1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 44 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 if (status->vendor_radiotap_len) 57 __pskb_pull(skb, status->vendor_radiotap_len); 58 59 return skb; 60 } 61 62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + status->vendor_radiotap_len); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return 1; 73 if (unlikely(skb->len < 16 + present_fcs_len + 74 status->vendor_radiotap_len)) 75 return 1; 76 if (ieee80211_is_ctl(hdr->frame_control) && 77 !ieee80211_is_pspoll(hdr->frame_control) && 78 !ieee80211_is_back_req(hdr->frame_control)) 79 return 1; 80 return 0; 81 } 82 83 static int 84 ieee80211_rx_radiotap_space(struct ieee80211_local *local, 85 struct ieee80211_rx_status *status) 86 { 87 int len; 88 89 /* always present fields */ 90 len = sizeof(struct ieee80211_radiotap_header) + 8; 91 92 /* allocate extra bitmaps */ 93 if (status->vendor_radiotap_len) 94 len += 4; 95 if (status->chains) 96 len += 4 * hweight8(status->chains); 97 98 if (ieee80211_have_rx_timestamp(status)) { 99 len = ALIGN(len, 8); 100 len += 8; 101 } 102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 103 len += 1; 104 105 /* antenna field, if we don't have per-chain info */ 106 if (!status->chains) 107 len += 1; 108 109 /* padding for RX_FLAGS if necessary */ 110 len = ALIGN(len, 2); 111 112 if (status->flag & RX_FLAG_HT) /* HT info */ 113 len += 3; 114 115 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 116 len = ALIGN(len, 4); 117 len += 8; 118 } 119 120 if (status->flag & RX_FLAG_VHT) { 121 len = ALIGN(len, 2); 122 len += 12; 123 } 124 125 if (status->chains) { 126 /* antenna and antenna signal fields */ 127 len += 2 * hweight8(status->chains); 128 } 129 130 if (status->vendor_radiotap_len) { 131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0)) 132 status->vendor_radiotap_align = 1; 133 /* align standard part of vendor namespace */ 134 len = ALIGN(len, 2); 135 /* allocate standard part of vendor namespace */ 136 len += 6; 137 /* align vendor-defined part */ 138 len = ALIGN(len, status->vendor_radiotap_align); 139 /* vendor-defined part is already in skb */ 140 } 141 142 return len; 143 } 144 145 /* 146 * ieee80211_add_rx_radiotap_header - add radiotap header 147 * 148 * add a radiotap header containing all the fields which the hardware provided. 149 */ 150 static void 151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 152 struct sk_buff *skb, 153 struct ieee80211_rate *rate, 154 int rtap_len, bool has_fcs) 155 { 156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 157 struct ieee80211_radiotap_header *rthdr; 158 unsigned char *pos; 159 __le32 *it_present; 160 u32 it_present_val; 161 u16 rx_flags = 0; 162 u16 channel_flags = 0; 163 int mpdulen, chain; 164 unsigned long chains = status->chains; 165 166 mpdulen = skb->len; 167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 168 mpdulen += FCS_LEN; 169 170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 171 memset(rthdr, 0, rtap_len); 172 it_present = &rthdr->it_present; 173 174 /* radiotap header, set always present flags */ 175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len); 176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 177 BIT(IEEE80211_RADIOTAP_CHANNEL) | 178 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 179 180 if (!status->chains) 181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 182 183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 184 it_present_val |= 185 BIT(IEEE80211_RADIOTAP_EXT) | 186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 187 put_unaligned_le32(it_present_val, it_present); 188 it_present++; 189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 191 } 192 193 if (status->vendor_radiotap_len) { 194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 195 BIT(IEEE80211_RADIOTAP_EXT); 196 put_unaligned_le32(it_present_val, it_present); 197 it_present++; 198 it_present_val = status->vendor_radiotap_bitmap; 199 } 200 201 put_unaligned_le32(it_present_val, it_present); 202 203 pos = (void *)(it_present + 1); 204 205 /* the order of the following fields is important */ 206 207 /* IEEE80211_RADIOTAP_TSFT */ 208 if (ieee80211_have_rx_timestamp(status)) { 209 /* padding */ 210 while ((pos - (u8 *)rthdr) & 7) 211 *pos++ = 0; 212 put_unaligned_le64( 213 ieee80211_calculate_rx_timestamp(local, status, 214 mpdulen, 0), 215 pos); 216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 217 pos += 8; 218 } 219 220 /* IEEE80211_RADIOTAP_FLAGS */ 221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 222 *pos |= IEEE80211_RADIOTAP_F_FCS; 223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 224 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 225 if (status->flag & RX_FLAG_SHORTPRE) 226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 227 pos++; 228 229 /* IEEE80211_RADIOTAP_RATE */ 230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 231 /* 232 * Without rate information don't add it. If we have, 233 * MCS information is a separate field in radiotap, 234 * added below. The byte here is needed as padding 235 * for the channel though, so initialise it to 0. 236 */ 237 *pos = 0; 238 } else { 239 int shift = 0; 240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 241 if (status->flag & RX_FLAG_10MHZ) 242 shift = 1; 243 else if (status->flag & RX_FLAG_5MHZ) 244 shift = 2; 245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 246 } 247 pos++; 248 249 /* IEEE80211_RADIOTAP_CHANNEL */ 250 put_unaligned_le16(status->freq, pos); 251 pos += 2; 252 if (status->flag & RX_FLAG_10MHZ) 253 channel_flags |= IEEE80211_CHAN_HALF; 254 else if (status->flag & RX_FLAG_5MHZ) 255 channel_flags |= IEEE80211_CHAN_QUARTER; 256 257 if (status->band == IEEE80211_BAND_5GHZ) 258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 263 else if (rate) 264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 265 else 266 channel_flags |= IEEE80211_CHAN_2GHZ; 267 put_unaligned_le16(channel_flags, pos); 268 pos += 2; 269 270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 273 *pos = status->signal; 274 rthdr->it_present |= 275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 276 pos++; 277 } 278 279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 280 281 if (!status->chains) { 282 /* IEEE80211_RADIOTAP_ANTENNA */ 283 *pos = status->antenna; 284 pos++; 285 } 286 287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 288 289 /* IEEE80211_RADIOTAP_RX_FLAGS */ 290 /* ensure 2 byte alignment for the 2 byte field as required */ 291 if ((pos - (u8 *)rthdr) & 1) 292 *pos++ = 0; 293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 295 put_unaligned_le16(rx_flags, pos); 296 pos += 2; 297 298 if (status->flag & RX_FLAG_HT) { 299 unsigned int stbc; 300 301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 302 *pos++ = local->hw.radiotap_mcs_details; 303 *pos = 0; 304 if (status->flag & RX_FLAG_SHORT_GI) 305 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 306 if (status->flag & RX_FLAG_40MHZ) 307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 308 if (status->flag & RX_FLAG_HT_GF) 309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 312 pos++; 313 *pos++ = status->rate_idx; 314 } 315 316 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 317 u16 flags = 0; 318 319 /* ensure 4 byte alignment */ 320 while ((pos - (u8 *)rthdr) & 3) 321 pos++; 322 rthdr->it_present |= 323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 324 put_unaligned_le32(status->ampdu_reference, pos); 325 pos += 4; 326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 332 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 338 put_unaligned_le16(flags, pos); 339 pos += 2; 340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 341 *pos++ = status->ampdu_delimiter_crc; 342 else 343 *pos++ = 0; 344 *pos++ = 0; 345 } 346 347 if (status->flag & RX_FLAG_VHT) { 348 u16 known = local->hw.radiotap_vht_details; 349 350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 351 /* known field - how to handle 80+80? */ 352 if (status->flag & RX_FLAG_80P80MHZ) 353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 354 put_unaligned_le16(known, pos); 355 pos += 2; 356 /* flags */ 357 if (status->flag & RX_FLAG_SHORT_GI) 358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 359 pos++; 360 /* bandwidth */ 361 if (status->flag & RX_FLAG_80MHZ) 362 *pos++ = 4; 363 else if (status->flag & RX_FLAG_80P80MHZ) 364 *pos++ = 0; /* marked not known above */ 365 else if (status->flag & RX_FLAG_160MHZ) 366 *pos++ = 11; 367 else if (status->flag & RX_FLAG_40MHZ) 368 *pos++ = 1; 369 else /* 20 MHz */ 370 *pos++ = 0; 371 /* MCS/NSS */ 372 *pos = (status->rate_idx << 4) | status->vht_nss; 373 pos += 4; 374 /* coding field */ 375 pos++; 376 /* group ID */ 377 pos++; 378 /* partial_aid */ 379 pos += 2; 380 } 381 382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 383 *pos++ = status->chain_signal[chain]; 384 *pos++ = chain; 385 } 386 387 if (status->vendor_radiotap_len) { 388 /* ensure 2 byte alignment for the vendor field as required */ 389 if ((pos - (u8 *)rthdr) & 1) 390 *pos++ = 0; 391 *pos++ = status->vendor_radiotap_oui[0]; 392 *pos++ = status->vendor_radiotap_oui[1]; 393 *pos++ = status->vendor_radiotap_oui[2]; 394 *pos++ = status->vendor_radiotap_subns; 395 put_unaligned_le16(status->vendor_radiotap_len, pos); 396 pos += 2; 397 /* align the actual payload as requested */ 398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1)) 399 *pos++ = 0; 400 } 401 } 402 403 /* 404 * This function copies a received frame to all monitor interfaces and 405 * returns a cleaned-up SKB that no longer includes the FCS nor the 406 * radiotap header the driver might have added. 407 */ 408 static struct sk_buff * 409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 410 struct ieee80211_rate *rate) 411 { 412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 413 struct ieee80211_sub_if_data *sdata; 414 int needed_headroom; 415 struct sk_buff *skb, *skb2; 416 struct net_device *prev_dev = NULL; 417 int present_fcs_len = 0; 418 419 /* 420 * First, we may need to make a copy of the skb because 421 * (1) we need to modify it for radiotap (if not present), and 422 * (2) the other RX handlers will modify the skb we got. 423 * 424 * We don't need to, of course, if we aren't going to return 425 * the SKB because it has a bad FCS/PLCP checksum. 426 */ 427 428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 429 present_fcs_len = FCS_LEN; 430 431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) { 433 dev_kfree_skb(origskb); 434 return NULL; 435 } 436 437 if (!local->monitors) { 438 if (should_drop_frame(origskb, present_fcs_len)) { 439 dev_kfree_skb(origskb); 440 return NULL; 441 } 442 443 return remove_monitor_info(local, origskb); 444 } 445 446 /* room for the radiotap header based on driver features */ 447 needed_headroom = ieee80211_rx_radiotap_space(local, status); 448 449 if (should_drop_frame(origskb, present_fcs_len)) { 450 /* only need to expand headroom if necessary */ 451 skb = origskb; 452 origskb = NULL; 453 454 /* 455 * This shouldn't trigger often because most devices have an 456 * RX header they pull before we get here, and that should 457 * be big enough for our radiotap information. We should 458 * probably export the length to drivers so that we can have 459 * them allocate enough headroom to start with. 460 */ 461 if (skb_headroom(skb) < needed_headroom && 462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 463 dev_kfree_skb(skb); 464 return NULL; 465 } 466 } else { 467 /* 468 * Need to make a copy and possibly remove radiotap header 469 * and FCS from the original. 470 */ 471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 472 473 origskb = remove_monitor_info(local, origskb); 474 475 if (!skb) 476 return origskb; 477 } 478 479 /* prepend radiotap information */ 480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 481 true); 482 483 skb_reset_mac_header(skb); 484 skb->ip_summed = CHECKSUM_UNNECESSARY; 485 skb->pkt_type = PACKET_OTHERHOST; 486 skb->protocol = htons(ETH_P_802_2); 487 488 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 490 continue; 491 492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 493 continue; 494 495 if (!ieee80211_sdata_running(sdata)) 496 continue; 497 498 if (prev_dev) { 499 skb2 = skb_clone(skb, GFP_ATOMIC); 500 if (skb2) { 501 skb2->dev = prev_dev; 502 netif_receive_skb(skb2); 503 } 504 } 505 506 prev_dev = sdata->dev; 507 sdata->dev->stats.rx_packets++; 508 sdata->dev->stats.rx_bytes += skb->len; 509 } 510 511 if (prev_dev) { 512 skb->dev = prev_dev; 513 netif_receive_skb(skb); 514 } else 515 dev_kfree_skb(skb); 516 517 return origskb; 518 } 519 520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 521 { 522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 524 int tid, seqno_idx, security_idx; 525 526 /* does the frame have a qos control field? */ 527 if (ieee80211_is_data_qos(hdr->frame_control)) { 528 u8 *qc = ieee80211_get_qos_ctl(hdr); 529 /* frame has qos control */ 530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 532 status->rx_flags |= IEEE80211_RX_AMSDU; 533 534 seqno_idx = tid; 535 security_idx = tid; 536 } else { 537 /* 538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 539 * 540 * Sequence numbers for management frames, QoS data 541 * frames with a broadcast/multicast address in the 542 * Address 1 field, and all non-QoS data frames sent 543 * by QoS STAs are assigned using an additional single 544 * modulo-4096 counter, [...] 545 * 546 * We also use that counter for non-QoS STAs. 547 */ 548 seqno_idx = IEEE80211_NUM_TIDS; 549 security_idx = 0; 550 if (ieee80211_is_mgmt(hdr->frame_control)) 551 security_idx = IEEE80211_NUM_TIDS; 552 tid = 0; 553 } 554 555 rx->seqno_idx = seqno_idx; 556 rx->security_idx = security_idx; 557 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 558 * For now, set skb->priority to 0 for other cases. */ 559 rx->skb->priority = (tid > 7) ? 0 : tid; 560 } 561 562 /** 563 * DOC: Packet alignment 564 * 565 * Drivers always need to pass packets that are aligned to two-byte boundaries 566 * to the stack. 567 * 568 * Additionally, should, if possible, align the payload data in a way that 569 * guarantees that the contained IP header is aligned to a four-byte 570 * boundary. In the case of regular frames, this simply means aligning the 571 * payload to a four-byte boundary (because either the IP header is directly 572 * contained, or IV/RFC1042 headers that have a length divisible by four are 573 * in front of it). If the payload data is not properly aligned and the 574 * architecture doesn't support efficient unaligned operations, mac80211 575 * will align the data. 576 * 577 * With A-MSDU frames, however, the payload data address must yield two modulo 578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 579 * push the IP header further back to a multiple of four again. Thankfully, the 580 * specs were sane enough this time around to require padding each A-MSDU 581 * subframe to a length that is a multiple of four. 582 * 583 * Padding like Atheros hardware adds which is between the 802.11 header and 584 * the payload is not supported, the driver is required to move the 802.11 585 * header to be directly in front of the payload in that case. 586 */ 587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 588 { 589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 590 WARN_ONCE((unsigned long)rx->skb->data & 1, 591 "unaligned packet at 0x%p\n", rx->skb->data); 592 #endif 593 } 594 595 596 /* rx handlers */ 597 598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 599 { 600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 601 602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 603 return 0; 604 605 return ieee80211_is_robust_mgmt_frame(hdr); 606 } 607 608 609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 610 { 611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 612 613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 614 return 0; 615 616 return ieee80211_is_robust_mgmt_frame(hdr); 617 } 618 619 620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 622 { 623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 624 struct ieee80211_mmie *mmie; 625 626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 627 return -1; 628 629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 630 return -1; /* not a robust management frame */ 631 632 mmie = (struct ieee80211_mmie *) 633 (skb->data + skb->len - sizeof(*mmie)); 634 if (mmie->element_id != WLAN_EID_MMIE || 635 mmie->length != sizeof(*mmie) - 2) 636 return -1; 637 638 return le16_to_cpu(mmie->key_id); 639 } 640 641 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 642 { 643 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 644 char *dev_addr = rx->sdata->vif.addr; 645 646 if (ieee80211_is_data(hdr->frame_control)) { 647 if (is_multicast_ether_addr(hdr->addr1)) { 648 if (ieee80211_has_tods(hdr->frame_control) || 649 !ieee80211_has_fromds(hdr->frame_control)) 650 return RX_DROP_MONITOR; 651 if (ether_addr_equal(hdr->addr3, dev_addr)) 652 return RX_DROP_MONITOR; 653 } else { 654 if (!ieee80211_has_a4(hdr->frame_control)) 655 return RX_DROP_MONITOR; 656 if (ether_addr_equal(hdr->addr4, dev_addr)) 657 return RX_DROP_MONITOR; 658 } 659 } 660 661 /* If there is not an established peer link and this is not a peer link 662 * establisment frame, beacon or probe, drop the frame. 663 */ 664 665 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 666 struct ieee80211_mgmt *mgmt; 667 668 if (!ieee80211_is_mgmt(hdr->frame_control)) 669 return RX_DROP_MONITOR; 670 671 if (ieee80211_is_action(hdr->frame_control)) { 672 u8 category; 673 674 /* make sure category field is present */ 675 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 676 return RX_DROP_MONITOR; 677 678 mgmt = (struct ieee80211_mgmt *)hdr; 679 category = mgmt->u.action.category; 680 if (category != WLAN_CATEGORY_MESH_ACTION && 681 category != WLAN_CATEGORY_SELF_PROTECTED) 682 return RX_DROP_MONITOR; 683 return RX_CONTINUE; 684 } 685 686 if (ieee80211_is_probe_req(hdr->frame_control) || 687 ieee80211_is_probe_resp(hdr->frame_control) || 688 ieee80211_is_beacon(hdr->frame_control) || 689 ieee80211_is_auth(hdr->frame_control)) 690 return RX_CONTINUE; 691 692 return RX_DROP_MONITOR; 693 } 694 695 return RX_CONTINUE; 696 } 697 698 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 699 struct tid_ampdu_rx *tid_agg_rx, 700 int index, 701 struct sk_buff_head *frames) 702 { 703 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 704 struct ieee80211_rx_status *status; 705 706 lockdep_assert_held(&tid_agg_rx->reorder_lock); 707 708 if (!skb) 709 goto no_frame; 710 711 /* release the frame from the reorder ring buffer */ 712 tid_agg_rx->stored_mpdu_num--; 713 tid_agg_rx->reorder_buf[index] = NULL; 714 status = IEEE80211_SKB_RXCB(skb); 715 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 716 __skb_queue_tail(frames, skb); 717 718 no_frame: 719 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 720 } 721 722 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 723 struct tid_ampdu_rx *tid_agg_rx, 724 u16 head_seq_num, 725 struct sk_buff_head *frames) 726 { 727 int index; 728 729 lockdep_assert_held(&tid_agg_rx->reorder_lock); 730 731 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 732 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 733 tid_agg_rx->ssn) % 734 tid_agg_rx->buf_size; 735 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 736 frames); 737 } 738 } 739 740 /* 741 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 742 * the skb was added to the buffer longer than this time ago, the earlier 743 * frames that have not yet been received are assumed to be lost and the skb 744 * can be released for processing. This may also release other skb's from the 745 * reorder buffer if there are no additional gaps between the frames. 746 * 747 * Callers must hold tid_agg_rx->reorder_lock. 748 */ 749 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 750 751 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 752 struct tid_ampdu_rx *tid_agg_rx, 753 struct sk_buff_head *frames) 754 { 755 int index, j; 756 757 lockdep_assert_held(&tid_agg_rx->reorder_lock); 758 759 /* release the buffer until next missing frame */ 760 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 761 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 762 if (!tid_agg_rx->reorder_buf[index] && 763 tid_agg_rx->stored_mpdu_num) { 764 /* 765 * No buffers ready to be released, but check whether any 766 * frames in the reorder buffer have timed out. 767 */ 768 int skipped = 1; 769 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 770 j = (j + 1) % tid_agg_rx->buf_size) { 771 if (!tid_agg_rx->reorder_buf[j]) { 772 skipped++; 773 continue; 774 } 775 if (skipped && 776 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 777 HT_RX_REORDER_BUF_TIMEOUT)) 778 goto set_release_timer; 779 780 ht_dbg_ratelimited(sdata, 781 "release an RX reorder frame due to timeout on earlier frames\n"); 782 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 783 frames); 784 785 /* 786 * Increment the head seq# also for the skipped slots. 787 */ 788 tid_agg_rx->head_seq_num = 789 (tid_agg_rx->head_seq_num + 790 skipped) & IEEE80211_SN_MASK; 791 skipped = 0; 792 } 793 } else while (tid_agg_rx->reorder_buf[index]) { 794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 795 frames); 796 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 797 tid_agg_rx->ssn) % 798 tid_agg_rx->buf_size; 799 } 800 801 if (tid_agg_rx->stored_mpdu_num) { 802 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 803 tid_agg_rx->ssn) % 804 tid_agg_rx->buf_size; 805 806 for (; j != (index - 1) % tid_agg_rx->buf_size; 807 j = (j + 1) % tid_agg_rx->buf_size) { 808 if (tid_agg_rx->reorder_buf[j]) 809 break; 810 } 811 812 set_release_timer: 813 814 mod_timer(&tid_agg_rx->reorder_timer, 815 tid_agg_rx->reorder_time[j] + 1 + 816 HT_RX_REORDER_BUF_TIMEOUT); 817 } else { 818 del_timer(&tid_agg_rx->reorder_timer); 819 } 820 } 821 822 /* 823 * As this function belongs to the RX path it must be under 824 * rcu_read_lock protection. It returns false if the frame 825 * can be processed immediately, true if it was consumed. 826 */ 827 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 828 struct tid_ampdu_rx *tid_agg_rx, 829 struct sk_buff *skb, 830 struct sk_buff_head *frames) 831 { 832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 833 u16 sc = le16_to_cpu(hdr->seq_ctrl); 834 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 835 u16 head_seq_num, buf_size; 836 int index; 837 bool ret = true; 838 839 spin_lock(&tid_agg_rx->reorder_lock); 840 841 buf_size = tid_agg_rx->buf_size; 842 head_seq_num = tid_agg_rx->head_seq_num; 843 844 /* frame with out of date sequence number */ 845 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 846 dev_kfree_skb(skb); 847 goto out; 848 } 849 850 /* 851 * If frame the sequence number exceeds our buffering window 852 * size release some previous frames to make room for this one. 853 */ 854 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 855 head_seq_num = ieee80211_sn_inc( 856 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 857 /* release stored frames up to new head to stack */ 858 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 859 head_seq_num, frames); 860 } 861 862 /* Now the new frame is always in the range of the reordering buffer */ 863 864 index = ieee80211_sn_sub(mpdu_seq_num, 865 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 866 867 /* check if we already stored this frame */ 868 if (tid_agg_rx->reorder_buf[index]) { 869 dev_kfree_skb(skb); 870 goto out; 871 } 872 873 /* 874 * If the current MPDU is in the right order and nothing else 875 * is stored we can process it directly, no need to buffer it. 876 * If it is first but there's something stored, we may be able 877 * to release frames after this one. 878 */ 879 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 880 tid_agg_rx->stored_mpdu_num == 0) { 881 tid_agg_rx->head_seq_num = 882 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 883 ret = false; 884 goto out; 885 } 886 887 /* put the frame in the reordering buffer */ 888 tid_agg_rx->reorder_buf[index] = skb; 889 tid_agg_rx->reorder_time[index] = jiffies; 890 tid_agg_rx->stored_mpdu_num++; 891 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 892 893 out: 894 spin_unlock(&tid_agg_rx->reorder_lock); 895 return ret; 896 } 897 898 /* 899 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 900 * true if the MPDU was buffered, false if it should be processed. 901 */ 902 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 903 struct sk_buff_head *frames) 904 { 905 struct sk_buff *skb = rx->skb; 906 struct ieee80211_local *local = rx->local; 907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 908 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 909 struct sta_info *sta = rx->sta; 910 struct tid_ampdu_rx *tid_agg_rx; 911 u16 sc; 912 u8 tid, ack_policy; 913 914 if (!ieee80211_is_data_qos(hdr->frame_control) || 915 is_multicast_ether_addr(hdr->addr1)) 916 goto dont_reorder; 917 918 /* 919 * filter the QoS data rx stream according to 920 * STA/TID and check if this STA/TID is on aggregation 921 */ 922 923 if (!sta) 924 goto dont_reorder; 925 926 ack_policy = *ieee80211_get_qos_ctl(hdr) & 927 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 928 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 929 930 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 931 if (!tid_agg_rx) 932 goto dont_reorder; 933 934 /* qos null data frames are excluded */ 935 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 936 goto dont_reorder; 937 938 /* not part of a BA session */ 939 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 940 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 941 goto dont_reorder; 942 943 /* not actually part of this BA session */ 944 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 945 goto dont_reorder; 946 947 /* new, potentially un-ordered, ampdu frame - process it */ 948 949 /* reset session timer */ 950 if (tid_agg_rx->timeout) 951 tid_agg_rx->last_rx = jiffies; 952 953 /* if this mpdu is fragmented - terminate rx aggregation session */ 954 sc = le16_to_cpu(hdr->seq_ctrl); 955 if (sc & IEEE80211_SCTL_FRAG) { 956 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 957 skb_queue_tail(&rx->sdata->skb_queue, skb); 958 ieee80211_queue_work(&local->hw, &rx->sdata->work); 959 return; 960 } 961 962 /* 963 * No locking needed -- we will only ever process one 964 * RX packet at a time, and thus own tid_agg_rx. All 965 * other code manipulating it needs to (and does) make 966 * sure that we cannot get to it any more before doing 967 * anything with it. 968 */ 969 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 970 frames)) 971 return; 972 973 dont_reorder: 974 __skb_queue_tail(frames, skb); 975 } 976 977 static ieee80211_rx_result debug_noinline 978 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 979 { 980 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 981 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 982 983 /* 984 * Drop duplicate 802.11 retransmissions 985 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 986 */ 987 if (rx->skb->len >= 24 && rx->sta && 988 !ieee80211_is_ctl(hdr->frame_control) && 989 !ieee80211_is_qos_nullfunc(hdr->frame_control) && 990 !is_multicast_ether_addr(hdr->addr1)) { 991 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 992 rx->sta->last_seq_ctrl[rx->seqno_idx] == 993 hdr->seq_ctrl)) { 994 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 995 rx->local->dot11FrameDuplicateCount++; 996 rx->sta->num_duplicates++; 997 } 998 return RX_DROP_UNUSABLE; 999 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1000 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1001 } 1002 } 1003 1004 if (unlikely(rx->skb->len < 16)) { 1005 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1006 return RX_DROP_MONITOR; 1007 } 1008 1009 /* Drop disallowed frame classes based on STA auth/assoc state; 1010 * IEEE 802.11, Chap 5.5. 1011 * 1012 * mac80211 filters only based on association state, i.e. it drops 1013 * Class 3 frames from not associated stations. hostapd sends 1014 * deauth/disassoc frames when needed. In addition, hostapd is 1015 * responsible for filtering on both auth and assoc states. 1016 */ 1017 1018 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1019 return ieee80211_rx_mesh_check(rx); 1020 1021 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1022 ieee80211_is_pspoll(hdr->frame_control)) && 1023 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1024 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1025 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1026 /* 1027 * accept port control frames from the AP even when it's not 1028 * yet marked ASSOC to prevent a race where we don't set the 1029 * assoc bit quickly enough before it sends the first frame 1030 */ 1031 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1032 ieee80211_is_data_present(hdr->frame_control)) { 1033 unsigned int hdrlen; 1034 __be16 ethertype; 1035 1036 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1037 1038 if (rx->skb->len < hdrlen + 8) 1039 return RX_DROP_MONITOR; 1040 1041 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1042 if (ethertype == rx->sdata->control_port_protocol) 1043 return RX_CONTINUE; 1044 } 1045 1046 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1047 cfg80211_rx_spurious_frame(rx->sdata->dev, 1048 hdr->addr2, 1049 GFP_ATOMIC)) 1050 return RX_DROP_UNUSABLE; 1051 1052 return RX_DROP_MONITOR; 1053 } 1054 1055 return RX_CONTINUE; 1056 } 1057 1058 1059 static ieee80211_rx_result debug_noinline 1060 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1061 { 1062 struct ieee80211_local *local; 1063 struct ieee80211_hdr *hdr; 1064 struct sk_buff *skb; 1065 1066 local = rx->local; 1067 skb = rx->skb; 1068 hdr = (struct ieee80211_hdr *) skb->data; 1069 1070 if (!local->pspolling) 1071 return RX_CONTINUE; 1072 1073 if (!ieee80211_has_fromds(hdr->frame_control)) 1074 /* this is not from AP */ 1075 return RX_CONTINUE; 1076 1077 if (!ieee80211_is_data(hdr->frame_control)) 1078 return RX_CONTINUE; 1079 1080 if (!ieee80211_has_moredata(hdr->frame_control)) { 1081 /* AP has no more frames buffered for us */ 1082 local->pspolling = false; 1083 return RX_CONTINUE; 1084 } 1085 1086 /* more data bit is set, let's request a new frame from the AP */ 1087 ieee80211_send_pspoll(local, rx->sdata); 1088 1089 return RX_CONTINUE; 1090 } 1091 1092 static void sta_ps_start(struct sta_info *sta) 1093 { 1094 struct ieee80211_sub_if_data *sdata = sta->sdata; 1095 struct ieee80211_local *local = sdata->local; 1096 struct ps_data *ps; 1097 1098 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1099 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1100 ps = &sdata->bss->ps; 1101 else 1102 return; 1103 1104 atomic_inc(&ps->num_sta_ps); 1105 set_sta_flag(sta, WLAN_STA_PS_STA); 1106 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1107 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1108 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1109 sta->sta.addr, sta->sta.aid); 1110 } 1111 1112 static void sta_ps_end(struct sta_info *sta) 1113 { 1114 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1115 sta->sta.addr, sta->sta.aid); 1116 1117 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1118 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1119 sta->sta.addr, sta->sta.aid); 1120 return; 1121 } 1122 1123 ieee80211_sta_ps_deliver_wakeup(sta); 1124 } 1125 1126 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1127 { 1128 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1129 bool in_ps; 1130 1131 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1132 1133 /* Don't let the same PS state be set twice */ 1134 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1135 if ((start && in_ps) || (!start && !in_ps)) 1136 return -EINVAL; 1137 1138 if (start) 1139 sta_ps_start(sta_inf); 1140 else 1141 sta_ps_end(sta_inf); 1142 1143 return 0; 1144 } 1145 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1146 1147 static ieee80211_rx_result debug_noinline 1148 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1149 { 1150 struct ieee80211_sub_if_data *sdata = rx->sdata; 1151 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1152 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1153 int tid, ac; 1154 1155 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1156 return RX_CONTINUE; 1157 1158 if (sdata->vif.type != NL80211_IFTYPE_AP && 1159 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1160 return RX_CONTINUE; 1161 1162 /* 1163 * The device handles station powersave, so don't do anything about 1164 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1165 * it to mac80211 since they're handled.) 1166 */ 1167 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1168 return RX_CONTINUE; 1169 1170 /* 1171 * Don't do anything if the station isn't already asleep. In 1172 * the uAPSD case, the station will probably be marked asleep, 1173 * in the PS-Poll case the station must be confused ... 1174 */ 1175 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1176 return RX_CONTINUE; 1177 1178 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1179 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1180 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1181 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1182 else 1183 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1184 } 1185 1186 /* Free PS Poll skb here instead of returning RX_DROP that would 1187 * count as an dropped frame. */ 1188 dev_kfree_skb(rx->skb); 1189 1190 return RX_QUEUED; 1191 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1192 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1193 ieee80211_has_pm(hdr->frame_control) && 1194 (ieee80211_is_data_qos(hdr->frame_control) || 1195 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1196 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1197 ac = ieee802_1d_to_ac[tid & 7]; 1198 1199 /* 1200 * If this AC is not trigger-enabled do nothing. 1201 * 1202 * NB: This could/should check a separate bitmap of trigger- 1203 * enabled queues, but for now we only implement uAPSD w/o 1204 * TSPEC changes to the ACs, so they're always the same. 1205 */ 1206 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1207 return RX_CONTINUE; 1208 1209 /* if we are in a service period, do nothing */ 1210 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1211 return RX_CONTINUE; 1212 1213 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1214 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1215 else 1216 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1217 } 1218 1219 return RX_CONTINUE; 1220 } 1221 1222 static ieee80211_rx_result debug_noinline 1223 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1224 { 1225 struct sta_info *sta = rx->sta; 1226 struct sk_buff *skb = rx->skb; 1227 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1228 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1229 int i; 1230 1231 if (!sta) 1232 return RX_CONTINUE; 1233 1234 /* 1235 * Update last_rx only for IBSS packets which are for the current 1236 * BSSID and for station already AUTHORIZED to avoid keeping the 1237 * current IBSS network alive in cases where other STAs start 1238 * using different BSSID. This will also give the station another 1239 * chance to restart the authentication/authorization in case 1240 * something went wrong the first time. 1241 */ 1242 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1243 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1244 NL80211_IFTYPE_ADHOC); 1245 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1246 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1247 sta->last_rx = jiffies; 1248 if (ieee80211_is_data(hdr->frame_control)) { 1249 sta->last_rx_rate_idx = status->rate_idx; 1250 sta->last_rx_rate_flag = status->flag; 1251 sta->last_rx_rate_vht_nss = status->vht_nss; 1252 } 1253 } 1254 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1255 /* 1256 * Mesh beacons will update last_rx when if they are found to 1257 * match the current local configuration when processed. 1258 */ 1259 sta->last_rx = jiffies; 1260 if (ieee80211_is_data(hdr->frame_control)) { 1261 sta->last_rx_rate_idx = status->rate_idx; 1262 sta->last_rx_rate_flag = status->flag; 1263 sta->last_rx_rate_vht_nss = status->vht_nss; 1264 } 1265 } 1266 1267 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1268 return RX_CONTINUE; 1269 1270 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1271 ieee80211_sta_rx_notify(rx->sdata, hdr); 1272 1273 sta->rx_fragments++; 1274 sta->rx_bytes += rx->skb->len; 1275 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1276 sta->last_signal = status->signal; 1277 ewma_add(&sta->avg_signal, -status->signal); 1278 } 1279 1280 if (status->chains) { 1281 sta->chains = status->chains; 1282 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1283 int signal = status->chain_signal[i]; 1284 1285 if (!(status->chains & BIT(i))) 1286 continue; 1287 1288 sta->chain_signal_last[i] = signal; 1289 ewma_add(&sta->chain_signal_avg[i], -signal); 1290 } 1291 } 1292 1293 /* 1294 * Change STA power saving mode only at the end of a frame 1295 * exchange sequence. 1296 */ 1297 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1298 !ieee80211_has_morefrags(hdr->frame_control) && 1299 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1300 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1301 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1302 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1303 /* 1304 * Ignore doze->wake transitions that are 1305 * indicated by non-data frames, the standard 1306 * is unclear here, but for example going to 1307 * PS mode and then scanning would cause a 1308 * doze->wake transition for the probe request, 1309 * and that is clearly undesirable. 1310 */ 1311 if (ieee80211_is_data(hdr->frame_control) && 1312 !ieee80211_has_pm(hdr->frame_control)) 1313 sta_ps_end(sta); 1314 } else { 1315 if (ieee80211_has_pm(hdr->frame_control)) 1316 sta_ps_start(sta); 1317 } 1318 } 1319 1320 /* mesh power save support */ 1321 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1322 ieee80211_mps_rx_h_sta_process(sta, hdr); 1323 1324 /* 1325 * Drop (qos-)data::nullfunc frames silently, since they 1326 * are used only to control station power saving mode. 1327 */ 1328 if (ieee80211_is_nullfunc(hdr->frame_control) || 1329 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1330 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1331 1332 /* 1333 * If we receive a 4-addr nullfunc frame from a STA 1334 * that was not moved to a 4-addr STA vlan yet send 1335 * the event to userspace and for older hostapd drop 1336 * the frame to the monitor interface. 1337 */ 1338 if (ieee80211_has_a4(hdr->frame_control) && 1339 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1340 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1341 !rx->sdata->u.vlan.sta))) { 1342 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1343 cfg80211_rx_unexpected_4addr_frame( 1344 rx->sdata->dev, sta->sta.addr, 1345 GFP_ATOMIC); 1346 return RX_DROP_MONITOR; 1347 } 1348 /* 1349 * Update counter and free packet here to avoid 1350 * counting this as a dropped packed. 1351 */ 1352 sta->rx_packets++; 1353 dev_kfree_skb(rx->skb); 1354 return RX_QUEUED; 1355 } 1356 1357 return RX_CONTINUE; 1358 } /* ieee80211_rx_h_sta_process */ 1359 1360 static ieee80211_rx_result debug_noinline 1361 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1362 { 1363 struct sk_buff *skb = rx->skb; 1364 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1366 int keyidx; 1367 int hdrlen; 1368 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1369 struct ieee80211_key *sta_ptk = NULL; 1370 int mmie_keyidx = -1; 1371 __le16 fc; 1372 1373 /* 1374 * Key selection 101 1375 * 1376 * There are four types of keys: 1377 * - GTK (group keys) 1378 * - IGTK (group keys for management frames) 1379 * - PTK (pairwise keys) 1380 * - STK (station-to-station pairwise keys) 1381 * 1382 * When selecting a key, we have to distinguish between multicast 1383 * (including broadcast) and unicast frames, the latter can only 1384 * use PTKs and STKs while the former always use GTKs and IGTKs. 1385 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1386 * unicast frames can also use key indices like GTKs. Hence, if we 1387 * don't have a PTK/STK we check the key index for a WEP key. 1388 * 1389 * Note that in a regular BSS, multicast frames are sent by the 1390 * AP only, associated stations unicast the frame to the AP first 1391 * which then multicasts it on their behalf. 1392 * 1393 * There is also a slight problem in IBSS mode: GTKs are negotiated 1394 * with each station, that is something we don't currently handle. 1395 * The spec seems to expect that one negotiates the same key with 1396 * every station but there's no such requirement; VLANs could be 1397 * possible. 1398 */ 1399 1400 /* 1401 * No point in finding a key and decrypting if the frame is neither 1402 * addressed to us nor a multicast frame. 1403 */ 1404 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1405 return RX_CONTINUE; 1406 1407 /* start without a key */ 1408 rx->key = NULL; 1409 1410 if (rx->sta) 1411 sta_ptk = rcu_dereference(rx->sta->ptk); 1412 1413 fc = hdr->frame_control; 1414 1415 if (!ieee80211_has_protected(fc)) 1416 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1417 1418 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1419 rx->key = sta_ptk; 1420 if ((status->flag & RX_FLAG_DECRYPTED) && 1421 (status->flag & RX_FLAG_IV_STRIPPED)) 1422 return RX_CONTINUE; 1423 /* Skip decryption if the frame is not protected. */ 1424 if (!ieee80211_has_protected(fc)) 1425 return RX_CONTINUE; 1426 } else if (mmie_keyidx >= 0) { 1427 /* Broadcast/multicast robust management frame / BIP */ 1428 if ((status->flag & RX_FLAG_DECRYPTED) && 1429 (status->flag & RX_FLAG_IV_STRIPPED)) 1430 return RX_CONTINUE; 1431 1432 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1433 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1434 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1435 if (rx->sta) 1436 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1437 if (!rx->key) 1438 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1439 } else if (!ieee80211_has_protected(fc)) { 1440 /* 1441 * The frame was not protected, so skip decryption. However, we 1442 * need to set rx->key if there is a key that could have been 1443 * used so that the frame may be dropped if encryption would 1444 * have been expected. 1445 */ 1446 struct ieee80211_key *key = NULL; 1447 struct ieee80211_sub_if_data *sdata = rx->sdata; 1448 int i; 1449 1450 if (ieee80211_is_mgmt(fc) && 1451 is_multicast_ether_addr(hdr->addr1) && 1452 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1453 rx->key = key; 1454 else { 1455 if (rx->sta) { 1456 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1457 key = rcu_dereference(rx->sta->gtk[i]); 1458 if (key) 1459 break; 1460 } 1461 } 1462 if (!key) { 1463 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1464 key = rcu_dereference(sdata->keys[i]); 1465 if (key) 1466 break; 1467 } 1468 } 1469 if (key) 1470 rx->key = key; 1471 } 1472 return RX_CONTINUE; 1473 } else { 1474 u8 keyid; 1475 /* 1476 * The device doesn't give us the IV so we won't be 1477 * able to look up the key. That's ok though, we 1478 * don't need to decrypt the frame, we just won't 1479 * be able to keep statistics accurate. 1480 * Except for key threshold notifications, should 1481 * we somehow allow the driver to tell us which key 1482 * the hardware used if this flag is set? 1483 */ 1484 if ((status->flag & RX_FLAG_DECRYPTED) && 1485 (status->flag & RX_FLAG_IV_STRIPPED)) 1486 return RX_CONTINUE; 1487 1488 hdrlen = ieee80211_hdrlen(fc); 1489 1490 if (rx->skb->len < 8 + hdrlen) 1491 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1492 1493 /* 1494 * no need to call ieee80211_wep_get_keyidx, 1495 * it verifies a bunch of things we've done already 1496 */ 1497 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1498 keyidx = keyid >> 6; 1499 1500 /* check per-station GTK first, if multicast packet */ 1501 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1502 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1503 1504 /* if not found, try default key */ 1505 if (!rx->key) { 1506 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1507 1508 /* 1509 * RSNA-protected unicast frames should always be 1510 * sent with pairwise or station-to-station keys, 1511 * but for WEP we allow using a key index as well. 1512 */ 1513 if (rx->key && 1514 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1515 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1516 !is_multicast_ether_addr(hdr->addr1)) 1517 rx->key = NULL; 1518 } 1519 } 1520 1521 if (rx->key) { 1522 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1523 return RX_DROP_MONITOR; 1524 1525 rx->key->tx_rx_count++; 1526 /* TODO: add threshold stuff again */ 1527 } else { 1528 return RX_DROP_MONITOR; 1529 } 1530 1531 switch (rx->key->conf.cipher) { 1532 case WLAN_CIPHER_SUITE_WEP40: 1533 case WLAN_CIPHER_SUITE_WEP104: 1534 result = ieee80211_crypto_wep_decrypt(rx); 1535 break; 1536 case WLAN_CIPHER_SUITE_TKIP: 1537 result = ieee80211_crypto_tkip_decrypt(rx); 1538 break; 1539 case WLAN_CIPHER_SUITE_CCMP: 1540 result = ieee80211_crypto_ccmp_decrypt(rx); 1541 break; 1542 case WLAN_CIPHER_SUITE_AES_CMAC: 1543 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1544 break; 1545 default: 1546 /* 1547 * We can reach here only with HW-only algorithms 1548 * but why didn't it decrypt the frame?! 1549 */ 1550 return RX_DROP_UNUSABLE; 1551 } 1552 1553 /* the hdr variable is invalid after the decrypt handlers */ 1554 1555 /* either the frame has been decrypted or will be dropped */ 1556 status->flag |= RX_FLAG_DECRYPTED; 1557 1558 return result; 1559 } 1560 1561 static inline struct ieee80211_fragment_entry * 1562 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1563 unsigned int frag, unsigned int seq, int rx_queue, 1564 struct sk_buff **skb) 1565 { 1566 struct ieee80211_fragment_entry *entry; 1567 1568 entry = &sdata->fragments[sdata->fragment_next++]; 1569 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1570 sdata->fragment_next = 0; 1571 1572 if (!skb_queue_empty(&entry->skb_list)) 1573 __skb_queue_purge(&entry->skb_list); 1574 1575 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1576 *skb = NULL; 1577 entry->first_frag_time = jiffies; 1578 entry->seq = seq; 1579 entry->rx_queue = rx_queue; 1580 entry->last_frag = frag; 1581 entry->ccmp = 0; 1582 entry->extra_len = 0; 1583 1584 return entry; 1585 } 1586 1587 static inline struct ieee80211_fragment_entry * 1588 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1589 unsigned int frag, unsigned int seq, 1590 int rx_queue, struct ieee80211_hdr *hdr) 1591 { 1592 struct ieee80211_fragment_entry *entry; 1593 int i, idx; 1594 1595 idx = sdata->fragment_next; 1596 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1597 struct ieee80211_hdr *f_hdr; 1598 1599 idx--; 1600 if (idx < 0) 1601 idx = IEEE80211_FRAGMENT_MAX - 1; 1602 1603 entry = &sdata->fragments[idx]; 1604 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1605 entry->rx_queue != rx_queue || 1606 entry->last_frag + 1 != frag) 1607 continue; 1608 1609 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1610 1611 /* 1612 * Check ftype and addresses are equal, else check next fragment 1613 */ 1614 if (((hdr->frame_control ^ f_hdr->frame_control) & 1615 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1616 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1617 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1618 continue; 1619 1620 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1621 __skb_queue_purge(&entry->skb_list); 1622 continue; 1623 } 1624 return entry; 1625 } 1626 1627 return NULL; 1628 } 1629 1630 static ieee80211_rx_result debug_noinline 1631 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1632 { 1633 struct ieee80211_hdr *hdr; 1634 u16 sc; 1635 __le16 fc; 1636 unsigned int frag, seq; 1637 struct ieee80211_fragment_entry *entry; 1638 struct sk_buff *skb; 1639 struct ieee80211_rx_status *status; 1640 1641 hdr = (struct ieee80211_hdr *)rx->skb->data; 1642 fc = hdr->frame_control; 1643 1644 if (ieee80211_is_ctl(fc)) 1645 return RX_CONTINUE; 1646 1647 sc = le16_to_cpu(hdr->seq_ctrl); 1648 frag = sc & IEEE80211_SCTL_FRAG; 1649 1650 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1651 is_multicast_ether_addr(hdr->addr1))) { 1652 /* not fragmented */ 1653 goto out; 1654 } 1655 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1656 1657 if (skb_linearize(rx->skb)) 1658 return RX_DROP_UNUSABLE; 1659 1660 /* 1661 * skb_linearize() might change the skb->data and 1662 * previously cached variables (in this case, hdr) need to 1663 * be refreshed with the new data. 1664 */ 1665 hdr = (struct ieee80211_hdr *)rx->skb->data; 1666 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1667 1668 if (frag == 0) { 1669 /* This is the first fragment of a new frame. */ 1670 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1671 rx->seqno_idx, &(rx->skb)); 1672 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1673 ieee80211_has_protected(fc)) { 1674 int queue = rx->security_idx; 1675 /* Store CCMP PN so that we can verify that the next 1676 * fragment has a sequential PN value. */ 1677 entry->ccmp = 1; 1678 memcpy(entry->last_pn, 1679 rx->key->u.ccmp.rx_pn[queue], 1680 IEEE80211_CCMP_PN_LEN); 1681 } 1682 return RX_QUEUED; 1683 } 1684 1685 /* This is a fragment for a frame that should already be pending in 1686 * fragment cache. Add this fragment to the end of the pending entry. 1687 */ 1688 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1689 rx->seqno_idx, hdr); 1690 if (!entry) { 1691 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1692 return RX_DROP_MONITOR; 1693 } 1694 1695 /* Verify that MPDUs within one MSDU have sequential PN values. 1696 * (IEEE 802.11i, 8.3.3.4.5) */ 1697 if (entry->ccmp) { 1698 int i; 1699 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1700 int queue; 1701 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1702 return RX_DROP_UNUSABLE; 1703 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1704 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1705 pn[i]++; 1706 if (pn[i]) 1707 break; 1708 } 1709 queue = rx->security_idx; 1710 rpn = rx->key->u.ccmp.rx_pn[queue]; 1711 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1712 return RX_DROP_UNUSABLE; 1713 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1714 } 1715 1716 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1717 __skb_queue_tail(&entry->skb_list, rx->skb); 1718 entry->last_frag = frag; 1719 entry->extra_len += rx->skb->len; 1720 if (ieee80211_has_morefrags(fc)) { 1721 rx->skb = NULL; 1722 return RX_QUEUED; 1723 } 1724 1725 rx->skb = __skb_dequeue(&entry->skb_list); 1726 if (skb_tailroom(rx->skb) < entry->extra_len) { 1727 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1728 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1729 GFP_ATOMIC))) { 1730 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1731 __skb_queue_purge(&entry->skb_list); 1732 return RX_DROP_UNUSABLE; 1733 } 1734 } 1735 while ((skb = __skb_dequeue(&entry->skb_list))) { 1736 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1737 dev_kfree_skb(skb); 1738 } 1739 1740 /* Complete frame has been reassembled - process it now */ 1741 status = IEEE80211_SKB_RXCB(rx->skb); 1742 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1743 1744 out: 1745 if (rx->sta) 1746 rx->sta->rx_packets++; 1747 if (is_multicast_ether_addr(hdr->addr1)) 1748 rx->local->dot11MulticastReceivedFrameCount++; 1749 else 1750 ieee80211_led_rx(rx->local); 1751 return RX_CONTINUE; 1752 } 1753 1754 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1755 { 1756 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1757 return -EACCES; 1758 1759 return 0; 1760 } 1761 1762 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1763 { 1764 struct sk_buff *skb = rx->skb; 1765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1766 1767 /* 1768 * Pass through unencrypted frames if the hardware has 1769 * decrypted them already. 1770 */ 1771 if (status->flag & RX_FLAG_DECRYPTED) 1772 return 0; 1773 1774 /* Drop unencrypted frames if key is set. */ 1775 if (unlikely(!ieee80211_has_protected(fc) && 1776 !ieee80211_is_nullfunc(fc) && 1777 ieee80211_is_data(fc) && 1778 (rx->key || rx->sdata->drop_unencrypted))) 1779 return -EACCES; 1780 1781 return 0; 1782 } 1783 1784 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1785 { 1786 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1787 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1788 __le16 fc = hdr->frame_control; 1789 1790 /* 1791 * Pass through unencrypted frames if the hardware has 1792 * decrypted them already. 1793 */ 1794 if (status->flag & RX_FLAG_DECRYPTED) 1795 return 0; 1796 1797 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1798 if (unlikely(!ieee80211_has_protected(fc) && 1799 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1800 rx->key)) { 1801 if (ieee80211_is_deauth(fc) || 1802 ieee80211_is_disassoc(fc)) 1803 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1804 rx->skb->data, 1805 rx->skb->len); 1806 return -EACCES; 1807 } 1808 /* BIP does not use Protected field, so need to check MMIE */ 1809 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1810 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1811 if (ieee80211_is_deauth(fc) || 1812 ieee80211_is_disassoc(fc)) 1813 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1814 rx->skb->data, 1815 rx->skb->len); 1816 return -EACCES; 1817 } 1818 /* 1819 * When using MFP, Action frames are not allowed prior to 1820 * having configured keys. 1821 */ 1822 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1823 ieee80211_is_robust_mgmt_frame( 1824 (struct ieee80211_hdr *) rx->skb->data))) 1825 return -EACCES; 1826 } 1827 1828 return 0; 1829 } 1830 1831 static int 1832 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1833 { 1834 struct ieee80211_sub_if_data *sdata = rx->sdata; 1835 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1836 bool check_port_control = false; 1837 struct ethhdr *ehdr; 1838 int ret; 1839 1840 *port_control = false; 1841 if (ieee80211_has_a4(hdr->frame_control) && 1842 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1843 return -1; 1844 1845 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1846 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1847 1848 if (!sdata->u.mgd.use_4addr) 1849 return -1; 1850 else 1851 check_port_control = true; 1852 } 1853 1854 if (is_multicast_ether_addr(hdr->addr1) && 1855 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1856 return -1; 1857 1858 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1859 if (ret < 0) 1860 return ret; 1861 1862 ehdr = (struct ethhdr *) rx->skb->data; 1863 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1864 *port_control = true; 1865 else if (check_port_control) 1866 return -1; 1867 1868 return 0; 1869 } 1870 1871 /* 1872 * requires that rx->skb is a frame with ethernet header 1873 */ 1874 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1875 { 1876 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1877 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1878 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1879 1880 /* 1881 * Allow EAPOL frames to us/the PAE group address regardless 1882 * of whether the frame was encrypted or not. 1883 */ 1884 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1885 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1886 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1887 return true; 1888 1889 if (ieee80211_802_1x_port_control(rx) || 1890 ieee80211_drop_unencrypted(rx, fc)) 1891 return false; 1892 1893 return true; 1894 } 1895 1896 /* 1897 * requires that rx->skb is a frame with ethernet header 1898 */ 1899 static void 1900 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1901 { 1902 struct ieee80211_sub_if_data *sdata = rx->sdata; 1903 struct net_device *dev = sdata->dev; 1904 struct sk_buff *skb, *xmit_skb; 1905 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1906 struct sta_info *dsta; 1907 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1908 1909 skb = rx->skb; 1910 xmit_skb = NULL; 1911 1912 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1913 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1914 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1915 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1916 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1917 if (is_multicast_ether_addr(ehdr->h_dest)) { 1918 /* 1919 * send multicast frames both to higher layers in 1920 * local net stack and back to the wireless medium 1921 */ 1922 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1923 if (!xmit_skb) 1924 net_info_ratelimited("%s: failed to clone multicast frame\n", 1925 dev->name); 1926 } else { 1927 dsta = sta_info_get(sdata, skb->data); 1928 if (dsta) { 1929 /* 1930 * The destination station is associated to 1931 * this AP (in this VLAN), so send the frame 1932 * directly to it and do not pass it to local 1933 * net stack. 1934 */ 1935 xmit_skb = skb; 1936 skb = NULL; 1937 } 1938 } 1939 } 1940 1941 if (skb) { 1942 int align __maybe_unused; 1943 1944 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1945 /* 1946 * 'align' will only take the values 0 or 2 here 1947 * since all frames are required to be aligned 1948 * to 2-byte boundaries when being passed to 1949 * mac80211; the code here works just as well if 1950 * that isn't true, but mac80211 assumes it can 1951 * access fields as 2-byte aligned (e.g. for 1952 * compare_ether_addr) 1953 */ 1954 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1955 if (align) { 1956 if (WARN_ON(skb_headroom(skb) < 3)) { 1957 dev_kfree_skb(skb); 1958 skb = NULL; 1959 } else { 1960 u8 *data = skb->data; 1961 size_t len = skb_headlen(skb); 1962 skb->data -= align; 1963 memmove(skb->data, data, len); 1964 skb_set_tail_pointer(skb, len); 1965 } 1966 } 1967 #endif 1968 1969 if (skb) { 1970 /* deliver to local stack */ 1971 skb->protocol = eth_type_trans(skb, dev); 1972 memset(skb->cb, 0, sizeof(skb->cb)); 1973 netif_receive_skb(skb); 1974 } 1975 } 1976 1977 if (xmit_skb) { 1978 /* 1979 * Send to wireless media and increase priority by 256 to 1980 * keep the received priority instead of reclassifying 1981 * the frame (see cfg80211_classify8021d). 1982 */ 1983 xmit_skb->priority += 256; 1984 xmit_skb->protocol = htons(ETH_P_802_3); 1985 skb_reset_network_header(xmit_skb); 1986 skb_reset_mac_header(xmit_skb); 1987 dev_queue_xmit(xmit_skb); 1988 } 1989 } 1990 1991 static ieee80211_rx_result debug_noinline 1992 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1993 { 1994 struct net_device *dev = rx->sdata->dev; 1995 struct sk_buff *skb = rx->skb; 1996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1997 __le16 fc = hdr->frame_control; 1998 struct sk_buff_head frame_list; 1999 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2000 2001 if (unlikely(!ieee80211_is_data(fc))) 2002 return RX_CONTINUE; 2003 2004 if (unlikely(!ieee80211_is_data_present(fc))) 2005 return RX_DROP_MONITOR; 2006 2007 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2008 return RX_CONTINUE; 2009 2010 if (ieee80211_has_a4(hdr->frame_control) && 2011 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2012 !rx->sdata->u.vlan.sta) 2013 return RX_DROP_UNUSABLE; 2014 2015 if (is_multicast_ether_addr(hdr->addr1) && 2016 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2017 rx->sdata->u.vlan.sta) || 2018 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2019 rx->sdata->u.mgd.use_4addr))) 2020 return RX_DROP_UNUSABLE; 2021 2022 skb->dev = dev; 2023 __skb_queue_head_init(&frame_list); 2024 2025 if (skb_linearize(skb)) 2026 return RX_DROP_UNUSABLE; 2027 2028 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2029 rx->sdata->vif.type, 2030 rx->local->hw.extra_tx_headroom, true); 2031 2032 while (!skb_queue_empty(&frame_list)) { 2033 rx->skb = __skb_dequeue(&frame_list); 2034 2035 if (!ieee80211_frame_allowed(rx, fc)) { 2036 dev_kfree_skb(rx->skb); 2037 continue; 2038 } 2039 dev->stats.rx_packets++; 2040 dev->stats.rx_bytes += rx->skb->len; 2041 2042 ieee80211_deliver_skb(rx); 2043 } 2044 2045 return RX_QUEUED; 2046 } 2047 2048 #ifdef CONFIG_MAC80211_MESH 2049 static ieee80211_rx_result 2050 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2051 { 2052 struct ieee80211_hdr *fwd_hdr, *hdr; 2053 struct ieee80211_tx_info *info; 2054 struct ieee80211s_hdr *mesh_hdr; 2055 struct sk_buff *skb = rx->skb, *fwd_skb; 2056 struct ieee80211_local *local = rx->local; 2057 struct ieee80211_sub_if_data *sdata = rx->sdata; 2058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2059 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2060 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 2061 u16 q, hdrlen; 2062 2063 hdr = (struct ieee80211_hdr *) skb->data; 2064 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2065 2066 /* make sure fixed part of mesh header is there, also checks skb len */ 2067 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2068 return RX_DROP_MONITOR; 2069 2070 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2071 2072 /* make sure full mesh header is there, also checks skb len */ 2073 if (!pskb_may_pull(rx->skb, 2074 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2075 return RX_DROP_MONITOR; 2076 2077 /* reload pointers */ 2078 hdr = (struct ieee80211_hdr *) skb->data; 2079 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2080 2081 /* frame is in RMC, don't forward */ 2082 if (ieee80211_is_data(hdr->frame_control) && 2083 is_multicast_ether_addr(hdr->addr1) && 2084 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2085 return RX_DROP_MONITOR; 2086 2087 if (!ieee80211_is_data(hdr->frame_control) || 2088 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2089 return RX_CONTINUE; 2090 2091 if (!mesh_hdr->ttl) 2092 return RX_DROP_MONITOR; 2093 2094 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2095 struct mesh_path *mppath; 2096 char *proxied_addr; 2097 char *mpp_addr; 2098 2099 if (is_multicast_ether_addr(hdr->addr1)) { 2100 mpp_addr = hdr->addr3; 2101 proxied_addr = mesh_hdr->eaddr1; 2102 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2103 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2104 mpp_addr = hdr->addr4; 2105 proxied_addr = mesh_hdr->eaddr2; 2106 } else { 2107 return RX_DROP_MONITOR; 2108 } 2109 2110 rcu_read_lock(); 2111 mppath = mpp_path_lookup(sdata, proxied_addr); 2112 if (!mppath) { 2113 mpp_path_add(sdata, proxied_addr, mpp_addr); 2114 } else { 2115 spin_lock_bh(&mppath->state_lock); 2116 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2117 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2118 spin_unlock_bh(&mppath->state_lock); 2119 } 2120 rcu_read_unlock(); 2121 } 2122 2123 /* Frame has reached destination. Don't forward */ 2124 if (!is_multicast_ether_addr(hdr->addr1) && 2125 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2126 return RX_CONTINUE; 2127 2128 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2129 if (ieee80211_queue_stopped(&local->hw, q)) { 2130 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2131 return RX_DROP_MONITOR; 2132 } 2133 skb_set_queue_mapping(skb, q); 2134 2135 if (!--mesh_hdr->ttl) { 2136 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2137 goto out; 2138 } 2139 2140 if (!ifmsh->mshcfg.dot11MeshForwarding) 2141 goto out; 2142 2143 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2144 if (!fwd_skb) { 2145 net_info_ratelimited("%s: failed to clone mesh frame\n", 2146 sdata->name); 2147 goto out; 2148 } 2149 2150 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2151 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2152 info = IEEE80211_SKB_CB(fwd_skb); 2153 memset(info, 0, sizeof(*info)); 2154 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2155 info->control.vif = &rx->sdata->vif; 2156 info->control.jiffies = jiffies; 2157 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2158 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2159 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2160 /* update power mode indication when forwarding */ 2161 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2162 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2163 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2164 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2165 } else { 2166 /* unable to resolve next hop */ 2167 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2168 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2); 2169 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2170 kfree_skb(fwd_skb); 2171 return RX_DROP_MONITOR; 2172 } 2173 2174 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2175 ieee80211_add_pending_skb(local, fwd_skb); 2176 out: 2177 if (is_multicast_ether_addr(hdr->addr1) || 2178 sdata->dev->flags & IFF_PROMISC) 2179 return RX_CONTINUE; 2180 else 2181 return RX_DROP_MONITOR; 2182 } 2183 #endif 2184 2185 static ieee80211_rx_result debug_noinline 2186 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2187 { 2188 struct ieee80211_sub_if_data *sdata = rx->sdata; 2189 struct ieee80211_local *local = rx->local; 2190 struct net_device *dev = sdata->dev; 2191 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2192 __le16 fc = hdr->frame_control; 2193 bool port_control; 2194 int err; 2195 2196 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2197 return RX_CONTINUE; 2198 2199 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2200 return RX_DROP_MONITOR; 2201 2202 /* 2203 * Send unexpected-4addr-frame event to hostapd. For older versions, 2204 * also drop the frame to cooked monitor interfaces. 2205 */ 2206 if (ieee80211_has_a4(hdr->frame_control) && 2207 sdata->vif.type == NL80211_IFTYPE_AP) { 2208 if (rx->sta && 2209 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2210 cfg80211_rx_unexpected_4addr_frame( 2211 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2212 return RX_DROP_MONITOR; 2213 } 2214 2215 err = __ieee80211_data_to_8023(rx, &port_control); 2216 if (unlikely(err)) 2217 return RX_DROP_UNUSABLE; 2218 2219 if (!ieee80211_frame_allowed(rx, fc)) 2220 return RX_DROP_MONITOR; 2221 2222 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2223 unlikely(port_control) && sdata->bss) { 2224 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2225 u.ap); 2226 dev = sdata->dev; 2227 rx->sdata = sdata; 2228 } 2229 2230 rx->skb->dev = dev; 2231 2232 dev->stats.rx_packets++; 2233 dev->stats.rx_bytes += rx->skb->len; 2234 2235 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2236 !is_multicast_ether_addr( 2237 ((struct ethhdr *)rx->skb->data)->h_dest) && 2238 (!local->scanning && 2239 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2240 mod_timer(&local->dynamic_ps_timer, jiffies + 2241 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2242 } 2243 2244 ieee80211_deliver_skb(rx); 2245 2246 return RX_QUEUED; 2247 } 2248 2249 static ieee80211_rx_result debug_noinline 2250 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2251 { 2252 struct sk_buff *skb = rx->skb; 2253 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2254 struct tid_ampdu_rx *tid_agg_rx; 2255 u16 start_seq_num; 2256 u16 tid; 2257 2258 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2259 return RX_CONTINUE; 2260 2261 if (ieee80211_is_back_req(bar->frame_control)) { 2262 struct { 2263 __le16 control, start_seq_num; 2264 } __packed bar_data; 2265 2266 if (!rx->sta) 2267 return RX_DROP_MONITOR; 2268 2269 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2270 &bar_data, sizeof(bar_data))) 2271 return RX_DROP_MONITOR; 2272 2273 tid = le16_to_cpu(bar_data.control) >> 12; 2274 2275 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2276 if (!tid_agg_rx) 2277 return RX_DROP_MONITOR; 2278 2279 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2280 2281 /* reset session timer */ 2282 if (tid_agg_rx->timeout) 2283 mod_timer(&tid_agg_rx->session_timer, 2284 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2285 2286 spin_lock(&tid_agg_rx->reorder_lock); 2287 /* release stored frames up to start of BAR */ 2288 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2289 start_seq_num, frames); 2290 spin_unlock(&tid_agg_rx->reorder_lock); 2291 2292 kfree_skb(skb); 2293 return RX_QUEUED; 2294 } 2295 2296 /* 2297 * After this point, we only want management frames, 2298 * so we can drop all remaining control frames to 2299 * cooked monitor interfaces. 2300 */ 2301 return RX_DROP_MONITOR; 2302 } 2303 2304 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2305 struct ieee80211_mgmt *mgmt, 2306 size_t len) 2307 { 2308 struct ieee80211_local *local = sdata->local; 2309 struct sk_buff *skb; 2310 struct ieee80211_mgmt *resp; 2311 2312 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2313 /* Not to own unicast address */ 2314 return; 2315 } 2316 2317 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2318 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2319 /* Not from the current AP or not associated yet. */ 2320 return; 2321 } 2322 2323 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2324 /* Too short SA Query request frame */ 2325 return; 2326 } 2327 2328 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2329 if (skb == NULL) 2330 return; 2331 2332 skb_reserve(skb, local->hw.extra_tx_headroom); 2333 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2334 memset(resp, 0, 24); 2335 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2336 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2337 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2338 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2339 IEEE80211_STYPE_ACTION); 2340 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2341 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2342 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2343 memcpy(resp->u.action.u.sa_query.trans_id, 2344 mgmt->u.action.u.sa_query.trans_id, 2345 WLAN_SA_QUERY_TR_ID_LEN); 2346 2347 ieee80211_tx_skb(sdata, skb); 2348 } 2349 2350 static ieee80211_rx_result debug_noinline 2351 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2352 { 2353 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2354 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2355 2356 /* 2357 * From here on, look only at management frames. 2358 * Data and control frames are already handled, 2359 * and unknown (reserved) frames are useless. 2360 */ 2361 if (rx->skb->len < 24) 2362 return RX_DROP_MONITOR; 2363 2364 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2365 return RX_DROP_MONITOR; 2366 2367 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2368 ieee80211_is_beacon(mgmt->frame_control) && 2369 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2370 int sig = 0; 2371 2372 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2373 sig = status->signal; 2374 2375 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2376 rx->skb->data, rx->skb->len, 2377 status->freq, sig); 2378 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2379 } 2380 2381 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2382 return RX_DROP_MONITOR; 2383 2384 if (ieee80211_drop_unencrypted_mgmt(rx)) 2385 return RX_DROP_UNUSABLE; 2386 2387 return RX_CONTINUE; 2388 } 2389 2390 static ieee80211_rx_result debug_noinline 2391 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2392 { 2393 struct ieee80211_local *local = rx->local; 2394 struct ieee80211_sub_if_data *sdata = rx->sdata; 2395 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2396 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2397 int len = rx->skb->len; 2398 2399 if (!ieee80211_is_action(mgmt->frame_control)) 2400 return RX_CONTINUE; 2401 2402 /* drop too small frames */ 2403 if (len < IEEE80211_MIN_ACTION_SIZE) 2404 return RX_DROP_UNUSABLE; 2405 2406 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2407 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2408 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2409 return RX_DROP_UNUSABLE; 2410 2411 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2412 return RX_DROP_UNUSABLE; 2413 2414 switch (mgmt->u.action.category) { 2415 case WLAN_CATEGORY_HT: 2416 /* reject HT action frames from stations not supporting HT */ 2417 if (!rx->sta->sta.ht_cap.ht_supported) 2418 goto invalid; 2419 2420 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2421 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2422 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2423 sdata->vif.type != NL80211_IFTYPE_AP && 2424 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2425 break; 2426 2427 /* verify action & smps_control/chanwidth are present */ 2428 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2429 goto invalid; 2430 2431 switch (mgmt->u.action.u.ht_smps.action) { 2432 case WLAN_HT_ACTION_SMPS: { 2433 struct ieee80211_supported_band *sband; 2434 enum ieee80211_smps_mode smps_mode; 2435 2436 /* convert to HT capability */ 2437 switch (mgmt->u.action.u.ht_smps.smps_control) { 2438 case WLAN_HT_SMPS_CONTROL_DISABLED: 2439 smps_mode = IEEE80211_SMPS_OFF; 2440 break; 2441 case WLAN_HT_SMPS_CONTROL_STATIC: 2442 smps_mode = IEEE80211_SMPS_STATIC; 2443 break; 2444 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2445 smps_mode = IEEE80211_SMPS_DYNAMIC; 2446 break; 2447 default: 2448 goto invalid; 2449 } 2450 2451 /* if no change do nothing */ 2452 if (rx->sta->sta.smps_mode == smps_mode) 2453 goto handled; 2454 rx->sta->sta.smps_mode = smps_mode; 2455 2456 sband = rx->local->hw.wiphy->bands[status->band]; 2457 2458 rate_control_rate_update(local, sband, rx->sta, 2459 IEEE80211_RC_SMPS_CHANGED); 2460 goto handled; 2461 } 2462 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2463 struct ieee80211_supported_band *sband; 2464 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2465 enum ieee80211_sta_rx_bandwidth new_bw; 2466 2467 /* If it doesn't support 40 MHz it can't change ... */ 2468 if (!(rx->sta->sta.ht_cap.cap & 2469 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2470 goto handled; 2471 2472 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2473 new_bw = IEEE80211_STA_RX_BW_20; 2474 else 2475 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2476 2477 if (rx->sta->sta.bandwidth == new_bw) 2478 goto handled; 2479 2480 sband = rx->local->hw.wiphy->bands[status->band]; 2481 2482 rate_control_rate_update(local, sband, rx->sta, 2483 IEEE80211_RC_BW_CHANGED); 2484 goto handled; 2485 } 2486 default: 2487 goto invalid; 2488 } 2489 2490 break; 2491 case WLAN_CATEGORY_PUBLIC: 2492 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2493 goto invalid; 2494 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2495 break; 2496 if (!rx->sta) 2497 break; 2498 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2499 break; 2500 if (mgmt->u.action.u.ext_chan_switch.action_code != 2501 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2502 break; 2503 if (len < offsetof(struct ieee80211_mgmt, 2504 u.action.u.ext_chan_switch.variable)) 2505 goto invalid; 2506 goto queue; 2507 case WLAN_CATEGORY_VHT: 2508 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2509 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2510 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2511 sdata->vif.type != NL80211_IFTYPE_AP && 2512 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2513 break; 2514 2515 /* verify action code is present */ 2516 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2517 goto invalid; 2518 2519 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2520 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2521 u8 opmode; 2522 2523 /* verify opmode is present */ 2524 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2525 goto invalid; 2526 2527 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2528 2529 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2530 opmode, status->band, 2531 false); 2532 goto handled; 2533 } 2534 default: 2535 break; 2536 } 2537 break; 2538 case WLAN_CATEGORY_BACK: 2539 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2540 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2541 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2542 sdata->vif.type != NL80211_IFTYPE_AP && 2543 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2544 break; 2545 2546 /* verify action_code is present */ 2547 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2548 break; 2549 2550 switch (mgmt->u.action.u.addba_req.action_code) { 2551 case WLAN_ACTION_ADDBA_REQ: 2552 if (len < (IEEE80211_MIN_ACTION_SIZE + 2553 sizeof(mgmt->u.action.u.addba_req))) 2554 goto invalid; 2555 break; 2556 case WLAN_ACTION_ADDBA_RESP: 2557 if (len < (IEEE80211_MIN_ACTION_SIZE + 2558 sizeof(mgmt->u.action.u.addba_resp))) 2559 goto invalid; 2560 break; 2561 case WLAN_ACTION_DELBA: 2562 if (len < (IEEE80211_MIN_ACTION_SIZE + 2563 sizeof(mgmt->u.action.u.delba))) 2564 goto invalid; 2565 break; 2566 default: 2567 goto invalid; 2568 } 2569 2570 goto queue; 2571 case WLAN_CATEGORY_SPECTRUM_MGMT: 2572 /* verify action_code is present */ 2573 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2574 break; 2575 2576 switch (mgmt->u.action.u.measurement.action_code) { 2577 case WLAN_ACTION_SPCT_MSR_REQ: 2578 if (status->band != IEEE80211_BAND_5GHZ) 2579 break; 2580 2581 if (len < (IEEE80211_MIN_ACTION_SIZE + 2582 sizeof(mgmt->u.action.u.measurement))) 2583 break; 2584 2585 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2586 break; 2587 2588 ieee80211_process_measurement_req(sdata, mgmt, len); 2589 goto handled; 2590 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2591 u8 *bssid; 2592 if (len < (IEEE80211_MIN_ACTION_SIZE + 2593 sizeof(mgmt->u.action.u.chan_switch))) 2594 break; 2595 2596 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2597 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2598 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2599 break; 2600 2601 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2602 bssid = sdata->u.mgd.bssid; 2603 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2604 bssid = sdata->u.ibss.bssid; 2605 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2606 bssid = mgmt->sa; 2607 else 2608 break; 2609 2610 if (!ether_addr_equal(mgmt->bssid, bssid)) 2611 break; 2612 2613 goto queue; 2614 } 2615 } 2616 break; 2617 case WLAN_CATEGORY_SA_QUERY: 2618 if (len < (IEEE80211_MIN_ACTION_SIZE + 2619 sizeof(mgmt->u.action.u.sa_query))) 2620 break; 2621 2622 switch (mgmt->u.action.u.sa_query.action) { 2623 case WLAN_ACTION_SA_QUERY_REQUEST: 2624 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2625 break; 2626 ieee80211_process_sa_query_req(sdata, mgmt, len); 2627 goto handled; 2628 } 2629 break; 2630 case WLAN_CATEGORY_SELF_PROTECTED: 2631 if (len < (IEEE80211_MIN_ACTION_SIZE + 2632 sizeof(mgmt->u.action.u.self_prot.action_code))) 2633 break; 2634 2635 switch (mgmt->u.action.u.self_prot.action_code) { 2636 case WLAN_SP_MESH_PEERING_OPEN: 2637 case WLAN_SP_MESH_PEERING_CLOSE: 2638 case WLAN_SP_MESH_PEERING_CONFIRM: 2639 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2640 goto invalid; 2641 if (sdata->u.mesh.user_mpm) 2642 /* userspace handles this frame */ 2643 break; 2644 goto queue; 2645 case WLAN_SP_MGK_INFORM: 2646 case WLAN_SP_MGK_ACK: 2647 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2648 goto invalid; 2649 break; 2650 } 2651 break; 2652 case WLAN_CATEGORY_MESH_ACTION: 2653 if (len < (IEEE80211_MIN_ACTION_SIZE + 2654 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2655 break; 2656 2657 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2658 break; 2659 if (mesh_action_is_path_sel(mgmt) && 2660 !mesh_path_sel_is_hwmp(sdata)) 2661 break; 2662 goto queue; 2663 } 2664 2665 return RX_CONTINUE; 2666 2667 invalid: 2668 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2669 /* will return in the next handlers */ 2670 return RX_CONTINUE; 2671 2672 handled: 2673 if (rx->sta) 2674 rx->sta->rx_packets++; 2675 dev_kfree_skb(rx->skb); 2676 return RX_QUEUED; 2677 2678 queue: 2679 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2680 skb_queue_tail(&sdata->skb_queue, rx->skb); 2681 ieee80211_queue_work(&local->hw, &sdata->work); 2682 if (rx->sta) 2683 rx->sta->rx_packets++; 2684 return RX_QUEUED; 2685 } 2686 2687 static ieee80211_rx_result debug_noinline 2688 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2689 { 2690 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2691 int sig = 0; 2692 2693 /* skip known-bad action frames and return them in the next handler */ 2694 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2695 return RX_CONTINUE; 2696 2697 /* 2698 * Getting here means the kernel doesn't know how to handle 2699 * it, but maybe userspace does ... include returned frames 2700 * so userspace can register for those to know whether ones 2701 * it transmitted were processed or returned. 2702 */ 2703 2704 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2705 sig = status->signal; 2706 2707 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2708 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) { 2709 if (rx->sta) 2710 rx->sta->rx_packets++; 2711 dev_kfree_skb(rx->skb); 2712 return RX_QUEUED; 2713 } 2714 2715 return RX_CONTINUE; 2716 } 2717 2718 static ieee80211_rx_result debug_noinline 2719 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2720 { 2721 struct ieee80211_local *local = rx->local; 2722 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2723 struct sk_buff *nskb; 2724 struct ieee80211_sub_if_data *sdata = rx->sdata; 2725 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2726 2727 if (!ieee80211_is_action(mgmt->frame_control)) 2728 return RX_CONTINUE; 2729 2730 /* 2731 * For AP mode, hostapd is responsible for handling any action 2732 * frames that we didn't handle, including returning unknown 2733 * ones. For all other modes we will return them to the sender, 2734 * setting the 0x80 bit in the action category, as required by 2735 * 802.11-2012 9.24.4. 2736 * Newer versions of hostapd shall also use the management frame 2737 * registration mechanisms, but older ones still use cooked 2738 * monitor interfaces so push all frames there. 2739 */ 2740 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2741 (sdata->vif.type == NL80211_IFTYPE_AP || 2742 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2743 return RX_DROP_MONITOR; 2744 2745 if (is_multicast_ether_addr(mgmt->da)) 2746 return RX_DROP_MONITOR; 2747 2748 /* do not return rejected action frames */ 2749 if (mgmt->u.action.category & 0x80) 2750 return RX_DROP_UNUSABLE; 2751 2752 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2753 GFP_ATOMIC); 2754 if (nskb) { 2755 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2756 2757 nmgmt->u.action.category |= 0x80; 2758 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2759 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2760 2761 memset(nskb->cb, 0, sizeof(nskb->cb)); 2762 2763 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2764 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2765 2766 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2767 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2768 IEEE80211_TX_CTL_NO_CCK_RATE; 2769 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2770 info->hw_queue = 2771 local->hw.offchannel_tx_hw_queue; 2772 } 2773 2774 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2775 status->band); 2776 } 2777 dev_kfree_skb(rx->skb); 2778 return RX_QUEUED; 2779 } 2780 2781 static ieee80211_rx_result debug_noinline 2782 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2783 { 2784 struct ieee80211_sub_if_data *sdata = rx->sdata; 2785 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2786 __le16 stype; 2787 2788 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2789 2790 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2791 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2792 sdata->vif.type != NL80211_IFTYPE_STATION) 2793 return RX_DROP_MONITOR; 2794 2795 switch (stype) { 2796 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2797 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2798 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2799 /* process for all: mesh, mlme, ibss */ 2800 break; 2801 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2802 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2803 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2804 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2805 if (is_multicast_ether_addr(mgmt->da) && 2806 !is_broadcast_ether_addr(mgmt->da)) 2807 return RX_DROP_MONITOR; 2808 2809 /* process only for station */ 2810 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2811 return RX_DROP_MONITOR; 2812 break; 2813 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2814 /* process only for ibss and mesh */ 2815 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2816 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2817 return RX_DROP_MONITOR; 2818 break; 2819 default: 2820 return RX_DROP_MONITOR; 2821 } 2822 2823 /* queue up frame and kick off work to process it */ 2824 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2825 skb_queue_tail(&sdata->skb_queue, rx->skb); 2826 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2827 if (rx->sta) 2828 rx->sta->rx_packets++; 2829 2830 return RX_QUEUED; 2831 } 2832 2833 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2834 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2835 struct ieee80211_rate *rate) 2836 { 2837 struct ieee80211_sub_if_data *sdata; 2838 struct ieee80211_local *local = rx->local; 2839 struct sk_buff *skb = rx->skb, *skb2; 2840 struct net_device *prev_dev = NULL; 2841 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2842 int needed_headroom; 2843 2844 /* 2845 * If cooked monitor has been processed already, then 2846 * don't do it again. If not, set the flag. 2847 */ 2848 if (rx->flags & IEEE80211_RX_CMNTR) 2849 goto out_free_skb; 2850 rx->flags |= IEEE80211_RX_CMNTR; 2851 2852 /* If there are no cooked monitor interfaces, just free the SKB */ 2853 if (!local->cooked_mntrs) 2854 goto out_free_skb; 2855 2856 /* room for the radiotap header based on driver features */ 2857 needed_headroom = ieee80211_rx_radiotap_space(local, status); 2858 2859 if (skb_headroom(skb) < needed_headroom && 2860 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2861 goto out_free_skb; 2862 2863 /* prepend radiotap information */ 2864 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2865 false); 2866 2867 skb_set_mac_header(skb, 0); 2868 skb->ip_summed = CHECKSUM_UNNECESSARY; 2869 skb->pkt_type = PACKET_OTHERHOST; 2870 skb->protocol = htons(ETH_P_802_2); 2871 2872 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2873 if (!ieee80211_sdata_running(sdata)) 2874 continue; 2875 2876 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2877 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2878 continue; 2879 2880 if (prev_dev) { 2881 skb2 = skb_clone(skb, GFP_ATOMIC); 2882 if (skb2) { 2883 skb2->dev = prev_dev; 2884 netif_receive_skb(skb2); 2885 } 2886 } 2887 2888 prev_dev = sdata->dev; 2889 sdata->dev->stats.rx_packets++; 2890 sdata->dev->stats.rx_bytes += skb->len; 2891 } 2892 2893 if (prev_dev) { 2894 skb->dev = prev_dev; 2895 netif_receive_skb(skb); 2896 return; 2897 } 2898 2899 out_free_skb: 2900 dev_kfree_skb(skb); 2901 } 2902 2903 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2904 ieee80211_rx_result res) 2905 { 2906 switch (res) { 2907 case RX_DROP_MONITOR: 2908 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2909 if (rx->sta) 2910 rx->sta->rx_dropped++; 2911 /* fall through */ 2912 case RX_CONTINUE: { 2913 struct ieee80211_rate *rate = NULL; 2914 struct ieee80211_supported_band *sband; 2915 struct ieee80211_rx_status *status; 2916 2917 status = IEEE80211_SKB_RXCB((rx->skb)); 2918 2919 sband = rx->local->hw.wiphy->bands[status->band]; 2920 if (!(status->flag & RX_FLAG_HT) && 2921 !(status->flag & RX_FLAG_VHT)) 2922 rate = &sband->bitrates[status->rate_idx]; 2923 2924 ieee80211_rx_cooked_monitor(rx, rate); 2925 break; 2926 } 2927 case RX_DROP_UNUSABLE: 2928 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2929 if (rx->sta) 2930 rx->sta->rx_dropped++; 2931 dev_kfree_skb(rx->skb); 2932 break; 2933 case RX_QUEUED: 2934 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2935 break; 2936 } 2937 } 2938 2939 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 2940 struct sk_buff_head *frames) 2941 { 2942 ieee80211_rx_result res = RX_DROP_MONITOR; 2943 struct sk_buff *skb; 2944 2945 #define CALL_RXH(rxh) \ 2946 do { \ 2947 res = rxh(rx); \ 2948 if (res != RX_CONTINUE) \ 2949 goto rxh_next; \ 2950 } while (0); 2951 2952 spin_lock_bh(&rx->local->rx_path_lock); 2953 2954 while ((skb = __skb_dequeue(frames))) { 2955 /* 2956 * all the other fields are valid across frames 2957 * that belong to an aMPDU since they are on the 2958 * same TID from the same station 2959 */ 2960 rx->skb = skb; 2961 2962 CALL_RXH(ieee80211_rx_h_check_more_data) 2963 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2964 CALL_RXH(ieee80211_rx_h_sta_process) 2965 CALL_RXH(ieee80211_rx_h_decrypt) 2966 CALL_RXH(ieee80211_rx_h_defragment) 2967 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2968 /* must be after MMIC verify so header is counted in MPDU mic */ 2969 #ifdef CONFIG_MAC80211_MESH 2970 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2971 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2972 #endif 2973 CALL_RXH(ieee80211_rx_h_amsdu) 2974 CALL_RXH(ieee80211_rx_h_data) 2975 2976 /* special treatment -- needs the queue */ 2977 res = ieee80211_rx_h_ctrl(rx, frames); 2978 if (res != RX_CONTINUE) 2979 goto rxh_next; 2980 2981 CALL_RXH(ieee80211_rx_h_mgmt_check) 2982 CALL_RXH(ieee80211_rx_h_action) 2983 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2984 CALL_RXH(ieee80211_rx_h_action_return) 2985 CALL_RXH(ieee80211_rx_h_mgmt) 2986 2987 rxh_next: 2988 ieee80211_rx_handlers_result(rx, res); 2989 2990 #undef CALL_RXH 2991 } 2992 2993 spin_unlock_bh(&rx->local->rx_path_lock); 2994 } 2995 2996 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2997 { 2998 struct sk_buff_head reorder_release; 2999 ieee80211_rx_result res = RX_DROP_MONITOR; 3000 3001 __skb_queue_head_init(&reorder_release); 3002 3003 #define CALL_RXH(rxh) \ 3004 do { \ 3005 res = rxh(rx); \ 3006 if (res != RX_CONTINUE) \ 3007 goto rxh_next; \ 3008 } while (0); 3009 3010 CALL_RXH(ieee80211_rx_h_check) 3011 3012 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3013 3014 ieee80211_rx_handlers(rx, &reorder_release); 3015 return; 3016 3017 rxh_next: 3018 ieee80211_rx_handlers_result(rx, res); 3019 3020 #undef CALL_RXH 3021 } 3022 3023 /* 3024 * This function makes calls into the RX path, therefore 3025 * it has to be invoked under RCU read lock. 3026 */ 3027 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3028 { 3029 struct sk_buff_head frames; 3030 struct ieee80211_rx_data rx = { 3031 .sta = sta, 3032 .sdata = sta->sdata, 3033 .local = sta->local, 3034 /* This is OK -- must be QoS data frame */ 3035 .security_idx = tid, 3036 .seqno_idx = tid, 3037 .flags = 0, 3038 }; 3039 struct tid_ampdu_rx *tid_agg_rx; 3040 3041 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3042 if (!tid_agg_rx) 3043 return; 3044 3045 __skb_queue_head_init(&frames); 3046 3047 spin_lock(&tid_agg_rx->reorder_lock); 3048 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3049 spin_unlock(&tid_agg_rx->reorder_lock); 3050 3051 ieee80211_rx_handlers(&rx, &frames); 3052 } 3053 3054 /* main receive path */ 3055 3056 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 3057 struct ieee80211_hdr *hdr) 3058 { 3059 struct ieee80211_sub_if_data *sdata = rx->sdata; 3060 struct sk_buff *skb = rx->skb; 3061 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3062 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3063 int multicast = is_multicast_ether_addr(hdr->addr1); 3064 3065 switch (sdata->vif.type) { 3066 case NL80211_IFTYPE_STATION: 3067 if (!bssid && !sdata->u.mgd.use_4addr) 3068 return 0; 3069 if (!multicast && 3070 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3071 if (!(sdata->dev->flags & IFF_PROMISC) || 3072 sdata->u.mgd.use_4addr) 3073 return 0; 3074 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3075 } 3076 break; 3077 case NL80211_IFTYPE_ADHOC: 3078 if (!bssid) 3079 return 0; 3080 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3081 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3082 return 0; 3083 if (ieee80211_is_beacon(hdr->frame_control)) { 3084 return 1; 3085 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3086 return 0; 3087 } else if (!multicast && 3088 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3089 if (!(sdata->dev->flags & IFF_PROMISC)) 3090 return 0; 3091 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3092 } else if (!rx->sta) { 3093 int rate_idx; 3094 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3095 rate_idx = 0; /* TODO: HT/VHT rates */ 3096 else 3097 rate_idx = status->rate_idx; 3098 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3099 BIT(rate_idx)); 3100 } 3101 break; 3102 case NL80211_IFTYPE_MESH_POINT: 3103 if (!multicast && 3104 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3105 if (!(sdata->dev->flags & IFF_PROMISC)) 3106 return 0; 3107 3108 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3109 } 3110 break; 3111 case NL80211_IFTYPE_AP_VLAN: 3112 case NL80211_IFTYPE_AP: 3113 if (!bssid) { 3114 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3115 return 0; 3116 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3117 /* 3118 * Accept public action frames even when the 3119 * BSSID doesn't match, this is used for P2P 3120 * and location updates. Note that mac80211 3121 * itself never looks at these frames. 3122 */ 3123 if (!multicast && 3124 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3125 return 0; 3126 if (ieee80211_is_public_action(hdr, skb->len)) 3127 return 1; 3128 if (!ieee80211_is_beacon(hdr->frame_control)) 3129 return 0; 3130 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3131 } 3132 break; 3133 case NL80211_IFTYPE_WDS: 3134 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3135 return 0; 3136 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3137 return 0; 3138 break; 3139 case NL80211_IFTYPE_P2P_DEVICE: 3140 if (!ieee80211_is_public_action(hdr, skb->len) && 3141 !ieee80211_is_probe_req(hdr->frame_control) && 3142 !ieee80211_is_probe_resp(hdr->frame_control) && 3143 !ieee80211_is_beacon(hdr->frame_control)) 3144 return 0; 3145 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3146 !multicast) 3147 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3148 break; 3149 default: 3150 /* should never get here */ 3151 WARN_ON_ONCE(1); 3152 break; 3153 } 3154 3155 return 1; 3156 } 3157 3158 /* 3159 * This function returns whether or not the SKB 3160 * was destined for RX processing or not, which, 3161 * if consume is true, is equivalent to whether 3162 * or not the skb was consumed. 3163 */ 3164 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3165 struct sk_buff *skb, bool consume) 3166 { 3167 struct ieee80211_local *local = rx->local; 3168 struct ieee80211_sub_if_data *sdata = rx->sdata; 3169 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3170 struct ieee80211_hdr *hdr = (void *)skb->data; 3171 int prepares; 3172 3173 rx->skb = skb; 3174 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3175 prepares = prepare_for_handlers(rx, hdr); 3176 3177 if (!prepares) 3178 return false; 3179 3180 if (!consume) { 3181 skb = skb_copy(skb, GFP_ATOMIC); 3182 if (!skb) { 3183 if (net_ratelimit()) 3184 wiphy_debug(local->hw.wiphy, 3185 "failed to copy skb for %s\n", 3186 sdata->name); 3187 return true; 3188 } 3189 3190 rx->skb = skb; 3191 } 3192 3193 ieee80211_invoke_rx_handlers(rx); 3194 return true; 3195 } 3196 3197 /* 3198 * This is the actual Rx frames handler. as it blongs to Rx path it must 3199 * be called with rcu_read_lock protection. 3200 */ 3201 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3202 struct sk_buff *skb) 3203 { 3204 struct ieee80211_local *local = hw_to_local(hw); 3205 struct ieee80211_sub_if_data *sdata; 3206 struct ieee80211_hdr *hdr; 3207 __le16 fc; 3208 struct ieee80211_rx_data rx; 3209 struct ieee80211_sub_if_data *prev; 3210 struct sta_info *sta, *tmp, *prev_sta; 3211 int err = 0; 3212 3213 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3214 memset(&rx, 0, sizeof(rx)); 3215 rx.skb = skb; 3216 rx.local = local; 3217 3218 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3219 local->dot11ReceivedFragmentCount++; 3220 3221 if (ieee80211_is_mgmt(fc)) { 3222 /* drop frame if too short for header */ 3223 if (skb->len < ieee80211_hdrlen(fc)) 3224 err = -ENOBUFS; 3225 else 3226 err = skb_linearize(skb); 3227 } else { 3228 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3229 } 3230 3231 if (err) { 3232 dev_kfree_skb(skb); 3233 return; 3234 } 3235 3236 hdr = (struct ieee80211_hdr *)skb->data; 3237 ieee80211_parse_qos(&rx); 3238 ieee80211_verify_alignment(&rx); 3239 3240 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3241 ieee80211_is_beacon(hdr->frame_control))) 3242 ieee80211_scan_rx(local, skb); 3243 3244 if (ieee80211_is_data(fc)) { 3245 prev_sta = NULL; 3246 3247 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3248 if (!prev_sta) { 3249 prev_sta = sta; 3250 continue; 3251 } 3252 3253 rx.sta = prev_sta; 3254 rx.sdata = prev_sta->sdata; 3255 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3256 3257 prev_sta = sta; 3258 } 3259 3260 if (prev_sta) { 3261 rx.sta = prev_sta; 3262 rx.sdata = prev_sta->sdata; 3263 3264 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3265 return; 3266 goto out; 3267 } 3268 } 3269 3270 prev = NULL; 3271 3272 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3273 if (!ieee80211_sdata_running(sdata)) 3274 continue; 3275 3276 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3277 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3278 continue; 3279 3280 /* 3281 * frame is destined for this interface, but if it's 3282 * not also for the previous one we handle that after 3283 * the loop to avoid copying the SKB once too much 3284 */ 3285 3286 if (!prev) { 3287 prev = sdata; 3288 continue; 3289 } 3290 3291 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3292 rx.sdata = prev; 3293 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3294 3295 prev = sdata; 3296 } 3297 3298 if (prev) { 3299 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3300 rx.sdata = prev; 3301 3302 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3303 return; 3304 } 3305 3306 out: 3307 dev_kfree_skb(skb); 3308 } 3309 3310 /* 3311 * This is the receive path handler. It is called by a low level driver when an 3312 * 802.11 MPDU is received from the hardware. 3313 */ 3314 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3315 { 3316 struct ieee80211_local *local = hw_to_local(hw); 3317 struct ieee80211_rate *rate = NULL; 3318 struct ieee80211_supported_band *sband; 3319 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3320 3321 WARN_ON_ONCE(softirq_count() == 0); 3322 3323 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3324 goto drop; 3325 3326 sband = local->hw.wiphy->bands[status->band]; 3327 if (WARN_ON(!sband)) 3328 goto drop; 3329 3330 /* 3331 * If we're suspending, it is possible although not too likely 3332 * that we'd be receiving frames after having already partially 3333 * quiesced the stack. We can't process such frames then since 3334 * that might, for example, cause stations to be added or other 3335 * driver callbacks be invoked. 3336 */ 3337 if (unlikely(local->quiescing || local->suspended)) 3338 goto drop; 3339 3340 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3341 if (unlikely(local->in_reconfig)) 3342 goto drop; 3343 3344 /* 3345 * The same happens when we're not even started, 3346 * but that's worth a warning. 3347 */ 3348 if (WARN_ON(!local->started)) 3349 goto drop; 3350 3351 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3352 /* 3353 * Validate the rate, unless a PLCP error means that 3354 * we probably can't have a valid rate here anyway. 3355 */ 3356 3357 if (status->flag & RX_FLAG_HT) { 3358 /* 3359 * rate_idx is MCS index, which can be [0-76] 3360 * as documented on: 3361 * 3362 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3363 * 3364 * Anything else would be some sort of driver or 3365 * hardware error. The driver should catch hardware 3366 * errors. 3367 */ 3368 if (WARN(status->rate_idx > 76, 3369 "Rate marked as an HT rate but passed " 3370 "status->rate_idx is not " 3371 "an MCS index [0-76]: %d (0x%02x)\n", 3372 status->rate_idx, 3373 status->rate_idx)) 3374 goto drop; 3375 } else if (status->flag & RX_FLAG_VHT) { 3376 if (WARN_ONCE(status->rate_idx > 9 || 3377 !status->vht_nss || 3378 status->vht_nss > 8, 3379 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3380 status->rate_idx, status->vht_nss)) 3381 goto drop; 3382 } else { 3383 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3384 goto drop; 3385 rate = &sband->bitrates[status->rate_idx]; 3386 } 3387 } 3388 3389 status->rx_flags = 0; 3390 3391 /* 3392 * key references and virtual interfaces are protected using RCU 3393 * and this requires that we are in a read-side RCU section during 3394 * receive processing 3395 */ 3396 rcu_read_lock(); 3397 3398 /* 3399 * Frames with failed FCS/PLCP checksum are not returned, 3400 * all other frames are returned without radiotap header 3401 * if it was previously present. 3402 * Also, frames with less than 16 bytes are dropped. 3403 */ 3404 skb = ieee80211_rx_monitor(local, skb, rate); 3405 if (!skb) { 3406 rcu_read_unlock(); 3407 return; 3408 } 3409 3410 ieee80211_tpt_led_trig_rx(local, 3411 ((struct ieee80211_hdr *)skb->data)->frame_control, 3412 skb->len); 3413 __ieee80211_rx_handle_packet(hw, skb); 3414 3415 rcu_read_unlock(); 3416 3417 return; 3418 drop: 3419 kfree_skb(skb); 3420 } 3421 EXPORT_SYMBOL(ieee80211_rx); 3422 3423 /* This is a version of the rx handler that can be called from hard irq 3424 * context. Post the skb on the queue and schedule the tasklet */ 3425 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3426 { 3427 struct ieee80211_local *local = hw_to_local(hw); 3428 3429 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3430 3431 skb->pkt_type = IEEE80211_RX_MSG; 3432 skb_queue_tail(&local->skb_queue, skb); 3433 tasklet_schedule(&local->tasklet); 3434 } 3435 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3436