1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 99 struct sk_buff *skb, 100 unsigned int rtap_vendor_space) 101 { 102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 103 if (likely(skb->len > FCS_LEN)) 104 __pskb_trim(skb, skb->len - FCS_LEN); 105 else { 106 /* driver bug */ 107 WARN_ON(1); 108 dev_kfree_skb(skb); 109 return NULL; 110 } 111 } 112 113 __pskb_pull(skb, rtap_vendor_space); 114 115 return skb; 116 } 117 118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 119 unsigned int rtap_vendor_space) 120 { 121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 122 struct ieee80211_hdr *hdr; 123 124 hdr = (void *)(skb->data + rtap_vendor_space); 125 126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 127 RX_FLAG_FAILED_PLCP_CRC | 128 RX_FLAG_ONLY_MONITOR)) 129 return true; 130 131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 132 return true; 133 134 if (ieee80211_is_ctl(hdr->frame_control) && 135 !ieee80211_is_pspoll(hdr->frame_control) && 136 !ieee80211_is_back_req(hdr->frame_control)) 137 return true; 138 139 return false; 140 } 141 142 static int 143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 144 struct ieee80211_rx_status *status, 145 struct sk_buff *skb) 146 { 147 int len; 148 149 /* always present fields */ 150 len = sizeof(struct ieee80211_radiotap_header) + 8; 151 152 /* allocate extra bitmaps */ 153 if (status->chains) 154 len += 4 * hweight8(status->chains); 155 156 if (ieee80211_have_rx_timestamp(status)) { 157 len = ALIGN(len, 8); 158 len += 8; 159 } 160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 161 len += 1; 162 163 /* antenna field, if we don't have per-chain info */ 164 if (!status->chains) 165 len += 1; 166 167 /* padding for RX_FLAGS if necessary */ 168 len = ALIGN(len, 2); 169 170 if (status->flag & RX_FLAG_HT) /* HT info */ 171 len += 3; 172 173 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 174 len = ALIGN(len, 4); 175 len += 8; 176 } 177 178 if (status->flag & RX_FLAG_VHT) { 179 len = ALIGN(len, 2); 180 len += 12; 181 } 182 183 if (status->chains) { 184 /* antenna and antenna signal fields */ 185 len += 2 * hweight8(status->chains); 186 } 187 188 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 189 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 190 191 /* vendor presence bitmap */ 192 len += 4; 193 /* alignment for fixed 6-byte vendor data header */ 194 len = ALIGN(len, 2); 195 /* vendor data header */ 196 len += 6; 197 if (WARN_ON(rtap->align == 0)) 198 rtap->align = 1; 199 len = ALIGN(len, rtap->align); 200 len += rtap->len + rtap->pad; 201 } 202 203 return len; 204 } 205 206 /* 207 * ieee80211_add_rx_radiotap_header - add radiotap header 208 * 209 * add a radiotap header containing all the fields which the hardware provided. 210 */ 211 static void 212 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 213 struct sk_buff *skb, 214 struct ieee80211_rate *rate, 215 int rtap_len, bool has_fcs) 216 { 217 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 218 struct ieee80211_radiotap_header *rthdr; 219 unsigned char *pos; 220 __le32 *it_present; 221 u32 it_present_val; 222 u16 rx_flags = 0; 223 u16 channel_flags = 0; 224 int mpdulen, chain; 225 unsigned long chains = status->chains; 226 struct ieee80211_vendor_radiotap rtap = {}; 227 228 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 229 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 230 /* rtap.len and rtap.pad are undone immediately */ 231 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 232 } 233 234 mpdulen = skb->len; 235 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 236 mpdulen += FCS_LEN; 237 238 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 239 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 240 it_present = &rthdr->it_present; 241 242 /* radiotap header, set always present flags */ 243 rthdr->it_len = cpu_to_le16(rtap_len); 244 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 245 BIT(IEEE80211_RADIOTAP_CHANNEL) | 246 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 247 248 if (!status->chains) 249 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 250 251 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 252 it_present_val |= 253 BIT(IEEE80211_RADIOTAP_EXT) | 254 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 255 put_unaligned_le32(it_present_val, it_present); 256 it_present++; 257 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 258 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 259 } 260 261 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 262 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 263 BIT(IEEE80211_RADIOTAP_EXT); 264 put_unaligned_le32(it_present_val, it_present); 265 it_present++; 266 it_present_val = rtap.present; 267 } 268 269 put_unaligned_le32(it_present_val, it_present); 270 271 pos = (void *)(it_present + 1); 272 273 /* the order of the following fields is important */ 274 275 /* IEEE80211_RADIOTAP_TSFT */ 276 if (ieee80211_have_rx_timestamp(status)) { 277 /* padding */ 278 while ((pos - (u8 *)rthdr) & 7) 279 *pos++ = 0; 280 put_unaligned_le64( 281 ieee80211_calculate_rx_timestamp(local, status, 282 mpdulen, 0), 283 pos); 284 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 285 pos += 8; 286 } 287 288 /* IEEE80211_RADIOTAP_FLAGS */ 289 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 290 *pos |= IEEE80211_RADIOTAP_F_FCS; 291 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 292 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 293 if (status->flag & RX_FLAG_SHORTPRE) 294 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 295 pos++; 296 297 /* IEEE80211_RADIOTAP_RATE */ 298 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 299 /* 300 * Without rate information don't add it. If we have, 301 * MCS information is a separate field in radiotap, 302 * added below. The byte here is needed as padding 303 * for the channel though, so initialise it to 0. 304 */ 305 *pos = 0; 306 } else { 307 int shift = 0; 308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 309 if (status->flag & RX_FLAG_10MHZ) 310 shift = 1; 311 else if (status->flag & RX_FLAG_5MHZ) 312 shift = 2; 313 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 314 } 315 pos++; 316 317 /* IEEE80211_RADIOTAP_CHANNEL */ 318 put_unaligned_le16(status->freq, pos); 319 pos += 2; 320 if (status->flag & RX_FLAG_10MHZ) 321 channel_flags |= IEEE80211_CHAN_HALF; 322 else if (status->flag & RX_FLAG_5MHZ) 323 channel_flags |= IEEE80211_CHAN_QUARTER; 324 325 if (status->band == NL80211_BAND_5GHZ) 326 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 327 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 328 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 329 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 330 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 331 else if (rate) 332 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 333 else 334 channel_flags |= IEEE80211_CHAN_2GHZ; 335 put_unaligned_le16(channel_flags, pos); 336 pos += 2; 337 338 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 339 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 340 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 341 *pos = status->signal; 342 rthdr->it_present |= 343 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 344 pos++; 345 } 346 347 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 348 349 if (!status->chains) { 350 /* IEEE80211_RADIOTAP_ANTENNA */ 351 *pos = status->antenna; 352 pos++; 353 } 354 355 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 356 357 /* IEEE80211_RADIOTAP_RX_FLAGS */ 358 /* ensure 2 byte alignment for the 2 byte field as required */ 359 if ((pos - (u8 *)rthdr) & 1) 360 *pos++ = 0; 361 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 362 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 363 put_unaligned_le16(rx_flags, pos); 364 pos += 2; 365 366 if (status->flag & RX_FLAG_HT) { 367 unsigned int stbc; 368 369 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 370 *pos++ = local->hw.radiotap_mcs_details; 371 *pos = 0; 372 if (status->flag & RX_FLAG_SHORT_GI) 373 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 374 if (status->flag & RX_FLAG_40MHZ) 375 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 376 if (status->flag & RX_FLAG_HT_GF) 377 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 378 if (status->flag & RX_FLAG_LDPC) 379 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 380 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 381 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 382 pos++; 383 *pos++ = status->rate_idx; 384 } 385 386 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 387 u16 flags = 0; 388 389 /* ensure 4 byte alignment */ 390 while ((pos - (u8 *)rthdr) & 3) 391 pos++; 392 rthdr->it_present |= 393 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 394 put_unaligned_le32(status->ampdu_reference, pos); 395 pos += 4; 396 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 397 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 398 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 399 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 400 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 401 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 402 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 403 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 404 put_unaligned_le16(flags, pos); 405 pos += 2; 406 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 407 *pos++ = status->ampdu_delimiter_crc; 408 else 409 *pos++ = 0; 410 *pos++ = 0; 411 } 412 413 if (status->flag & RX_FLAG_VHT) { 414 u16 known = local->hw.radiotap_vht_details; 415 416 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 417 put_unaligned_le16(known, pos); 418 pos += 2; 419 /* flags */ 420 if (status->flag & RX_FLAG_SHORT_GI) 421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 422 /* in VHT, STBC is binary */ 423 if (status->flag & RX_FLAG_STBC_MASK) 424 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 425 if (status->vht_flag & RX_VHT_FLAG_BF) 426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 427 pos++; 428 /* bandwidth */ 429 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 430 *pos++ = 4; 431 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 432 *pos++ = 11; 433 else if (status->flag & RX_FLAG_40MHZ) 434 *pos++ = 1; 435 else /* 20 MHz */ 436 *pos++ = 0; 437 /* MCS/NSS */ 438 *pos = (status->rate_idx << 4) | status->vht_nss; 439 pos += 4; 440 /* coding field */ 441 if (status->flag & RX_FLAG_LDPC) 442 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 443 pos++; 444 /* group ID */ 445 pos++; 446 /* partial_aid */ 447 pos += 2; 448 } 449 450 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 451 *pos++ = status->chain_signal[chain]; 452 *pos++ = chain; 453 } 454 455 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 456 /* ensure 2 byte alignment for the vendor field as required */ 457 if ((pos - (u8 *)rthdr) & 1) 458 *pos++ = 0; 459 *pos++ = rtap.oui[0]; 460 *pos++ = rtap.oui[1]; 461 *pos++ = rtap.oui[2]; 462 *pos++ = rtap.subns; 463 put_unaligned_le16(rtap.len, pos); 464 pos += 2; 465 /* align the actual payload as requested */ 466 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 467 *pos++ = 0; 468 /* data (and possible padding) already follows */ 469 } 470 } 471 472 /* 473 * This function copies a received frame to all monitor interfaces and 474 * returns a cleaned-up SKB that no longer includes the FCS nor the 475 * radiotap header the driver might have added. 476 */ 477 static struct sk_buff * 478 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 479 struct ieee80211_rate *rate) 480 { 481 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 482 struct ieee80211_sub_if_data *sdata; 483 int rt_hdrlen, needed_headroom; 484 struct sk_buff *skb, *skb2; 485 struct net_device *prev_dev = NULL; 486 int present_fcs_len = 0; 487 unsigned int rtap_vendor_space = 0; 488 489 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 490 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 491 492 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 493 } 494 495 /* 496 * First, we may need to make a copy of the skb because 497 * (1) we need to modify it for radiotap (if not present), and 498 * (2) the other RX handlers will modify the skb we got. 499 * 500 * We don't need to, of course, if we aren't going to return 501 * the SKB because it has a bad FCS/PLCP checksum. 502 */ 503 504 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 505 present_fcs_len = FCS_LEN; 506 507 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 508 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 509 dev_kfree_skb(origskb); 510 return NULL; 511 } 512 513 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 514 if (should_drop_frame(origskb, present_fcs_len, 515 rtap_vendor_space)) { 516 dev_kfree_skb(origskb); 517 return NULL; 518 } 519 520 return remove_monitor_info(local, origskb, rtap_vendor_space); 521 } 522 523 /* room for the radiotap header based on driver features */ 524 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 525 needed_headroom = rt_hdrlen - rtap_vendor_space; 526 527 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 528 /* only need to expand headroom if necessary */ 529 skb = origskb; 530 origskb = NULL; 531 532 /* 533 * This shouldn't trigger often because most devices have an 534 * RX header they pull before we get here, and that should 535 * be big enough for our radiotap information. We should 536 * probably export the length to drivers so that we can have 537 * them allocate enough headroom to start with. 538 */ 539 if (skb_headroom(skb) < needed_headroom && 540 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 541 dev_kfree_skb(skb); 542 return NULL; 543 } 544 } else { 545 /* 546 * Need to make a copy and possibly remove radiotap header 547 * and FCS from the original. 548 */ 549 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 550 551 origskb = remove_monitor_info(local, origskb, 552 rtap_vendor_space); 553 554 if (!skb) 555 return origskb; 556 } 557 558 /* prepend radiotap information */ 559 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 560 561 skb_reset_mac_header(skb); 562 skb->ip_summed = CHECKSUM_UNNECESSARY; 563 skb->pkt_type = PACKET_OTHERHOST; 564 skb->protocol = htons(ETH_P_802_2); 565 566 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 567 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 568 continue; 569 570 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 571 continue; 572 573 if (!ieee80211_sdata_running(sdata)) 574 continue; 575 576 if (prev_dev) { 577 skb2 = skb_clone(skb, GFP_ATOMIC); 578 if (skb2) { 579 skb2->dev = prev_dev; 580 netif_receive_skb(skb2); 581 } 582 } 583 584 prev_dev = sdata->dev; 585 ieee80211_rx_stats(sdata->dev, skb->len); 586 } 587 588 if (prev_dev) { 589 skb->dev = prev_dev; 590 netif_receive_skb(skb); 591 } else 592 dev_kfree_skb(skb); 593 594 return origskb; 595 } 596 597 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 598 { 599 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 600 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 601 int tid, seqno_idx, security_idx; 602 603 /* does the frame have a qos control field? */ 604 if (ieee80211_is_data_qos(hdr->frame_control)) { 605 u8 *qc = ieee80211_get_qos_ctl(hdr); 606 /* frame has qos control */ 607 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 608 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 609 status->rx_flags |= IEEE80211_RX_AMSDU; 610 611 seqno_idx = tid; 612 security_idx = tid; 613 } else { 614 /* 615 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 616 * 617 * Sequence numbers for management frames, QoS data 618 * frames with a broadcast/multicast address in the 619 * Address 1 field, and all non-QoS data frames sent 620 * by QoS STAs are assigned using an additional single 621 * modulo-4096 counter, [...] 622 * 623 * We also use that counter for non-QoS STAs. 624 */ 625 seqno_idx = IEEE80211_NUM_TIDS; 626 security_idx = 0; 627 if (ieee80211_is_mgmt(hdr->frame_control)) 628 security_idx = IEEE80211_NUM_TIDS; 629 tid = 0; 630 } 631 632 rx->seqno_idx = seqno_idx; 633 rx->security_idx = security_idx; 634 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 635 * For now, set skb->priority to 0 for other cases. */ 636 rx->skb->priority = (tid > 7) ? 0 : tid; 637 } 638 639 /** 640 * DOC: Packet alignment 641 * 642 * Drivers always need to pass packets that are aligned to two-byte boundaries 643 * to the stack. 644 * 645 * Additionally, should, if possible, align the payload data in a way that 646 * guarantees that the contained IP header is aligned to a four-byte 647 * boundary. In the case of regular frames, this simply means aligning the 648 * payload to a four-byte boundary (because either the IP header is directly 649 * contained, or IV/RFC1042 headers that have a length divisible by four are 650 * in front of it). If the payload data is not properly aligned and the 651 * architecture doesn't support efficient unaligned operations, mac80211 652 * will align the data. 653 * 654 * With A-MSDU frames, however, the payload data address must yield two modulo 655 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 656 * push the IP header further back to a multiple of four again. Thankfully, the 657 * specs were sane enough this time around to require padding each A-MSDU 658 * subframe to a length that is a multiple of four. 659 * 660 * Padding like Atheros hardware adds which is between the 802.11 header and 661 * the payload is not supported, the driver is required to move the 802.11 662 * header to be directly in front of the payload in that case. 663 */ 664 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 665 { 666 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 667 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 668 #endif 669 } 670 671 672 /* rx handlers */ 673 674 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 675 { 676 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 677 678 if (is_multicast_ether_addr(hdr->addr1)) 679 return 0; 680 681 return ieee80211_is_robust_mgmt_frame(skb); 682 } 683 684 685 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 686 { 687 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 688 689 if (!is_multicast_ether_addr(hdr->addr1)) 690 return 0; 691 692 return ieee80211_is_robust_mgmt_frame(skb); 693 } 694 695 696 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 697 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 698 { 699 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 700 struct ieee80211_mmie *mmie; 701 struct ieee80211_mmie_16 *mmie16; 702 703 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 704 return -1; 705 706 if (!ieee80211_is_robust_mgmt_frame(skb)) 707 return -1; /* not a robust management frame */ 708 709 mmie = (struct ieee80211_mmie *) 710 (skb->data + skb->len - sizeof(*mmie)); 711 if (mmie->element_id == WLAN_EID_MMIE && 712 mmie->length == sizeof(*mmie) - 2) 713 return le16_to_cpu(mmie->key_id); 714 715 mmie16 = (struct ieee80211_mmie_16 *) 716 (skb->data + skb->len - sizeof(*mmie16)); 717 if (skb->len >= 24 + sizeof(*mmie16) && 718 mmie16->element_id == WLAN_EID_MMIE && 719 mmie16->length == sizeof(*mmie16) - 2) 720 return le16_to_cpu(mmie16->key_id); 721 722 return -1; 723 } 724 725 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 726 struct sk_buff *skb) 727 { 728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 729 __le16 fc; 730 int hdrlen; 731 u8 keyid; 732 733 fc = hdr->frame_control; 734 hdrlen = ieee80211_hdrlen(fc); 735 736 if (skb->len < hdrlen + cs->hdr_len) 737 return -EINVAL; 738 739 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 740 keyid &= cs->key_idx_mask; 741 keyid >>= cs->key_idx_shift; 742 743 return keyid; 744 } 745 746 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 747 { 748 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 749 char *dev_addr = rx->sdata->vif.addr; 750 751 if (ieee80211_is_data(hdr->frame_control)) { 752 if (is_multicast_ether_addr(hdr->addr1)) { 753 if (ieee80211_has_tods(hdr->frame_control) || 754 !ieee80211_has_fromds(hdr->frame_control)) 755 return RX_DROP_MONITOR; 756 if (ether_addr_equal(hdr->addr3, dev_addr)) 757 return RX_DROP_MONITOR; 758 } else { 759 if (!ieee80211_has_a4(hdr->frame_control)) 760 return RX_DROP_MONITOR; 761 if (ether_addr_equal(hdr->addr4, dev_addr)) 762 return RX_DROP_MONITOR; 763 } 764 } 765 766 /* If there is not an established peer link and this is not a peer link 767 * establisment frame, beacon or probe, drop the frame. 768 */ 769 770 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 771 struct ieee80211_mgmt *mgmt; 772 773 if (!ieee80211_is_mgmt(hdr->frame_control)) 774 return RX_DROP_MONITOR; 775 776 if (ieee80211_is_action(hdr->frame_control)) { 777 u8 category; 778 779 /* make sure category field is present */ 780 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 781 return RX_DROP_MONITOR; 782 783 mgmt = (struct ieee80211_mgmt *)hdr; 784 category = mgmt->u.action.category; 785 if (category != WLAN_CATEGORY_MESH_ACTION && 786 category != WLAN_CATEGORY_SELF_PROTECTED) 787 return RX_DROP_MONITOR; 788 return RX_CONTINUE; 789 } 790 791 if (ieee80211_is_probe_req(hdr->frame_control) || 792 ieee80211_is_probe_resp(hdr->frame_control) || 793 ieee80211_is_beacon(hdr->frame_control) || 794 ieee80211_is_auth(hdr->frame_control)) 795 return RX_CONTINUE; 796 797 return RX_DROP_MONITOR; 798 } 799 800 return RX_CONTINUE; 801 } 802 803 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 804 int index) 805 { 806 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 807 struct sk_buff *tail = skb_peek_tail(frames); 808 struct ieee80211_rx_status *status; 809 810 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 811 return true; 812 813 if (!tail) 814 return false; 815 816 status = IEEE80211_SKB_RXCB(tail); 817 if (status->flag & RX_FLAG_AMSDU_MORE) 818 return false; 819 820 return true; 821 } 822 823 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 824 struct tid_ampdu_rx *tid_agg_rx, 825 int index, 826 struct sk_buff_head *frames) 827 { 828 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 829 struct sk_buff *skb; 830 struct ieee80211_rx_status *status; 831 832 lockdep_assert_held(&tid_agg_rx->reorder_lock); 833 834 if (skb_queue_empty(skb_list)) 835 goto no_frame; 836 837 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 838 __skb_queue_purge(skb_list); 839 goto no_frame; 840 } 841 842 /* release frames from the reorder ring buffer */ 843 tid_agg_rx->stored_mpdu_num--; 844 while ((skb = __skb_dequeue(skb_list))) { 845 status = IEEE80211_SKB_RXCB(skb); 846 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 847 __skb_queue_tail(frames, skb); 848 } 849 850 no_frame: 851 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 852 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 853 } 854 855 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 856 struct tid_ampdu_rx *tid_agg_rx, 857 u16 head_seq_num, 858 struct sk_buff_head *frames) 859 { 860 int index; 861 862 lockdep_assert_held(&tid_agg_rx->reorder_lock); 863 864 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 865 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 866 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 867 frames); 868 } 869 } 870 871 /* 872 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 873 * the skb was added to the buffer longer than this time ago, the earlier 874 * frames that have not yet been received are assumed to be lost and the skb 875 * can be released for processing. This may also release other skb's from the 876 * reorder buffer if there are no additional gaps between the frames. 877 * 878 * Callers must hold tid_agg_rx->reorder_lock. 879 */ 880 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 881 882 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 883 struct tid_ampdu_rx *tid_agg_rx, 884 struct sk_buff_head *frames) 885 { 886 int index, i, j; 887 888 lockdep_assert_held(&tid_agg_rx->reorder_lock); 889 890 /* release the buffer until next missing frame */ 891 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 892 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 893 tid_agg_rx->stored_mpdu_num) { 894 /* 895 * No buffers ready to be released, but check whether any 896 * frames in the reorder buffer have timed out. 897 */ 898 int skipped = 1; 899 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 900 j = (j + 1) % tid_agg_rx->buf_size) { 901 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 902 skipped++; 903 continue; 904 } 905 if (skipped && 906 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 907 HT_RX_REORDER_BUF_TIMEOUT)) 908 goto set_release_timer; 909 910 /* don't leave incomplete A-MSDUs around */ 911 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 912 i = (i + 1) % tid_agg_rx->buf_size) 913 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 914 915 ht_dbg_ratelimited(sdata, 916 "release an RX reorder frame due to timeout on earlier frames\n"); 917 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 918 frames); 919 920 /* 921 * Increment the head seq# also for the skipped slots. 922 */ 923 tid_agg_rx->head_seq_num = 924 (tid_agg_rx->head_seq_num + 925 skipped) & IEEE80211_SN_MASK; 926 skipped = 0; 927 } 928 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 929 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 930 frames); 931 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 932 } 933 934 if (tid_agg_rx->stored_mpdu_num) { 935 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 936 937 for (; j != (index - 1) % tid_agg_rx->buf_size; 938 j = (j + 1) % tid_agg_rx->buf_size) { 939 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 940 break; 941 } 942 943 set_release_timer: 944 945 if (!tid_agg_rx->removed) 946 mod_timer(&tid_agg_rx->reorder_timer, 947 tid_agg_rx->reorder_time[j] + 1 + 948 HT_RX_REORDER_BUF_TIMEOUT); 949 } else { 950 del_timer(&tid_agg_rx->reorder_timer); 951 } 952 } 953 954 /* 955 * As this function belongs to the RX path it must be under 956 * rcu_read_lock protection. It returns false if the frame 957 * can be processed immediately, true if it was consumed. 958 */ 959 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 960 struct tid_ampdu_rx *tid_agg_rx, 961 struct sk_buff *skb, 962 struct sk_buff_head *frames) 963 { 964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 965 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 966 u16 sc = le16_to_cpu(hdr->seq_ctrl); 967 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 968 u16 head_seq_num, buf_size; 969 int index; 970 bool ret = true; 971 972 spin_lock(&tid_agg_rx->reorder_lock); 973 974 /* 975 * Offloaded BA sessions have no known starting sequence number so pick 976 * one from first Rxed frame for this tid after BA was started. 977 */ 978 if (unlikely(tid_agg_rx->auto_seq)) { 979 tid_agg_rx->auto_seq = false; 980 tid_agg_rx->ssn = mpdu_seq_num; 981 tid_agg_rx->head_seq_num = mpdu_seq_num; 982 } 983 984 buf_size = tid_agg_rx->buf_size; 985 head_seq_num = tid_agg_rx->head_seq_num; 986 987 /* frame with out of date sequence number */ 988 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 989 dev_kfree_skb(skb); 990 goto out; 991 } 992 993 /* 994 * If frame the sequence number exceeds our buffering window 995 * size release some previous frames to make room for this one. 996 */ 997 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 998 head_seq_num = ieee80211_sn_inc( 999 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1000 /* release stored frames up to new head to stack */ 1001 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1002 head_seq_num, frames); 1003 } 1004 1005 /* Now the new frame is always in the range of the reordering buffer */ 1006 1007 index = mpdu_seq_num % tid_agg_rx->buf_size; 1008 1009 /* check if we already stored this frame */ 1010 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1011 dev_kfree_skb(skb); 1012 goto out; 1013 } 1014 1015 /* 1016 * If the current MPDU is in the right order and nothing else 1017 * is stored we can process it directly, no need to buffer it. 1018 * If it is first but there's something stored, we may be able 1019 * to release frames after this one. 1020 */ 1021 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1022 tid_agg_rx->stored_mpdu_num == 0) { 1023 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1024 tid_agg_rx->head_seq_num = 1025 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1026 ret = false; 1027 goto out; 1028 } 1029 1030 /* put the frame in the reordering buffer */ 1031 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1032 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1033 tid_agg_rx->reorder_time[index] = jiffies; 1034 tid_agg_rx->stored_mpdu_num++; 1035 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1036 } 1037 1038 out: 1039 spin_unlock(&tid_agg_rx->reorder_lock); 1040 return ret; 1041 } 1042 1043 /* 1044 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1045 * true if the MPDU was buffered, false if it should be processed. 1046 */ 1047 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1048 struct sk_buff_head *frames) 1049 { 1050 struct sk_buff *skb = rx->skb; 1051 struct ieee80211_local *local = rx->local; 1052 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1053 struct sta_info *sta = rx->sta; 1054 struct tid_ampdu_rx *tid_agg_rx; 1055 u16 sc; 1056 u8 tid, ack_policy; 1057 1058 if (!ieee80211_is_data_qos(hdr->frame_control) || 1059 is_multicast_ether_addr(hdr->addr1)) 1060 goto dont_reorder; 1061 1062 /* 1063 * filter the QoS data rx stream according to 1064 * STA/TID and check if this STA/TID is on aggregation 1065 */ 1066 1067 if (!sta) 1068 goto dont_reorder; 1069 1070 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1071 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1072 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1073 1074 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1075 if (!tid_agg_rx) 1076 goto dont_reorder; 1077 1078 /* qos null data frames are excluded */ 1079 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1080 goto dont_reorder; 1081 1082 /* not part of a BA session */ 1083 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1084 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1085 goto dont_reorder; 1086 1087 /* new, potentially un-ordered, ampdu frame - process it */ 1088 1089 /* reset session timer */ 1090 if (tid_agg_rx->timeout) 1091 tid_agg_rx->last_rx = jiffies; 1092 1093 /* if this mpdu is fragmented - terminate rx aggregation session */ 1094 sc = le16_to_cpu(hdr->seq_ctrl); 1095 if (sc & IEEE80211_SCTL_FRAG) { 1096 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1097 skb_queue_tail(&rx->sdata->skb_queue, skb); 1098 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1099 return; 1100 } 1101 1102 /* 1103 * No locking needed -- we will only ever process one 1104 * RX packet at a time, and thus own tid_agg_rx. All 1105 * other code manipulating it needs to (and does) make 1106 * sure that we cannot get to it any more before doing 1107 * anything with it. 1108 */ 1109 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1110 frames)) 1111 return; 1112 1113 dont_reorder: 1114 __skb_queue_tail(frames, skb); 1115 } 1116 1117 static ieee80211_rx_result debug_noinline 1118 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1119 { 1120 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1122 1123 if (status->flag & RX_FLAG_DUP_VALIDATED) 1124 return RX_CONTINUE; 1125 1126 /* 1127 * Drop duplicate 802.11 retransmissions 1128 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1129 */ 1130 1131 if (rx->skb->len < 24) 1132 return RX_CONTINUE; 1133 1134 if (ieee80211_is_ctl(hdr->frame_control) || 1135 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1136 is_multicast_ether_addr(hdr->addr1)) 1137 return RX_CONTINUE; 1138 1139 if (!rx->sta) 1140 return RX_CONTINUE; 1141 1142 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1143 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1144 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1145 rx->sta->rx_stats.num_duplicates++; 1146 return RX_DROP_UNUSABLE; 1147 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1148 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1149 } 1150 1151 return RX_CONTINUE; 1152 } 1153 1154 static ieee80211_rx_result debug_noinline 1155 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1156 { 1157 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1158 1159 /* Drop disallowed frame classes based on STA auth/assoc state; 1160 * IEEE 802.11, Chap 5.5. 1161 * 1162 * mac80211 filters only based on association state, i.e. it drops 1163 * Class 3 frames from not associated stations. hostapd sends 1164 * deauth/disassoc frames when needed. In addition, hostapd is 1165 * responsible for filtering on both auth and assoc states. 1166 */ 1167 1168 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1169 return ieee80211_rx_mesh_check(rx); 1170 1171 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1172 ieee80211_is_pspoll(hdr->frame_control)) && 1173 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1174 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1175 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1176 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1177 /* 1178 * accept port control frames from the AP even when it's not 1179 * yet marked ASSOC to prevent a race where we don't set the 1180 * assoc bit quickly enough before it sends the first frame 1181 */ 1182 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1183 ieee80211_is_data_present(hdr->frame_control)) { 1184 unsigned int hdrlen; 1185 __be16 ethertype; 1186 1187 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1188 1189 if (rx->skb->len < hdrlen + 8) 1190 return RX_DROP_MONITOR; 1191 1192 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1193 if (ethertype == rx->sdata->control_port_protocol) 1194 return RX_CONTINUE; 1195 } 1196 1197 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1198 cfg80211_rx_spurious_frame(rx->sdata->dev, 1199 hdr->addr2, 1200 GFP_ATOMIC)) 1201 return RX_DROP_UNUSABLE; 1202 1203 return RX_DROP_MONITOR; 1204 } 1205 1206 return RX_CONTINUE; 1207 } 1208 1209 1210 static ieee80211_rx_result debug_noinline 1211 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1212 { 1213 struct ieee80211_local *local; 1214 struct ieee80211_hdr *hdr; 1215 struct sk_buff *skb; 1216 1217 local = rx->local; 1218 skb = rx->skb; 1219 hdr = (struct ieee80211_hdr *) skb->data; 1220 1221 if (!local->pspolling) 1222 return RX_CONTINUE; 1223 1224 if (!ieee80211_has_fromds(hdr->frame_control)) 1225 /* this is not from AP */ 1226 return RX_CONTINUE; 1227 1228 if (!ieee80211_is_data(hdr->frame_control)) 1229 return RX_CONTINUE; 1230 1231 if (!ieee80211_has_moredata(hdr->frame_control)) { 1232 /* AP has no more frames buffered for us */ 1233 local->pspolling = false; 1234 return RX_CONTINUE; 1235 } 1236 1237 /* more data bit is set, let's request a new frame from the AP */ 1238 ieee80211_send_pspoll(local, rx->sdata); 1239 1240 return RX_CONTINUE; 1241 } 1242 1243 static void sta_ps_start(struct sta_info *sta) 1244 { 1245 struct ieee80211_sub_if_data *sdata = sta->sdata; 1246 struct ieee80211_local *local = sdata->local; 1247 struct ps_data *ps; 1248 int tid; 1249 1250 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1251 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1252 ps = &sdata->bss->ps; 1253 else 1254 return; 1255 1256 atomic_inc(&ps->num_sta_ps); 1257 set_sta_flag(sta, WLAN_STA_PS_STA); 1258 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1259 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1260 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1261 sta->sta.addr, sta->sta.aid); 1262 1263 ieee80211_clear_fast_xmit(sta); 1264 1265 if (!sta->sta.txq[0]) 1266 return; 1267 1268 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1269 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1270 1271 if (!txqi->tin.backlog_packets) 1272 set_bit(tid, &sta->txq_buffered_tids); 1273 else 1274 clear_bit(tid, &sta->txq_buffered_tids); 1275 } 1276 } 1277 1278 static void sta_ps_end(struct sta_info *sta) 1279 { 1280 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1281 sta->sta.addr, sta->sta.aid); 1282 1283 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1284 /* 1285 * Clear the flag only if the other one is still set 1286 * so that the TX path won't start TX'ing new frames 1287 * directly ... In the case that the driver flag isn't 1288 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1289 */ 1290 clear_sta_flag(sta, WLAN_STA_PS_STA); 1291 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1292 sta->sta.addr, sta->sta.aid); 1293 return; 1294 } 1295 1296 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1297 clear_sta_flag(sta, WLAN_STA_PS_STA); 1298 ieee80211_sta_ps_deliver_wakeup(sta); 1299 } 1300 1301 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1302 { 1303 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1304 bool in_ps; 1305 1306 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1307 1308 /* Don't let the same PS state be set twice */ 1309 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1310 if ((start && in_ps) || (!start && !in_ps)) 1311 return -EINVAL; 1312 1313 if (start) 1314 sta_ps_start(sta); 1315 else 1316 sta_ps_end(sta); 1317 1318 return 0; 1319 } 1320 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1321 1322 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1323 { 1324 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1325 1326 if (test_sta_flag(sta, WLAN_STA_SP)) 1327 return; 1328 1329 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1330 ieee80211_sta_ps_deliver_poll_response(sta); 1331 else 1332 set_sta_flag(sta, WLAN_STA_PSPOLL); 1333 } 1334 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1335 1336 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1337 { 1338 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1339 u8 ac = ieee802_1d_to_ac[tid & 7]; 1340 1341 /* 1342 * If this AC is not trigger-enabled do nothing. 1343 * 1344 * NB: This could/should check a separate bitmap of trigger- 1345 * enabled queues, but for now we only implement uAPSD w/o 1346 * TSPEC changes to the ACs, so they're always the same. 1347 */ 1348 if (!(sta->sta.uapsd_queues & BIT(ac))) 1349 return; 1350 1351 /* if we are in a service period, do nothing */ 1352 if (test_sta_flag(sta, WLAN_STA_SP)) 1353 return; 1354 1355 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1356 ieee80211_sta_ps_deliver_uapsd(sta); 1357 else 1358 set_sta_flag(sta, WLAN_STA_UAPSD); 1359 } 1360 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1361 1362 static ieee80211_rx_result debug_noinline 1363 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1364 { 1365 struct ieee80211_sub_if_data *sdata = rx->sdata; 1366 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1367 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1368 1369 if (!rx->sta) 1370 return RX_CONTINUE; 1371 1372 if (sdata->vif.type != NL80211_IFTYPE_AP && 1373 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1374 return RX_CONTINUE; 1375 1376 /* 1377 * The device handles station powersave, so don't do anything about 1378 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1379 * it to mac80211 since they're handled.) 1380 */ 1381 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1382 return RX_CONTINUE; 1383 1384 /* 1385 * Don't do anything if the station isn't already asleep. In 1386 * the uAPSD case, the station will probably be marked asleep, 1387 * in the PS-Poll case the station must be confused ... 1388 */ 1389 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1390 return RX_CONTINUE; 1391 1392 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1393 ieee80211_sta_pspoll(&rx->sta->sta); 1394 1395 /* Free PS Poll skb here instead of returning RX_DROP that would 1396 * count as an dropped frame. */ 1397 dev_kfree_skb(rx->skb); 1398 1399 return RX_QUEUED; 1400 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1401 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1402 ieee80211_has_pm(hdr->frame_control) && 1403 (ieee80211_is_data_qos(hdr->frame_control) || 1404 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1405 u8 tid; 1406 1407 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1408 1409 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1410 } 1411 1412 return RX_CONTINUE; 1413 } 1414 1415 static ieee80211_rx_result debug_noinline 1416 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1417 { 1418 struct sta_info *sta = rx->sta; 1419 struct sk_buff *skb = rx->skb; 1420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1421 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1422 int i; 1423 1424 if (!sta) 1425 return RX_CONTINUE; 1426 1427 /* 1428 * Update last_rx only for IBSS packets which are for the current 1429 * BSSID and for station already AUTHORIZED to avoid keeping the 1430 * current IBSS network alive in cases where other STAs start 1431 * using different BSSID. This will also give the station another 1432 * chance to restart the authentication/authorization in case 1433 * something went wrong the first time. 1434 */ 1435 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1436 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1437 NL80211_IFTYPE_ADHOC); 1438 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1439 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1440 sta->rx_stats.last_rx = jiffies; 1441 if (ieee80211_is_data(hdr->frame_control) && 1442 !is_multicast_ether_addr(hdr->addr1)) 1443 sta->rx_stats.last_rate = 1444 sta_stats_encode_rate(status); 1445 } 1446 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1447 sta->rx_stats.last_rx = jiffies; 1448 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1449 /* 1450 * Mesh beacons will update last_rx when if they are found to 1451 * match the current local configuration when processed. 1452 */ 1453 sta->rx_stats.last_rx = jiffies; 1454 if (ieee80211_is_data(hdr->frame_control)) 1455 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1456 } 1457 1458 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1459 ieee80211_sta_rx_notify(rx->sdata, hdr); 1460 1461 sta->rx_stats.fragments++; 1462 1463 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1464 sta->rx_stats.bytes += rx->skb->len; 1465 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1466 1467 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1468 sta->rx_stats.last_signal = status->signal; 1469 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1470 } 1471 1472 if (status->chains) { 1473 sta->rx_stats.chains = status->chains; 1474 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1475 int signal = status->chain_signal[i]; 1476 1477 if (!(status->chains & BIT(i))) 1478 continue; 1479 1480 sta->rx_stats.chain_signal_last[i] = signal; 1481 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1482 -signal); 1483 } 1484 } 1485 1486 /* 1487 * Change STA power saving mode only at the end of a frame 1488 * exchange sequence. 1489 */ 1490 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1491 !ieee80211_has_morefrags(hdr->frame_control) && 1492 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1493 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1494 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1495 /* PM bit is only checked in frames where it isn't reserved, 1496 * in AP mode it's reserved in non-bufferable management frames 1497 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1498 */ 1499 (!ieee80211_is_mgmt(hdr->frame_control) || 1500 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1501 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1502 if (!ieee80211_has_pm(hdr->frame_control)) 1503 sta_ps_end(sta); 1504 } else { 1505 if (ieee80211_has_pm(hdr->frame_control)) 1506 sta_ps_start(sta); 1507 } 1508 } 1509 1510 /* mesh power save support */ 1511 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1512 ieee80211_mps_rx_h_sta_process(sta, hdr); 1513 1514 /* 1515 * Drop (qos-)data::nullfunc frames silently, since they 1516 * are used only to control station power saving mode. 1517 */ 1518 if (ieee80211_is_nullfunc(hdr->frame_control) || 1519 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1520 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1521 1522 /* 1523 * If we receive a 4-addr nullfunc frame from a STA 1524 * that was not moved to a 4-addr STA vlan yet send 1525 * the event to userspace and for older hostapd drop 1526 * the frame to the monitor interface. 1527 */ 1528 if (ieee80211_has_a4(hdr->frame_control) && 1529 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1530 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1531 !rx->sdata->u.vlan.sta))) { 1532 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1533 cfg80211_rx_unexpected_4addr_frame( 1534 rx->sdata->dev, sta->sta.addr, 1535 GFP_ATOMIC); 1536 return RX_DROP_MONITOR; 1537 } 1538 /* 1539 * Update counter and free packet here to avoid 1540 * counting this as a dropped packed. 1541 */ 1542 sta->rx_stats.packets++; 1543 dev_kfree_skb(rx->skb); 1544 return RX_QUEUED; 1545 } 1546 1547 return RX_CONTINUE; 1548 } /* ieee80211_rx_h_sta_process */ 1549 1550 static ieee80211_rx_result debug_noinline 1551 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1552 { 1553 struct sk_buff *skb = rx->skb; 1554 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1555 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1556 int keyidx; 1557 int hdrlen; 1558 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1559 struct ieee80211_key *sta_ptk = NULL; 1560 int mmie_keyidx = -1; 1561 __le16 fc; 1562 const struct ieee80211_cipher_scheme *cs = NULL; 1563 1564 /* 1565 * Key selection 101 1566 * 1567 * There are four types of keys: 1568 * - GTK (group keys) 1569 * - IGTK (group keys for management frames) 1570 * - PTK (pairwise keys) 1571 * - STK (station-to-station pairwise keys) 1572 * 1573 * When selecting a key, we have to distinguish between multicast 1574 * (including broadcast) and unicast frames, the latter can only 1575 * use PTKs and STKs while the former always use GTKs and IGTKs. 1576 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1577 * unicast frames can also use key indices like GTKs. Hence, if we 1578 * don't have a PTK/STK we check the key index for a WEP key. 1579 * 1580 * Note that in a regular BSS, multicast frames are sent by the 1581 * AP only, associated stations unicast the frame to the AP first 1582 * which then multicasts it on their behalf. 1583 * 1584 * There is also a slight problem in IBSS mode: GTKs are negotiated 1585 * with each station, that is something we don't currently handle. 1586 * The spec seems to expect that one negotiates the same key with 1587 * every station but there's no such requirement; VLANs could be 1588 * possible. 1589 */ 1590 1591 /* start without a key */ 1592 rx->key = NULL; 1593 fc = hdr->frame_control; 1594 1595 if (rx->sta) { 1596 int keyid = rx->sta->ptk_idx; 1597 1598 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1599 cs = rx->sta->cipher_scheme; 1600 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1601 if (unlikely(keyid < 0)) 1602 return RX_DROP_UNUSABLE; 1603 } 1604 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1605 } 1606 1607 if (!ieee80211_has_protected(fc)) 1608 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1609 1610 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1611 rx->key = sta_ptk; 1612 if ((status->flag & RX_FLAG_DECRYPTED) && 1613 (status->flag & RX_FLAG_IV_STRIPPED)) 1614 return RX_CONTINUE; 1615 /* Skip decryption if the frame is not protected. */ 1616 if (!ieee80211_has_protected(fc)) 1617 return RX_CONTINUE; 1618 } else if (mmie_keyidx >= 0) { 1619 /* Broadcast/multicast robust management frame / BIP */ 1620 if ((status->flag & RX_FLAG_DECRYPTED) && 1621 (status->flag & RX_FLAG_IV_STRIPPED)) 1622 return RX_CONTINUE; 1623 1624 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1625 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1626 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1627 if (rx->sta) { 1628 if (ieee80211_is_group_privacy_action(skb) && 1629 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1630 return RX_DROP_MONITOR; 1631 1632 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1633 } 1634 if (!rx->key) 1635 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1636 } else if (!ieee80211_has_protected(fc)) { 1637 /* 1638 * The frame was not protected, so skip decryption. However, we 1639 * need to set rx->key if there is a key that could have been 1640 * used so that the frame may be dropped if encryption would 1641 * have been expected. 1642 */ 1643 struct ieee80211_key *key = NULL; 1644 struct ieee80211_sub_if_data *sdata = rx->sdata; 1645 int i; 1646 1647 if (ieee80211_is_mgmt(fc) && 1648 is_multicast_ether_addr(hdr->addr1) && 1649 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1650 rx->key = key; 1651 else { 1652 if (rx->sta) { 1653 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1654 key = rcu_dereference(rx->sta->gtk[i]); 1655 if (key) 1656 break; 1657 } 1658 } 1659 if (!key) { 1660 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1661 key = rcu_dereference(sdata->keys[i]); 1662 if (key) 1663 break; 1664 } 1665 } 1666 if (key) 1667 rx->key = key; 1668 } 1669 return RX_CONTINUE; 1670 } else { 1671 u8 keyid; 1672 1673 /* 1674 * The device doesn't give us the IV so we won't be 1675 * able to look up the key. That's ok though, we 1676 * don't need to decrypt the frame, we just won't 1677 * be able to keep statistics accurate. 1678 * Except for key threshold notifications, should 1679 * we somehow allow the driver to tell us which key 1680 * the hardware used if this flag is set? 1681 */ 1682 if ((status->flag & RX_FLAG_DECRYPTED) && 1683 (status->flag & RX_FLAG_IV_STRIPPED)) 1684 return RX_CONTINUE; 1685 1686 hdrlen = ieee80211_hdrlen(fc); 1687 1688 if (cs) { 1689 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1690 1691 if (unlikely(keyidx < 0)) 1692 return RX_DROP_UNUSABLE; 1693 } else { 1694 if (rx->skb->len < 8 + hdrlen) 1695 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1696 /* 1697 * no need to call ieee80211_wep_get_keyidx, 1698 * it verifies a bunch of things we've done already 1699 */ 1700 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1701 keyidx = keyid >> 6; 1702 } 1703 1704 /* check per-station GTK first, if multicast packet */ 1705 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1706 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1707 1708 /* if not found, try default key */ 1709 if (!rx->key) { 1710 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1711 1712 /* 1713 * RSNA-protected unicast frames should always be 1714 * sent with pairwise or station-to-station keys, 1715 * but for WEP we allow using a key index as well. 1716 */ 1717 if (rx->key && 1718 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1719 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1720 !is_multicast_ether_addr(hdr->addr1)) 1721 rx->key = NULL; 1722 } 1723 } 1724 1725 if (rx->key) { 1726 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1727 return RX_DROP_MONITOR; 1728 1729 /* TODO: add threshold stuff again */ 1730 } else { 1731 return RX_DROP_MONITOR; 1732 } 1733 1734 switch (rx->key->conf.cipher) { 1735 case WLAN_CIPHER_SUITE_WEP40: 1736 case WLAN_CIPHER_SUITE_WEP104: 1737 result = ieee80211_crypto_wep_decrypt(rx); 1738 break; 1739 case WLAN_CIPHER_SUITE_TKIP: 1740 result = ieee80211_crypto_tkip_decrypt(rx); 1741 break; 1742 case WLAN_CIPHER_SUITE_CCMP: 1743 result = ieee80211_crypto_ccmp_decrypt( 1744 rx, IEEE80211_CCMP_MIC_LEN); 1745 break; 1746 case WLAN_CIPHER_SUITE_CCMP_256: 1747 result = ieee80211_crypto_ccmp_decrypt( 1748 rx, IEEE80211_CCMP_256_MIC_LEN); 1749 break; 1750 case WLAN_CIPHER_SUITE_AES_CMAC: 1751 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1752 break; 1753 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1754 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1755 break; 1756 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1757 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1758 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1759 break; 1760 case WLAN_CIPHER_SUITE_GCMP: 1761 case WLAN_CIPHER_SUITE_GCMP_256: 1762 result = ieee80211_crypto_gcmp_decrypt(rx); 1763 break; 1764 default: 1765 result = ieee80211_crypto_hw_decrypt(rx); 1766 } 1767 1768 /* the hdr variable is invalid after the decrypt handlers */ 1769 1770 /* either the frame has been decrypted or will be dropped */ 1771 status->flag |= RX_FLAG_DECRYPTED; 1772 1773 return result; 1774 } 1775 1776 static inline struct ieee80211_fragment_entry * 1777 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1778 unsigned int frag, unsigned int seq, int rx_queue, 1779 struct sk_buff **skb) 1780 { 1781 struct ieee80211_fragment_entry *entry; 1782 1783 entry = &sdata->fragments[sdata->fragment_next++]; 1784 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1785 sdata->fragment_next = 0; 1786 1787 if (!skb_queue_empty(&entry->skb_list)) 1788 __skb_queue_purge(&entry->skb_list); 1789 1790 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1791 *skb = NULL; 1792 entry->first_frag_time = jiffies; 1793 entry->seq = seq; 1794 entry->rx_queue = rx_queue; 1795 entry->last_frag = frag; 1796 entry->check_sequential_pn = false; 1797 entry->extra_len = 0; 1798 1799 return entry; 1800 } 1801 1802 static inline struct ieee80211_fragment_entry * 1803 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1804 unsigned int frag, unsigned int seq, 1805 int rx_queue, struct ieee80211_hdr *hdr) 1806 { 1807 struct ieee80211_fragment_entry *entry; 1808 int i, idx; 1809 1810 idx = sdata->fragment_next; 1811 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1812 struct ieee80211_hdr *f_hdr; 1813 1814 idx--; 1815 if (idx < 0) 1816 idx = IEEE80211_FRAGMENT_MAX - 1; 1817 1818 entry = &sdata->fragments[idx]; 1819 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1820 entry->rx_queue != rx_queue || 1821 entry->last_frag + 1 != frag) 1822 continue; 1823 1824 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1825 1826 /* 1827 * Check ftype and addresses are equal, else check next fragment 1828 */ 1829 if (((hdr->frame_control ^ f_hdr->frame_control) & 1830 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1831 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1832 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1833 continue; 1834 1835 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1836 __skb_queue_purge(&entry->skb_list); 1837 continue; 1838 } 1839 return entry; 1840 } 1841 1842 return NULL; 1843 } 1844 1845 static ieee80211_rx_result debug_noinline 1846 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1847 { 1848 struct ieee80211_hdr *hdr; 1849 u16 sc; 1850 __le16 fc; 1851 unsigned int frag, seq; 1852 struct ieee80211_fragment_entry *entry; 1853 struct sk_buff *skb; 1854 struct ieee80211_rx_status *status; 1855 1856 hdr = (struct ieee80211_hdr *)rx->skb->data; 1857 fc = hdr->frame_control; 1858 1859 if (ieee80211_is_ctl(fc)) 1860 return RX_CONTINUE; 1861 1862 sc = le16_to_cpu(hdr->seq_ctrl); 1863 frag = sc & IEEE80211_SCTL_FRAG; 1864 1865 if (is_multicast_ether_addr(hdr->addr1)) { 1866 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1867 goto out_no_led; 1868 } 1869 1870 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1871 goto out; 1872 1873 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1874 1875 if (skb_linearize(rx->skb)) 1876 return RX_DROP_UNUSABLE; 1877 1878 /* 1879 * skb_linearize() might change the skb->data and 1880 * previously cached variables (in this case, hdr) need to 1881 * be refreshed with the new data. 1882 */ 1883 hdr = (struct ieee80211_hdr *)rx->skb->data; 1884 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1885 1886 if (frag == 0) { 1887 /* This is the first fragment of a new frame. */ 1888 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1889 rx->seqno_idx, &(rx->skb)); 1890 if (rx->key && 1891 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1892 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 1893 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 1894 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 1895 ieee80211_has_protected(fc)) { 1896 int queue = rx->security_idx; 1897 1898 /* Store CCMP/GCMP PN so that we can verify that the 1899 * next fragment has a sequential PN value. 1900 */ 1901 entry->check_sequential_pn = true; 1902 memcpy(entry->last_pn, 1903 rx->key->u.ccmp.rx_pn[queue], 1904 IEEE80211_CCMP_PN_LEN); 1905 BUILD_BUG_ON(offsetof(struct ieee80211_key, 1906 u.ccmp.rx_pn) != 1907 offsetof(struct ieee80211_key, 1908 u.gcmp.rx_pn)); 1909 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 1910 sizeof(rx->key->u.gcmp.rx_pn[queue])); 1911 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 1912 IEEE80211_GCMP_PN_LEN); 1913 } 1914 return RX_QUEUED; 1915 } 1916 1917 /* This is a fragment for a frame that should already be pending in 1918 * fragment cache. Add this fragment to the end of the pending entry. 1919 */ 1920 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1921 rx->seqno_idx, hdr); 1922 if (!entry) { 1923 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1924 return RX_DROP_MONITOR; 1925 } 1926 1927 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 1928 * MPDU PN values are not incrementing in steps of 1." 1929 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 1930 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 1931 */ 1932 if (entry->check_sequential_pn) { 1933 int i; 1934 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1935 int queue; 1936 1937 if (!rx->key || 1938 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1939 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 1940 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 1941 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 1942 return RX_DROP_UNUSABLE; 1943 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1944 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1945 pn[i]++; 1946 if (pn[i]) 1947 break; 1948 } 1949 queue = rx->security_idx; 1950 rpn = rx->key->u.ccmp.rx_pn[queue]; 1951 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1952 return RX_DROP_UNUSABLE; 1953 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1954 } 1955 1956 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1957 __skb_queue_tail(&entry->skb_list, rx->skb); 1958 entry->last_frag = frag; 1959 entry->extra_len += rx->skb->len; 1960 if (ieee80211_has_morefrags(fc)) { 1961 rx->skb = NULL; 1962 return RX_QUEUED; 1963 } 1964 1965 rx->skb = __skb_dequeue(&entry->skb_list); 1966 if (skb_tailroom(rx->skb) < entry->extra_len) { 1967 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 1968 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1969 GFP_ATOMIC))) { 1970 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1971 __skb_queue_purge(&entry->skb_list); 1972 return RX_DROP_UNUSABLE; 1973 } 1974 } 1975 while ((skb = __skb_dequeue(&entry->skb_list))) { 1976 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1977 dev_kfree_skb(skb); 1978 } 1979 1980 /* Complete frame has been reassembled - process it now */ 1981 status = IEEE80211_SKB_RXCB(rx->skb); 1982 1983 out: 1984 ieee80211_led_rx(rx->local); 1985 out_no_led: 1986 if (rx->sta) 1987 rx->sta->rx_stats.packets++; 1988 return RX_CONTINUE; 1989 } 1990 1991 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1992 { 1993 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1994 return -EACCES; 1995 1996 return 0; 1997 } 1998 1999 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2000 { 2001 struct sk_buff *skb = rx->skb; 2002 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2003 2004 /* 2005 * Pass through unencrypted frames if the hardware has 2006 * decrypted them already. 2007 */ 2008 if (status->flag & RX_FLAG_DECRYPTED) 2009 return 0; 2010 2011 /* Drop unencrypted frames if key is set. */ 2012 if (unlikely(!ieee80211_has_protected(fc) && 2013 !ieee80211_is_nullfunc(fc) && 2014 ieee80211_is_data(fc) && rx->key)) 2015 return -EACCES; 2016 2017 return 0; 2018 } 2019 2020 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2021 { 2022 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2023 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2024 __le16 fc = hdr->frame_control; 2025 2026 /* 2027 * Pass through unencrypted frames if the hardware has 2028 * decrypted them already. 2029 */ 2030 if (status->flag & RX_FLAG_DECRYPTED) 2031 return 0; 2032 2033 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2034 if (unlikely(!ieee80211_has_protected(fc) && 2035 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2036 rx->key)) { 2037 if (ieee80211_is_deauth(fc) || 2038 ieee80211_is_disassoc(fc)) 2039 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2040 rx->skb->data, 2041 rx->skb->len); 2042 return -EACCES; 2043 } 2044 /* BIP does not use Protected field, so need to check MMIE */ 2045 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2046 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2047 if (ieee80211_is_deauth(fc) || 2048 ieee80211_is_disassoc(fc)) 2049 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2050 rx->skb->data, 2051 rx->skb->len); 2052 return -EACCES; 2053 } 2054 /* 2055 * When using MFP, Action frames are not allowed prior to 2056 * having configured keys. 2057 */ 2058 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2059 ieee80211_is_robust_mgmt_frame(rx->skb))) 2060 return -EACCES; 2061 } 2062 2063 return 0; 2064 } 2065 2066 static int 2067 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2068 { 2069 struct ieee80211_sub_if_data *sdata = rx->sdata; 2070 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2071 bool check_port_control = false; 2072 struct ethhdr *ehdr; 2073 int ret; 2074 2075 *port_control = false; 2076 if (ieee80211_has_a4(hdr->frame_control) && 2077 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2078 return -1; 2079 2080 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2081 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2082 2083 if (!sdata->u.mgd.use_4addr) 2084 return -1; 2085 else 2086 check_port_control = true; 2087 } 2088 2089 if (is_multicast_ether_addr(hdr->addr1) && 2090 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2091 return -1; 2092 2093 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2094 if (ret < 0) 2095 return ret; 2096 2097 ehdr = (struct ethhdr *) rx->skb->data; 2098 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2099 *port_control = true; 2100 else if (check_port_control) 2101 return -1; 2102 2103 return 0; 2104 } 2105 2106 /* 2107 * requires that rx->skb is a frame with ethernet header 2108 */ 2109 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2110 { 2111 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2112 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2113 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2114 2115 /* 2116 * Allow EAPOL frames to us/the PAE group address regardless 2117 * of whether the frame was encrypted or not. 2118 */ 2119 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2120 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2121 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2122 return true; 2123 2124 if (ieee80211_802_1x_port_control(rx) || 2125 ieee80211_drop_unencrypted(rx, fc)) 2126 return false; 2127 2128 return true; 2129 } 2130 2131 /* 2132 * requires that rx->skb is a frame with ethernet header 2133 */ 2134 static void 2135 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2136 { 2137 struct ieee80211_sub_if_data *sdata = rx->sdata; 2138 struct net_device *dev = sdata->dev; 2139 struct sk_buff *skb, *xmit_skb; 2140 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2141 struct sta_info *dsta; 2142 2143 skb = rx->skb; 2144 xmit_skb = NULL; 2145 2146 ieee80211_rx_stats(dev, skb->len); 2147 2148 if (rx->sta) { 2149 /* The seqno index has the same property as needed 2150 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2151 * for non-QoS-data frames. Here we know it's a data 2152 * frame, so count MSDUs. 2153 */ 2154 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2155 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2156 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2157 } 2158 2159 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2160 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2161 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2162 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2163 if (is_multicast_ether_addr(ehdr->h_dest)) { 2164 /* 2165 * send multicast frames both to higher layers in 2166 * local net stack and back to the wireless medium 2167 */ 2168 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2169 if (!xmit_skb) 2170 net_info_ratelimited("%s: failed to clone multicast frame\n", 2171 dev->name); 2172 } else { 2173 dsta = sta_info_get(sdata, skb->data); 2174 if (dsta) { 2175 /* 2176 * The destination station is associated to 2177 * this AP (in this VLAN), so send the frame 2178 * directly to it and do not pass it to local 2179 * net stack. 2180 */ 2181 xmit_skb = skb; 2182 skb = NULL; 2183 } 2184 } 2185 } 2186 2187 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2188 if (skb) { 2189 /* 'align' will only take the values 0 or 2 here since all 2190 * frames are required to be aligned to 2-byte boundaries 2191 * when being passed to mac80211; the code here works just 2192 * as well if that isn't true, but mac80211 assumes it can 2193 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2194 */ 2195 int align; 2196 2197 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2198 if (align) { 2199 if (WARN_ON(skb_headroom(skb) < 3)) { 2200 dev_kfree_skb(skb); 2201 skb = NULL; 2202 } else { 2203 u8 *data = skb->data; 2204 size_t len = skb_headlen(skb); 2205 skb->data -= align; 2206 memmove(skb->data, data, len); 2207 skb_set_tail_pointer(skb, len); 2208 } 2209 } 2210 } 2211 #endif 2212 2213 if (skb) { 2214 /* deliver to local stack */ 2215 skb->protocol = eth_type_trans(skb, dev); 2216 memset(skb->cb, 0, sizeof(skb->cb)); 2217 if (rx->napi) 2218 napi_gro_receive(rx->napi, skb); 2219 else 2220 netif_receive_skb(skb); 2221 } 2222 2223 if (xmit_skb) { 2224 /* 2225 * Send to wireless media and increase priority by 256 to 2226 * keep the received priority instead of reclassifying 2227 * the frame (see cfg80211_classify8021d). 2228 */ 2229 xmit_skb->priority += 256; 2230 xmit_skb->protocol = htons(ETH_P_802_3); 2231 skb_reset_network_header(xmit_skb); 2232 skb_reset_mac_header(xmit_skb); 2233 dev_queue_xmit(xmit_skb); 2234 } 2235 } 2236 2237 static ieee80211_rx_result debug_noinline 2238 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2239 { 2240 struct net_device *dev = rx->sdata->dev; 2241 struct sk_buff *skb = rx->skb; 2242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2243 __le16 fc = hdr->frame_control; 2244 struct sk_buff_head frame_list; 2245 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2246 2247 if (unlikely(!ieee80211_is_data(fc))) 2248 return RX_CONTINUE; 2249 2250 if (unlikely(!ieee80211_is_data_present(fc))) 2251 return RX_DROP_MONITOR; 2252 2253 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2254 return RX_CONTINUE; 2255 2256 if (ieee80211_has_a4(hdr->frame_control) && 2257 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2258 !rx->sdata->u.vlan.sta) 2259 return RX_DROP_UNUSABLE; 2260 2261 if (is_multicast_ether_addr(hdr->addr1) && 2262 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2263 rx->sdata->u.vlan.sta) || 2264 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2265 rx->sdata->u.mgd.use_4addr))) 2266 return RX_DROP_UNUSABLE; 2267 2268 skb->dev = dev; 2269 __skb_queue_head_init(&frame_list); 2270 2271 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2272 rx->sdata->vif.type, 2273 rx->local->hw.extra_tx_headroom, true); 2274 2275 while (!skb_queue_empty(&frame_list)) { 2276 rx->skb = __skb_dequeue(&frame_list); 2277 2278 if (!ieee80211_frame_allowed(rx, fc)) { 2279 dev_kfree_skb(rx->skb); 2280 continue; 2281 } 2282 2283 ieee80211_deliver_skb(rx); 2284 } 2285 2286 return RX_QUEUED; 2287 } 2288 2289 #ifdef CONFIG_MAC80211_MESH 2290 static ieee80211_rx_result 2291 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2292 { 2293 struct ieee80211_hdr *fwd_hdr, *hdr; 2294 struct ieee80211_tx_info *info; 2295 struct ieee80211s_hdr *mesh_hdr; 2296 struct sk_buff *skb = rx->skb, *fwd_skb; 2297 struct ieee80211_local *local = rx->local; 2298 struct ieee80211_sub_if_data *sdata = rx->sdata; 2299 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2300 u16 ac, q, hdrlen; 2301 2302 hdr = (struct ieee80211_hdr *) skb->data; 2303 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2304 2305 /* make sure fixed part of mesh header is there, also checks skb len */ 2306 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2307 return RX_DROP_MONITOR; 2308 2309 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2310 2311 /* make sure full mesh header is there, also checks skb len */ 2312 if (!pskb_may_pull(rx->skb, 2313 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2314 return RX_DROP_MONITOR; 2315 2316 /* reload pointers */ 2317 hdr = (struct ieee80211_hdr *) skb->data; 2318 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2319 2320 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2321 return RX_DROP_MONITOR; 2322 2323 /* frame is in RMC, don't forward */ 2324 if (ieee80211_is_data(hdr->frame_control) && 2325 is_multicast_ether_addr(hdr->addr1) && 2326 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2327 return RX_DROP_MONITOR; 2328 2329 if (!ieee80211_is_data(hdr->frame_control)) 2330 return RX_CONTINUE; 2331 2332 if (!mesh_hdr->ttl) 2333 return RX_DROP_MONITOR; 2334 2335 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2336 struct mesh_path *mppath; 2337 char *proxied_addr; 2338 char *mpp_addr; 2339 2340 if (is_multicast_ether_addr(hdr->addr1)) { 2341 mpp_addr = hdr->addr3; 2342 proxied_addr = mesh_hdr->eaddr1; 2343 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2344 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2345 mpp_addr = hdr->addr4; 2346 proxied_addr = mesh_hdr->eaddr2; 2347 } else { 2348 return RX_DROP_MONITOR; 2349 } 2350 2351 rcu_read_lock(); 2352 mppath = mpp_path_lookup(sdata, proxied_addr); 2353 if (!mppath) { 2354 mpp_path_add(sdata, proxied_addr, mpp_addr); 2355 } else { 2356 spin_lock_bh(&mppath->state_lock); 2357 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2358 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2359 mppath->exp_time = jiffies; 2360 spin_unlock_bh(&mppath->state_lock); 2361 } 2362 rcu_read_unlock(); 2363 } 2364 2365 /* Frame has reached destination. Don't forward */ 2366 if (!is_multicast_ether_addr(hdr->addr1) && 2367 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2368 return RX_CONTINUE; 2369 2370 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2371 q = sdata->vif.hw_queue[ac]; 2372 if (ieee80211_queue_stopped(&local->hw, q)) { 2373 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2374 return RX_DROP_MONITOR; 2375 } 2376 skb_set_queue_mapping(skb, q); 2377 2378 if (!--mesh_hdr->ttl) { 2379 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2380 goto out; 2381 } 2382 2383 if (!ifmsh->mshcfg.dot11MeshForwarding) 2384 goto out; 2385 2386 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2387 if (!fwd_skb) { 2388 net_info_ratelimited("%s: failed to clone mesh frame\n", 2389 sdata->name); 2390 goto out; 2391 } 2392 2393 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2394 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2395 info = IEEE80211_SKB_CB(fwd_skb); 2396 memset(info, 0, sizeof(*info)); 2397 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2398 info->control.vif = &rx->sdata->vif; 2399 info->control.jiffies = jiffies; 2400 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2401 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2402 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2403 /* update power mode indication when forwarding */ 2404 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2405 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2406 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2407 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2408 } else { 2409 /* unable to resolve next hop */ 2410 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2411 fwd_hdr->addr3, 0, 2412 WLAN_REASON_MESH_PATH_NOFORWARD, 2413 fwd_hdr->addr2); 2414 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2415 kfree_skb(fwd_skb); 2416 return RX_DROP_MONITOR; 2417 } 2418 2419 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2420 ieee80211_add_pending_skb(local, fwd_skb); 2421 out: 2422 if (is_multicast_ether_addr(hdr->addr1)) 2423 return RX_CONTINUE; 2424 return RX_DROP_MONITOR; 2425 } 2426 #endif 2427 2428 static ieee80211_rx_result debug_noinline 2429 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2430 { 2431 struct ieee80211_sub_if_data *sdata = rx->sdata; 2432 struct ieee80211_local *local = rx->local; 2433 struct net_device *dev = sdata->dev; 2434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2435 __le16 fc = hdr->frame_control; 2436 bool port_control; 2437 int err; 2438 2439 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2440 return RX_CONTINUE; 2441 2442 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2443 return RX_DROP_MONITOR; 2444 2445 /* 2446 * Send unexpected-4addr-frame event to hostapd. For older versions, 2447 * also drop the frame to cooked monitor interfaces. 2448 */ 2449 if (ieee80211_has_a4(hdr->frame_control) && 2450 sdata->vif.type == NL80211_IFTYPE_AP) { 2451 if (rx->sta && 2452 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2453 cfg80211_rx_unexpected_4addr_frame( 2454 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2455 return RX_DROP_MONITOR; 2456 } 2457 2458 err = __ieee80211_data_to_8023(rx, &port_control); 2459 if (unlikely(err)) 2460 return RX_DROP_UNUSABLE; 2461 2462 if (!ieee80211_frame_allowed(rx, fc)) 2463 return RX_DROP_MONITOR; 2464 2465 /* directly handle TDLS channel switch requests/responses */ 2466 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2467 cpu_to_be16(ETH_P_TDLS))) { 2468 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2469 2470 if (pskb_may_pull(rx->skb, 2471 offsetof(struct ieee80211_tdls_data, u)) && 2472 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2473 tf->category == WLAN_CATEGORY_TDLS && 2474 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2475 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2476 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2477 schedule_work(&local->tdls_chsw_work); 2478 if (rx->sta) 2479 rx->sta->rx_stats.packets++; 2480 2481 return RX_QUEUED; 2482 } 2483 } 2484 2485 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2486 unlikely(port_control) && sdata->bss) { 2487 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2488 u.ap); 2489 dev = sdata->dev; 2490 rx->sdata = sdata; 2491 } 2492 2493 rx->skb->dev = dev; 2494 2495 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2496 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2497 !is_multicast_ether_addr( 2498 ((struct ethhdr *)rx->skb->data)->h_dest) && 2499 (!local->scanning && 2500 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2501 mod_timer(&local->dynamic_ps_timer, jiffies + 2502 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2503 2504 ieee80211_deliver_skb(rx); 2505 2506 return RX_QUEUED; 2507 } 2508 2509 static ieee80211_rx_result debug_noinline 2510 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2511 { 2512 struct sk_buff *skb = rx->skb; 2513 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2514 struct tid_ampdu_rx *tid_agg_rx; 2515 u16 start_seq_num; 2516 u16 tid; 2517 2518 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2519 return RX_CONTINUE; 2520 2521 if (ieee80211_is_back_req(bar->frame_control)) { 2522 struct { 2523 __le16 control, start_seq_num; 2524 } __packed bar_data; 2525 struct ieee80211_event event = { 2526 .type = BAR_RX_EVENT, 2527 }; 2528 2529 if (!rx->sta) 2530 return RX_DROP_MONITOR; 2531 2532 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2533 &bar_data, sizeof(bar_data))) 2534 return RX_DROP_MONITOR; 2535 2536 tid = le16_to_cpu(bar_data.control) >> 12; 2537 2538 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2539 if (!tid_agg_rx) 2540 return RX_DROP_MONITOR; 2541 2542 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2543 event.u.ba.tid = tid; 2544 event.u.ba.ssn = start_seq_num; 2545 event.u.ba.sta = &rx->sta->sta; 2546 2547 /* reset session timer */ 2548 if (tid_agg_rx->timeout) 2549 mod_timer(&tid_agg_rx->session_timer, 2550 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2551 2552 spin_lock(&tid_agg_rx->reorder_lock); 2553 /* release stored frames up to start of BAR */ 2554 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2555 start_seq_num, frames); 2556 spin_unlock(&tid_agg_rx->reorder_lock); 2557 2558 drv_event_callback(rx->local, rx->sdata, &event); 2559 2560 kfree_skb(skb); 2561 return RX_QUEUED; 2562 } 2563 2564 /* 2565 * After this point, we only want management frames, 2566 * so we can drop all remaining control frames to 2567 * cooked monitor interfaces. 2568 */ 2569 return RX_DROP_MONITOR; 2570 } 2571 2572 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2573 struct ieee80211_mgmt *mgmt, 2574 size_t len) 2575 { 2576 struct ieee80211_local *local = sdata->local; 2577 struct sk_buff *skb; 2578 struct ieee80211_mgmt *resp; 2579 2580 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2581 /* Not to own unicast address */ 2582 return; 2583 } 2584 2585 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2586 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2587 /* Not from the current AP or not associated yet. */ 2588 return; 2589 } 2590 2591 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2592 /* Too short SA Query request frame */ 2593 return; 2594 } 2595 2596 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2597 if (skb == NULL) 2598 return; 2599 2600 skb_reserve(skb, local->hw.extra_tx_headroom); 2601 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2602 memset(resp, 0, 24); 2603 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2604 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2605 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2606 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2607 IEEE80211_STYPE_ACTION); 2608 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2609 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2610 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2611 memcpy(resp->u.action.u.sa_query.trans_id, 2612 mgmt->u.action.u.sa_query.trans_id, 2613 WLAN_SA_QUERY_TR_ID_LEN); 2614 2615 ieee80211_tx_skb(sdata, skb); 2616 } 2617 2618 static ieee80211_rx_result debug_noinline 2619 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2620 { 2621 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2622 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2623 2624 /* 2625 * From here on, look only at management frames. 2626 * Data and control frames are already handled, 2627 * and unknown (reserved) frames are useless. 2628 */ 2629 if (rx->skb->len < 24) 2630 return RX_DROP_MONITOR; 2631 2632 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2633 return RX_DROP_MONITOR; 2634 2635 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2636 ieee80211_is_beacon(mgmt->frame_control) && 2637 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2638 int sig = 0; 2639 2640 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2641 sig = status->signal; 2642 2643 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2644 rx->skb->data, rx->skb->len, 2645 status->freq, sig); 2646 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2647 } 2648 2649 if (ieee80211_drop_unencrypted_mgmt(rx)) 2650 return RX_DROP_UNUSABLE; 2651 2652 return RX_CONTINUE; 2653 } 2654 2655 static ieee80211_rx_result debug_noinline 2656 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2657 { 2658 struct ieee80211_local *local = rx->local; 2659 struct ieee80211_sub_if_data *sdata = rx->sdata; 2660 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2661 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2662 int len = rx->skb->len; 2663 2664 if (!ieee80211_is_action(mgmt->frame_control)) 2665 return RX_CONTINUE; 2666 2667 /* drop too small frames */ 2668 if (len < IEEE80211_MIN_ACTION_SIZE) 2669 return RX_DROP_UNUSABLE; 2670 2671 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2672 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2673 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2674 return RX_DROP_UNUSABLE; 2675 2676 switch (mgmt->u.action.category) { 2677 case WLAN_CATEGORY_HT: 2678 /* reject HT action frames from stations not supporting HT */ 2679 if (!rx->sta->sta.ht_cap.ht_supported) 2680 goto invalid; 2681 2682 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2683 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2684 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2685 sdata->vif.type != NL80211_IFTYPE_AP && 2686 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2687 break; 2688 2689 /* verify action & smps_control/chanwidth are present */ 2690 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2691 goto invalid; 2692 2693 switch (mgmt->u.action.u.ht_smps.action) { 2694 case WLAN_HT_ACTION_SMPS: { 2695 struct ieee80211_supported_band *sband; 2696 enum ieee80211_smps_mode smps_mode; 2697 2698 /* convert to HT capability */ 2699 switch (mgmt->u.action.u.ht_smps.smps_control) { 2700 case WLAN_HT_SMPS_CONTROL_DISABLED: 2701 smps_mode = IEEE80211_SMPS_OFF; 2702 break; 2703 case WLAN_HT_SMPS_CONTROL_STATIC: 2704 smps_mode = IEEE80211_SMPS_STATIC; 2705 break; 2706 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2707 smps_mode = IEEE80211_SMPS_DYNAMIC; 2708 break; 2709 default: 2710 goto invalid; 2711 } 2712 2713 /* if no change do nothing */ 2714 if (rx->sta->sta.smps_mode == smps_mode) 2715 goto handled; 2716 rx->sta->sta.smps_mode = smps_mode; 2717 2718 sband = rx->local->hw.wiphy->bands[status->band]; 2719 2720 rate_control_rate_update(local, sband, rx->sta, 2721 IEEE80211_RC_SMPS_CHANGED); 2722 goto handled; 2723 } 2724 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2725 struct ieee80211_supported_band *sband; 2726 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2727 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2728 2729 /* If it doesn't support 40 MHz it can't change ... */ 2730 if (!(rx->sta->sta.ht_cap.cap & 2731 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2732 goto handled; 2733 2734 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2735 max_bw = IEEE80211_STA_RX_BW_20; 2736 else 2737 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2738 2739 /* set cur_max_bandwidth and recalc sta bw */ 2740 rx->sta->cur_max_bandwidth = max_bw; 2741 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2742 2743 if (rx->sta->sta.bandwidth == new_bw) 2744 goto handled; 2745 2746 rx->sta->sta.bandwidth = new_bw; 2747 sband = rx->local->hw.wiphy->bands[status->band]; 2748 2749 rate_control_rate_update(local, sband, rx->sta, 2750 IEEE80211_RC_BW_CHANGED); 2751 goto handled; 2752 } 2753 default: 2754 goto invalid; 2755 } 2756 2757 break; 2758 case WLAN_CATEGORY_PUBLIC: 2759 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2760 goto invalid; 2761 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2762 break; 2763 if (!rx->sta) 2764 break; 2765 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2766 break; 2767 if (mgmt->u.action.u.ext_chan_switch.action_code != 2768 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2769 break; 2770 if (len < offsetof(struct ieee80211_mgmt, 2771 u.action.u.ext_chan_switch.variable)) 2772 goto invalid; 2773 goto queue; 2774 case WLAN_CATEGORY_VHT: 2775 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2776 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2777 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2778 sdata->vif.type != NL80211_IFTYPE_AP && 2779 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2780 break; 2781 2782 /* verify action code is present */ 2783 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2784 goto invalid; 2785 2786 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2787 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2788 u8 opmode; 2789 2790 /* verify opmode is present */ 2791 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2792 goto invalid; 2793 2794 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2795 2796 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2797 opmode, status->band); 2798 goto handled; 2799 } 2800 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2801 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2802 goto invalid; 2803 goto queue; 2804 } 2805 default: 2806 break; 2807 } 2808 break; 2809 case WLAN_CATEGORY_BACK: 2810 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2811 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2812 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2813 sdata->vif.type != NL80211_IFTYPE_AP && 2814 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2815 break; 2816 2817 /* verify action_code is present */ 2818 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2819 break; 2820 2821 switch (mgmt->u.action.u.addba_req.action_code) { 2822 case WLAN_ACTION_ADDBA_REQ: 2823 if (len < (IEEE80211_MIN_ACTION_SIZE + 2824 sizeof(mgmt->u.action.u.addba_req))) 2825 goto invalid; 2826 break; 2827 case WLAN_ACTION_ADDBA_RESP: 2828 if (len < (IEEE80211_MIN_ACTION_SIZE + 2829 sizeof(mgmt->u.action.u.addba_resp))) 2830 goto invalid; 2831 break; 2832 case WLAN_ACTION_DELBA: 2833 if (len < (IEEE80211_MIN_ACTION_SIZE + 2834 sizeof(mgmt->u.action.u.delba))) 2835 goto invalid; 2836 break; 2837 default: 2838 goto invalid; 2839 } 2840 2841 goto queue; 2842 case WLAN_CATEGORY_SPECTRUM_MGMT: 2843 /* verify action_code is present */ 2844 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2845 break; 2846 2847 switch (mgmt->u.action.u.measurement.action_code) { 2848 case WLAN_ACTION_SPCT_MSR_REQ: 2849 if (status->band != NL80211_BAND_5GHZ) 2850 break; 2851 2852 if (len < (IEEE80211_MIN_ACTION_SIZE + 2853 sizeof(mgmt->u.action.u.measurement))) 2854 break; 2855 2856 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2857 break; 2858 2859 ieee80211_process_measurement_req(sdata, mgmt, len); 2860 goto handled; 2861 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2862 u8 *bssid; 2863 if (len < (IEEE80211_MIN_ACTION_SIZE + 2864 sizeof(mgmt->u.action.u.chan_switch))) 2865 break; 2866 2867 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2868 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2869 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2870 break; 2871 2872 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2873 bssid = sdata->u.mgd.bssid; 2874 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2875 bssid = sdata->u.ibss.bssid; 2876 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2877 bssid = mgmt->sa; 2878 else 2879 break; 2880 2881 if (!ether_addr_equal(mgmt->bssid, bssid)) 2882 break; 2883 2884 goto queue; 2885 } 2886 } 2887 break; 2888 case WLAN_CATEGORY_SA_QUERY: 2889 if (len < (IEEE80211_MIN_ACTION_SIZE + 2890 sizeof(mgmt->u.action.u.sa_query))) 2891 break; 2892 2893 switch (mgmt->u.action.u.sa_query.action) { 2894 case WLAN_ACTION_SA_QUERY_REQUEST: 2895 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2896 break; 2897 ieee80211_process_sa_query_req(sdata, mgmt, len); 2898 goto handled; 2899 } 2900 break; 2901 case WLAN_CATEGORY_SELF_PROTECTED: 2902 if (len < (IEEE80211_MIN_ACTION_SIZE + 2903 sizeof(mgmt->u.action.u.self_prot.action_code))) 2904 break; 2905 2906 switch (mgmt->u.action.u.self_prot.action_code) { 2907 case WLAN_SP_MESH_PEERING_OPEN: 2908 case WLAN_SP_MESH_PEERING_CLOSE: 2909 case WLAN_SP_MESH_PEERING_CONFIRM: 2910 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2911 goto invalid; 2912 if (sdata->u.mesh.user_mpm) 2913 /* userspace handles this frame */ 2914 break; 2915 goto queue; 2916 case WLAN_SP_MGK_INFORM: 2917 case WLAN_SP_MGK_ACK: 2918 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2919 goto invalid; 2920 break; 2921 } 2922 break; 2923 case WLAN_CATEGORY_MESH_ACTION: 2924 if (len < (IEEE80211_MIN_ACTION_SIZE + 2925 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2926 break; 2927 2928 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2929 break; 2930 if (mesh_action_is_path_sel(mgmt) && 2931 !mesh_path_sel_is_hwmp(sdata)) 2932 break; 2933 goto queue; 2934 } 2935 2936 return RX_CONTINUE; 2937 2938 invalid: 2939 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2940 /* will return in the next handlers */ 2941 return RX_CONTINUE; 2942 2943 handled: 2944 if (rx->sta) 2945 rx->sta->rx_stats.packets++; 2946 dev_kfree_skb(rx->skb); 2947 return RX_QUEUED; 2948 2949 queue: 2950 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2951 skb_queue_tail(&sdata->skb_queue, rx->skb); 2952 ieee80211_queue_work(&local->hw, &sdata->work); 2953 if (rx->sta) 2954 rx->sta->rx_stats.packets++; 2955 return RX_QUEUED; 2956 } 2957 2958 static ieee80211_rx_result debug_noinline 2959 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2960 { 2961 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2962 int sig = 0; 2963 2964 /* skip known-bad action frames and return them in the next handler */ 2965 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2966 return RX_CONTINUE; 2967 2968 /* 2969 * Getting here means the kernel doesn't know how to handle 2970 * it, but maybe userspace does ... include returned frames 2971 * so userspace can register for those to know whether ones 2972 * it transmitted were processed or returned. 2973 */ 2974 2975 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2976 sig = status->signal; 2977 2978 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2979 rx->skb->data, rx->skb->len, 0)) { 2980 if (rx->sta) 2981 rx->sta->rx_stats.packets++; 2982 dev_kfree_skb(rx->skb); 2983 return RX_QUEUED; 2984 } 2985 2986 return RX_CONTINUE; 2987 } 2988 2989 static ieee80211_rx_result debug_noinline 2990 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2991 { 2992 struct ieee80211_local *local = rx->local; 2993 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2994 struct sk_buff *nskb; 2995 struct ieee80211_sub_if_data *sdata = rx->sdata; 2996 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2997 2998 if (!ieee80211_is_action(mgmt->frame_control)) 2999 return RX_CONTINUE; 3000 3001 /* 3002 * For AP mode, hostapd is responsible for handling any action 3003 * frames that we didn't handle, including returning unknown 3004 * ones. For all other modes we will return them to the sender, 3005 * setting the 0x80 bit in the action category, as required by 3006 * 802.11-2012 9.24.4. 3007 * Newer versions of hostapd shall also use the management frame 3008 * registration mechanisms, but older ones still use cooked 3009 * monitor interfaces so push all frames there. 3010 */ 3011 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3012 (sdata->vif.type == NL80211_IFTYPE_AP || 3013 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3014 return RX_DROP_MONITOR; 3015 3016 if (is_multicast_ether_addr(mgmt->da)) 3017 return RX_DROP_MONITOR; 3018 3019 /* do not return rejected action frames */ 3020 if (mgmt->u.action.category & 0x80) 3021 return RX_DROP_UNUSABLE; 3022 3023 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3024 GFP_ATOMIC); 3025 if (nskb) { 3026 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3027 3028 nmgmt->u.action.category |= 0x80; 3029 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3030 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3031 3032 memset(nskb->cb, 0, sizeof(nskb->cb)); 3033 3034 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3035 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3036 3037 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3038 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3039 IEEE80211_TX_CTL_NO_CCK_RATE; 3040 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3041 info->hw_queue = 3042 local->hw.offchannel_tx_hw_queue; 3043 } 3044 3045 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3046 status->band); 3047 } 3048 dev_kfree_skb(rx->skb); 3049 return RX_QUEUED; 3050 } 3051 3052 static ieee80211_rx_result debug_noinline 3053 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3054 { 3055 struct ieee80211_sub_if_data *sdata = rx->sdata; 3056 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3057 __le16 stype; 3058 3059 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3060 3061 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3062 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3063 sdata->vif.type != NL80211_IFTYPE_OCB && 3064 sdata->vif.type != NL80211_IFTYPE_STATION) 3065 return RX_DROP_MONITOR; 3066 3067 switch (stype) { 3068 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3069 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3070 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3071 /* process for all: mesh, mlme, ibss */ 3072 break; 3073 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3074 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3075 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3076 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3077 if (is_multicast_ether_addr(mgmt->da) && 3078 !is_broadcast_ether_addr(mgmt->da)) 3079 return RX_DROP_MONITOR; 3080 3081 /* process only for station */ 3082 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3083 return RX_DROP_MONITOR; 3084 break; 3085 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3086 /* process only for ibss and mesh */ 3087 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3088 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3089 return RX_DROP_MONITOR; 3090 break; 3091 default: 3092 return RX_DROP_MONITOR; 3093 } 3094 3095 /* queue up frame and kick off work to process it */ 3096 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3097 skb_queue_tail(&sdata->skb_queue, rx->skb); 3098 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3099 if (rx->sta) 3100 rx->sta->rx_stats.packets++; 3101 3102 return RX_QUEUED; 3103 } 3104 3105 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3106 struct ieee80211_rate *rate) 3107 { 3108 struct ieee80211_sub_if_data *sdata; 3109 struct ieee80211_local *local = rx->local; 3110 struct sk_buff *skb = rx->skb, *skb2; 3111 struct net_device *prev_dev = NULL; 3112 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3113 int needed_headroom; 3114 3115 /* 3116 * If cooked monitor has been processed already, then 3117 * don't do it again. If not, set the flag. 3118 */ 3119 if (rx->flags & IEEE80211_RX_CMNTR) 3120 goto out_free_skb; 3121 rx->flags |= IEEE80211_RX_CMNTR; 3122 3123 /* If there are no cooked monitor interfaces, just free the SKB */ 3124 if (!local->cooked_mntrs) 3125 goto out_free_skb; 3126 3127 /* vendor data is long removed here */ 3128 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3129 /* room for the radiotap header based on driver features */ 3130 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3131 3132 if (skb_headroom(skb) < needed_headroom && 3133 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3134 goto out_free_skb; 3135 3136 /* prepend radiotap information */ 3137 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3138 false); 3139 3140 skb_reset_mac_header(skb); 3141 skb->ip_summed = CHECKSUM_UNNECESSARY; 3142 skb->pkt_type = PACKET_OTHERHOST; 3143 skb->protocol = htons(ETH_P_802_2); 3144 3145 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3146 if (!ieee80211_sdata_running(sdata)) 3147 continue; 3148 3149 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3150 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3151 continue; 3152 3153 if (prev_dev) { 3154 skb2 = skb_clone(skb, GFP_ATOMIC); 3155 if (skb2) { 3156 skb2->dev = prev_dev; 3157 netif_receive_skb(skb2); 3158 } 3159 } 3160 3161 prev_dev = sdata->dev; 3162 ieee80211_rx_stats(sdata->dev, skb->len); 3163 } 3164 3165 if (prev_dev) { 3166 skb->dev = prev_dev; 3167 netif_receive_skb(skb); 3168 return; 3169 } 3170 3171 out_free_skb: 3172 dev_kfree_skb(skb); 3173 } 3174 3175 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3176 ieee80211_rx_result res) 3177 { 3178 switch (res) { 3179 case RX_DROP_MONITOR: 3180 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3181 if (rx->sta) 3182 rx->sta->rx_stats.dropped++; 3183 /* fall through */ 3184 case RX_CONTINUE: { 3185 struct ieee80211_rate *rate = NULL; 3186 struct ieee80211_supported_band *sband; 3187 struct ieee80211_rx_status *status; 3188 3189 status = IEEE80211_SKB_RXCB((rx->skb)); 3190 3191 sband = rx->local->hw.wiphy->bands[status->band]; 3192 if (!(status->flag & RX_FLAG_HT) && 3193 !(status->flag & RX_FLAG_VHT)) 3194 rate = &sband->bitrates[status->rate_idx]; 3195 3196 ieee80211_rx_cooked_monitor(rx, rate); 3197 break; 3198 } 3199 case RX_DROP_UNUSABLE: 3200 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3201 if (rx->sta) 3202 rx->sta->rx_stats.dropped++; 3203 dev_kfree_skb(rx->skb); 3204 break; 3205 case RX_QUEUED: 3206 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3207 break; 3208 } 3209 } 3210 3211 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3212 struct sk_buff_head *frames) 3213 { 3214 ieee80211_rx_result res = RX_DROP_MONITOR; 3215 struct sk_buff *skb; 3216 3217 #define CALL_RXH(rxh) \ 3218 do { \ 3219 res = rxh(rx); \ 3220 if (res != RX_CONTINUE) \ 3221 goto rxh_next; \ 3222 } while (0) 3223 3224 /* Lock here to avoid hitting all of the data used in the RX 3225 * path (e.g. key data, station data, ...) concurrently when 3226 * a frame is released from the reorder buffer due to timeout 3227 * from the timer, potentially concurrently with RX from the 3228 * driver. 3229 */ 3230 spin_lock_bh(&rx->local->rx_path_lock); 3231 3232 while ((skb = __skb_dequeue(frames))) { 3233 /* 3234 * all the other fields are valid across frames 3235 * that belong to an aMPDU since they are on the 3236 * same TID from the same station 3237 */ 3238 rx->skb = skb; 3239 3240 CALL_RXH(ieee80211_rx_h_check_more_data); 3241 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3242 CALL_RXH(ieee80211_rx_h_sta_process); 3243 CALL_RXH(ieee80211_rx_h_decrypt); 3244 CALL_RXH(ieee80211_rx_h_defragment); 3245 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3246 /* must be after MMIC verify so header is counted in MPDU mic */ 3247 #ifdef CONFIG_MAC80211_MESH 3248 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3249 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3250 #endif 3251 CALL_RXH(ieee80211_rx_h_amsdu); 3252 CALL_RXH(ieee80211_rx_h_data); 3253 3254 /* special treatment -- needs the queue */ 3255 res = ieee80211_rx_h_ctrl(rx, frames); 3256 if (res != RX_CONTINUE) 3257 goto rxh_next; 3258 3259 CALL_RXH(ieee80211_rx_h_mgmt_check); 3260 CALL_RXH(ieee80211_rx_h_action); 3261 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3262 CALL_RXH(ieee80211_rx_h_action_return); 3263 CALL_RXH(ieee80211_rx_h_mgmt); 3264 3265 rxh_next: 3266 ieee80211_rx_handlers_result(rx, res); 3267 3268 #undef CALL_RXH 3269 } 3270 3271 spin_unlock_bh(&rx->local->rx_path_lock); 3272 } 3273 3274 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3275 { 3276 struct sk_buff_head reorder_release; 3277 ieee80211_rx_result res = RX_DROP_MONITOR; 3278 3279 __skb_queue_head_init(&reorder_release); 3280 3281 #define CALL_RXH(rxh) \ 3282 do { \ 3283 res = rxh(rx); \ 3284 if (res != RX_CONTINUE) \ 3285 goto rxh_next; \ 3286 } while (0) 3287 3288 CALL_RXH(ieee80211_rx_h_check_dup); 3289 CALL_RXH(ieee80211_rx_h_check); 3290 3291 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3292 3293 ieee80211_rx_handlers(rx, &reorder_release); 3294 return; 3295 3296 rxh_next: 3297 ieee80211_rx_handlers_result(rx, res); 3298 3299 #undef CALL_RXH 3300 } 3301 3302 /* 3303 * This function makes calls into the RX path, therefore 3304 * it has to be invoked under RCU read lock. 3305 */ 3306 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3307 { 3308 struct sk_buff_head frames; 3309 struct ieee80211_rx_data rx = { 3310 .sta = sta, 3311 .sdata = sta->sdata, 3312 .local = sta->local, 3313 /* This is OK -- must be QoS data frame */ 3314 .security_idx = tid, 3315 .seqno_idx = tid, 3316 .napi = NULL, /* must be NULL to not have races */ 3317 }; 3318 struct tid_ampdu_rx *tid_agg_rx; 3319 3320 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3321 if (!tid_agg_rx) 3322 return; 3323 3324 __skb_queue_head_init(&frames); 3325 3326 spin_lock(&tid_agg_rx->reorder_lock); 3327 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3328 spin_unlock(&tid_agg_rx->reorder_lock); 3329 3330 if (!skb_queue_empty(&frames)) { 3331 struct ieee80211_event event = { 3332 .type = BA_FRAME_TIMEOUT, 3333 .u.ba.tid = tid, 3334 .u.ba.sta = &sta->sta, 3335 }; 3336 drv_event_callback(rx.local, rx.sdata, &event); 3337 } 3338 3339 ieee80211_rx_handlers(&rx, &frames); 3340 } 3341 3342 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3343 u16 ssn, u64 filtered, 3344 u16 received_mpdus) 3345 { 3346 struct sta_info *sta; 3347 struct tid_ampdu_rx *tid_agg_rx; 3348 struct sk_buff_head frames; 3349 struct ieee80211_rx_data rx = { 3350 /* This is OK -- must be QoS data frame */ 3351 .security_idx = tid, 3352 .seqno_idx = tid, 3353 }; 3354 int i, diff; 3355 3356 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3357 return; 3358 3359 __skb_queue_head_init(&frames); 3360 3361 sta = container_of(pubsta, struct sta_info, sta); 3362 3363 rx.sta = sta; 3364 rx.sdata = sta->sdata; 3365 rx.local = sta->local; 3366 3367 rcu_read_lock(); 3368 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3369 if (!tid_agg_rx) 3370 goto out; 3371 3372 spin_lock_bh(&tid_agg_rx->reorder_lock); 3373 3374 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3375 int release; 3376 3377 /* release all frames in the reorder buffer */ 3378 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3379 IEEE80211_SN_MODULO; 3380 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3381 release, &frames); 3382 /* update ssn to match received ssn */ 3383 tid_agg_rx->head_seq_num = ssn; 3384 } else { 3385 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3386 &frames); 3387 } 3388 3389 /* handle the case that received ssn is behind the mac ssn. 3390 * it can be tid_agg_rx->buf_size behind and still be valid */ 3391 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3392 if (diff >= tid_agg_rx->buf_size) { 3393 tid_agg_rx->reorder_buf_filtered = 0; 3394 goto release; 3395 } 3396 filtered = filtered >> diff; 3397 ssn += diff; 3398 3399 /* update bitmap */ 3400 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3401 int index = (ssn + i) % tid_agg_rx->buf_size; 3402 3403 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3404 if (filtered & BIT_ULL(i)) 3405 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3406 } 3407 3408 /* now process also frames that the filter marking released */ 3409 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3410 3411 release: 3412 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3413 3414 ieee80211_rx_handlers(&rx, &frames); 3415 3416 out: 3417 rcu_read_unlock(); 3418 } 3419 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3420 3421 /* main receive path */ 3422 3423 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3424 { 3425 struct ieee80211_sub_if_data *sdata = rx->sdata; 3426 struct sk_buff *skb = rx->skb; 3427 struct ieee80211_hdr *hdr = (void *)skb->data; 3428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3429 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3430 int multicast = is_multicast_ether_addr(hdr->addr1); 3431 3432 switch (sdata->vif.type) { 3433 case NL80211_IFTYPE_STATION: 3434 if (!bssid && !sdata->u.mgd.use_4addr) 3435 return false; 3436 if (multicast) 3437 return true; 3438 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3439 case NL80211_IFTYPE_ADHOC: 3440 if (!bssid) 3441 return false; 3442 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3443 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3444 return false; 3445 if (ieee80211_is_beacon(hdr->frame_control)) 3446 return true; 3447 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3448 return false; 3449 if (!multicast && 3450 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3451 return false; 3452 if (!rx->sta) { 3453 int rate_idx; 3454 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3455 rate_idx = 0; /* TODO: HT/VHT rates */ 3456 else 3457 rate_idx = status->rate_idx; 3458 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3459 BIT(rate_idx)); 3460 } 3461 return true; 3462 case NL80211_IFTYPE_OCB: 3463 if (!bssid) 3464 return false; 3465 if (!ieee80211_is_data_present(hdr->frame_control)) 3466 return false; 3467 if (!is_broadcast_ether_addr(bssid)) 3468 return false; 3469 if (!multicast && 3470 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3471 return false; 3472 if (!rx->sta) { 3473 int rate_idx; 3474 if (status->flag & RX_FLAG_HT) 3475 rate_idx = 0; /* TODO: HT rates */ 3476 else 3477 rate_idx = status->rate_idx; 3478 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3479 BIT(rate_idx)); 3480 } 3481 return true; 3482 case NL80211_IFTYPE_MESH_POINT: 3483 if (multicast) 3484 return true; 3485 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3486 case NL80211_IFTYPE_AP_VLAN: 3487 case NL80211_IFTYPE_AP: 3488 if (!bssid) 3489 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3490 3491 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3492 /* 3493 * Accept public action frames even when the 3494 * BSSID doesn't match, this is used for P2P 3495 * and location updates. Note that mac80211 3496 * itself never looks at these frames. 3497 */ 3498 if (!multicast && 3499 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3500 return false; 3501 if (ieee80211_is_public_action(hdr, skb->len)) 3502 return true; 3503 return ieee80211_is_beacon(hdr->frame_control); 3504 } 3505 3506 if (!ieee80211_has_tods(hdr->frame_control)) { 3507 /* ignore data frames to TDLS-peers */ 3508 if (ieee80211_is_data(hdr->frame_control)) 3509 return false; 3510 /* ignore action frames to TDLS-peers */ 3511 if (ieee80211_is_action(hdr->frame_control) && 3512 !is_broadcast_ether_addr(bssid) && 3513 !ether_addr_equal(bssid, hdr->addr1)) 3514 return false; 3515 } 3516 return true; 3517 case NL80211_IFTYPE_WDS: 3518 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3519 return false; 3520 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3521 case NL80211_IFTYPE_P2P_DEVICE: 3522 return ieee80211_is_public_action(hdr, skb->len) || 3523 ieee80211_is_probe_req(hdr->frame_control) || 3524 ieee80211_is_probe_resp(hdr->frame_control) || 3525 ieee80211_is_beacon(hdr->frame_control); 3526 default: 3527 break; 3528 } 3529 3530 WARN_ON_ONCE(1); 3531 return false; 3532 } 3533 3534 void ieee80211_check_fast_rx(struct sta_info *sta) 3535 { 3536 struct ieee80211_sub_if_data *sdata = sta->sdata; 3537 struct ieee80211_local *local = sdata->local; 3538 struct ieee80211_key *key; 3539 struct ieee80211_fast_rx fastrx = { 3540 .dev = sdata->dev, 3541 .vif_type = sdata->vif.type, 3542 .control_port_protocol = sdata->control_port_protocol, 3543 }, *old, *new = NULL; 3544 bool assign = false; 3545 3546 /* use sparse to check that we don't return without updating */ 3547 __acquire(check_fast_rx); 3548 3549 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3550 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3551 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3552 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3553 3554 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3555 3556 /* fast-rx doesn't do reordering */ 3557 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3558 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3559 goto clear; 3560 3561 switch (sdata->vif.type) { 3562 case NL80211_IFTYPE_STATION: 3563 /* 4-addr is harder to deal with, later maybe */ 3564 if (sdata->u.mgd.use_4addr) 3565 goto clear; 3566 /* software powersave is a huge mess, avoid all of it */ 3567 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3568 goto clear; 3569 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3570 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3571 goto clear; 3572 if (sta->sta.tdls) { 3573 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3574 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3575 fastrx.expected_ds_bits = 0; 3576 } else { 3577 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3578 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3579 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3580 fastrx.expected_ds_bits = 3581 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3582 } 3583 break; 3584 case NL80211_IFTYPE_AP_VLAN: 3585 case NL80211_IFTYPE_AP: 3586 /* parallel-rx requires this, at least with calls to 3587 * ieee80211_sta_ps_transition() 3588 */ 3589 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3590 goto clear; 3591 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3592 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3593 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3594 3595 fastrx.internal_forward = 3596 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3597 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3598 !sdata->u.vlan.sta); 3599 break; 3600 default: 3601 goto clear; 3602 } 3603 3604 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3605 goto clear; 3606 3607 rcu_read_lock(); 3608 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3609 if (key) { 3610 switch (key->conf.cipher) { 3611 case WLAN_CIPHER_SUITE_TKIP: 3612 /* we don't want to deal with MMIC in fast-rx */ 3613 goto clear_rcu; 3614 case WLAN_CIPHER_SUITE_CCMP: 3615 case WLAN_CIPHER_SUITE_CCMP_256: 3616 case WLAN_CIPHER_SUITE_GCMP: 3617 case WLAN_CIPHER_SUITE_GCMP_256: 3618 break; 3619 default: 3620 /* we also don't want to deal with WEP or cipher scheme 3621 * since those require looking up the key idx in the 3622 * frame, rather than assuming the PTK is used 3623 * (we need to revisit this once we implement the real 3624 * PTK index, which is now valid in the spec, but we 3625 * haven't implemented that part yet) 3626 */ 3627 goto clear_rcu; 3628 } 3629 3630 fastrx.key = true; 3631 fastrx.icv_len = key->conf.icv_len; 3632 } 3633 3634 assign = true; 3635 clear_rcu: 3636 rcu_read_unlock(); 3637 clear: 3638 __release(check_fast_rx); 3639 3640 if (assign) 3641 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3642 3643 spin_lock_bh(&sta->lock); 3644 old = rcu_dereference_protected(sta->fast_rx, true); 3645 rcu_assign_pointer(sta->fast_rx, new); 3646 spin_unlock_bh(&sta->lock); 3647 3648 if (old) 3649 kfree_rcu(old, rcu_head); 3650 } 3651 3652 void ieee80211_clear_fast_rx(struct sta_info *sta) 3653 { 3654 struct ieee80211_fast_rx *old; 3655 3656 spin_lock_bh(&sta->lock); 3657 old = rcu_dereference_protected(sta->fast_rx, true); 3658 RCU_INIT_POINTER(sta->fast_rx, NULL); 3659 spin_unlock_bh(&sta->lock); 3660 3661 if (old) 3662 kfree_rcu(old, rcu_head); 3663 } 3664 3665 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3666 { 3667 struct ieee80211_local *local = sdata->local; 3668 struct sta_info *sta; 3669 3670 lockdep_assert_held(&local->sta_mtx); 3671 3672 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3673 if (sdata != sta->sdata && 3674 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3675 continue; 3676 ieee80211_check_fast_rx(sta); 3677 } 3678 } 3679 3680 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3681 { 3682 struct ieee80211_local *local = sdata->local; 3683 3684 mutex_lock(&local->sta_mtx); 3685 __ieee80211_check_fast_rx_iface(sdata); 3686 mutex_unlock(&local->sta_mtx); 3687 } 3688 3689 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3690 struct ieee80211_fast_rx *fast_rx) 3691 { 3692 struct sk_buff *skb = rx->skb; 3693 struct ieee80211_hdr *hdr = (void *)skb->data; 3694 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3695 struct sta_info *sta = rx->sta; 3696 int orig_len = skb->len; 3697 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3698 struct { 3699 u8 snap[sizeof(rfc1042_header)]; 3700 __be16 proto; 3701 } *payload __aligned(2); 3702 struct { 3703 u8 da[ETH_ALEN]; 3704 u8 sa[ETH_ALEN]; 3705 } addrs __aligned(2); 3706 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3707 3708 if (fast_rx->uses_rss) 3709 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3710 3711 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3712 * to a common data structure; drivers can implement that per queue 3713 * but we don't have that information in mac80211 3714 */ 3715 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3716 return false; 3717 3718 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3719 3720 /* If using encryption, we also need to have: 3721 * - PN_VALIDATED: similar, but the implementation is tricky 3722 * - DECRYPTED: necessary for PN_VALIDATED 3723 */ 3724 if (fast_rx->key && 3725 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3726 return false; 3727 3728 /* we don't deal with A-MSDU deaggregation here */ 3729 if (status->rx_flags & IEEE80211_RX_AMSDU) 3730 return false; 3731 3732 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3733 return false; 3734 3735 if (unlikely(ieee80211_is_frag(hdr))) 3736 return false; 3737 3738 /* Since our interface address cannot be multicast, this 3739 * implicitly also rejects multicast frames without the 3740 * explicit check. 3741 * 3742 * We shouldn't get any *data* frames not addressed to us 3743 * (AP mode will accept multicast *management* frames), but 3744 * punting here will make it go through the full checks in 3745 * ieee80211_accept_frame(). 3746 */ 3747 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3748 return false; 3749 3750 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3751 IEEE80211_FCTL_TODS)) != 3752 fast_rx->expected_ds_bits) 3753 goto drop; 3754 3755 /* assign the key to drop unencrypted frames (later) 3756 * and strip the IV/MIC if necessary 3757 */ 3758 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3759 /* GCMP header length is the same */ 3760 snap_offs += IEEE80211_CCMP_HDR_LEN; 3761 } 3762 3763 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3764 goto drop; 3765 payload = (void *)(skb->data + snap_offs); 3766 3767 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3768 return false; 3769 3770 /* Don't handle these here since they require special code. 3771 * Accept AARP and IPX even though they should come with a 3772 * bridge-tunnel header - but if we get them this way then 3773 * there's little point in discarding them. 3774 */ 3775 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3776 payload->proto == fast_rx->control_port_protocol)) 3777 return false; 3778 3779 /* after this point, don't punt to the slowpath! */ 3780 3781 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3782 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3783 goto drop; 3784 3785 if (unlikely(fast_rx->sta_notify)) { 3786 ieee80211_sta_rx_notify(rx->sdata, hdr); 3787 fast_rx->sta_notify = false; 3788 } 3789 3790 /* statistics part of ieee80211_rx_h_sta_process() */ 3791 stats->last_rx = jiffies; 3792 stats->last_rate = sta_stats_encode_rate(status); 3793 3794 stats->fragments++; 3795 3796 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3797 stats->last_signal = status->signal; 3798 if (!fast_rx->uses_rss) 3799 ewma_signal_add(&sta->rx_stats_avg.signal, 3800 -status->signal); 3801 } 3802 3803 if (status->chains) { 3804 int i; 3805 3806 stats->chains = status->chains; 3807 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3808 int signal = status->chain_signal[i]; 3809 3810 if (!(status->chains & BIT(i))) 3811 continue; 3812 3813 stats->chain_signal_last[i] = signal; 3814 if (!fast_rx->uses_rss) 3815 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3816 -signal); 3817 } 3818 } 3819 /* end of statistics */ 3820 3821 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 3822 goto drop; 3823 3824 /* do the header conversion - first grab the addresses */ 3825 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 3826 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 3827 /* remove the SNAP but leave the ethertype */ 3828 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 3829 /* push the addresses in front */ 3830 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 3831 3832 skb->dev = fast_rx->dev; 3833 3834 ieee80211_rx_stats(fast_rx->dev, skb->len); 3835 3836 /* The seqno index has the same property as needed 3837 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 3838 * for non-QoS-data frames. Here we know it's a data 3839 * frame, so count MSDUs. 3840 */ 3841 u64_stats_update_begin(&stats->syncp); 3842 stats->msdu[rx->seqno_idx]++; 3843 stats->bytes += orig_len; 3844 u64_stats_update_end(&stats->syncp); 3845 3846 if (fast_rx->internal_forward) { 3847 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data); 3848 3849 if (dsta) { 3850 /* 3851 * Send to wireless media and increase priority by 256 3852 * to keep the received priority instead of 3853 * reclassifying the frame (see cfg80211_classify8021d). 3854 */ 3855 skb->priority += 256; 3856 skb->protocol = htons(ETH_P_802_3); 3857 skb_reset_network_header(skb); 3858 skb_reset_mac_header(skb); 3859 dev_queue_xmit(skb); 3860 return true; 3861 } 3862 } 3863 3864 /* deliver to local stack */ 3865 skb->protocol = eth_type_trans(skb, fast_rx->dev); 3866 memset(skb->cb, 0, sizeof(skb->cb)); 3867 if (rx->napi) 3868 napi_gro_receive(rx->napi, skb); 3869 else 3870 netif_receive_skb(skb); 3871 3872 return true; 3873 drop: 3874 dev_kfree_skb(skb); 3875 stats->dropped++; 3876 return true; 3877 } 3878 3879 /* 3880 * This function returns whether or not the SKB 3881 * was destined for RX processing or not, which, 3882 * if consume is true, is equivalent to whether 3883 * or not the skb was consumed. 3884 */ 3885 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3886 struct sk_buff *skb, bool consume) 3887 { 3888 struct ieee80211_local *local = rx->local; 3889 struct ieee80211_sub_if_data *sdata = rx->sdata; 3890 3891 rx->skb = skb; 3892 3893 /* See if we can do fast-rx; if we have to copy we already lost, 3894 * so punt in that case. We should never have to deliver a data 3895 * frame to multiple interfaces anyway. 3896 * 3897 * We skip the ieee80211_accept_frame() call and do the necessary 3898 * checking inside ieee80211_invoke_fast_rx(). 3899 */ 3900 if (consume && rx->sta) { 3901 struct ieee80211_fast_rx *fast_rx; 3902 3903 fast_rx = rcu_dereference(rx->sta->fast_rx); 3904 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 3905 return true; 3906 } 3907 3908 if (!ieee80211_accept_frame(rx)) 3909 return false; 3910 3911 if (!consume) { 3912 skb = skb_copy(skb, GFP_ATOMIC); 3913 if (!skb) { 3914 if (net_ratelimit()) 3915 wiphy_debug(local->hw.wiphy, 3916 "failed to copy skb for %s\n", 3917 sdata->name); 3918 return true; 3919 } 3920 3921 rx->skb = skb; 3922 } 3923 3924 ieee80211_invoke_rx_handlers(rx); 3925 return true; 3926 } 3927 3928 /* 3929 * This is the actual Rx frames handler. as it belongs to Rx path it must 3930 * be called with rcu_read_lock protection. 3931 */ 3932 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3933 struct ieee80211_sta *pubsta, 3934 struct sk_buff *skb, 3935 struct napi_struct *napi) 3936 { 3937 struct ieee80211_local *local = hw_to_local(hw); 3938 struct ieee80211_sub_if_data *sdata; 3939 struct ieee80211_hdr *hdr; 3940 __le16 fc; 3941 struct ieee80211_rx_data rx; 3942 struct ieee80211_sub_if_data *prev; 3943 struct rhash_head *tmp; 3944 int err = 0; 3945 3946 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3947 memset(&rx, 0, sizeof(rx)); 3948 rx.skb = skb; 3949 rx.local = local; 3950 rx.napi = napi; 3951 3952 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3953 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 3954 3955 if (ieee80211_is_mgmt(fc)) { 3956 /* drop frame if too short for header */ 3957 if (skb->len < ieee80211_hdrlen(fc)) 3958 err = -ENOBUFS; 3959 else 3960 err = skb_linearize(skb); 3961 } else { 3962 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3963 } 3964 3965 if (err) { 3966 dev_kfree_skb(skb); 3967 return; 3968 } 3969 3970 hdr = (struct ieee80211_hdr *)skb->data; 3971 ieee80211_parse_qos(&rx); 3972 ieee80211_verify_alignment(&rx); 3973 3974 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3975 ieee80211_is_beacon(hdr->frame_control))) 3976 ieee80211_scan_rx(local, skb); 3977 3978 if (pubsta) { 3979 rx.sta = container_of(pubsta, struct sta_info, sta); 3980 rx.sdata = rx.sta->sdata; 3981 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3982 return; 3983 goto out; 3984 } else if (ieee80211_is_data(fc)) { 3985 struct sta_info *sta, *prev_sta; 3986 const struct bucket_table *tbl; 3987 3988 prev_sta = NULL; 3989 3990 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 3991 3992 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) { 3993 if (!prev_sta) { 3994 prev_sta = sta; 3995 continue; 3996 } 3997 3998 rx.sta = prev_sta; 3999 rx.sdata = prev_sta->sdata; 4000 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4001 4002 prev_sta = sta; 4003 } 4004 4005 if (prev_sta) { 4006 rx.sta = prev_sta; 4007 rx.sdata = prev_sta->sdata; 4008 4009 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4010 return; 4011 goto out; 4012 } 4013 } 4014 4015 prev = NULL; 4016 4017 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4018 if (!ieee80211_sdata_running(sdata)) 4019 continue; 4020 4021 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4022 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4023 continue; 4024 4025 /* 4026 * frame is destined for this interface, but if it's 4027 * not also for the previous one we handle that after 4028 * the loop to avoid copying the SKB once too much 4029 */ 4030 4031 if (!prev) { 4032 prev = sdata; 4033 continue; 4034 } 4035 4036 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4037 rx.sdata = prev; 4038 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4039 4040 prev = sdata; 4041 } 4042 4043 if (prev) { 4044 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4045 rx.sdata = prev; 4046 4047 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4048 return; 4049 } 4050 4051 out: 4052 dev_kfree_skb(skb); 4053 } 4054 4055 /* 4056 * This is the receive path handler. It is called by a low level driver when an 4057 * 802.11 MPDU is received from the hardware. 4058 */ 4059 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4060 struct sk_buff *skb, struct napi_struct *napi) 4061 { 4062 struct ieee80211_local *local = hw_to_local(hw); 4063 struct ieee80211_rate *rate = NULL; 4064 struct ieee80211_supported_band *sband; 4065 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4066 4067 WARN_ON_ONCE(softirq_count() == 0); 4068 4069 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4070 goto drop; 4071 4072 sband = local->hw.wiphy->bands[status->band]; 4073 if (WARN_ON(!sband)) 4074 goto drop; 4075 4076 /* 4077 * If we're suspending, it is possible although not too likely 4078 * that we'd be receiving frames after having already partially 4079 * quiesced the stack. We can't process such frames then since 4080 * that might, for example, cause stations to be added or other 4081 * driver callbacks be invoked. 4082 */ 4083 if (unlikely(local->quiescing || local->suspended)) 4084 goto drop; 4085 4086 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4087 if (unlikely(local->in_reconfig)) 4088 goto drop; 4089 4090 /* 4091 * The same happens when we're not even started, 4092 * but that's worth a warning. 4093 */ 4094 if (WARN_ON(!local->started)) 4095 goto drop; 4096 4097 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4098 /* 4099 * Validate the rate, unless a PLCP error means that 4100 * we probably can't have a valid rate here anyway. 4101 */ 4102 4103 if (status->flag & RX_FLAG_HT) { 4104 /* 4105 * rate_idx is MCS index, which can be [0-76] 4106 * as documented on: 4107 * 4108 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4109 * 4110 * Anything else would be some sort of driver or 4111 * hardware error. The driver should catch hardware 4112 * errors. 4113 */ 4114 if (WARN(status->rate_idx > 76, 4115 "Rate marked as an HT rate but passed " 4116 "status->rate_idx is not " 4117 "an MCS index [0-76]: %d (0x%02x)\n", 4118 status->rate_idx, 4119 status->rate_idx)) 4120 goto drop; 4121 } else if (status->flag & RX_FLAG_VHT) { 4122 if (WARN_ONCE(status->rate_idx > 9 || 4123 !status->vht_nss || 4124 status->vht_nss > 8, 4125 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4126 status->rate_idx, status->vht_nss)) 4127 goto drop; 4128 } else { 4129 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4130 goto drop; 4131 rate = &sband->bitrates[status->rate_idx]; 4132 } 4133 } 4134 4135 status->rx_flags = 0; 4136 4137 /* 4138 * key references and virtual interfaces are protected using RCU 4139 * and this requires that we are in a read-side RCU section during 4140 * receive processing 4141 */ 4142 rcu_read_lock(); 4143 4144 /* 4145 * Frames with failed FCS/PLCP checksum are not returned, 4146 * all other frames are returned without radiotap header 4147 * if it was previously present. 4148 * Also, frames with less than 16 bytes are dropped. 4149 */ 4150 skb = ieee80211_rx_monitor(local, skb, rate); 4151 if (!skb) { 4152 rcu_read_unlock(); 4153 return; 4154 } 4155 4156 ieee80211_tpt_led_trig_rx(local, 4157 ((struct ieee80211_hdr *)skb->data)->frame_control, 4158 skb->len); 4159 4160 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4161 4162 rcu_read_unlock(); 4163 4164 return; 4165 drop: 4166 kfree_skb(skb); 4167 } 4168 EXPORT_SYMBOL(ieee80211_rx_napi); 4169 4170 /* This is a version of the rx handler that can be called from hard irq 4171 * context. Post the skb on the queue and schedule the tasklet */ 4172 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4173 { 4174 struct ieee80211_local *local = hw_to_local(hw); 4175 4176 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4177 4178 skb->pkt_type = IEEE80211_RX_MSG; 4179 skb_queue_tail(&local->skb_queue, skb); 4180 tasklet_schedule(&local->tasklet); 4181 } 4182 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4183