xref: /openbmc/linux/net/mac80211/rx.c (revision 75f25bd3)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21 
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30 
31 /*
32  * monitor mode reception
33  *
34  * This function cleans up the SKB, i.e. it removes all the stuff
35  * only useful for monitoring.
36  */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 					   struct sk_buff *skb)
39 {
40 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 		if (likely(skb->len > FCS_LEN))
42 			__pskb_trim(skb, skb->len - FCS_LEN);
43 		else {
44 			/* driver bug */
45 			WARN_ON(1);
46 			dev_kfree_skb(skb);
47 			skb = NULL;
48 		}
49 	}
50 
51 	return skb;
52 }
53 
54 static inline int should_drop_frame(struct sk_buff *skb,
55 				    int present_fcs_len)
56 {
57 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59 
60 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 		return 1;
62 	if (unlikely(skb->len < 16 + present_fcs_len))
63 		return 1;
64 	if (ieee80211_is_ctl(hdr->frame_control) &&
65 	    !ieee80211_is_pspoll(hdr->frame_control) &&
66 	    !ieee80211_is_back_req(hdr->frame_control))
67 		return 1;
68 	return 0;
69 }
70 
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 			  struct ieee80211_rx_status *status)
74 {
75 	int len;
76 
77 	/* always present fields */
78 	len = sizeof(struct ieee80211_radiotap_header) + 9;
79 
80 	if (status->flag & RX_FLAG_MACTIME_MPDU)
81 		len += 8;
82 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 		len += 1;
84 
85 	if (len & 1) /* padding for RX_FLAGS if necessary */
86 		len++;
87 
88 	if (status->flag & RX_FLAG_HT) /* HT info */
89 		len += 3;
90 
91 	return len;
92 }
93 
94 /*
95  * ieee80211_add_rx_radiotap_header - add radiotap header
96  *
97  * add a radiotap header containing all the fields which the hardware provided.
98  */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 				 struct sk_buff *skb,
102 				 struct ieee80211_rate *rate,
103 				 int rtap_len)
104 {
105 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 	struct ieee80211_radiotap_header *rthdr;
107 	unsigned char *pos;
108 	u16 rx_flags = 0;
109 
110 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 	memset(rthdr, 0, rtap_len);
112 
113 	/* radiotap header, set always present flags */
114 	rthdr->it_present =
115 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 			    (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 			    (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 			    (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 	rthdr->it_len = cpu_to_le16(rtap_len);
120 
121 	pos = (unsigned char *)(rthdr+1);
122 
123 	/* the order of the following fields is important */
124 
125 	/* IEEE80211_RADIOTAP_TSFT */
126 	if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 		put_unaligned_le64(status->mactime, pos);
128 		rthdr->it_present |=
129 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 		pos += 8;
131 	}
132 
133 	/* IEEE80211_RADIOTAP_FLAGS */
134 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 		*pos |= IEEE80211_RADIOTAP_F_FCS;
136 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 	if (status->flag & RX_FLAG_SHORTPRE)
139 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 	pos++;
141 
142 	/* IEEE80211_RADIOTAP_RATE */
143 	if (status->flag & RX_FLAG_HT) {
144 		/*
145 		 * MCS information is a separate field in radiotap,
146 		 * added below. The byte here is needed as padding
147 		 * for the channel though, so initialise it to 0.
148 		 */
149 		*pos = 0;
150 	} else {
151 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 		*pos = rate->bitrate / 5;
153 	}
154 	pos++;
155 
156 	/* IEEE80211_RADIOTAP_CHANNEL */
157 	put_unaligned_le16(status->freq, pos);
158 	pos += 2;
159 	if (status->band == IEEE80211_BAND_5GHZ)
160 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 				   pos);
162 	else if (status->flag & RX_FLAG_HT)
163 		put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 				   pos);
165 	else if (rate->flags & IEEE80211_RATE_ERP_G)
166 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 				   pos);
168 	else
169 		put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 				   pos);
171 	pos += 2;
172 
173 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 		*pos = status->signal;
176 		rthdr->it_present |=
177 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 		pos++;
179 	}
180 
181 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182 
183 	/* IEEE80211_RADIOTAP_ANTENNA */
184 	*pos = status->antenna;
185 	pos++;
186 
187 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188 
189 	/* IEEE80211_RADIOTAP_RX_FLAGS */
190 	/* ensure 2 byte alignment for the 2 byte field as required */
191 	if ((pos - (u8 *)rthdr) & 1)
192 		pos++;
193 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 	put_unaligned_le16(rx_flags, pos);
196 	pos += 2;
197 
198 	if (status->flag & RX_FLAG_HT) {
199 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 		*pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 			 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 			 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 		*pos = 0;
204 		if (status->flag & RX_FLAG_SHORT_GI)
205 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 		if (status->flag & RX_FLAG_40MHZ)
207 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 		pos++;
209 		*pos++ = status->rate_idx;
210 	}
211 }
212 
213 /*
214  * This function copies a received frame to all monitor interfaces and
215  * returns a cleaned-up SKB that no longer includes the FCS nor the
216  * radiotap header the driver might have added.
217  */
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 		     struct ieee80211_rate *rate)
221 {
222 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 	struct ieee80211_sub_if_data *sdata;
224 	int needed_headroom = 0;
225 	struct sk_buff *skb, *skb2;
226 	struct net_device *prev_dev = NULL;
227 	int present_fcs_len = 0;
228 
229 	/*
230 	 * First, we may need to make a copy of the skb because
231 	 *  (1) we need to modify it for radiotap (if not present), and
232 	 *  (2) the other RX handlers will modify the skb we got.
233 	 *
234 	 * We don't need to, of course, if we aren't going to return
235 	 * the SKB because it has a bad FCS/PLCP checksum.
236 	 */
237 
238 	/* room for the radiotap header based on driver features */
239 	needed_headroom = ieee80211_rx_radiotap_len(local, status);
240 
241 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 		present_fcs_len = FCS_LEN;
243 
244 	/* make sure hdr->frame_control is on the linear part */
245 	if (!pskb_may_pull(origskb, 2)) {
246 		dev_kfree_skb(origskb);
247 		return NULL;
248 	}
249 
250 	if (!local->monitors) {
251 		if (should_drop_frame(origskb, present_fcs_len)) {
252 			dev_kfree_skb(origskb);
253 			return NULL;
254 		}
255 
256 		return remove_monitor_info(local, origskb);
257 	}
258 
259 	if (should_drop_frame(origskb, present_fcs_len)) {
260 		/* only need to expand headroom if necessary */
261 		skb = origskb;
262 		origskb = NULL;
263 
264 		/*
265 		 * This shouldn't trigger often because most devices have an
266 		 * RX header they pull before we get here, and that should
267 		 * be big enough for our radiotap information. We should
268 		 * probably export the length to drivers so that we can have
269 		 * them allocate enough headroom to start with.
270 		 */
271 		if (skb_headroom(skb) < needed_headroom &&
272 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 			dev_kfree_skb(skb);
274 			return NULL;
275 		}
276 	} else {
277 		/*
278 		 * Need to make a copy and possibly remove radiotap header
279 		 * and FCS from the original.
280 		 */
281 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
282 
283 		origskb = remove_monitor_info(local, origskb);
284 
285 		if (!skb)
286 			return origskb;
287 	}
288 
289 	/* prepend radiotap information */
290 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
291 
292 	skb_reset_mac_header(skb);
293 	skb->ip_summed = CHECKSUM_UNNECESSARY;
294 	skb->pkt_type = PACKET_OTHERHOST;
295 	skb->protocol = htons(ETH_P_802_2);
296 
297 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 			continue;
300 
301 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 			continue;
303 
304 		if (!ieee80211_sdata_running(sdata))
305 			continue;
306 
307 		if (prev_dev) {
308 			skb2 = skb_clone(skb, GFP_ATOMIC);
309 			if (skb2) {
310 				skb2->dev = prev_dev;
311 				netif_receive_skb(skb2);
312 			}
313 		}
314 
315 		prev_dev = sdata->dev;
316 		sdata->dev->stats.rx_packets++;
317 		sdata->dev->stats.rx_bytes += skb->len;
318 	}
319 
320 	if (prev_dev) {
321 		skb->dev = prev_dev;
322 		netif_receive_skb(skb);
323 	} else
324 		dev_kfree_skb(skb);
325 
326 	return origskb;
327 }
328 
329 
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
331 {
332 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 	int tid, seqno_idx, security_idx;
335 
336 	/* does the frame have a qos control field? */
337 	if (ieee80211_is_data_qos(hdr->frame_control)) {
338 		u8 *qc = ieee80211_get_qos_ctl(hdr);
339 		/* frame has qos control */
340 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342 			status->rx_flags |= IEEE80211_RX_AMSDU;
343 
344 		seqno_idx = tid;
345 		security_idx = tid;
346 	} else {
347 		/*
348 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
349 		 *
350 		 *	Sequence numbers for management frames, QoS data
351 		 *	frames with a broadcast/multicast address in the
352 		 *	Address 1 field, and all non-QoS data frames sent
353 		 *	by QoS STAs are assigned using an additional single
354 		 *	modulo-4096 counter, [...]
355 		 *
356 		 * We also use that counter for non-QoS STAs.
357 		 */
358 		seqno_idx = NUM_RX_DATA_QUEUES;
359 		security_idx = 0;
360 		if (ieee80211_is_mgmt(hdr->frame_control))
361 			security_idx = NUM_RX_DATA_QUEUES;
362 		tid = 0;
363 	}
364 
365 	rx->seqno_idx = seqno_idx;
366 	rx->security_idx = security_idx;
367 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 	 * For now, set skb->priority to 0 for other cases. */
369 	rx->skb->priority = (tid > 7) ? 0 : tid;
370 }
371 
372 /**
373  * DOC: Packet alignment
374  *
375  * Drivers always need to pass packets that are aligned to two-byte boundaries
376  * to the stack.
377  *
378  * Additionally, should, if possible, align the payload data in a way that
379  * guarantees that the contained IP header is aligned to a four-byte
380  * boundary. In the case of regular frames, this simply means aligning the
381  * payload to a four-byte boundary (because either the IP header is directly
382  * contained, or IV/RFC1042 headers that have a length divisible by four are
383  * in front of it).  If the payload data is not properly aligned and the
384  * architecture doesn't support efficient unaligned operations, mac80211
385  * will align the data.
386  *
387  * With A-MSDU frames, however, the payload data address must yield two modulo
388  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389  * push the IP header further back to a multiple of four again. Thankfully, the
390  * specs were sane enough this time around to require padding each A-MSDU
391  * subframe to a length that is a multiple of four.
392  *
393  * Padding like Atheros hardware adds which is between the 802.11 header and
394  * the payload is not supported, the driver is required to move the 802.11
395  * header to be directly in front of the payload in that case.
396  */
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
398 {
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 	WARN_ONCE((unsigned long)rx->skb->data & 1,
401 		  "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
403 }
404 
405 
406 /* rx handlers */
407 
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
410 {
411 	struct ieee80211_local *local = rx->local;
412 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413 	struct sk_buff *skb = rx->skb;
414 
415 	if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416 		   !local->sched_scanning))
417 		return RX_CONTINUE;
418 
419 	if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420 	    test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421 	    local->sched_scanning)
422 		return ieee80211_scan_rx(rx->sdata, skb);
423 
424 	/* scanning finished during invoking of handlers */
425 	I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426 	return RX_DROP_UNUSABLE;
427 }
428 
429 
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
431 {
432 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
433 
434 	if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435 		return 0;
436 
437 	return ieee80211_is_robust_mgmt_frame(hdr);
438 }
439 
440 
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
442 {
443 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
444 
445 	if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446 		return 0;
447 
448 	return ieee80211_is_robust_mgmt_frame(hdr);
449 }
450 
451 
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
454 {
455 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456 	struct ieee80211_mmie *mmie;
457 
458 	if (skb->len < 24 + sizeof(*mmie) ||
459 	    !is_multicast_ether_addr(hdr->da))
460 		return -1;
461 
462 	if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463 		return -1; /* not a robust management frame */
464 
465 	mmie = (struct ieee80211_mmie *)
466 		(skb->data + skb->len - sizeof(*mmie));
467 	if (mmie->element_id != WLAN_EID_MMIE ||
468 	    mmie->length != sizeof(*mmie) - 2)
469 		return -1;
470 
471 	return le16_to_cpu(mmie->key_id);
472 }
473 
474 
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
477 {
478 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
480 	char *dev_addr = rx->sdata->vif.addr;
481 
482 	if (ieee80211_is_data(hdr->frame_control)) {
483 		if (is_multicast_ether_addr(hdr->addr1)) {
484 			if (ieee80211_has_tods(hdr->frame_control) ||
485 				!ieee80211_has_fromds(hdr->frame_control))
486 				return RX_DROP_MONITOR;
487 			if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
488 				return RX_DROP_MONITOR;
489 		} else {
490 			if (!ieee80211_has_a4(hdr->frame_control))
491 				return RX_DROP_MONITOR;
492 			if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
493 				return RX_DROP_MONITOR;
494 		}
495 	}
496 
497 	/* If there is not an established peer link and this is not a peer link
498 	 * establisment frame, beacon or probe, drop the frame.
499 	 */
500 
501 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
502 		struct ieee80211_mgmt *mgmt;
503 
504 		if (!ieee80211_is_mgmt(hdr->frame_control))
505 			return RX_DROP_MONITOR;
506 
507 		if (ieee80211_is_action(hdr->frame_control)) {
508 			u8 category;
509 			mgmt = (struct ieee80211_mgmt *)hdr;
510 			category = mgmt->u.action.category;
511 			if (category != WLAN_CATEGORY_MESH_ACTION &&
512 				category != WLAN_CATEGORY_SELF_PROTECTED)
513 				return RX_DROP_MONITOR;
514 			return RX_CONTINUE;
515 		}
516 
517 		if (ieee80211_is_probe_req(hdr->frame_control) ||
518 		    ieee80211_is_probe_resp(hdr->frame_control) ||
519 		    ieee80211_is_beacon(hdr->frame_control) ||
520 		    ieee80211_is_auth(hdr->frame_control))
521 			return RX_CONTINUE;
522 
523 		return RX_DROP_MONITOR;
524 
525 	}
526 
527 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
528 
529 	if (ieee80211_is_data(hdr->frame_control) &&
530 	    is_multicast_ether_addr(hdr->addr1) &&
531 	    mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
532 		return RX_DROP_MONITOR;
533 #undef msh_h_get
534 
535 	return RX_CONTINUE;
536 }
537 
538 #define SEQ_MODULO 0x1000
539 #define SEQ_MASK   0xfff
540 
541 static inline int seq_less(u16 sq1, u16 sq2)
542 {
543 	return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
544 }
545 
546 static inline u16 seq_inc(u16 sq)
547 {
548 	return (sq + 1) & SEQ_MASK;
549 }
550 
551 static inline u16 seq_sub(u16 sq1, u16 sq2)
552 {
553 	return (sq1 - sq2) & SEQ_MASK;
554 }
555 
556 
557 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
558 					    struct tid_ampdu_rx *tid_agg_rx,
559 					    int index)
560 {
561 	struct ieee80211_local *local = hw_to_local(hw);
562 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
563 	struct ieee80211_rx_status *status;
564 
565 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
566 
567 	if (!skb)
568 		goto no_frame;
569 
570 	/* release the frame from the reorder ring buffer */
571 	tid_agg_rx->stored_mpdu_num--;
572 	tid_agg_rx->reorder_buf[index] = NULL;
573 	status = IEEE80211_SKB_RXCB(skb);
574 	status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
575 	skb_queue_tail(&local->rx_skb_queue, skb);
576 
577 no_frame:
578 	tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
579 }
580 
581 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
582 					     struct tid_ampdu_rx *tid_agg_rx,
583 					     u16 head_seq_num)
584 {
585 	int index;
586 
587 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
588 
589 	while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
590 		index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
591 							tid_agg_rx->buf_size;
592 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
593 	}
594 }
595 
596 /*
597  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
598  * the skb was added to the buffer longer than this time ago, the earlier
599  * frames that have not yet been received are assumed to be lost and the skb
600  * can be released for processing. This may also release other skb's from the
601  * reorder buffer if there are no additional gaps between the frames.
602  *
603  * Callers must hold tid_agg_rx->reorder_lock.
604  */
605 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
606 
607 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
608 					  struct tid_ampdu_rx *tid_agg_rx)
609 {
610 	int index, j;
611 
612 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
613 
614 	/* release the buffer until next missing frame */
615 	index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
616 						tid_agg_rx->buf_size;
617 	if (!tid_agg_rx->reorder_buf[index] &&
618 	    tid_agg_rx->stored_mpdu_num > 1) {
619 		/*
620 		 * No buffers ready to be released, but check whether any
621 		 * frames in the reorder buffer have timed out.
622 		 */
623 		int skipped = 1;
624 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
625 		     j = (j + 1) % tid_agg_rx->buf_size) {
626 			if (!tid_agg_rx->reorder_buf[j]) {
627 				skipped++;
628 				continue;
629 			}
630 			if (skipped &&
631 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
632 					HT_RX_REORDER_BUF_TIMEOUT))
633 				goto set_release_timer;
634 
635 #ifdef CONFIG_MAC80211_HT_DEBUG
636 			if (net_ratelimit())
637 				wiphy_debug(hw->wiphy,
638 					    "release an RX reorder frame due to timeout on earlier frames\n");
639 #endif
640 			ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
641 
642 			/*
643 			 * Increment the head seq# also for the skipped slots.
644 			 */
645 			tid_agg_rx->head_seq_num =
646 				(tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
647 			skipped = 0;
648 		}
649 	} else while (tid_agg_rx->reorder_buf[index]) {
650 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
651 		index =	seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
652 							tid_agg_rx->buf_size;
653 	}
654 
655 	if (tid_agg_rx->stored_mpdu_num) {
656 		j = index = seq_sub(tid_agg_rx->head_seq_num,
657 				    tid_agg_rx->ssn) % tid_agg_rx->buf_size;
658 
659 		for (; j != (index - 1) % tid_agg_rx->buf_size;
660 		     j = (j + 1) % tid_agg_rx->buf_size) {
661 			if (tid_agg_rx->reorder_buf[j])
662 				break;
663 		}
664 
665  set_release_timer:
666 
667 		mod_timer(&tid_agg_rx->reorder_timer,
668 			  tid_agg_rx->reorder_time[j] + 1 +
669 			  HT_RX_REORDER_BUF_TIMEOUT);
670 	} else {
671 		del_timer(&tid_agg_rx->reorder_timer);
672 	}
673 }
674 
675 /*
676  * As this function belongs to the RX path it must be under
677  * rcu_read_lock protection. It returns false if the frame
678  * can be processed immediately, true if it was consumed.
679  */
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681 					     struct tid_ampdu_rx *tid_agg_rx,
682 					     struct sk_buff *skb)
683 {
684 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
686 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
687 	u16 head_seq_num, buf_size;
688 	int index;
689 	bool ret = true;
690 
691 	spin_lock(&tid_agg_rx->reorder_lock);
692 
693 	buf_size = tid_agg_rx->buf_size;
694 	head_seq_num = tid_agg_rx->head_seq_num;
695 
696 	/* frame with out of date sequence number */
697 	if (seq_less(mpdu_seq_num, head_seq_num)) {
698 		dev_kfree_skb(skb);
699 		goto out;
700 	}
701 
702 	/*
703 	 * If frame the sequence number exceeds our buffering window
704 	 * size release some previous frames to make room for this one.
705 	 */
706 	if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
707 		head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
708 		/* release stored frames up to new head to stack */
709 		ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
710 	}
711 
712 	/* Now the new frame is always in the range of the reordering buffer */
713 
714 	index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
715 
716 	/* check if we already stored this frame */
717 	if (tid_agg_rx->reorder_buf[index]) {
718 		dev_kfree_skb(skb);
719 		goto out;
720 	}
721 
722 	/*
723 	 * If the current MPDU is in the right order and nothing else
724 	 * is stored we can process it directly, no need to buffer it.
725 	 * If it is first but there's something stored, we may be able
726 	 * to release frames after this one.
727 	 */
728 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729 	    tid_agg_rx->stored_mpdu_num == 0) {
730 		tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731 		ret = false;
732 		goto out;
733 	}
734 
735 	/* put the frame in the reordering buffer */
736 	tid_agg_rx->reorder_buf[index] = skb;
737 	tid_agg_rx->reorder_time[index] = jiffies;
738 	tid_agg_rx->stored_mpdu_num++;
739 	ieee80211_sta_reorder_release(hw, tid_agg_rx);
740 
741  out:
742 	spin_unlock(&tid_agg_rx->reorder_lock);
743 	return ret;
744 }
745 
746 /*
747  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748  * true if the MPDU was buffered, false if it should be processed.
749  */
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
751 {
752 	struct sk_buff *skb = rx->skb;
753 	struct ieee80211_local *local = rx->local;
754 	struct ieee80211_hw *hw = &local->hw;
755 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
756 	struct sta_info *sta = rx->sta;
757 	struct tid_ampdu_rx *tid_agg_rx;
758 	u16 sc;
759 	int tid;
760 
761 	if (!ieee80211_is_data_qos(hdr->frame_control))
762 		goto dont_reorder;
763 
764 	/*
765 	 * filter the QoS data rx stream according to
766 	 * STA/TID and check if this STA/TID is on aggregation
767 	 */
768 
769 	if (!sta)
770 		goto dont_reorder;
771 
772 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
773 
774 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
775 	if (!tid_agg_rx)
776 		goto dont_reorder;
777 
778 	/* qos null data frames are excluded */
779 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
780 		goto dont_reorder;
781 
782 	/* new, potentially un-ordered, ampdu frame - process it */
783 
784 	/* reset session timer */
785 	if (tid_agg_rx->timeout)
786 		mod_timer(&tid_agg_rx->session_timer,
787 			  TU_TO_EXP_TIME(tid_agg_rx->timeout));
788 
789 	/* if this mpdu is fragmented - terminate rx aggregation session */
790 	sc = le16_to_cpu(hdr->seq_ctrl);
791 	if (sc & IEEE80211_SCTL_FRAG) {
792 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
793 		skb_queue_tail(&rx->sdata->skb_queue, skb);
794 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
795 		return;
796 	}
797 
798 	/*
799 	 * No locking needed -- we will only ever process one
800 	 * RX packet at a time, and thus own tid_agg_rx. All
801 	 * other code manipulating it needs to (and does) make
802 	 * sure that we cannot get to it any more before doing
803 	 * anything with it.
804 	 */
805 	if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
806 		return;
807 
808  dont_reorder:
809 	skb_queue_tail(&local->rx_skb_queue, skb);
810 }
811 
812 static ieee80211_rx_result debug_noinline
813 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
814 {
815 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
816 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
817 
818 	/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
819 	if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
820 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
821 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
822 			     hdr->seq_ctrl)) {
823 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
824 				rx->local->dot11FrameDuplicateCount++;
825 				rx->sta->num_duplicates++;
826 			}
827 			return RX_DROP_UNUSABLE;
828 		} else
829 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
830 	}
831 
832 	if (unlikely(rx->skb->len < 16)) {
833 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
834 		return RX_DROP_MONITOR;
835 	}
836 
837 	/* Drop disallowed frame classes based on STA auth/assoc state;
838 	 * IEEE 802.11, Chap 5.5.
839 	 *
840 	 * mac80211 filters only based on association state, i.e. it drops
841 	 * Class 3 frames from not associated stations. hostapd sends
842 	 * deauth/disassoc frames when needed. In addition, hostapd is
843 	 * responsible for filtering on both auth and assoc states.
844 	 */
845 
846 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
847 		return ieee80211_rx_mesh_check(rx);
848 
849 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
850 		      ieee80211_is_pspoll(hdr->frame_control)) &&
851 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
852 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
853 		     (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
854 		return RX_DROP_MONITOR;
855 
856 	return RX_CONTINUE;
857 }
858 
859 
860 static ieee80211_rx_result debug_noinline
861 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
862 {
863 	struct sk_buff *skb = rx->skb;
864 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
865 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
866 	int keyidx;
867 	int hdrlen;
868 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
869 	struct ieee80211_key *sta_ptk = NULL;
870 	int mmie_keyidx = -1;
871 	__le16 fc;
872 
873 	/*
874 	 * Key selection 101
875 	 *
876 	 * There are four types of keys:
877 	 *  - GTK (group keys)
878 	 *  - IGTK (group keys for management frames)
879 	 *  - PTK (pairwise keys)
880 	 *  - STK (station-to-station pairwise keys)
881 	 *
882 	 * When selecting a key, we have to distinguish between multicast
883 	 * (including broadcast) and unicast frames, the latter can only
884 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
885 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
886 	 * unicast frames can also use key indices like GTKs. Hence, if we
887 	 * don't have a PTK/STK we check the key index for a WEP key.
888 	 *
889 	 * Note that in a regular BSS, multicast frames are sent by the
890 	 * AP only, associated stations unicast the frame to the AP first
891 	 * which then multicasts it on their behalf.
892 	 *
893 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
894 	 * with each station, that is something we don't currently handle.
895 	 * The spec seems to expect that one negotiates the same key with
896 	 * every station but there's no such requirement; VLANs could be
897 	 * possible.
898 	 */
899 
900 	/*
901 	 * No point in finding a key and decrypting if the frame is neither
902 	 * addressed to us nor a multicast frame.
903 	 */
904 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
905 		return RX_CONTINUE;
906 
907 	/* start without a key */
908 	rx->key = NULL;
909 
910 	if (rx->sta)
911 		sta_ptk = rcu_dereference(rx->sta->ptk);
912 
913 	fc = hdr->frame_control;
914 
915 	if (!ieee80211_has_protected(fc))
916 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
917 
918 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
919 		rx->key = sta_ptk;
920 		if ((status->flag & RX_FLAG_DECRYPTED) &&
921 		    (status->flag & RX_FLAG_IV_STRIPPED))
922 			return RX_CONTINUE;
923 		/* Skip decryption if the frame is not protected. */
924 		if (!ieee80211_has_protected(fc))
925 			return RX_CONTINUE;
926 	} else if (mmie_keyidx >= 0) {
927 		/* Broadcast/multicast robust management frame / BIP */
928 		if ((status->flag & RX_FLAG_DECRYPTED) &&
929 		    (status->flag & RX_FLAG_IV_STRIPPED))
930 			return RX_CONTINUE;
931 
932 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
933 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
934 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
935 		if (rx->sta)
936 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
937 		if (!rx->key)
938 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
939 	} else if (!ieee80211_has_protected(fc)) {
940 		/*
941 		 * The frame was not protected, so skip decryption. However, we
942 		 * need to set rx->key if there is a key that could have been
943 		 * used so that the frame may be dropped if encryption would
944 		 * have been expected.
945 		 */
946 		struct ieee80211_key *key = NULL;
947 		struct ieee80211_sub_if_data *sdata = rx->sdata;
948 		int i;
949 
950 		if (ieee80211_is_mgmt(fc) &&
951 		    is_multicast_ether_addr(hdr->addr1) &&
952 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
953 			rx->key = key;
954 		else {
955 			if (rx->sta) {
956 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
957 					key = rcu_dereference(rx->sta->gtk[i]);
958 					if (key)
959 						break;
960 				}
961 			}
962 			if (!key) {
963 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
964 					key = rcu_dereference(sdata->keys[i]);
965 					if (key)
966 						break;
967 				}
968 			}
969 			if (key)
970 				rx->key = key;
971 		}
972 		return RX_CONTINUE;
973 	} else {
974 		u8 keyid;
975 		/*
976 		 * The device doesn't give us the IV so we won't be
977 		 * able to look up the key. That's ok though, we
978 		 * don't need to decrypt the frame, we just won't
979 		 * be able to keep statistics accurate.
980 		 * Except for key threshold notifications, should
981 		 * we somehow allow the driver to tell us which key
982 		 * the hardware used if this flag is set?
983 		 */
984 		if ((status->flag & RX_FLAG_DECRYPTED) &&
985 		    (status->flag & RX_FLAG_IV_STRIPPED))
986 			return RX_CONTINUE;
987 
988 		hdrlen = ieee80211_hdrlen(fc);
989 
990 		if (rx->skb->len < 8 + hdrlen)
991 			return RX_DROP_UNUSABLE; /* TODO: count this? */
992 
993 		/*
994 		 * no need to call ieee80211_wep_get_keyidx,
995 		 * it verifies a bunch of things we've done already
996 		 */
997 		skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
998 		keyidx = keyid >> 6;
999 
1000 		/* check per-station GTK first, if multicast packet */
1001 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1002 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1003 
1004 		/* if not found, try default key */
1005 		if (!rx->key) {
1006 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1007 
1008 			/*
1009 			 * RSNA-protected unicast frames should always be
1010 			 * sent with pairwise or station-to-station keys,
1011 			 * but for WEP we allow using a key index as well.
1012 			 */
1013 			if (rx->key &&
1014 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1015 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1016 			    !is_multicast_ether_addr(hdr->addr1))
1017 				rx->key = NULL;
1018 		}
1019 	}
1020 
1021 	if (rx->key) {
1022 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1023 			return RX_DROP_MONITOR;
1024 
1025 		rx->key->tx_rx_count++;
1026 		/* TODO: add threshold stuff again */
1027 	} else {
1028 		return RX_DROP_MONITOR;
1029 	}
1030 
1031 	if (skb_linearize(rx->skb))
1032 		return RX_DROP_UNUSABLE;
1033 	/* the hdr variable is invalid now! */
1034 
1035 	switch (rx->key->conf.cipher) {
1036 	case WLAN_CIPHER_SUITE_WEP40:
1037 	case WLAN_CIPHER_SUITE_WEP104:
1038 		/* Check for weak IVs if possible */
1039 		if (rx->sta && ieee80211_is_data(fc) &&
1040 		    (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1041 		     !(status->flag & RX_FLAG_DECRYPTED)) &&
1042 		    ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1043 			rx->sta->wep_weak_iv_count++;
1044 
1045 		result = ieee80211_crypto_wep_decrypt(rx);
1046 		break;
1047 	case WLAN_CIPHER_SUITE_TKIP:
1048 		result = ieee80211_crypto_tkip_decrypt(rx);
1049 		break;
1050 	case WLAN_CIPHER_SUITE_CCMP:
1051 		result = ieee80211_crypto_ccmp_decrypt(rx);
1052 		break;
1053 	case WLAN_CIPHER_SUITE_AES_CMAC:
1054 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1055 		break;
1056 	default:
1057 		/*
1058 		 * We can reach here only with HW-only algorithms
1059 		 * but why didn't it decrypt the frame?!
1060 		 */
1061 		return RX_DROP_UNUSABLE;
1062 	}
1063 
1064 	/* either the frame has been decrypted or will be dropped */
1065 	status->flag |= RX_FLAG_DECRYPTED;
1066 
1067 	return result;
1068 }
1069 
1070 static ieee80211_rx_result debug_noinline
1071 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1072 {
1073 	struct ieee80211_local *local;
1074 	struct ieee80211_hdr *hdr;
1075 	struct sk_buff *skb;
1076 
1077 	local = rx->local;
1078 	skb = rx->skb;
1079 	hdr = (struct ieee80211_hdr *) skb->data;
1080 
1081 	if (!local->pspolling)
1082 		return RX_CONTINUE;
1083 
1084 	if (!ieee80211_has_fromds(hdr->frame_control))
1085 		/* this is not from AP */
1086 		return RX_CONTINUE;
1087 
1088 	if (!ieee80211_is_data(hdr->frame_control))
1089 		return RX_CONTINUE;
1090 
1091 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1092 		/* AP has no more frames buffered for us */
1093 		local->pspolling = false;
1094 		return RX_CONTINUE;
1095 	}
1096 
1097 	/* more data bit is set, let's request a new frame from the AP */
1098 	ieee80211_send_pspoll(local, rx->sdata);
1099 
1100 	return RX_CONTINUE;
1101 }
1102 
1103 static void ap_sta_ps_start(struct sta_info *sta)
1104 {
1105 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1106 	struct ieee80211_local *local = sdata->local;
1107 
1108 	atomic_inc(&sdata->bss->num_sta_ps);
1109 	set_sta_flags(sta, WLAN_STA_PS_STA);
1110 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1111 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1112 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1113 	printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1114 	       sdata->name, sta->sta.addr, sta->sta.aid);
1115 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1116 }
1117 
1118 static void ap_sta_ps_end(struct sta_info *sta)
1119 {
1120 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1121 
1122 	atomic_dec(&sdata->bss->num_sta_ps);
1123 
1124 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1125 	printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1126 	       sdata->name, sta->sta.addr, sta->sta.aid);
1127 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1128 
1129 	if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1130 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1131 		printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1132 		       sdata->name, sta->sta.addr, sta->sta.aid);
1133 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1134 		return;
1135 	}
1136 
1137 	ieee80211_sta_ps_deliver_wakeup(sta);
1138 }
1139 
1140 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1141 {
1142 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1143 	bool in_ps;
1144 
1145 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1146 
1147 	/* Don't let the same PS state be set twice */
1148 	in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1149 	if ((start && in_ps) || (!start && !in_ps))
1150 		return -EINVAL;
1151 
1152 	if (start)
1153 		ap_sta_ps_start(sta_inf);
1154 	else
1155 		ap_sta_ps_end(sta_inf);
1156 
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1160 
1161 static ieee80211_rx_result debug_noinline
1162 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1163 {
1164 	struct sta_info *sta = rx->sta;
1165 	struct sk_buff *skb = rx->skb;
1166 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1167 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1168 
1169 	if (!sta)
1170 		return RX_CONTINUE;
1171 
1172 	/*
1173 	 * Update last_rx only for IBSS packets which are for the current
1174 	 * BSSID to avoid keeping the current IBSS network alive in cases
1175 	 * where other STAs start using different BSSID.
1176 	 */
1177 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1178 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1179 						NL80211_IFTYPE_ADHOC);
1180 		if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1181 			sta->last_rx = jiffies;
1182 			if (ieee80211_is_data(hdr->frame_control)) {
1183 				sta->last_rx_rate_idx = status->rate_idx;
1184 				sta->last_rx_rate_flag = status->flag;
1185 			}
1186 		}
1187 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1188 		/*
1189 		 * Mesh beacons will update last_rx when if they are found to
1190 		 * match the current local configuration when processed.
1191 		 */
1192 		sta->last_rx = jiffies;
1193 		if (ieee80211_is_data(hdr->frame_control)) {
1194 			sta->last_rx_rate_idx = status->rate_idx;
1195 			sta->last_rx_rate_flag = status->flag;
1196 		}
1197 	}
1198 
1199 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1200 		return RX_CONTINUE;
1201 
1202 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1203 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1204 
1205 	sta->rx_fragments++;
1206 	sta->rx_bytes += rx->skb->len;
1207 	sta->last_signal = status->signal;
1208 	ewma_add(&sta->avg_signal, -status->signal);
1209 
1210 	/*
1211 	 * Change STA power saving mode only at the end of a frame
1212 	 * exchange sequence.
1213 	 */
1214 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1215 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1216 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1217 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1218 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1219 		if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1220 			/*
1221 			 * Ignore doze->wake transitions that are
1222 			 * indicated by non-data frames, the standard
1223 			 * is unclear here, but for example going to
1224 			 * PS mode and then scanning would cause a
1225 			 * doze->wake transition for the probe request,
1226 			 * and that is clearly undesirable.
1227 			 */
1228 			if (ieee80211_is_data(hdr->frame_control) &&
1229 			    !ieee80211_has_pm(hdr->frame_control))
1230 				ap_sta_ps_end(sta);
1231 		} else {
1232 			if (ieee80211_has_pm(hdr->frame_control))
1233 				ap_sta_ps_start(sta);
1234 		}
1235 	}
1236 
1237 	/*
1238 	 * Drop (qos-)data::nullfunc frames silently, since they
1239 	 * are used only to control station power saving mode.
1240 	 */
1241 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1242 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1243 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1244 
1245 		/*
1246 		 * If we receive a 4-addr nullfunc frame from a STA
1247 		 * that was not moved to a 4-addr STA vlan yet, drop
1248 		 * the frame to the monitor interface, to make sure
1249 		 * that hostapd sees it
1250 		 */
1251 		if (ieee80211_has_a4(hdr->frame_control) &&
1252 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1253 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1254 		      !rx->sdata->u.vlan.sta)))
1255 			return RX_DROP_MONITOR;
1256 		/*
1257 		 * Update counter and free packet here to avoid
1258 		 * counting this as a dropped packed.
1259 		 */
1260 		sta->rx_packets++;
1261 		dev_kfree_skb(rx->skb);
1262 		return RX_QUEUED;
1263 	}
1264 
1265 	return RX_CONTINUE;
1266 } /* ieee80211_rx_h_sta_process */
1267 
1268 static inline struct ieee80211_fragment_entry *
1269 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1270 			 unsigned int frag, unsigned int seq, int rx_queue,
1271 			 struct sk_buff **skb)
1272 {
1273 	struct ieee80211_fragment_entry *entry;
1274 	int idx;
1275 
1276 	idx = sdata->fragment_next;
1277 	entry = &sdata->fragments[sdata->fragment_next++];
1278 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1279 		sdata->fragment_next = 0;
1280 
1281 	if (!skb_queue_empty(&entry->skb_list)) {
1282 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1283 		struct ieee80211_hdr *hdr =
1284 			(struct ieee80211_hdr *) entry->skb_list.next->data;
1285 		printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1286 		       "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1287 		       "addr1=%pM addr2=%pM\n",
1288 		       sdata->name, idx,
1289 		       jiffies - entry->first_frag_time, entry->seq,
1290 		       entry->last_frag, hdr->addr1, hdr->addr2);
1291 #endif
1292 		__skb_queue_purge(&entry->skb_list);
1293 	}
1294 
1295 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1296 	*skb = NULL;
1297 	entry->first_frag_time = jiffies;
1298 	entry->seq = seq;
1299 	entry->rx_queue = rx_queue;
1300 	entry->last_frag = frag;
1301 	entry->ccmp = 0;
1302 	entry->extra_len = 0;
1303 
1304 	return entry;
1305 }
1306 
1307 static inline struct ieee80211_fragment_entry *
1308 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1309 			  unsigned int frag, unsigned int seq,
1310 			  int rx_queue, struct ieee80211_hdr *hdr)
1311 {
1312 	struct ieee80211_fragment_entry *entry;
1313 	int i, idx;
1314 
1315 	idx = sdata->fragment_next;
1316 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1317 		struct ieee80211_hdr *f_hdr;
1318 
1319 		idx--;
1320 		if (idx < 0)
1321 			idx = IEEE80211_FRAGMENT_MAX - 1;
1322 
1323 		entry = &sdata->fragments[idx];
1324 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1325 		    entry->rx_queue != rx_queue ||
1326 		    entry->last_frag + 1 != frag)
1327 			continue;
1328 
1329 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1330 
1331 		/*
1332 		 * Check ftype and addresses are equal, else check next fragment
1333 		 */
1334 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1335 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1336 		    compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1337 		    compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1338 			continue;
1339 
1340 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1341 			__skb_queue_purge(&entry->skb_list);
1342 			continue;
1343 		}
1344 		return entry;
1345 	}
1346 
1347 	return NULL;
1348 }
1349 
1350 static ieee80211_rx_result debug_noinline
1351 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1352 {
1353 	struct ieee80211_hdr *hdr;
1354 	u16 sc;
1355 	__le16 fc;
1356 	unsigned int frag, seq;
1357 	struct ieee80211_fragment_entry *entry;
1358 	struct sk_buff *skb;
1359 	struct ieee80211_rx_status *status;
1360 
1361 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1362 	fc = hdr->frame_control;
1363 	sc = le16_to_cpu(hdr->seq_ctrl);
1364 	frag = sc & IEEE80211_SCTL_FRAG;
1365 
1366 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1367 		   (rx->skb)->len < 24 ||
1368 		   is_multicast_ether_addr(hdr->addr1))) {
1369 		/* not fragmented */
1370 		goto out;
1371 	}
1372 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1373 
1374 	if (skb_linearize(rx->skb))
1375 		return RX_DROP_UNUSABLE;
1376 
1377 	/*
1378 	 *  skb_linearize() might change the skb->data and
1379 	 *  previously cached variables (in this case, hdr) need to
1380 	 *  be refreshed with the new data.
1381 	 */
1382 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1383 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1384 
1385 	if (frag == 0) {
1386 		/* This is the first fragment of a new frame. */
1387 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1388 						 rx->seqno_idx, &(rx->skb));
1389 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1390 		    ieee80211_has_protected(fc)) {
1391 			int queue = rx->security_idx;
1392 			/* Store CCMP PN so that we can verify that the next
1393 			 * fragment has a sequential PN value. */
1394 			entry->ccmp = 1;
1395 			memcpy(entry->last_pn,
1396 			       rx->key->u.ccmp.rx_pn[queue],
1397 			       CCMP_PN_LEN);
1398 		}
1399 		return RX_QUEUED;
1400 	}
1401 
1402 	/* This is a fragment for a frame that should already be pending in
1403 	 * fragment cache. Add this fragment to the end of the pending entry.
1404 	 */
1405 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1406 					  rx->seqno_idx, hdr);
1407 	if (!entry) {
1408 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1409 		return RX_DROP_MONITOR;
1410 	}
1411 
1412 	/* Verify that MPDUs within one MSDU have sequential PN values.
1413 	 * (IEEE 802.11i, 8.3.3.4.5) */
1414 	if (entry->ccmp) {
1415 		int i;
1416 		u8 pn[CCMP_PN_LEN], *rpn;
1417 		int queue;
1418 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1419 			return RX_DROP_UNUSABLE;
1420 		memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1421 		for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1422 			pn[i]++;
1423 			if (pn[i])
1424 				break;
1425 		}
1426 		queue = rx->security_idx;
1427 		rpn = rx->key->u.ccmp.rx_pn[queue];
1428 		if (memcmp(pn, rpn, CCMP_PN_LEN))
1429 			return RX_DROP_UNUSABLE;
1430 		memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1431 	}
1432 
1433 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1434 	__skb_queue_tail(&entry->skb_list, rx->skb);
1435 	entry->last_frag = frag;
1436 	entry->extra_len += rx->skb->len;
1437 	if (ieee80211_has_morefrags(fc)) {
1438 		rx->skb = NULL;
1439 		return RX_QUEUED;
1440 	}
1441 
1442 	rx->skb = __skb_dequeue(&entry->skb_list);
1443 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1444 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1445 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1446 					      GFP_ATOMIC))) {
1447 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1448 			__skb_queue_purge(&entry->skb_list);
1449 			return RX_DROP_UNUSABLE;
1450 		}
1451 	}
1452 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1453 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1454 		dev_kfree_skb(skb);
1455 	}
1456 
1457 	/* Complete frame has been reassembled - process it now */
1458 	status = IEEE80211_SKB_RXCB(rx->skb);
1459 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1460 
1461  out:
1462 	if (rx->sta)
1463 		rx->sta->rx_packets++;
1464 	if (is_multicast_ether_addr(hdr->addr1))
1465 		rx->local->dot11MulticastReceivedFrameCount++;
1466 	else
1467 		ieee80211_led_rx(rx->local);
1468 	return RX_CONTINUE;
1469 }
1470 
1471 static ieee80211_rx_result debug_noinline
1472 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1473 {
1474 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1475 	__le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1476 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1477 
1478 	if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1479 		   !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1480 		return RX_CONTINUE;
1481 
1482 	if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1483 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1484 		return RX_DROP_UNUSABLE;
1485 
1486 	if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1487 		ieee80211_sta_ps_deliver_poll_response(rx->sta);
1488 	else
1489 		set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1490 
1491 	/* Free PS Poll skb here instead of returning RX_DROP that would
1492 	 * count as an dropped frame. */
1493 	dev_kfree_skb(rx->skb);
1494 
1495 	return RX_QUEUED;
1496 }
1497 
1498 static ieee80211_rx_result debug_noinline
1499 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1500 {
1501 	u8 *data = rx->skb->data;
1502 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1503 
1504 	if (!ieee80211_is_data_qos(hdr->frame_control))
1505 		return RX_CONTINUE;
1506 
1507 	/* remove the qos control field, update frame type and meta-data */
1508 	memmove(data + IEEE80211_QOS_CTL_LEN, data,
1509 		ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1510 	hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1511 	/* change frame type to non QOS */
1512 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1513 
1514 	return RX_CONTINUE;
1515 }
1516 
1517 static int
1518 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1519 {
1520 	if (unlikely(!rx->sta ||
1521 	    !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1522 		return -EACCES;
1523 
1524 	return 0;
1525 }
1526 
1527 static int
1528 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1529 {
1530 	struct sk_buff *skb = rx->skb;
1531 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1532 
1533 	/*
1534 	 * Pass through unencrypted frames if the hardware has
1535 	 * decrypted them already.
1536 	 */
1537 	if (status->flag & RX_FLAG_DECRYPTED)
1538 		return 0;
1539 
1540 	/* Drop unencrypted frames if key is set. */
1541 	if (unlikely(!ieee80211_has_protected(fc) &&
1542 		     !ieee80211_is_nullfunc(fc) &&
1543 		     ieee80211_is_data(fc) &&
1544 		     (rx->key || rx->sdata->drop_unencrypted)))
1545 		return -EACCES;
1546 
1547 	return 0;
1548 }
1549 
1550 static int
1551 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1552 {
1553 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1554 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1555 	__le16 fc = hdr->frame_control;
1556 
1557 	/*
1558 	 * Pass through unencrypted frames if the hardware has
1559 	 * decrypted them already.
1560 	 */
1561 	if (status->flag & RX_FLAG_DECRYPTED)
1562 		return 0;
1563 
1564 	if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1565 		if (unlikely(!ieee80211_has_protected(fc) &&
1566 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1567 			     rx->key)) {
1568 			if (ieee80211_is_deauth(fc))
1569 				cfg80211_send_unprot_deauth(rx->sdata->dev,
1570 							    rx->skb->data,
1571 							    rx->skb->len);
1572 			else if (ieee80211_is_disassoc(fc))
1573 				cfg80211_send_unprot_disassoc(rx->sdata->dev,
1574 							      rx->skb->data,
1575 							      rx->skb->len);
1576 			return -EACCES;
1577 		}
1578 		/* BIP does not use Protected field, so need to check MMIE */
1579 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1580 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1581 			if (ieee80211_is_deauth(fc))
1582 				cfg80211_send_unprot_deauth(rx->sdata->dev,
1583 							    rx->skb->data,
1584 							    rx->skb->len);
1585 			else if (ieee80211_is_disassoc(fc))
1586 				cfg80211_send_unprot_disassoc(rx->sdata->dev,
1587 							      rx->skb->data,
1588 							      rx->skb->len);
1589 			return -EACCES;
1590 		}
1591 		/*
1592 		 * When using MFP, Action frames are not allowed prior to
1593 		 * having configured keys.
1594 		 */
1595 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1596 			     ieee80211_is_robust_mgmt_frame(
1597 				     (struct ieee80211_hdr *) rx->skb->data)))
1598 			return -EACCES;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static int
1605 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1606 {
1607 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1608 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1609 	bool check_port_control = false;
1610 	struct ethhdr *ehdr;
1611 	int ret;
1612 
1613 	*port_control = false;
1614 	if (ieee80211_has_a4(hdr->frame_control) &&
1615 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1616 		return -1;
1617 
1618 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1619 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1620 
1621 		if (!sdata->u.mgd.use_4addr)
1622 			return -1;
1623 		else
1624 			check_port_control = true;
1625 	}
1626 
1627 	if (is_multicast_ether_addr(hdr->addr1) &&
1628 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1629 		return -1;
1630 
1631 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1632 	if (ret < 0)
1633 		return ret;
1634 
1635 	ehdr = (struct ethhdr *) rx->skb->data;
1636 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1637 		*port_control = true;
1638 	else if (check_port_control)
1639 		return -1;
1640 
1641 	return 0;
1642 }
1643 
1644 /*
1645  * requires that rx->skb is a frame with ethernet header
1646  */
1647 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1648 {
1649 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1650 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1651 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1652 
1653 	/*
1654 	 * Allow EAPOL frames to us/the PAE group address regardless
1655 	 * of whether the frame was encrypted or not.
1656 	 */
1657 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1658 	    (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1659 	     compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1660 		return true;
1661 
1662 	if (ieee80211_802_1x_port_control(rx) ||
1663 	    ieee80211_drop_unencrypted(rx, fc))
1664 		return false;
1665 
1666 	return true;
1667 }
1668 
1669 /*
1670  * requires that rx->skb is a frame with ethernet header
1671  */
1672 static void
1673 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1674 {
1675 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1676 	struct net_device *dev = sdata->dev;
1677 	struct sk_buff *skb, *xmit_skb;
1678 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1679 	struct sta_info *dsta;
1680 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1681 
1682 	skb = rx->skb;
1683 	xmit_skb = NULL;
1684 
1685 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1686 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1687 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1688 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1689 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1690 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1691 			/*
1692 			 * send multicast frames both to higher layers in
1693 			 * local net stack and back to the wireless medium
1694 			 */
1695 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1696 			if (!xmit_skb && net_ratelimit())
1697 				printk(KERN_DEBUG "%s: failed to clone "
1698 				       "multicast frame\n", dev->name);
1699 		} else {
1700 			dsta = sta_info_get(sdata, skb->data);
1701 			if (dsta) {
1702 				/*
1703 				 * The destination station is associated to
1704 				 * this AP (in this VLAN), so send the frame
1705 				 * directly to it and do not pass it to local
1706 				 * net stack.
1707 				 */
1708 				xmit_skb = skb;
1709 				skb = NULL;
1710 			}
1711 		}
1712 	}
1713 
1714 	if (skb) {
1715 		int align __maybe_unused;
1716 
1717 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1718 		/*
1719 		 * 'align' will only take the values 0 or 2 here
1720 		 * since all frames are required to be aligned
1721 		 * to 2-byte boundaries when being passed to
1722 		 * mac80211. That also explains the __skb_push()
1723 		 * below.
1724 		 */
1725 		align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1726 		if (align) {
1727 			if (WARN_ON(skb_headroom(skb) < 3)) {
1728 				dev_kfree_skb(skb);
1729 				skb = NULL;
1730 			} else {
1731 				u8 *data = skb->data;
1732 				size_t len = skb_headlen(skb);
1733 				skb->data -= align;
1734 				memmove(skb->data, data, len);
1735 				skb_set_tail_pointer(skb, len);
1736 			}
1737 		}
1738 #endif
1739 
1740 		if (skb) {
1741 			/* deliver to local stack */
1742 			skb->protocol = eth_type_trans(skb, dev);
1743 			memset(skb->cb, 0, sizeof(skb->cb));
1744 			netif_receive_skb(skb);
1745 		}
1746 	}
1747 
1748 	if (xmit_skb) {
1749 		/* send to wireless media */
1750 		xmit_skb->protocol = htons(ETH_P_802_3);
1751 		skb_reset_network_header(xmit_skb);
1752 		skb_reset_mac_header(xmit_skb);
1753 		dev_queue_xmit(xmit_skb);
1754 	}
1755 }
1756 
1757 static ieee80211_rx_result debug_noinline
1758 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1759 {
1760 	struct net_device *dev = rx->sdata->dev;
1761 	struct sk_buff *skb = rx->skb;
1762 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1763 	__le16 fc = hdr->frame_control;
1764 	struct sk_buff_head frame_list;
1765 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1766 
1767 	if (unlikely(!ieee80211_is_data(fc)))
1768 		return RX_CONTINUE;
1769 
1770 	if (unlikely(!ieee80211_is_data_present(fc)))
1771 		return RX_DROP_MONITOR;
1772 
1773 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1774 		return RX_CONTINUE;
1775 
1776 	if (ieee80211_has_a4(hdr->frame_control) &&
1777 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1778 	    !rx->sdata->u.vlan.sta)
1779 		return RX_DROP_UNUSABLE;
1780 
1781 	if (is_multicast_ether_addr(hdr->addr1) &&
1782 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1783 	      rx->sdata->u.vlan.sta) ||
1784 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1785 	      rx->sdata->u.mgd.use_4addr)))
1786 		return RX_DROP_UNUSABLE;
1787 
1788 	skb->dev = dev;
1789 	__skb_queue_head_init(&frame_list);
1790 
1791 	if (skb_linearize(skb))
1792 		return RX_DROP_UNUSABLE;
1793 
1794 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1795 				 rx->sdata->vif.type,
1796 				 rx->local->hw.extra_tx_headroom, true);
1797 
1798 	while (!skb_queue_empty(&frame_list)) {
1799 		rx->skb = __skb_dequeue(&frame_list);
1800 
1801 		if (!ieee80211_frame_allowed(rx, fc)) {
1802 			dev_kfree_skb(rx->skb);
1803 			continue;
1804 		}
1805 		dev->stats.rx_packets++;
1806 		dev->stats.rx_bytes += rx->skb->len;
1807 
1808 		ieee80211_deliver_skb(rx);
1809 	}
1810 
1811 	return RX_QUEUED;
1812 }
1813 
1814 #ifdef CONFIG_MAC80211_MESH
1815 static ieee80211_rx_result
1816 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1817 {
1818 	struct ieee80211_hdr *hdr;
1819 	struct ieee80211s_hdr *mesh_hdr;
1820 	unsigned int hdrlen;
1821 	struct sk_buff *skb = rx->skb, *fwd_skb;
1822 	struct ieee80211_local *local = rx->local;
1823 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1824 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1825 
1826 	hdr = (struct ieee80211_hdr *) skb->data;
1827 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
1828 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1829 
1830 	if (!ieee80211_is_data(hdr->frame_control))
1831 		return RX_CONTINUE;
1832 
1833 	if (!mesh_hdr->ttl)
1834 		/* illegal frame */
1835 		return RX_DROP_MONITOR;
1836 
1837 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
1838 		struct mesh_path *mppath;
1839 		char *proxied_addr;
1840 		char *mpp_addr;
1841 
1842 		if (is_multicast_ether_addr(hdr->addr1)) {
1843 			mpp_addr = hdr->addr3;
1844 			proxied_addr = mesh_hdr->eaddr1;
1845 		} else {
1846 			mpp_addr = hdr->addr4;
1847 			proxied_addr = mesh_hdr->eaddr2;
1848 		}
1849 
1850 		rcu_read_lock();
1851 		mppath = mpp_path_lookup(proxied_addr, sdata);
1852 		if (!mppath) {
1853 			mpp_path_add(proxied_addr, mpp_addr, sdata);
1854 		} else {
1855 			spin_lock_bh(&mppath->state_lock);
1856 			if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1857 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1858 			spin_unlock_bh(&mppath->state_lock);
1859 		}
1860 		rcu_read_unlock();
1861 	}
1862 
1863 	/* Frame has reached destination.  Don't forward */
1864 	if (!is_multicast_ether_addr(hdr->addr1) &&
1865 	    compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1866 		return RX_CONTINUE;
1867 
1868 	mesh_hdr->ttl--;
1869 
1870 	if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1871 		if (!mesh_hdr->ttl)
1872 			IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1873 						     dropped_frames_ttl);
1874 		else {
1875 			struct ieee80211_hdr *fwd_hdr;
1876 			struct ieee80211_tx_info *info;
1877 
1878 			fwd_skb = skb_copy(skb, GFP_ATOMIC);
1879 
1880 			if (!fwd_skb && net_ratelimit())
1881 				printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1882 						   sdata->name);
1883 			if (!fwd_skb)
1884 				goto out;
1885 
1886 			fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1887 			memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1888 			info = IEEE80211_SKB_CB(fwd_skb);
1889 			memset(info, 0, sizeof(*info));
1890 			info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1891 			info->control.vif = &rx->sdata->vif;
1892 			skb_set_queue_mapping(skb,
1893 				ieee80211_select_queue(rx->sdata, fwd_skb));
1894 			ieee80211_set_qos_hdr(local, skb);
1895 			if (is_multicast_ether_addr(fwd_hdr->addr1))
1896 				IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1897 								fwded_mcast);
1898 			else {
1899 				int err;
1900 				/*
1901 				 * Save TA to addr1 to send TA a path error if a
1902 				 * suitable next hop is not found
1903 				 */
1904 				memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1905 						ETH_ALEN);
1906 				err = mesh_nexthop_lookup(fwd_skb, sdata);
1907 				/* Failed to immediately resolve next hop:
1908 				 * fwded frame was dropped or will be added
1909 				 * later to the pending skb queue.  */
1910 				if (err)
1911 					return RX_DROP_MONITOR;
1912 
1913 				IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1914 								fwded_unicast);
1915 			}
1916 			IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1917 						     fwded_frames);
1918 			ieee80211_add_pending_skb(local, fwd_skb);
1919 		}
1920 	}
1921 
1922  out:
1923 	if (is_multicast_ether_addr(hdr->addr1) ||
1924 	    sdata->dev->flags & IFF_PROMISC)
1925 		return RX_CONTINUE;
1926 	else
1927 		return RX_DROP_MONITOR;
1928 }
1929 #endif
1930 
1931 static ieee80211_rx_result debug_noinline
1932 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1933 {
1934 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1935 	struct ieee80211_local *local = rx->local;
1936 	struct net_device *dev = sdata->dev;
1937 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1938 	__le16 fc = hdr->frame_control;
1939 	bool port_control;
1940 	int err;
1941 
1942 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1943 		return RX_CONTINUE;
1944 
1945 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1946 		return RX_DROP_MONITOR;
1947 
1948 	/*
1949 	 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1950 	 * that a 4-addr station can be detected and moved into a separate VLAN
1951 	 */
1952 	if (ieee80211_has_a4(hdr->frame_control) &&
1953 	    sdata->vif.type == NL80211_IFTYPE_AP)
1954 		return RX_DROP_MONITOR;
1955 
1956 	err = __ieee80211_data_to_8023(rx, &port_control);
1957 	if (unlikely(err))
1958 		return RX_DROP_UNUSABLE;
1959 
1960 	if (!ieee80211_frame_allowed(rx, fc))
1961 		return RX_DROP_MONITOR;
1962 
1963 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1964 	    unlikely(port_control) && sdata->bss) {
1965 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1966 				     u.ap);
1967 		dev = sdata->dev;
1968 		rx->sdata = sdata;
1969 	}
1970 
1971 	rx->skb->dev = dev;
1972 
1973 	dev->stats.rx_packets++;
1974 	dev->stats.rx_bytes += rx->skb->len;
1975 
1976 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1977 	    !is_multicast_ether_addr(
1978 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
1979 	    (!local->scanning &&
1980 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1981 			mod_timer(&local->dynamic_ps_timer, jiffies +
1982 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1983 	}
1984 
1985 	ieee80211_deliver_skb(rx);
1986 
1987 	return RX_QUEUED;
1988 }
1989 
1990 static ieee80211_rx_result debug_noinline
1991 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1992 {
1993 	struct ieee80211_local *local = rx->local;
1994 	struct ieee80211_hw *hw = &local->hw;
1995 	struct sk_buff *skb = rx->skb;
1996 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1997 	struct tid_ampdu_rx *tid_agg_rx;
1998 	u16 start_seq_num;
1999 	u16 tid;
2000 
2001 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2002 		return RX_CONTINUE;
2003 
2004 	if (ieee80211_is_back_req(bar->frame_control)) {
2005 		struct {
2006 			__le16 control, start_seq_num;
2007 		} __packed bar_data;
2008 
2009 		if (!rx->sta)
2010 			return RX_DROP_MONITOR;
2011 
2012 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2013 				  &bar_data, sizeof(bar_data)))
2014 			return RX_DROP_MONITOR;
2015 
2016 		tid = le16_to_cpu(bar_data.control) >> 12;
2017 
2018 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2019 		if (!tid_agg_rx)
2020 			return RX_DROP_MONITOR;
2021 
2022 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2023 
2024 		/* reset session timer */
2025 		if (tid_agg_rx->timeout)
2026 			mod_timer(&tid_agg_rx->session_timer,
2027 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2028 
2029 		spin_lock(&tid_agg_rx->reorder_lock);
2030 		/* release stored frames up to start of BAR */
2031 		ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2032 		spin_unlock(&tid_agg_rx->reorder_lock);
2033 
2034 		kfree_skb(skb);
2035 		return RX_QUEUED;
2036 	}
2037 
2038 	/*
2039 	 * After this point, we only want management frames,
2040 	 * so we can drop all remaining control frames to
2041 	 * cooked monitor interfaces.
2042 	 */
2043 	return RX_DROP_MONITOR;
2044 }
2045 
2046 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2047 					   struct ieee80211_mgmt *mgmt,
2048 					   size_t len)
2049 {
2050 	struct ieee80211_local *local = sdata->local;
2051 	struct sk_buff *skb;
2052 	struct ieee80211_mgmt *resp;
2053 
2054 	if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2055 		/* Not to own unicast address */
2056 		return;
2057 	}
2058 
2059 	if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2060 	    compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2061 		/* Not from the current AP or not associated yet. */
2062 		return;
2063 	}
2064 
2065 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2066 		/* Too short SA Query request frame */
2067 		return;
2068 	}
2069 
2070 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2071 	if (skb == NULL)
2072 		return;
2073 
2074 	skb_reserve(skb, local->hw.extra_tx_headroom);
2075 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2076 	memset(resp, 0, 24);
2077 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2078 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2079 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2080 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2081 					  IEEE80211_STYPE_ACTION);
2082 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2083 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2084 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2085 	memcpy(resp->u.action.u.sa_query.trans_id,
2086 	       mgmt->u.action.u.sa_query.trans_id,
2087 	       WLAN_SA_QUERY_TR_ID_LEN);
2088 
2089 	ieee80211_tx_skb(sdata, skb);
2090 }
2091 
2092 static ieee80211_rx_result debug_noinline
2093 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2094 {
2095 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2096 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2097 
2098 	/*
2099 	 * From here on, look only at management frames.
2100 	 * Data and control frames are already handled,
2101 	 * and unknown (reserved) frames are useless.
2102 	 */
2103 	if (rx->skb->len < 24)
2104 		return RX_DROP_MONITOR;
2105 
2106 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2107 		return RX_DROP_MONITOR;
2108 
2109 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2110 		return RX_DROP_MONITOR;
2111 
2112 	if (ieee80211_drop_unencrypted_mgmt(rx))
2113 		return RX_DROP_UNUSABLE;
2114 
2115 	return RX_CONTINUE;
2116 }
2117 
2118 static ieee80211_rx_result debug_noinline
2119 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2120 {
2121 	struct ieee80211_local *local = rx->local;
2122 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2123 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2124 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2125 	int len = rx->skb->len;
2126 
2127 	if (!ieee80211_is_action(mgmt->frame_control))
2128 		return RX_CONTINUE;
2129 
2130 	/* drop too small frames */
2131 	if (len < IEEE80211_MIN_ACTION_SIZE)
2132 		return RX_DROP_UNUSABLE;
2133 
2134 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2135 		return RX_DROP_UNUSABLE;
2136 
2137 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2138 		return RX_DROP_UNUSABLE;
2139 
2140 	switch (mgmt->u.action.category) {
2141 	case WLAN_CATEGORY_BACK:
2142 		/*
2143 		 * The aggregation code is not prepared to handle
2144 		 * anything but STA/AP due to the BSSID handling;
2145 		 * IBSS could work in the code but isn't supported
2146 		 * by drivers or the standard.
2147 		 */
2148 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2149 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2150 		    sdata->vif.type != NL80211_IFTYPE_AP)
2151 			break;
2152 
2153 		/* verify action_code is present */
2154 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2155 			break;
2156 
2157 		switch (mgmt->u.action.u.addba_req.action_code) {
2158 		case WLAN_ACTION_ADDBA_REQ:
2159 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2160 				   sizeof(mgmt->u.action.u.addba_req)))
2161 				goto invalid;
2162 			break;
2163 		case WLAN_ACTION_ADDBA_RESP:
2164 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2165 				   sizeof(mgmt->u.action.u.addba_resp)))
2166 				goto invalid;
2167 			break;
2168 		case WLAN_ACTION_DELBA:
2169 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2170 				   sizeof(mgmt->u.action.u.delba)))
2171 				goto invalid;
2172 			break;
2173 		default:
2174 			goto invalid;
2175 		}
2176 
2177 		goto queue;
2178 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2179 		if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2180 			break;
2181 
2182 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2183 			break;
2184 
2185 		/* verify action_code is present */
2186 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2187 			break;
2188 
2189 		switch (mgmt->u.action.u.measurement.action_code) {
2190 		case WLAN_ACTION_SPCT_MSR_REQ:
2191 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2192 				   sizeof(mgmt->u.action.u.measurement)))
2193 				break;
2194 			ieee80211_process_measurement_req(sdata, mgmt, len);
2195 			goto handled;
2196 		case WLAN_ACTION_SPCT_CHL_SWITCH:
2197 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2198 				   sizeof(mgmt->u.action.u.chan_switch)))
2199 				break;
2200 
2201 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2202 				break;
2203 
2204 			if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2205 				break;
2206 
2207 			goto queue;
2208 		}
2209 		break;
2210 	case WLAN_CATEGORY_SA_QUERY:
2211 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2212 			   sizeof(mgmt->u.action.u.sa_query)))
2213 			break;
2214 
2215 		switch (mgmt->u.action.u.sa_query.action) {
2216 		case WLAN_ACTION_SA_QUERY_REQUEST:
2217 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2218 				break;
2219 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2220 			goto handled;
2221 		}
2222 		break;
2223 	case WLAN_CATEGORY_MESH_ACTION:
2224 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2225 			break;
2226 		goto queue;
2227 	case WLAN_CATEGORY_MESH_PATH_SEL:
2228 		if (!mesh_path_sel_is_hwmp(sdata))
2229 			break;
2230 		goto queue;
2231 	}
2232 
2233 	return RX_CONTINUE;
2234 
2235  invalid:
2236 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2237 	/* will return in the next handlers */
2238 	return RX_CONTINUE;
2239 
2240  handled:
2241 	if (rx->sta)
2242 		rx->sta->rx_packets++;
2243 	dev_kfree_skb(rx->skb);
2244 	return RX_QUEUED;
2245 
2246  queue:
2247 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2248 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2249 	ieee80211_queue_work(&local->hw, &sdata->work);
2250 	if (rx->sta)
2251 		rx->sta->rx_packets++;
2252 	return RX_QUEUED;
2253 }
2254 
2255 static ieee80211_rx_result debug_noinline
2256 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2257 {
2258 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2259 
2260 	/* skip known-bad action frames and return them in the next handler */
2261 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2262 		return RX_CONTINUE;
2263 
2264 	/*
2265 	 * Getting here means the kernel doesn't know how to handle
2266 	 * it, but maybe userspace does ... include returned frames
2267 	 * so userspace can register for those to know whether ones
2268 	 * it transmitted were processed or returned.
2269 	 */
2270 
2271 	if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2272 			     rx->skb->data, rx->skb->len,
2273 			     GFP_ATOMIC)) {
2274 		if (rx->sta)
2275 			rx->sta->rx_packets++;
2276 		dev_kfree_skb(rx->skb);
2277 		return RX_QUEUED;
2278 	}
2279 
2280 
2281 	return RX_CONTINUE;
2282 }
2283 
2284 static ieee80211_rx_result debug_noinline
2285 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2286 {
2287 	struct ieee80211_local *local = rx->local;
2288 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2289 	struct sk_buff *nskb;
2290 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2291 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2292 
2293 	if (!ieee80211_is_action(mgmt->frame_control))
2294 		return RX_CONTINUE;
2295 
2296 	/*
2297 	 * For AP mode, hostapd is responsible for handling any action
2298 	 * frames that we didn't handle, including returning unknown
2299 	 * ones. For all other modes we will return them to the sender,
2300 	 * setting the 0x80 bit in the action category, as required by
2301 	 * 802.11-2007 7.3.1.11.
2302 	 * Newer versions of hostapd shall also use the management frame
2303 	 * registration mechanisms, but older ones still use cooked
2304 	 * monitor interfaces so push all frames there.
2305 	 */
2306 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2307 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2308 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2309 		return RX_DROP_MONITOR;
2310 
2311 	/* do not return rejected action frames */
2312 	if (mgmt->u.action.category & 0x80)
2313 		return RX_DROP_UNUSABLE;
2314 
2315 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2316 			       GFP_ATOMIC);
2317 	if (nskb) {
2318 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2319 
2320 		nmgmt->u.action.category |= 0x80;
2321 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2322 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2323 
2324 		memset(nskb->cb, 0, sizeof(nskb->cb));
2325 
2326 		ieee80211_tx_skb(rx->sdata, nskb);
2327 	}
2328 	dev_kfree_skb(rx->skb);
2329 	return RX_QUEUED;
2330 }
2331 
2332 static ieee80211_rx_result debug_noinline
2333 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2334 {
2335 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2336 	ieee80211_rx_result rxs;
2337 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2338 	__le16 stype;
2339 
2340 	rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2341 	if (rxs != RX_CONTINUE)
2342 		return rxs;
2343 
2344 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2345 
2346 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2347 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2348 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2349 		return RX_DROP_MONITOR;
2350 
2351 	switch (stype) {
2352 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2353 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2354 		/* process for all: mesh, mlme, ibss */
2355 		break;
2356 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2357 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2358 		if (is_multicast_ether_addr(mgmt->da) &&
2359 		    !is_broadcast_ether_addr(mgmt->da))
2360 			return RX_DROP_MONITOR;
2361 
2362 		/* process only for station */
2363 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2364 			return RX_DROP_MONITOR;
2365 		break;
2366 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2367 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2368 		/* process only for ibss */
2369 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2370 			return RX_DROP_MONITOR;
2371 		break;
2372 	default:
2373 		return RX_DROP_MONITOR;
2374 	}
2375 
2376 	/* queue up frame and kick off work to process it */
2377 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2378 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2379 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2380 	if (rx->sta)
2381 		rx->sta->rx_packets++;
2382 
2383 	return RX_QUEUED;
2384 }
2385 
2386 /* TODO: use IEEE80211_RX_FRAGMENTED */
2387 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2388 					struct ieee80211_rate *rate)
2389 {
2390 	struct ieee80211_sub_if_data *sdata;
2391 	struct ieee80211_local *local = rx->local;
2392 	struct ieee80211_rtap_hdr {
2393 		struct ieee80211_radiotap_header hdr;
2394 		u8 flags;
2395 		u8 rate_or_pad;
2396 		__le16 chan_freq;
2397 		__le16 chan_flags;
2398 	} __packed *rthdr;
2399 	struct sk_buff *skb = rx->skb, *skb2;
2400 	struct net_device *prev_dev = NULL;
2401 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2402 
2403 	/*
2404 	 * If cooked monitor has been processed already, then
2405 	 * don't do it again. If not, set the flag.
2406 	 */
2407 	if (rx->flags & IEEE80211_RX_CMNTR)
2408 		goto out_free_skb;
2409 	rx->flags |= IEEE80211_RX_CMNTR;
2410 
2411 	if (skb_headroom(skb) < sizeof(*rthdr) &&
2412 	    pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2413 		goto out_free_skb;
2414 
2415 	rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2416 	memset(rthdr, 0, sizeof(*rthdr));
2417 	rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2418 	rthdr->hdr.it_present =
2419 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2420 			    (1 << IEEE80211_RADIOTAP_CHANNEL));
2421 
2422 	if (rate) {
2423 		rthdr->rate_or_pad = rate->bitrate / 5;
2424 		rthdr->hdr.it_present |=
2425 			cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2426 	}
2427 	rthdr->chan_freq = cpu_to_le16(status->freq);
2428 
2429 	if (status->band == IEEE80211_BAND_5GHZ)
2430 		rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2431 						IEEE80211_CHAN_5GHZ);
2432 	else
2433 		rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2434 						IEEE80211_CHAN_2GHZ);
2435 
2436 	skb_set_mac_header(skb, 0);
2437 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2438 	skb->pkt_type = PACKET_OTHERHOST;
2439 	skb->protocol = htons(ETH_P_802_2);
2440 
2441 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2442 		if (!ieee80211_sdata_running(sdata))
2443 			continue;
2444 
2445 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2446 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2447 			continue;
2448 
2449 		if (prev_dev) {
2450 			skb2 = skb_clone(skb, GFP_ATOMIC);
2451 			if (skb2) {
2452 				skb2->dev = prev_dev;
2453 				netif_receive_skb(skb2);
2454 			}
2455 		}
2456 
2457 		prev_dev = sdata->dev;
2458 		sdata->dev->stats.rx_packets++;
2459 		sdata->dev->stats.rx_bytes += skb->len;
2460 	}
2461 
2462 	if (prev_dev) {
2463 		skb->dev = prev_dev;
2464 		netif_receive_skb(skb);
2465 		return;
2466 	}
2467 
2468  out_free_skb:
2469 	dev_kfree_skb(skb);
2470 }
2471 
2472 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2473 					 ieee80211_rx_result res)
2474 {
2475 	switch (res) {
2476 	case RX_DROP_MONITOR:
2477 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2478 		if (rx->sta)
2479 			rx->sta->rx_dropped++;
2480 		/* fall through */
2481 	case RX_CONTINUE: {
2482 		struct ieee80211_rate *rate = NULL;
2483 		struct ieee80211_supported_band *sband;
2484 		struct ieee80211_rx_status *status;
2485 
2486 		status = IEEE80211_SKB_RXCB((rx->skb));
2487 
2488 		sband = rx->local->hw.wiphy->bands[status->band];
2489 		if (!(status->flag & RX_FLAG_HT))
2490 			rate = &sband->bitrates[status->rate_idx];
2491 
2492 		ieee80211_rx_cooked_monitor(rx, rate);
2493 		break;
2494 		}
2495 	case RX_DROP_UNUSABLE:
2496 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2497 		if (rx->sta)
2498 			rx->sta->rx_dropped++;
2499 		dev_kfree_skb(rx->skb);
2500 		break;
2501 	case RX_QUEUED:
2502 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2503 		break;
2504 	}
2505 }
2506 
2507 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2508 {
2509 	ieee80211_rx_result res = RX_DROP_MONITOR;
2510 	struct sk_buff *skb;
2511 
2512 #define CALL_RXH(rxh)			\
2513 	do {				\
2514 		res = rxh(rx);		\
2515 		if (res != RX_CONTINUE)	\
2516 			goto rxh_next;  \
2517 	} while (0);
2518 
2519 	spin_lock(&rx->local->rx_skb_queue.lock);
2520 	if (rx->local->running_rx_handler)
2521 		goto unlock;
2522 
2523 	rx->local->running_rx_handler = true;
2524 
2525 	while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2526 		spin_unlock(&rx->local->rx_skb_queue.lock);
2527 
2528 		/*
2529 		 * all the other fields are valid across frames
2530 		 * that belong to an aMPDU since they are on the
2531 		 * same TID from the same station
2532 		 */
2533 		rx->skb = skb;
2534 
2535 		CALL_RXH(ieee80211_rx_h_decrypt)
2536 		CALL_RXH(ieee80211_rx_h_check_more_data)
2537 		CALL_RXH(ieee80211_rx_h_sta_process)
2538 		CALL_RXH(ieee80211_rx_h_defragment)
2539 		CALL_RXH(ieee80211_rx_h_ps_poll)
2540 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2541 		/* must be after MMIC verify so header is counted in MPDU mic */
2542 		CALL_RXH(ieee80211_rx_h_remove_qos_control)
2543 		CALL_RXH(ieee80211_rx_h_amsdu)
2544 #ifdef CONFIG_MAC80211_MESH
2545 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2546 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2547 #endif
2548 		CALL_RXH(ieee80211_rx_h_data)
2549 		CALL_RXH(ieee80211_rx_h_ctrl);
2550 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2551 		CALL_RXH(ieee80211_rx_h_action)
2552 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2553 		CALL_RXH(ieee80211_rx_h_action_return)
2554 		CALL_RXH(ieee80211_rx_h_mgmt)
2555 
2556  rxh_next:
2557 		ieee80211_rx_handlers_result(rx, res);
2558 		spin_lock(&rx->local->rx_skb_queue.lock);
2559 #undef CALL_RXH
2560 	}
2561 
2562 	rx->local->running_rx_handler = false;
2563 
2564  unlock:
2565 	spin_unlock(&rx->local->rx_skb_queue.lock);
2566 }
2567 
2568 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2569 {
2570 	ieee80211_rx_result res = RX_DROP_MONITOR;
2571 
2572 #define CALL_RXH(rxh)			\
2573 	do {				\
2574 		res = rxh(rx);		\
2575 		if (res != RX_CONTINUE)	\
2576 			goto rxh_next;  \
2577 	} while (0);
2578 
2579 	CALL_RXH(ieee80211_rx_h_passive_scan)
2580 	CALL_RXH(ieee80211_rx_h_check)
2581 
2582 	ieee80211_rx_reorder_ampdu(rx);
2583 
2584 	ieee80211_rx_handlers(rx);
2585 	return;
2586 
2587  rxh_next:
2588 	ieee80211_rx_handlers_result(rx, res);
2589 
2590 #undef CALL_RXH
2591 }
2592 
2593 /*
2594  * This function makes calls into the RX path, therefore
2595  * it has to be invoked under RCU read lock.
2596  */
2597 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2598 {
2599 	struct ieee80211_rx_data rx = {
2600 		.sta = sta,
2601 		.sdata = sta->sdata,
2602 		.local = sta->local,
2603 		/* This is OK -- must be QoS data frame */
2604 		.security_idx = tid,
2605 		.seqno_idx = tid,
2606 		.flags = 0,
2607 	};
2608 	struct tid_ampdu_rx *tid_agg_rx;
2609 
2610 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2611 	if (!tid_agg_rx)
2612 		return;
2613 
2614 	spin_lock(&tid_agg_rx->reorder_lock);
2615 	ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2616 	spin_unlock(&tid_agg_rx->reorder_lock);
2617 
2618 	ieee80211_rx_handlers(&rx);
2619 }
2620 
2621 /* main receive path */
2622 
2623 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2624 				struct ieee80211_hdr *hdr)
2625 {
2626 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2627 	struct sk_buff *skb = rx->skb;
2628 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2629 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2630 	int multicast = is_multicast_ether_addr(hdr->addr1);
2631 
2632 	switch (sdata->vif.type) {
2633 	case NL80211_IFTYPE_STATION:
2634 		if (!bssid && !sdata->u.mgd.use_4addr)
2635 			return 0;
2636 		if (!multicast &&
2637 		    compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2638 			if (!(sdata->dev->flags & IFF_PROMISC) ||
2639 			    sdata->u.mgd.use_4addr)
2640 				return 0;
2641 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2642 		}
2643 		break;
2644 	case NL80211_IFTYPE_ADHOC:
2645 		if (!bssid)
2646 			return 0;
2647 		if (ieee80211_is_beacon(hdr->frame_control)) {
2648 			return 1;
2649 		}
2650 		else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2651 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2652 				return 0;
2653 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2654 		} else if (!multicast &&
2655 			   compare_ether_addr(sdata->vif.addr,
2656 					      hdr->addr1) != 0) {
2657 			if (!(sdata->dev->flags & IFF_PROMISC))
2658 				return 0;
2659 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2660 		} else if (!rx->sta) {
2661 			int rate_idx;
2662 			if (status->flag & RX_FLAG_HT)
2663 				rate_idx = 0; /* TODO: HT rates */
2664 			else
2665 				rate_idx = status->rate_idx;
2666 			rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2667 					hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2668 		}
2669 		break;
2670 	case NL80211_IFTYPE_MESH_POINT:
2671 		if (!multicast &&
2672 		    compare_ether_addr(sdata->vif.addr,
2673 				       hdr->addr1) != 0) {
2674 			if (!(sdata->dev->flags & IFF_PROMISC))
2675 				return 0;
2676 
2677 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2678 		}
2679 		break;
2680 	case NL80211_IFTYPE_AP_VLAN:
2681 	case NL80211_IFTYPE_AP:
2682 		if (!bssid) {
2683 			if (compare_ether_addr(sdata->vif.addr,
2684 					       hdr->addr1))
2685 				return 0;
2686 		} else if (!ieee80211_bssid_match(bssid,
2687 					sdata->vif.addr)) {
2688 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2689 			    !ieee80211_is_beacon(hdr->frame_control))
2690 				return 0;
2691 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2692 		}
2693 		break;
2694 	case NL80211_IFTYPE_WDS:
2695 		if (bssid || !ieee80211_is_data(hdr->frame_control))
2696 			return 0;
2697 		if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2698 			return 0;
2699 		break;
2700 	default:
2701 		/* should never get here */
2702 		WARN_ON(1);
2703 		break;
2704 	}
2705 
2706 	return 1;
2707 }
2708 
2709 /*
2710  * This function returns whether or not the SKB
2711  * was destined for RX processing or not, which,
2712  * if consume is true, is equivalent to whether
2713  * or not the skb was consumed.
2714  */
2715 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2716 					    struct sk_buff *skb, bool consume)
2717 {
2718 	struct ieee80211_local *local = rx->local;
2719 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2720 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2721 	struct ieee80211_hdr *hdr = (void *)skb->data;
2722 	int prepares;
2723 
2724 	rx->skb = skb;
2725 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
2726 	prepares = prepare_for_handlers(rx, hdr);
2727 
2728 	if (!prepares)
2729 		return false;
2730 
2731 	if (!consume) {
2732 		skb = skb_copy(skb, GFP_ATOMIC);
2733 		if (!skb) {
2734 			if (net_ratelimit())
2735 				wiphy_debug(local->hw.wiphy,
2736 					"failed to copy skb for %s\n",
2737 					sdata->name);
2738 			return true;
2739 		}
2740 
2741 		rx->skb = skb;
2742 	}
2743 
2744 	ieee80211_invoke_rx_handlers(rx);
2745 	return true;
2746 }
2747 
2748 /*
2749  * This is the actual Rx frames handler. as it blongs to Rx path it must
2750  * be called with rcu_read_lock protection.
2751  */
2752 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2753 					 struct sk_buff *skb)
2754 {
2755 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2756 	struct ieee80211_local *local = hw_to_local(hw);
2757 	struct ieee80211_sub_if_data *sdata;
2758 	struct ieee80211_hdr *hdr;
2759 	__le16 fc;
2760 	struct ieee80211_rx_data rx;
2761 	struct ieee80211_sub_if_data *prev;
2762 	struct sta_info *sta, *tmp, *prev_sta;
2763 	int err = 0;
2764 
2765 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2766 	memset(&rx, 0, sizeof(rx));
2767 	rx.skb = skb;
2768 	rx.local = local;
2769 
2770 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2771 		local->dot11ReceivedFragmentCount++;
2772 
2773 	if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2774 		     test_bit(SCAN_SW_SCANNING, &local->scanning)))
2775 		status->rx_flags |= IEEE80211_RX_IN_SCAN;
2776 
2777 	if (ieee80211_is_mgmt(fc))
2778 		err = skb_linearize(skb);
2779 	else
2780 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2781 
2782 	if (err) {
2783 		dev_kfree_skb(skb);
2784 		return;
2785 	}
2786 
2787 	hdr = (struct ieee80211_hdr *)skb->data;
2788 	ieee80211_parse_qos(&rx);
2789 	ieee80211_verify_alignment(&rx);
2790 
2791 	if (ieee80211_is_data(fc)) {
2792 		prev_sta = NULL;
2793 
2794 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
2795 			if (!prev_sta) {
2796 				prev_sta = sta;
2797 				continue;
2798 			}
2799 
2800 			rx.sta = prev_sta;
2801 			rx.sdata = prev_sta->sdata;
2802 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
2803 
2804 			prev_sta = sta;
2805 		}
2806 
2807 		if (prev_sta) {
2808 			rx.sta = prev_sta;
2809 			rx.sdata = prev_sta->sdata;
2810 
2811 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2812 				return;
2813 			goto out;
2814 		}
2815 	}
2816 
2817 	prev = NULL;
2818 
2819 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2820 		if (!ieee80211_sdata_running(sdata))
2821 			continue;
2822 
2823 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2824 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2825 			continue;
2826 
2827 		/*
2828 		 * frame is destined for this interface, but if it's
2829 		 * not also for the previous one we handle that after
2830 		 * the loop to avoid copying the SKB once too much
2831 		 */
2832 
2833 		if (!prev) {
2834 			prev = sdata;
2835 			continue;
2836 		}
2837 
2838 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
2839 		rx.sdata = prev;
2840 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
2841 
2842 		prev = sdata;
2843 	}
2844 
2845 	if (prev) {
2846 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
2847 		rx.sdata = prev;
2848 
2849 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2850 			return;
2851 	}
2852 
2853  out:
2854 	dev_kfree_skb(skb);
2855 }
2856 
2857 /*
2858  * This is the receive path handler. It is called by a low level driver when an
2859  * 802.11 MPDU is received from the hardware.
2860  */
2861 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2862 {
2863 	struct ieee80211_local *local = hw_to_local(hw);
2864 	struct ieee80211_rate *rate = NULL;
2865 	struct ieee80211_supported_band *sband;
2866 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2867 
2868 	WARN_ON_ONCE(softirq_count() == 0);
2869 
2870 	if (WARN_ON(status->band < 0 ||
2871 		    status->band >= IEEE80211_NUM_BANDS))
2872 		goto drop;
2873 
2874 	sband = local->hw.wiphy->bands[status->band];
2875 	if (WARN_ON(!sband))
2876 		goto drop;
2877 
2878 	/*
2879 	 * If we're suspending, it is possible although not too likely
2880 	 * that we'd be receiving frames after having already partially
2881 	 * quiesced the stack. We can't process such frames then since
2882 	 * that might, for example, cause stations to be added or other
2883 	 * driver callbacks be invoked.
2884 	 */
2885 	if (unlikely(local->quiescing || local->suspended))
2886 		goto drop;
2887 
2888 	/*
2889 	 * The same happens when we're not even started,
2890 	 * but that's worth a warning.
2891 	 */
2892 	if (WARN_ON(!local->started))
2893 		goto drop;
2894 
2895 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2896 		/*
2897 		 * Validate the rate, unless a PLCP error means that
2898 		 * we probably can't have a valid rate here anyway.
2899 		 */
2900 
2901 		if (status->flag & RX_FLAG_HT) {
2902 			/*
2903 			 * rate_idx is MCS index, which can be [0-76]
2904 			 * as documented on:
2905 			 *
2906 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2907 			 *
2908 			 * Anything else would be some sort of driver or
2909 			 * hardware error. The driver should catch hardware
2910 			 * errors.
2911 			 */
2912 			if (WARN((status->rate_idx < 0 ||
2913 				 status->rate_idx > 76),
2914 				 "Rate marked as an HT rate but passed "
2915 				 "status->rate_idx is not "
2916 				 "an MCS index [0-76]: %d (0x%02x)\n",
2917 				 status->rate_idx,
2918 				 status->rate_idx))
2919 				goto drop;
2920 		} else {
2921 			if (WARN_ON(status->rate_idx < 0 ||
2922 				    status->rate_idx >= sband->n_bitrates))
2923 				goto drop;
2924 			rate = &sband->bitrates[status->rate_idx];
2925 		}
2926 	}
2927 
2928 	status->rx_flags = 0;
2929 
2930 	/*
2931 	 * key references and virtual interfaces are protected using RCU
2932 	 * and this requires that we are in a read-side RCU section during
2933 	 * receive processing
2934 	 */
2935 	rcu_read_lock();
2936 
2937 	/*
2938 	 * Frames with failed FCS/PLCP checksum are not returned,
2939 	 * all other frames are returned without radiotap header
2940 	 * if it was previously present.
2941 	 * Also, frames with less than 16 bytes are dropped.
2942 	 */
2943 	skb = ieee80211_rx_monitor(local, skb, rate);
2944 	if (!skb) {
2945 		rcu_read_unlock();
2946 		return;
2947 	}
2948 
2949 	ieee80211_tpt_led_trig_rx(local,
2950 			((struct ieee80211_hdr *)skb->data)->frame_control,
2951 			skb->len);
2952 	__ieee80211_rx_handle_packet(hw, skb);
2953 
2954 	rcu_read_unlock();
2955 
2956 	return;
2957  drop:
2958 	kfree_skb(skb);
2959 }
2960 EXPORT_SYMBOL(ieee80211_rx);
2961 
2962 /* This is a version of the rx handler that can be called from hard irq
2963  * context. Post the skb on the queue and schedule the tasklet */
2964 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2965 {
2966 	struct ieee80211_local *local = hw_to_local(hw);
2967 
2968 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2969 
2970 	skb->pkt_type = IEEE80211_RX_MSG;
2971 	skb_queue_tail(&local->skb_queue, skb);
2972 	tasklet_schedule(&local->tasklet);
2973 }
2974 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
2975