xmit_skb) { 4499 /* 4500 * Send to wireless media and increase priority by 256 4501 * to keep the received priority instead of 4502 * reclassifying the frame (see cfg80211_classify8021d). 4503 */ 4504 xmit_skb->priority += 256; 4505 xmit_skb->protocol = htons(ETH_P_802_3); 4506 skb_reset_network_header(xmit_skb); 4507 skb_reset_mac_header(xmit_skb); 4508 dev_queue_xmit(xmit_skb); 4509 } 4510 4511 if (!skb) 4512 return; 4513 } 4514 4515 /* deliver to local stack */ 4516 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4517 ieee80211_deliver_skb_to_local_stack(skb, rx); 4518 } 4519 4520 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4521 struct ieee80211_fast_rx *fast_rx) 4522 { 4523 struct sk_buff *skb = rx->skb; 4524 struct ieee80211_hdr *hdr = (void *)skb->data; 4525 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4526 struct sta_info *sta = rx->sta; 4527 int orig_len = skb->len; 4528 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4529 int snap_offs = hdrlen; 4530 struct { 4531 u8 snap[sizeof(rfc1042_header)]; 4532 __be16 proto; 4533 } *payload __aligned(2); 4534 struct { 4535 u8 da[ETH_ALEN]; 4536 u8 sa[ETH_ALEN]; 4537 } addrs __aligned(2); 4538 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4539 4540 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4541 * to a common data structure; drivers can implement that per queue 4542 * but we don't have that information in mac80211 4543 */ 4544 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4545 return false; 4546 4547 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4548 4549 /* If using encryption, we also need to have: 4550 * - PN_VALIDATED: similar, but the implementation is tricky 4551 * - DECRYPTED: necessary for PN_VALIDATED 4552 */ 4553 if (fast_rx->key && 4554 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4555 return false; 4556 4557 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4558 return false; 4559 4560 if (unlikely(ieee80211_is_frag(hdr))) 4561 return false; 4562 4563 /* Since our interface address cannot be multicast, this 4564 * implicitly also rejects multicast frames without the 4565 * explicit check. 4566 * 4567 * We shouldn't get any *data* frames not addressed to us 4568 * (AP mode will accept multicast *management* frames), but 4569 * punting here will make it go through the full checks in 4570 * ieee80211_accept_frame(). 4571 */ 4572 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4573 return false; 4574 4575 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4576 IEEE80211_FCTL_TODS)) != 4577 fast_rx->expected_ds_bits) 4578 return false; 4579 4580 /* assign the key to drop unencrypted frames (later) 4581 * and strip the IV/MIC if necessary 4582 */ 4583 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4584 /* GCMP header length is the same */ 4585 snap_offs += IEEE80211_CCMP_HDR_LEN; 4586 } 4587 4588 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4589 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4590 goto drop; 4591 4592 payload = (void *)(skb->data + snap_offs); 4593 4594 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4595 return false; 4596 4597 /* Don't handle these here since they require special code. 4598 * Accept AARP and IPX even though they should come with a 4599 * bridge-tunnel header - but if we get them this way then 4600 * there's little point in discarding them. 4601 */ 4602 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4603 payload->proto == fast_rx->control_port_protocol)) 4604 return false; 4605 } 4606 4607 /* after this point, don't punt to the slowpath! */ 4608 4609 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4610 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4611 goto drop; 4612 4613 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4614 goto drop; 4615 4616 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4617 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4618 RX_QUEUED) 4619 goto drop; 4620 4621 return true; 4622 } 4623 4624 /* do the header conversion - first grab the addresses */ 4625 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4626 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4627 skb_postpull_rcsum(skb, skb->data + snap_offs, 4628 sizeof(rfc1042_header) + 2); 4629 /* remove the SNAP but leave the ethertype */ 4630 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4631 /* push the addresses in front */ 4632 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4633 4634 ieee80211_rx_8023(rx, fast_rx, orig_len); 4635 4636 return true; 4637 drop: 4638 dev_kfree_skb(skb); 4639 if (fast_rx->uses_rss) 4640 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4641 4642 stats->dropped++; 4643 return true; 4644 } 4645 4646 /* 4647 * This function returns whether or not the SKB 4648 * was destined for RX processing or not, which, 4649 * if consume is true, is equivalent to whether 4650 * or not the skb was consumed. 4651 */ 4652 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4653 struct sk_buff *skb, bool consume) 4654 { 4655 struct ieee80211_local *local = rx->local; 4656 struct ieee80211_sub_if_data *sdata = rx->sdata; 4657 4658 rx->skb = skb; 4659 4660 /* See if we can do fast-rx; if we have to copy we already lost, 4661 * so punt in that case. We should never have to deliver a data 4662 * frame to multiple interfaces anyway. 4663 * 4664 * We skip the ieee80211_accept_frame() call and do the necessary 4665 * checking inside ieee80211_invoke_fast_rx(). 4666 */ 4667 if (consume && rx->sta) { 4668 struct ieee80211_fast_rx *fast_rx; 4669 4670 fast_rx = rcu_dereference(rx->sta->fast_rx); 4671 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4672 return true; 4673 } 4674 4675 if (!ieee80211_accept_frame(rx)) 4676 return false; 4677 4678 if (!consume) { 4679 skb = skb_copy(skb, GFP_ATOMIC); 4680 if (!skb) { 4681 if (net_ratelimit()) 4682 wiphy_debug(local->hw.wiphy, 4683 "failed to copy skb for %s\n", 4684 sdata->name); 4685 return true; 4686 } 4687 4688 rx->skb = skb; 4689 } 4690 4691 ieee80211_invoke_rx_handlers(rx); 4692 return true; 4693 } 4694 4695 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4696 struct ieee80211_sta *pubsta, 4697 struct sk_buff *skb, 4698 struct list_head *list) 4699 { 4700 struct ieee80211_local *local = hw_to_local(hw); 4701 struct ieee80211_fast_rx *fast_rx; 4702 struct ieee80211_rx_data rx; 4703 4704 memset(&rx, 0, sizeof(rx)); 4705 rx.skb = skb; 4706 rx.local = local; 4707 rx.list = list; 4708 4709 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4710 4711 /* drop frame if too short for header */ 4712 if (skb->len < sizeof(struct ethhdr)) 4713 goto drop; 4714 4715 if (!pubsta) 4716 goto drop; 4717 4718 rx.sta = container_of(pubsta, struct sta_info, sta); 4719 rx.sdata = rx.sta->sdata; 4720 4721 fast_rx = rcu_dereference(rx.sta->fast_rx); 4722 if (!fast_rx) 4723 goto drop; 4724 4725 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4726 return; 4727 4728 drop: 4729 dev_kfree_skb(skb); 4730 } 4731 4732 /* 4733 * This is the actual Rx frames handler. as it belongs to Rx path it must 4734 * be called with rcu_read_lock protection. 4735 */ 4736 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4737 struct ieee80211_sta *pubsta, 4738 struct sk_buff *skb, 4739 struct list_head *list) 4740 { 4741 struct ieee80211_local *local = hw_to_local(hw); 4742 struct ieee80211_sub_if_data *sdata; 4743 struct ieee80211_hdr *hdr; 4744 __le16 fc; 4745 struct ieee80211_rx_data rx; 4746 struct ieee80211_sub_if_data *prev; 4747 struct rhlist_head *tmp; 4748 int err = 0; 4749 4750 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4751 memset(&rx, 0, sizeof(rx)); 4752 rx.skb = skb; 4753 rx.local = local; 4754 rx.list = list; 4755 4756 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4757 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4758 4759 if (ieee80211_is_mgmt(fc)) { 4760 /* drop frame if too short for header */ 4761 if (skb->len < ieee80211_hdrlen(fc)) 4762 err = -ENOBUFS; 4763 else 4764 err = skb_linearize(skb); 4765 } else { 4766 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4767 } 4768 4769 if (err) { 4770 dev_kfree_skb(skb); 4771 return; 4772 } 4773 4774 hdr = (struct ieee80211_hdr *)skb->data; 4775 ieee80211_parse_qos(&rx); 4776 ieee80211_verify_alignment(&rx); 4777 4778 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4779 ieee80211_is_beacon(hdr->frame_control) || 4780 ieee80211_is_s1g_beacon(hdr->frame_control))) 4781 ieee80211_scan_rx(local, skb); 4782 4783 if (ieee80211_is_data(fc)) { 4784 struct sta_info *sta, *prev_sta; 4785 4786 if (pubsta) { 4787 rx.sta = container_of(pubsta, struct sta_info, sta); 4788 rx.sdata = rx.sta->sdata; 4789 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4790 return; 4791 goto out; 4792 } 4793 4794 prev_sta = NULL; 4795 4796 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4797 if (!prev_sta) { 4798 prev_sta = sta; 4799 continue; 4800 } 4801 4802 rx.sta = prev_sta; 4803 rx.sdata = prev_sta->sdata; 4804 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4805 4806 prev_sta = sta; 4807 } 4808 4809 if (prev_sta) { 4810 rx.sta = prev_sta; 4811 rx.sdata = prev_sta->sdata; 4812 4813 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4814 return; 4815 goto out; 4816 } 4817 } 4818 4819 prev = NULL; 4820 4821 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4822 if (!ieee80211_sdata_running(sdata)) 4823 continue; 4824 4825 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4826 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4827 continue; 4828 4829 /* 4830 * frame is destined for this interface, but if it's 4831 * not also for the previous one we handle that after 4832 * the loop to avoid copying the SKB once too much 4833 */ 4834 4835 if (!prev) { 4836 prev = sdata; 4837 continue; 4838 } 4839 4840 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4841 rx.sdata = prev; 4842 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4843 4844 prev = sdata; 4845 } 4846 4847 if (prev) { 4848 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4849 rx.sdata = prev; 4850 4851 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4852 return; 4853 } 4854 4855 out: 4856 dev_kfree_skb(skb); 4857 } 4858 4859 /* 4860 * This is the receive path handler. It is called by a low level driver when an 4861 * 802.11 MPDU is received from the hardware. 4862 */ 4863 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4864 struct sk_buff *skb, struct list_head *list) 4865 { 4866 struct ieee80211_local *local = hw_to_local(hw); 4867 struct ieee80211_rate *rate = NULL; 4868 struct ieee80211_supported_band *sband; 4869 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4870 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 4871 4872 WARN_ON_ONCE(softirq_count() == 0); 4873 4874 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4875 goto drop; 4876 4877 sband = local->hw.wiphy->bands[status->band]; 4878 if (WARN_ON(!sband)) 4879 goto drop; 4880 4881 /* 4882 * If we're suspending, it is possible although not too likely 4883 * that we'd be receiving frames after having already partially 4884 * quiesced the stack. We can't process such frames then since 4885 * that might, for example, cause stations to be added or other 4886 * driver callbacks be invoked. 4887 */ 4888 if (unlikely(local->quiescing || local->suspended)) 4889 goto drop; 4890 4891 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4892 if (unlikely(local->in_reconfig)) 4893 goto drop; 4894 4895 /* 4896 * The same happens when we're not even started, 4897 * but that's worth a warning. 4898 */ 4899 if (WARN_ON(!local->started)) 4900 goto drop; 4901 4902 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4903 /* 4904 * Validate the rate, unless a PLCP error means that 4905 * we probably can't have a valid rate here anyway. 4906 */ 4907 4908 switch (status->encoding) { 4909 case RX_ENC_HT: 4910 /* 4911 * rate_idx is MCS index, which can be [0-76] 4912 * as documented on: 4913 * 4914 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4915 * 4916 * Anything else would be some sort of driver or 4917 * hardware error. The driver should catch hardware 4918 * errors. 4919 */ 4920 if (WARN(status->rate_idx > 76, 4921 "Rate marked as an HT rate but passed " 4922 "status->rate_idx is not " 4923 "an MCS index [0-76]: %d (0x%02x)\n", 4924 status->rate_idx, 4925 status->rate_idx)) 4926 goto drop; 4927 break; 4928 case RX_ENC_VHT: 4929 if (WARN_ONCE(status->rate_idx > 11 || 4930 !status->nss || 4931 status->nss > 8, 4932 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4933 status->rate_idx, status->nss)) 4934 goto drop; 4935 break; 4936 case RX_ENC_HE: 4937 if (WARN_ONCE(status->rate_idx > 11 || 4938 !status->nss || 4939 status->nss > 8, 4940 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4941 status->rate_idx, status->nss)) 4942 goto drop; 4943 break; 4944 default: 4945 WARN_ON_ONCE(1); 4946 fallthrough; 4947 case RX_ENC_LEGACY: 4948 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4949 goto drop; 4950 rate = &sband->bitrates[status->rate_idx]; 4951 } 4952 } 4953 4954 status->rx_flags = 0; 4955 4956 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4957 4958 /* 4959 * Frames with failed FCS/PLCP checksum are not returned, 4960 * all other frames are returned without radiotap header 4961 * if it was previously present. 4962 * Also, frames with less than 16 bytes are dropped. 4963 */ 4964 if (!(status->flag & RX_FLAG_8023)) 4965 skb = ieee80211_rx_monitor(local, skb, rate); 4966 if (skb) { 4967 if ((status->flag & RX_FLAG_8023) || 4968 ieee80211_is_data_present(hdr->frame_control)) 4969 ieee80211_tpt_led_trig_rx(local, skb->len); 4970 4971 if (status->flag & RX_FLAG_8023) 4972 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 4973 else 4974 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4975 } 4976 4977 kcov_remote_stop(); 4978 return; 4979 drop: 4980 kfree_skb(skb); 4981 } 4982 EXPORT_SYMBOL(ieee80211_rx_list); 4983 4984 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4985 struct sk_buff *skb, struct napi_struct *napi) 4986 { 4987 struct sk_buff *tmp; 4988 LIST_HEAD(list); 4989 4990 4991 /* 4992 * key references and virtual interfaces are protected using RCU 4993 * and this requires that we are in a read-side RCU section during 4994 * receive processing 4995 */ 4996 rcu_read_lock(); 4997 ieee80211_rx_list(hw, pubsta, skb, &list); 4998 rcu_read_unlock(); 4999 5000 if (!napi) { 5001 netif_receive_skb_list(&list); 5002 return; 5003 } 5004 5005 list_for_each_entry_safe(skb, tmp, &list, list) { 5006 skb_list_del_init(skb); 5007 napi_gro_receive(napi, skb); 5008 } 5009 } 5010 EXPORT_SYMBOL(ieee80211_rx_napi); 5011 5012 /* This is a version of the rx handler that can be called from hard irq 5013 * context. Post the skb on the queue and schedule the tasklet */ 5014 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5015 { 5016 struct ieee80211_local *local = hw_to_local(hw); 5017 5018 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5019 5020 skb->pkt_type = IEEE80211_RX_MSG; 5021 skb_queue_tail(&local->skb_queue, skb); 5022 tasklet_schedule(&local->tasklet); 5023 } 5024 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5025