xref: /openbmc/linux/net/mac80211/rx.c (revision 77a87824)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 					   struct sk_buff *skb,
100 					   unsigned int rtap_vendor_space)
101 {
102 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 		if (likely(skb->len > FCS_LEN))
104 			__pskb_trim(skb, skb->len - FCS_LEN);
105 		else {
106 			/* driver bug */
107 			WARN_ON(1);
108 			dev_kfree_skb(skb);
109 			return NULL;
110 		}
111 	}
112 
113 	__pskb_pull(skb, rtap_vendor_space);
114 
115 	return skb;
116 }
117 
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 				     unsigned int rtap_vendor_space)
120 {
121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 	struct ieee80211_hdr *hdr;
123 
124 	hdr = (void *)(skb->data + rtap_vendor_space);
125 
126 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 			    RX_FLAG_FAILED_PLCP_CRC |
128 			    RX_FLAG_ONLY_MONITOR))
129 		return true;
130 
131 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 		return true;
133 
134 	if (ieee80211_is_ctl(hdr->frame_control) &&
135 	    !ieee80211_is_pspoll(hdr->frame_control) &&
136 	    !ieee80211_is_back_req(hdr->frame_control))
137 		return true;
138 
139 	return false;
140 }
141 
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 			     struct ieee80211_rx_status *status,
145 			     struct sk_buff *skb)
146 {
147 	int len;
148 
149 	/* always present fields */
150 	len = sizeof(struct ieee80211_radiotap_header) + 8;
151 
152 	/* allocate extra bitmaps */
153 	if (status->chains)
154 		len += 4 * hweight8(status->chains);
155 
156 	if (ieee80211_have_rx_timestamp(status)) {
157 		len = ALIGN(len, 8);
158 		len += 8;
159 	}
160 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 		len += 1;
162 
163 	/* antenna field, if we don't have per-chain info */
164 	if (!status->chains)
165 		len += 1;
166 
167 	/* padding for RX_FLAGS if necessary */
168 	len = ALIGN(len, 2);
169 
170 	if (status->flag & RX_FLAG_HT) /* HT info */
171 		len += 3;
172 
173 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 		len = ALIGN(len, 4);
175 		len += 8;
176 	}
177 
178 	if (status->flag & RX_FLAG_VHT) {
179 		len = ALIGN(len, 2);
180 		len += 12;
181 	}
182 
183 	if (status->chains) {
184 		/* antenna and antenna signal fields */
185 		len += 2 * hweight8(status->chains);
186 	}
187 
188 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
189 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
190 
191 		/* vendor presence bitmap */
192 		len += 4;
193 		/* alignment for fixed 6-byte vendor data header */
194 		len = ALIGN(len, 2);
195 		/* vendor data header */
196 		len += 6;
197 		if (WARN_ON(rtap->align == 0))
198 			rtap->align = 1;
199 		len = ALIGN(len, rtap->align);
200 		len += rtap->len + rtap->pad;
201 	}
202 
203 	return len;
204 }
205 
206 /*
207  * ieee80211_add_rx_radiotap_header - add radiotap header
208  *
209  * add a radiotap header containing all the fields which the hardware provided.
210  */
211 static void
212 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
213 				 struct sk_buff *skb,
214 				 struct ieee80211_rate *rate,
215 				 int rtap_len, bool has_fcs)
216 {
217 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
218 	struct ieee80211_radiotap_header *rthdr;
219 	unsigned char *pos;
220 	__le32 *it_present;
221 	u32 it_present_val;
222 	u16 rx_flags = 0;
223 	u16 channel_flags = 0;
224 	int mpdulen, chain;
225 	unsigned long chains = status->chains;
226 	struct ieee80211_vendor_radiotap rtap = {};
227 
228 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
229 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
230 		/* rtap.len and rtap.pad are undone immediately */
231 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
232 	}
233 
234 	mpdulen = skb->len;
235 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
236 		mpdulen += FCS_LEN;
237 
238 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
239 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
240 	it_present = &rthdr->it_present;
241 
242 	/* radiotap header, set always present flags */
243 	rthdr->it_len = cpu_to_le16(rtap_len);
244 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
245 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
246 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
247 
248 	if (!status->chains)
249 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
250 
251 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
252 		it_present_val |=
253 			BIT(IEEE80211_RADIOTAP_EXT) |
254 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
255 		put_unaligned_le32(it_present_val, it_present);
256 		it_present++;
257 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
258 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
259 	}
260 
261 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
262 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
263 				  BIT(IEEE80211_RADIOTAP_EXT);
264 		put_unaligned_le32(it_present_val, it_present);
265 		it_present++;
266 		it_present_val = rtap.present;
267 	}
268 
269 	put_unaligned_le32(it_present_val, it_present);
270 
271 	pos = (void *)(it_present + 1);
272 
273 	/* the order of the following fields is important */
274 
275 	/* IEEE80211_RADIOTAP_TSFT */
276 	if (ieee80211_have_rx_timestamp(status)) {
277 		/* padding */
278 		while ((pos - (u8 *)rthdr) & 7)
279 			*pos++ = 0;
280 		put_unaligned_le64(
281 			ieee80211_calculate_rx_timestamp(local, status,
282 							 mpdulen, 0),
283 			pos);
284 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
285 		pos += 8;
286 	}
287 
288 	/* IEEE80211_RADIOTAP_FLAGS */
289 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
290 		*pos |= IEEE80211_RADIOTAP_F_FCS;
291 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
292 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
293 	if (status->flag & RX_FLAG_SHORTPRE)
294 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
295 	pos++;
296 
297 	/* IEEE80211_RADIOTAP_RATE */
298 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
299 		/*
300 		 * Without rate information don't add it. If we have,
301 		 * MCS information is a separate field in radiotap,
302 		 * added below. The byte here is needed as padding
303 		 * for the channel though, so initialise it to 0.
304 		 */
305 		*pos = 0;
306 	} else {
307 		int shift = 0;
308 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
309 		if (status->flag & RX_FLAG_10MHZ)
310 			shift = 1;
311 		else if (status->flag & RX_FLAG_5MHZ)
312 			shift = 2;
313 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
314 	}
315 	pos++;
316 
317 	/* IEEE80211_RADIOTAP_CHANNEL */
318 	put_unaligned_le16(status->freq, pos);
319 	pos += 2;
320 	if (status->flag & RX_FLAG_10MHZ)
321 		channel_flags |= IEEE80211_CHAN_HALF;
322 	else if (status->flag & RX_FLAG_5MHZ)
323 		channel_flags |= IEEE80211_CHAN_QUARTER;
324 
325 	if (status->band == NL80211_BAND_5GHZ)
326 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
327 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
328 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
329 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
330 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
331 	else if (rate)
332 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
333 	else
334 		channel_flags |= IEEE80211_CHAN_2GHZ;
335 	put_unaligned_le16(channel_flags, pos);
336 	pos += 2;
337 
338 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
339 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
340 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
341 		*pos = status->signal;
342 		rthdr->it_present |=
343 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
344 		pos++;
345 	}
346 
347 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
348 
349 	if (!status->chains) {
350 		/* IEEE80211_RADIOTAP_ANTENNA */
351 		*pos = status->antenna;
352 		pos++;
353 	}
354 
355 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
356 
357 	/* IEEE80211_RADIOTAP_RX_FLAGS */
358 	/* ensure 2 byte alignment for the 2 byte field as required */
359 	if ((pos - (u8 *)rthdr) & 1)
360 		*pos++ = 0;
361 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
362 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
363 	put_unaligned_le16(rx_flags, pos);
364 	pos += 2;
365 
366 	if (status->flag & RX_FLAG_HT) {
367 		unsigned int stbc;
368 
369 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
370 		*pos++ = local->hw.radiotap_mcs_details;
371 		*pos = 0;
372 		if (status->flag & RX_FLAG_SHORT_GI)
373 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
374 		if (status->flag & RX_FLAG_40MHZ)
375 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
376 		if (status->flag & RX_FLAG_HT_GF)
377 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
378 		if (status->flag & RX_FLAG_LDPC)
379 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
380 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
381 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
382 		pos++;
383 		*pos++ = status->rate_idx;
384 	}
385 
386 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
387 		u16 flags = 0;
388 
389 		/* ensure 4 byte alignment */
390 		while ((pos - (u8 *)rthdr) & 3)
391 			pos++;
392 		rthdr->it_present |=
393 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
394 		put_unaligned_le32(status->ampdu_reference, pos);
395 		pos += 4;
396 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
397 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
398 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
399 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
400 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
401 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
402 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
403 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
404 		put_unaligned_le16(flags, pos);
405 		pos += 2;
406 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
407 			*pos++ = status->ampdu_delimiter_crc;
408 		else
409 			*pos++ = 0;
410 		*pos++ = 0;
411 	}
412 
413 	if (status->flag & RX_FLAG_VHT) {
414 		u16 known = local->hw.radiotap_vht_details;
415 
416 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
417 		put_unaligned_le16(known, pos);
418 		pos += 2;
419 		/* flags */
420 		if (status->flag & RX_FLAG_SHORT_GI)
421 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
422 		/* in VHT, STBC is binary */
423 		if (status->flag & RX_FLAG_STBC_MASK)
424 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
425 		if (status->vht_flag & RX_VHT_FLAG_BF)
426 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
427 		pos++;
428 		/* bandwidth */
429 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
430 			*pos++ = 4;
431 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
432 			*pos++ = 11;
433 		else if (status->flag & RX_FLAG_40MHZ)
434 			*pos++ = 1;
435 		else /* 20 MHz */
436 			*pos++ = 0;
437 		/* MCS/NSS */
438 		*pos = (status->rate_idx << 4) | status->vht_nss;
439 		pos += 4;
440 		/* coding field */
441 		if (status->flag & RX_FLAG_LDPC)
442 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
443 		pos++;
444 		/* group ID */
445 		pos++;
446 		/* partial_aid */
447 		pos += 2;
448 	}
449 
450 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
451 		*pos++ = status->chain_signal[chain];
452 		*pos++ = chain;
453 	}
454 
455 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
456 		/* ensure 2 byte alignment for the vendor field as required */
457 		if ((pos - (u8 *)rthdr) & 1)
458 			*pos++ = 0;
459 		*pos++ = rtap.oui[0];
460 		*pos++ = rtap.oui[1];
461 		*pos++ = rtap.oui[2];
462 		*pos++ = rtap.subns;
463 		put_unaligned_le16(rtap.len, pos);
464 		pos += 2;
465 		/* align the actual payload as requested */
466 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
467 			*pos++ = 0;
468 		/* data (and possible padding) already follows */
469 	}
470 }
471 
472 /*
473  * This function copies a received frame to all monitor interfaces and
474  * returns a cleaned-up SKB that no longer includes the FCS nor the
475  * radiotap header the driver might have added.
476  */
477 static struct sk_buff *
478 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
479 		     struct ieee80211_rate *rate)
480 {
481 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
482 	struct ieee80211_sub_if_data *sdata;
483 	int rt_hdrlen, needed_headroom;
484 	struct sk_buff *skb, *skb2;
485 	struct net_device *prev_dev = NULL;
486 	int present_fcs_len = 0;
487 	unsigned int rtap_vendor_space = 0;
488 
489 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
490 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
491 
492 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
493 	}
494 
495 	/*
496 	 * First, we may need to make a copy of the skb because
497 	 *  (1) we need to modify it for radiotap (if not present), and
498 	 *  (2) the other RX handlers will modify the skb we got.
499 	 *
500 	 * We don't need to, of course, if we aren't going to return
501 	 * the SKB because it has a bad FCS/PLCP checksum.
502 	 */
503 
504 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
505 		present_fcs_len = FCS_LEN;
506 
507 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
508 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
509 		dev_kfree_skb(origskb);
510 		return NULL;
511 	}
512 
513 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
514 		if (should_drop_frame(origskb, present_fcs_len,
515 				      rtap_vendor_space)) {
516 			dev_kfree_skb(origskb);
517 			return NULL;
518 		}
519 
520 		return remove_monitor_info(local, origskb, rtap_vendor_space);
521 	}
522 
523 	/* room for the radiotap header based on driver features */
524 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
525 	needed_headroom = rt_hdrlen - rtap_vendor_space;
526 
527 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
528 		/* only need to expand headroom if necessary */
529 		skb = origskb;
530 		origskb = NULL;
531 
532 		/*
533 		 * This shouldn't trigger often because most devices have an
534 		 * RX header they pull before we get here, and that should
535 		 * be big enough for our radiotap information. We should
536 		 * probably export the length to drivers so that we can have
537 		 * them allocate enough headroom to start with.
538 		 */
539 		if (skb_headroom(skb) < needed_headroom &&
540 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
541 			dev_kfree_skb(skb);
542 			return NULL;
543 		}
544 	} else {
545 		/*
546 		 * Need to make a copy and possibly remove radiotap header
547 		 * and FCS from the original.
548 		 */
549 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
550 
551 		origskb = remove_monitor_info(local, origskb,
552 					      rtap_vendor_space);
553 
554 		if (!skb)
555 			return origskb;
556 	}
557 
558 	/* prepend radiotap information */
559 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
560 
561 	skb_reset_mac_header(skb);
562 	skb->ip_summed = CHECKSUM_UNNECESSARY;
563 	skb->pkt_type = PACKET_OTHERHOST;
564 	skb->protocol = htons(ETH_P_802_2);
565 
566 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
567 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
568 			continue;
569 
570 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
571 			continue;
572 
573 		if (!ieee80211_sdata_running(sdata))
574 			continue;
575 
576 		if (prev_dev) {
577 			skb2 = skb_clone(skb, GFP_ATOMIC);
578 			if (skb2) {
579 				skb2->dev = prev_dev;
580 				netif_receive_skb(skb2);
581 			}
582 		}
583 
584 		prev_dev = sdata->dev;
585 		ieee80211_rx_stats(sdata->dev, skb->len);
586 	}
587 
588 	if (prev_dev) {
589 		skb->dev = prev_dev;
590 		netif_receive_skb(skb);
591 	} else
592 		dev_kfree_skb(skb);
593 
594 	return origskb;
595 }
596 
597 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
598 {
599 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
600 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
601 	int tid, seqno_idx, security_idx;
602 
603 	/* does the frame have a qos control field? */
604 	if (ieee80211_is_data_qos(hdr->frame_control)) {
605 		u8 *qc = ieee80211_get_qos_ctl(hdr);
606 		/* frame has qos control */
607 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
608 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
609 			status->rx_flags |= IEEE80211_RX_AMSDU;
610 
611 		seqno_idx = tid;
612 		security_idx = tid;
613 	} else {
614 		/*
615 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
616 		 *
617 		 *	Sequence numbers for management frames, QoS data
618 		 *	frames with a broadcast/multicast address in the
619 		 *	Address 1 field, and all non-QoS data frames sent
620 		 *	by QoS STAs are assigned using an additional single
621 		 *	modulo-4096 counter, [...]
622 		 *
623 		 * We also use that counter for non-QoS STAs.
624 		 */
625 		seqno_idx = IEEE80211_NUM_TIDS;
626 		security_idx = 0;
627 		if (ieee80211_is_mgmt(hdr->frame_control))
628 			security_idx = IEEE80211_NUM_TIDS;
629 		tid = 0;
630 	}
631 
632 	rx->seqno_idx = seqno_idx;
633 	rx->security_idx = security_idx;
634 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
635 	 * For now, set skb->priority to 0 for other cases. */
636 	rx->skb->priority = (tid > 7) ? 0 : tid;
637 }
638 
639 /**
640  * DOC: Packet alignment
641  *
642  * Drivers always need to pass packets that are aligned to two-byte boundaries
643  * to the stack.
644  *
645  * Additionally, should, if possible, align the payload data in a way that
646  * guarantees that the contained IP header is aligned to a four-byte
647  * boundary. In the case of regular frames, this simply means aligning the
648  * payload to a four-byte boundary (because either the IP header is directly
649  * contained, or IV/RFC1042 headers that have a length divisible by four are
650  * in front of it).  If the payload data is not properly aligned and the
651  * architecture doesn't support efficient unaligned operations, mac80211
652  * will align the data.
653  *
654  * With A-MSDU frames, however, the payload data address must yield two modulo
655  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
656  * push the IP header further back to a multiple of four again. Thankfully, the
657  * specs were sane enough this time around to require padding each A-MSDU
658  * subframe to a length that is a multiple of four.
659  *
660  * Padding like Atheros hardware adds which is between the 802.11 header and
661  * the payload is not supported, the driver is required to move the 802.11
662  * header to be directly in front of the payload in that case.
663  */
664 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
665 {
666 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
667 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
668 #endif
669 }
670 
671 
672 /* rx handlers */
673 
674 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
675 {
676 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
677 
678 	if (is_multicast_ether_addr(hdr->addr1))
679 		return 0;
680 
681 	return ieee80211_is_robust_mgmt_frame(skb);
682 }
683 
684 
685 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
686 {
687 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
688 
689 	if (!is_multicast_ether_addr(hdr->addr1))
690 		return 0;
691 
692 	return ieee80211_is_robust_mgmt_frame(skb);
693 }
694 
695 
696 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
697 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
698 {
699 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
700 	struct ieee80211_mmie *mmie;
701 	struct ieee80211_mmie_16 *mmie16;
702 
703 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
704 		return -1;
705 
706 	if (!ieee80211_is_robust_mgmt_frame(skb))
707 		return -1; /* not a robust management frame */
708 
709 	mmie = (struct ieee80211_mmie *)
710 		(skb->data + skb->len - sizeof(*mmie));
711 	if (mmie->element_id == WLAN_EID_MMIE &&
712 	    mmie->length == sizeof(*mmie) - 2)
713 		return le16_to_cpu(mmie->key_id);
714 
715 	mmie16 = (struct ieee80211_mmie_16 *)
716 		(skb->data + skb->len - sizeof(*mmie16));
717 	if (skb->len >= 24 + sizeof(*mmie16) &&
718 	    mmie16->element_id == WLAN_EID_MMIE &&
719 	    mmie16->length == sizeof(*mmie16) - 2)
720 		return le16_to_cpu(mmie16->key_id);
721 
722 	return -1;
723 }
724 
725 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
726 				  struct sk_buff *skb)
727 {
728 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
729 	__le16 fc;
730 	int hdrlen;
731 	u8 keyid;
732 
733 	fc = hdr->frame_control;
734 	hdrlen = ieee80211_hdrlen(fc);
735 
736 	if (skb->len < hdrlen + cs->hdr_len)
737 		return -EINVAL;
738 
739 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
740 	keyid &= cs->key_idx_mask;
741 	keyid >>= cs->key_idx_shift;
742 
743 	return keyid;
744 }
745 
746 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
747 {
748 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
749 	char *dev_addr = rx->sdata->vif.addr;
750 
751 	if (ieee80211_is_data(hdr->frame_control)) {
752 		if (is_multicast_ether_addr(hdr->addr1)) {
753 			if (ieee80211_has_tods(hdr->frame_control) ||
754 			    !ieee80211_has_fromds(hdr->frame_control))
755 				return RX_DROP_MONITOR;
756 			if (ether_addr_equal(hdr->addr3, dev_addr))
757 				return RX_DROP_MONITOR;
758 		} else {
759 			if (!ieee80211_has_a4(hdr->frame_control))
760 				return RX_DROP_MONITOR;
761 			if (ether_addr_equal(hdr->addr4, dev_addr))
762 				return RX_DROP_MONITOR;
763 		}
764 	}
765 
766 	/* If there is not an established peer link and this is not a peer link
767 	 * establisment frame, beacon or probe, drop the frame.
768 	 */
769 
770 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
771 		struct ieee80211_mgmt *mgmt;
772 
773 		if (!ieee80211_is_mgmt(hdr->frame_control))
774 			return RX_DROP_MONITOR;
775 
776 		if (ieee80211_is_action(hdr->frame_control)) {
777 			u8 category;
778 
779 			/* make sure category field is present */
780 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
781 				return RX_DROP_MONITOR;
782 
783 			mgmt = (struct ieee80211_mgmt *)hdr;
784 			category = mgmt->u.action.category;
785 			if (category != WLAN_CATEGORY_MESH_ACTION &&
786 			    category != WLAN_CATEGORY_SELF_PROTECTED)
787 				return RX_DROP_MONITOR;
788 			return RX_CONTINUE;
789 		}
790 
791 		if (ieee80211_is_probe_req(hdr->frame_control) ||
792 		    ieee80211_is_probe_resp(hdr->frame_control) ||
793 		    ieee80211_is_beacon(hdr->frame_control) ||
794 		    ieee80211_is_auth(hdr->frame_control))
795 			return RX_CONTINUE;
796 
797 		return RX_DROP_MONITOR;
798 	}
799 
800 	return RX_CONTINUE;
801 }
802 
803 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
804 					      int index)
805 {
806 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
807 	struct sk_buff *tail = skb_peek_tail(frames);
808 	struct ieee80211_rx_status *status;
809 
810 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
811 		return true;
812 
813 	if (!tail)
814 		return false;
815 
816 	status = IEEE80211_SKB_RXCB(tail);
817 	if (status->flag & RX_FLAG_AMSDU_MORE)
818 		return false;
819 
820 	return true;
821 }
822 
823 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
824 					    struct tid_ampdu_rx *tid_agg_rx,
825 					    int index,
826 					    struct sk_buff_head *frames)
827 {
828 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
829 	struct sk_buff *skb;
830 	struct ieee80211_rx_status *status;
831 
832 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
833 
834 	if (skb_queue_empty(skb_list))
835 		goto no_frame;
836 
837 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
838 		__skb_queue_purge(skb_list);
839 		goto no_frame;
840 	}
841 
842 	/* release frames from the reorder ring buffer */
843 	tid_agg_rx->stored_mpdu_num--;
844 	while ((skb = __skb_dequeue(skb_list))) {
845 		status = IEEE80211_SKB_RXCB(skb);
846 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
847 		__skb_queue_tail(frames, skb);
848 	}
849 
850 no_frame:
851 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
852 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
853 }
854 
855 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
856 					     struct tid_ampdu_rx *tid_agg_rx,
857 					     u16 head_seq_num,
858 					     struct sk_buff_head *frames)
859 {
860 	int index;
861 
862 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
863 
864 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
865 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
867 						frames);
868 	}
869 }
870 
871 /*
872  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
873  * the skb was added to the buffer longer than this time ago, the earlier
874  * frames that have not yet been received are assumed to be lost and the skb
875  * can be released for processing. This may also release other skb's from the
876  * reorder buffer if there are no additional gaps between the frames.
877  *
878  * Callers must hold tid_agg_rx->reorder_lock.
879  */
880 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
881 
882 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
883 					  struct tid_ampdu_rx *tid_agg_rx,
884 					  struct sk_buff_head *frames)
885 {
886 	int index, i, j;
887 
888 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
889 
890 	/* release the buffer until next missing frame */
891 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
892 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
893 	    tid_agg_rx->stored_mpdu_num) {
894 		/*
895 		 * No buffers ready to be released, but check whether any
896 		 * frames in the reorder buffer have timed out.
897 		 */
898 		int skipped = 1;
899 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
900 		     j = (j + 1) % tid_agg_rx->buf_size) {
901 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
902 				skipped++;
903 				continue;
904 			}
905 			if (skipped &&
906 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
907 					HT_RX_REORDER_BUF_TIMEOUT))
908 				goto set_release_timer;
909 
910 			/* don't leave incomplete A-MSDUs around */
911 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
912 			     i = (i + 1) % tid_agg_rx->buf_size)
913 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
914 
915 			ht_dbg_ratelimited(sdata,
916 					   "release an RX reorder frame due to timeout on earlier frames\n");
917 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
918 							frames);
919 
920 			/*
921 			 * Increment the head seq# also for the skipped slots.
922 			 */
923 			tid_agg_rx->head_seq_num =
924 				(tid_agg_rx->head_seq_num +
925 				 skipped) & IEEE80211_SN_MASK;
926 			skipped = 0;
927 		}
928 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
929 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
930 						frames);
931 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
932 	}
933 
934 	if (tid_agg_rx->stored_mpdu_num) {
935 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
936 
937 		for (; j != (index - 1) % tid_agg_rx->buf_size;
938 		     j = (j + 1) % tid_agg_rx->buf_size) {
939 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
940 				break;
941 		}
942 
943  set_release_timer:
944 
945 		if (!tid_agg_rx->removed)
946 			mod_timer(&tid_agg_rx->reorder_timer,
947 				  tid_agg_rx->reorder_time[j] + 1 +
948 				  HT_RX_REORDER_BUF_TIMEOUT);
949 	} else {
950 		del_timer(&tid_agg_rx->reorder_timer);
951 	}
952 }
953 
954 /*
955  * As this function belongs to the RX path it must be under
956  * rcu_read_lock protection. It returns false if the frame
957  * can be processed immediately, true if it was consumed.
958  */
959 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
960 					     struct tid_ampdu_rx *tid_agg_rx,
961 					     struct sk_buff *skb,
962 					     struct sk_buff_head *frames)
963 {
964 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
965 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
966 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
967 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
968 	u16 head_seq_num, buf_size;
969 	int index;
970 	bool ret = true;
971 
972 	spin_lock(&tid_agg_rx->reorder_lock);
973 
974 	/*
975 	 * Offloaded BA sessions have no known starting sequence number so pick
976 	 * one from first Rxed frame for this tid after BA was started.
977 	 */
978 	if (unlikely(tid_agg_rx->auto_seq)) {
979 		tid_agg_rx->auto_seq = false;
980 		tid_agg_rx->ssn = mpdu_seq_num;
981 		tid_agg_rx->head_seq_num = mpdu_seq_num;
982 	}
983 
984 	buf_size = tid_agg_rx->buf_size;
985 	head_seq_num = tid_agg_rx->head_seq_num;
986 
987 	/* frame with out of date sequence number */
988 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
989 		dev_kfree_skb(skb);
990 		goto out;
991 	}
992 
993 	/*
994 	 * If frame the sequence number exceeds our buffering window
995 	 * size release some previous frames to make room for this one.
996 	 */
997 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
998 		head_seq_num = ieee80211_sn_inc(
999 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1000 		/* release stored frames up to new head to stack */
1001 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1002 						 head_seq_num, frames);
1003 	}
1004 
1005 	/* Now the new frame is always in the range of the reordering buffer */
1006 
1007 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1008 
1009 	/* check if we already stored this frame */
1010 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1011 		dev_kfree_skb(skb);
1012 		goto out;
1013 	}
1014 
1015 	/*
1016 	 * If the current MPDU is in the right order and nothing else
1017 	 * is stored we can process it directly, no need to buffer it.
1018 	 * If it is first but there's something stored, we may be able
1019 	 * to release frames after this one.
1020 	 */
1021 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1022 	    tid_agg_rx->stored_mpdu_num == 0) {
1023 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1024 			tid_agg_rx->head_seq_num =
1025 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1026 		ret = false;
1027 		goto out;
1028 	}
1029 
1030 	/* put the frame in the reordering buffer */
1031 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1032 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1033 		tid_agg_rx->reorder_time[index] = jiffies;
1034 		tid_agg_rx->stored_mpdu_num++;
1035 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1036 	}
1037 
1038  out:
1039 	spin_unlock(&tid_agg_rx->reorder_lock);
1040 	return ret;
1041 }
1042 
1043 /*
1044  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1045  * true if the MPDU was buffered, false if it should be processed.
1046  */
1047 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1048 				       struct sk_buff_head *frames)
1049 {
1050 	struct sk_buff *skb = rx->skb;
1051 	struct ieee80211_local *local = rx->local;
1052 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1053 	struct sta_info *sta = rx->sta;
1054 	struct tid_ampdu_rx *tid_agg_rx;
1055 	u16 sc;
1056 	u8 tid, ack_policy;
1057 
1058 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1059 	    is_multicast_ether_addr(hdr->addr1))
1060 		goto dont_reorder;
1061 
1062 	/*
1063 	 * filter the QoS data rx stream according to
1064 	 * STA/TID and check if this STA/TID is on aggregation
1065 	 */
1066 
1067 	if (!sta)
1068 		goto dont_reorder;
1069 
1070 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1071 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1072 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1073 
1074 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1075 	if (!tid_agg_rx)
1076 		goto dont_reorder;
1077 
1078 	/* qos null data frames are excluded */
1079 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1080 		goto dont_reorder;
1081 
1082 	/* not part of a BA session */
1083 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1084 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1085 		goto dont_reorder;
1086 
1087 	/* new, potentially un-ordered, ampdu frame - process it */
1088 
1089 	/* reset session timer */
1090 	if (tid_agg_rx->timeout)
1091 		tid_agg_rx->last_rx = jiffies;
1092 
1093 	/* if this mpdu is fragmented - terminate rx aggregation session */
1094 	sc = le16_to_cpu(hdr->seq_ctrl);
1095 	if (sc & IEEE80211_SCTL_FRAG) {
1096 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1097 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1098 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1099 		return;
1100 	}
1101 
1102 	/*
1103 	 * No locking needed -- we will only ever process one
1104 	 * RX packet at a time, and thus own tid_agg_rx. All
1105 	 * other code manipulating it needs to (and does) make
1106 	 * sure that we cannot get to it any more before doing
1107 	 * anything with it.
1108 	 */
1109 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1110 					     frames))
1111 		return;
1112 
1113  dont_reorder:
1114 	__skb_queue_tail(frames, skb);
1115 }
1116 
1117 static ieee80211_rx_result debug_noinline
1118 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1119 {
1120 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1122 
1123 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1124 		return RX_CONTINUE;
1125 
1126 	/*
1127 	 * Drop duplicate 802.11 retransmissions
1128 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1129 	 */
1130 
1131 	if (rx->skb->len < 24)
1132 		return RX_CONTINUE;
1133 
1134 	if (ieee80211_is_ctl(hdr->frame_control) ||
1135 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1136 	    is_multicast_ether_addr(hdr->addr1))
1137 		return RX_CONTINUE;
1138 
1139 	if (!rx->sta)
1140 		return RX_CONTINUE;
1141 
1142 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1143 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1144 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1145 		rx->sta->rx_stats.num_duplicates++;
1146 		return RX_DROP_UNUSABLE;
1147 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1148 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1149 	}
1150 
1151 	return RX_CONTINUE;
1152 }
1153 
1154 static ieee80211_rx_result debug_noinline
1155 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1156 {
1157 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1158 
1159 	/* Drop disallowed frame classes based on STA auth/assoc state;
1160 	 * IEEE 802.11, Chap 5.5.
1161 	 *
1162 	 * mac80211 filters only based on association state, i.e. it drops
1163 	 * Class 3 frames from not associated stations. hostapd sends
1164 	 * deauth/disassoc frames when needed. In addition, hostapd is
1165 	 * responsible for filtering on both auth and assoc states.
1166 	 */
1167 
1168 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1169 		return ieee80211_rx_mesh_check(rx);
1170 
1171 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1172 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1173 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1174 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1175 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1176 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1177 		/*
1178 		 * accept port control frames from the AP even when it's not
1179 		 * yet marked ASSOC to prevent a race where we don't set the
1180 		 * assoc bit quickly enough before it sends the first frame
1181 		 */
1182 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1183 		    ieee80211_is_data_present(hdr->frame_control)) {
1184 			unsigned int hdrlen;
1185 			__be16 ethertype;
1186 
1187 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1188 
1189 			if (rx->skb->len < hdrlen + 8)
1190 				return RX_DROP_MONITOR;
1191 
1192 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1193 			if (ethertype == rx->sdata->control_port_protocol)
1194 				return RX_CONTINUE;
1195 		}
1196 
1197 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1198 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1199 					       hdr->addr2,
1200 					       GFP_ATOMIC))
1201 			return RX_DROP_UNUSABLE;
1202 
1203 		return RX_DROP_MONITOR;
1204 	}
1205 
1206 	return RX_CONTINUE;
1207 }
1208 
1209 
1210 static ieee80211_rx_result debug_noinline
1211 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1212 {
1213 	struct ieee80211_local *local;
1214 	struct ieee80211_hdr *hdr;
1215 	struct sk_buff *skb;
1216 
1217 	local = rx->local;
1218 	skb = rx->skb;
1219 	hdr = (struct ieee80211_hdr *) skb->data;
1220 
1221 	if (!local->pspolling)
1222 		return RX_CONTINUE;
1223 
1224 	if (!ieee80211_has_fromds(hdr->frame_control))
1225 		/* this is not from AP */
1226 		return RX_CONTINUE;
1227 
1228 	if (!ieee80211_is_data(hdr->frame_control))
1229 		return RX_CONTINUE;
1230 
1231 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1232 		/* AP has no more frames buffered for us */
1233 		local->pspolling = false;
1234 		return RX_CONTINUE;
1235 	}
1236 
1237 	/* more data bit is set, let's request a new frame from the AP */
1238 	ieee80211_send_pspoll(local, rx->sdata);
1239 
1240 	return RX_CONTINUE;
1241 }
1242 
1243 static void sta_ps_start(struct sta_info *sta)
1244 {
1245 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1246 	struct ieee80211_local *local = sdata->local;
1247 	struct ps_data *ps;
1248 	int tid;
1249 
1250 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1251 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1252 		ps = &sdata->bss->ps;
1253 	else
1254 		return;
1255 
1256 	atomic_inc(&ps->num_sta_ps);
1257 	set_sta_flag(sta, WLAN_STA_PS_STA);
1258 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1259 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1260 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1261 	       sta->sta.addr, sta->sta.aid);
1262 
1263 	ieee80211_clear_fast_xmit(sta);
1264 
1265 	if (!sta->sta.txq[0])
1266 		return;
1267 
1268 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1269 		struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1270 
1271 		if (!txqi->tin.backlog_packets)
1272 			set_bit(tid, &sta->txq_buffered_tids);
1273 		else
1274 			clear_bit(tid, &sta->txq_buffered_tids);
1275 	}
1276 }
1277 
1278 static void sta_ps_end(struct sta_info *sta)
1279 {
1280 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1281 	       sta->sta.addr, sta->sta.aid);
1282 
1283 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1284 		/*
1285 		 * Clear the flag only if the other one is still set
1286 		 * so that the TX path won't start TX'ing new frames
1287 		 * directly ... In the case that the driver flag isn't
1288 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1289 		 */
1290 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1291 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1292 		       sta->sta.addr, sta->sta.aid);
1293 		return;
1294 	}
1295 
1296 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1297 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1298 	ieee80211_sta_ps_deliver_wakeup(sta);
1299 }
1300 
1301 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1302 {
1303 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1304 	bool in_ps;
1305 
1306 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1307 
1308 	/* Don't let the same PS state be set twice */
1309 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1310 	if ((start && in_ps) || (!start && !in_ps))
1311 		return -EINVAL;
1312 
1313 	if (start)
1314 		sta_ps_start(sta);
1315 	else
1316 		sta_ps_end(sta);
1317 
1318 	return 0;
1319 }
1320 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1321 
1322 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1323 {
1324 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1325 
1326 	if (test_sta_flag(sta, WLAN_STA_SP))
1327 		return;
1328 
1329 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1330 		ieee80211_sta_ps_deliver_poll_response(sta);
1331 	else
1332 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1333 }
1334 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1335 
1336 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1337 {
1338 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1339 	u8 ac = ieee802_1d_to_ac[tid & 7];
1340 
1341 	/*
1342 	 * If this AC is not trigger-enabled do nothing.
1343 	 *
1344 	 * NB: This could/should check a separate bitmap of trigger-
1345 	 * enabled queues, but for now we only implement uAPSD w/o
1346 	 * TSPEC changes to the ACs, so they're always the same.
1347 	 */
1348 	if (!(sta->sta.uapsd_queues & BIT(ac)))
1349 		return;
1350 
1351 	/* if we are in a service period, do nothing */
1352 	if (test_sta_flag(sta, WLAN_STA_SP))
1353 		return;
1354 
1355 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1356 		ieee80211_sta_ps_deliver_uapsd(sta);
1357 	else
1358 		set_sta_flag(sta, WLAN_STA_UAPSD);
1359 }
1360 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1361 
1362 static ieee80211_rx_result debug_noinline
1363 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1364 {
1365 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1366 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1367 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1368 
1369 	if (!rx->sta)
1370 		return RX_CONTINUE;
1371 
1372 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1373 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1374 		return RX_CONTINUE;
1375 
1376 	/*
1377 	 * The device handles station powersave, so don't do anything about
1378 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1379 	 * it to mac80211 since they're handled.)
1380 	 */
1381 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1382 		return RX_CONTINUE;
1383 
1384 	/*
1385 	 * Don't do anything if the station isn't already asleep. In
1386 	 * the uAPSD case, the station will probably be marked asleep,
1387 	 * in the PS-Poll case the station must be confused ...
1388 	 */
1389 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1390 		return RX_CONTINUE;
1391 
1392 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1393 		ieee80211_sta_pspoll(&rx->sta->sta);
1394 
1395 		/* Free PS Poll skb here instead of returning RX_DROP that would
1396 		 * count as an dropped frame. */
1397 		dev_kfree_skb(rx->skb);
1398 
1399 		return RX_QUEUED;
1400 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1401 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1402 		   ieee80211_has_pm(hdr->frame_control) &&
1403 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1404 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1405 		u8 tid;
1406 
1407 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1408 
1409 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1410 	}
1411 
1412 	return RX_CONTINUE;
1413 }
1414 
1415 static ieee80211_rx_result debug_noinline
1416 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1417 {
1418 	struct sta_info *sta = rx->sta;
1419 	struct sk_buff *skb = rx->skb;
1420 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1421 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1422 	int i;
1423 
1424 	if (!sta)
1425 		return RX_CONTINUE;
1426 
1427 	/*
1428 	 * Update last_rx only for IBSS packets which are for the current
1429 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1430 	 * current IBSS network alive in cases where other STAs start
1431 	 * using different BSSID. This will also give the station another
1432 	 * chance to restart the authentication/authorization in case
1433 	 * something went wrong the first time.
1434 	 */
1435 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1436 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1437 						NL80211_IFTYPE_ADHOC);
1438 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1439 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1440 			sta->rx_stats.last_rx = jiffies;
1441 			if (ieee80211_is_data(hdr->frame_control) &&
1442 			    !is_multicast_ether_addr(hdr->addr1))
1443 				sta->rx_stats.last_rate =
1444 					sta_stats_encode_rate(status);
1445 		}
1446 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1447 		sta->rx_stats.last_rx = jiffies;
1448 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1449 		/*
1450 		 * Mesh beacons will update last_rx when if they are found to
1451 		 * match the current local configuration when processed.
1452 		 */
1453 		sta->rx_stats.last_rx = jiffies;
1454 		if (ieee80211_is_data(hdr->frame_control))
1455 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1456 	}
1457 
1458 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1459 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1460 
1461 	sta->rx_stats.fragments++;
1462 
1463 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1464 	sta->rx_stats.bytes += rx->skb->len;
1465 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1466 
1467 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1468 		sta->rx_stats.last_signal = status->signal;
1469 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1470 	}
1471 
1472 	if (status->chains) {
1473 		sta->rx_stats.chains = status->chains;
1474 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1475 			int signal = status->chain_signal[i];
1476 
1477 			if (!(status->chains & BIT(i)))
1478 				continue;
1479 
1480 			sta->rx_stats.chain_signal_last[i] = signal;
1481 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1482 					-signal);
1483 		}
1484 	}
1485 
1486 	/*
1487 	 * Change STA power saving mode only at the end of a frame
1488 	 * exchange sequence.
1489 	 */
1490 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1491 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1492 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1493 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1494 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1495 	    /* PM bit is only checked in frames where it isn't reserved,
1496 	     * in AP mode it's reserved in non-bufferable management frames
1497 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1498 	     */
1499 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1500 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1501 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1502 			if (!ieee80211_has_pm(hdr->frame_control))
1503 				sta_ps_end(sta);
1504 		} else {
1505 			if (ieee80211_has_pm(hdr->frame_control))
1506 				sta_ps_start(sta);
1507 		}
1508 	}
1509 
1510 	/* mesh power save support */
1511 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1512 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1513 
1514 	/*
1515 	 * Drop (qos-)data::nullfunc frames silently, since they
1516 	 * are used only to control station power saving mode.
1517 	 */
1518 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1519 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1520 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1521 
1522 		/*
1523 		 * If we receive a 4-addr nullfunc frame from a STA
1524 		 * that was not moved to a 4-addr STA vlan yet send
1525 		 * the event to userspace and for older hostapd drop
1526 		 * the frame to the monitor interface.
1527 		 */
1528 		if (ieee80211_has_a4(hdr->frame_control) &&
1529 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1530 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1531 		      !rx->sdata->u.vlan.sta))) {
1532 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1533 				cfg80211_rx_unexpected_4addr_frame(
1534 					rx->sdata->dev, sta->sta.addr,
1535 					GFP_ATOMIC);
1536 			return RX_DROP_MONITOR;
1537 		}
1538 		/*
1539 		 * Update counter and free packet here to avoid
1540 		 * counting this as a dropped packed.
1541 		 */
1542 		sta->rx_stats.packets++;
1543 		dev_kfree_skb(rx->skb);
1544 		return RX_QUEUED;
1545 	}
1546 
1547 	return RX_CONTINUE;
1548 } /* ieee80211_rx_h_sta_process */
1549 
1550 static ieee80211_rx_result debug_noinline
1551 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1552 {
1553 	struct sk_buff *skb = rx->skb;
1554 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1555 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1556 	int keyidx;
1557 	int hdrlen;
1558 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1559 	struct ieee80211_key *sta_ptk = NULL;
1560 	int mmie_keyidx = -1;
1561 	__le16 fc;
1562 	const struct ieee80211_cipher_scheme *cs = NULL;
1563 
1564 	/*
1565 	 * Key selection 101
1566 	 *
1567 	 * There are four types of keys:
1568 	 *  - GTK (group keys)
1569 	 *  - IGTK (group keys for management frames)
1570 	 *  - PTK (pairwise keys)
1571 	 *  - STK (station-to-station pairwise keys)
1572 	 *
1573 	 * When selecting a key, we have to distinguish between multicast
1574 	 * (including broadcast) and unicast frames, the latter can only
1575 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1576 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1577 	 * unicast frames can also use key indices like GTKs. Hence, if we
1578 	 * don't have a PTK/STK we check the key index for a WEP key.
1579 	 *
1580 	 * Note that in a regular BSS, multicast frames are sent by the
1581 	 * AP only, associated stations unicast the frame to the AP first
1582 	 * which then multicasts it on their behalf.
1583 	 *
1584 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1585 	 * with each station, that is something we don't currently handle.
1586 	 * The spec seems to expect that one negotiates the same key with
1587 	 * every station but there's no such requirement; VLANs could be
1588 	 * possible.
1589 	 */
1590 
1591 	/* start without a key */
1592 	rx->key = NULL;
1593 	fc = hdr->frame_control;
1594 
1595 	if (rx->sta) {
1596 		int keyid = rx->sta->ptk_idx;
1597 
1598 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1599 			cs = rx->sta->cipher_scheme;
1600 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1601 			if (unlikely(keyid < 0))
1602 				return RX_DROP_UNUSABLE;
1603 		}
1604 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1605 	}
1606 
1607 	if (!ieee80211_has_protected(fc))
1608 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1609 
1610 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1611 		rx->key = sta_ptk;
1612 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1613 		    (status->flag & RX_FLAG_IV_STRIPPED))
1614 			return RX_CONTINUE;
1615 		/* Skip decryption if the frame is not protected. */
1616 		if (!ieee80211_has_protected(fc))
1617 			return RX_CONTINUE;
1618 	} else if (mmie_keyidx >= 0) {
1619 		/* Broadcast/multicast robust management frame / BIP */
1620 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1621 		    (status->flag & RX_FLAG_IV_STRIPPED))
1622 			return RX_CONTINUE;
1623 
1624 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1625 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1626 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1627 		if (rx->sta) {
1628 			if (ieee80211_is_group_privacy_action(skb) &&
1629 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1630 				return RX_DROP_MONITOR;
1631 
1632 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1633 		}
1634 		if (!rx->key)
1635 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1636 	} else if (!ieee80211_has_protected(fc)) {
1637 		/*
1638 		 * The frame was not protected, so skip decryption. However, we
1639 		 * need to set rx->key if there is a key that could have been
1640 		 * used so that the frame may be dropped if encryption would
1641 		 * have been expected.
1642 		 */
1643 		struct ieee80211_key *key = NULL;
1644 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1645 		int i;
1646 
1647 		if (ieee80211_is_mgmt(fc) &&
1648 		    is_multicast_ether_addr(hdr->addr1) &&
1649 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1650 			rx->key = key;
1651 		else {
1652 			if (rx->sta) {
1653 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1654 					key = rcu_dereference(rx->sta->gtk[i]);
1655 					if (key)
1656 						break;
1657 				}
1658 			}
1659 			if (!key) {
1660 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1661 					key = rcu_dereference(sdata->keys[i]);
1662 					if (key)
1663 						break;
1664 				}
1665 			}
1666 			if (key)
1667 				rx->key = key;
1668 		}
1669 		return RX_CONTINUE;
1670 	} else {
1671 		u8 keyid;
1672 
1673 		/*
1674 		 * The device doesn't give us the IV so we won't be
1675 		 * able to look up the key. That's ok though, we
1676 		 * don't need to decrypt the frame, we just won't
1677 		 * be able to keep statistics accurate.
1678 		 * Except for key threshold notifications, should
1679 		 * we somehow allow the driver to tell us which key
1680 		 * the hardware used if this flag is set?
1681 		 */
1682 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1683 		    (status->flag & RX_FLAG_IV_STRIPPED))
1684 			return RX_CONTINUE;
1685 
1686 		hdrlen = ieee80211_hdrlen(fc);
1687 
1688 		if (cs) {
1689 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1690 
1691 			if (unlikely(keyidx < 0))
1692 				return RX_DROP_UNUSABLE;
1693 		} else {
1694 			if (rx->skb->len < 8 + hdrlen)
1695 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1696 			/*
1697 			 * no need to call ieee80211_wep_get_keyidx,
1698 			 * it verifies a bunch of things we've done already
1699 			 */
1700 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1701 			keyidx = keyid >> 6;
1702 		}
1703 
1704 		/* check per-station GTK first, if multicast packet */
1705 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1706 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1707 
1708 		/* if not found, try default key */
1709 		if (!rx->key) {
1710 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1711 
1712 			/*
1713 			 * RSNA-protected unicast frames should always be
1714 			 * sent with pairwise or station-to-station keys,
1715 			 * but for WEP we allow using a key index as well.
1716 			 */
1717 			if (rx->key &&
1718 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1719 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1720 			    !is_multicast_ether_addr(hdr->addr1))
1721 				rx->key = NULL;
1722 		}
1723 	}
1724 
1725 	if (rx->key) {
1726 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1727 			return RX_DROP_MONITOR;
1728 
1729 		/* TODO: add threshold stuff again */
1730 	} else {
1731 		return RX_DROP_MONITOR;
1732 	}
1733 
1734 	switch (rx->key->conf.cipher) {
1735 	case WLAN_CIPHER_SUITE_WEP40:
1736 	case WLAN_CIPHER_SUITE_WEP104:
1737 		result = ieee80211_crypto_wep_decrypt(rx);
1738 		break;
1739 	case WLAN_CIPHER_SUITE_TKIP:
1740 		result = ieee80211_crypto_tkip_decrypt(rx);
1741 		break;
1742 	case WLAN_CIPHER_SUITE_CCMP:
1743 		result = ieee80211_crypto_ccmp_decrypt(
1744 			rx, IEEE80211_CCMP_MIC_LEN);
1745 		break;
1746 	case WLAN_CIPHER_SUITE_CCMP_256:
1747 		result = ieee80211_crypto_ccmp_decrypt(
1748 			rx, IEEE80211_CCMP_256_MIC_LEN);
1749 		break;
1750 	case WLAN_CIPHER_SUITE_AES_CMAC:
1751 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1752 		break;
1753 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1754 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1755 		break;
1756 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1757 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1758 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1759 		break;
1760 	case WLAN_CIPHER_SUITE_GCMP:
1761 	case WLAN_CIPHER_SUITE_GCMP_256:
1762 		result = ieee80211_crypto_gcmp_decrypt(rx);
1763 		break;
1764 	default:
1765 		result = ieee80211_crypto_hw_decrypt(rx);
1766 	}
1767 
1768 	/* the hdr variable is invalid after the decrypt handlers */
1769 
1770 	/* either the frame has been decrypted or will be dropped */
1771 	status->flag |= RX_FLAG_DECRYPTED;
1772 
1773 	return result;
1774 }
1775 
1776 static inline struct ieee80211_fragment_entry *
1777 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1778 			 unsigned int frag, unsigned int seq, int rx_queue,
1779 			 struct sk_buff **skb)
1780 {
1781 	struct ieee80211_fragment_entry *entry;
1782 
1783 	entry = &sdata->fragments[sdata->fragment_next++];
1784 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1785 		sdata->fragment_next = 0;
1786 
1787 	if (!skb_queue_empty(&entry->skb_list))
1788 		__skb_queue_purge(&entry->skb_list);
1789 
1790 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1791 	*skb = NULL;
1792 	entry->first_frag_time = jiffies;
1793 	entry->seq = seq;
1794 	entry->rx_queue = rx_queue;
1795 	entry->last_frag = frag;
1796 	entry->check_sequential_pn = false;
1797 	entry->extra_len = 0;
1798 
1799 	return entry;
1800 }
1801 
1802 static inline struct ieee80211_fragment_entry *
1803 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1804 			  unsigned int frag, unsigned int seq,
1805 			  int rx_queue, struct ieee80211_hdr *hdr)
1806 {
1807 	struct ieee80211_fragment_entry *entry;
1808 	int i, idx;
1809 
1810 	idx = sdata->fragment_next;
1811 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1812 		struct ieee80211_hdr *f_hdr;
1813 
1814 		idx--;
1815 		if (idx < 0)
1816 			idx = IEEE80211_FRAGMENT_MAX - 1;
1817 
1818 		entry = &sdata->fragments[idx];
1819 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1820 		    entry->rx_queue != rx_queue ||
1821 		    entry->last_frag + 1 != frag)
1822 			continue;
1823 
1824 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1825 
1826 		/*
1827 		 * Check ftype and addresses are equal, else check next fragment
1828 		 */
1829 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1830 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1831 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1832 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1833 			continue;
1834 
1835 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1836 			__skb_queue_purge(&entry->skb_list);
1837 			continue;
1838 		}
1839 		return entry;
1840 	}
1841 
1842 	return NULL;
1843 }
1844 
1845 static ieee80211_rx_result debug_noinline
1846 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1847 {
1848 	struct ieee80211_hdr *hdr;
1849 	u16 sc;
1850 	__le16 fc;
1851 	unsigned int frag, seq;
1852 	struct ieee80211_fragment_entry *entry;
1853 	struct sk_buff *skb;
1854 	struct ieee80211_rx_status *status;
1855 
1856 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1857 	fc = hdr->frame_control;
1858 
1859 	if (ieee80211_is_ctl(fc))
1860 		return RX_CONTINUE;
1861 
1862 	sc = le16_to_cpu(hdr->seq_ctrl);
1863 	frag = sc & IEEE80211_SCTL_FRAG;
1864 
1865 	if (is_multicast_ether_addr(hdr->addr1)) {
1866 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1867 		goto out_no_led;
1868 	}
1869 
1870 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1871 		goto out;
1872 
1873 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1874 
1875 	if (skb_linearize(rx->skb))
1876 		return RX_DROP_UNUSABLE;
1877 
1878 	/*
1879 	 *  skb_linearize() might change the skb->data and
1880 	 *  previously cached variables (in this case, hdr) need to
1881 	 *  be refreshed with the new data.
1882 	 */
1883 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1884 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1885 
1886 	if (frag == 0) {
1887 		/* This is the first fragment of a new frame. */
1888 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1889 						 rx->seqno_idx, &(rx->skb));
1890 		if (rx->key &&
1891 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1892 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1893 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1894 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1895 		    ieee80211_has_protected(fc)) {
1896 			int queue = rx->security_idx;
1897 
1898 			/* Store CCMP/GCMP PN so that we can verify that the
1899 			 * next fragment has a sequential PN value.
1900 			 */
1901 			entry->check_sequential_pn = true;
1902 			memcpy(entry->last_pn,
1903 			       rx->key->u.ccmp.rx_pn[queue],
1904 			       IEEE80211_CCMP_PN_LEN);
1905 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
1906 					      u.ccmp.rx_pn) !=
1907 				     offsetof(struct ieee80211_key,
1908 					      u.gcmp.rx_pn));
1909 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1910 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
1911 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1912 				     IEEE80211_GCMP_PN_LEN);
1913 		}
1914 		return RX_QUEUED;
1915 	}
1916 
1917 	/* This is a fragment for a frame that should already be pending in
1918 	 * fragment cache. Add this fragment to the end of the pending entry.
1919 	 */
1920 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1921 					  rx->seqno_idx, hdr);
1922 	if (!entry) {
1923 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1924 		return RX_DROP_MONITOR;
1925 	}
1926 
1927 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
1928 	 *  MPDU PN values are not incrementing in steps of 1."
1929 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1930 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1931 	 */
1932 	if (entry->check_sequential_pn) {
1933 		int i;
1934 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1935 		int queue;
1936 
1937 		if (!rx->key ||
1938 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1939 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1940 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1941 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1942 			return RX_DROP_UNUSABLE;
1943 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1944 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1945 			pn[i]++;
1946 			if (pn[i])
1947 				break;
1948 		}
1949 		queue = rx->security_idx;
1950 		rpn = rx->key->u.ccmp.rx_pn[queue];
1951 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1952 			return RX_DROP_UNUSABLE;
1953 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1954 	}
1955 
1956 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1957 	__skb_queue_tail(&entry->skb_list, rx->skb);
1958 	entry->last_frag = frag;
1959 	entry->extra_len += rx->skb->len;
1960 	if (ieee80211_has_morefrags(fc)) {
1961 		rx->skb = NULL;
1962 		return RX_QUEUED;
1963 	}
1964 
1965 	rx->skb = __skb_dequeue(&entry->skb_list);
1966 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1967 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1968 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1969 					      GFP_ATOMIC))) {
1970 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1971 			__skb_queue_purge(&entry->skb_list);
1972 			return RX_DROP_UNUSABLE;
1973 		}
1974 	}
1975 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1976 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1977 		dev_kfree_skb(skb);
1978 	}
1979 
1980 	/* Complete frame has been reassembled - process it now */
1981 	status = IEEE80211_SKB_RXCB(rx->skb);
1982 
1983  out:
1984 	ieee80211_led_rx(rx->local);
1985  out_no_led:
1986 	if (rx->sta)
1987 		rx->sta->rx_stats.packets++;
1988 	return RX_CONTINUE;
1989 }
1990 
1991 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1992 {
1993 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1994 		return -EACCES;
1995 
1996 	return 0;
1997 }
1998 
1999 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2000 {
2001 	struct sk_buff *skb = rx->skb;
2002 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2003 
2004 	/*
2005 	 * Pass through unencrypted frames if the hardware has
2006 	 * decrypted them already.
2007 	 */
2008 	if (status->flag & RX_FLAG_DECRYPTED)
2009 		return 0;
2010 
2011 	/* Drop unencrypted frames if key is set. */
2012 	if (unlikely(!ieee80211_has_protected(fc) &&
2013 		     !ieee80211_is_nullfunc(fc) &&
2014 		     ieee80211_is_data(fc) && rx->key))
2015 		return -EACCES;
2016 
2017 	return 0;
2018 }
2019 
2020 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2021 {
2022 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2023 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2024 	__le16 fc = hdr->frame_control;
2025 
2026 	/*
2027 	 * Pass through unencrypted frames if the hardware has
2028 	 * decrypted them already.
2029 	 */
2030 	if (status->flag & RX_FLAG_DECRYPTED)
2031 		return 0;
2032 
2033 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2034 		if (unlikely(!ieee80211_has_protected(fc) &&
2035 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2036 			     rx->key)) {
2037 			if (ieee80211_is_deauth(fc) ||
2038 			    ieee80211_is_disassoc(fc))
2039 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2040 							     rx->skb->data,
2041 							     rx->skb->len);
2042 			return -EACCES;
2043 		}
2044 		/* BIP does not use Protected field, so need to check MMIE */
2045 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2046 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2047 			if (ieee80211_is_deauth(fc) ||
2048 			    ieee80211_is_disassoc(fc))
2049 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2050 							     rx->skb->data,
2051 							     rx->skb->len);
2052 			return -EACCES;
2053 		}
2054 		/*
2055 		 * When using MFP, Action frames are not allowed prior to
2056 		 * having configured keys.
2057 		 */
2058 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2059 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2060 			return -EACCES;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static int
2067 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2068 {
2069 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2070 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2071 	bool check_port_control = false;
2072 	struct ethhdr *ehdr;
2073 	int ret;
2074 
2075 	*port_control = false;
2076 	if (ieee80211_has_a4(hdr->frame_control) &&
2077 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2078 		return -1;
2079 
2080 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2081 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2082 
2083 		if (!sdata->u.mgd.use_4addr)
2084 			return -1;
2085 		else
2086 			check_port_control = true;
2087 	}
2088 
2089 	if (is_multicast_ether_addr(hdr->addr1) &&
2090 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2091 		return -1;
2092 
2093 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2094 	if (ret < 0)
2095 		return ret;
2096 
2097 	ehdr = (struct ethhdr *) rx->skb->data;
2098 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2099 		*port_control = true;
2100 	else if (check_port_control)
2101 		return -1;
2102 
2103 	return 0;
2104 }
2105 
2106 /*
2107  * requires that rx->skb is a frame with ethernet header
2108  */
2109 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2110 {
2111 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2112 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2113 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2114 
2115 	/*
2116 	 * Allow EAPOL frames to us/the PAE group address regardless
2117 	 * of whether the frame was encrypted or not.
2118 	 */
2119 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2120 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2121 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2122 		return true;
2123 
2124 	if (ieee80211_802_1x_port_control(rx) ||
2125 	    ieee80211_drop_unencrypted(rx, fc))
2126 		return false;
2127 
2128 	return true;
2129 }
2130 
2131 /*
2132  * requires that rx->skb is a frame with ethernet header
2133  */
2134 static void
2135 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2136 {
2137 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2138 	struct net_device *dev = sdata->dev;
2139 	struct sk_buff *skb, *xmit_skb;
2140 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2141 	struct sta_info *dsta;
2142 
2143 	skb = rx->skb;
2144 	xmit_skb = NULL;
2145 
2146 	ieee80211_rx_stats(dev, skb->len);
2147 
2148 	if (rx->sta) {
2149 		/* The seqno index has the same property as needed
2150 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2151 		 * for non-QoS-data frames. Here we know it's a data
2152 		 * frame, so count MSDUs.
2153 		 */
2154 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2155 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2156 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2157 	}
2158 
2159 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2160 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2161 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2162 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2163 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2164 			/*
2165 			 * send multicast frames both to higher layers in
2166 			 * local net stack and back to the wireless medium
2167 			 */
2168 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2169 			if (!xmit_skb)
2170 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2171 						    dev->name);
2172 		} else {
2173 			dsta = sta_info_get(sdata, skb->data);
2174 			if (dsta) {
2175 				/*
2176 				 * The destination station is associated to
2177 				 * this AP (in this VLAN), so send the frame
2178 				 * directly to it and do not pass it to local
2179 				 * net stack.
2180 				 */
2181 				xmit_skb = skb;
2182 				skb = NULL;
2183 			}
2184 		}
2185 	}
2186 
2187 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2188 	if (skb) {
2189 		/* 'align' will only take the values 0 or 2 here since all
2190 		 * frames are required to be aligned to 2-byte boundaries
2191 		 * when being passed to mac80211; the code here works just
2192 		 * as well if that isn't true, but mac80211 assumes it can
2193 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2194 		 */
2195 		int align;
2196 
2197 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2198 		if (align) {
2199 			if (WARN_ON(skb_headroom(skb) < 3)) {
2200 				dev_kfree_skb(skb);
2201 				skb = NULL;
2202 			} else {
2203 				u8 *data = skb->data;
2204 				size_t len = skb_headlen(skb);
2205 				skb->data -= align;
2206 				memmove(skb->data, data, len);
2207 				skb_set_tail_pointer(skb, len);
2208 			}
2209 		}
2210 	}
2211 #endif
2212 
2213 	if (skb) {
2214 		/* deliver to local stack */
2215 		skb->protocol = eth_type_trans(skb, dev);
2216 		memset(skb->cb, 0, sizeof(skb->cb));
2217 		if (rx->napi)
2218 			napi_gro_receive(rx->napi, skb);
2219 		else
2220 			netif_receive_skb(skb);
2221 	}
2222 
2223 	if (xmit_skb) {
2224 		/*
2225 		 * Send to wireless media and increase priority by 256 to
2226 		 * keep the received priority instead of reclassifying
2227 		 * the frame (see cfg80211_classify8021d).
2228 		 */
2229 		xmit_skb->priority += 256;
2230 		xmit_skb->protocol = htons(ETH_P_802_3);
2231 		skb_reset_network_header(xmit_skb);
2232 		skb_reset_mac_header(xmit_skb);
2233 		dev_queue_xmit(xmit_skb);
2234 	}
2235 }
2236 
2237 static ieee80211_rx_result debug_noinline
2238 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2239 {
2240 	struct net_device *dev = rx->sdata->dev;
2241 	struct sk_buff *skb = rx->skb;
2242 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2243 	__le16 fc = hdr->frame_control;
2244 	struct sk_buff_head frame_list;
2245 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2246 
2247 	if (unlikely(!ieee80211_is_data(fc)))
2248 		return RX_CONTINUE;
2249 
2250 	if (unlikely(!ieee80211_is_data_present(fc)))
2251 		return RX_DROP_MONITOR;
2252 
2253 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2254 		return RX_CONTINUE;
2255 
2256 	if (ieee80211_has_a4(hdr->frame_control) &&
2257 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2258 	    !rx->sdata->u.vlan.sta)
2259 		return RX_DROP_UNUSABLE;
2260 
2261 	if (is_multicast_ether_addr(hdr->addr1) &&
2262 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2263 	      rx->sdata->u.vlan.sta) ||
2264 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2265 	      rx->sdata->u.mgd.use_4addr)))
2266 		return RX_DROP_UNUSABLE;
2267 
2268 	skb->dev = dev;
2269 	__skb_queue_head_init(&frame_list);
2270 
2271 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2272 				 rx->sdata->vif.type,
2273 				 rx->local->hw.extra_tx_headroom, true);
2274 
2275 	while (!skb_queue_empty(&frame_list)) {
2276 		rx->skb = __skb_dequeue(&frame_list);
2277 
2278 		if (!ieee80211_frame_allowed(rx, fc)) {
2279 			dev_kfree_skb(rx->skb);
2280 			continue;
2281 		}
2282 
2283 		ieee80211_deliver_skb(rx);
2284 	}
2285 
2286 	return RX_QUEUED;
2287 }
2288 
2289 #ifdef CONFIG_MAC80211_MESH
2290 static ieee80211_rx_result
2291 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2292 {
2293 	struct ieee80211_hdr *fwd_hdr, *hdr;
2294 	struct ieee80211_tx_info *info;
2295 	struct ieee80211s_hdr *mesh_hdr;
2296 	struct sk_buff *skb = rx->skb, *fwd_skb;
2297 	struct ieee80211_local *local = rx->local;
2298 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2299 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2300 	u16 ac, q, hdrlen;
2301 
2302 	hdr = (struct ieee80211_hdr *) skb->data;
2303 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2304 
2305 	/* make sure fixed part of mesh header is there, also checks skb len */
2306 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2307 		return RX_DROP_MONITOR;
2308 
2309 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2310 
2311 	/* make sure full mesh header is there, also checks skb len */
2312 	if (!pskb_may_pull(rx->skb,
2313 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2314 		return RX_DROP_MONITOR;
2315 
2316 	/* reload pointers */
2317 	hdr = (struct ieee80211_hdr *) skb->data;
2318 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2319 
2320 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2321 		return RX_DROP_MONITOR;
2322 
2323 	/* frame is in RMC, don't forward */
2324 	if (ieee80211_is_data(hdr->frame_control) &&
2325 	    is_multicast_ether_addr(hdr->addr1) &&
2326 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2327 		return RX_DROP_MONITOR;
2328 
2329 	if (!ieee80211_is_data(hdr->frame_control))
2330 		return RX_CONTINUE;
2331 
2332 	if (!mesh_hdr->ttl)
2333 		return RX_DROP_MONITOR;
2334 
2335 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2336 		struct mesh_path *mppath;
2337 		char *proxied_addr;
2338 		char *mpp_addr;
2339 
2340 		if (is_multicast_ether_addr(hdr->addr1)) {
2341 			mpp_addr = hdr->addr3;
2342 			proxied_addr = mesh_hdr->eaddr1;
2343 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2344 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2345 			mpp_addr = hdr->addr4;
2346 			proxied_addr = mesh_hdr->eaddr2;
2347 		} else {
2348 			return RX_DROP_MONITOR;
2349 		}
2350 
2351 		rcu_read_lock();
2352 		mppath = mpp_path_lookup(sdata, proxied_addr);
2353 		if (!mppath) {
2354 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2355 		} else {
2356 			spin_lock_bh(&mppath->state_lock);
2357 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2358 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2359 			mppath->exp_time = jiffies;
2360 			spin_unlock_bh(&mppath->state_lock);
2361 		}
2362 		rcu_read_unlock();
2363 	}
2364 
2365 	/* Frame has reached destination.  Don't forward */
2366 	if (!is_multicast_ether_addr(hdr->addr1) &&
2367 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2368 		return RX_CONTINUE;
2369 
2370 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2371 	q = sdata->vif.hw_queue[ac];
2372 	if (ieee80211_queue_stopped(&local->hw, q)) {
2373 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2374 		return RX_DROP_MONITOR;
2375 	}
2376 	skb_set_queue_mapping(skb, q);
2377 
2378 	if (!--mesh_hdr->ttl) {
2379 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2380 		goto out;
2381 	}
2382 
2383 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2384 		goto out;
2385 
2386 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2387 	if (!fwd_skb) {
2388 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2389 				    sdata->name);
2390 		goto out;
2391 	}
2392 
2393 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2394 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2395 	info = IEEE80211_SKB_CB(fwd_skb);
2396 	memset(info, 0, sizeof(*info));
2397 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2398 	info->control.vif = &rx->sdata->vif;
2399 	info->control.jiffies = jiffies;
2400 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2401 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2402 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2403 		/* update power mode indication when forwarding */
2404 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2405 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2406 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2407 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2408 	} else {
2409 		/* unable to resolve next hop */
2410 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2411 				   fwd_hdr->addr3, 0,
2412 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2413 				   fwd_hdr->addr2);
2414 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2415 		kfree_skb(fwd_skb);
2416 		return RX_DROP_MONITOR;
2417 	}
2418 
2419 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2420 	ieee80211_add_pending_skb(local, fwd_skb);
2421  out:
2422 	if (is_multicast_ether_addr(hdr->addr1))
2423 		return RX_CONTINUE;
2424 	return RX_DROP_MONITOR;
2425 }
2426 #endif
2427 
2428 static ieee80211_rx_result debug_noinline
2429 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2430 {
2431 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2432 	struct ieee80211_local *local = rx->local;
2433 	struct net_device *dev = sdata->dev;
2434 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2435 	__le16 fc = hdr->frame_control;
2436 	bool port_control;
2437 	int err;
2438 
2439 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2440 		return RX_CONTINUE;
2441 
2442 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2443 		return RX_DROP_MONITOR;
2444 
2445 	/*
2446 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2447 	 * also drop the frame to cooked monitor interfaces.
2448 	 */
2449 	if (ieee80211_has_a4(hdr->frame_control) &&
2450 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2451 		if (rx->sta &&
2452 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2453 			cfg80211_rx_unexpected_4addr_frame(
2454 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2455 		return RX_DROP_MONITOR;
2456 	}
2457 
2458 	err = __ieee80211_data_to_8023(rx, &port_control);
2459 	if (unlikely(err))
2460 		return RX_DROP_UNUSABLE;
2461 
2462 	if (!ieee80211_frame_allowed(rx, fc))
2463 		return RX_DROP_MONITOR;
2464 
2465 	/* directly handle TDLS channel switch requests/responses */
2466 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2467 						cpu_to_be16(ETH_P_TDLS))) {
2468 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2469 
2470 		if (pskb_may_pull(rx->skb,
2471 				  offsetof(struct ieee80211_tdls_data, u)) &&
2472 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2473 		    tf->category == WLAN_CATEGORY_TDLS &&
2474 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2475 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2476 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2477 			schedule_work(&local->tdls_chsw_work);
2478 			if (rx->sta)
2479 				rx->sta->rx_stats.packets++;
2480 
2481 			return RX_QUEUED;
2482 		}
2483 	}
2484 
2485 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2486 	    unlikely(port_control) && sdata->bss) {
2487 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2488 				     u.ap);
2489 		dev = sdata->dev;
2490 		rx->sdata = sdata;
2491 	}
2492 
2493 	rx->skb->dev = dev;
2494 
2495 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2496 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2497 	    !is_multicast_ether_addr(
2498 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2499 	    (!local->scanning &&
2500 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2501 		mod_timer(&local->dynamic_ps_timer, jiffies +
2502 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2503 
2504 	ieee80211_deliver_skb(rx);
2505 
2506 	return RX_QUEUED;
2507 }
2508 
2509 static ieee80211_rx_result debug_noinline
2510 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2511 {
2512 	struct sk_buff *skb = rx->skb;
2513 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2514 	struct tid_ampdu_rx *tid_agg_rx;
2515 	u16 start_seq_num;
2516 	u16 tid;
2517 
2518 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2519 		return RX_CONTINUE;
2520 
2521 	if (ieee80211_is_back_req(bar->frame_control)) {
2522 		struct {
2523 			__le16 control, start_seq_num;
2524 		} __packed bar_data;
2525 		struct ieee80211_event event = {
2526 			.type = BAR_RX_EVENT,
2527 		};
2528 
2529 		if (!rx->sta)
2530 			return RX_DROP_MONITOR;
2531 
2532 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2533 				  &bar_data, sizeof(bar_data)))
2534 			return RX_DROP_MONITOR;
2535 
2536 		tid = le16_to_cpu(bar_data.control) >> 12;
2537 
2538 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2539 		if (!tid_agg_rx)
2540 			return RX_DROP_MONITOR;
2541 
2542 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2543 		event.u.ba.tid = tid;
2544 		event.u.ba.ssn = start_seq_num;
2545 		event.u.ba.sta = &rx->sta->sta;
2546 
2547 		/* reset session timer */
2548 		if (tid_agg_rx->timeout)
2549 			mod_timer(&tid_agg_rx->session_timer,
2550 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2551 
2552 		spin_lock(&tid_agg_rx->reorder_lock);
2553 		/* release stored frames up to start of BAR */
2554 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2555 						 start_seq_num, frames);
2556 		spin_unlock(&tid_agg_rx->reorder_lock);
2557 
2558 		drv_event_callback(rx->local, rx->sdata, &event);
2559 
2560 		kfree_skb(skb);
2561 		return RX_QUEUED;
2562 	}
2563 
2564 	/*
2565 	 * After this point, we only want management frames,
2566 	 * so we can drop all remaining control frames to
2567 	 * cooked monitor interfaces.
2568 	 */
2569 	return RX_DROP_MONITOR;
2570 }
2571 
2572 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2573 					   struct ieee80211_mgmt *mgmt,
2574 					   size_t len)
2575 {
2576 	struct ieee80211_local *local = sdata->local;
2577 	struct sk_buff *skb;
2578 	struct ieee80211_mgmt *resp;
2579 
2580 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2581 		/* Not to own unicast address */
2582 		return;
2583 	}
2584 
2585 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2586 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2587 		/* Not from the current AP or not associated yet. */
2588 		return;
2589 	}
2590 
2591 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2592 		/* Too short SA Query request frame */
2593 		return;
2594 	}
2595 
2596 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2597 	if (skb == NULL)
2598 		return;
2599 
2600 	skb_reserve(skb, local->hw.extra_tx_headroom);
2601 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2602 	memset(resp, 0, 24);
2603 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2604 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2605 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2606 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2607 					  IEEE80211_STYPE_ACTION);
2608 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2609 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2610 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2611 	memcpy(resp->u.action.u.sa_query.trans_id,
2612 	       mgmt->u.action.u.sa_query.trans_id,
2613 	       WLAN_SA_QUERY_TR_ID_LEN);
2614 
2615 	ieee80211_tx_skb(sdata, skb);
2616 }
2617 
2618 static ieee80211_rx_result debug_noinline
2619 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2620 {
2621 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2622 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2623 
2624 	/*
2625 	 * From here on, look only at management frames.
2626 	 * Data and control frames are already handled,
2627 	 * and unknown (reserved) frames are useless.
2628 	 */
2629 	if (rx->skb->len < 24)
2630 		return RX_DROP_MONITOR;
2631 
2632 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2633 		return RX_DROP_MONITOR;
2634 
2635 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2636 	    ieee80211_is_beacon(mgmt->frame_control) &&
2637 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2638 		int sig = 0;
2639 
2640 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2641 			sig = status->signal;
2642 
2643 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2644 					    rx->skb->data, rx->skb->len,
2645 					    status->freq, sig);
2646 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2647 	}
2648 
2649 	if (ieee80211_drop_unencrypted_mgmt(rx))
2650 		return RX_DROP_UNUSABLE;
2651 
2652 	return RX_CONTINUE;
2653 }
2654 
2655 static ieee80211_rx_result debug_noinline
2656 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2657 {
2658 	struct ieee80211_local *local = rx->local;
2659 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2660 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2661 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2662 	int len = rx->skb->len;
2663 
2664 	if (!ieee80211_is_action(mgmt->frame_control))
2665 		return RX_CONTINUE;
2666 
2667 	/* drop too small frames */
2668 	if (len < IEEE80211_MIN_ACTION_SIZE)
2669 		return RX_DROP_UNUSABLE;
2670 
2671 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2672 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2673 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2674 		return RX_DROP_UNUSABLE;
2675 
2676 	switch (mgmt->u.action.category) {
2677 	case WLAN_CATEGORY_HT:
2678 		/* reject HT action frames from stations not supporting HT */
2679 		if (!rx->sta->sta.ht_cap.ht_supported)
2680 			goto invalid;
2681 
2682 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2683 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2684 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2685 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2686 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2687 			break;
2688 
2689 		/* verify action & smps_control/chanwidth are present */
2690 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2691 			goto invalid;
2692 
2693 		switch (mgmt->u.action.u.ht_smps.action) {
2694 		case WLAN_HT_ACTION_SMPS: {
2695 			struct ieee80211_supported_band *sband;
2696 			enum ieee80211_smps_mode smps_mode;
2697 
2698 			/* convert to HT capability */
2699 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2700 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2701 				smps_mode = IEEE80211_SMPS_OFF;
2702 				break;
2703 			case WLAN_HT_SMPS_CONTROL_STATIC:
2704 				smps_mode = IEEE80211_SMPS_STATIC;
2705 				break;
2706 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2707 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2708 				break;
2709 			default:
2710 				goto invalid;
2711 			}
2712 
2713 			/* if no change do nothing */
2714 			if (rx->sta->sta.smps_mode == smps_mode)
2715 				goto handled;
2716 			rx->sta->sta.smps_mode = smps_mode;
2717 
2718 			sband = rx->local->hw.wiphy->bands[status->band];
2719 
2720 			rate_control_rate_update(local, sband, rx->sta,
2721 						 IEEE80211_RC_SMPS_CHANGED);
2722 			goto handled;
2723 		}
2724 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2725 			struct ieee80211_supported_band *sband;
2726 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2727 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2728 
2729 			/* If it doesn't support 40 MHz it can't change ... */
2730 			if (!(rx->sta->sta.ht_cap.cap &
2731 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2732 				goto handled;
2733 
2734 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2735 				max_bw = IEEE80211_STA_RX_BW_20;
2736 			else
2737 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2738 
2739 			/* set cur_max_bandwidth and recalc sta bw */
2740 			rx->sta->cur_max_bandwidth = max_bw;
2741 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2742 
2743 			if (rx->sta->sta.bandwidth == new_bw)
2744 				goto handled;
2745 
2746 			rx->sta->sta.bandwidth = new_bw;
2747 			sband = rx->local->hw.wiphy->bands[status->band];
2748 
2749 			rate_control_rate_update(local, sband, rx->sta,
2750 						 IEEE80211_RC_BW_CHANGED);
2751 			goto handled;
2752 		}
2753 		default:
2754 			goto invalid;
2755 		}
2756 
2757 		break;
2758 	case WLAN_CATEGORY_PUBLIC:
2759 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2760 			goto invalid;
2761 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2762 			break;
2763 		if (!rx->sta)
2764 			break;
2765 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2766 			break;
2767 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2768 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2769 			break;
2770 		if (len < offsetof(struct ieee80211_mgmt,
2771 				   u.action.u.ext_chan_switch.variable))
2772 			goto invalid;
2773 		goto queue;
2774 	case WLAN_CATEGORY_VHT:
2775 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2776 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2777 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2778 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2779 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2780 			break;
2781 
2782 		/* verify action code is present */
2783 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2784 			goto invalid;
2785 
2786 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2787 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2788 			u8 opmode;
2789 
2790 			/* verify opmode is present */
2791 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2792 				goto invalid;
2793 
2794 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2795 
2796 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2797 						    opmode, status->band);
2798 			goto handled;
2799 		}
2800 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2801 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2802 				goto invalid;
2803 			goto queue;
2804 		}
2805 		default:
2806 			break;
2807 		}
2808 		break;
2809 	case WLAN_CATEGORY_BACK:
2810 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2811 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2812 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2813 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2814 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2815 			break;
2816 
2817 		/* verify action_code is present */
2818 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2819 			break;
2820 
2821 		switch (mgmt->u.action.u.addba_req.action_code) {
2822 		case WLAN_ACTION_ADDBA_REQ:
2823 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2824 				   sizeof(mgmt->u.action.u.addba_req)))
2825 				goto invalid;
2826 			break;
2827 		case WLAN_ACTION_ADDBA_RESP:
2828 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2829 				   sizeof(mgmt->u.action.u.addba_resp)))
2830 				goto invalid;
2831 			break;
2832 		case WLAN_ACTION_DELBA:
2833 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2834 				   sizeof(mgmt->u.action.u.delba)))
2835 				goto invalid;
2836 			break;
2837 		default:
2838 			goto invalid;
2839 		}
2840 
2841 		goto queue;
2842 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2843 		/* verify action_code is present */
2844 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2845 			break;
2846 
2847 		switch (mgmt->u.action.u.measurement.action_code) {
2848 		case WLAN_ACTION_SPCT_MSR_REQ:
2849 			if (status->band != NL80211_BAND_5GHZ)
2850 				break;
2851 
2852 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2853 				   sizeof(mgmt->u.action.u.measurement)))
2854 				break;
2855 
2856 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2857 				break;
2858 
2859 			ieee80211_process_measurement_req(sdata, mgmt, len);
2860 			goto handled;
2861 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2862 			u8 *bssid;
2863 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2864 				   sizeof(mgmt->u.action.u.chan_switch)))
2865 				break;
2866 
2867 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2868 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2869 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2870 				break;
2871 
2872 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2873 				bssid = sdata->u.mgd.bssid;
2874 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2875 				bssid = sdata->u.ibss.bssid;
2876 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2877 				bssid = mgmt->sa;
2878 			else
2879 				break;
2880 
2881 			if (!ether_addr_equal(mgmt->bssid, bssid))
2882 				break;
2883 
2884 			goto queue;
2885 			}
2886 		}
2887 		break;
2888 	case WLAN_CATEGORY_SA_QUERY:
2889 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2890 			   sizeof(mgmt->u.action.u.sa_query)))
2891 			break;
2892 
2893 		switch (mgmt->u.action.u.sa_query.action) {
2894 		case WLAN_ACTION_SA_QUERY_REQUEST:
2895 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2896 				break;
2897 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2898 			goto handled;
2899 		}
2900 		break;
2901 	case WLAN_CATEGORY_SELF_PROTECTED:
2902 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2903 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2904 			break;
2905 
2906 		switch (mgmt->u.action.u.self_prot.action_code) {
2907 		case WLAN_SP_MESH_PEERING_OPEN:
2908 		case WLAN_SP_MESH_PEERING_CLOSE:
2909 		case WLAN_SP_MESH_PEERING_CONFIRM:
2910 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2911 				goto invalid;
2912 			if (sdata->u.mesh.user_mpm)
2913 				/* userspace handles this frame */
2914 				break;
2915 			goto queue;
2916 		case WLAN_SP_MGK_INFORM:
2917 		case WLAN_SP_MGK_ACK:
2918 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2919 				goto invalid;
2920 			break;
2921 		}
2922 		break;
2923 	case WLAN_CATEGORY_MESH_ACTION:
2924 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2925 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2926 			break;
2927 
2928 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2929 			break;
2930 		if (mesh_action_is_path_sel(mgmt) &&
2931 		    !mesh_path_sel_is_hwmp(sdata))
2932 			break;
2933 		goto queue;
2934 	}
2935 
2936 	return RX_CONTINUE;
2937 
2938  invalid:
2939 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2940 	/* will return in the next handlers */
2941 	return RX_CONTINUE;
2942 
2943  handled:
2944 	if (rx->sta)
2945 		rx->sta->rx_stats.packets++;
2946 	dev_kfree_skb(rx->skb);
2947 	return RX_QUEUED;
2948 
2949  queue:
2950 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2951 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2952 	ieee80211_queue_work(&local->hw, &sdata->work);
2953 	if (rx->sta)
2954 		rx->sta->rx_stats.packets++;
2955 	return RX_QUEUED;
2956 }
2957 
2958 static ieee80211_rx_result debug_noinline
2959 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2960 {
2961 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2962 	int sig = 0;
2963 
2964 	/* skip known-bad action frames and return them in the next handler */
2965 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2966 		return RX_CONTINUE;
2967 
2968 	/*
2969 	 * Getting here means the kernel doesn't know how to handle
2970 	 * it, but maybe userspace does ... include returned frames
2971 	 * so userspace can register for those to know whether ones
2972 	 * it transmitted were processed or returned.
2973 	 */
2974 
2975 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2976 		sig = status->signal;
2977 
2978 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2979 			     rx->skb->data, rx->skb->len, 0)) {
2980 		if (rx->sta)
2981 			rx->sta->rx_stats.packets++;
2982 		dev_kfree_skb(rx->skb);
2983 		return RX_QUEUED;
2984 	}
2985 
2986 	return RX_CONTINUE;
2987 }
2988 
2989 static ieee80211_rx_result debug_noinline
2990 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2991 {
2992 	struct ieee80211_local *local = rx->local;
2993 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2994 	struct sk_buff *nskb;
2995 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2996 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2997 
2998 	if (!ieee80211_is_action(mgmt->frame_control))
2999 		return RX_CONTINUE;
3000 
3001 	/*
3002 	 * For AP mode, hostapd is responsible for handling any action
3003 	 * frames that we didn't handle, including returning unknown
3004 	 * ones. For all other modes we will return them to the sender,
3005 	 * setting the 0x80 bit in the action category, as required by
3006 	 * 802.11-2012 9.24.4.
3007 	 * Newer versions of hostapd shall also use the management frame
3008 	 * registration mechanisms, but older ones still use cooked
3009 	 * monitor interfaces so push all frames there.
3010 	 */
3011 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3012 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3013 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3014 		return RX_DROP_MONITOR;
3015 
3016 	if (is_multicast_ether_addr(mgmt->da))
3017 		return RX_DROP_MONITOR;
3018 
3019 	/* do not return rejected action frames */
3020 	if (mgmt->u.action.category & 0x80)
3021 		return RX_DROP_UNUSABLE;
3022 
3023 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3024 			       GFP_ATOMIC);
3025 	if (nskb) {
3026 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3027 
3028 		nmgmt->u.action.category |= 0x80;
3029 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3030 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3031 
3032 		memset(nskb->cb, 0, sizeof(nskb->cb));
3033 
3034 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3035 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3036 
3037 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3038 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3039 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3040 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3041 				info->hw_queue =
3042 					local->hw.offchannel_tx_hw_queue;
3043 		}
3044 
3045 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3046 					    status->band);
3047 	}
3048 	dev_kfree_skb(rx->skb);
3049 	return RX_QUEUED;
3050 }
3051 
3052 static ieee80211_rx_result debug_noinline
3053 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3054 {
3055 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3056 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3057 	__le16 stype;
3058 
3059 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3060 
3061 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3062 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3063 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3064 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3065 		return RX_DROP_MONITOR;
3066 
3067 	switch (stype) {
3068 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3069 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3070 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3071 		/* process for all: mesh, mlme, ibss */
3072 		break;
3073 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3074 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3075 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3076 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3077 		if (is_multicast_ether_addr(mgmt->da) &&
3078 		    !is_broadcast_ether_addr(mgmt->da))
3079 			return RX_DROP_MONITOR;
3080 
3081 		/* process only for station */
3082 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3083 			return RX_DROP_MONITOR;
3084 		break;
3085 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3086 		/* process only for ibss and mesh */
3087 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3088 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3089 			return RX_DROP_MONITOR;
3090 		break;
3091 	default:
3092 		return RX_DROP_MONITOR;
3093 	}
3094 
3095 	/* queue up frame and kick off work to process it */
3096 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3097 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3098 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3099 	if (rx->sta)
3100 		rx->sta->rx_stats.packets++;
3101 
3102 	return RX_QUEUED;
3103 }
3104 
3105 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3106 					struct ieee80211_rate *rate)
3107 {
3108 	struct ieee80211_sub_if_data *sdata;
3109 	struct ieee80211_local *local = rx->local;
3110 	struct sk_buff *skb = rx->skb, *skb2;
3111 	struct net_device *prev_dev = NULL;
3112 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3113 	int needed_headroom;
3114 
3115 	/*
3116 	 * If cooked monitor has been processed already, then
3117 	 * don't do it again. If not, set the flag.
3118 	 */
3119 	if (rx->flags & IEEE80211_RX_CMNTR)
3120 		goto out_free_skb;
3121 	rx->flags |= IEEE80211_RX_CMNTR;
3122 
3123 	/* If there are no cooked monitor interfaces, just free the SKB */
3124 	if (!local->cooked_mntrs)
3125 		goto out_free_skb;
3126 
3127 	/* vendor data is long removed here */
3128 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3129 	/* room for the radiotap header based on driver features */
3130 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3131 
3132 	if (skb_headroom(skb) < needed_headroom &&
3133 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3134 		goto out_free_skb;
3135 
3136 	/* prepend radiotap information */
3137 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3138 					 false);
3139 
3140 	skb_reset_mac_header(skb);
3141 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3142 	skb->pkt_type = PACKET_OTHERHOST;
3143 	skb->protocol = htons(ETH_P_802_2);
3144 
3145 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3146 		if (!ieee80211_sdata_running(sdata))
3147 			continue;
3148 
3149 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3150 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3151 			continue;
3152 
3153 		if (prev_dev) {
3154 			skb2 = skb_clone(skb, GFP_ATOMIC);
3155 			if (skb2) {
3156 				skb2->dev = prev_dev;
3157 				netif_receive_skb(skb2);
3158 			}
3159 		}
3160 
3161 		prev_dev = sdata->dev;
3162 		ieee80211_rx_stats(sdata->dev, skb->len);
3163 	}
3164 
3165 	if (prev_dev) {
3166 		skb->dev = prev_dev;
3167 		netif_receive_skb(skb);
3168 		return;
3169 	}
3170 
3171  out_free_skb:
3172 	dev_kfree_skb(skb);
3173 }
3174 
3175 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3176 					 ieee80211_rx_result res)
3177 {
3178 	switch (res) {
3179 	case RX_DROP_MONITOR:
3180 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3181 		if (rx->sta)
3182 			rx->sta->rx_stats.dropped++;
3183 		/* fall through */
3184 	case RX_CONTINUE: {
3185 		struct ieee80211_rate *rate = NULL;
3186 		struct ieee80211_supported_band *sband;
3187 		struct ieee80211_rx_status *status;
3188 
3189 		status = IEEE80211_SKB_RXCB((rx->skb));
3190 
3191 		sband = rx->local->hw.wiphy->bands[status->band];
3192 		if (!(status->flag & RX_FLAG_HT) &&
3193 		    !(status->flag & RX_FLAG_VHT))
3194 			rate = &sband->bitrates[status->rate_idx];
3195 
3196 		ieee80211_rx_cooked_monitor(rx, rate);
3197 		break;
3198 		}
3199 	case RX_DROP_UNUSABLE:
3200 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3201 		if (rx->sta)
3202 			rx->sta->rx_stats.dropped++;
3203 		dev_kfree_skb(rx->skb);
3204 		break;
3205 	case RX_QUEUED:
3206 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3207 		break;
3208 	}
3209 }
3210 
3211 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3212 				  struct sk_buff_head *frames)
3213 {
3214 	ieee80211_rx_result res = RX_DROP_MONITOR;
3215 	struct sk_buff *skb;
3216 
3217 #define CALL_RXH(rxh)			\
3218 	do {				\
3219 		res = rxh(rx);		\
3220 		if (res != RX_CONTINUE)	\
3221 			goto rxh_next;  \
3222 	} while (0)
3223 
3224 	/* Lock here to avoid hitting all of the data used in the RX
3225 	 * path (e.g. key data, station data, ...) concurrently when
3226 	 * a frame is released from the reorder buffer due to timeout
3227 	 * from the timer, potentially concurrently with RX from the
3228 	 * driver.
3229 	 */
3230 	spin_lock_bh(&rx->local->rx_path_lock);
3231 
3232 	while ((skb = __skb_dequeue(frames))) {
3233 		/*
3234 		 * all the other fields are valid across frames
3235 		 * that belong to an aMPDU since they are on the
3236 		 * same TID from the same station
3237 		 */
3238 		rx->skb = skb;
3239 
3240 		CALL_RXH(ieee80211_rx_h_check_more_data);
3241 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3242 		CALL_RXH(ieee80211_rx_h_sta_process);
3243 		CALL_RXH(ieee80211_rx_h_decrypt);
3244 		CALL_RXH(ieee80211_rx_h_defragment);
3245 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3246 		/* must be after MMIC verify so header is counted in MPDU mic */
3247 #ifdef CONFIG_MAC80211_MESH
3248 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3249 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3250 #endif
3251 		CALL_RXH(ieee80211_rx_h_amsdu);
3252 		CALL_RXH(ieee80211_rx_h_data);
3253 
3254 		/* special treatment -- needs the queue */
3255 		res = ieee80211_rx_h_ctrl(rx, frames);
3256 		if (res != RX_CONTINUE)
3257 			goto rxh_next;
3258 
3259 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3260 		CALL_RXH(ieee80211_rx_h_action);
3261 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3262 		CALL_RXH(ieee80211_rx_h_action_return);
3263 		CALL_RXH(ieee80211_rx_h_mgmt);
3264 
3265  rxh_next:
3266 		ieee80211_rx_handlers_result(rx, res);
3267 
3268 #undef CALL_RXH
3269 	}
3270 
3271 	spin_unlock_bh(&rx->local->rx_path_lock);
3272 }
3273 
3274 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3275 {
3276 	struct sk_buff_head reorder_release;
3277 	ieee80211_rx_result res = RX_DROP_MONITOR;
3278 
3279 	__skb_queue_head_init(&reorder_release);
3280 
3281 #define CALL_RXH(rxh)			\
3282 	do {				\
3283 		res = rxh(rx);		\
3284 		if (res != RX_CONTINUE)	\
3285 			goto rxh_next;  \
3286 	} while (0)
3287 
3288 	CALL_RXH(ieee80211_rx_h_check_dup);
3289 	CALL_RXH(ieee80211_rx_h_check);
3290 
3291 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3292 
3293 	ieee80211_rx_handlers(rx, &reorder_release);
3294 	return;
3295 
3296  rxh_next:
3297 	ieee80211_rx_handlers_result(rx, res);
3298 
3299 #undef CALL_RXH
3300 }
3301 
3302 /*
3303  * This function makes calls into the RX path, therefore
3304  * it has to be invoked under RCU read lock.
3305  */
3306 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3307 {
3308 	struct sk_buff_head frames;
3309 	struct ieee80211_rx_data rx = {
3310 		.sta = sta,
3311 		.sdata = sta->sdata,
3312 		.local = sta->local,
3313 		/* This is OK -- must be QoS data frame */
3314 		.security_idx = tid,
3315 		.seqno_idx = tid,
3316 		.napi = NULL, /* must be NULL to not have races */
3317 	};
3318 	struct tid_ampdu_rx *tid_agg_rx;
3319 
3320 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3321 	if (!tid_agg_rx)
3322 		return;
3323 
3324 	__skb_queue_head_init(&frames);
3325 
3326 	spin_lock(&tid_agg_rx->reorder_lock);
3327 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3328 	spin_unlock(&tid_agg_rx->reorder_lock);
3329 
3330 	if (!skb_queue_empty(&frames)) {
3331 		struct ieee80211_event event = {
3332 			.type = BA_FRAME_TIMEOUT,
3333 			.u.ba.tid = tid,
3334 			.u.ba.sta = &sta->sta,
3335 		};
3336 		drv_event_callback(rx.local, rx.sdata, &event);
3337 	}
3338 
3339 	ieee80211_rx_handlers(&rx, &frames);
3340 }
3341 
3342 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3343 					  u16 ssn, u64 filtered,
3344 					  u16 received_mpdus)
3345 {
3346 	struct sta_info *sta;
3347 	struct tid_ampdu_rx *tid_agg_rx;
3348 	struct sk_buff_head frames;
3349 	struct ieee80211_rx_data rx = {
3350 		/* This is OK -- must be QoS data frame */
3351 		.security_idx = tid,
3352 		.seqno_idx = tid,
3353 	};
3354 	int i, diff;
3355 
3356 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3357 		return;
3358 
3359 	__skb_queue_head_init(&frames);
3360 
3361 	sta = container_of(pubsta, struct sta_info, sta);
3362 
3363 	rx.sta = sta;
3364 	rx.sdata = sta->sdata;
3365 	rx.local = sta->local;
3366 
3367 	rcu_read_lock();
3368 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3369 	if (!tid_agg_rx)
3370 		goto out;
3371 
3372 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3373 
3374 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3375 		int release;
3376 
3377 		/* release all frames in the reorder buffer */
3378 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3379 			   IEEE80211_SN_MODULO;
3380 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3381 						 release, &frames);
3382 		/* update ssn to match received ssn */
3383 		tid_agg_rx->head_seq_num = ssn;
3384 	} else {
3385 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3386 						 &frames);
3387 	}
3388 
3389 	/* handle the case that received ssn is behind the mac ssn.
3390 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3391 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3392 	if (diff >= tid_agg_rx->buf_size) {
3393 		tid_agg_rx->reorder_buf_filtered = 0;
3394 		goto release;
3395 	}
3396 	filtered = filtered >> diff;
3397 	ssn += diff;
3398 
3399 	/* update bitmap */
3400 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3401 		int index = (ssn + i) % tid_agg_rx->buf_size;
3402 
3403 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3404 		if (filtered & BIT_ULL(i))
3405 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3406 	}
3407 
3408 	/* now process also frames that the filter marking released */
3409 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3410 
3411 release:
3412 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3413 
3414 	ieee80211_rx_handlers(&rx, &frames);
3415 
3416  out:
3417 	rcu_read_unlock();
3418 }
3419 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3420 
3421 /* main receive path */
3422 
3423 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3424 {
3425 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3426 	struct sk_buff *skb = rx->skb;
3427 	struct ieee80211_hdr *hdr = (void *)skb->data;
3428 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3429 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3430 	int multicast = is_multicast_ether_addr(hdr->addr1);
3431 
3432 	switch (sdata->vif.type) {
3433 	case NL80211_IFTYPE_STATION:
3434 		if (!bssid && !sdata->u.mgd.use_4addr)
3435 			return false;
3436 		if (multicast)
3437 			return true;
3438 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3439 	case NL80211_IFTYPE_ADHOC:
3440 		if (!bssid)
3441 			return false;
3442 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3443 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3444 			return false;
3445 		if (ieee80211_is_beacon(hdr->frame_control))
3446 			return true;
3447 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3448 			return false;
3449 		if (!multicast &&
3450 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3451 			return false;
3452 		if (!rx->sta) {
3453 			int rate_idx;
3454 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3455 				rate_idx = 0; /* TODO: HT/VHT rates */
3456 			else
3457 				rate_idx = status->rate_idx;
3458 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3459 						 BIT(rate_idx));
3460 		}
3461 		return true;
3462 	case NL80211_IFTYPE_OCB:
3463 		if (!bssid)
3464 			return false;
3465 		if (!ieee80211_is_data_present(hdr->frame_control))
3466 			return false;
3467 		if (!is_broadcast_ether_addr(bssid))
3468 			return false;
3469 		if (!multicast &&
3470 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3471 			return false;
3472 		if (!rx->sta) {
3473 			int rate_idx;
3474 			if (status->flag & RX_FLAG_HT)
3475 				rate_idx = 0; /* TODO: HT rates */
3476 			else
3477 				rate_idx = status->rate_idx;
3478 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3479 						BIT(rate_idx));
3480 		}
3481 		return true;
3482 	case NL80211_IFTYPE_MESH_POINT:
3483 		if (multicast)
3484 			return true;
3485 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3486 	case NL80211_IFTYPE_AP_VLAN:
3487 	case NL80211_IFTYPE_AP:
3488 		if (!bssid)
3489 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3490 
3491 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3492 			/*
3493 			 * Accept public action frames even when the
3494 			 * BSSID doesn't match, this is used for P2P
3495 			 * and location updates. Note that mac80211
3496 			 * itself never looks at these frames.
3497 			 */
3498 			if (!multicast &&
3499 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3500 				return false;
3501 			if (ieee80211_is_public_action(hdr, skb->len))
3502 				return true;
3503 			return ieee80211_is_beacon(hdr->frame_control);
3504 		}
3505 
3506 		if (!ieee80211_has_tods(hdr->frame_control)) {
3507 			/* ignore data frames to TDLS-peers */
3508 			if (ieee80211_is_data(hdr->frame_control))
3509 				return false;
3510 			/* ignore action frames to TDLS-peers */
3511 			if (ieee80211_is_action(hdr->frame_control) &&
3512 			    !is_broadcast_ether_addr(bssid) &&
3513 			    !ether_addr_equal(bssid, hdr->addr1))
3514 				return false;
3515 		}
3516 		return true;
3517 	case NL80211_IFTYPE_WDS:
3518 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3519 			return false;
3520 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3521 	case NL80211_IFTYPE_P2P_DEVICE:
3522 		return ieee80211_is_public_action(hdr, skb->len) ||
3523 		       ieee80211_is_probe_req(hdr->frame_control) ||
3524 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3525 		       ieee80211_is_beacon(hdr->frame_control);
3526 	default:
3527 		break;
3528 	}
3529 
3530 	WARN_ON_ONCE(1);
3531 	return false;
3532 }
3533 
3534 void ieee80211_check_fast_rx(struct sta_info *sta)
3535 {
3536 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3537 	struct ieee80211_local *local = sdata->local;
3538 	struct ieee80211_key *key;
3539 	struct ieee80211_fast_rx fastrx = {
3540 		.dev = sdata->dev,
3541 		.vif_type = sdata->vif.type,
3542 		.control_port_protocol = sdata->control_port_protocol,
3543 	}, *old, *new = NULL;
3544 	bool assign = false;
3545 
3546 	/* use sparse to check that we don't return without updating */
3547 	__acquire(check_fast_rx);
3548 
3549 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3550 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3551 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3552 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3553 
3554 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3555 
3556 	/* fast-rx doesn't do reordering */
3557 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3558 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3559 		goto clear;
3560 
3561 	switch (sdata->vif.type) {
3562 	case NL80211_IFTYPE_STATION:
3563 		/* 4-addr is harder to deal with, later maybe */
3564 		if (sdata->u.mgd.use_4addr)
3565 			goto clear;
3566 		/* software powersave is a huge mess, avoid all of it */
3567 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3568 			goto clear;
3569 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3570 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3571 			goto clear;
3572 		if (sta->sta.tdls) {
3573 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3574 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3575 			fastrx.expected_ds_bits = 0;
3576 		} else {
3577 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3578 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3579 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3580 			fastrx.expected_ds_bits =
3581 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3582 		}
3583 		break;
3584 	case NL80211_IFTYPE_AP_VLAN:
3585 	case NL80211_IFTYPE_AP:
3586 		/* parallel-rx requires this, at least with calls to
3587 		 * ieee80211_sta_ps_transition()
3588 		 */
3589 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3590 			goto clear;
3591 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3592 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3593 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3594 
3595 		fastrx.internal_forward =
3596 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3597 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3598 			 !sdata->u.vlan.sta);
3599 		break;
3600 	default:
3601 		goto clear;
3602 	}
3603 
3604 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3605 		goto clear;
3606 
3607 	rcu_read_lock();
3608 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3609 	if (key) {
3610 		switch (key->conf.cipher) {
3611 		case WLAN_CIPHER_SUITE_TKIP:
3612 			/* we don't want to deal with MMIC in fast-rx */
3613 			goto clear_rcu;
3614 		case WLAN_CIPHER_SUITE_CCMP:
3615 		case WLAN_CIPHER_SUITE_CCMP_256:
3616 		case WLAN_CIPHER_SUITE_GCMP:
3617 		case WLAN_CIPHER_SUITE_GCMP_256:
3618 			break;
3619 		default:
3620 			/* we also don't want to deal with WEP or cipher scheme
3621 			 * since those require looking up the key idx in the
3622 			 * frame, rather than assuming the PTK is used
3623 			 * (we need to revisit this once we implement the real
3624 			 * PTK index, which is now valid in the spec, but we
3625 			 * haven't implemented that part yet)
3626 			 */
3627 			goto clear_rcu;
3628 		}
3629 
3630 		fastrx.key = true;
3631 		fastrx.icv_len = key->conf.icv_len;
3632 	}
3633 
3634 	assign = true;
3635  clear_rcu:
3636 	rcu_read_unlock();
3637  clear:
3638 	__release(check_fast_rx);
3639 
3640 	if (assign)
3641 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3642 
3643 	spin_lock_bh(&sta->lock);
3644 	old = rcu_dereference_protected(sta->fast_rx, true);
3645 	rcu_assign_pointer(sta->fast_rx, new);
3646 	spin_unlock_bh(&sta->lock);
3647 
3648 	if (old)
3649 		kfree_rcu(old, rcu_head);
3650 }
3651 
3652 void ieee80211_clear_fast_rx(struct sta_info *sta)
3653 {
3654 	struct ieee80211_fast_rx *old;
3655 
3656 	spin_lock_bh(&sta->lock);
3657 	old = rcu_dereference_protected(sta->fast_rx, true);
3658 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3659 	spin_unlock_bh(&sta->lock);
3660 
3661 	if (old)
3662 		kfree_rcu(old, rcu_head);
3663 }
3664 
3665 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3666 {
3667 	struct ieee80211_local *local = sdata->local;
3668 	struct sta_info *sta;
3669 
3670 	lockdep_assert_held(&local->sta_mtx);
3671 
3672 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3673 		if (sdata != sta->sdata &&
3674 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3675 			continue;
3676 		ieee80211_check_fast_rx(sta);
3677 	}
3678 }
3679 
3680 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3681 {
3682 	struct ieee80211_local *local = sdata->local;
3683 
3684 	mutex_lock(&local->sta_mtx);
3685 	__ieee80211_check_fast_rx_iface(sdata);
3686 	mutex_unlock(&local->sta_mtx);
3687 }
3688 
3689 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3690 				     struct ieee80211_fast_rx *fast_rx)
3691 {
3692 	struct sk_buff *skb = rx->skb;
3693 	struct ieee80211_hdr *hdr = (void *)skb->data;
3694 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3695 	struct sta_info *sta = rx->sta;
3696 	int orig_len = skb->len;
3697 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3698 	struct {
3699 		u8 snap[sizeof(rfc1042_header)];
3700 		__be16 proto;
3701 	} *payload __aligned(2);
3702 	struct {
3703 		u8 da[ETH_ALEN];
3704 		u8 sa[ETH_ALEN];
3705 	} addrs __aligned(2);
3706 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3707 
3708 	if (fast_rx->uses_rss)
3709 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3710 
3711 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3712 	 * to a common data structure; drivers can implement that per queue
3713 	 * but we don't have that information in mac80211
3714 	 */
3715 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3716 		return false;
3717 
3718 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3719 
3720 	/* If using encryption, we also need to have:
3721 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3722 	 *  - DECRYPTED: necessary for PN_VALIDATED
3723 	 */
3724 	if (fast_rx->key &&
3725 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3726 		return false;
3727 
3728 	/* we don't deal with A-MSDU deaggregation here */
3729 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3730 		return false;
3731 
3732 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3733 		return false;
3734 
3735 	if (unlikely(ieee80211_is_frag(hdr)))
3736 		return false;
3737 
3738 	/* Since our interface address cannot be multicast, this
3739 	 * implicitly also rejects multicast frames without the
3740 	 * explicit check.
3741 	 *
3742 	 * We shouldn't get any *data* frames not addressed to us
3743 	 * (AP mode will accept multicast *management* frames), but
3744 	 * punting here will make it go through the full checks in
3745 	 * ieee80211_accept_frame().
3746 	 */
3747 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3748 		return false;
3749 
3750 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3751 					      IEEE80211_FCTL_TODS)) !=
3752 	    fast_rx->expected_ds_bits)
3753 		goto drop;
3754 
3755 	/* assign the key to drop unencrypted frames (later)
3756 	 * and strip the IV/MIC if necessary
3757 	 */
3758 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3759 		/* GCMP header length is the same */
3760 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3761 	}
3762 
3763 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3764 		goto drop;
3765 	payload = (void *)(skb->data + snap_offs);
3766 
3767 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3768 		return false;
3769 
3770 	/* Don't handle these here since they require special code.
3771 	 * Accept AARP and IPX even though they should come with a
3772 	 * bridge-tunnel header - but if we get them this way then
3773 	 * there's little point in discarding them.
3774 	 */
3775 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3776 		     payload->proto == fast_rx->control_port_protocol))
3777 		return false;
3778 
3779 	/* after this point, don't punt to the slowpath! */
3780 
3781 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3782 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3783 		goto drop;
3784 
3785 	if (unlikely(fast_rx->sta_notify)) {
3786 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3787 		fast_rx->sta_notify = false;
3788 	}
3789 
3790 	/* statistics part of ieee80211_rx_h_sta_process() */
3791 	stats->last_rx = jiffies;
3792 	stats->last_rate = sta_stats_encode_rate(status);
3793 
3794 	stats->fragments++;
3795 
3796 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3797 		stats->last_signal = status->signal;
3798 		if (!fast_rx->uses_rss)
3799 			ewma_signal_add(&sta->rx_stats_avg.signal,
3800 					-status->signal);
3801 	}
3802 
3803 	if (status->chains) {
3804 		int i;
3805 
3806 		stats->chains = status->chains;
3807 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3808 			int signal = status->chain_signal[i];
3809 
3810 			if (!(status->chains & BIT(i)))
3811 				continue;
3812 
3813 			stats->chain_signal_last[i] = signal;
3814 			if (!fast_rx->uses_rss)
3815 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3816 						-signal);
3817 		}
3818 	}
3819 	/* end of statistics */
3820 
3821 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3822 		goto drop;
3823 
3824 	/* do the header conversion - first grab the addresses */
3825 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3826 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3827 	/* remove the SNAP but leave the ethertype */
3828 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3829 	/* push the addresses in front */
3830 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3831 
3832 	skb->dev = fast_rx->dev;
3833 
3834 	ieee80211_rx_stats(fast_rx->dev, skb->len);
3835 
3836 	/* The seqno index has the same property as needed
3837 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3838 	 * for non-QoS-data frames. Here we know it's a data
3839 	 * frame, so count MSDUs.
3840 	 */
3841 	u64_stats_update_begin(&stats->syncp);
3842 	stats->msdu[rx->seqno_idx]++;
3843 	stats->bytes += orig_len;
3844 	u64_stats_update_end(&stats->syncp);
3845 
3846 	if (fast_rx->internal_forward) {
3847 		struct sta_info *dsta = sta_info_get(rx->sdata, skb->data);
3848 
3849 		if (dsta) {
3850 			/*
3851 			 * Send to wireless media and increase priority by 256
3852 			 * to keep the received priority instead of
3853 			 * reclassifying the frame (see cfg80211_classify8021d).
3854 			 */
3855 			skb->priority += 256;
3856 			skb->protocol = htons(ETH_P_802_3);
3857 			skb_reset_network_header(skb);
3858 			skb_reset_mac_header(skb);
3859 			dev_queue_xmit(skb);
3860 			return true;
3861 		}
3862 	}
3863 
3864 	/* deliver to local stack */
3865 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
3866 	memset(skb->cb, 0, sizeof(skb->cb));
3867 	if (rx->napi)
3868 		napi_gro_receive(rx->napi, skb);
3869 	else
3870 		netif_receive_skb(skb);
3871 
3872 	return true;
3873  drop:
3874 	dev_kfree_skb(skb);
3875 	stats->dropped++;
3876 	return true;
3877 }
3878 
3879 /*
3880  * This function returns whether or not the SKB
3881  * was destined for RX processing or not, which,
3882  * if consume is true, is equivalent to whether
3883  * or not the skb was consumed.
3884  */
3885 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3886 					    struct sk_buff *skb, bool consume)
3887 {
3888 	struct ieee80211_local *local = rx->local;
3889 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3890 
3891 	rx->skb = skb;
3892 
3893 	/* See if we can do fast-rx; if we have to copy we already lost,
3894 	 * so punt in that case. We should never have to deliver a data
3895 	 * frame to multiple interfaces anyway.
3896 	 *
3897 	 * We skip the ieee80211_accept_frame() call and do the necessary
3898 	 * checking inside ieee80211_invoke_fast_rx().
3899 	 */
3900 	if (consume && rx->sta) {
3901 		struct ieee80211_fast_rx *fast_rx;
3902 
3903 		fast_rx = rcu_dereference(rx->sta->fast_rx);
3904 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
3905 			return true;
3906 	}
3907 
3908 	if (!ieee80211_accept_frame(rx))
3909 		return false;
3910 
3911 	if (!consume) {
3912 		skb = skb_copy(skb, GFP_ATOMIC);
3913 		if (!skb) {
3914 			if (net_ratelimit())
3915 				wiphy_debug(local->hw.wiphy,
3916 					"failed to copy skb for %s\n",
3917 					sdata->name);
3918 			return true;
3919 		}
3920 
3921 		rx->skb = skb;
3922 	}
3923 
3924 	ieee80211_invoke_rx_handlers(rx);
3925 	return true;
3926 }
3927 
3928 /*
3929  * This is the actual Rx frames handler. as it belongs to Rx path it must
3930  * be called with rcu_read_lock protection.
3931  */
3932 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3933 					 struct ieee80211_sta *pubsta,
3934 					 struct sk_buff *skb,
3935 					 struct napi_struct *napi)
3936 {
3937 	struct ieee80211_local *local = hw_to_local(hw);
3938 	struct ieee80211_sub_if_data *sdata;
3939 	struct ieee80211_hdr *hdr;
3940 	__le16 fc;
3941 	struct ieee80211_rx_data rx;
3942 	struct ieee80211_sub_if_data *prev;
3943 	struct rhash_head *tmp;
3944 	int err = 0;
3945 
3946 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3947 	memset(&rx, 0, sizeof(rx));
3948 	rx.skb = skb;
3949 	rx.local = local;
3950 	rx.napi = napi;
3951 
3952 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3953 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3954 
3955 	if (ieee80211_is_mgmt(fc)) {
3956 		/* drop frame if too short for header */
3957 		if (skb->len < ieee80211_hdrlen(fc))
3958 			err = -ENOBUFS;
3959 		else
3960 			err = skb_linearize(skb);
3961 	} else {
3962 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3963 	}
3964 
3965 	if (err) {
3966 		dev_kfree_skb(skb);
3967 		return;
3968 	}
3969 
3970 	hdr = (struct ieee80211_hdr *)skb->data;
3971 	ieee80211_parse_qos(&rx);
3972 	ieee80211_verify_alignment(&rx);
3973 
3974 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3975 		     ieee80211_is_beacon(hdr->frame_control)))
3976 		ieee80211_scan_rx(local, skb);
3977 
3978 	if (pubsta) {
3979 		rx.sta = container_of(pubsta, struct sta_info, sta);
3980 		rx.sdata = rx.sta->sdata;
3981 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3982 			return;
3983 		goto out;
3984 	} else if (ieee80211_is_data(fc)) {
3985 		struct sta_info *sta, *prev_sta;
3986 		const struct bucket_table *tbl;
3987 
3988 		prev_sta = NULL;
3989 
3990 		tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3991 
3992 		for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3993 			if (!prev_sta) {
3994 				prev_sta = sta;
3995 				continue;
3996 			}
3997 
3998 			rx.sta = prev_sta;
3999 			rx.sdata = prev_sta->sdata;
4000 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4001 
4002 			prev_sta = sta;
4003 		}
4004 
4005 		if (prev_sta) {
4006 			rx.sta = prev_sta;
4007 			rx.sdata = prev_sta->sdata;
4008 
4009 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4010 				return;
4011 			goto out;
4012 		}
4013 	}
4014 
4015 	prev = NULL;
4016 
4017 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4018 		if (!ieee80211_sdata_running(sdata))
4019 			continue;
4020 
4021 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4022 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4023 			continue;
4024 
4025 		/*
4026 		 * frame is destined for this interface, but if it's
4027 		 * not also for the previous one we handle that after
4028 		 * the loop to avoid copying the SKB once too much
4029 		 */
4030 
4031 		if (!prev) {
4032 			prev = sdata;
4033 			continue;
4034 		}
4035 
4036 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4037 		rx.sdata = prev;
4038 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4039 
4040 		prev = sdata;
4041 	}
4042 
4043 	if (prev) {
4044 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4045 		rx.sdata = prev;
4046 
4047 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4048 			return;
4049 	}
4050 
4051  out:
4052 	dev_kfree_skb(skb);
4053 }
4054 
4055 /*
4056  * This is the receive path handler. It is called by a low level driver when an
4057  * 802.11 MPDU is received from the hardware.
4058  */
4059 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4060 		       struct sk_buff *skb, struct napi_struct *napi)
4061 {
4062 	struct ieee80211_local *local = hw_to_local(hw);
4063 	struct ieee80211_rate *rate = NULL;
4064 	struct ieee80211_supported_band *sband;
4065 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4066 
4067 	WARN_ON_ONCE(softirq_count() == 0);
4068 
4069 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4070 		goto drop;
4071 
4072 	sband = local->hw.wiphy->bands[status->band];
4073 	if (WARN_ON(!sband))
4074 		goto drop;
4075 
4076 	/*
4077 	 * If we're suspending, it is possible although not too likely
4078 	 * that we'd be receiving frames after having already partially
4079 	 * quiesced the stack. We can't process such frames then since
4080 	 * that might, for example, cause stations to be added or other
4081 	 * driver callbacks be invoked.
4082 	 */
4083 	if (unlikely(local->quiescing || local->suspended))
4084 		goto drop;
4085 
4086 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4087 	if (unlikely(local->in_reconfig))
4088 		goto drop;
4089 
4090 	/*
4091 	 * The same happens when we're not even started,
4092 	 * but that's worth a warning.
4093 	 */
4094 	if (WARN_ON(!local->started))
4095 		goto drop;
4096 
4097 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4098 		/*
4099 		 * Validate the rate, unless a PLCP error means that
4100 		 * we probably can't have a valid rate here anyway.
4101 		 */
4102 
4103 		if (status->flag & RX_FLAG_HT) {
4104 			/*
4105 			 * rate_idx is MCS index, which can be [0-76]
4106 			 * as documented on:
4107 			 *
4108 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4109 			 *
4110 			 * Anything else would be some sort of driver or
4111 			 * hardware error. The driver should catch hardware
4112 			 * errors.
4113 			 */
4114 			if (WARN(status->rate_idx > 76,
4115 				 "Rate marked as an HT rate but passed "
4116 				 "status->rate_idx is not "
4117 				 "an MCS index [0-76]: %d (0x%02x)\n",
4118 				 status->rate_idx,
4119 				 status->rate_idx))
4120 				goto drop;
4121 		} else if (status->flag & RX_FLAG_VHT) {
4122 			if (WARN_ONCE(status->rate_idx > 9 ||
4123 				      !status->vht_nss ||
4124 				      status->vht_nss > 8,
4125 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4126 				      status->rate_idx, status->vht_nss))
4127 				goto drop;
4128 		} else {
4129 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4130 				goto drop;
4131 			rate = &sband->bitrates[status->rate_idx];
4132 		}
4133 	}
4134 
4135 	status->rx_flags = 0;
4136 
4137 	/*
4138 	 * key references and virtual interfaces are protected using RCU
4139 	 * and this requires that we are in a read-side RCU section during
4140 	 * receive processing
4141 	 */
4142 	rcu_read_lock();
4143 
4144 	/*
4145 	 * Frames with failed FCS/PLCP checksum are not returned,
4146 	 * all other frames are returned without radiotap header
4147 	 * if it was previously present.
4148 	 * Also, frames with less than 16 bytes are dropped.
4149 	 */
4150 	skb = ieee80211_rx_monitor(local, skb, rate);
4151 	if (!skb) {
4152 		rcu_read_unlock();
4153 		return;
4154 	}
4155 
4156 	ieee80211_tpt_led_trig_rx(local,
4157 			((struct ieee80211_hdr *)skb->data)->frame_control,
4158 			skb->len);
4159 
4160 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4161 
4162 	rcu_read_unlock();
4163 
4164 	return;
4165  drop:
4166 	kfree_skb(skb);
4167 }
4168 EXPORT_SYMBOL(ieee80211_rx_napi);
4169 
4170 /* This is a version of the rx handler that can be called from hard irq
4171  * context. Post the skb on the queue and schedule the tasklet */
4172 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4173 {
4174 	struct ieee80211_local *local = hw_to_local(hw);
4175 
4176 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4177 
4178 	skb->pkt_type = IEEE80211_RX_MSG;
4179 	skb_queue_tail(&local->skb_queue, skb);
4180 	tasklet_schedule(&local->tasklet);
4181 }
4182 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4183