xref: /openbmc/linux/net/mac80211/rx.c (revision 612cf4d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2022 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25 
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35 
36 /*
37  * monitor mode reception
38  *
39  * This function cleans up the SKB, i.e. it removes all the stuff
40  * only useful for monitoring.
41  */
42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 					   unsigned int present_fcs_len,
44 					   unsigned int rtap_space)
45 {
46 	struct ieee80211_hdr *hdr;
47 	unsigned int hdrlen;
48 	__le16 fc;
49 
50 	if (present_fcs_len)
51 		__pskb_trim(skb, skb->len - present_fcs_len);
52 	pskb_pull(skb, rtap_space);
53 
54 	hdr = (void *)skb->data;
55 	fc = hdr->frame_control;
56 
57 	/*
58 	 * Remove the HT-Control field (if present) on management
59 	 * frames after we've sent the frame to monitoring. We
60 	 * (currently) don't need it, and don't properly parse
61 	 * frames with it present, due to the assumption of a
62 	 * fixed management header length.
63 	 */
64 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 		return skb;
66 
67 	hdrlen = ieee80211_hdrlen(fc);
68 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69 
70 	if (!pskb_may_pull(skb, hdrlen)) {
71 		dev_kfree_skb(skb);
72 		return NULL;
73 	}
74 
75 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 		hdrlen - IEEE80211_HT_CTL_LEN);
77 	pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78 
79 	return skb;
80 }
81 
82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 				     unsigned int rtap_space)
84 {
85 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 	struct ieee80211_hdr *hdr;
87 
88 	hdr = (void *)(skb->data + rtap_space);
89 
90 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 			    RX_FLAG_FAILED_PLCP_CRC |
92 			    RX_FLAG_ONLY_MONITOR |
93 			    RX_FLAG_NO_PSDU))
94 		return true;
95 
96 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 		return true;
98 
99 	if (ieee80211_is_ctl(hdr->frame_control) &&
100 	    !ieee80211_is_pspoll(hdr->frame_control) &&
101 	    !ieee80211_is_back_req(hdr->frame_control))
102 		return true;
103 
104 	return false;
105 }
106 
107 static int
108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 			     struct ieee80211_rx_status *status,
110 			     struct sk_buff *skb)
111 {
112 	int len;
113 
114 	/* always present fields */
115 	len = sizeof(struct ieee80211_radiotap_header) + 8;
116 
117 	/* allocate extra bitmaps */
118 	if (status->chains)
119 		len += 4 * hweight8(status->chains);
120 	/* vendor presence bitmap */
121 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 		len += 4;
123 
124 	if (ieee80211_have_rx_timestamp(status)) {
125 		len = ALIGN(len, 8);
126 		len += 8;
127 	}
128 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 		len += 1;
130 
131 	/* antenna field, if we don't have per-chain info */
132 	if (!status->chains)
133 		len += 1;
134 
135 	/* padding for RX_FLAGS if necessary */
136 	len = ALIGN(len, 2);
137 
138 	if (status->encoding == RX_ENC_HT) /* HT info */
139 		len += 3;
140 
141 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 		len = ALIGN(len, 4);
143 		len += 8;
144 	}
145 
146 	if (status->encoding == RX_ENC_VHT) {
147 		len = ALIGN(len, 2);
148 		len += 12;
149 	}
150 
151 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 		len = ALIGN(len, 8);
153 		len += 12;
154 	}
155 
156 	if (status->encoding == RX_ENC_HE &&
157 	    status->flag & RX_FLAG_RADIOTAP_HE) {
158 		len = ALIGN(len, 2);
159 		len += 12;
160 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 	}
162 
163 	if (status->encoding == RX_ENC_HE &&
164 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 		len = ALIGN(len, 2);
166 		len += 12;
167 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 	}
169 
170 	if (status->flag & RX_FLAG_NO_PSDU)
171 		len += 1;
172 
173 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 		len = ALIGN(len, 2);
175 		len += 4;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 	}
178 
179 	if (status->chains) {
180 		/* antenna and antenna signal fields */
181 		len += 2 * hweight8(status->chains);
182 	}
183 
184 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 		struct ieee80211_vendor_radiotap *rtap;
186 		int vendor_data_offset = 0;
187 
188 		/*
189 		 * The position to look at depends on the existence (or non-
190 		 * existence) of other elements, so take that into account...
191 		 */
192 		if (status->flag & RX_FLAG_RADIOTAP_HE)
193 			vendor_data_offset +=
194 				sizeof(struct ieee80211_radiotap_he);
195 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 			vendor_data_offset +=
197 				sizeof(struct ieee80211_radiotap_he_mu);
198 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 			vendor_data_offset +=
200 				sizeof(struct ieee80211_radiotap_lsig);
201 
202 		rtap = (void *)&skb->data[vendor_data_offset];
203 
204 		/* alignment for fixed 6-byte vendor data header */
205 		len = ALIGN(len, 2);
206 		/* vendor data header */
207 		len += 6;
208 		if (WARN_ON(rtap->align == 0))
209 			rtap->align = 1;
210 		len = ALIGN(len, rtap->align);
211 		len += rtap->len + rtap->pad;
212 	}
213 
214 	return len;
215 }
216 
217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 					   int link_id,
219 					   struct sta_info *sta,
220 					   struct sk_buff *skb)
221 {
222 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223 
224 	if (link_id >= 0) {
225 		status->link_valid = 1;
226 		status->link_id = link_id;
227 	} else {
228 		status->link_valid = 0;
229 	}
230 
231 	skb_queue_tail(&sdata->skb_queue, skb);
232 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
233 	if (sta)
234 		sta->deflink.rx_stats.packets++;
235 }
236 
237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
238 					 int link_id,
239 					 struct sta_info *sta,
240 					 struct sk_buff *skb)
241 {
242 	skb->protocol = 0;
243 	__ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb);
244 }
245 
246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
247 					 struct sk_buff *skb,
248 					 int rtap_space)
249 {
250 	struct {
251 		struct ieee80211_hdr_3addr hdr;
252 		u8 category;
253 		u8 action_code;
254 	} __packed __aligned(2) action;
255 
256 	if (!sdata)
257 		return;
258 
259 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
260 
261 	if (skb->len < rtap_space + sizeof(action) +
262 		       VHT_MUMIMO_GROUPS_DATA_LEN)
263 		return;
264 
265 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
266 		return;
267 
268 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
269 
270 	if (!ieee80211_is_action(action.hdr.frame_control))
271 		return;
272 
273 	if (action.category != WLAN_CATEGORY_VHT)
274 		return;
275 
276 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
277 		return;
278 
279 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
280 		return;
281 
282 	skb = skb_copy(skb, GFP_ATOMIC);
283 	if (!skb)
284 		return;
285 
286 	ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb);
287 }
288 
289 /*
290  * ieee80211_add_rx_radiotap_header - add radiotap header
291  *
292  * add a radiotap header containing all the fields which the hardware provided.
293  */
294 static void
295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
296 				 struct sk_buff *skb,
297 				 struct ieee80211_rate *rate,
298 				 int rtap_len, bool has_fcs)
299 {
300 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
301 	struct ieee80211_radiotap_header *rthdr;
302 	unsigned char *pos;
303 	__le32 *it_present;
304 	u32 it_present_val;
305 	u16 rx_flags = 0;
306 	u16 channel_flags = 0;
307 	int mpdulen, chain;
308 	unsigned long chains = status->chains;
309 	struct ieee80211_vendor_radiotap rtap = {};
310 	struct ieee80211_radiotap_he he = {};
311 	struct ieee80211_radiotap_he_mu he_mu = {};
312 	struct ieee80211_radiotap_lsig lsig = {};
313 
314 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
315 		he = *(struct ieee80211_radiotap_he *)skb->data;
316 		skb_pull(skb, sizeof(he));
317 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
318 	}
319 
320 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
321 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
322 		skb_pull(skb, sizeof(he_mu));
323 	}
324 
325 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
326 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
327 		skb_pull(skb, sizeof(lsig));
328 	}
329 
330 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
331 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
332 		/* rtap.len and rtap.pad are undone immediately */
333 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
334 	}
335 
336 	mpdulen = skb->len;
337 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
338 		mpdulen += FCS_LEN;
339 
340 	rthdr = skb_push(skb, rtap_len);
341 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
342 	it_present = &rthdr->it_present;
343 
344 	/* radiotap header, set always present flags */
345 	rthdr->it_len = cpu_to_le16(rtap_len);
346 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
347 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
348 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
349 
350 	if (!status->chains)
351 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
352 
353 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
354 		it_present_val |=
355 			BIT(IEEE80211_RADIOTAP_EXT) |
356 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
357 		put_unaligned_le32(it_present_val, it_present);
358 		it_present++;
359 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
360 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
361 	}
362 
363 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
364 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
365 				  BIT(IEEE80211_RADIOTAP_EXT);
366 		put_unaligned_le32(it_present_val, it_present);
367 		it_present++;
368 		it_present_val = rtap.present;
369 	}
370 
371 	put_unaligned_le32(it_present_val, it_present);
372 
373 	/* This references through an offset into it_optional[] rather
374 	 * than via it_present otherwise later uses of pos will cause
375 	 * the compiler to think we have walked past the end of the
376 	 * struct member.
377 	 */
378 	pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
379 
380 	/* the order of the following fields is important */
381 
382 	/* IEEE80211_RADIOTAP_TSFT */
383 	if (ieee80211_have_rx_timestamp(status)) {
384 		/* padding */
385 		while ((pos - (u8 *)rthdr) & 7)
386 			*pos++ = 0;
387 		put_unaligned_le64(
388 			ieee80211_calculate_rx_timestamp(local, status,
389 							 mpdulen, 0),
390 			pos);
391 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
392 		pos += 8;
393 	}
394 
395 	/* IEEE80211_RADIOTAP_FLAGS */
396 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
397 		*pos |= IEEE80211_RADIOTAP_F_FCS;
398 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
399 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
400 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
401 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
402 	pos++;
403 
404 	/* IEEE80211_RADIOTAP_RATE */
405 	if (!rate || status->encoding != RX_ENC_LEGACY) {
406 		/*
407 		 * Without rate information don't add it. If we have,
408 		 * MCS information is a separate field in radiotap,
409 		 * added below. The byte here is needed as padding
410 		 * for the channel though, so initialise it to 0.
411 		 */
412 		*pos = 0;
413 	} else {
414 		int shift = 0;
415 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
416 		if (status->bw == RATE_INFO_BW_10)
417 			shift = 1;
418 		else if (status->bw == RATE_INFO_BW_5)
419 			shift = 2;
420 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
421 	}
422 	pos++;
423 
424 	/* IEEE80211_RADIOTAP_CHANNEL */
425 	/* TODO: frequency offset in KHz */
426 	put_unaligned_le16(status->freq, pos);
427 	pos += 2;
428 	if (status->bw == RATE_INFO_BW_10)
429 		channel_flags |= IEEE80211_CHAN_HALF;
430 	else if (status->bw == RATE_INFO_BW_5)
431 		channel_flags |= IEEE80211_CHAN_QUARTER;
432 
433 	if (status->band == NL80211_BAND_5GHZ ||
434 	    status->band == NL80211_BAND_6GHZ)
435 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
436 	else if (status->encoding != RX_ENC_LEGACY)
437 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
438 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
439 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
440 	else if (rate)
441 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
442 	else
443 		channel_flags |= IEEE80211_CHAN_2GHZ;
444 	put_unaligned_le16(channel_flags, pos);
445 	pos += 2;
446 
447 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
448 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
449 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
450 		*pos = status->signal;
451 		rthdr->it_present |=
452 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
453 		pos++;
454 	}
455 
456 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
457 
458 	if (!status->chains) {
459 		/* IEEE80211_RADIOTAP_ANTENNA */
460 		*pos = status->antenna;
461 		pos++;
462 	}
463 
464 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
465 
466 	/* IEEE80211_RADIOTAP_RX_FLAGS */
467 	/* ensure 2 byte alignment for the 2 byte field as required */
468 	if ((pos - (u8 *)rthdr) & 1)
469 		*pos++ = 0;
470 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
471 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
472 	put_unaligned_le16(rx_flags, pos);
473 	pos += 2;
474 
475 	if (status->encoding == RX_ENC_HT) {
476 		unsigned int stbc;
477 
478 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
479 		*pos = local->hw.radiotap_mcs_details;
480 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
481 			*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT;
482 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
483 			*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC;
484 		pos++;
485 		*pos = 0;
486 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
487 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
488 		if (status->bw == RATE_INFO_BW_40)
489 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
490 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
491 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
492 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
493 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
494 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
495 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
496 		pos++;
497 		*pos++ = status->rate_idx;
498 	}
499 
500 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
501 		u16 flags = 0;
502 
503 		/* ensure 4 byte alignment */
504 		while ((pos - (u8 *)rthdr) & 3)
505 			pos++;
506 		rthdr->it_present |=
507 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
508 		put_unaligned_le32(status->ampdu_reference, pos);
509 		pos += 4;
510 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
511 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
512 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
513 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
514 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
515 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
516 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
517 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
518 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
519 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
520 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
521 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
522 		put_unaligned_le16(flags, pos);
523 		pos += 2;
524 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
525 			*pos++ = status->ampdu_delimiter_crc;
526 		else
527 			*pos++ = 0;
528 		*pos++ = 0;
529 	}
530 
531 	if (status->encoding == RX_ENC_VHT) {
532 		u16 known = local->hw.radiotap_vht_details;
533 
534 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
535 		put_unaligned_le16(known, pos);
536 		pos += 2;
537 		/* flags */
538 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
539 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
540 		/* in VHT, STBC is binary */
541 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
542 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
543 		if (status->enc_flags & RX_ENC_FLAG_BF)
544 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
545 		pos++;
546 		/* bandwidth */
547 		switch (status->bw) {
548 		case RATE_INFO_BW_80:
549 			*pos++ = 4;
550 			break;
551 		case RATE_INFO_BW_160:
552 			*pos++ = 11;
553 			break;
554 		case RATE_INFO_BW_40:
555 			*pos++ = 1;
556 			break;
557 		default:
558 			*pos++ = 0;
559 		}
560 		/* MCS/NSS */
561 		*pos = (status->rate_idx << 4) | status->nss;
562 		pos += 4;
563 		/* coding field */
564 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
565 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
566 		pos++;
567 		/* group ID */
568 		pos++;
569 		/* partial_aid */
570 		pos += 2;
571 	}
572 
573 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
574 		u16 accuracy = 0;
575 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
576 
577 		rthdr->it_present |=
578 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
579 
580 		/* ensure 8 byte alignment */
581 		while ((pos - (u8 *)rthdr) & 7)
582 			pos++;
583 
584 		put_unaligned_le64(status->device_timestamp, pos);
585 		pos += sizeof(u64);
586 
587 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
588 			accuracy = local->hw.radiotap_timestamp.accuracy;
589 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
590 		}
591 		put_unaligned_le16(accuracy, pos);
592 		pos += sizeof(u16);
593 
594 		*pos++ = local->hw.radiotap_timestamp.units_pos;
595 		*pos++ = flags;
596 	}
597 
598 	if (status->encoding == RX_ENC_HE &&
599 	    status->flag & RX_FLAG_RADIOTAP_HE) {
600 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
601 
602 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
603 			he.data6 |= HE_PREP(DATA6_NSTS,
604 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
605 						      status->enc_flags));
606 			he.data3 |= HE_PREP(DATA3_STBC, 1);
607 		} else {
608 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
609 		}
610 
611 #define CHECK_GI(s) \
612 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
613 		     (int)NL80211_RATE_INFO_HE_GI_##s)
614 
615 		CHECK_GI(0_8);
616 		CHECK_GI(1_6);
617 		CHECK_GI(3_2);
618 
619 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
620 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
621 		he.data3 |= HE_PREP(DATA3_CODING,
622 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
623 
624 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
625 
626 		switch (status->bw) {
627 		case RATE_INFO_BW_20:
628 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
629 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
630 			break;
631 		case RATE_INFO_BW_40:
632 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
633 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
634 			break;
635 		case RATE_INFO_BW_80:
636 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
637 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
638 			break;
639 		case RATE_INFO_BW_160:
640 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
641 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
642 			break;
643 		case RATE_INFO_BW_HE_RU:
644 #define CHECK_RU_ALLOC(s) \
645 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
646 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
647 
648 			CHECK_RU_ALLOC(26);
649 			CHECK_RU_ALLOC(52);
650 			CHECK_RU_ALLOC(106);
651 			CHECK_RU_ALLOC(242);
652 			CHECK_RU_ALLOC(484);
653 			CHECK_RU_ALLOC(996);
654 			CHECK_RU_ALLOC(2x996);
655 
656 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
657 					    status->he_ru + 4);
658 			break;
659 		default:
660 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
661 		}
662 
663 		/* ensure 2 byte alignment */
664 		while ((pos - (u8 *)rthdr) & 1)
665 			pos++;
666 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
667 		memcpy(pos, &he, sizeof(he));
668 		pos += sizeof(he);
669 	}
670 
671 	if (status->encoding == RX_ENC_HE &&
672 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
673 		/* ensure 2 byte alignment */
674 		while ((pos - (u8 *)rthdr) & 1)
675 			pos++;
676 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
677 		memcpy(pos, &he_mu, sizeof(he_mu));
678 		pos += sizeof(he_mu);
679 	}
680 
681 	if (status->flag & RX_FLAG_NO_PSDU) {
682 		rthdr->it_present |=
683 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
684 		*pos++ = status->zero_length_psdu_type;
685 	}
686 
687 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
688 		/* ensure 2 byte alignment */
689 		while ((pos - (u8 *)rthdr) & 1)
690 			pos++;
691 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
692 		memcpy(pos, &lsig, sizeof(lsig));
693 		pos += sizeof(lsig);
694 	}
695 
696 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
697 		*pos++ = status->chain_signal[chain];
698 		*pos++ = chain;
699 	}
700 
701 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
702 		/* ensure 2 byte alignment for the vendor field as required */
703 		if ((pos - (u8 *)rthdr) & 1)
704 			*pos++ = 0;
705 		*pos++ = rtap.oui[0];
706 		*pos++ = rtap.oui[1];
707 		*pos++ = rtap.oui[2];
708 		*pos++ = rtap.subns;
709 		put_unaligned_le16(rtap.len, pos);
710 		pos += 2;
711 		/* align the actual payload as requested */
712 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
713 			*pos++ = 0;
714 		/* data (and possible padding) already follows */
715 	}
716 }
717 
718 static struct sk_buff *
719 ieee80211_make_monitor_skb(struct ieee80211_local *local,
720 			   struct sk_buff **origskb,
721 			   struct ieee80211_rate *rate,
722 			   int rtap_space, bool use_origskb)
723 {
724 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
725 	int rt_hdrlen, needed_headroom;
726 	struct sk_buff *skb;
727 
728 	/* room for the radiotap header based on driver features */
729 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
730 	needed_headroom = rt_hdrlen - rtap_space;
731 
732 	if (use_origskb) {
733 		/* only need to expand headroom if necessary */
734 		skb = *origskb;
735 		*origskb = NULL;
736 
737 		/*
738 		 * This shouldn't trigger often because most devices have an
739 		 * RX header they pull before we get here, and that should
740 		 * be big enough for our radiotap information. We should
741 		 * probably export the length to drivers so that we can have
742 		 * them allocate enough headroom to start with.
743 		 */
744 		if (skb_headroom(skb) < needed_headroom &&
745 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
746 			dev_kfree_skb(skb);
747 			return NULL;
748 		}
749 	} else {
750 		/*
751 		 * Need to make a copy and possibly remove radiotap header
752 		 * and FCS from the original.
753 		 */
754 		skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
755 				      0, GFP_ATOMIC);
756 
757 		if (!skb)
758 			return NULL;
759 	}
760 
761 	/* prepend radiotap information */
762 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
763 
764 	skb_reset_mac_header(skb);
765 	skb->ip_summed = CHECKSUM_UNNECESSARY;
766 	skb->pkt_type = PACKET_OTHERHOST;
767 	skb->protocol = htons(ETH_P_802_2);
768 
769 	return skb;
770 }
771 
772 /*
773  * This function copies a received frame to all monitor interfaces and
774  * returns a cleaned-up SKB that no longer includes the FCS nor the
775  * radiotap header the driver might have added.
776  */
777 static struct sk_buff *
778 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
779 		     struct ieee80211_rate *rate)
780 {
781 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
782 	struct ieee80211_sub_if_data *sdata;
783 	struct sk_buff *monskb = NULL;
784 	int present_fcs_len = 0;
785 	unsigned int rtap_space = 0;
786 	struct ieee80211_sub_if_data *monitor_sdata =
787 		rcu_dereference(local->monitor_sdata);
788 	bool only_monitor = false;
789 	unsigned int min_head_len;
790 
791 	if (status->flag & RX_FLAG_RADIOTAP_HE)
792 		rtap_space += sizeof(struct ieee80211_radiotap_he);
793 
794 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
795 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
796 
797 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
798 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
799 
800 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
801 		struct ieee80211_vendor_radiotap *rtap =
802 			(void *)(origskb->data + rtap_space);
803 
804 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
805 	}
806 
807 	min_head_len = rtap_space;
808 
809 	/*
810 	 * First, we may need to make a copy of the skb because
811 	 *  (1) we need to modify it for radiotap (if not present), and
812 	 *  (2) the other RX handlers will modify the skb we got.
813 	 *
814 	 * We don't need to, of course, if we aren't going to return
815 	 * the SKB because it has a bad FCS/PLCP checksum.
816 	 */
817 
818 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
819 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
820 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
821 				/* driver bug */
822 				WARN_ON(1);
823 				dev_kfree_skb(origskb);
824 				return NULL;
825 			}
826 			present_fcs_len = FCS_LEN;
827 		}
828 
829 		/* also consider the hdr->frame_control */
830 		min_head_len += 2;
831 	}
832 
833 	/* ensure that the expected data elements are in skb head */
834 	if (!pskb_may_pull(origskb, min_head_len)) {
835 		dev_kfree_skb(origskb);
836 		return NULL;
837 	}
838 
839 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
840 
841 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
842 		if (only_monitor) {
843 			dev_kfree_skb(origskb);
844 			return NULL;
845 		}
846 
847 		return ieee80211_clean_skb(origskb, present_fcs_len,
848 					   rtap_space);
849 	}
850 
851 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
852 
853 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
854 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
855 						 &local->mon_list);
856 
857 		if (!monskb)
858 			monskb = ieee80211_make_monitor_skb(local, &origskb,
859 							    rate, rtap_space,
860 							    only_monitor &&
861 							    last_monitor);
862 
863 		if (monskb) {
864 			struct sk_buff *skb;
865 
866 			if (last_monitor) {
867 				skb = monskb;
868 				monskb = NULL;
869 			} else {
870 				skb = skb_clone(monskb, GFP_ATOMIC);
871 			}
872 
873 			if (skb) {
874 				skb->dev = sdata->dev;
875 				dev_sw_netstats_rx_add(skb->dev, skb->len);
876 				netif_receive_skb(skb);
877 			}
878 		}
879 
880 		if (last_monitor)
881 			break;
882 	}
883 
884 	/* this happens if last_monitor was erroneously false */
885 	dev_kfree_skb(monskb);
886 
887 	/* ditto */
888 	if (!origskb)
889 		return NULL;
890 
891 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
892 }
893 
894 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
895 {
896 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
897 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
898 	int tid, seqno_idx, security_idx;
899 
900 	/* does the frame have a qos control field? */
901 	if (ieee80211_is_data_qos(hdr->frame_control)) {
902 		u8 *qc = ieee80211_get_qos_ctl(hdr);
903 		/* frame has qos control */
904 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
905 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
906 			status->rx_flags |= IEEE80211_RX_AMSDU;
907 
908 		seqno_idx = tid;
909 		security_idx = tid;
910 	} else {
911 		/*
912 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
913 		 *
914 		 *	Sequence numbers for management frames, QoS data
915 		 *	frames with a broadcast/multicast address in the
916 		 *	Address 1 field, and all non-QoS data frames sent
917 		 *	by QoS STAs are assigned using an additional single
918 		 *	modulo-4096 counter, [...]
919 		 *
920 		 * We also use that counter for non-QoS STAs.
921 		 */
922 		seqno_idx = IEEE80211_NUM_TIDS;
923 		security_idx = 0;
924 		if (ieee80211_is_mgmt(hdr->frame_control))
925 			security_idx = IEEE80211_NUM_TIDS;
926 		tid = 0;
927 	}
928 
929 	rx->seqno_idx = seqno_idx;
930 	rx->security_idx = security_idx;
931 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
932 	 * For now, set skb->priority to 0 for other cases. */
933 	rx->skb->priority = (tid > 7) ? 0 : tid;
934 }
935 
936 /**
937  * DOC: Packet alignment
938  *
939  * Drivers always need to pass packets that are aligned to two-byte boundaries
940  * to the stack.
941  *
942  * Additionally, should, if possible, align the payload data in a way that
943  * guarantees that the contained IP header is aligned to a four-byte
944  * boundary. In the case of regular frames, this simply means aligning the
945  * payload to a four-byte boundary (because either the IP header is directly
946  * contained, or IV/RFC1042 headers that have a length divisible by four are
947  * in front of it).  If the payload data is not properly aligned and the
948  * architecture doesn't support efficient unaligned operations, mac80211
949  * will align the data.
950  *
951  * With A-MSDU frames, however, the payload data address must yield two modulo
952  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
953  * push the IP header further back to a multiple of four again. Thankfully, the
954  * specs were sane enough this time around to require padding each A-MSDU
955  * subframe to a length that is a multiple of four.
956  *
957  * Padding like Atheros hardware adds which is between the 802.11 header and
958  * the payload is not supported, the driver is required to move the 802.11
959  * header to be directly in front of the payload in that case.
960  */
961 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
962 {
963 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
964 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
965 #endif
966 }
967 
968 
969 /* rx handlers */
970 
971 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
972 {
973 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
974 
975 	if (is_multicast_ether_addr(hdr->addr1))
976 		return 0;
977 
978 	return ieee80211_is_robust_mgmt_frame(skb);
979 }
980 
981 
982 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
983 {
984 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
985 
986 	if (!is_multicast_ether_addr(hdr->addr1))
987 		return 0;
988 
989 	return ieee80211_is_robust_mgmt_frame(skb);
990 }
991 
992 
993 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
994 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
995 {
996 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
997 	struct ieee80211_mmie *mmie;
998 	struct ieee80211_mmie_16 *mmie16;
999 
1000 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
1001 		return -1;
1002 
1003 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
1004 	    !ieee80211_is_beacon(hdr->frame_control))
1005 		return -1; /* not a robust management frame */
1006 
1007 	mmie = (struct ieee80211_mmie *)
1008 		(skb->data + skb->len - sizeof(*mmie));
1009 	if (mmie->element_id == WLAN_EID_MMIE &&
1010 	    mmie->length == sizeof(*mmie) - 2)
1011 		return le16_to_cpu(mmie->key_id);
1012 
1013 	mmie16 = (struct ieee80211_mmie_16 *)
1014 		(skb->data + skb->len - sizeof(*mmie16));
1015 	if (skb->len >= 24 + sizeof(*mmie16) &&
1016 	    mmie16->element_id == WLAN_EID_MMIE &&
1017 	    mmie16->length == sizeof(*mmie16) - 2)
1018 		return le16_to_cpu(mmie16->key_id);
1019 
1020 	return -1;
1021 }
1022 
1023 static int ieee80211_get_keyid(struct sk_buff *skb)
1024 {
1025 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1026 	__le16 fc = hdr->frame_control;
1027 	int hdrlen = ieee80211_hdrlen(fc);
1028 	u8 keyid;
1029 
1030 	/* WEP, TKIP, CCMP and GCMP */
1031 	if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN))
1032 		return -EINVAL;
1033 
1034 	skb_copy_bits(skb, hdrlen + 3, &keyid, 1);
1035 
1036 	keyid >>= 6;
1037 
1038 	return keyid;
1039 }
1040 
1041 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1042 {
1043 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1044 	char *dev_addr = rx->sdata->vif.addr;
1045 
1046 	if (ieee80211_is_data(hdr->frame_control)) {
1047 		if (is_multicast_ether_addr(hdr->addr1)) {
1048 			if (ieee80211_has_tods(hdr->frame_control) ||
1049 			    !ieee80211_has_fromds(hdr->frame_control))
1050 				return RX_DROP_MONITOR;
1051 			if (ether_addr_equal(hdr->addr3, dev_addr))
1052 				return RX_DROP_MONITOR;
1053 		} else {
1054 			if (!ieee80211_has_a4(hdr->frame_control))
1055 				return RX_DROP_MONITOR;
1056 			if (ether_addr_equal(hdr->addr4, dev_addr))
1057 				return RX_DROP_MONITOR;
1058 		}
1059 	}
1060 
1061 	/* If there is not an established peer link and this is not a peer link
1062 	 * establisment frame, beacon or probe, drop the frame.
1063 	 */
1064 
1065 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1066 		struct ieee80211_mgmt *mgmt;
1067 
1068 		if (!ieee80211_is_mgmt(hdr->frame_control))
1069 			return RX_DROP_MONITOR;
1070 
1071 		if (ieee80211_is_action(hdr->frame_control)) {
1072 			u8 category;
1073 
1074 			/* make sure category field is present */
1075 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1076 				return RX_DROP_MONITOR;
1077 
1078 			mgmt = (struct ieee80211_mgmt *)hdr;
1079 			category = mgmt->u.action.category;
1080 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1081 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1082 				return RX_DROP_MONITOR;
1083 			return RX_CONTINUE;
1084 		}
1085 
1086 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1087 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1088 		    ieee80211_is_beacon(hdr->frame_control) ||
1089 		    ieee80211_is_auth(hdr->frame_control))
1090 			return RX_CONTINUE;
1091 
1092 		return RX_DROP_MONITOR;
1093 	}
1094 
1095 	return RX_CONTINUE;
1096 }
1097 
1098 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1099 					      int index)
1100 {
1101 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1102 	struct sk_buff *tail = skb_peek_tail(frames);
1103 	struct ieee80211_rx_status *status;
1104 
1105 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1106 		return true;
1107 
1108 	if (!tail)
1109 		return false;
1110 
1111 	status = IEEE80211_SKB_RXCB(tail);
1112 	if (status->flag & RX_FLAG_AMSDU_MORE)
1113 		return false;
1114 
1115 	return true;
1116 }
1117 
1118 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1119 					    struct tid_ampdu_rx *tid_agg_rx,
1120 					    int index,
1121 					    struct sk_buff_head *frames)
1122 {
1123 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1124 	struct sk_buff *skb;
1125 	struct ieee80211_rx_status *status;
1126 
1127 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1128 
1129 	if (skb_queue_empty(skb_list))
1130 		goto no_frame;
1131 
1132 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1133 		__skb_queue_purge(skb_list);
1134 		goto no_frame;
1135 	}
1136 
1137 	/* release frames from the reorder ring buffer */
1138 	tid_agg_rx->stored_mpdu_num--;
1139 	while ((skb = __skb_dequeue(skb_list))) {
1140 		status = IEEE80211_SKB_RXCB(skb);
1141 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1142 		__skb_queue_tail(frames, skb);
1143 	}
1144 
1145 no_frame:
1146 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1147 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1148 }
1149 
1150 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1151 					     struct tid_ampdu_rx *tid_agg_rx,
1152 					     u16 head_seq_num,
1153 					     struct sk_buff_head *frames)
1154 {
1155 	int index;
1156 
1157 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1158 
1159 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1160 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1161 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1162 						frames);
1163 	}
1164 }
1165 
1166 /*
1167  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1168  * the skb was added to the buffer longer than this time ago, the earlier
1169  * frames that have not yet been received are assumed to be lost and the skb
1170  * can be released for processing. This may also release other skb's from the
1171  * reorder buffer if there are no additional gaps between the frames.
1172  *
1173  * Callers must hold tid_agg_rx->reorder_lock.
1174  */
1175 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1176 
1177 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1178 					  struct tid_ampdu_rx *tid_agg_rx,
1179 					  struct sk_buff_head *frames)
1180 {
1181 	int index, i, j;
1182 
1183 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1184 
1185 	/* release the buffer until next missing frame */
1186 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1187 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1188 	    tid_agg_rx->stored_mpdu_num) {
1189 		/*
1190 		 * No buffers ready to be released, but check whether any
1191 		 * frames in the reorder buffer have timed out.
1192 		 */
1193 		int skipped = 1;
1194 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1195 		     j = (j + 1) % tid_agg_rx->buf_size) {
1196 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1197 				skipped++;
1198 				continue;
1199 			}
1200 			if (skipped &&
1201 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1202 					HT_RX_REORDER_BUF_TIMEOUT))
1203 				goto set_release_timer;
1204 
1205 			/* don't leave incomplete A-MSDUs around */
1206 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1207 			     i = (i + 1) % tid_agg_rx->buf_size)
1208 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1209 
1210 			ht_dbg_ratelimited(sdata,
1211 					   "release an RX reorder frame due to timeout on earlier frames\n");
1212 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1213 							frames);
1214 
1215 			/*
1216 			 * Increment the head seq# also for the skipped slots.
1217 			 */
1218 			tid_agg_rx->head_seq_num =
1219 				(tid_agg_rx->head_seq_num +
1220 				 skipped) & IEEE80211_SN_MASK;
1221 			skipped = 0;
1222 		}
1223 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1224 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1225 						frames);
1226 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1227 	}
1228 
1229 	if (tid_agg_rx->stored_mpdu_num) {
1230 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1231 
1232 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1233 		     j = (j + 1) % tid_agg_rx->buf_size) {
1234 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1235 				break;
1236 		}
1237 
1238  set_release_timer:
1239 
1240 		if (!tid_agg_rx->removed)
1241 			mod_timer(&tid_agg_rx->reorder_timer,
1242 				  tid_agg_rx->reorder_time[j] + 1 +
1243 				  HT_RX_REORDER_BUF_TIMEOUT);
1244 	} else {
1245 		del_timer(&tid_agg_rx->reorder_timer);
1246 	}
1247 }
1248 
1249 /*
1250  * As this function belongs to the RX path it must be under
1251  * rcu_read_lock protection. It returns false if the frame
1252  * can be processed immediately, true if it was consumed.
1253  */
1254 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1255 					     struct tid_ampdu_rx *tid_agg_rx,
1256 					     struct sk_buff *skb,
1257 					     struct sk_buff_head *frames)
1258 {
1259 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1260 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1261 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1262 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1263 	u16 head_seq_num, buf_size;
1264 	int index;
1265 	bool ret = true;
1266 
1267 	spin_lock(&tid_agg_rx->reorder_lock);
1268 
1269 	/*
1270 	 * Offloaded BA sessions have no known starting sequence number so pick
1271 	 * one from first Rxed frame for this tid after BA was started.
1272 	 */
1273 	if (unlikely(tid_agg_rx->auto_seq)) {
1274 		tid_agg_rx->auto_seq = false;
1275 		tid_agg_rx->ssn = mpdu_seq_num;
1276 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1277 	}
1278 
1279 	buf_size = tid_agg_rx->buf_size;
1280 	head_seq_num = tid_agg_rx->head_seq_num;
1281 
1282 	/*
1283 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1284 	 * be reordered.
1285 	 */
1286 	if (unlikely(!tid_agg_rx->started)) {
1287 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1288 			ret = false;
1289 			goto out;
1290 		}
1291 		tid_agg_rx->started = true;
1292 	}
1293 
1294 	/* frame with out of date sequence number */
1295 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1296 		dev_kfree_skb(skb);
1297 		goto out;
1298 	}
1299 
1300 	/*
1301 	 * If frame the sequence number exceeds our buffering window
1302 	 * size release some previous frames to make room for this one.
1303 	 */
1304 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1305 		head_seq_num = ieee80211_sn_inc(
1306 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1307 		/* release stored frames up to new head to stack */
1308 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1309 						 head_seq_num, frames);
1310 	}
1311 
1312 	/* Now the new frame is always in the range of the reordering buffer */
1313 
1314 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1315 
1316 	/* check if we already stored this frame */
1317 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1318 		dev_kfree_skb(skb);
1319 		goto out;
1320 	}
1321 
1322 	/*
1323 	 * If the current MPDU is in the right order and nothing else
1324 	 * is stored we can process it directly, no need to buffer it.
1325 	 * If it is first but there's something stored, we may be able
1326 	 * to release frames after this one.
1327 	 */
1328 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1329 	    tid_agg_rx->stored_mpdu_num == 0) {
1330 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1331 			tid_agg_rx->head_seq_num =
1332 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1333 		ret = false;
1334 		goto out;
1335 	}
1336 
1337 	/* put the frame in the reordering buffer */
1338 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1339 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1340 		tid_agg_rx->reorder_time[index] = jiffies;
1341 		tid_agg_rx->stored_mpdu_num++;
1342 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1343 	}
1344 
1345  out:
1346 	spin_unlock(&tid_agg_rx->reorder_lock);
1347 	return ret;
1348 }
1349 
1350 /*
1351  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1352  * true if the MPDU was buffered, false if it should be processed.
1353  */
1354 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1355 				       struct sk_buff_head *frames)
1356 {
1357 	struct sk_buff *skb = rx->skb;
1358 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1359 	struct sta_info *sta = rx->sta;
1360 	struct tid_ampdu_rx *tid_agg_rx;
1361 	u16 sc;
1362 	u8 tid, ack_policy;
1363 
1364 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1365 	    is_multicast_ether_addr(hdr->addr1))
1366 		goto dont_reorder;
1367 
1368 	/*
1369 	 * filter the QoS data rx stream according to
1370 	 * STA/TID and check if this STA/TID is on aggregation
1371 	 */
1372 
1373 	if (!sta)
1374 		goto dont_reorder;
1375 
1376 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1377 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1378 	tid = ieee80211_get_tid(hdr);
1379 
1380 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1381 	if (!tid_agg_rx) {
1382 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1383 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1384 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1385 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1386 					     WLAN_BACK_RECIPIENT,
1387 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1388 		goto dont_reorder;
1389 	}
1390 
1391 	/* qos null data frames are excluded */
1392 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1393 		goto dont_reorder;
1394 
1395 	/* not part of a BA session */
1396 	if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1397 		goto dont_reorder;
1398 
1399 	/* new, potentially un-ordered, ampdu frame - process it */
1400 
1401 	/* reset session timer */
1402 	if (tid_agg_rx->timeout)
1403 		tid_agg_rx->last_rx = jiffies;
1404 
1405 	/* if this mpdu is fragmented - terminate rx aggregation session */
1406 	sc = le16_to_cpu(hdr->seq_ctrl);
1407 	if (sc & IEEE80211_SCTL_FRAG) {
1408 		ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb);
1409 		return;
1410 	}
1411 
1412 	/*
1413 	 * No locking needed -- we will only ever process one
1414 	 * RX packet at a time, and thus own tid_agg_rx. All
1415 	 * other code manipulating it needs to (and does) make
1416 	 * sure that we cannot get to it any more before doing
1417 	 * anything with it.
1418 	 */
1419 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1420 					     frames))
1421 		return;
1422 
1423  dont_reorder:
1424 	__skb_queue_tail(frames, skb);
1425 }
1426 
1427 static ieee80211_rx_result debug_noinline
1428 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1429 {
1430 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1431 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1432 
1433 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1434 		return RX_CONTINUE;
1435 
1436 	/*
1437 	 * Drop duplicate 802.11 retransmissions
1438 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1439 	 */
1440 
1441 	if (rx->skb->len < 24)
1442 		return RX_CONTINUE;
1443 
1444 	if (ieee80211_is_ctl(hdr->frame_control) ||
1445 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1446 	    is_multicast_ether_addr(hdr->addr1))
1447 		return RX_CONTINUE;
1448 
1449 	if (!rx->sta)
1450 		return RX_CONTINUE;
1451 
1452 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1453 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1454 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1455 		rx->link_sta->rx_stats.num_duplicates++;
1456 		return RX_DROP_UNUSABLE;
1457 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1458 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1459 	}
1460 
1461 	return RX_CONTINUE;
1462 }
1463 
1464 static ieee80211_rx_result debug_noinline
1465 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1466 {
1467 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1468 
1469 	/* Drop disallowed frame classes based on STA auth/assoc state;
1470 	 * IEEE 802.11, Chap 5.5.
1471 	 *
1472 	 * mac80211 filters only based on association state, i.e. it drops
1473 	 * Class 3 frames from not associated stations. hostapd sends
1474 	 * deauth/disassoc frames when needed. In addition, hostapd is
1475 	 * responsible for filtering on both auth and assoc states.
1476 	 */
1477 
1478 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1479 		return ieee80211_rx_mesh_check(rx);
1480 
1481 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1482 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1483 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1484 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1485 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1486 		/*
1487 		 * accept port control frames from the AP even when it's not
1488 		 * yet marked ASSOC to prevent a race where we don't set the
1489 		 * assoc bit quickly enough before it sends the first frame
1490 		 */
1491 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1492 		    ieee80211_is_data_present(hdr->frame_control)) {
1493 			unsigned int hdrlen;
1494 			__be16 ethertype;
1495 
1496 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1497 
1498 			if (rx->skb->len < hdrlen + 8)
1499 				return RX_DROP_MONITOR;
1500 
1501 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1502 			if (ethertype == rx->sdata->control_port_protocol)
1503 				return RX_CONTINUE;
1504 		}
1505 
1506 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1507 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1508 					       hdr->addr2,
1509 					       GFP_ATOMIC))
1510 			return RX_DROP_UNUSABLE;
1511 
1512 		return RX_DROP_MONITOR;
1513 	}
1514 
1515 	return RX_CONTINUE;
1516 }
1517 
1518 
1519 static ieee80211_rx_result debug_noinline
1520 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1521 {
1522 	struct ieee80211_local *local;
1523 	struct ieee80211_hdr *hdr;
1524 	struct sk_buff *skb;
1525 
1526 	local = rx->local;
1527 	skb = rx->skb;
1528 	hdr = (struct ieee80211_hdr *) skb->data;
1529 
1530 	if (!local->pspolling)
1531 		return RX_CONTINUE;
1532 
1533 	if (!ieee80211_has_fromds(hdr->frame_control))
1534 		/* this is not from AP */
1535 		return RX_CONTINUE;
1536 
1537 	if (!ieee80211_is_data(hdr->frame_control))
1538 		return RX_CONTINUE;
1539 
1540 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1541 		/* AP has no more frames buffered for us */
1542 		local->pspolling = false;
1543 		return RX_CONTINUE;
1544 	}
1545 
1546 	/* more data bit is set, let's request a new frame from the AP */
1547 	ieee80211_send_pspoll(local, rx->sdata);
1548 
1549 	return RX_CONTINUE;
1550 }
1551 
1552 static void sta_ps_start(struct sta_info *sta)
1553 {
1554 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1555 	struct ieee80211_local *local = sdata->local;
1556 	struct ps_data *ps;
1557 	int tid;
1558 
1559 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1560 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1561 		ps = &sdata->bss->ps;
1562 	else
1563 		return;
1564 
1565 	atomic_inc(&ps->num_sta_ps);
1566 	set_sta_flag(sta, WLAN_STA_PS_STA);
1567 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1568 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1569 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1570 	       sta->sta.addr, sta->sta.aid);
1571 
1572 	ieee80211_clear_fast_xmit(sta);
1573 
1574 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1575 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1576 		struct txq_info *txqi = to_txq_info(txq);
1577 
1578 		spin_lock(&local->active_txq_lock[txq->ac]);
1579 		if (!list_empty(&txqi->schedule_order))
1580 			list_del_init(&txqi->schedule_order);
1581 		spin_unlock(&local->active_txq_lock[txq->ac]);
1582 
1583 		if (txq_has_queue(txq))
1584 			set_bit(tid, &sta->txq_buffered_tids);
1585 		else
1586 			clear_bit(tid, &sta->txq_buffered_tids);
1587 	}
1588 }
1589 
1590 static void sta_ps_end(struct sta_info *sta)
1591 {
1592 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1593 	       sta->sta.addr, sta->sta.aid);
1594 
1595 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1596 		/*
1597 		 * Clear the flag only if the other one is still set
1598 		 * so that the TX path won't start TX'ing new frames
1599 		 * directly ... In the case that the driver flag isn't
1600 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1601 		 */
1602 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1603 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1604 		       sta->sta.addr, sta->sta.aid);
1605 		return;
1606 	}
1607 
1608 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1609 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1610 	ieee80211_sta_ps_deliver_wakeup(sta);
1611 }
1612 
1613 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1614 {
1615 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1616 	bool in_ps;
1617 
1618 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1619 
1620 	/* Don't let the same PS state be set twice */
1621 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1622 	if ((start && in_ps) || (!start && !in_ps))
1623 		return -EINVAL;
1624 
1625 	if (start)
1626 		sta_ps_start(sta);
1627 	else
1628 		sta_ps_end(sta);
1629 
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1633 
1634 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1635 {
1636 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1637 
1638 	if (test_sta_flag(sta, WLAN_STA_SP))
1639 		return;
1640 
1641 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1642 		ieee80211_sta_ps_deliver_poll_response(sta);
1643 	else
1644 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1645 }
1646 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1647 
1648 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1649 {
1650 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1651 	int ac = ieee80211_ac_from_tid(tid);
1652 
1653 	/*
1654 	 * If this AC is not trigger-enabled do nothing unless the
1655 	 * driver is calling us after it already checked.
1656 	 *
1657 	 * NB: This could/should check a separate bitmap of trigger-
1658 	 * enabled queues, but for now we only implement uAPSD w/o
1659 	 * TSPEC changes to the ACs, so they're always the same.
1660 	 */
1661 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1662 	    tid != IEEE80211_NUM_TIDS)
1663 		return;
1664 
1665 	/* if we are in a service period, do nothing */
1666 	if (test_sta_flag(sta, WLAN_STA_SP))
1667 		return;
1668 
1669 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1670 		ieee80211_sta_ps_deliver_uapsd(sta);
1671 	else
1672 		set_sta_flag(sta, WLAN_STA_UAPSD);
1673 }
1674 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1675 
1676 static ieee80211_rx_result debug_noinline
1677 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1678 {
1679 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1680 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1681 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1682 
1683 	if (!rx->sta)
1684 		return RX_CONTINUE;
1685 
1686 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1687 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1688 		return RX_CONTINUE;
1689 
1690 	/*
1691 	 * The device handles station powersave, so don't do anything about
1692 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1693 	 * it to mac80211 since they're handled.)
1694 	 */
1695 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1696 		return RX_CONTINUE;
1697 
1698 	/*
1699 	 * Don't do anything if the station isn't already asleep. In
1700 	 * the uAPSD case, the station will probably be marked asleep,
1701 	 * in the PS-Poll case the station must be confused ...
1702 	 */
1703 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1704 		return RX_CONTINUE;
1705 
1706 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1707 		ieee80211_sta_pspoll(&rx->sta->sta);
1708 
1709 		/* Free PS Poll skb here instead of returning RX_DROP that would
1710 		 * count as an dropped frame. */
1711 		dev_kfree_skb(rx->skb);
1712 
1713 		return RX_QUEUED;
1714 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1715 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1716 		   ieee80211_has_pm(hdr->frame_control) &&
1717 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1718 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1719 		u8 tid = ieee80211_get_tid(hdr);
1720 
1721 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1722 	}
1723 
1724 	return RX_CONTINUE;
1725 }
1726 
1727 static ieee80211_rx_result debug_noinline
1728 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1729 {
1730 	struct sta_info *sta = rx->sta;
1731 	struct link_sta_info *link_sta = rx->link_sta;
1732 	struct sk_buff *skb = rx->skb;
1733 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1734 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1735 	int i;
1736 
1737 	if (!sta || !link_sta)
1738 		return RX_CONTINUE;
1739 
1740 	/*
1741 	 * Update last_rx only for IBSS packets which are for the current
1742 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1743 	 * current IBSS network alive in cases where other STAs start
1744 	 * using different BSSID. This will also give the station another
1745 	 * chance to restart the authentication/authorization in case
1746 	 * something went wrong the first time.
1747 	 */
1748 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1749 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1750 						NL80211_IFTYPE_ADHOC);
1751 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1752 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1753 			link_sta->rx_stats.last_rx = jiffies;
1754 			if (ieee80211_is_data(hdr->frame_control) &&
1755 			    !is_multicast_ether_addr(hdr->addr1))
1756 				link_sta->rx_stats.last_rate =
1757 					sta_stats_encode_rate(status);
1758 		}
1759 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1760 		link_sta->rx_stats.last_rx = jiffies;
1761 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1762 		   !is_multicast_ether_addr(hdr->addr1)) {
1763 		/*
1764 		 * Mesh beacons will update last_rx when if they are found to
1765 		 * match the current local configuration when processed.
1766 		 */
1767 		link_sta->rx_stats.last_rx = jiffies;
1768 		if (ieee80211_is_data(hdr->frame_control))
1769 			link_sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1770 	}
1771 
1772 	link_sta->rx_stats.fragments++;
1773 
1774 	u64_stats_update_begin(&link_sta->rx_stats.syncp);
1775 	link_sta->rx_stats.bytes += rx->skb->len;
1776 	u64_stats_update_end(&link_sta->rx_stats.syncp);
1777 
1778 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1779 		link_sta->rx_stats.last_signal = status->signal;
1780 		ewma_signal_add(&link_sta->rx_stats_avg.signal,
1781 				-status->signal);
1782 	}
1783 
1784 	if (status->chains) {
1785 		link_sta->rx_stats.chains = status->chains;
1786 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1787 			int signal = status->chain_signal[i];
1788 
1789 			if (!(status->chains & BIT(i)))
1790 				continue;
1791 
1792 			link_sta->rx_stats.chain_signal_last[i] = signal;
1793 			ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i],
1794 					-signal);
1795 		}
1796 	}
1797 
1798 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1799 		return RX_CONTINUE;
1800 
1801 	/*
1802 	 * Change STA power saving mode only at the end of a frame
1803 	 * exchange sequence, and only for a data or management
1804 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1805 	 */
1806 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1807 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1808 	    !is_multicast_ether_addr(hdr->addr1) &&
1809 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1810 	     ieee80211_is_data(hdr->frame_control)) &&
1811 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1812 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1813 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1814 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1815 			if (!ieee80211_has_pm(hdr->frame_control))
1816 				sta_ps_end(sta);
1817 		} else {
1818 			if (ieee80211_has_pm(hdr->frame_control))
1819 				sta_ps_start(sta);
1820 		}
1821 	}
1822 
1823 	/* mesh power save support */
1824 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1825 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1826 
1827 	/*
1828 	 * Drop (qos-)data::nullfunc frames silently, since they
1829 	 * are used only to control station power saving mode.
1830 	 */
1831 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1832 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1833 
1834 		/*
1835 		 * If we receive a 4-addr nullfunc frame from a STA
1836 		 * that was not moved to a 4-addr STA vlan yet send
1837 		 * the event to userspace and for older hostapd drop
1838 		 * the frame to the monitor interface.
1839 		 */
1840 		if (ieee80211_has_a4(hdr->frame_control) &&
1841 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1842 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1843 		      !rx->sdata->u.vlan.sta))) {
1844 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1845 				cfg80211_rx_unexpected_4addr_frame(
1846 					rx->sdata->dev, sta->sta.addr,
1847 					GFP_ATOMIC);
1848 			return RX_DROP_MONITOR;
1849 		}
1850 		/*
1851 		 * Update counter and free packet here to avoid
1852 		 * counting this as a dropped packed.
1853 		 */
1854 		link_sta->rx_stats.packets++;
1855 		dev_kfree_skb(rx->skb);
1856 		return RX_QUEUED;
1857 	}
1858 
1859 	return RX_CONTINUE;
1860 } /* ieee80211_rx_h_sta_process */
1861 
1862 static struct ieee80211_key *
1863 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1864 {
1865 	struct ieee80211_key *key = NULL;
1866 	int idx2;
1867 
1868 	/* Make sure key gets set if either BIGTK key index is set so that
1869 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1870 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1871 	 * index (i.e., a key that we do not have).
1872 	 */
1873 
1874 	if (idx < 0) {
1875 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1876 		idx2 = idx + 1;
1877 	} else {
1878 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1879 			idx2 = idx + 1;
1880 		else
1881 			idx2 = idx - 1;
1882 	}
1883 
1884 	if (rx->link_sta)
1885 		key = rcu_dereference(rx->link_sta->gtk[idx]);
1886 	if (!key)
1887 		key = rcu_dereference(rx->link->gtk[idx]);
1888 	if (!key && rx->link_sta)
1889 		key = rcu_dereference(rx->link_sta->gtk[idx2]);
1890 	if (!key)
1891 		key = rcu_dereference(rx->link->gtk[idx2]);
1892 
1893 	return key;
1894 }
1895 
1896 static ieee80211_rx_result debug_noinline
1897 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1898 {
1899 	struct sk_buff *skb = rx->skb;
1900 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1901 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1902 	int keyidx;
1903 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1904 	struct ieee80211_key *sta_ptk = NULL;
1905 	struct ieee80211_key *ptk_idx = NULL;
1906 	int mmie_keyidx = -1;
1907 	__le16 fc;
1908 
1909 	if (ieee80211_is_ext(hdr->frame_control))
1910 		return RX_CONTINUE;
1911 
1912 	/*
1913 	 * Key selection 101
1914 	 *
1915 	 * There are five types of keys:
1916 	 *  - GTK (group keys)
1917 	 *  - IGTK (group keys for management frames)
1918 	 *  - BIGTK (group keys for Beacon frames)
1919 	 *  - PTK (pairwise keys)
1920 	 *  - STK (station-to-station pairwise keys)
1921 	 *
1922 	 * When selecting a key, we have to distinguish between multicast
1923 	 * (including broadcast) and unicast frames, the latter can only
1924 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1925 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1926 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1927 	 * don't have a PTK/STK we check the key index for a WEP key.
1928 	 *
1929 	 * Note that in a regular BSS, multicast frames are sent by the
1930 	 * AP only, associated stations unicast the frame to the AP first
1931 	 * which then multicasts it on their behalf.
1932 	 *
1933 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1934 	 * with each station, that is something we don't currently handle.
1935 	 * The spec seems to expect that one negotiates the same key with
1936 	 * every station but there's no such requirement; VLANs could be
1937 	 * possible.
1938 	 */
1939 
1940 	/* start without a key */
1941 	rx->key = NULL;
1942 	fc = hdr->frame_control;
1943 
1944 	if (rx->sta) {
1945 		int keyid = rx->sta->ptk_idx;
1946 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1947 
1948 		if (ieee80211_has_protected(fc) &&
1949 		    !(status->flag & RX_FLAG_IV_STRIPPED)) {
1950 			keyid = ieee80211_get_keyid(rx->skb);
1951 
1952 			if (unlikely(keyid < 0))
1953 				return RX_DROP_UNUSABLE;
1954 
1955 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1956 		}
1957 	}
1958 
1959 	if (!ieee80211_has_protected(fc))
1960 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1961 
1962 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1963 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1964 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1965 		    (status->flag & RX_FLAG_IV_STRIPPED))
1966 			return RX_CONTINUE;
1967 		/* Skip decryption if the frame is not protected. */
1968 		if (!ieee80211_has_protected(fc))
1969 			return RX_CONTINUE;
1970 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1971 		/* Broadcast/multicast robust management frame / BIP */
1972 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 		    (status->flag & RX_FLAG_IV_STRIPPED))
1974 			return RX_CONTINUE;
1975 
1976 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1977 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1978 				   NUM_DEFAULT_BEACON_KEYS) {
1979 			if (rx->sdata->dev)
1980 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1981 							     skb->data,
1982 							     skb->len);
1983 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1984 		}
1985 
1986 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1987 		if (!rx->key)
1988 			return RX_CONTINUE; /* Beacon protection not in use */
1989 	} else if (mmie_keyidx >= 0) {
1990 		/* Broadcast/multicast robust management frame / BIP */
1991 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1992 		    (status->flag & RX_FLAG_IV_STRIPPED))
1993 			return RX_CONTINUE;
1994 
1995 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1996 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1997 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1998 		if (rx->link_sta) {
1999 			if (ieee80211_is_group_privacy_action(skb) &&
2000 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
2001 				return RX_DROP_MONITOR;
2002 
2003 			rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]);
2004 		}
2005 		if (!rx->key)
2006 			rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]);
2007 	} else if (!ieee80211_has_protected(fc)) {
2008 		/*
2009 		 * The frame was not protected, so skip decryption. However, we
2010 		 * need to set rx->key if there is a key that could have been
2011 		 * used so that the frame may be dropped if encryption would
2012 		 * have been expected.
2013 		 */
2014 		struct ieee80211_key *key = NULL;
2015 		int i;
2016 
2017 		if (ieee80211_is_beacon(fc)) {
2018 			key = ieee80211_rx_get_bigtk(rx, -1);
2019 		} else if (ieee80211_is_mgmt(fc) &&
2020 			   is_multicast_ether_addr(hdr->addr1)) {
2021 			key = rcu_dereference(rx->link->default_mgmt_key);
2022 		} else {
2023 			if (rx->link_sta) {
2024 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2025 					key = rcu_dereference(rx->link_sta->gtk[i]);
2026 					if (key)
2027 						break;
2028 				}
2029 			}
2030 			if (!key) {
2031 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2032 					key = rcu_dereference(rx->link->gtk[i]);
2033 					if (key)
2034 						break;
2035 				}
2036 			}
2037 		}
2038 		if (key)
2039 			rx->key = key;
2040 		return RX_CONTINUE;
2041 	} else {
2042 		/*
2043 		 * The device doesn't give us the IV so we won't be
2044 		 * able to look up the key. That's ok though, we
2045 		 * don't need to decrypt the frame, we just won't
2046 		 * be able to keep statistics accurate.
2047 		 * Except for key threshold notifications, should
2048 		 * we somehow allow the driver to tell us which key
2049 		 * the hardware used if this flag is set?
2050 		 */
2051 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2052 		    (status->flag & RX_FLAG_IV_STRIPPED))
2053 			return RX_CONTINUE;
2054 
2055 		keyidx = ieee80211_get_keyid(rx->skb);
2056 
2057 		if (unlikely(keyidx < 0))
2058 			return RX_DROP_UNUSABLE;
2059 
2060 		/* check per-station GTK first, if multicast packet */
2061 		if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta)
2062 			rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]);
2063 
2064 		/* if not found, try default key */
2065 		if (!rx->key) {
2066 			if (is_multicast_ether_addr(hdr->addr1))
2067 				rx->key = rcu_dereference(rx->link->gtk[keyidx]);
2068 			if (!rx->key)
2069 				rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2070 
2071 			/*
2072 			 * RSNA-protected unicast frames should always be
2073 			 * sent with pairwise or station-to-station keys,
2074 			 * but for WEP we allow using a key index as well.
2075 			 */
2076 			if (rx->key &&
2077 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2078 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2079 			    !is_multicast_ether_addr(hdr->addr1))
2080 				rx->key = NULL;
2081 		}
2082 	}
2083 
2084 	if (rx->key) {
2085 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2086 			return RX_DROP_MONITOR;
2087 
2088 		/* TODO: add threshold stuff again */
2089 	} else {
2090 		return RX_DROP_MONITOR;
2091 	}
2092 
2093 	switch (rx->key->conf.cipher) {
2094 	case WLAN_CIPHER_SUITE_WEP40:
2095 	case WLAN_CIPHER_SUITE_WEP104:
2096 		result = ieee80211_crypto_wep_decrypt(rx);
2097 		break;
2098 	case WLAN_CIPHER_SUITE_TKIP:
2099 		result = ieee80211_crypto_tkip_decrypt(rx);
2100 		break;
2101 	case WLAN_CIPHER_SUITE_CCMP:
2102 		result = ieee80211_crypto_ccmp_decrypt(
2103 			rx, IEEE80211_CCMP_MIC_LEN);
2104 		break;
2105 	case WLAN_CIPHER_SUITE_CCMP_256:
2106 		result = ieee80211_crypto_ccmp_decrypt(
2107 			rx, IEEE80211_CCMP_256_MIC_LEN);
2108 		break;
2109 	case WLAN_CIPHER_SUITE_AES_CMAC:
2110 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2111 		break;
2112 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2113 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2114 		break;
2115 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2116 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2117 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2118 		break;
2119 	case WLAN_CIPHER_SUITE_GCMP:
2120 	case WLAN_CIPHER_SUITE_GCMP_256:
2121 		result = ieee80211_crypto_gcmp_decrypt(rx);
2122 		break;
2123 	default:
2124 		result = RX_DROP_UNUSABLE;
2125 	}
2126 
2127 	/* the hdr variable is invalid after the decrypt handlers */
2128 
2129 	/* either the frame has been decrypted or will be dropped */
2130 	status->flag |= RX_FLAG_DECRYPTED;
2131 
2132 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE &&
2133 		     rx->sdata->dev))
2134 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2135 					     skb->data, skb->len);
2136 
2137 	return result;
2138 }
2139 
2140 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2141 {
2142 	int i;
2143 
2144 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2145 		skb_queue_head_init(&cache->entries[i].skb_list);
2146 }
2147 
2148 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2149 {
2150 	int i;
2151 
2152 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2153 		__skb_queue_purge(&cache->entries[i].skb_list);
2154 }
2155 
2156 static inline struct ieee80211_fragment_entry *
2157 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2158 			 unsigned int frag, unsigned int seq, int rx_queue,
2159 			 struct sk_buff **skb)
2160 {
2161 	struct ieee80211_fragment_entry *entry;
2162 
2163 	entry = &cache->entries[cache->next++];
2164 	if (cache->next >= IEEE80211_FRAGMENT_MAX)
2165 		cache->next = 0;
2166 
2167 	__skb_queue_purge(&entry->skb_list);
2168 
2169 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2170 	*skb = NULL;
2171 	entry->first_frag_time = jiffies;
2172 	entry->seq = seq;
2173 	entry->rx_queue = rx_queue;
2174 	entry->last_frag = frag;
2175 	entry->check_sequential_pn = false;
2176 	entry->extra_len = 0;
2177 
2178 	return entry;
2179 }
2180 
2181 static inline struct ieee80211_fragment_entry *
2182 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2183 			  unsigned int frag, unsigned int seq,
2184 			  int rx_queue, struct ieee80211_hdr *hdr)
2185 {
2186 	struct ieee80211_fragment_entry *entry;
2187 	int i, idx;
2188 
2189 	idx = cache->next;
2190 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2191 		struct ieee80211_hdr *f_hdr;
2192 		struct sk_buff *f_skb;
2193 
2194 		idx--;
2195 		if (idx < 0)
2196 			idx = IEEE80211_FRAGMENT_MAX - 1;
2197 
2198 		entry = &cache->entries[idx];
2199 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2200 		    entry->rx_queue != rx_queue ||
2201 		    entry->last_frag + 1 != frag)
2202 			continue;
2203 
2204 		f_skb = __skb_peek(&entry->skb_list);
2205 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2206 
2207 		/*
2208 		 * Check ftype and addresses are equal, else check next fragment
2209 		 */
2210 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2211 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2212 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2213 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2214 			continue;
2215 
2216 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2217 			__skb_queue_purge(&entry->skb_list);
2218 			continue;
2219 		}
2220 		return entry;
2221 	}
2222 
2223 	return NULL;
2224 }
2225 
2226 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2227 {
2228 	return rx->key &&
2229 		(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2230 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2231 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2232 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2233 		ieee80211_has_protected(fc);
2234 }
2235 
2236 static ieee80211_rx_result debug_noinline
2237 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2238 {
2239 	struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2240 	struct ieee80211_hdr *hdr;
2241 	u16 sc;
2242 	__le16 fc;
2243 	unsigned int frag, seq;
2244 	struct ieee80211_fragment_entry *entry;
2245 	struct sk_buff *skb;
2246 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2247 
2248 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2249 	fc = hdr->frame_control;
2250 
2251 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2252 		return RX_CONTINUE;
2253 
2254 	sc = le16_to_cpu(hdr->seq_ctrl);
2255 	frag = sc & IEEE80211_SCTL_FRAG;
2256 
2257 	if (rx->sta)
2258 		cache = &rx->sta->frags;
2259 
2260 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2261 		goto out;
2262 
2263 	if (is_multicast_ether_addr(hdr->addr1))
2264 		return RX_DROP_MONITOR;
2265 
2266 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2267 
2268 	if (skb_linearize(rx->skb))
2269 		return RX_DROP_UNUSABLE;
2270 
2271 	/*
2272 	 *  skb_linearize() might change the skb->data and
2273 	 *  previously cached variables (in this case, hdr) need to
2274 	 *  be refreshed with the new data.
2275 	 */
2276 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2277 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2278 
2279 	if (frag == 0) {
2280 		/* This is the first fragment of a new frame. */
2281 		entry = ieee80211_reassemble_add(cache, frag, seq,
2282 						 rx->seqno_idx, &(rx->skb));
2283 		if (requires_sequential_pn(rx, fc)) {
2284 			int queue = rx->security_idx;
2285 
2286 			/* Store CCMP/GCMP PN so that we can verify that the
2287 			 * next fragment has a sequential PN value.
2288 			 */
2289 			entry->check_sequential_pn = true;
2290 			entry->is_protected = true;
2291 			entry->key_color = rx->key->color;
2292 			memcpy(entry->last_pn,
2293 			       rx->key->u.ccmp.rx_pn[queue],
2294 			       IEEE80211_CCMP_PN_LEN);
2295 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2296 					      u.ccmp.rx_pn) !=
2297 				     offsetof(struct ieee80211_key,
2298 					      u.gcmp.rx_pn));
2299 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2300 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2301 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2302 				     IEEE80211_GCMP_PN_LEN);
2303 		} else if (rx->key &&
2304 			   (ieee80211_has_protected(fc) ||
2305 			    (status->flag & RX_FLAG_DECRYPTED))) {
2306 			entry->is_protected = true;
2307 			entry->key_color = rx->key->color;
2308 		}
2309 		return RX_QUEUED;
2310 	}
2311 
2312 	/* This is a fragment for a frame that should already be pending in
2313 	 * fragment cache. Add this fragment to the end of the pending entry.
2314 	 */
2315 	entry = ieee80211_reassemble_find(cache, frag, seq,
2316 					  rx->seqno_idx, hdr);
2317 	if (!entry) {
2318 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2319 		return RX_DROP_MONITOR;
2320 	}
2321 
2322 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2323 	 *  MPDU PN values are not incrementing in steps of 1."
2324 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2325 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2326 	 */
2327 	if (entry->check_sequential_pn) {
2328 		int i;
2329 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2330 
2331 		if (!requires_sequential_pn(rx, fc))
2332 			return RX_DROP_UNUSABLE;
2333 
2334 		/* Prevent mixed key and fragment cache attacks */
2335 		if (entry->key_color != rx->key->color)
2336 			return RX_DROP_UNUSABLE;
2337 
2338 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2339 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2340 			pn[i]++;
2341 			if (pn[i])
2342 				break;
2343 		}
2344 
2345 		rpn = rx->ccm_gcm.pn;
2346 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2347 			return RX_DROP_UNUSABLE;
2348 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2349 	} else if (entry->is_protected &&
2350 		   (!rx->key ||
2351 		    (!ieee80211_has_protected(fc) &&
2352 		     !(status->flag & RX_FLAG_DECRYPTED)) ||
2353 		    rx->key->color != entry->key_color)) {
2354 		/* Drop this as a mixed key or fragment cache attack, even
2355 		 * if for TKIP Michael MIC should protect us, and WEP is a
2356 		 * lost cause anyway.
2357 		 */
2358 		return RX_DROP_UNUSABLE;
2359 	} else if (entry->is_protected && rx->key &&
2360 		   entry->key_color != rx->key->color &&
2361 		   (status->flag & RX_FLAG_DECRYPTED)) {
2362 		return RX_DROP_UNUSABLE;
2363 	}
2364 
2365 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2366 	__skb_queue_tail(&entry->skb_list, rx->skb);
2367 	entry->last_frag = frag;
2368 	entry->extra_len += rx->skb->len;
2369 	if (ieee80211_has_morefrags(fc)) {
2370 		rx->skb = NULL;
2371 		return RX_QUEUED;
2372 	}
2373 
2374 	rx->skb = __skb_dequeue(&entry->skb_list);
2375 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2376 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2377 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2378 					      GFP_ATOMIC))) {
2379 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2380 			__skb_queue_purge(&entry->skb_list);
2381 			return RX_DROP_UNUSABLE;
2382 		}
2383 	}
2384 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2385 		skb_put_data(rx->skb, skb->data, skb->len);
2386 		dev_kfree_skb(skb);
2387 	}
2388 
2389  out:
2390 	ieee80211_led_rx(rx->local);
2391 	if (rx->sta)
2392 		rx->link_sta->rx_stats.packets++;
2393 	return RX_CONTINUE;
2394 }
2395 
2396 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2397 {
2398 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2399 		return -EACCES;
2400 
2401 	return 0;
2402 }
2403 
2404 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2405 {
2406 	struct sk_buff *skb = rx->skb;
2407 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2408 
2409 	/*
2410 	 * Pass through unencrypted frames if the hardware has
2411 	 * decrypted them already.
2412 	 */
2413 	if (status->flag & RX_FLAG_DECRYPTED)
2414 		return 0;
2415 
2416 	/* Drop unencrypted frames if key is set. */
2417 	if (unlikely(!ieee80211_has_protected(fc) &&
2418 		     !ieee80211_is_any_nullfunc(fc) &&
2419 		     ieee80211_is_data(fc) && rx->key))
2420 		return -EACCES;
2421 
2422 	return 0;
2423 }
2424 
2425 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2426 {
2427 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2428 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2429 	__le16 fc = hdr->frame_control;
2430 
2431 	/*
2432 	 * Pass through unencrypted frames if the hardware has
2433 	 * decrypted them already.
2434 	 */
2435 	if (status->flag & RX_FLAG_DECRYPTED)
2436 		return 0;
2437 
2438 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2439 		if (unlikely(!ieee80211_has_protected(fc) &&
2440 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2441 			     rx->key)) {
2442 			if (ieee80211_is_deauth(fc) ||
2443 			    ieee80211_is_disassoc(fc))
2444 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2445 							     rx->skb->data,
2446 							     rx->skb->len);
2447 			return -EACCES;
2448 		}
2449 		/* BIP does not use Protected field, so need to check MMIE */
2450 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2451 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2452 			if (ieee80211_is_deauth(fc) ||
2453 			    ieee80211_is_disassoc(fc))
2454 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2455 							     rx->skb->data,
2456 							     rx->skb->len);
2457 			return -EACCES;
2458 		}
2459 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2460 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2461 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2462 						     rx->skb->data,
2463 						     rx->skb->len);
2464 			return -EACCES;
2465 		}
2466 		/*
2467 		 * When using MFP, Action frames are not allowed prior to
2468 		 * having configured keys.
2469 		 */
2470 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2471 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2472 			return -EACCES;
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static int
2479 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2480 {
2481 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2482 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2483 	bool check_port_control = false;
2484 	struct ethhdr *ehdr;
2485 	int ret;
2486 
2487 	*port_control = false;
2488 	if (ieee80211_has_a4(hdr->frame_control) &&
2489 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2490 		return -1;
2491 
2492 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2493 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2494 
2495 		if (!sdata->u.mgd.use_4addr)
2496 			return -1;
2497 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2498 			check_port_control = true;
2499 	}
2500 
2501 	if (is_multicast_ether_addr(hdr->addr1) &&
2502 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2503 		return -1;
2504 
2505 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2506 	if (ret < 0)
2507 		return ret;
2508 
2509 	ehdr = (struct ethhdr *) rx->skb->data;
2510 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2511 		*port_control = true;
2512 	else if (check_port_control)
2513 		return -1;
2514 
2515 	return 0;
2516 }
2517 
2518 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata,
2519 			   const u8 *addr, int *out_link_id)
2520 {
2521 	unsigned int link_id;
2522 
2523 	/* non-MLO, or MLD address replaced by hardware */
2524 	if (ether_addr_equal(sdata->vif.addr, addr))
2525 		return true;
2526 
2527 	if (!sdata->vif.valid_links)
2528 		return false;
2529 
2530 	for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) {
2531 		struct ieee80211_bss_conf *conf;
2532 
2533 		conf = rcu_dereference(sdata->vif.link_conf[link_id]);
2534 
2535 		if (!conf)
2536 			continue;
2537 		if (ether_addr_equal(conf->addr, addr)) {
2538 			if (out_link_id)
2539 				*out_link_id = link_id;
2540 			return true;
2541 		}
2542 	}
2543 
2544 	return false;
2545 }
2546 
2547 /*
2548  * requires that rx->skb is a frame with ethernet header
2549  */
2550 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2551 {
2552 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2553 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2554 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2555 
2556 	/*
2557 	 * Allow EAPOL frames to us/the PAE group address regardless of
2558 	 * whether the frame was encrypted or not, and always disallow
2559 	 * all other destination addresses for them.
2560 	 */
2561 	if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2562 		return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) ||
2563 		       ether_addr_equal(ehdr->h_dest, pae_group_addr);
2564 
2565 	if (ieee80211_802_1x_port_control(rx) ||
2566 	    ieee80211_drop_unencrypted(rx, fc))
2567 		return false;
2568 
2569 	return true;
2570 }
2571 
2572 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2573 						 struct ieee80211_rx_data *rx)
2574 {
2575 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2576 	struct net_device *dev = sdata->dev;
2577 
2578 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2579 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2580 		      !sdata->control_port_no_preauth)) &&
2581 		     sdata->control_port_over_nl80211)) {
2582 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2583 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2584 
2585 		cfg80211_rx_control_port(dev, skb, noencrypt);
2586 		dev_kfree_skb(skb);
2587 	} else {
2588 		struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2589 
2590 		memset(skb->cb, 0, sizeof(skb->cb));
2591 
2592 		/*
2593 		 * 802.1X over 802.11 requires that the authenticator address
2594 		 * be used for EAPOL frames. However, 802.1X allows the use of
2595 		 * the PAE group address instead. If the interface is part of
2596 		 * a bridge and we pass the frame with the PAE group address,
2597 		 * then the bridge will forward it to the network (even if the
2598 		 * client was not associated yet), which isn't supposed to
2599 		 * happen.
2600 		 * To avoid that, rewrite the destination address to our own
2601 		 * address, so that the authenticator (e.g. hostapd) will see
2602 		 * the frame, but bridge won't forward it anywhere else. Note
2603 		 * that due to earlier filtering, the only other address can
2604 		 * be the PAE group address, unless the hardware allowed them
2605 		 * through in 802.3 offloaded mode.
2606 		 */
2607 		if (unlikely(skb->protocol == sdata->control_port_protocol &&
2608 			     !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2609 			ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2610 
2611 		/* deliver to local stack */
2612 		if (rx->list)
2613 			list_add_tail(&skb->list, rx->list);
2614 		else
2615 			netif_receive_skb(skb);
2616 	}
2617 }
2618 
2619 /*
2620  * requires that rx->skb is a frame with ethernet header
2621  */
2622 static void
2623 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2624 {
2625 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2626 	struct net_device *dev = sdata->dev;
2627 	struct sk_buff *skb, *xmit_skb;
2628 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2629 	struct sta_info *dsta;
2630 
2631 	skb = rx->skb;
2632 	xmit_skb = NULL;
2633 
2634 	dev_sw_netstats_rx_add(dev, skb->len);
2635 
2636 	if (rx->sta) {
2637 		/* The seqno index has the same property as needed
2638 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2639 		 * for non-QoS-data frames. Here we know it's a data
2640 		 * frame, so count MSDUs.
2641 		 */
2642 		u64_stats_update_begin(&rx->link_sta->rx_stats.syncp);
2643 		rx->link_sta->rx_stats.msdu[rx->seqno_idx]++;
2644 		u64_stats_update_end(&rx->link_sta->rx_stats.syncp);
2645 	}
2646 
2647 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2648 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2649 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2650 	    ehdr->h_proto != rx->sdata->control_port_protocol &&
2651 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2652 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2653 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2654 			/*
2655 			 * send multicast frames both to higher layers in
2656 			 * local net stack and back to the wireless medium
2657 			 */
2658 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2659 			if (!xmit_skb)
2660 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2661 						    dev->name);
2662 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2663 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2664 			dsta = sta_info_get(sdata, ehdr->h_dest);
2665 			if (dsta) {
2666 				/*
2667 				 * The destination station is associated to
2668 				 * this AP (in this VLAN), so send the frame
2669 				 * directly to it and do not pass it to local
2670 				 * net stack.
2671 				 */
2672 				xmit_skb = skb;
2673 				skb = NULL;
2674 			}
2675 		}
2676 	}
2677 
2678 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2679 	if (skb) {
2680 		/* 'align' will only take the values 0 or 2 here since all
2681 		 * frames are required to be aligned to 2-byte boundaries
2682 		 * when being passed to mac80211; the code here works just
2683 		 * as well if that isn't true, but mac80211 assumes it can
2684 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2685 		 */
2686 		int align;
2687 
2688 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2689 		if (align) {
2690 			if (WARN_ON(skb_headroom(skb) < 3)) {
2691 				dev_kfree_skb(skb);
2692 				skb = NULL;
2693 			} else {
2694 				u8 *data = skb->data;
2695 				size_t len = skb_headlen(skb);
2696 				skb->data -= align;
2697 				memmove(skb->data, data, len);
2698 				skb_set_tail_pointer(skb, len);
2699 			}
2700 		}
2701 	}
2702 #endif
2703 
2704 	if (skb) {
2705 		skb->protocol = eth_type_trans(skb, dev);
2706 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2707 	}
2708 
2709 	if (xmit_skb) {
2710 		/*
2711 		 * Send to wireless media and increase priority by 256 to
2712 		 * keep the received priority instead of reclassifying
2713 		 * the frame (see cfg80211_classify8021d).
2714 		 */
2715 		xmit_skb->priority += 256;
2716 		xmit_skb->protocol = htons(ETH_P_802_3);
2717 		skb_reset_network_header(xmit_skb);
2718 		skb_reset_mac_header(xmit_skb);
2719 		dev_queue_xmit(xmit_skb);
2720 	}
2721 }
2722 
2723 static ieee80211_rx_result debug_noinline
2724 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2725 {
2726 	struct net_device *dev = rx->sdata->dev;
2727 	struct sk_buff *skb = rx->skb;
2728 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2729 	__le16 fc = hdr->frame_control;
2730 	struct sk_buff_head frame_list;
2731 	struct ethhdr ethhdr;
2732 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2733 
2734 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2735 		check_da = NULL;
2736 		check_sa = NULL;
2737 	} else switch (rx->sdata->vif.type) {
2738 		case NL80211_IFTYPE_AP:
2739 		case NL80211_IFTYPE_AP_VLAN:
2740 			check_da = NULL;
2741 			break;
2742 		case NL80211_IFTYPE_STATION:
2743 			if (!rx->sta ||
2744 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2745 				check_sa = NULL;
2746 			break;
2747 		case NL80211_IFTYPE_MESH_POINT:
2748 			check_sa = NULL;
2749 			break;
2750 		default:
2751 			break;
2752 	}
2753 
2754 	skb->dev = dev;
2755 	__skb_queue_head_init(&frame_list);
2756 
2757 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2758 					  rx->sdata->vif.addr,
2759 					  rx->sdata->vif.type,
2760 					  data_offset, true))
2761 		return RX_DROP_UNUSABLE;
2762 
2763 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2764 				 rx->sdata->vif.type,
2765 				 rx->local->hw.extra_tx_headroom,
2766 				 check_da, check_sa);
2767 
2768 	while (!skb_queue_empty(&frame_list)) {
2769 		rx->skb = __skb_dequeue(&frame_list);
2770 
2771 		if (!ieee80211_frame_allowed(rx, fc)) {
2772 			dev_kfree_skb(rx->skb);
2773 			continue;
2774 		}
2775 
2776 		ieee80211_deliver_skb(rx);
2777 	}
2778 
2779 	return RX_QUEUED;
2780 }
2781 
2782 static ieee80211_rx_result debug_noinline
2783 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2784 {
2785 	struct sk_buff *skb = rx->skb;
2786 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2787 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2788 	__le16 fc = hdr->frame_control;
2789 
2790 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2791 		return RX_CONTINUE;
2792 
2793 	if (unlikely(!ieee80211_is_data(fc)))
2794 		return RX_CONTINUE;
2795 
2796 	if (unlikely(!ieee80211_is_data_present(fc)))
2797 		return RX_DROP_MONITOR;
2798 
2799 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2800 		switch (rx->sdata->vif.type) {
2801 		case NL80211_IFTYPE_AP_VLAN:
2802 			if (!rx->sdata->u.vlan.sta)
2803 				return RX_DROP_UNUSABLE;
2804 			break;
2805 		case NL80211_IFTYPE_STATION:
2806 			if (!rx->sdata->u.mgd.use_4addr)
2807 				return RX_DROP_UNUSABLE;
2808 			break;
2809 		default:
2810 			return RX_DROP_UNUSABLE;
2811 		}
2812 	}
2813 
2814 	if (is_multicast_ether_addr(hdr->addr1))
2815 		return RX_DROP_UNUSABLE;
2816 
2817 	if (rx->key) {
2818 		/*
2819 		 * We should not receive A-MSDUs on pre-HT connections,
2820 		 * and HT connections cannot use old ciphers. Thus drop
2821 		 * them, as in those cases we couldn't even have SPP
2822 		 * A-MSDUs or such.
2823 		 */
2824 		switch (rx->key->conf.cipher) {
2825 		case WLAN_CIPHER_SUITE_WEP40:
2826 		case WLAN_CIPHER_SUITE_WEP104:
2827 		case WLAN_CIPHER_SUITE_TKIP:
2828 			return RX_DROP_UNUSABLE;
2829 		default:
2830 			break;
2831 		}
2832 	}
2833 
2834 	return __ieee80211_rx_h_amsdu(rx, 0);
2835 }
2836 
2837 #ifdef CONFIG_MAC80211_MESH
2838 static ieee80211_rx_result
2839 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2840 {
2841 	struct ieee80211_hdr *fwd_hdr, *hdr;
2842 	struct ieee80211_tx_info *info;
2843 	struct ieee80211s_hdr *mesh_hdr;
2844 	struct sk_buff *skb = rx->skb, *fwd_skb;
2845 	struct ieee80211_local *local = rx->local;
2846 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2847 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2848 	u16 ac, q, hdrlen;
2849 	int tailroom = 0;
2850 
2851 	hdr = (struct ieee80211_hdr *) skb->data;
2852 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2853 
2854 	/* make sure fixed part of mesh header is there, also checks skb len */
2855 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2856 		return RX_DROP_MONITOR;
2857 
2858 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2859 
2860 	/* make sure full mesh header is there, also checks skb len */
2861 	if (!pskb_may_pull(rx->skb,
2862 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2863 		return RX_DROP_MONITOR;
2864 
2865 	/* reload pointers */
2866 	hdr = (struct ieee80211_hdr *) skb->data;
2867 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2868 
2869 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) {
2870 		int offset = hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2871 			     sizeof(rfc1042_header);
2872 		__be16 ethertype;
2873 
2874 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr) ||
2875 		    skb_copy_bits(rx->skb, offset, &ethertype, 2) != 0 ||
2876 		    ethertype != rx->sdata->control_port_protocol)
2877 			return RX_DROP_MONITOR;
2878 	}
2879 
2880 	/* frame is in RMC, don't forward */
2881 	if (ieee80211_is_data(hdr->frame_control) &&
2882 	    is_multicast_ether_addr(hdr->addr1) &&
2883 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2884 		return RX_DROP_MONITOR;
2885 
2886 	if (!ieee80211_is_data(hdr->frame_control))
2887 		return RX_CONTINUE;
2888 
2889 	if (!mesh_hdr->ttl)
2890 		return RX_DROP_MONITOR;
2891 
2892 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2893 		struct mesh_path *mppath;
2894 		char *proxied_addr;
2895 		char *mpp_addr;
2896 
2897 		if (is_multicast_ether_addr(hdr->addr1)) {
2898 			mpp_addr = hdr->addr3;
2899 			proxied_addr = mesh_hdr->eaddr1;
2900 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2901 			    MESH_FLAGS_AE_A5_A6) {
2902 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2903 			mpp_addr = hdr->addr4;
2904 			proxied_addr = mesh_hdr->eaddr2;
2905 		} else {
2906 			return RX_DROP_MONITOR;
2907 		}
2908 
2909 		rcu_read_lock();
2910 		mppath = mpp_path_lookup(sdata, proxied_addr);
2911 		if (!mppath) {
2912 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2913 		} else {
2914 			spin_lock_bh(&mppath->state_lock);
2915 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2916 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2917 			mppath->exp_time = jiffies;
2918 			spin_unlock_bh(&mppath->state_lock);
2919 		}
2920 		rcu_read_unlock();
2921 	}
2922 
2923 	/* Frame has reached destination.  Don't forward */
2924 	if (!is_multicast_ether_addr(hdr->addr1) &&
2925 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2926 		return RX_CONTINUE;
2927 
2928 	ac = ieee802_1d_to_ac[skb->priority];
2929 	q = sdata->vif.hw_queue[ac];
2930 	if (ieee80211_queue_stopped(&local->hw, q)) {
2931 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2932 		return RX_DROP_MONITOR;
2933 	}
2934 	skb_set_queue_mapping(skb, ac);
2935 
2936 	if (!--mesh_hdr->ttl) {
2937 		if (!is_multicast_ether_addr(hdr->addr1))
2938 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2939 						     dropped_frames_ttl);
2940 		goto out;
2941 	}
2942 
2943 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2944 		goto out;
2945 
2946 	if (sdata->crypto_tx_tailroom_needed_cnt)
2947 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2948 
2949 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2950 				       IEEE80211_ENCRYPT_HEADROOM,
2951 				  tailroom, GFP_ATOMIC);
2952 	if (!fwd_skb)
2953 		goto out;
2954 
2955 	fwd_skb->dev = sdata->dev;
2956 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2957 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2958 	info = IEEE80211_SKB_CB(fwd_skb);
2959 	memset(info, 0, sizeof(*info));
2960 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2961 	info->control.vif = &rx->sdata->vif;
2962 	info->control.jiffies = jiffies;
2963 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2964 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2965 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2966 		/* update power mode indication when forwarding */
2967 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2968 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2969 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2970 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2971 	} else {
2972 		/* unable to resolve next hop */
2973 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2974 				   fwd_hdr->addr3, 0,
2975 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2976 				   fwd_hdr->addr2);
2977 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2978 		kfree_skb(fwd_skb);
2979 		return RX_DROP_MONITOR;
2980 	}
2981 
2982 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2983 	ieee80211_add_pending_skb(local, fwd_skb);
2984  out:
2985 	if (is_multicast_ether_addr(hdr->addr1))
2986 		return RX_CONTINUE;
2987 	return RX_DROP_MONITOR;
2988 }
2989 #endif
2990 
2991 static ieee80211_rx_result debug_noinline
2992 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2993 {
2994 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2995 	struct ieee80211_local *local = rx->local;
2996 	struct net_device *dev = sdata->dev;
2997 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2998 	__le16 fc = hdr->frame_control;
2999 	bool port_control;
3000 	int err;
3001 
3002 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
3003 		return RX_CONTINUE;
3004 
3005 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3006 		return RX_DROP_MONITOR;
3007 
3008 	/*
3009 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
3010 	 * also drop the frame to cooked monitor interfaces.
3011 	 */
3012 	if (ieee80211_has_a4(hdr->frame_control) &&
3013 	    sdata->vif.type == NL80211_IFTYPE_AP) {
3014 		if (rx->sta &&
3015 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3016 			cfg80211_rx_unexpected_4addr_frame(
3017 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3018 		return RX_DROP_MONITOR;
3019 	}
3020 
3021 	err = __ieee80211_data_to_8023(rx, &port_control);
3022 	if (unlikely(err))
3023 		return RX_DROP_UNUSABLE;
3024 
3025 	if (!ieee80211_frame_allowed(rx, fc))
3026 		return RX_DROP_MONITOR;
3027 
3028 	/* directly handle TDLS channel switch requests/responses */
3029 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3030 						cpu_to_be16(ETH_P_TDLS))) {
3031 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3032 
3033 		if (pskb_may_pull(rx->skb,
3034 				  offsetof(struct ieee80211_tdls_data, u)) &&
3035 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3036 		    tf->category == WLAN_CATEGORY_TDLS &&
3037 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3038 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3039 			rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3040 			__ieee80211_queue_skb_to_iface(sdata, rx->link_id,
3041 						       rx->sta, rx->skb);
3042 			return RX_QUEUED;
3043 		}
3044 	}
3045 
3046 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3047 	    unlikely(port_control) && sdata->bss) {
3048 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3049 				     u.ap);
3050 		dev = sdata->dev;
3051 		rx->sdata = sdata;
3052 	}
3053 
3054 	rx->skb->dev = dev;
3055 
3056 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3057 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3058 	    !is_multicast_ether_addr(
3059 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
3060 	    (!local->scanning &&
3061 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3062 		mod_timer(&local->dynamic_ps_timer, jiffies +
3063 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3064 
3065 	ieee80211_deliver_skb(rx);
3066 
3067 	return RX_QUEUED;
3068 }
3069 
3070 static ieee80211_rx_result debug_noinline
3071 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3072 {
3073 	struct sk_buff *skb = rx->skb;
3074 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3075 	struct tid_ampdu_rx *tid_agg_rx;
3076 	u16 start_seq_num;
3077 	u16 tid;
3078 
3079 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
3080 		return RX_CONTINUE;
3081 
3082 	if (ieee80211_is_back_req(bar->frame_control)) {
3083 		struct {
3084 			__le16 control, start_seq_num;
3085 		} __packed bar_data;
3086 		struct ieee80211_event event = {
3087 			.type = BAR_RX_EVENT,
3088 		};
3089 
3090 		if (!rx->sta)
3091 			return RX_DROP_MONITOR;
3092 
3093 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3094 				  &bar_data, sizeof(bar_data)))
3095 			return RX_DROP_MONITOR;
3096 
3097 		tid = le16_to_cpu(bar_data.control) >> 12;
3098 
3099 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3100 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3101 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3102 					     WLAN_BACK_RECIPIENT,
3103 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3104 
3105 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3106 		if (!tid_agg_rx)
3107 			return RX_DROP_MONITOR;
3108 
3109 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3110 		event.u.ba.tid = tid;
3111 		event.u.ba.ssn = start_seq_num;
3112 		event.u.ba.sta = &rx->sta->sta;
3113 
3114 		/* reset session timer */
3115 		if (tid_agg_rx->timeout)
3116 			mod_timer(&tid_agg_rx->session_timer,
3117 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3118 
3119 		spin_lock(&tid_agg_rx->reorder_lock);
3120 		/* release stored frames up to start of BAR */
3121 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3122 						 start_seq_num, frames);
3123 		spin_unlock(&tid_agg_rx->reorder_lock);
3124 
3125 		drv_event_callback(rx->local, rx->sdata, &event);
3126 
3127 		kfree_skb(skb);
3128 		return RX_QUEUED;
3129 	}
3130 
3131 	/*
3132 	 * After this point, we only want management frames,
3133 	 * so we can drop all remaining control frames to
3134 	 * cooked monitor interfaces.
3135 	 */
3136 	return RX_DROP_MONITOR;
3137 }
3138 
3139 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3140 					   struct ieee80211_mgmt *mgmt,
3141 					   size_t len)
3142 {
3143 	struct ieee80211_local *local = sdata->local;
3144 	struct sk_buff *skb;
3145 	struct ieee80211_mgmt *resp;
3146 
3147 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3148 		/* Not to own unicast address */
3149 		return;
3150 	}
3151 
3152 	if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) ||
3153 	    !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) {
3154 		/* Not from the current AP or not associated yet. */
3155 		return;
3156 	}
3157 
3158 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3159 		/* Too short SA Query request frame */
3160 		return;
3161 	}
3162 
3163 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3164 	if (skb == NULL)
3165 		return;
3166 
3167 	skb_reserve(skb, local->hw.extra_tx_headroom);
3168 	resp = skb_put_zero(skb, 24);
3169 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3170 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3171 	memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN);
3172 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3173 					  IEEE80211_STYPE_ACTION);
3174 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3175 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3176 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3177 	memcpy(resp->u.action.u.sa_query.trans_id,
3178 	       mgmt->u.action.u.sa_query.trans_id,
3179 	       WLAN_SA_QUERY_TR_ID_LEN);
3180 
3181 	ieee80211_tx_skb(sdata, skb);
3182 }
3183 
3184 static void
3185 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx)
3186 {
3187 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3188 	const struct element *ie;
3189 	size_t baselen;
3190 
3191 	if (!wiphy_ext_feature_isset(rx->local->hw.wiphy,
3192 				     NL80211_EXT_FEATURE_BSS_COLOR))
3193 		return;
3194 
3195 	if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION))
3196 		return;
3197 
3198 	if (rx->sdata->vif.bss_conf.csa_active)
3199 		return;
3200 
3201 	baselen = mgmt->u.beacon.variable - rx->skb->data;
3202 	if (baselen > rx->skb->len)
3203 		return;
3204 
3205 	ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
3206 				    mgmt->u.beacon.variable,
3207 				    rx->skb->len - baselen);
3208 	if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) &&
3209 	    ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) {
3210 		struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf;
3211 		const struct ieee80211_he_operation *he_oper;
3212 		u8 color;
3213 
3214 		he_oper = (void *)(ie->data + 1);
3215 		if (le32_get_bits(he_oper->he_oper_params,
3216 				  IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED))
3217 			return;
3218 
3219 		color = le32_get_bits(he_oper->he_oper_params,
3220 				      IEEE80211_HE_OPERATION_BSS_COLOR_MASK);
3221 		if (color == bss_conf->he_bss_color.color)
3222 			ieeee80211_obss_color_collision_notify(&rx->sdata->vif,
3223 							       BIT_ULL(color),
3224 							       GFP_ATOMIC);
3225 	}
3226 }
3227 
3228 static ieee80211_rx_result debug_noinline
3229 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3230 {
3231 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3232 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3233 
3234 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3235 		return RX_CONTINUE;
3236 
3237 	/*
3238 	 * From here on, look only at management frames.
3239 	 * Data and control frames are already handled,
3240 	 * and unknown (reserved) frames are useless.
3241 	 */
3242 	if (rx->skb->len < 24)
3243 		return RX_DROP_MONITOR;
3244 
3245 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3246 		return RX_DROP_MONITOR;
3247 
3248 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3249 	    ieee80211_is_beacon(mgmt->frame_control) &&
3250 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3251 		int sig = 0;
3252 
3253 		/* sw bss color collision detection */
3254 		ieee80211_rx_check_bss_color_collision(rx);
3255 
3256 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3257 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3258 			sig = status->signal;
3259 
3260 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3261 						rx->skb->data, rx->skb->len,
3262 						ieee80211_rx_status_to_khz(status),
3263 						sig);
3264 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3265 	}
3266 
3267 	if (ieee80211_drop_unencrypted_mgmt(rx))
3268 		return RX_DROP_UNUSABLE;
3269 
3270 	return RX_CONTINUE;
3271 }
3272 
3273 static bool
3274 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3275 {
3276 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3277 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3278 
3279 	/* TWT actions are only supported in AP for the moment */
3280 	if (sdata->vif.type != NL80211_IFTYPE_AP)
3281 		return false;
3282 
3283 	if (!rx->local->ops->add_twt_setup)
3284 		return false;
3285 
3286 	if (!sdata->vif.bss_conf.twt_responder)
3287 		return false;
3288 
3289 	if (!rx->sta)
3290 		return false;
3291 
3292 	switch (mgmt->u.action.u.s1g.action_code) {
3293 	case WLAN_S1G_TWT_SETUP: {
3294 		struct ieee80211_twt_setup *twt;
3295 
3296 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3297 				   1 + /* action code */
3298 				   sizeof(struct ieee80211_twt_setup) +
3299 				   2 /* TWT req_type agrt */)
3300 			break;
3301 
3302 		twt = (void *)mgmt->u.action.u.s1g.variable;
3303 		if (twt->element_id != WLAN_EID_S1G_TWT)
3304 			break;
3305 
3306 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3307 				   4 + /* action code + token + tlv */
3308 				   twt->length)
3309 			break;
3310 
3311 		return true; /* queue the frame */
3312 	}
3313 	case WLAN_S1G_TWT_TEARDOWN:
3314 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3315 			break;
3316 
3317 		return true; /* queue the frame */
3318 	default:
3319 		break;
3320 	}
3321 
3322 	return false;
3323 }
3324 
3325 static ieee80211_rx_result debug_noinline
3326 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3327 {
3328 	struct ieee80211_local *local = rx->local;
3329 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3330 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3331 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3332 	int len = rx->skb->len;
3333 
3334 	if (!ieee80211_is_action(mgmt->frame_control))
3335 		return RX_CONTINUE;
3336 
3337 	/* drop too small frames */
3338 	if (len < IEEE80211_MIN_ACTION_SIZE)
3339 		return RX_DROP_UNUSABLE;
3340 
3341 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3342 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3343 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3344 		return RX_DROP_UNUSABLE;
3345 
3346 	switch (mgmt->u.action.category) {
3347 	case WLAN_CATEGORY_HT:
3348 		/* reject HT action frames from stations not supporting HT */
3349 		if (!rx->link_sta->pub->ht_cap.ht_supported)
3350 			goto invalid;
3351 
3352 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3353 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3354 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3355 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3356 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3357 			break;
3358 
3359 		/* verify action & smps_control/chanwidth are present */
3360 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3361 			goto invalid;
3362 
3363 		switch (mgmt->u.action.u.ht_smps.action) {
3364 		case WLAN_HT_ACTION_SMPS: {
3365 			struct ieee80211_supported_band *sband;
3366 			enum ieee80211_smps_mode smps_mode;
3367 			struct sta_opmode_info sta_opmode = {};
3368 
3369 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3370 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3371 				goto handled;
3372 
3373 			/* convert to HT capability */
3374 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3375 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3376 				smps_mode = IEEE80211_SMPS_OFF;
3377 				break;
3378 			case WLAN_HT_SMPS_CONTROL_STATIC:
3379 				smps_mode = IEEE80211_SMPS_STATIC;
3380 				break;
3381 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3382 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3383 				break;
3384 			default:
3385 				goto invalid;
3386 			}
3387 
3388 			/* if no change do nothing */
3389 			if (rx->link_sta->pub->smps_mode == smps_mode)
3390 				goto handled;
3391 			rx->link_sta->pub->smps_mode = smps_mode;
3392 			sta_opmode.smps_mode =
3393 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3394 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3395 
3396 			sband = rx->local->hw.wiphy->bands[status->band];
3397 
3398 			rate_control_rate_update(local, sband, rx->sta, 0,
3399 						 IEEE80211_RC_SMPS_CHANGED);
3400 			cfg80211_sta_opmode_change_notify(sdata->dev,
3401 							  rx->sta->addr,
3402 							  &sta_opmode,
3403 							  GFP_ATOMIC);
3404 			goto handled;
3405 		}
3406 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3407 			struct ieee80211_supported_band *sband;
3408 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3409 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3410 			struct sta_opmode_info sta_opmode = {};
3411 
3412 			/* If it doesn't support 40 MHz it can't change ... */
3413 			if (!(rx->link_sta->pub->ht_cap.cap &
3414 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3415 				goto handled;
3416 
3417 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3418 				max_bw = IEEE80211_STA_RX_BW_20;
3419 			else
3420 				max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta);
3421 
3422 			/* set cur_max_bandwidth and recalc sta bw */
3423 			rx->link_sta->cur_max_bandwidth = max_bw;
3424 			new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta);
3425 
3426 			if (rx->link_sta->pub->bandwidth == new_bw)
3427 				goto handled;
3428 
3429 			rx->link_sta->pub->bandwidth = new_bw;
3430 			sband = rx->local->hw.wiphy->bands[status->band];
3431 			sta_opmode.bw =
3432 				ieee80211_sta_rx_bw_to_chan_width(rx->link_sta);
3433 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3434 
3435 			rate_control_rate_update(local, sband, rx->sta, 0,
3436 						 IEEE80211_RC_BW_CHANGED);
3437 			cfg80211_sta_opmode_change_notify(sdata->dev,
3438 							  rx->sta->addr,
3439 							  &sta_opmode,
3440 							  GFP_ATOMIC);
3441 			goto handled;
3442 		}
3443 		default:
3444 			goto invalid;
3445 		}
3446 
3447 		break;
3448 	case WLAN_CATEGORY_PUBLIC:
3449 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3450 			goto invalid;
3451 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3452 			break;
3453 		if (!rx->sta)
3454 			break;
3455 		if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid))
3456 			break;
3457 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3458 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3459 			break;
3460 		if (len < offsetof(struct ieee80211_mgmt,
3461 				   u.action.u.ext_chan_switch.variable))
3462 			goto invalid;
3463 		goto queue;
3464 	case WLAN_CATEGORY_VHT:
3465 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3466 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3467 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3468 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3469 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3470 			break;
3471 
3472 		/* verify action code is present */
3473 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3474 			goto invalid;
3475 
3476 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3477 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3478 			/* verify opmode is present */
3479 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3480 				goto invalid;
3481 			goto queue;
3482 		}
3483 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3484 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3485 				goto invalid;
3486 			goto queue;
3487 		}
3488 		default:
3489 			break;
3490 		}
3491 		break;
3492 	case WLAN_CATEGORY_BACK:
3493 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3494 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3495 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3496 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3497 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3498 			break;
3499 
3500 		/* verify action_code is present */
3501 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3502 			break;
3503 
3504 		switch (mgmt->u.action.u.addba_req.action_code) {
3505 		case WLAN_ACTION_ADDBA_REQ:
3506 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3507 				   sizeof(mgmt->u.action.u.addba_req)))
3508 				goto invalid;
3509 			break;
3510 		case WLAN_ACTION_ADDBA_RESP:
3511 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3512 				   sizeof(mgmt->u.action.u.addba_resp)))
3513 				goto invalid;
3514 			break;
3515 		case WLAN_ACTION_DELBA:
3516 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3517 				   sizeof(mgmt->u.action.u.delba)))
3518 				goto invalid;
3519 			break;
3520 		default:
3521 			goto invalid;
3522 		}
3523 
3524 		goto queue;
3525 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3526 		/* verify action_code is present */
3527 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3528 			break;
3529 
3530 		switch (mgmt->u.action.u.measurement.action_code) {
3531 		case WLAN_ACTION_SPCT_MSR_REQ:
3532 			if (status->band != NL80211_BAND_5GHZ)
3533 				break;
3534 
3535 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3536 				   sizeof(mgmt->u.action.u.measurement)))
3537 				break;
3538 
3539 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3540 				break;
3541 
3542 			ieee80211_process_measurement_req(sdata, mgmt, len);
3543 			goto handled;
3544 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3545 			u8 *bssid;
3546 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3547 				   sizeof(mgmt->u.action.u.chan_switch)))
3548 				break;
3549 
3550 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3551 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3552 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3553 				break;
3554 
3555 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3556 				bssid = sdata->deflink.u.mgd.bssid;
3557 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3558 				bssid = sdata->u.ibss.bssid;
3559 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3560 				bssid = mgmt->sa;
3561 			else
3562 				break;
3563 
3564 			if (!ether_addr_equal(mgmt->bssid, bssid))
3565 				break;
3566 
3567 			goto queue;
3568 			}
3569 		}
3570 		break;
3571 	case WLAN_CATEGORY_SELF_PROTECTED:
3572 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3573 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3574 			break;
3575 
3576 		switch (mgmt->u.action.u.self_prot.action_code) {
3577 		case WLAN_SP_MESH_PEERING_OPEN:
3578 		case WLAN_SP_MESH_PEERING_CLOSE:
3579 		case WLAN_SP_MESH_PEERING_CONFIRM:
3580 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3581 				goto invalid;
3582 			if (sdata->u.mesh.user_mpm)
3583 				/* userspace handles this frame */
3584 				break;
3585 			goto queue;
3586 		case WLAN_SP_MGK_INFORM:
3587 		case WLAN_SP_MGK_ACK:
3588 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3589 				goto invalid;
3590 			break;
3591 		}
3592 		break;
3593 	case WLAN_CATEGORY_MESH_ACTION:
3594 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3595 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3596 			break;
3597 
3598 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3599 			break;
3600 		if (mesh_action_is_path_sel(mgmt) &&
3601 		    !mesh_path_sel_is_hwmp(sdata))
3602 			break;
3603 		goto queue;
3604 	case WLAN_CATEGORY_S1G:
3605 		switch (mgmt->u.action.u.s1g.action_code) {
3606 		case WLAN_S1G_TWT_SETUP:
3607 		case WLAN_S1G_TWT_TEARDOWN:
3608 			if (ieee80211_process_rx_twt_action(rx))
3609 				goto queue;
3610 			break;
3611 		default:
3612 			break;
3613 		}
3614 		break;
3615 	}
3616 
3617 	return RX_CONTINUE;
3618 
3619  invalid:
3620 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3621 	/* will return in the next handlers */
3622 	return RX_CONTINUE;
3623 
3624  handled:
3625 	if (rx->sta)
3626 		rx->link_sta->rx_stats.packets++;
3627 	dev_kfree_skb(rx->skb);
3628 	return RX_QUEUED;
3629 
3630  queue:
3631 	ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
3632 	return RX_QUEUED;
3633 }
3634 
3635 static ieee80211_rx_result debug_noinline
3636 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3637 {
3638 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3639 	struct cfg80211_rx_info info = {
3640 		.freq = ieee80211_rx_status_to_khz(status),
3641 		.buf = rx->skb->data,
3642 		.len = rx->skb->len,
3643 		.link_id = rx->link_id,
3644 		.have_link_id = rx->link_id >= 0,
3645 	};
3646 
3647 	/* skip known-bad action frames and return them in the next handler */
3648 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3649 		return RX_CONTINUE;
3650 
3651 	/*
3652 	 * Getting here means the kernel doesn't know how to handle
3653 	 * it, but maybe userspace does ... include returned frames
3654 	 * so userspace can register for those to know whether ones
3655 	 * it transmitted were processed or returned.
3656 	 */
3657 
3658 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3659 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3660 		info.sig_dbm = status->signal;
3661 
3662 	if (ieee80211_is_timing_measurement(rx->skb) ||
3663 	    ieee80211_is_ftm(rx->skb)) {
3664 		info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp);
3665 		info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp);
3666 	}
3667 
3668 	if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) {
3669 		if (rx->sta)
3670 			rx->link_sta->rx_stats.packets++;
3671 		dev_kfree_skb(rx->skb);
3672 		return RX_QUEUED;
3673 	}
3674 
3675 	return RX_CONTINUE;
3676 }
3677 
3678 static ieee80211_rx_result debug_noinline
3679 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3680 {
3681 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3682 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3683 	int len = rx->skb->len;
3684 
3685 	if (!ieee80211_is_action(mgmt->frame_control))
3686 		return RX_CONTINUE;
3687 
3688 	switch (mgmt->u.action.category) {
3689 	case WLAN_CATEGORY_SA_QUERY:
3690 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3691 			   sizeof(mgmt->u.action.u.sa_query)))
3692 			break;
3693 
3694 		switch (mgmt->u.action.u.sa_query.action) {
3695 		case WLAN_ACTION_SA_QUERY_REQUEST:
3696 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3697 				break;
3698 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3699 			goto handled;
3700 		}
3701 		break;
3702 	}
3703 
3704 	return RX_CONTINUE;
3705 
3706  handled:
3707 	if (rx->sta)
3708 		rx->link_sta->rx_stats.packets++;
3709 	dev_kfree_skb(rx->skb);
3710 	return RX_QUEUED;
3711 }
3712 
3713 static ieee80211_rx_result debug_noinline
3714 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3715 {
3716 	struct ieee80211_local *local = rx->local;
3717 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3718 	struct sk_buff *nskb;
3719 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3720 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3721 
3722 	if (!ieee80211_is_action(mgmt->frame_control))
3723 		return RX_CONTINUE;
3724 
3725 	/*
3726 	 * For AP mode, hostapd is responsible for handling any action
3727 	 * frames that we didn't handle, including returning unknown
3728 	 * ones. For all other modes we will return them to the sender,
3729 	 * setting the 0x80 bit in the action category, as required by
3730 	 * 802.11-2012 9.24.4.
3731 	 * Newer versions of hostapd shall also use the management frame
3732 	 * registration mechanisms, but older ones still use cooked
3733 	 * monitor interfaces so push all frames there.
3734 	 */
3735 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3736 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3737 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3738 		return RX_DROP_MONITOR;
3739 
3740 	if (is_multicast_ether_addr(mgmt->da))
3741 		return RX_DROP_MONITOR;
3742 
3743 	/* do not return rejected action frames */
3744 	if (mgmt->u.action.category & 0x80)
3745 		return RX_DROP_UNUSABLE;
3746 
3747 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3748 			       GFP_ATOMIC);
3749 	if (nskb) {
3750 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3751 
3752 		nmgmt->u.action.category |= 0x80;
3753 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3754 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3755 
3756 		memset(nskb->cb, 0, sizeof(nskb->cb));
3757 
3758 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3759 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3760 
3761 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3762 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3763 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3764 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3765 				info->hw_queue =
3766 					local->hw.offchannel_tx_hw_queue;
3767 		}
3768 
3769 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1,
3770 					    status->band);
3771 	}
3772 	dev_kfree_skb(rx->skb);
3773 	return RX_QUEUED;
3774 }
3775 
3776 static ieee80211_rx_result debug_noinline
3777 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3778 {
3779 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3780 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3781 
3782 	if (!ieee80211_is_ext(hdr->frame_control))
3783 		return RX_CONTINUE;
3784 
3785 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3786 		return RX_DROP_MONITOR;
3787 
3788 	/* for now only beacons are ext, so queue them */
3789 	ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
3790 
3791 	return RX_QUEUED;
3792 }
3793 
3794 static ieee80211_rx_result debug_noinline
3795 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3796 {
3797 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3798 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3799 	__le16 stype;
3800 
3801 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3802 
3803 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3804 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3805 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3806 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3807 		return RX_DROP_MONITOR;
3808 
3809 	switch (stype) {
3810 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3811 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3812 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3813 		/* process for all: mesh, mlme, ibss */
3814 		break;
3815 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3816 		if (is_multicast_ether_addr(mgmt->da) &&
3817 		    !is_broadcast_ether_addr(mgmt->da))
3818 			return RX_DROP_MONITOR;
3819 
3820 		/* process only for station/IBSS */
3821 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3822 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3823 			return RX_DROP_MONITOR;
3824 		break;
3825 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3826 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3827 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3828 		if (is_multicast_ether_addr(mgmt->da) &&
3829 		    !is_broadcast_ether_addr(mgmt->da))
3830 			return RX_DROP_MONITOR;
3831 
3832 		/* process only for station */
3833 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3834 			return RX_DROP_MONITOR;
3835 		break;
3836 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3837 		/* process only for ibss and mesh */
3838 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3839 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3840 			return RX_DROP_MONITOR;
3841 		break;
3842 	default:
3843 		return RX_DROP_MONITOR;
3844 	}
3845 
3846 	ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
3847 
3848 	return RX_QUEUED;
3849 }
3850 
3851 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3852 					struct ieee80211_rate *rate)
3853 {
3854 	struct ieee80211_sub_if_data *sdata;
3855 	struct ieee80211_local *local = rx->local;
3856 	struct sk_buff *skb = rx->skb, *skb2;
3857 	struct net_device *prev_dev = NULL;
3858 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3859 	int needed_headroom;
3860 
3861 	/*
3862 	 * If cooked monitor has been processed already, then
3863 	 * don't do it again. If not, set the flag.
3864 	 */
3865 	if (rx->flags & IEEE80211_RX_CMNTR)
3866 		goto out_free_skb;
3867 	rx->flags |= IEEE80211_RX_CMNTR;
3868 
3869 	/* If there are no cooked monitor interfaces, just free the SKB */
3870 	if (!local->cooked_mntrs)
3871 		goto out_free_skb;
3872 
3873 	/* vendor data is long removed here */
3874 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3875 	/* room for the radiotap header based on driver features */
3876 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3877 
3878 	if (skb_headroom(skb) < needed_headroom &&
3879 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3880 		goto out_free_skb;
3881 
3882 	/* prepend radiotap information */
3883 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3884 					 false);
3885 
3886 	skb_reset_mac_header(skb);
3887 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3888 	skb->pkt_type = PACKET_OTHERHOST;
3889 	skb->protocol = htons(ETH_P_802_2);
3890 
3891 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3892 		if (!ieee80211_sdata_running(sdata))
3893 			continue;
3894 
3895 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3896 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3897 			continue;
3898 
3899 		if (prev_dev) {
3900 			skb2 = skb_clone(skb, GFP_ATOMIC);
3901 			if (skb2) {
3902 				skb2->dev = prev_dev;
3903 				netif_receive_skb(skb2);
3904 			}
3905 		}
3906 
3907 		prev_dev = sdata->dev;
3908 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3909 	}
3910 
3911 	if (prev_dev) {
3912 		skb->dev = prev_dev;
3913 		netif_receive_skb(skb);
3914 		return;
3915 	}
3916 
3917  out_free_skb:
3918 	dev_kfree_skb(skb);
3919 }
3920 
3921 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3922 					 ieee80211_rx_result res)
3923 {
3924 	switch (res) {
3925 	case RX_DROP_MONITOR:
3926 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3927 		if (rx->sta)
3928 			rx->link_sta->rx_stats.dropped++;
3929 		fallthrough;
3930 	case RX_CONTINUE: {
3931 		struct ieee80211_rate *rate = NULL;
3932 		struct ieee80211_supported_band *sband;
3933 		struct ieee80211_rx_status *status;
3934 
3935 		status = IEEE80211_SKB_RXCB((rx->skb));
3936 
3937 		sband = rx->local->hw.wiphy->bands[status->band];
3938 		if (status->encoding == RX_ENC_LEGACY)
3939 			rate = &sband->bitrates[status->rate_idx];
3940 
3941 		ieee80211_rx_cooked_monitor(rx, rate);
3942 		break;
3943 		}
3944 	case RX_DROP_UNUSABLE:
3945 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3946 		if (rx->sta)
3947 			rx->link_sta->rx_stats.dropped++;
3948 		dev_kfree_skb(rx->skb);
3949 		break;
3950 	case RX_QUEUED:
3951 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3952 		break;
3953 	}
3954 }
3955 
3956 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3957 				  struct sk_buff_head *frames)
3958 {
3959 	ieee80211_rx_result res = RX_DROP_MONITOR;
3960 	struct sk_buff *skb;
3961 
3962 #define CALL_RXH(rxh)			\
3963 	do {				\
3964 		res = rxh(rx);		\
3965 		if (res != RX_CONTINUE)	\
3966 			goto rxh_next;  \
3967 	} while (0)
3968 
3969 	/* Lock here to avoid hitting all of the data used in the RX
3970 	 * path (e.g. key data, station data, ...) concurrently when
3971 	 * a frame is released from the reorder buffer due to timeout
3972 	 * from the timer, potentially concurrently with RX from the
3973 	 * driver.
3974 	 */
3975 	spin_lock_bh(&rx->local->rx_path_lock);
3976 
3977 	while ((skb = __skb_dequeue(frames))) {
3978 		/*
3979 		 * all the other fields are valid across frames
3980 		 * that belong to an aMPDU since they are on the
3981 		 * same TID from the same station
3982 		 */
3983 		rx->skb = skb;
3984 
3985 		if (WARN_ON_ONCE(!rx->link))
3986 			goto rxh_next;
3987 
3988 		CALL_RXH(ieee80211_rx_h_check_more_data);
3989 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3990 		CALL_RXH(ieee80211_rx_h_sta_process);
3991 		CALL_RXH(ieee80211_rx_h_decrypt);
3992 		CALL_RXH(ieee80211_rx_h_defragment);
3993 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3994 		/* must be after MMIC verify so header is counted in MPDU mic */
3995 #ifdef CONFIG_MAC80211_MESH
3996 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3997 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3998 #endif
3999 		CALL_RXH(ieee80211_rx_h_amsdu);
4000 		CALL_RXH(ieee80211_rx_h_data);
4001 
4002 		/* special treatment -- needs the queue */
4003 		res = ieee80211_rx_h_ctrl(rx, frames);
4004 		if (res != RX_CONTINUE)
4005 			goto rxh_next;
4006 
4007 		CALL_RXH(ieee80211_rx_h_mgmt_check);
4008 		CALL_RXH(ieee80211_rx_h_action);
4009 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
4010 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
4011 		CALL_RXH(ieee80211_rx_h_action_return);
4012 		CALL_RXH(ieee80211_rx_h_ext);
4013 		CALL_RXH(ieee80211_rx_h_mgmt);
4014 
4015  rxh_next:
4016 		ieee80211_rx_handlers_result(rx, res);
4017 
4018 #undef CALL_RXH
4019 	}
4020 
4021 	spin_unlock_bh(&rx->local->rx_path_lock);
4022 }
4023 
4024 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
4025 {
4026 	struct sk_buff_head reorder_release;
4027 	ieee80211_rx_result res = RX_DROP_MONITOR;
4028 
4029 	__skb_queue_head_init(&reorder_release);
4030 
4031 #define CALL_RXH(rxh)			\
4032 	do {				\
4033 		res = rxh(rx);		\
4034 		if (res != RX_CONTINUE)	\
4035 			goto rxh_next;  \
4036 	} while (0)
4037 
4038 	CALL_RXH(ieee80211_rx_h_check_dup);
4039 	CALL_RXH(ieee80211_rx_h_check);
4040 
4041 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
4042 
4043 	ieee80211_rx_handlers(rx, &reorder_release);
4044 	return;
4045 
4046  rxh_next:
4047 	ieee80211_rx_handlers_result(rx, res);
4048 
4049 #undef CALL_RXH
4050 }
4051 
4052 static bool
4053 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id)
4054 {
4055 	if (!sta->mlo)
4056 		return false;
4057 
4058 	return !!(sta->valid_links & BIT(link_id));
4059 }
4060 
4061 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx,
4062 				       u8 link_id)
4063 {
4064 	rx->link_id = link_id;
4065 	rx->link = rcu_dereference(rx->sdata->link[link_id]);
4066 
4067 	if (!rx->sta)
4068 		return rx->link;
4069 
4070 	if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id))
4071 		return false;
4072 
4073 	rx->link_sta = rcu_dereference(rx->sta->link[link_id]);
4074 
4075 	return rx->link && rx->link_sta;
4076 }
4077 
4078 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx,
4079 				      struct ieee80211_sta *pubsta,
4080 				      int link_id)
4081 {
4082 	struct sta_info *sta;
4083 
4084 	sta = container_of(pubsta, struct sta_info, sta);
4085 
4086 	rx->link_id = link_id;
4087 	rx->sta = sta;
4088 
4089 	if (sta) {
4090 		rx->local = sta->sdata->local;
4091 		if (!rx->sdata)
4092 			rx->sdata = sta->sdata;
4093 		rx->link_sta = &sta->deflink;
4094 	}
4095 
4096 	if (link_id < 0)
4097 		rx->link = &rx->sdata->deflink;
4098 	else if (!ieee80211_rx_data_set_link(rx, link_id))
4099 		return false;
4100 
4101 	return true;
4102 }
4103 
4104 /*
4105  * This function makes calls into the RX path, therefore
4106  * it has to be invoked under RCU read lock.
4107  */
4108 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4109 {
4110 	struct sk_buff_head frames;
4111 	struct ieee80211_rx_data rx = {
4112 		/* This is OK -- must be QoS data frame */
4113 		.security_idx = tid,
4114 		.seqno_idx = tid,
4115 	};
4116 	struct tid_ampdu_rx *tid_agg_rx;
4117 	int link_id = -1;
4118 
4119 	/* FIXME: statistics won't be right with this */
4120 	if (sta->sta.valid_links)
4121 		link_id = ffs(sta->sta.valid_links) - 1;
4122 
4123 	if (!ieee80211_rx_data_set_sta(&rx, &sta->sta, link_id))
4124 		return;
4125 
4126 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4127 	if (!tid_agg_rx)
4128 		return;
4129 
4130 	__skb_queue_head_init(&frames);
4131 
4132 	spin_lock(&tid_agg_rx->reorder_lock);
4133 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4134 	spin_unlock(&tid_agg_rx->reorder_lock);
4135 
4136 	if (!skb_queue_empty(&frames)) {
4137 		struct ieee80211_event event = {
4138 			.type = BA_FRAME_TIMEOUT,
4139 			.u.ba.tid = tid,
4140 			.u.ba.sta = &sta->sta,
4141 		};
4142 		drv_event_callback(rx.local, rx.sdata, &event);
4143 	}
4144 
4145 	ieee80211_rx_handlers(&rx, &frames);
4146 }
4147 
4148 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4149 					  u16 ssn, u64 filtered,
4150 					  u16 received_mpdus)
4151 {
4152 	struct sta_info *sta;
4153 	struct tid_ampdu_rx *tid_agg_rx;
4154 	struct sk_buff_head frames;
4155 	struct ieee80211_rx_data rx = {
4156 		/* This is OK -- must be QoS data frame */
4157 		.security_idx = tid,
4158 		.seqno_idx = tid,
4159 	};
4160 	int i, diff;
4161 
4162 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4163 		return;
4164 
4165 	__skb_queue_head_init(&frames);
4166 
4167 	sta = container_of(pubsta, struct sta_info, sta);
4168 
4169 	if (!ieee80211_rx_data_set_sta(&rx, pubsta, -1))
4170 		return;
4171 
4172 	rcu_read_lock();
4173 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4174 	if (!tid_agg_rx)
4175 		goto out;
4176 
4177 	spin_lock_bh(&tid_agg_rx->reorder_lock);
4178 
4179 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4180 		int release;
4181 
4182 		/* release all frames in the reorder buffer */
4183 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4184 			   IEEE80211_SN_MODULO;
4185 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4186 						 release, &frames);
4187 		/* update ssn to match received ssn */
4188 		tid_agg_rx->head_seq_num = ssn;
4189 	} else {
4190 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4191 						 &frames);
4192 	}
4193 
4194 	/* handle the case that received ssn is behind the mac ssn.
4195 	 * it can be tid_agg_rx->buf_size behind and still be valid */
4196 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4197 	if (diff >= tid_agg_rx->buf_size) {
4198 		tid_agg_rx->reorder_buf_filtered = 0;
4199 		goto release;
4200 	}
4201 	filtered = filtered >> diff;
4202 	ssn += diff;
4203 
4204 	/* update bitmap */
4205 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
4206 		int index = (ssn + i) % tid_agg_rx->buf_size;
4207 
4208 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4209 		if (filtered & BIT_ULL(i))
4210 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4211 	}
4212 
4213 	/* now process also frames that the filter marking released */
4214 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4215 
4216 release:
4217 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
4218 
4219 	ieee80211_rx_handlers(&rx, &frames);
4220 
4221  out:
4222 	rcu_read_unlock();
4223 }
4224 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4225 
4226 /* main receive path */
4227 
4228 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr)
4229 {
4230 	return ether_addr_equal(raddr, addr) ||
4231 	       is_broadcast_ether_addr(raddr);
4232 }
4233 
4234 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4235 {
4236 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4237 	struct sk_buff *skb = rx->skb;
4238 	struct ieee80211_hdr *hdr = (void *)skb->data;
4239 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4240 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4241 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4242 			 ieee80211_is_s1g_beacon(hdr->frame_control);
4243 
4244 	switch (sdata->vif.type) {
4245 	case NL80211_IFTYPE_STATION:
4246 		if (!bssid && !sdata->u.mgd.use_4addr)
4247 			return false;
4248 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4249 			return false;
4250 		if (multicast)
4251 			return true;
4252 		return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id);
4253 	case NL80211_IFTYPE_ADHOC:
4254 		if (!bssid)
4255 			return false;
4256 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4257 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4258 		    !is_valid_ether_addr(hdr->addr2))
4259 			return false;
4260 		if (ieee80211_is_beacon(hdr->frame_control))
4261 			return true;
4262 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4263 			return false;
4264 		if (!multicast &&
4265 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4266 			return false;
4267 		if (!rx->sta) {
4268 			int rate_idx;
4269 			if (status->encoding != RX_ENC_LEGACY)
4270 				rate_idx = 0; /* TODO: HT/VHT rates */
4271 			else
4272 				rate_idx = status->rate_idx;
4273 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4274 						 BIT(rate_idx));
4275 		}
4276 		return true;
4277 	case NL80211_IFTYPE_OCB:
4278 		if (!bssid)
4279 			return false;
4280 		if (!ieee80211_is_data_present(hdr->frame_control))
4281 			return false;
4282 		if (!is_broadcast_ether_addr(bssid))
4283 			return false;
4284 		if (!multicast &&
4285 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4286 			return false;
4287 		if (!rx->sta) {
4288 			int rate_idx;
4289 			if (status->encoding != RX_ENC_LEGACY)
4290 				rate_idx = 0; /* TODO: HT rates */
4291 			else
4292 				rate_idx = status->rate_idx;
4293 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4294 						BIT(rate_idx));
4295 		}
4296 		return true;
4297 	case NL80211_IFTYPE_MESH_POINT:
4298 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4299 			return false;
4300 		if (multicast)
4301 			return true;
4302 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4303 	case NL80211_IFTYPE_AP_VLAN:
4304 	case NL80211_IFTYPE_AP:
4305 		if (!bssid)
4306 			return ieee80211_is_our_addr(sdata, hdr->addr1,
4307 						     &rx->link_id);
4308 
4309 		if (!is_broadcast_ether_addr(bssid) &&
4310 		    !ieee80211_is_our_addr(sdata, bssid, NULL)) {
4311 			/*
4312 			 * Accept public action frames even when the
4313 			 * BSSID doesn't match, this is used for P2P
4314 			 * and location updates. Note that mac80211
4315 			 * itself never looks at these frames.
4316 			 */
4317 			if (!multicast &&
4318 			    !ieee80211_is_our_addr(sdata, hdr->addr1,
4319 						   &rx->link_id))
4320 				return false;
4321 			if (ieee80211_is_public_action(hdr, skb->len))
4322 				return true;
4323 			return ieee80211_is_beacon(hdr->frame_control);
4324 		}
4325 
4326 		if (!ieee80211_has_tods(hdr->frame_control)) {
4327 			/* ignore data frames to TDLS-peers */
4328 			if (ieee80211_is_data(hdr->frame_control))
4329 				return false;
4330 			/* ignore action frames to TDLS-peers */
4331 			if (ieee80211_is_action(hdr->frame_control) &&
4332 			    !is_broadcast_ether_addr(bssid) &&
4333 			    !ether_addr_equal(bssid, hdr->addr1))
4334 				return false;
4335 		}
4336 
4337 		/*
4338 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4339 		 * the BSSID - we've checked that already but may have accepted
4340 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4341 		 *
4342 		 * It also says:
4343 		 *	The BSSID of the Data frame is determined as follows:
4344 		 *	a) If the STA is contained within an AP or is associated
4345 		 *	   with an AP, the BSSID is the address currently in use
4346 		 *	   by the STA contained in the AP.
4347 		 *
4348 		 * So we should not accept data frames with an address that's
4349 		 * multicast.
4350 		 *
4351 		 * Accepting it also opens a security problem because stations
4352 		 * could encrypt it with the GTK and inject traffic that way.
4353 		 */
4354 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4355 			return false;
4356 
4357 		return true;
4358 	case NL80211_IFTYPE_P2P_DEVICE:
4359 		return ieee80211_is_public_action(hdr, skb->len) ||
4360 		       ieee80211_is_probe_req(hdr->frame_control) ||
4361 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4362 		       ieee80211_is_beacon(hdr->frame_control);
4363 	case NL80211_IFTYPE_NAN:
4364 		/* Currently no frames on NAN interface are allowed */
4365 		return false;
4366 	default:
4367 		break;
4368 	}
4369 
4370 	WARN_ON_ONCE(1);
4371 	return false;
4372 }
4373 
4374 void ieee80211_check_fast_rx(struct sta_info *sta)
4375 {
4376 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4377 	struct ieee80211_local *local = sdata->local;
4378 	struct ieee80211_key *key;
4379 	struct ieee80211_fast_rx fastrx = {
4380 		.dev = sdata->dev,
4381 		.vif_type = sdata->vif.type,
4382 		.control_port_protocol = sdata->control_port_protocol,
4383 	}, *old, *new = NULL;
4384 	u32 offload_flags;
4385 	bool set_offload = false;
4386 	bool assign = false;
4387 	bool offload;
4388 
4389 	/* use sparse to check that we don't return without updating */
4390 	__acquire(check_fast_rx);
4391 
4392 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4393 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4394 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4395 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4396 
4397 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4398 
4399 	/* fast-rx doesn't do reordering */
4400 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4401 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4402 		goto clear;
4403 
4404 	switch (sdata->vif.type) {
4405 	case NL80211_IFTYPE_STATION:
4406 		if (sta->sta.tdls) {
4407 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4408 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4409 			fastrx.expected_ds_bits = 0;
4410 		} else {
4411 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4412 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4413 			fastrx.expected_ds_bits =
4414 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4415 		}
4416 
4417 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4418 			fastrx.expected_ds_bits |=
4419 				cpu_to_le16(IEEE80211_FCTL_TODS);
4420 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4421 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4422 		}
4423 
4424 		if (!sdata->u.mgd.powersave)
4425 			break;
4426 
4427 		/* software powersave is a huge mess, avoid all of it */
4428 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4429 			goto clear;
4430 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4431 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4432 			goto clear;
4433 		break;
4434 	case NL80211_IFTYPE_AP_VLAN:
4435 	case NL80211_IFTYPE_AP:
4436 		/* parallel-rx requires this, at least with calls to
4437 		 * ieee80211_sta_ps_transition()
4438 		 */
4439 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4440 			goto clear;
4441 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4442 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4443 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4444 
4445 		fastrx.internal_forward =
4446 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4447 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4448 			 !sdata->u.vlan.sta);
4449 
4450 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4451 		    sdata->u.vlan.sta) {
4452 			fastrx.expected_ds_bits |=
4453 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4454 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4455 			fastrx.internal_forward = 0;
4456 		}
4457 
4458 		break;
4459 	default:
4460 		goto clear;
4461 	}
4462 
4463 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4464 		goto clear;
4465 
4466 	rcu_read_lock();
4467 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4468 	if (!key)
4469 		key = rcu_dereference(sdata->default_unicast_key);
4470 	if (key) {
4471 		switch (key->conf.cipher) {
4472 		case WLAN_CIPHER_SUITE_TKIP:
4473 			/* we don't want to deal with MMIC in fast-rx */
4474 			goto clear_rcu;
4475 		case WLAN_CIPHER_SUITE_CCMP:
4476 		case WLAN_CIPHER_SUITE_CCMP_256:
4477 		case WLAN_CIPHER_SUITE_GCMP:
4478 		case WLAN_CIPHER_SUITE_GCMP_256:
4479 			break;
4480 		default:
4481 			/* We also don't want to deal with
4482 			 * WEP or cipher scheme.
4483 			 */
4484 			goto clear_rcu;
4485 		}
4486 
4487 		fastrx.key = true;
4488 		fastrx.icv_len = key->conf.icv_len;
4489 	}
4490 
4491 	assign = true;
4492  clear_rcu:
4493 	rcu_read_unlock();
4494  clear:
4495 	__release(check_fast_rx);
4496 
4497 	if (assign)
4498 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4499 
4500 	offload_flags = get_bss_sdata(sdata)->vif.offload_flags;
4501 	offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED;
4502 
4503 	if (assign && offload)
4504 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4505 	else
4506 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4507 
4508 	if (set_offload)
4509 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4510 
4511 	spin_lock_bh(&sta->lock);
4512 	old = rcu_dereference_protected(sta->fast_rx, true);
4513 	rcu_assign_pointer(sta->fast_rx, new);
4514 	spin_unlock_bh(&sta->lock);
4515 
4516 	if (old)
4517 		kfree_rcu(old, rcu_head);
4518 }
4519 
4520 void ieee80211_clear_fast_rx(struct sta_info *sta)
4521 {
4522 	struct ieee80211_fast_rx *old;
4523 
4524 	spin_lock_bh(&sta->lock);
4525 	old = rcu_dereference_protected(sta->fast_rx, true);
4526 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4527 	spin_unlock_bh(&sta->lock);
4528 
4529 	if (old)
4530 		kfree_rcu(old, rcu_head);
4531 }
4532 
4533 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4534 {
4535 	struct ieee80211_local *local = sdata->local;
4536 	struct sta_info *sta;
4537 
4538 	lockdep_assert_held(&local->sta_mtx);
4539 
4540 	list_for_each_entry(sta, &local->sta_list, list) {
4541 		if (sdata != sta->sdata &&
4542 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4543 			continue;
4544 		ieee80211_check_fast_rx(sta);
4545 	}
4546 }
4547 
4548 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4549 {
4550 	struct ieee80211_local *local = sdata->local;
4551 
4552 	mutex_lock(&local->sta_mtx);
4553 	__ieee80211_check_fast_rx_iface(sdata);
4554 	mutex_unlock(&local->sta_mtx);
4555 }
4556 
4557 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4558 			      struct ieee80211_fast_rx *fast_rx,
4559 			      int orig_len)
4560 {
4561 	struct ieee80211_sta_rx_stats *stats;
4562 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4563 	struct sta_info *sta = rx->sta;
4564 	struct link_sta_info *link_sta;
4565 	struct sk_buff *skb = rx->skb;
4566 	void *sa = skb->data + ETH_ALEN;
4567 	void *da = skb->data;
4568 
4569 	if (rx->link_id >= 0) {
4570 		link_sta = rcu_dereference(sta->link[rx->link_id]);
4571 		if (WARN_ON_ONCE(!link_sta)) {
4572 			dev_kfree_skb(rx->skb);
4573 			return;
4574 		}
4575 	} else {
4576 		link_sta = &sta->deflink;
4577 	}
4578 
4579 	stats = &link_sta->rx_stats;
4580 	if (fast_rx->uses_rss)
4581 		stats = this_cpu_ptr(link_sta->pcpu_rx_stats);
4582 
4583 	/* statistics part of ieee80211_rx_h_sta_process() */
4584 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4585 		stats->last_signal = status->signal;
4586 		if (!fast_rx->uses_rss)
4587 			ewma_signal_add(&link_sta->rx_stats_avg.signal,
4588 					-status->signal);
4589 	}
4590 
4591 	if (status->chains) {
4592 		int i;
4593 
4594 		stats->chains = status->chains;
4595 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4596 			int signal = status->chain_signal[i];
4597 
4598 			if (!(status->chains & BIT(i)))
4599 				continue;
4600 
4601 			stats->chain_signal_last[i] = signal;
4602 			if (!fast_rx->uses_rss)
4603 				ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i],
4604 						-signal);
4605 		}
4606 	}
4607 	/* end of statistics */
4608 
4609 	stats->last_rx = jiffies;
4610 	stats->last_rate = sta_stats_encode_rate(status);
4611 
4612 	stats->fragments++;
4613 	stats->packets++;
4614 
4615 	skb->dev = fast_rx->dev;
4616 
4617 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4618 
4619 	/* The seqno index has the same property as needed
4620 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4621 	 * for non-QoS-data frames. Here we know it's a data
4622 	 * frame, so count MSDUs.
4623 	 */
4624 	u64_stats_update_begin(&stats->syncp);
4625 	stats->msdu[rx->seqno_idx]++;
4626 	stats->bytes += orig_len;
4627 	u64_stats_update_end(&stats->syncp);
4628 
4629 	if (fast_rx->internal_forward) {
4630 		struct sk_buff *xmit_skb = NULL;
4631 		if (is_multicast_ether_addr(da)) {
4632 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4633 		} else if (!ether_addr_equal(da, sa) &&
4634 			   sta_info_get(rx->sdata, da)) {
4635 			xmit_skb = skb;
4636 			skb = NULL;
4637 		}
4638 
4639 		if (xmit_skb) {
4640 			/*
4641 			 * Send to wireless media and increase priority by 256
4642 			 * to keep the received priority instead of
4643 			 * reclassifying the frame (see cfg80211_classify8021d).
4644 			 */
4645 			xmit_skb->priority += 256;
4646 			xmit_skb->protocol = htons(ETH_P_802_3);
4647 			skb_reset_network_header(xmit_skb);
4648 			skb_reset_mac_header(xmit_skb);
4649 			dev_queue_xmit(xmit_skb);
4650 		}
4651 
4652 		if (!skb)
4653 			return;
4654 	}
4655 
4656 	/* deliver to local stack */
4657 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4658 	ieee80211_deliver_skb_to_local_stack(skb, rx);
4659 }
4660 
4661 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4662 				     struct ieee80211_fast_rx *fast_rx)
4663 {
4664 	struct sk_buff *skb = rx->skb;
4665 	struct ieee80211_hdr *hdr = (void *)skb->data;
4666 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4667 	int orig_len = skb->len;
4668 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4669 	int snap_offs = hdrlen;
4670 	struct {
4671 		u8 snap[sizeof(rfc1042_header)];
4672 		__be16 proto;
4673 	} *payload __aligned(2);
4674 	struct {
4675 		u8 da[ETH_ALEN];
4676 		u8 sa[ETH_ALEN];
4677 	} addrs __aligned(2);
4678 	struct ieee80211_sta_rx_stats *stats;
4679 
4680 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4681 	 * to a common data structure; drivers can implement that per queue
4682 	 * but we don't have that information in mac80211
4683 	 */
4684 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4685 		return false;
4686 
4687 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4688 
4689 	/* If using encryption, we also need to have:
4690 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4691 	 *  - DECRYPTED: necessary for PN_VALIDATED
4692 	 */
4693 	if (fast_rx->key &&
4694 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4695 		return false;
4696 
4697 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4698 		return false;
4699 
4700 	if (unlikely(ieee80211_is_frag(hdr)))
4701 		return false;
4702 
4703 	/* Since our interface address cannot be multicast, this
4704 	 * implicitly also rejects multicast frames without the
4705 	 * explicit check.
4706 	 *
4707 	 * We shouldn't get any *data* frames not addressed to us
4708 	 * (AP mode will accept multicast *management* frames), but
4709 	 * punting here will make it go through the full checks in
4710 	 * ieee80211_accept_frame().
4711 	 */
4712 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4713 		return false;
4714 
4715 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4716 					      IEEE80211_FCTL_TODS)) !=
4717 	    fast_rx->expected_ds_bits)
4718 		return false;
4719 
4720 	/* assign the key to drop unencrypted frames (later)
4721 	 * and strip the IV/MIC if necessary
4722 	 */
4723 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4724 		/* GCMP header length is the same */
4725 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4726 	}
4727 
4728 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4729 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4730 			return false;
4731 
4732 		payload = (void *)(skb->data + snap_offs);
4733 
4734 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4735 			return false;
4736 
4737 		/* Don't handle these here since they require special code.
4738 		 * Accept AARP and IPX even though they should come with a
4739 		 * bridge-tunnel header - but if we get them this way then
4740 		 * there's little point in discarding them.
4741 		 */
4742 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4743 			     payload->proto == fast_rx->control_port_protocol))
4744 			return false;
4745 	}
4746 
4747 	/* after this point, don't punt to the slowpath! */
4748 
4749 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4750 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4751 		goto drop;
4752 
4753 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4754 		goto drop;
4755 
4756 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4757 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4758 		    RX_QUEUED)
4759 			goto drop;
4760 
4761 		return true;
4762 	}
4763 
4764 	/* do the header conversion - first grab the addresses */
4765 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4766 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4767 	skb_postpull_rcsum(skb, skb->data + snap_offs,
4768 			   sizeof(rfc1042_header) + 2);
4769 	/* remove the SNAP but leave the ethertype */
4770 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4771 	/* push the addresses in front */
4772 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4773 
4774 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4775 
4776 	return true;
4777  drop:
4778 	dev_kfree_skb(skb);
4779 
4780 	if (fast_rx->uses_rss)
4781 		stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats);
4782 	else
4783 		stats = &rx->link_sta->rx_stats;
4784 
4785 	stats->dropped++;
4786 	return true;
4787 }
4788 
4789 /*
4790  * This function returns whether or not the SKB
4791  * was destined for RX processing or not, which,
4792  * if consume is true, is equivalent to whether
4793  * or not the skb was consumed.
4794  */
4795 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4796 					    struct sk_buff *skb, bool consume)
4797 {
4798 	struct ieee80211_local *local = rx->local;
4799 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4800 	struct ieee80211_hdr *hdr = (void *)skb->data;
4801 	struct link_sta_info *link_sta = rx->link_sta;
4802 	struct ieee80211_link_data *link = rx->link;
4803 
4804 	rx->skb = skb;
4805 
4806 	/* See if we can do fast-rx; if we have to copy we already lost,
4807 	 * so punt in that case. We should never have to deliver a data
4808 	 * frame to multiple interfaces anyway.
4809 	 *
4810 	 * We skip the ieee80211_accept_frame() call and do the necessary
4811 	 * checking inside ieee80211_invoke_fast_rx().
4812 	 */
4813 	if (consume && rx->sta) {
4814 		struct ieee80211_fast_rx *fast_rx;
4815 
4816 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4817 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4818 			return true;
4819 	}
4820 
4821 	if (!ieee80211_accept_frame(rx))
4822 		return false;
4823 
4824 	if (!consume) {
4825 		struct skb_shared_hwtstamps *shwt;
4826 
4827 		rx->skb = skb_copy(skb, GFP_ATOMIC);
4828 		if (!rx->skb) {
4829 			if (net_ratelimit())
4830 				wiphy_debug(local->hw.wiphy,
4831 					"failed to copy skb for %s\n",
4832 					sdata->name);
4833 			return true;
4834 		}
4835 
4836 		/* skb_copy() does not copy the hw timestamps, so copy it
4837 		 * explicitly
4838 		 */
4839 		shwt = skb_hwtstamps(rx->skb);
4840 		shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
4841 
4842 		/* Update the hdr pointer to the new skb for translation below */
4843 		hdr = (struct ieee80211_hdr *)rx->skb->data;
4844 	}
4845 
4846 	if (unlikely(rx->sta && rx->sta->sta.mlo)) {
4847 		/* translate to MLD addresses */
4848 		if (ether_addr_equal(link->conf->addr, hdr->addr1))
4849 			ether_addr_copy(hdr->addr1, rx->sdata->vif.addr);
4850 		if (ether_addr_equal(link_sta->addr, hdr->addr2))
4851 			ether_addr_copy(hdr->addr2, rx->sta->addr);
4852 		/* translate A3 only if it's the BSSID */
4853 		if (!ieee80211_has_tods(hdr->frame_control) &&
4854 		    !ieee80211_has_fromds(hdr->frame_control)) {
4855 			if (ether_addr_equal(link_sta->addr, hdr->addr3))
4856 				ether_addr_copy(hdr->addr3, rx->sta->addr);
4857 			else if (ether_addr_equal(link->conf->addr, hdr->addr3))
4858 				ether_addr_copy(hdr->addr3, rx->sdata->vif.addr);
4859 		}
4860 		/* not needed for A4 since it can only carry the SA */
4861 	}
4862 
4863 	ieee80211_invoke_rx_handlers(rx);
4864 	return true;
4865 }
4866 
4867 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4868 				       struct ieee80211_sta *pubsta,
4869 				       struct sk_buff *skb,
4870 				       struct list_head *list)
4871 {
4872 	struct ieee80211_local *local = hw_to_local(hw);
4873 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4874 	struct ieee80211_fast_rx *fast_rx;
4875 	struct ieee80211_rx_data rx;
4876 	int link_id = -1;
4877 
4878 	memset(&rx, 0, sizeof(rx));
4879 	rx.skb = skb;
4880 	rx.local = local;
4881 	rx.list = list;
4882 	rx.link_id = -1;
4883 
4884 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4885 
4886 	/* drop frame if too short for header */
4887 	if (skb->len < sizeof(struct ethhdr))
4888 		goto drop;
4889 
4890 	if (!pubsta)
4891 		goto drop;
4892 
4893 	if (status->link_valid)
4894 		link_id = status->link_id;
4895 
4896 	/*
4897 	 * TODO: Should the frame be dropped if the right link_id is not
4898 	 * available? Or may be it is fine in the current form to proceed with
4899 	 * the frame processing because with frame being in 802.3 format,
4900 	 * link_id is used only for stats purpose and updating the stats on
4901 	 * the deflink is fine?
4902 	 */
4903 	if (!ieee80211_rx_data_set_sta(&rx, pubsta, link_id))
4904 		goto drop;
4905 
4906 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4907 	if (!fast_rx)
4908 		goto drop;
4909 
4910 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4911 	return;
4912 
4913 drop:
4914 	dev_kfree_skb(skb);
4915 }
4916 
4917 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx,
4918 				       struct sk_buff *skb, bool consume)
4919 {
4920 	struct link_sta_info *link_sta;
4921 	struct ieee80211_hdr *hdr = (void *)skb->data;
4922 	struct sta_info *sta;
4923 	int link_id = -1;
4924 
4925 	/*
4926 	 * Look up link station first, in case there's a
4927 	 * chance that they might have a link address that
4928 	 * is identical to the MLD address, that way we'll
4929 	 * have the link information if needed.
4930 	 */
4931 	link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2);
4932 	if (link_sta) {
4933 		sta = link_sta->sta;
4934 		link_id = link_sta->link_id;
4935 	} else {
4936 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4937 
4938 		sta = sta_info_get_bss(rx->sdata, hdr->addr2);
4939 		if (status->link_valid)
4940 			link_id = status->link_id;
4941 	}
4942 
4943 	if (!ieee80211_rx_data_set_sta(rx, &sta->sta, link_id))
4944 		return false;
4945 
4946 	return ieee80211_prepare_and_rx_handle(rx, skb, consume);
4947 }
4948 
4949 /*
4950  * This is the actual Rx frames handler. as it belongs to Rx path it must
4951  * be called with rcu_read_lock protection.
4952  */
4953 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4954 					 struct ieee80211_sta *pubsta,
4955 					 struct sk_buff *skb,
4956 					 struct list_head *list)
4957 {
4958 	struct ieee80211_local *local = hw_to_local(hw);
4959 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4960 	struct ieee80211_sub_if_data *sdata;
4961 	struct ieee80211_hdr *hdr;
4962 	__le16 fc;
4963 	struct ieee80211_rx_data rx;
4964 	struct ieee80211_sub_if_data *prev;
4965 	struct rhlist_head *tmp;
4966 	int err = 0;
4967 
4968 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4969 	memset(&rx, 0, sizeof(rx));
4970 	rx.skb = skb;
4971 	rx.local = local;
4972 	rx.list = list;
4973 	rx.link_id = -1;
4974 
4975 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4976 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4977 
4978 	if (ieee80211_is_mgmt(fc)) {
4979 		/* drop frame if too short for header */
4980 		if (skb->len < ieee80211_hdrlen(fc))
4981 			err = -ENOBUFS;
4982 		else
4983 			err = skb_linearize(skb);
4984 	} else {
4985 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4986 	}
4987 
4988 	if (err) {
4989 		dev_kfree_skb(skb);
4990 		return;
4991 	}
4992 
4993 	hdr = (struct ieee80211_hdr *)skb->data;
4994 	ieee80211_parse_qos(&rx);
4995 	ieee80211_verify_alignment(&rx);
4996 
4997 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4998 		     ieee80211_is_beacon(hdr->frame_control) ||
4999 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
5000 		ieee80211_scan_rx(local, skb);
5001 
5002 	if (ieee80211_is_data(fc)) {
5003 		struct sta_info *sta, *prev_sta;
5004 		int link_id = -1;
5005 
5006 		if (status->link_valid)
5007 			link_id = status->link_id;
5008 
5009 		if (pubsta) {
5010 			if (!ieee80211_rx_data_set_sta(&rx, pubsta, link_id))
5011 				goto out;
5012 
5013 			/*
5014 			 * In MLO connection, fetch the link_id using addr2
5015 			 * when the driver does not pass link_id in status.
5016 			 * When the address translation is already performed by
5017 			 * driver/hw, the valid link_id must be passed in
5018 			 * status.
5019 			 */
5020 
5021 			if (!status->link_valid && pubsta->mlo) {
5022 				struct ieee80211_hdr *hdr = (void *)skb->data;
5023 				struct link_sta_info *link_sta;
5024 
5025 				link_sta = link_sta_info_get_bss(rx.sdata,
5026 								 hdr->addr2);
5027 				if (!link_sta)
5028 					goto out;
5029 
5030 				ieee80211_rx_data_set_link(&rx, link_sta->link_id);
5031 			}
5032 
5033 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
5034 				return;
5035 			goto out;
5036 		}
5037 
5038 		prev_sta = NULL;
5039 
5040 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
5041 			if (!prev_sta) {
5042 				prev_sta = sta;
5043 				continue;
5044 			}
5045 
5046 			rx.sdata = prev_sta->sdata;
5047 			if (!ieee80211_rx_data_set_sta(&rx, &prev_sta->sta,
5048 						       link_id))
5049 				goto out;
5050 
5051 			if (!status->link_valid && prev_sta->sta.mlo)
5052 				continue;
5053 
5054 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
5055 
5056 			prev_sta = sta;
5057 		}
5058 
5059 		if (prev_sta) {
5060 			rx.sdata = prev_sta->sdata;
5061 			if (!ieee80211_rx_data_set_sta(&rx, &prev_sta->sta,
5062 						       link_id))
5063 				goto out;
5064 
5065 			if (!status->link_valid && prev_sta->sta.mlo)
5066 				goto out;
5067 
5068 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
5069 				return;
5070 			goto out;
5071 		}
5072 	}
5073 
5074 	prev = NULL;
5075 
5076 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
5077 		if (!ieee80211_sdata_running(sdata))
5078 			continue;
5079 
5080 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
5081 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
5082 			continue;
5083 
5084 		/*
5085 		 * frame is destined for this interface, but if it's
5086 		 * not also for the previous one we handle that after
5087 		 * the loop to avoid copying the SKB once too much
5088 		 */
5089 
5090 		if (!prev) {
5091 			prev = sdata;
5092 			continue;
5093 		}
5094 
5095 		rx.sdata = prev;
5096 		ieee80211_rx_for_interface(&rx, skb, false);
5097 
5098 		prev = sdata;
5099 	}
5100 
5101 	if (prev) {
5102 		rx.sdata = prev;
5103 
5104 		if (ieee80211_rx_for_interface(&rx, skb, true))
5105 			return;
5106 	}
5107 
5108  out:
5109 	dev_kfree_skb(skb);
5110 }
5111 
5112 /*
5113  * This is the receive path handler. It is called by a low level driver when an
5114  * 802.11 MPDU is received from the hardware.
5115  */
5116 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5117 		       struct sk_buff *skb, struct list_head *list)
5118 {
5119 	struct ieee80211_local *local = hw_to_local(hw);
5120 	struct ieee80211_rate *rate = NULL;
5121 	struct ieee80211_supported_band *sband;
5122 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5123 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
5124 
5125 	WARN_ON_ONCE(softirq_count() == 0);
5126 
5127 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
5128 		goto drop;
5129 
5130 	sband = local->hw.wiphy->bands[status->band];
5131 	if (WARN_ON(!sband))
5132 		goto drop;
5133 
5134 	/*
5135 	 * If we're suspending, it is possible although not too likely
5136 	 * that we'd be receiving frames after having already partially
5137 	 * quiesced the stack. We can't process such frames then since
5138 	 * that might, for example, cause stations to be added or other
5139 	 * driver callbacks be invoked.
5140 	 */
5141 	if (unlikely(local->quiescing || local->suspended))
5142 		goto drop;
5143 
5144 	/* We might be during a HW reconfig, prevent Rx for the same reason */
5145 	if (unlikely(local->in_reconfig))
5146 		goto drop;
5147 
5148 	/*
5149 	 * The same happens when we're not even started,
5150 	 * but that's worth a warning.
5151 	 */
5152 	if (WARN_ON(!local->started))
5153 		goto drop;
5154 
5155 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
5156 		/*
5157 		 * Validate the rate, unless a PLCP error means that
5158 		 * we probably can't have a valid rate here anyway.
5159 		 */
5160 
5161 		switch (status->encoding) {
5162 		case RX_ENC_HT:
5163 			/*
5164 			 * rate_idx is MCS index, which can be [0-76]
5165 			 * as documented on:
5166 			 *
5167 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
5168 			 *
5169 			 * Anything else would be some sort of driver or
5170 			 * hardware error. The driver should catch hardware
5171 			 * errors.
5172 			 */
5173 			if (WARN(status->rate_idx > 76,
5174 				 "Rate marked as an HT rate but passed "
5175 				 "status->rate_idx is not "
5176 				 "an MCS index [0-76]: %d (0x%02x)\n",
5177 				 status->rate_idx,
5178 				 status->rate_idx))
5179 				goto drop;
5180 			break;
5181 		case RX_ENC_VHT:
5182 			if (WARN_ONCE(status->rate_idx > 11 ||
5183 				      !status->nss ||
5184 				      status->nss > 8,
5185 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
5186 				      status->rate_idx, status->nss))
5187 				goto drop;
5188 			break;
5189 		case RX_ENC_HE:
5190 			if (WARN_ONCE(status->rate_idx > 11 ||
5191 				      !status->nss ||
5192 				      status->nss > 8,
5193 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
5194 				      status->rate_idx, status->nss))
5195 				goto drop;
5196 			break;
5197 		default:
5198 			WARN_ON_ONCE(1);
5199 			fallthrough;
5200 		case RX_ENC_LEGACY:
5201 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
5202 				goto drop;
5203 			rate = &sband->bitrates[status->rate_idx];
5204 		}
5205 	}
5206 
5207 	if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED))
5208 		goto drop;
5209 
5210 	status->rx_flags = 0;
5211 
5212 	kcov_remote_start_common(skb_get_kcov_handle(skb));
5213 
5214 	/*
5215 	 * Frames with failed FCS/PLCP checksum are not returned,
5216 	 * all other frames are returned without radiotap header
5217 	 * if it was previously present.
5218 	 * Also, frames with less than 16 bytes are dropped.
5219 	 */
5220 	if (!(status->flag & RX_FLAG_8023))
5221 		skb = ieee80211_rx_monitor(local, skb, rate);
5222 	if (skb) {
5223 		if ((status->flag & RX_FLAG_8023) ||
5224 			ieee80211_is_data_present(hdr->frame_control))
5225 			ieee80211_tpt_led_trig_rx(local, skb->len);
5226 
5227 		if (status->flag & RX_FLAG_8023)
5228 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
5229 		else
5230 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
5231 	}
5232 
5233 	kcov_remote_stop();
5234 	return;
5235  drop:
5236 	kfree_skb(skb);
5237 }
5238 EXPORT_SYMBOL(ieee80211_rx_list);
5239 
5240 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5241 		       struct sk_buff *skb, struct napi_struct *napi)
5242 {
5243 	struct sk_buff *tmp;
5244 	LIST_HEAD(list);
5245 
5246 
5247 	/*
5248 	 * key references and virtual interfaces are protected using RCU
5249 	 * and this requires that we are in a read-side RCU section during
5250 	 * receive processing
5251 	 */
5252 	rcu_read_lock();
5253 	ieee80211_rx_list(hw, pubsta, skb, &list);
5254 	rcu_read_unlock();
5255 
5256 	if (!napi) {
5257 		netif_receive_skb_list(&list);
5258 		return;
5259 	}
5260 
5261 	list_for_each_entry_safe(skb, tmp, &list, list) {
5262 		skb_list_del_init(skb);
5263 		napi_gro_receive(napi, skb);
5264 	}
5265 }
5266 EXPORT_SYMBOL(ieee80211_rx_napi);
5267 
5268 /* This is a version of the rx handler that can be called from hard irq
5269  * context. Post the skb on the queue and schedule the tasklet */
5270 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5271 {
5272 	struct ieee80211_local *local = hw_to_local(hw);
5273 
5274 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5275 
5276 	skb->pkt_type = IEEE80211_RX_MSG;
5277 	skb_queue_tail(&local->skb_queue, skb);
5278 	tasklet_schedule(&local->tasklet);
5279 }
5280 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5281