1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 44 if (likely(skb->len > FCS_LEN)) 45 __pskb_trim(skb, skb->len - FCS_LEN); 46 else { 47 /* driver bug */ 48 WARN_ON(1); 49 dev_kfree_skb(skb); 50 skb = NULL; 51 } 52 } 53 54 return skb; 55 } 56 57 static inline int should_drop_frame(struct sk_buff *skb, 58 int present_fcs_len) 59 { 60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 61 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 62 63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 64 return 1; 65 if (unlikely(skb->len < 16 + present_fcs_len)) 66 return 1; 67 if (ieee80211_is_ctl(hdr->frame_control) && 68 !ieee80211_is_pspoll(hdr->frame_control) && 69 !ieee80211_is_back_req(hdr->frame_control)) 70 return 1; 71 return 0; 72 } 73 74 static int 75 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 76 struct ieee80211_rx_status *status) 77 { 78 int len; 79 80 /* always present fields */ 81 len = sizeof(struct ieee80211_radiotap_header) + 9; 82 83 if (status->flag & RX_FLAG_MACTIME_MPDU) 84 len += 8; 85 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 86 len += 1; 87 88 if (len & 1) /* padding for RX_FLAGS if necessary */ 89 len++; 90 91 if (status->flag & RX_FLAG_HT) /* HT info */ 92 len += 3; 93 94 return len; 95 } 96 97 /* 98 * ieee80211_add_rx_radiotap_header - add radiotap header 99 * 100 * add a radiotap header containing all the fields which the hardware provided. 101 */ 102 static void 103 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 104 struct sk_buff *skb, 105 struct ieee80211_rate *rate, 106 int rtap_len, bool has_fcs) 107 { 108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 109 struct ieee80211_radiotap_header *rthdr; 110 unsigned char *pos; 111 u16 rx_flags = 0; 112 113 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 114 memset(rthdr, 0, rtap_len); 115 116 /* radiotap header, set always present flags */ 117 rthdr->it_present = 118 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 119 (1 << IEEE80211_RADIOTAP_CHANNEL) | 120 (1 << IEEE80211_RADIOTAP_ANTENNA) | 121 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 122 rthdr->it_len = cpu_to_le16(rtap_len); 123 124 pos = (unsigned char *)(rthdr+1); 125 126 /* the order of the following fields is important */ 127 128 /* IEEE80211_RADIOTAP_TSFT */ 129 if (status->flag & RX_FLAG_MACTIME_MPDU) { 130 put_unaligned_le64(status->mactime, pos); 131 rthdr->it_present |= 132 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 133 pos += 8; 134 } 135 136 /* IEEE80211_RADIOTAP_FLAGS */ 137 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 138 *pos |= IEEE80211_RADIOTAP_F_FCS; 139 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 140 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 141 if (status->flag & RX_FLAG_SHORTPRE) 142 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 143 pos++; 144 145 /* IEEE80211_RADIOTAP_RATE */ 146 if (!rate || status->flag & RX_FLAG_HT) { 147 /* 148 * Without rate information don't add it. If we have, 149 * MCS information is a separate field in radiotap, 150 * added below. The byte here is needed as padding 151 * for the channel though, so initialise it to 0. 152 */ 153 *pos = 0; 154 } else { 155 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 156 *pos = rate->bitrate / 5; 157 } 158 pos++; 159 160 /* IEEE80211_RADIOTAP_CHANNEL */ 161 put_unaligned_le16(status->freq, pos); 162 pos += 2; 163 if (status->band == IEEE80211_BAND_5GHZ) 164 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 165 pos); 166 else if (status->flag & RX_FLAG_HT) 167 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 168 pos); 169 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 170 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 171 pos); 172 else if (rate) 173 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 174 pos); 175 else 176 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos); 177 pos += 2; 178 179 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 180 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 181 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 182 *pos = status->signal; 183 rthdr->it_present |= 184 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 185 pos++; 186 } 187 188 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 189 190 /* IEEE80211_RADIOTAP_ANTENNA */ 191 *pos = status->antenna; 192 pos++; 193 194 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 195 196 /* IEEE80211_RADIOTAP_RX_FLAGS */ 197 /* ensure 2 byte alignment for the 2 byte field as required */ 198 if ((pos - (u8 *)rthdr) & 1) 199 pos++; 200 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 201 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 202 put_unaligned_le16(rx_flags, pos); 203 pos += 2; 204 205 if (status->flag & RX_FLAG_HT) { 206 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 207 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS | 208 IEEE80211_RADIOTAP_MCS_HAVE_GI | 209 IEEE80211_RADIOTAP_MCS_HAVE_BW; 210 *pos = 0; 211 if (status->flag & RX_FLAG_SHORT_GI) 212 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 213 if (status->flag & RX_FLAG_40MHZ) 214 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 215 pos++; 216 *pos++ = status->rate_idx; 217 } 218 } 219 220 /* 221 * This function copies a received frame to all monitor interfaces and 222 * returns a cleaned-up SKB that no longer includes the FCS nor the 223 * radiotap header the driver might have added. 224 */ 225 static struct sk_buff * 226 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 227 struct ieee80211_rate *rate) 228 { 229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 230 struct ieee80211_sub_if_data *sdata; 231 int needed_headroom; 232 struct sk_buff *skb, *skb2; 233 struct net_device *prev_dev = NULL; 234 int present_fcs_len = 0; 235 236 /* 237 * First, we may need to make a copy of the skb because 238 * (1) we need to modify it for radiotap (if not present), and 239 * (2) the other RX handlers will modify the skb we got. 240 * 241 * We don't need to, of course, if we aren't going to return 242 * the SKB because it has a bad FCS/PLCP checksum. 243 */ 244 245 /* room for the radiotap header based on driver features */ 246 needed_headroom = ieee80211_rx_radiotap_len(local, status); 247 248 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 249 present_fcs_len = FCS_LEN; 250 251 /* make sure hdr->frame_control is on the linear part */ 252 if (!pskb_may_pull(origskb, 2)) { 253 dev_kfree_skb(origskb); 254 return NULL; 255 } 256 257 if (!local->monitors) { 258 if (should_drop_frame(origskb, present_fcs_len)) { 259 dev_kfree_skb(origskb); 260 return NULL; 261 } 262 263 return remove_monitor_info(local, origskb); 264 } 265 266 if (should_drop_frame(origskb, present_fcs_len)) { 267 /* only need to expand headroom if necessary */ 268 skb = origskb; 269 origskb = NULL; 270 271 /* 272 * This shouldn't trigger often because most devices have an 273 * RX header they pull before we get here, and that should 274 * be big enough for our radiotap information. We should 275 * probably export the length to drivers so that we can have 276 * them allocate enough headroom to start with. 277 */ 278 if (skb_headroom(skb) < needed_headroom && 279 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 280 dev_kfree_skb(skb); 281 return NULL; 282 } 283 } else { 284 /* 285 * Need to make a copy and possibly remove radiotap header 286 * and FCS from the original. 287 */ 288 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 289 290 origskb = remove_monitor_info(local, origskb); 291 292 if (!skb) 293 return origskb; 294 } 295 296 /* prepend radiotap information */ 297 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 298 true); 299 300 skb_reset_mac_header(skb); 301 skb->ip_summed = CHECKSUM_UNNECESSARY; 302 skb->pkt_type = PACKET_OTHERHOST; 303 skb->protocol = htons(ETH_P_802_2); 304 305 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 306 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 307 continue; 308 309 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 310 continue; 311 312 if (!ieee80211_sdata_running(sdata)) 313 continue; 314 315 if (prev_dev) { 316 skb2 = skb_clone(skb, GFP_ATOMIC); 317 if (skb2) { 318 skb2->dev = prev_dev; 319 netif_receive_skb(skb2); 320 } 321 } 322 323 prev_dev = sdata->dev; 324 sdata->dev->stats.rx_packets++; 325 sdata->dev->stats.rx_bytes += skb->len; 326 } 327 328 if (prev_dev) { 329 skb->dev = prev_dev; 330 netif_receive_skb(skb); 331 } else 332 dev_kfree_skb(skb); 333 334 return origskb; 335 } 336 337 338 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 339 { 340 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 341 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 342 int tid, seqno_idx, security_idx; 343 344 /* does the frame have a qos control field? */ 345 if (ieee80211_is_data_qos(hdr->frame_control)) { 346 u8 *qc = ieee80211_get_qos_ctl(hdr); 347 /* frame has qos control */ 348 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 349 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 350 status->rx_flags |= IEEE80211_RX_AMSDU; 351 352 seqno_idx = tid; 353 security_idx = tid; 354 } else { 355 /* 356 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 357 * 358 * Sequence numbers for management frames, QoS data 359 * frames with a broadcast/multicast address in the 360 * Address 1 field, and all non-QoS data frames sent 361 * by QoS STAs are assigned using an additional single 362 * modulo-4096 counter, [...] 363 * 364 * We also use that counter for non-QoS STAs. 365 */ 366 seqno_idx = NUM_RX_DATA_QUEUES; 367 security_idx = 0; 368 if (ieee80211_is_mgmt(hdr->frame_control)) 369 security_idx = NUM_RX_DATA_QUEUES; 370 tid = 0; 371 } 372 373 rx->seqno_idx = seqno_idx; 374 rx->security_idx = security_idx; 375 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 376 * For now, set skb->priority to 0 for other cases. */ 377 rx->skb->priority = (tid > 7) ? 0 : tid; 378 } 379 380 /** 381 * DOC: Packet alignment 382 * 383 * Drivers always need to pass packets that are aligned to two-byte boundaries 384 * to the stack. 385 * 386 * Additionally, should, if possible, align the payload data in a way that 387 * guarantees that the contained IP header is aligned to a four-byte 388 * boundary. In the case of regular frames, this simply means aligning the 389 * payload to a four-byte boundary (because either the IP header is directly 390 * contained, or IV/RFC1042 headers that have a length divisible by four are 391 * in front of it). If the payload data is not properly aligned and the 392 * architecture doesn't support efficient unaligned operations, mac80211 393 * will align the data. 394 * 395 * With A-MSDU frames, however, the payload data address must yield two modulo 396 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 397 * push the IP header further back to a multiple of four again. Thankfully, the 398 * specs were sane enough this time around to require padding each A-MSDU 399 * subframe to a length that is a multiple of four. 400 * 401 * Padding like Atheros hardware adds which is between the 802.11 header and 402 * the payload is not supported, the driver is required to move the 802.11 403 * header to be directly in front of the payload in that case. 404 */ 405 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 406 { 407 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 408 WARN_ONCE((unsigned long)rx->skb->data & 1, 409 "unaligned packet at 0x%p\n", rx->skb->data); 410 #endif 411 } 412 413 414 /* rx handlers */ 415 416 static ieee80211_rx_result debug_noinline 417 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 418 { 419 struct ieee80211_local *local = rx->local; 420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 421 struct sk_buff *skb = rx->skb; 422 423 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 424 !local->sched_scanning)) 425 return RX_CONTINUE; 426 427 if (test_bit(SCAN_HW_SCANNING, &local->scanning) || 428 test_bit(SCAN_SW_SCANNING, &local->scanning) || 429 local->sched_scanning) 430 return ieee80211_scan_rx(rx->sdata, skb); 431 432 /* scanning finished during invoking of handlers */ 433 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 434 return RX_DROP_UNUSABLE; 435 } 436 437 438 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 439 { 440 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 441 442 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 443 return 0; 444 445 return ieee80211_is_robust_mgmt_frame(hdr); 446 } 447 448 449 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 450 { 451 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 452 453 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 454 return 0; 455 456 return ieee80211_is_robust_mgmt_frame(hdr); 457 } 458 459 460 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 461 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 462 { 463 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 464 struct ieee80211_mmie *mmie; 465 466 if (skb->len < 24 + sizeof(*mmie) || 467 !is_multicast_ether_addr(hdr->da)) 468 return -1; 469 470 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 471 return -1; /* not a robust management frame */ 472 473 mmie = (struct ieee80211_mmie *) 474 (skb->data + skb->len - sizeof(*mmie)); 475 if (mmie->element_id != WLAN_EID_MMIE || 476 mmie->length != sizeof(*mmie) - 2) 477 return -1; 478 479 return le16_to_cpu(mmie->key_id); 480 } 481 482 483 static ieee80211_rx_result 484 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 485 { 486 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 487 char *dev_addr = rx->sdata->vif.addr; 488 489 if (ieee80211_is_data(hdr->frame_control)) { 490 if (is_multicast_ether_addr(hdr->addr1)) { 491 if (ieee80211_has_tods(hdr->frame_control) || 492 !ieee80211_has_fromds(hdr->frame_control)) 493 return RX_DROP_MONITOR; 494 if (compare_ether_addr(hdr->addr3, dev_addr) == 0) 495 return RX_DROP_MONITOR; 496 } else { 497 if (!ieee80211_has_a4(hdr->frame_control)) 498 return RX_DROP_MONITOR; 499 if (compare_ether_addr(hdr->addr4, dev_addr) == 0) 500 return RX_DROP_MONITOR; 501 } 502 } 503 504 /* If there is not an established peer link and this is not a peer link 505 * establisment frame, beacon or probe, drop the frame. 506 */ 507 508 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 509 struct ieee80211_mgmt *mgmt; 510 511 if (!ieee80211_is_mgmt(hdr->frame_control)) 512 return RX_DROP_MONITOR; 513 514 if (ieee80211_is_action(hdr->frame_control)) { 515 u8 category; 516 mgmt = (struct ieee80211_mgmt *)hdr; 517 category = mgmt->u.action.category; 518 if (category != WLAN_CATEGORY_MESH_ACTION && 519 category != WLAN_CATEGORY_SELF_PROTECTED) 520 return RX_DROP_MONITOR; 521 return RX_CONTINUE; 522 } 523 524 if (ieee80211_is_probe_req(hdr->frame_control) || 525 ieee80211_is_probe_resp(hdr->frame_control) || 526 ieee80211_is_beacon(hdr->frame_control) || 527 ieee80211_is_auth(hdr->frame_control)) 528 return RX_CONTINUE; 529 530 return RX_DROP_MONITOR; 531 532 } 533 534 return RX_CONTINUE; 535 } 536 537 #define SEQ_MODULO 0x1000 538 #define SEQ_MASK 0xfff 539 540 static inline int seq_less(u16 sq1, u16 sq2) 541 { 542 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 543 } 544 545 static inline u16 seq_inc(u16 sq) 546 { 547 return (sq + 1) & SEQ_MASK; 548 } 549 550 static inline u16 seq_sub(u16 sq1, u16 sq2) 551 { 552 return (sq1 - sq2) & SEQ_MASK; 553 } 554 555 556 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw, 557 struct tid_ampdu_rx *tid_agg_rx, 558 int index) 559 { 560 struct ieee80211_local *local = hw_to_local(hw); 561 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 562 struct ieee80211_rx_status *status; 563 564 lockdep_assert_held(&tid_agg_rx->reorder_lock); 565 566 if (!skb) 567 goto no_frame; 568 569 /* release the frame from the reorder ring buffer */ 570 tid_agg_rx->stored_mpdu_num--; 571 tid_agg_rx->reorder_buf[index] = NULL; 572 status = IEEE80211_SKB_RXCB(skb); 573 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 574 skb_queue_tail(&local->rx_skb_queue, skb); 575 576 no_frame: 577 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 578 } 579 580 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw, 581 struct tid_ampdu_rx *tid_agg_rx, 582 u16 head_seq_num) 583 { 584 int index; 585 586 lockdep_assert_held(&tid_agg_rx->reorder_lock); 587 588 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 589 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 590 tid_agg_rx->buf_size; 591 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 592 } 593 } 594 595 /* 596 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 597 * the skb was added to the buffer longer than this time ago, the earlier 598 * frames that have not yet been received are assumed to be lost and the skb 599 * can be released for processing. This may also release other skb's from the 600 * reorder buffer if there are no additional gaps between the frames. 601 * 602 * Callers must hold tid_agg_rx->reorder_lock. 603 */ 604 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 605 606 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw, 607 struct tid_ampdu_rx *tid_agg_rx) 608 { 609 int index, j; 610 611 lockdep_assert_held(&tid_agg_rx->reorder_lock); 612 613 /* release the buffer until next missing frame */ 614 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 615 tid_agg_rx->buf_size; 616 if (!tid_agg_rx->reorder_buf[index] && 617 tid_agg_rx->stored_mpdu_num) { 618 /* 619 * No buffers ready to be released, but check whether any 620 * frames in the reorder buffer have timed out. 621 */ 622 int skipped = 1; 623 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 624 j = (j + 1) % tid_agg_rx->buf_size) { 625 if (!tid_agg_rx->reorder_buf[j]) { 626 skipped++; 627 continue; 628 } 629 if (skipped && 630 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 631 HT_RX_REORDER_BUF_TIMEOUT)) 632 goto set_release_timer; 633 634 #ifdef CONFIG_MAC80211_HT_DEBUG 635 if (net_ratelimit()) 636 wiphy_debug(hw->wiphy, 637 "release an RX reorder frame due to timeout on earlier frames\n"); 638 #endif 639 ieee80211_release_reorder_frame(hw, tid_agg_rx, j); 640 641 /* 642 * Increment the head seq# also for the skipped slots. 643 */ 644 tid_agg_rx->head_seq_num = 645 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 646 skipped = 0; 647 } 648 } else while (tid_agg_rx->reorder_buf[index]) { 649 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 650 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 651 tid_agg_rx->buf_size; 652 } 653 654 if (tid_agg_rx->stored_mpdu_num) { 655 j = index = seq_sub(tid_agg_rx->head_seq_num, 656 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 657 658 for (; j != (index - 1) % tid_agg_rx->buf_size; 659 j = (j + 1) % tid_agg_rx->buf_size) { 660 if (tid_agg_rx->reorder_buf[j]) 661 break; 662 } 663 664 set_release_timer: 665 666 mod_timer(&tid_agg_rx->reorder_timer, 667 tid_agg_rx->reorder_time[j] + 1 + 668 HT_RX_REORDER_BUF_TIMEOUT); 669 } else { 670 del_timer(&tid_agg_rx->reorder_timer); 671 } 672 } 673 674 /* 675 * As this function belongs to the RX path it must be under 676 * rcu_read_lock protection. It returns false if the frame 677 * can be processed immediately, true if it was consumed. 678 */ 679 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 680 struct tid_ampdu_rx *tid_agg_rx, 681 struct sk_buff *skb) 682 { 683 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 684 u16 sc = le16_to_cpu(hdr->seq_ctrl); 685 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 686 u16 head_seq_num, buf_size; 687 int index; 688 bool ret = true; 689 690 spin_lock(&tid_agg_rx->reorder_lock); 691 692 buf_size = tid_agg_rx->buf_size; 693 head_seq_num = tid_agg_rx->head_seq_num; 694 695 /* frame with out of date sequence number */ 696 if (seq_less(mpdu_seq_num, head_seq_num)) { 697 dev_kfree_skb(skb); 698 goto out; 699 } 700 701 /* 702 * If frame the sequence number exceeds our buffering window 703 * size release some previous frames to make room for this one. 704 */ 705 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 706 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 707 /* release stored frames up to new head to stack */ 708 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num); 709 } 710 711 /* Now the new frame is always in the range of the reordering buffer */ 712 713 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 714 715 /* check if we already stored this frame */ 716 if (tid_agg_rx->reorder_buf[index]) { 717 dev_kfree_skb(skb); 718 goto out; 719 } 720 721 /* 722 * If the current MPDU is in the right order and nothing else 723 * is stored we can process it directly, no need to buffer it. 724 * If it is first but there's something stored, we may be able 725 * to release frames after this one. 726 */ 727 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 728 tid_agg_rx->stored_mpdu_num == 0) { 729 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 730 ret = false; 731 goto out; 732 } 733 734 /* put the frame in the reordering buffer */ 735 tid_agg_rx->reorder_buf[index] = skb; 736 tid_agg_rx->reorder_time[index] = jiffies; 737 tid_agg_rx->stored_mpdu_num++; 738 ieee80211_sta_reorder_release(hw, tid_agg_rx); 739 740 out: 741 spin_unlock(&tid_agg_rx->reorder_lock); 742 return ret; 743 } 744 745 /* 746 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 747 * true if the MPDU was buffered, false if it should be processed. 748 */ 749 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx) 750 { 751 struct sk_buff *skb = rx->skb; 752 struct ieee80211_local *local = rx->local; 753 struct ieee80211_hw *hw = &local->hw; 754 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 755 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 756 struct sta_info *sta = rx->sta; 757 struct tid_ampdu_rx *tid_agg_rx; 758 u16 sc; 759 u8 tid, ack_policy; 760 761 if (!ieee80211_is_data_qos(hdr->frame_control)) 762 goto dont_reorder; 763 764 /* 765 * filter the QoS data rx stream according to 766 * STA/TID and check if this STA/TID is on aggregation 767 */ 768 769 if (!sta) 770 goto dont_reorder; 771 772 ack_policy = *ieee80211_get_qos_ctl(hdr) & 773 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 774 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 775 776 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 777 if (!tid_agg_rx) 778 goto dont_reorder; 779 780 /* qos null data frames are excluded */ 781 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 782 goto dont_reorder; 783 784 /* not part of a BA session */ 785 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 786 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 787 goto dont_reorder; 788 789 /* not actually part of this BA session */ 790 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 791 goto dont_reorder; 792 793 /* new, potentially un-ordered, ampdu frame - process it */ 794 795 /* reset session timer */ 796 if (tid_agg_rx->timeout) 797 mod_timer(&tid_agg_rx->session_timer, 798 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 799 800 /* if this mpdu is fragmented - terminate rx aggregation session */ 801 sc = le16_to_cpu(hdr->seq_ctrl); 802 if (sc & IEEE80211_SCTL_FRAG) { 803 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 804 skb_queue_tail(&rx->sdata->skb_queue, skb); 805 ieee80211_queue_work(&local->hw, &rx->sdata->work); 806 return; 807 } 808 809 /* 810 * No locking needed -- we will only ever process one 811 * RX packet at a time, and thus own tid_agg_rx. All 812 * other code manipulating it needs to (and does) make 813 * sure that we cannot get to it any more before doing 814 * anything with it. 815 */ 816 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb)) 817 return; 818 819 dont_reorder: 820 skb_queue_tail(&local->rx_skb_queue, skb); 821 } 822 823 static ieee80211_rx_result debug_noinline 824 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 825 { 826 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 827 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 828 829 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 830 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 831 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 832 rx->sta->last_seq_ctrl[rx->seqno_idx] == 833 hdr->seq_ctrl)) { 834 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 835 rx->local->dot11FrameDuplicateCount++; 836 rx->sta->num_duplicates++; 837 } 838 return RX_DROP_UNUSABLE; 839 } else 840 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 841 } 842 843 if (unlikely(rx->skb->len < 16)) { 844 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 845 return RX_DROP_MONITOR; 846 } 847 848 /* Drop disallowed frame classes based on STA auth/assoc state; 849 * IEEE 802.11, Chap 5.5. 850 * 851 * mac80211 filters only based on association state, i.e. it drops 852 * Class 3 frames from not associated stations. hostapd sends 853 * deauth/disassoc frames when needed. In addition, hostapd is 854 * responsible for filtering on both auth and assoc states. 855 */ 856 857 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 858 return ieee80211_rx_mesh_check(rx); 859 860 if (unlikely((ieee80211_is_data(hdr->frame_control) || 861 ieee80211_is_pspoll(hdr->frame_control)) && 862 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 863 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 864 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 865 /* 866 * accept port control frames from the AP even when it's not 867 * yet marked ASSOC to prevent a race where we don't set the 868 * assoc bit quickly enough before it sends the first frame 869 */ 870 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 871 ieee80211_is_data_present(hdr->frame_control)) { 872 u16 ethertype; 873 u8 *payload; 874 875 payload = rx->skb->data + 876 ieee80211_hdrlen(hdr->frame_control); 877 ethertype = (payload[6] << 8) | payload[7]; 878 if (cpu_to_be16(ethertype) == 879 rx->sdata->control_port_protocol) 880 return RX_CONTINUE; 881 } 882 883 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 884 cfg80211_rx_spurious_frame(rx->sdata->dev, 885 hdr->addr2, 886 GFP_ATOMIC)) 887 return RX_DROP_UNUSABLE; 888 889 return RX_DROP_MONITOR; 890 } 891 892 return RX_CONTINUE; 893 } 894 895 896 static ieee80211_rx_result debug_noinline 897 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 898 { 899 struct sk_buff *skb = rx->skb; 900 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 901 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 902 int keyidx; 903 int hdrlen; 904 ieee80211_rx_result result = RX_DROP_UNUSABLE; 905 struct ieee80211_key *sta_ptk = NULL; 906 int mmie_keyidx = -1; 907 __le16 fc; 908 909 /* 910 * Key selection 101 911 * 912 * There are four types of keys: 913 * - GTK (group keys) 914 * - IGTK (group keys for management frames) 915 * - PTK (pairwise keys) 916 * - STK (station-to-station pairwise keys) 917 * 918 * When selecting a key, we have to distinguish between multicast 919 * (including broadcast) and unicast frames, the latter can only 920 * use PTKs and STKs while the former always use GTKs and IGTKs. 921 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 922 * unicast frames can also use key indices like GTKs. Hence, if we 923 * don't have a PTK/STK we check the key index for a WEP key. 924 * 925 * Note that in a regular BSS, multicast frames are sent by the 926 * AP only, associated stations unicast the frame to the AP first 927 * which then multicasts it on their behalf. 928 * 929 * There is also a slight problem in IBSS mode: GTKs are negotiated 930 * with each station, that is something we don't currently handle. 931 * The spec seems to expect that one negotiates the same key with 932 * every station but there's no such requirement; VLANs could be 933 * possible. 934 */ 935 936 /* 937 * No point in finding a key and decrypting if the frame is neither 938 * addressed to us nor a multicast frame. 939 */ 940 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 941 return RX_CONTINUE; 942 943 /* start without a key */ 944 rx->key = NULL; 945 946 if (rx->sta) 947 sta_ptk = rcu_dereference(rx->sta->ptk); 948 949 fc = hdr->frame_control; 950 951 if (!ieee80211_has_protected(fc)) 952 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 953 954 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 955 rx->key = sta_ptk; 956 if ((status->flag & RX_FLAG_DECRYPTED) && 957 (status->flag & RX_FLAG_IV_STRIPPED)) 958 return RX_CONTINUE; 959 /* Skip decryption if the frame is not protected. */ 960 if (!ieee80211_has_protected(fc)) 961 return RX_CONTINUE; 962 } else if (mmie_keyidx >= 0) { 963 /* Broadcast/multicast robust management frame / BIP */ 964 if ((status->flag & RX_FLAG_DECRYPTED) && 965 (status->flag & RX_FLAG_IV_STRIPPED)) 966 return RX_CONTINUE; 967 968 if (mmie_keyidx < NUM_DEFAULT_KEYS || 969 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 970 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 971 if (rx->sta) 972 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 973 if (!rx->key) 974 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 975 } else if (!ieee80211_has_protected(fc)) { 976 /* 977 * The frame was not protected, so skip decryption. However, we 978 * need to set rx->key if there is a key that could have been 979 * used so that the frame may be dropped if encryption would 980 * have been expected. 981 */ 982 struct ieee80211_key *key = NULL; 983 struct ieee80211_sub_if_data *sdata = rx->sdata; 984 int i; 985 986 if (ieee80211_is_mgmt(fc) && 987 is_multicast_ether_addr(hdr->addr1) && 988 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 989 rx->key = key; 990 else { 991 if (rx->sta) { 992 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 993 key = rcu_dereference(rx->sta->gtk[i]); 994 if (key) 995 break; 996 } 997 } 998 if (!key) { 999 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1000 key = rcu_dereference(sdata->keys[i]); 1001 if (key) 1002 break; 1003 } 1004 } 1005 if (key) 1006 rx->key = key; 1007 } 1008 return RX_CONTINUE; 1009 } else { 1010 u8 keyid; 1011 /* 1012 * The device doesn't give us the IV so we won't be 1013 * able to look up the key. That's ok though, we 1014 * don't need to decrypt the frame, we just won't 1015 * be able to keep statistics accurate. 1016 * Except for key threshold notifications, should 1017 * we somehow allow the driver to tell us which key 1018 * the hardware used if this flag is set? 1019 */ 1020 if ((status->flag & RX_FLAG_DECRYPTED) && 1021 (status->flag & RX_FLAG_IV_STRIPPED)) 1022 return RX_CONTINUE; 1023 1024 hdrlen = ieee80211_hdrlen(fc); 1025 1026 if (rx->skb->len < 8 + hdrlen) 1027 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1028 1029 /* 1030 * no need to call ieee80211_wep_get_keyidx, 1031 * it verifies a bunch of things we've done already 1032 */ 1033 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1034 keyidx = keyid >> 6; 1035 1036 /* check per-station GTK first, if multicast packet */ 1037 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1038 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1039 1040 /* if not found, try default key */ 1041 if (!rx->key) { 1042 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1043 1044 /* 1045 * RSNA-protected unicast frames should always be 1046 * sent with pairwise or station-to-station keys, 1047 * but for WEP we allow using a key index as well. 1048 */ 1049 if (rx->key && 1050 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1051 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1052 !is_multicast_ether_addr(hdr->addr1)) 1053 rx->key = NULL; 1054 } 1055 } 1056 1057 if (rx->key) { 1058 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1059 return RX_DROP_MONITOR; 1060 1061 rx->key->tx_rx_count++; 1062 /* TODO: add threshold stuff again */ 1063 } else { 1064 return RX_DROP_MONITOR; 1065 } 1066 1067 switch (rx->key->conf.cipher) { 1068 case WLAN_CIPHER_SUITE_WEP40: 1069 case WLAN_CIPHER_SUITE_WEP104: 1070 result = ieee80211_crypto_wep_decrypt(rx); 1071 break; 1072 case WLAN_CIPHER_SUITE_TKIP: 1073 result = ieee80211_crypto_tkip_decrypt(rx); 1074 break; 1075 case WLAN_CIPHER_SUITE_CCMP: 1076 result = ieee80211_crypto_ccmp_decrypt(rx); 1077 break; 1078 case WLAN_CIPHER_SUITE_AES_CMAC: 1079 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1080 break; 1081 default: 1082 /* 1083 * We can reach here only with HW-only algorithms 1084 * but why didn't it decrypt the frame?! 1085 */ 1086 return RX_DROP_UNUSABLE; 1087 } 1088 1089 /* the hdr variable is invalid after the decrypt handlers */ 1090 1091 /* either the frame has been decrypted or will be dropped */ 1092 status->flag |= RX_FLAG_DECRYPTED; 1093 1094 return result; 1095 } 1096 1097 static ieee80211_rx_result debug_noinline 1098 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1099 { 1100 struct ieee80211_local *local; 1101 struct ieee80211_hdr *hdr; 1102 struct sk_buff *skb; 1103 1104 local = rx->local; 1105 skb = rx->skb; 1106 hdr = (struct ieee80211_hdr *) skb->data; 1107 1108 if (!local->pspolling) 1109 return RX_CONTINUE; 1110 1111 if (!ieee80211_has_fromds(hdr->frame_control)) 1112 /* this is not from AP */ 1113 return RX_CONTINUE; 1114 1115 if (!ieee80211_is_data(hdr->frame_control)) 1116 return RX_CONTINUE; 1117 1118 if (!ieee80211_has_moredata(hdr->frame_control)) { 1119 /* AP has no more frames buffered for us */ 1120 local->pspolling = false; 1121 return RX_CONTINUE; 1122 } 1123 1124 /* more data bit is set, let's request a new frame from the AP */ 1125 ieee80211_send_pspoll(local, rx->sdata); 1126 1127 return RX_CONTINUE; 1128 } 1129 1130 static void ap_sta_ps_start(struct sta_info *sta) 1131 { 1132 struct ieee80211_sub_if_data *sdata = sta->sdata; 1133 struct ieee80211_local *local = sdata->local; 1134 1135 atomic_inc(&sdata->bss->num_sta_ps); 1136 set_sta_flag(sta, WLAN_STA_PS_STA); 1137 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1138 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1139 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1140 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 1141 sdata->name, sta->sta.addr, sta->sta.aid); 1142 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1143 } 1144 1145 static void ap_sta_ps_end(struct sta_info *sta) 1146 { 1147 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1148 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 1149 sta->sdata->name, sta->sta.addr, sta->sta.aid); 1150 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1151 1152 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1153 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1154 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n", 1155 sta->sdata->name, sta->sta.addr, sta->sta.aid); 1156 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1157 return; 1158 } 1159 1160 ieee80211_sta_ps_deliver_wakeup(sta); 1161 } 1162 1163 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1164 { 1165 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1166 bool in_ps; 1167 1168 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1169 1170 /* Don't let the same PS state be set twice */ 1171 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1172 if ((start && in_ps) || (!start && !in_ps)) 1173 return -EINVAL; 1174 1175 if (start) 1176 ap_sta_ps_start(sta_inf); 1177 else 1178 ap_sta_ps_end(sta_inf); 1179 1180 return 0; 1181 } 1182 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1183 1184 static ieee80211_rx_result debug_noinline 1185 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1186 { 1187 struct ieee80211_sub_if_data *sdata = rx->sdata; 1188 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1189 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1190 int tid, ac; 1191 1192 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1193 return RX_CONTINUE; 1194 1195 if (sdata->vif.type != NL80211_IFTYPE_AP && 1196 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1197 return RX_CONTINUE; 1198 1199 /* 1200 * The device handles station powersave, so don't do anything about 1201 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1202 * it to mac80211 since they're handled.) 1203 */ 1204 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1205 return RX_CONTINUE; 1206 1207 /* 1208 * Don't do anything if the station isn't already asleep. In 1209 * the uAPSD case, the station will probably be marked asleep, 1210 * in the PS-Poll case the station must be confused ... 1211 */ 1212 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1213 return RX_CONTINUE; 1214 1215 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1216 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1217 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1218 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1219 else 1220 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1221 } 1222 1223 /* Free PS Poll skb here instead of returning RX_DROP that would 1224 * count as an dropped frame. */ 1225 dev_kfree_skb(rx->skb); 1226 1227 return RX_QUEUED; 1228 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1229 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1230 ieee80211_has_pm(hdr->frame_control) && 1231 (ieee80211_is_data_qos(hdr->frame_control) || 1232 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1233 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1234 ac = ieee802_1d_to_ac[tid & 7]; 1235 1236 /* 1237 * If this AC is not trigger-enabled do nothing. 1238 * 1239 * NB: This could/should check a separate bitmap of trigger- 1240 * enabled queues, but for now we only implement uAPSD w/o 1241 * TSPEC changes to the ACs, so they're always the same. 1242 */ 1243 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1244 return RX_CONTINUE; 1245 1246 /* if we are in a service period, do nothing */ 1247 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1248 return RX_CONTINUE; 1249 1250 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1251 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1252 else 1253 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1254 } 1255 1256 return RX_CONTINUE; 1257 } 1258 1259 static ieee80211_rx_result debug_noinline 1260 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1261 { 1262 struct sta_info *sta = rx->sta; 1263 struct sk_buff *skb = rx->skb; 1264 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1265 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1266 1267 if (!sta) 1268 return RX_CONTINUE; 1269 1270 /* 1271 * Update last_rx only for IBSS packets which are for the current 1272 * BSSID to avoid keeping the current IBSS network alive in cases 1273 * where other STAs start using different BSSID. 1274 */ 1275 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1276 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1277 NL80211_IFTYPE_ADHOC); 1278 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) { 1279 sta->last_rx = jiffies; 1280 if (ieee80211_is_data(hdr->frame_control)) { 1281 sta->last_rx_rate_idx = status->rate_idx; 1282 sta->last_rx_rate_flag = status->flag; 1283 } 1284 } 1285 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1286 /* 1287 * Mesh beacons will update last_rx when if they are found to 1288 * match the current local configuration when processed. 1289 */ 1290 sta->last_rx = jiffies; 1291 if (ieee80211_is_data(hdr->frame_control)) { 1292 sta->last_rx_rate_idx = status->rate_idx; 1293 sta->last_rx_rate_flag = status->flag; 1294 } 1295 } 1296 1297 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1298 return RX_CONTINUE; 1299 1300 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1301 ieee80211_sta_rx_notify(rx->sdata, hdr); 1302 1303 sta->rx_fragments++; 1304 sta->rx_bytes += rx->skb->len; 1305 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1306 sta->last_signal = status->signal; 1307 ewma_add(&sta->avg_signal, -status->signal); 1308 } 1309 1310 /* 1311 * Change STA power saving mode only at the end of a frame 1312 * exchange sequence. 1313 */ 1314 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1315 !ieee80211_has_morefrags(hdr->frame_control) && 1316 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1317 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1318 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1319 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1320 /* 1321 * Ignore doze->wake transitions that are 1322 * indicated by non-data frames, the standard 1323 * is unclear here, but for example going to 1324 * PS mode and then scanning would cause a 1325 * doze->wake transition for the probe request, 1326 * and that is clearly undesirable. 1327 */ 1328 if (ieee80211_is_data(hdr->frame_control) && 1329 !ieee80211_has_pm(hdr->frame_control)) 1330 ap_sta_ps_end(sta); 1331 } else { 1332 if (ieee80211_has_pm(hdr->frame_control)) 1333 ap_sta_ps_start(sta); 1334 } 1335 } 1336 1337 /* 1338 * Drop (qos-)data::nullfunc frames silently, since they 1339 * are used only to control station power saving mode. 1340 */ 1341 if (ieee80211_is_nullfunc(hdr->frame_control) || 1342 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1343 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1344 1345 /* 1346 * If we receive a 4-addr nullfunc frame from a STA 1347 * that was not moved to a 4-addr STA vlan yet send 1348 * the event to userspace and for older hostapd drop 1349 * the frame to the monitor interface. 1350 */ 1351 if (ieee80211_has_a4(hdr->frame_control) && 1352 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1353 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1354 !rx->sdata->u.vlan.sta))) { 1355 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1356 cfg80211_rx_unexpected_4addr_frame( 1357 rx->sdata->dev, sta->sta.addr, 1358 GFP_ATOMIC); 1359 return RX_DROP_MONITOR; 1360 } 1361 /* 1362 * Update counter and free packet here to avoid 1363 * counting this as a dropped packed. 1364 */ 1365 sta->rx_packets++; 1366 dev_kfree_skb(rx->skb); 1367 return RX_QUEUED; 1368 } 1369 1370 return RX_CONTINUE; 1371 } /* ieee80211_rx_h_sta_process */ 1372 1373 static inline struct ieee80211_fragment_entry * 1374 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1375 unsigned int frag, unsigned int seq, int rx_queue, 1376 struct sk_buff **skb) 1377 { 1378 struct ieee80211_fragment_entry *entry; 1379 int idx; 1380 1381 idx = sdata->fragment_next; 1382 entry = &sdata->fragments[sdata->fragment_next++]; 1383 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1384 sdata->fragment_next = 0; 1385 1386 if (!skb_queue_empty(&entry->skb_list)) { 1387 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1388 struct ieee80211_hdr *hdr = 1389 (struct ieee80211_hdr *) entry->skb_list.next->data; 1390 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 1391 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 1392 "addr1=%pM addr2=%pM\n", 1393 sdata->name, idx, 1394 jiffies - entry->first_frag_time, entry->seq, 1395 entry->last_frag, hdr->addr1, hdr->addr2); 1396 #endif 1397 __skb_queue_purge(&entry->skb_list); 1398 } 1399 1400 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1401 *skb = NULL; 1402 entry->first_frag_time = jiffies; 1403 entry->seq = seq; 1404 entry->rx_queue = rx_queue; 1405 entry->last_frag = frag; 1406 entry->ccmp = 0; 1407 entry->extra_len = 0; 1408 1409 return entry; 1410 } 1411 1412 static inline struct ieee80211_fragment_entry * 1413 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1414 unsigned int frag, unsigned int seq, 1415 int rx_queue, struct ieee80211_hdr *hdr) 1416 { 1417 struct ieee80211_fragment_entry *entry; 1418 int i, idx; 1419 1420 idx = sdata->fragment_next; 1421 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1422 struct ieee80211_hdr *f_hdr; 1423 1424 idx--; 1425 if (idx < 0) 1426 idx = IEEE80211_FRAGMENT_MAX - 1; 1427 1428 entry = &sdata->fragments[idx]; 1429 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1430 entry->rx_queue != rx_queue || 1431 entry->last_frag + 1 != frag) 1432 continue; 1433 1434 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1435 1436 /* 1437 * Check ftype and addresses are equal, else check next fragment 1438 */ 1439 if (((hdr->frame_control ^ f_hdr->frame_control) & 1440 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1441 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 1442 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 1443 continue; 1444 1445 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1446 __skb_queue_purge(&entry->skb_list); 1447 continue; 1448 } 1449 return entry; 1450 } 1451 1452 return NULL; 1453 } 1454 1455 static ieee80211_rx_result debug_noinline 1456 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1457 { 1458 struct ieee80211_hdr *hdr; 1459 u16 sc; 1460 __le16 fc; 1461 unsigned int frag, seq; 1462 struct ieee80211_fragment_entry *entry; 1463 struct sk_buff *skb; 1464 struct ieee80211_rx_status *status; 1465 1466 hdr = (struct ieee80211_hdr *)rx->skb->data; 1467 fc = hdr->frame_control; 1468 sc = le16_to_cpu(hdr->seq_ctrl); 1469 frag = sc & IEEE80211_SCTL_FRAG; 1470 1471 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1472 (rx->skb)->len < 24 || 1473 is_multicast_ether_addr(hdr->addr1))) { 1474 /* not fragmented */ 1475 goto out; 1476 } 1477 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1478 1479 if (skb_linearize(rx->skb)) 1480 return RX_DROP_UNUSABLE; 1481 1482 /* 1483 * skb_linearize() might change the skb->data and 1484 * previously cached variables (in this case, hdr) need to 1485 * be refreshed with the new data. 1486 */ 1487 hdr = (struct ieee80211_hdr *)rx->skb->data; 1488 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1489 1490 if (frag == 0) { 1491 /* This is the first fragment of a new frame. */ 1492 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1493 rx->seqno_idx, &(rx->skb)); 1494 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1495 ieee80211_has_protected(fc)) { 1496 int queue = rx->security_idx; 1497 /* Store CCMP PN so that we can verify that the next 1498 * fragment has a sequential PN value. */ 1499 entry->ccmp = 1; 1500 memcpy(entry->last_pn, 1501 rx->key->u.ccmp.rx_pn[queue], 1502 CCMP_PN_LEN); 1503 } 1504 return RX_QUEUED; 1505 } 1506 1507 /* This is a fragment for a frame that should already be pending in 1508 * fragment cache. Add this fragment to the end of the pending entry. 1509 */ 1510 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1511 rx->seqno_idx, hdr); 1512 if (!entry) { 1513 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1514 return RX_DROP_MONITOR; 1515 } 1516 1517 /* Verify that MPDUs within one MSDU have sequential PN values. 1518 * (IEEE 802.11i, 8.3.3.4.5) */ 1519 if (entry->ccmp) { 1520 int i; 1521 u8 pn[CCMP_PN_LEN], *rpn; 1522 int queue; 1523 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1524 return RX_DROP_UNUSABLE; 1525 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1526 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1527 pn[i]++; 1528 if (pn[i]) 1529 break; 1530 } 1531 queue = rx->security_idx; 1532 rpn = rx->key->u.ccmp.rx_pn[queue]; 1533 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1534 return RX_DROP_UNUSABLE; 1535 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1536 } 1537 1538 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1539 __skb_queue_tail(&entry->skb_list, rx->skb); 1540 entry->last_frag = frag; 1541 entry->extra_len += rx->skb->len; 1542 if (ieee80211_has_morefrags(fc)) { 1543 rx->skb = NULL; 1544 return RX_QUEUED; 1545 } 1546 1547 rx->skb = __skb_dequeue(&entry->skb_list); 1548 if (skb_tailroom(rx->skb) < entry->extra_len) { 1549 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1550 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1551 GFP_ATOMIC))) { 1552 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1553 __skb_queue_purge(&entry->skb_list); 1554 return RX_DROP_UNUSABLE; 1555 } 1556 } 1557 while ((skb = __skb_dequeue(&entry->skb_list))) { 1558 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1559 dev_kfree_skb(skb); 1560 } 1561 1562 /* Complete frame has been reassembled - process it now */ 1563 status = IEEE80211_SKB_RXCB(rx->skb); 1564 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1565 1566 out: 1567 if (rx->sta) 1568 rx->sta->rx_packets++; 1569 if (is_multicast_ether_addr(hdr->addr1)) 1570 rx->local->dot11MulticastReceivedFrameCount++; 1571 else 1572 ieee80211_led_rx(rx->local); 1573 return RX_CONTINUE; 1574 } 1575 1576 static int 1577 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1578 { 1579 if (unlikely(!rx->sta || 1580 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1581 return -EACCES; 1582 1583 return 0; 1584 } 1585 1586 static int 1587 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1588 { 1589 struct sk_buff *skb = rx->skb; 1590 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1591 1592 /* 1593 * Pass through unencrypted frames if the hardware has 1594 * decrypted them already. 1595 */ 1596 if (status->flag & RX_FLAG_DECRYPTED) 1597 return 0; 1598 1599 /* Drop unencrypted frames if key is set. */ 1600 if (unlikely(!ieee80211_has_protected(fc) && 1601 !ieee80211_is_nullfunc(fc) && 1602 ieee80211_is_data(fc) && 1603 (rx->key || rx->sdata->drop_unencrypted))) 1604 return -EACCES; 1605 1606 return 0; 1607 } 1608 1609 static int 1610 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1611 { 1612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1613 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1614 __le16 fc = hdr->frame_control; 1615 1616 /* 1617 * Pass through unencrypted frames if the hardware has 1618 * decrypted them already. 1619 */ 1620 if (status->flag & RX_FLAG_DECRYPTED) 1621 return 0; 1622 1623 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1624 if (unlikely(!ieee80211_has_protected(fc) && 1625 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1626 rx->key)) { 1627 if (ieee80211_is_deauth(fc)) 1628 cfg80211_send_unprot_deauth(rx->sdata->dev, 1629 rx->skb->data, 1630 rx->skb->len); 1631 else if (ieee80211_is_disassoc(fc)) 1632 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1633 rx->skb->data, 1634 rx->skb->len); 1635 return -EACCES; 1636 } 1637 /* BIP does not use Protected field, so need to check MMIE */ 1638 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1639 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1640 if (ieee80211_is_deauth(fc)) 1641 cfg80211_send_unprot_deauth(rx->sdata->dev, 1642 rx->skb->data, 1643 rx->skb->len); 1644 else if (ieee80211_is_disassoc(fc)) 1645 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1646 rx->skb->data, 1647 rx->skb->len); 1648 return -EACCES; 1649 } 1650 /* 1651 * When using MFP, Action frames are not allowed prior to 1652 * having configured keys. 1653 */ 1654 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1655 ieee80211_is_robust_mgmt_frame( 1656 (struct ieee80211_hdr *) rx->skb->data))) 1657 return -EACCES; 1658 } 1659 1660 return 0; 1661 } 1662 1663 static int 1664 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1665 { 1666 struct ieee80211_sub_if_data *sdata = rx->sdata; 1667 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1668 bool check_port_control = false; 1669 struct ethhdr *ehdr; 1670 int ret; 1671 1672 *port_control = false; 1673 if (ieee80211_has_a4(hdr->frame_control) && 1674 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1675 return -1; 1676 1677 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1678 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1679 1680 if (!sdata->u.mgd.use_4addr) 1681 return -1; 1682 else 1683 check_port_control = true; 1684 } 1685 1686 if (is_multicast_ether_addr(hdr->addr1) && 1687 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1688 return -1; 1689 1690 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1691 if (ret < 0) 1692 return ret; 1693 1694 ehdr = (struct ethhdr *) rx->skb->data; 1695 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1696 *port_control = true; 1697 else if (check_port_control) 1698 return -1; 1699 1700 return 0; 1701 } 1702 1703 /* 1704 * requires that rx->skb is a frame with ethernet header 1705 */ 1706 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1707 { 1708 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1709 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1710 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1711 1712 /* 1713 * Allow EAPOL frames to us/the PAE group address regardless 1714 * of whether the frame was encrypted or not. 1715 */ 1716 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1717 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 || 1718 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1719 return true; 1720 1721 if (ieee80211_802_1x_port_control(rx) || 1722 ieee80211_drop_unencrypted(rx, fc)) 1723 return false; 1724 1725 return true; 1726 } 1727 1728 /* 1729 * requires that rx->skb is a frame with ethernet header 1730 */ 1731 static void 1732 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1733 { 1734 struct ieee80211_sub_if_data *sdata = rx->sdata; 1735 struct net_device *dev = sdata->dev; 1736 struct sk_buff *skb, *xmit_skb; 1737 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1738 struct sta_info *dsta; 1739 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1740 1741 skb = rx->skb; 1742 xmit_skb = NULL; 1743 1744 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1745 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1746 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1747 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1748 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1749 if (is_multicast_ether_addr(ehdr->h_dest)) { 1750 /* 1751 * send multicast frames both to higher layers in 1752 * local net stack and back to the wireless medium 1753 */ 1754 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1755 if (!xmit_skb && net_ratelimit()) 1756 printk(KERN_DEBUG "%s: failed to clone " 1757 "multicast frame\n", dev->name); 1758 } else { 1759 dsta = sta_info_get(sdata, skb->data); 1760 if (dsta) { 1761 /* 1762 * The destination station is associated to 1763 * this AP (in this VLAN), so send the frame 1764 * directly to it and do not pass it to local 1765 * net stack. 1766 */ 1767 xmit_skb = skb; 1768 skb = NULL; 1769 } 1770 } 1771 } 1772 1773 if (skb) { 1774 int align __maybe_unused; 1775 1776 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1777 /* 1778 * 'align' will only take the values 0 or 2 here 1779 * since all frames are required to be aligned 1780 * to 2-byte boundaries when being passed to 1781 * mac80211. That also explains the __skb_push() 1782 * below. 1783 */ 1784 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1785 if (align) { 1786 if (WARN_ON(skb_headroom(skb) < 3)) { 1787 dev_kfree_skb(skb); 1788 skb = NULL; 1789 } else { 1790 u8 *data = skb->data; 1791 size_t len = skb_headlen(skb); 1792 skb->data -= align; 1793 memmove(skb->data, data, len); 1794 skb_set_tail_pointer(skb, len); 1795 } 1796 } 1797 #endif 1798 1799 if (skb) { 1800 /* deliver to local stack */ 1801 skb->protocol = eth_type_trans(skb, dev); 1802 memset(skb->cb, 0, sizeof(skb->cb)); 1803 netif_receive_skb(skb); 1804 } 1805 } 1806 1807 if (xmit_skb) { 1808 /* 1809 * Send to wireless media and increase priority by 256 to 1810 * keep the received priority instead of reclassifying 1811 * the frame (see cfg80211_classify8021d). 1812 */ 1813 xmit_skb->priority += 256; 1814 xmit_skb->protocol = htons(ETH_P_802_3); 1815 skb_reset_network_header(xmit_skb); 1816 skb_reset_mac_header(xmit_skb); 1817 dev_queue_xmit(xmit_skb); 1818 } 1819 } 1820 1821 static ieee80211_rx_result debug_noinline 1822 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1823 { 1824 struct net_device *dev = rx->sdata->dev; 1825 struct sk_buff *skb = rx->skb; 1826 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1827 __le16 fc = hdr->frame_control; 1828 struct sk_buff_head frame_list; 1829 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1830 1831 if (unlikely(!ieee80211_is_data(fc))) 1832 return RX_CONTINUE; 1833 1834 if (unlikely(!ieee80211_is_data_present(fc))) 1835 return RX_DROP_MONITOR; 1836 1837 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1838 return RX_CONTINUE; 1839 1840 if (ieee80211_has_a4(hdr->frame_control) && 1841 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1842 !rx->sdata->u.vlan.sta) 1843 return RX_DROP_UNUSABLE; 1844 1845 if (is_multicast_ether_addr(hdr->addr1) && 1846 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1847 rx->sdata->u.vlan.sta) || 1848 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1849 rx->sdata->u.mgd.use_4addr))) 1850 return RX_DROP_UNUSABLE; 1851 1852 skb->dev = dev; 1853 __skb_queue_head_init(&frame_list); 1854 1855 if (skb_linearize(skb)) 1856 return RX_DROP_UNUSABLE; 1857 1858 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1859 rx->sdata->vif.type, 1860 rx->local->hw.extra_tx_headroom, true); 1861 1862 while (!skb_queue_empty(&frame_list)) { 1863 rx->skb = __skb_dequeue(&frame_list); 1864 1865 if (!ieee80211_frame_allowed(rx, fc)) { 1866 dev_kfree_skb(rx->skb); 1867 continue; 1868 } 1869 dev->stats.rx_packets++; 1870 dev->stats.rx_bytes += rx->skb->len; 1871 1872 ieee80211_deliver_skb(rx); 1873 } 1874 1875 return RX_QUEUED; 1876 } 1877 1878 #ifdef CONFIG_MAC80211_MESH 1879 static ieee80211_rx_result 1880 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1881 { 1882 struct ieee80211_hdr *fwd_hdr, *hdr; 1883 struct ieee80211_tx_info *info; 1884 struct ieee80211s_hdr *mesh_hdr; 1885 struct sk_buff *skb = rx->skb, *fwd_skb; 1886 struct ieee80211_local *local = rx->local; 1887 struct ieee80211_sub_if_data *sdata = rx->sdata; 1888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1889 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 1890 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 1891 u16 q, hdrlen; 1892 1893 hdr = (struct ieee80211_hdr *) skb->data; 1894 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1895 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1896 1897 /* frame is in RMC, don't forward */ 1898 if (ieee80211_is_data(hdr->frame_control) && 1899 is_multicast_ether_addr(hdr->addr1) && 1900 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata)) 1901 return RX_DROP_MONITOR; 1902 1903 if (!ieee80211_is_data(hdr->frame_control)) 1904 return RX_CONTINUE; 1905 1906 if (!mesh_hdr->ttl) 1907 return RX_DROP_MONITOR; 1908 1909 if (mesh_hdr->flags & MESH_FLAGS_AE) { 1910 struct mesh_path *mppath; 1911 char *proxied_addr; 1912 char *mpp_addr; 1913 1914 if (is_multicast_ether_addr(hdr->addr1)) { 1915 mpp_addr = hdr->addr3; 1916 proxied_addr = mesh_hdr->eaddr1; 1917 } else { 1918 mpp_addr = hdr->addr4; 1919 proxied_addr = mesh_hdr->eaddr2; 1920 } 1921 1922 rcu_read_lock(); 1923 mppath = mpp_path_lookup(proxied_addr, sdata); 1924 if (!mppath) { 1925 mpp_path_add(proxied_addr, mpp_addr, sdata); 1926 } else { 1927 spin_lock_bh(&mppath->state_lock); 1928 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0) 1929 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 1930 spin_unlock_bh(&mppath->state_lock); 1931 } 1932 rcu_read_unlock(); 1933 } 1934 1935 /* Frame has reached destination. Don't forward */ 1936 if (!is_multicast_ether_addr(hdr->addr1) && 1937 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0) 1938 return RX_CONTINUE; 1939 1940 q = ieee80211_select_queue_80211(local, skb, hdr); 1941 if (ieee80211_queue_stopped(&local->hw, q)) { 1942 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 1943 return RX_DROP_MONITOR; 1944 } 1945 skb_set_queue_mapping(skb, q); 1946 1947 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1948 goto out; 1949 1950 if (!--mesh_hdr->ttl) { 1951 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 1952 return RX_DROP_MONITOR; 1953 } 1954 1955 if (!ifmsh->mshcfg.dot11MeshForwarding) 1956 goto out; 1957 1958 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1959 if (!fwd_skb) { 1960 if (net_ratelimit()) 1961 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1962 sdata->name); 1963 goto out; 1964 } 1965 1966 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1967 info = IEEE80211_SKB_CB(fwd_skb); 1968 memset(info, 0, sizeof(*info)); 1969 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1970 info->control.vif = &rx->sdata->vif; 1971 info->control.jiffies = jiffies; 1972 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 1973 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 1974 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 1975 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) { 1976 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 1977 } else { 1978 /* unable to resolve next hop */ 1979 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3, 1980 0, reason, fwd_hdr->addr2, sdata); 1981 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 1982 kfree_skb(fwd_skb); 1983 return RX_DROP_MONITOR; 1984 } 1985 1986 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 1987 ieee80211_add_pending_skb(local, fwd_skb); 1988 out: 1989 if (is_multicast_ether_addr(hdr->addr1) || 1990 sdata->dev->flags & IFF_PROMISC) 1991 return RX_CONTINUE; 1992 else 1993 return RX_DROP_MONITOR; 1994 } 1995 #endif 1996 1997 static ieee80211_rx_result debug_noinline 1998 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1999 { 2000 struct ieee80211_sub_if_data *sdata = rx->sdata; 2001 struct ieee80211_local *local = rx->local; 2002 struct net_device *dev = sdata->dev; 2003 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2004 __le16 fc = hdr->frame_control; 2005 bool port_control; 2006 int err; 2007 2008 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2009 return RX_CONTINUE; 2010 2011 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2012 return RX_DROP_MONITOR; 2013 2014 /* 2015 * Send unexpected-4addr-frame event to hostapd. For older versions, 2016 * also drop the frame to cooked monitor interfaces. 2017 */ 2018 if (ieee80211_has_a4(hdr->frame_control) && 2019 sdata->vif.type == NL80211_IFTYPE_AP) { 2020 if (rx->sta && 2021 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2022 cfg80211_rx_unexpected_4addr_frame( 2023 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2024 return RX_DROP_MONITOR; 2025 } 2026 2027 err = __ieee80211_data_to_8023(rx, &port_control); 2028 if (unlikely(err)) 2029 return RX_DROP_UNUSABLE; 2030 2031 if (!ieee80211_frame_allowed(rx, fc)) 2032 return RX_DROP_MONITOR; 2033 2034 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2035 unlikely(port_control) && sdata->bss) { 2036 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2037 u.ap); 2038 dev = sdata->dev; 2039 rx->sdata = sdata; 2040 } 2041 2042 rx->skb->dev = dev; 2043 2044 dev->stats.rx_packets++; 2045 dev->stats.rx_bytes += rx->skb->len; 2046 2047 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2048 !is_multicast_ether_addr( 2049 ((struct ethhdr *)rx->skb->data)->h_dest) && 2050 (!local->scanning && 2051 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2052 mod_timer(&local->dynamic_ps_timer, jiffies + 2053 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2054 } 2055 2056 ieee80211_deliver_skb(rx); 2057 2058 return RX_QUEUED; 2059 } 2060 2061 static ieee80211_rx_result debug_noinline 2062 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 2063 { 2064 struct ieee80211_local *local = rx->local; 2065 struct ieee80211_hw *hw = &local->hw; 2066 struct sk_buff *skb = rx->skb; 2067 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2068 struct tid_ampdu_rx *tid_agg_rx; 2069 u16 start_seq_num; 2070 u16 tid; 2071 2072 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2073 return RX_CONTINUE; 2074 2075 if (ieee80211_is_back_req(bar->frame_control)) { 2076 struct { 2077 __le16 control, start_seq_num; 2078 } __packed bar_data; 2079 2080 if (!rx->sta) 2081 return RX_DROP_MONITOR; 2082 2083 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2084 &bar_data, sizeof(bar_data))) 2085 return RX_DROP_MONITOR; 2086 2087 tid = le16_to_cpu(bar_data.control) >> 12; 2088 2089 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2090 if (!tid_agg_rx) 2091 return RX_DROP_MONITOR; 2092 2093 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2094 2095 /* reset session timer */ 2096 if (tid_agg_rx->timeout) 2097 mod_timer(&tid_agg_rx->session_timer, 2098 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2099 2100 spin_lock(&tid_agg_rx->reorder_lock); 2101 /* release stored frames up to start of BAR */ 2102 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num); 2103 spin_unlock(&tid_agg_rx->reorder_lock); 2104 2105 kfree_skb(skb); 2106 return RX_QUEUED; 2107 } 2108 2109 /* 2110 * After this point, we only want management frames, 2111 * so we can drop all remaining control frames to 2112 * cooked monitor interfaces. 2113 */ 2114 return RX_DROP_MONITOR; 2115 } 2116 2117 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2118 struct ieee80211_mgmt *mgmt, 2119 size_t len) 2120 { 2121 struct ieee80211_local *local = sdata->local; 2122 struct sk_buff *skb; 2123 struct ieee80211_mgmt *resp; 2124 2125 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) { 2126 /* Not to own unicast address */ 2127 return; 2128 } 2129 2130 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 || 2131 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) { 2132 /* Not from the current AP or not associated yet. */ 2133 return; 2134 } 2135 2136 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2137 /* Too short SA Query request frame */ 2138 return; 2139 } 2140 2141 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2142 if (skb == NULL) 2143 return; 2144 2145 skb_reserve(skb, local->hw.extra_tx_headroom); 2146 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2147 memset(resp, 0, 24); 2148 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2149 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2150 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2151 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2152 IEEE80211_STYPE_ACTION); 2153 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2154 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2155 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2156 memcpy(resp->u.action.u.sa_query.trans_id, 2157 mgmt->u.action.u.sa_query.trans_id, 2158 WLAN_SA_QUERY_TR_ID_LEN); 2159 2160 ieee80211_tx_skb(sdata, skb); 2161 } 2162 2163 static ieee80211_rx_result debug_noinline 2164 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2165 { 2166 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2167 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2168 2169 /* 2170 * From here on, look only at management frames. 2171 * Data and control frames are already handled, 2172 * and unknown (reserved) frames are useless. 2173 */ 2174 if (rx->skb->len < 24) 2175 return RX_DROP_MONITOR; 2176 2177 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2178 return RX_DROP_MONITOR; 2179 2180 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2181 ieee80211_is_beacon(mgmt->frame_control) && 2182 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2183 int sig = 0; 2184 2185 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2186 sig = status->signal; 2187 2188 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2189 rx->skb->data, rx->skb->len, 2190 status->freq, sig, GFP_ATOMIC); 2191 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2192 } 2193 2194 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2195 return RX_DROP_MONITOR; 2196 2197 if (ieee80211_drop_unencrypted_mgmt(rx)) 2198 return RX_DROP_UNUSABLE; 2199 2200 return RX_CONTINUE; 2201 } 2202 2203 static ieee80211_rx_result debug_noinline 2204 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2205 { 2206 struct ieee80211_local *local = rx->local; 2207 struct ieee80211_sub_if_data *sdata = rx->sdata; 2208 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2209 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2210 int len = rx->skb->len; 2211 2212 if (!ieee80211_is_action(mgmt->frame_control)) 2213 return RX_CONTINUE; 2214 2215 /* drop too small frames */ 2216 if (len < IEEE80211_MIN_ACTION_SIZE) 2217 return RX_DROP_UNUSABLE; 2218 2219 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) 2220 return RX_DROP_UNUSABLE; 2221 2222 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2223 return RX_DROP_UNUSABLE; 2224 2225 switch (mgmt->u.action.category) { 2226 case WLAN_CATEGORY_HT: 2227 /* reject HT action frames from stations not supporting HT */ 2228 if (!rx->sta->sta.ht_cap.ht_supported) 2229 goto invalid; 2230 2231 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2232 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2233 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2234 sdata->vif.type != NL80211_IFTYPE_AP && 2235 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2236 break; 2237 2238 /* verify action & smps_control are present */ 2239 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2240 goto invalid; 2241 2242 switch (mgmt->u.action.u.ht_smps.action) { 2243 case WLAN_HT_ACTION_SMPS: { 2244 struct ieee80211_supported_band *sband; 2245 u8 smps; 2246 2247 /* convert to HT capability */ 2248 switch (mgmt->u.action.u.ht_smps.smps_control) { 2249 case WLAN_HT_SMPS_CONTROL_DISABLED: 2250 smps = WLAN_HT_CAP_SM_PS_DISABLED; 2251 break; 2252 case WLAN_HT_SMPS_CONTROL_STATIC: 2253 smps = WLAN_HT_CAP_SM_PS_STATIC; 2254 break; 2255 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2256 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 2257 break; 2258 default: 2259 goto invalid; 2260 } 2261 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 2262 2263 /* if no change do nothing */ 2264 if ((rx->sta->sta.ht_cap.cap & 2265 IEEE80211_HT_CAP_SM_PS) == smps) 2266 goto handled; 2267 2268 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS; 2269 rx->sta->sta.ht_cap.cap |= smps; 2270 2271 sband = rx->local->hw.wiphy->bands[status->band]; 2272 2273 rate_control_rate_update( 2274 local, sband, rx->sta, 2275 IEEE80211_RC_SMPS_CHANGED, 2276 ieee80211_get_tx_channel_type( 2277 local, local->_oper_channel_type)); 2278 goto handled; 2279 } 2280 default: 2281 goto invalid; 2282 } 2283 2284 break; 2285 case WLAN_CATEGORY_BACK: 2286 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2287 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2288 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2289 sdata->vif.type != NL80211_IFTYPE_AP && 2290 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2291 break; 2292 2293 /* verify action_code is present */ 2294 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2295 break; 2296 2297 switch (mgmt->u.action.u.addba_req.action_code) { 2298 case WLAN_ACTION_ADDBA_REQ: 2299 if (len < (IEEE80211_MIN_ACTION_SIZE + 2300 sizeof(mgmt->u.action.u.addba_req))) 2301 goto invalid; 2302 break; 2303 case WLAN_ACTION_ADDBA_RESP: 2304 if (len < (IEEE80211_MIN_ACTION_SIZE + 2305 sizeof(mgmt->u.action.u.addba_resp))) 2306 goto invalid; 2307 break; 2308 case WLAN_ACTION_DELBA: 2309 if (len < (IEEE80211_MIN_ACTION_SIZE + 2310 sizeof(mgmt->u.action.u.delba))) 2311 goto invalid; 2312 break; 2313 default: 2314 goto invalid; 2315 } 2316 2317 goto queue; 2318 case WLAN_CATEGORY_SPECTRUM_MGMT: 2319 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 2320 break; 2321 2322 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2323 break; 2324 2325 /* verify action_code is present */ 2326 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2327 break; 2328 2329 switch (mgmt->u.action.u.measurement.action_code) { 2330 case WLAN_ACTION_SPCT_MSR_REQ: 2331 if (len < (IEEE80211_MIN_ACTION_SIZE + 2332 sizeof(mgmt->u.action.u.measurement))) 2333 break; 2334 ieee80211_process_measurement_req(sdata, mgmt, len); 2335 goto handled; 2336 case WLAN_ACTION_SPCT_CHL_SWITCH: 2337 if (len < (IEEE80211_MIN_ACTION_SIZE + 2338 sizeof(mgmt->u.action.u.chan_switch))) 2339 break; 2340 2341 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2342 break; 2343 2344 if (compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid)) 2345 break; 2346 2347 goto queue; 2348 } 2349 break; 2350 case WLAN_CATEGORY_SA_QUERY: 2351 if (len < (IEEE80211_MIN_ACTION_SIZE + 2352 sizeof(mgmt->u.action.u.sa_query))) 2353 break; 2354 2355 switch (mgmt->u.action.u.sa_query.action) { 2356 case WLAN_ACTION_SA_QUERY_REQUEST: 2357 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2358 break; 2359 ieee80211_process_sa_query_req(sdata, mgmt, len); 2360 goto handled; 2361 } 2362 break; 2363 case WLAN_CATEGORY_SELF_PROTECTED: 2364 switch (mgmt->u.action.u.self_prot.action_code) { 2365 case WLAN_SP_MESH_PEERING_OPEN: 2366 case WLAN_SP_MESH_PEERING_CLOSE: 2367 case WLAN_SP_MESH_PEERING_CONFIRM: 2368 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2369 goto invalid; 2370 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) 2371 /* userspace handles this frame */ 2372 break; 2373 goto queue; 2374 case WLAN_SP_MGK_INFORM: 2375 case WLAN_SP_MGK_ACK: 2376 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2377 goto invalid; 2378 break; 2379 } 2380 break; 2381 case WLAN_CATEGORY_MESH_ACTION: 2382 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2383 break; 2384 if (mesh_action_is_path_sel(mgmt) && 2385 (!mesh_path_sel_is_hwmp(sdata))) 2386 break; 2387 goto queue; 2388 } 2389 2390 return RX_CONTINUE; 2391 2392 invalid: 2393 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2394 /* will return in the next handlers */ 2395 return RX_CONTINUE; 2396 2397 handled: 2398 if (rx->sta) 2399 rx->sta->rx_packets++; 2400 dev_kfree_skb(rx->skb); 2401 return RX_QUEUED; 2402 2403 queue: 2404 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2405 skb_queue_tail(&sdata->skb_queue, rx->skb); 2406 ieee80211_queue_work(&local->hw, &sdata->work); 2407 if (rx->sta) 2408 rx->sta->rx_packets++; 2409 return RX_QUEUED; 2410 } 2411 2412 static ieee80211_rx_result debug_noinline 2413 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2414 { 2415 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2416 int sig = 0; 2417 2418 /* skip known-bad action frames and return them in the next handler */ 2419 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2420 return RX_CONTINUE; 2421 2422 /* 2423 * Getting here means the kernel doesn't know how to handle 2424 * it, but maybe userspace does ... include returned frames 2425 * so userspace can register for those to know whether ones 2426 * it transmitted were processed or returned. 2427 */ 2428 2429 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2430 sig = status->signal; 2431 2432 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, sig, 2433 rx->skb->data, rx->skb->len, 2434 GFP_ATOMIC)) { 2435 if (rx->sta) 2436 rx->sta->rx_packets++; 2437 dev_kfree_skb(rx->skb); 2438 return RX_QUEUED; 2439 } 2440 2441 2442 return RX_CONTINUE; 2443 } 2444 2445 static ieee80211_rx_result debug_noinline 2446 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2447 { 2448 struct ieee80211_local *local = rx->local; 2449 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2450 struct sk_buff *nskb; 2451 struct ieee80211_sub_if_data *sdata = rx->sdata; 2452 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2453 2454 if (!ieee80211_is_action(mgmt->frame_control)) 2455 return RX_CONTINUE; 2456 2457 /* 2458 * For AP mode, hostapd is responsible for handling any action 2459 * frames that we didn't handle, including returning unknown 2460 * ones. For all other modes we will return them to the sender, 2461 * setting the 0x80 bit in the action category, as required by 2462 * 802.11-2007 7.3.1.11. 2463 * Newer versions of hostapd shall also use the management frame 2464 * registration mechanisms, but older ones still use cooked 2465 * monitor interfaces so push all frames there. 2466 */ 2467 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2468 (sdata->vif.type == NL80211_IFTYPE_AP || 2469 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2470 return RX_DROP_MONITOR; 2471 2472 /* do not return rejected action frames */ 2473 if (mgmt->u.action.category & 0x80) 2474 return RX_DROP_UNUSABLE; 2475 2476 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2477 GFP_ATOMIC); 2478 if (nskb) { 2479 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2480 2481 nmgmt->u.action.category |= 0x80; 2482 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2483 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2484 2485 memset(nskb->cb, 0, sizeof(nskb->cb)); 2486 2487 ieee80211_tx_skb(rx->sdata, nskb); 2488 } 2489 dev_kfree_skb(rx->skb); 2490 return RX_QUEUED; 2491 } 2492 2493 static ieee80211_rx_result debug_noinline 2494 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2495 { 2496 struct ieee80211_sub_if_data *sdata = rx->sdata; 2497 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2498 __le16 stype; 2499 2500 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2501 2502 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2503 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2504 sdata->vif.type != NL80211_IFTYPE_STATION) 2505 return RX_DROP_MONITOR; 2506 2507 switch (stype) { 2508 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2509 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2510 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2511 /* process for all: mesh, mlme, ibss */ 2512 break; 2513 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2514 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2515 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2516 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2517 if (is_multicast_ether_addr(mgmt->da) && 2518 !is_broadcast_ether_addr(mgmt->da)) 2519 return RX_DROP_MONITOR; 2520 2521 /* process only for station */ 2522 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2523 return RX_DROP_MONITOR; 2524 break; 2525 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2526 /* process only for ibss */ 2527 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 2528 return RX_DROP_MONITOR; 2529 break; 2530 default: 2531 return RX_DROP_MONITOR; 2532 } 2533 2534 /* queue up frame and kick off work to process it */ 2535 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2536 skb_queue_tail(&sdata->skb_queue, rx->skb); 2537 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2538 if (rx->sta) 2539 rx->sta->rx_packets++; 2540 2541 return RX_QUEUED; 2542 } 2543 2544 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2545 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2546 struct ieee80211_rate *rate) 2547 { 2548 struct ieee80211_sub_if_data *sdata; 2549 struct ieee80211_local *local = rx->local; 2550 struct sk_buff *skb = rx->skb, *skb2; 2551 struct net_device *prev_dev = NULL; 2552 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2553 int needed_headroom; 2554 2555 /* 2556 * If cooked monitor has been processed already, then 2557 * don't do it again. If not, set the flag. 2558 */ 2559 if (rx->flags & IEEE80211_RX_CMNTR) 2560 goto out_free_skb; 2561 rx->flags |= IEEE80211_RX_CMNTR; 2562 2563 /* If there are no cooked monitor interfaces, just free the SKB */ 2564 if (!local->cooked_mntrs) 2565 goto out_free_skb; 2566 2567 /* room for the radiotap header based on driver features */ 2568 needed_headroom = ieee80211_rx_radiotap_len(local, status); 2569 2570 if (skb_headroom(skb) < needed_headroom && 2571 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2572 goto out_free_skb; 2573 2574 /* prepend radiotap information */ 2575 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2576 false); 2577 2578 skb_set_mac_header(skb, 0); 2579 skb->ip_summed = CHECKSUM_UNNECESSARY; 2580 skb->pkt_type = PACKET_OTHERHOST; 2581 skb->protocol = htons(ETH_P_802_2); 2582 2583 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2584 if (!ieee80211_sdata_running(sdata)) 2585 continue; 2586 2587 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2588 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2589 continue; 2590 2591 if (prev_dev) { 2592 skb2 = skb_clone(skb, GFP_ATOMIC); 2593 if (skb2) { 2594 skb2->dev = prev_dev; 2595 netif_receive_skb(skb2); 2596 } 2597 } 2598 2599 prev_dev = sdata->dev; 2600 sdata->dev->stats.rx_packets++; 2601 sdata->dev->stats.rx_bytes += skb->len; 2602 } 2603 2604 if (prev_dev) { 2605 skb->dev = prev_dev; 2606 netif_receive_skb(skb); 2607 return; 2608 } 2609 2610 out_free_skb: 2611 dev_kfree_skb(skb); 2612 } 2613 2614 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2615 ieee80211_rx_result res) 2616 { 2617 switch (res) { 2618 case RX_DROP_MONITOR: 2619 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2620 if (rx->sta) 2621 rx->sta->rx_dropped++; 2622 /* fall through */ 2623 case RX_CONTINUE: { 2624 struct ieee80211_rate *rate = NULL; 2625 struct ieee80211_supported_band *sband; 2626 struct ieee80211_rx_status *status; 2627 2628 status = IEEE80211_SKB_RXCB((rx->skb)); 2629 2630 sband = rx->local->hw.wiphy->bands[status->band]; 2631 if (!(status->flag & RX_FLAG_HT)) 2632 rate = &sband->bitrates[status->rate_idx]; 2633 2634 ieee80211_rx_cooked_monitor(rx, rate); 2635 break; 2636 } 2637 case RX_DROP_UNUSABLE: 2638 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2639 if (rx->sta) 2640 rx->sta->rx_dropped++; 2641 dev_kfree_skb(rx->skb); 2642 break; 2643 case RX_QUEUED: 2644 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2645 break; 2646 } 2647 } 2648 2649 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx) 2650 { 2651 ieee80211_rx_result res = RX_DROP_MONITOR; 2652 struct sk_buff *skb; 2653 2654 #define CALL_RXH(rxh) \ 2655 do { \ 2656 res = rxh(rx); \ 2657 if (res != RX_CONTINUE) \ 2658 goto rxh_next; \ 2659 } while (0); 2660 2661 spin_lock(&rx->local->rx_skb_queue.lock); 2662 if (rx->local->running_rx_handler) 2663 goto unlock; 2664 2665 rx->local->running_rx_handler = true; 2666 2667 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) { 2668 spin_unlock(&rx->local->rx_skb_queue.lock); 2669 2670 /* 2671 * all the other fields are valid across frames 2672 * that belong to an aMPDU since they are on the 2673 * same TID from the same station 2674 */ 2675 rx->skb = skb; 2676 2677 CALL_RXH(ieee80211_rx_h_decrypt) 2678 CALL_RXH(ieee80211_rx_h_check_more_data) 2679 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2680 CALL_RXH(ieee80211_rx_h_sta_process) 2681 CALL_RXH(ieee80211_rx_h_defragment) 2682 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2683 /* must be after MMIC verify so header is counted in MPDU mic */ 2684 #ifdef CONFIG_MAC80211_MESH 2685 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2686 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2687 #endif 2688 CALL_RXH(ieee80211_rx_h_amsdu) 2689 CALL_RXH(ieee80211_rx_h_data) 2690 CALL_RXH(ieee80211_rx_h_ctrl); 2691 CALL_RXH(ieee80211_rx_h_mgmt_check) 2692 CALL_RXH(ieee80211_rx_h_action) 2693 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2694 CALL_RXH(ieee80211_rx_h_action_return) 2695 CALL_RXH(ieee80211_rx_h_mgmt) 2696 2697 rxh_next: 2698 ieee80211_rx_handlers_result(rx, res); 2699 spin_lock(&rx->local->rx_skb_queue.lock); 2700 #undef CALL_RXH 2701 } 2702 2703 rx->local->running_rx_handler = false; 2704 2705 unlock: 2706 spin_unlock(&rx->local->rx_skb_queue.lock); 2707 } 2708 2709 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2710 { 2711 ieee80211_rx_result res = RX_DROP_MONITOR; 2712 2713 #define CALL_RXH(rxh) \ 2714 do { \ 2715 res = rxh(rx); \ 2716 if (res != RX_CONTINUE) \ 2717 goto rxh_next; \ 2718 } while (0); 2719 2720 CALL_RXH(ieee80211_rx_h_passive_scan) 2721 CALL_RXH(ieee80211_rx_h_check) 2722 2723 ieee80211_rx_reorder_ampdu(rx); 2724 2725 ieee80211_rx_handlers(rx); 2726 return; 2727 2728 rxh_next: 2729 ieee80211_rx_handlers_result(rx, res); 2730 2731 #undef CALL_RXH 2732 } 2733 2734 /* 2735 * This function makes calls into the RX path, therefore 2736 * it has to be invoked under RCU read lock. 2737 */ 2738 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2739 { 2740 struct ieee80211_rx_data rx = { 2741 .sta = sta, 2742 .sdata = sta->sdata, 2743 .local = sta->local, 2744 /* This is OK -- must be QoS data frame */ 2745 .security_idx = tid, 2746 .seqno_idx = tid, 2747 .flags = 0, 2748 }; 2749 struct tid_ampdu_rx *tid_agg_rx; 2750 2751 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2752 if (!tid_agg_rx) 2753 return; 2754 2755 spin_lock(&tid_agg_rx->reorder_lock); 2756 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx); 2757 spin_unlock(&tid_agg_rx->reorder_lock); 2758 2759 ieee80211_rx_handlers(&rx); 2760 } 2761 2762 /* main receive path */ 2763 2764 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2765 struct ieee80211_hdr *hdr) 2766 { 2767 struct ieee80211_sub_if_data *sdata = rx->sdata; 2768 struct sk_buff *skb = rx->skb; 2769 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2770 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2771 int multicast = is_multicast_ether_addr(hdr->addr1); 2772 2773 switch (sdata->vif.type) { 2774 case NL80211_IFTYPE_STATION: 2775 if (!bssid && !sdata->u.mgd.use_4addr) 2776 return 0; 2777 if (!multicast && 2778 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) { 2779 if (!(sdata->dev->flags & IFF_PROMISC) || 2780 sdata->u.mgd.use_4addr) 2781 return 0; 2782 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2783 } 2784 break; 2785 case NL80211_IFTYPE_ADHOC: 2786 if (!bssid) 2787 return 0; 2788 if (ieee80211_is_beacon(hdr->frame_control)) { 2789 return 1; 2790 } 2791 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2792 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN)) 2793 return 0; 2794 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2795 } else if (!multicast && 2796 compare_ether_addr(sdata->vif.addr, 2797 hdr->addr1) != 0) { 2798 if (!(sdata->dev->flags & IFF_PROMISC)) 2799 return 0; 2800 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2801 } else if (!rx->sta) { 2802 int rate_idx; 2803 if (status->flag & RX_FLAG_HT) 2804 rate_idx = 0; /* TODO: HT rates */ 2805 else 2806 rate_idx = status->rate_idx; 2807 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 2808 BIT(rate_idx)); 2809 } 2810 break; 2811 case NL80211_IFTYPE_MESH_POINT: 2812 if (!multicast && 2813 compare_ether_addr(sdata->vif.addr, 2814 hdr->addr1) != 0) { 2815 if (!(sdata->dev->flags & IFF_PROMISC)) 2816 return 0; 2817 2818 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2819 } 2820 break; 2821 case NL80211_IFTYPE_AP_VLAN: 2822 case NL80211_IFTYPE_AP: 2823 if (!bssid) { 2824 if (compare_ether_addr(sdata->vif.addr, 2825 hdr->addr1)) 2826 return 0; 2827 } else if (!ieee80211_bssid_match(bssid, 2828 sdata->vif.addr)) { 2829 /* 2830 * Accept public action frames even when the 2831 * BSSID doesn't match, this is used for P2P 2832 * and location updates. Note that mac80211 2833 * itself never looks at these frames. 2834 */ 2835 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 2836 ieee80211_is_public_action(hdr, skb->len)) 2837 return 1; 2838 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 2839 !ieee80211_is_beacon(hdr->frame_control)) 2840 return 0; 2841 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2842 } 2843 break; 2844 case NL80211_IFTYPE_WDS: 2845 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2846 return 0; 2847 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 2848 return 0; 2849 break; 2850 default: 2851 /* should never get here */ 2852 WARN_ON(1); 2853 break; 2854 } 2855 2856 return 1; 2857 } 2858 2859 /* 2860 * This function returns whether or not the SKB 2861 * was destined for RX processing or not, which, 2862 * if consume is true, is equivalent to whether 2863 * or not the skb was consumed. 2864 */ 2865 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 2866 struct sk_buff *skb, bool consume) 2867 { 2868 struct ieee80211_local *local = rx->local; 2869 struct ieee80211_sub_if_data *sdata = rx->sdata; 2870 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2871 struct ieee80211_hdr *hdr = (void *)skb->data; 2872 int prepares; 2873 2874 rx->skb = skb; 2875 status->rx_flags |= IEEE80211_RX_RA_MATCH; 2876 prepares = prepare_for_handlers(rx, hdr); 2877 2878 if (!prepares) 2879 return false; 2880 2881 if (!consume) { 2882 skb = skb_copy(skb, GFP_ATOMIC); 2883 if (!skb) { 2884 if (net_ratelimit()) 2885 wiphy_debug(local->hw.wiphy, 2886 "failed to copy skb for %s\n", 2887 sdata->name); 2888 return true; 2889 } 2890 2891 rx->skb = skb; 2892 } 2893 2894 ieee80211_invoke_rx_handlers(rx); 2895 return true; 2896 } 2897 2898 /* 2899 * This is the actual Rx frames handler. as it blongs to Rx path it must 2900 * be called with rcu_read_lock protection. 2901 */ 2902 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2903 struct sk_buff *skb) 2904 { 2905 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2906 struct ieee80211_local *local = hw_to_local(hw); 2907 struct ieee80211_sub_if_data *sdata; 2908 struct ieee80211_hdr *hdr; 2909 __le16 fc; 2910 struct ieee80211_rx_data rx; 2911 struct ieee80211_sub_if_data *prev; 2912 struct sta_info *sta, *tmp, *prev_sta; 2913 int err = 0; 2914 2915 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 2916 memset(&rx, 0, sizeof(rx)); 2917 rx.skb = skb; 2918 rx.local = local; 2919 2920 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 2921 local->dot11ReceivedFragmentCount++; 2922 2923 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) || 2924 test_bit(SCAN_SW_SCANNING, &local->scanning))) 2925 status->rx_flags |= IEEE80211_RX_IN_SCAN; 2926 2927 if (ieee80211_is_mgmt(fc)) 2928 err = skb_linearize(skb); 2929 else 2930 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 2931 2932 if (err) { 2933 dev_kfree_skb(skb); 2934 return; 2935 } 2936 2937 hdr = (struct ieee80211_hdr *)skb->data; 2938 ieee80211_parse_qos(&rx); 2939 ieee80211_verify_alignment(&rx); 2940 2941 if (ieee80211_is_data(fc)) { 2942 prev_sta = NULL; 2943 2944 for_each_sta_info(local, hdr->addr2, sta, tmp) { 2945 if (!prev_sta) { 2946 prev_sta = sta; 2947 continue; 2948 } 2949 2950 rx.sta = prev_sta; 2951 rx.sdata = prev_sta->sdata; 2952 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2953 2954 prev_sta = sta; 2955 } 2956 2957 if (prev_sta) { 2958 rx.sta = prev_sta; 2959 rx.sdata = prev_sta->sdata; 2960 2961 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2962 return; 2963 goto out; 2964 } 2965 } 2966 2967 prev = NULL; 2968 2969 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2970 if (!ieee80211_sdata_running(sdata)) 2971 continue; 2972 2973 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 2974 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 2975 continue; 2976 2977 /* 2978 * frame is destined for this interface, but if it's 2979 * not also for the previous one we handle that after 2980 * the loop to avoid copying the SKB once too much 2981 */ 2982 2983 if (!prev) { 2984 prev = sdata; 2985 continue; 2986 } 2987 2988 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2989 rx.sdata = prev; 2990 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2991 2992 prev = sdata; 2993 } 2994 2995 if (prev) { 2996 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2997 rx.sdata = prev; 2998 2999 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3000 return; 3001 } 3002 3003 out: 3004 dev_kfree_skb(skb); 3005 } 3006 3007 /* 3008 * This is the receive path handler. It is called by a low level driver when an 3009 * 802.11 MPDU is received from the hardware. 3010 */ 3011 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3012 { 3013 struct ieee80211_local *local = hw_to_local(hw); 3014 struct ieee80211_rate *rate = NULL; 3015 struct ieee80211_supported_band *sband; 3016 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3017 3018 WARN_ON_ONCE(softirq_count() == 0); 3019 3020 if (WARN_ON(status->band < 0 || 3021 status->band >= IEEE80211_NUM_BANDS)) 3022 goto drop; 3023 3024 sband = local->hw.wiphy->bands[status->band]; 3025 if (WARN_ON(!sband)) 3026 goto drop; 3027 3028 /* 3029 * If we're suspending, it is possible although not too likely 3030 * that we'd be receiving frames after having already partially 3031 * quiesced the stack. We can't process such frames then since 3032 * that might, for example, cause stations to be added or other 3033 * driver callbacks be invoked. 3034 */ 3035 if (unlikely(local->quiescing || local->suspended)) 3036 goto drop; 3037 3038 /* 3039 * The same happens when we're not even started, 3040 * but that's worth a warning. 3041 */ 3042 if (WARN_ON(!local->started)) 3043 goto drop; 3044 3045 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3046 /* 3047 * Validate the rate, unless a PLCP error means that 3048 * we probably can't have a valid rate here anyway. 3049 */ 3050 3051 if (status->flag & RX_FLAG_HT) { 3052 /* 3053 * rate_idx is MCS index, which can be [0-76] 3054 * as documented on: 3055 * 3056 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3057 * 3058 * Anything else would be some sort of driver or 3059 * hardware error. The driver should catch hardware 3060 * errors. 3061 */ 3062 if (WARN((status->rate_idx < 0 || 3063 status->rate_idx > 76), 3064 "Rate marked as an HT rate but passed " 3065 "status->rate_idx is not " 3066 "an MCS index [0-76]: %d (0x%02x)\n", 3067 status->rate_idx, 3068 status->rate_idx)) 3069 goto drop; 3070 } else { 3071 if (WARN_ON(status->rate_idx < 0 || 3072 status->rate_idx >= sband->n_bitrates)) 3073 goto drop; 3074 rate = &sband->bitrates[status->rate_idx]; 3075 } 3076 } 3077 3078 status->rx_flags = 0; 3079 3080 /* 3081 * key references and virtual interfaces are protected using RCU 3082 * and this requires that we are in a read-side RCU section during 3083 * receive processing 3084 */ 3085 rcu_read_lock(); 3086 3087 /* 3088 * Frames with failed FCS/PLCP checksum are not returned, 3089 * all other frames are returned without radiotap header 3090 * if it was previously present. 3091 * Also, frames with less than 16 bytes are dropped. 3092 */ 3093 skb = ieee80211_rx_monitor(local, skb, rate); 3094 if (!skb) { 3095 rcu_read_unlock(); 3096 return; 3097 } 3098 3099 ieee80211_tpt_led_trig_rx(local, 3100 ((struct ieee80211_hdr *)skb->data)->frame_control, 3101 skb->len); 3102 __ieee80211_rx_handle_packet(hw, skb); 3103 3104 rcu_read_unlock(); 3105 3106 return; 3107 drop: 3108 kfree_skb(skb); 3109 } 3110 EXPORT_SYMBOL(ieee80211_rx); 3111 3112 /* This is a version of the rx handler that can be called from hard irq 3113 * context. Post the skb on the queue and schedule the tasklet */ 3114 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3115 { 3116 struct ieee80211_local *local = hw_to_local(hw); 3117 3118 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3119 3120 skb->pkt_type = IEEE80211_RX_MSG; 3121 skb_queue_tail(&local->skb_queue, skb); 3122 tasklet_schedule(&local->tasklet); 3123 } 3124 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3125