1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 44 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 if (status->vendor_radiotap_len) 57 __pskb_pull(skb, status->vendor_radiotap_len); 58 59 return skb; 60 } 61 62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + status->vendor_radiotap_len); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return 1; 73 if (unlikely(skb->len < 16 + present_fcs_len + 74 status->vendor_radiotap_len)) 75 return 1; 76 if (ieee80211_is_ctl(hdr->frame_control) && 77 !ieee80211_is_pspoll(hdr->frame_control) && 78 !ieee80211_is_back_req(hdr->frame_control)) 79 return 1; 80 return 0; 81 } 82 83 static int 84 ieee80211_rx_radiotap_space(struct ieee80211_local *local, 85 struct ieee80211_rx_status *status) 86 { 87 int len; 88 89 /* always present fields */ 90 len = sizeof(struct ieee80211_radiotap_header) + 9; 91 92 /* allocate extra bitmap */ 93 if (status->vendor_radiotap_len) 94 len += 4; 95 96 if (ieee80211_have_rx_timestamp(status)) { 97 len = ALIGN(len, 8); 98 len += 8; 99 } 100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 101 len += 1; 102 103 /* padding for RX_FLAGS if necessary */ 104 len = ALIGN(len, 2); 105 106 if (status->flag & RX_FLAG_HT) /* HT info */ 107 len += 3; 108 109 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 110 len = ALIGN(len, 4); 111 len += 8; 112 } 113 114 if (status->flag & RX_FLAG_VHT) { 115 len = ALIGN(len, 2); 116 len += 12; 117 } 118 119 if (status->vendor_radiotap_len) { 120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0)) 121 status->vendor_radiotap_align = 1; 122 /* align standard part of vendor namespace */ 123 len = ALIGN(len, 2); 124 /* allocate standard part of vendor namespace */ 125 len += 6; 126 /* align vendor-defined part */ 127 len = ALIGN(len, status->vendor_radiotap_align); 128 /* vendor-defined part is already in skb */ 129 } 130 131 return len; 132 } 133 134 /* 135 * ieee80211_add_rx_radiotap_header - add radiotap header 136 * 137 * add a radiotap header containing all the fields which the hardware provided. 138 */ 139 static void 140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 141 struct sk_buff *skb, 142 struct ieee80211_rate *rate, 143 int rtap_len, bool has_fcs) 144 { 145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 146 struct ieee80211_radiotap_header *rthdr; 147 unsigned char *pos; 148 u16 rx_flags = 0; 149 int mpdulen; 150 151 mpdulen = skb->len; 152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 153 mpdulen += FCS_LEN; 154 155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 156 memset(rthdr, 0, rtap_len); 157 158 /* radiotap header, set always present flags */ 159 rthdr->it_present = 160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 161 (1 << IEEE80211_RADIOTAP_CHANNEL) | 162 (1 << IEEE80211_RADIOTAP_ANTENNA) | 163 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len); 165 166 pos = (unsigned char *)(rthdr + 1); 167 168 if (status->vendor_radiotap_len) { 169 rthdr->it_present |= 170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) | 171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT)); 172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos); 173 pos += 4; 174 } 175 176 /* the order of the following fields is important */ 177 178 /* IEEE80211_RADIOTAP_TSFT */ 179 if (ieee80211_have_rx_timestamp(status)) { 180 /* padding */ 181 while ((pos - (u8 *)rthdr) & 7) 182 *pos++ = 0; 183 put_unaligned_le64( 184 ieee80211_calculate_rx_timestamp(local, status, 185 mpdulen, 0), 186 pos); 187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 188 pos += 8; 189 } 190 191 /* IEEE80211_RADIOTAP_FLAGS */ 192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 193 *pos |= IEEE80211_RADIOTAP_F_FCS; 194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 195 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 196 if (status->flag & RX_FLAG_SHORTPRE) 197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 198 pos++; 199 200 /* IEEE80211_RADIOTAP_RATE */ 201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 202 /* 203 * Without rate information don't add it. If we have, 204 * MCS information is a separate field in radiotap, 205 * added below. The byte here is needed as padding 206 * for the channel though, so initialise it to 0. 207 */ 208 *pos = 0; 209 } else { 210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 211 *pos = rate->bitrate / 5; 212 } 213 pos++; 214 215 /* IEEE80211_RADIOTAP_CHANNEL */ 216 put_unaligned_le16(status->freq, pos); 217 pos += 2; 218 if (status->band == IEEE80211_BAND_5GHZ) 219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 220 pos); 221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 223 pos); 224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 226 pos); 227 else if (rate) 228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 229 pos); 230 else 231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos); 232 pos += 2; 233 234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 237 *pos = status->signal; 238 rthdr->it_present |= 239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 240 pos++; 241 } 242 243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 244 245 /* IEEE80211_RADIOTAP_ANTENNA */ 246 *pos = status->antenna; 247 pos++; 248 249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 250 251 /* IEEE80211_RADIOTAP_RX_FLAGS */ 252 /* ensure 2 byte alignment for the 2 byte field as required */ 253 if ((pos - (u8 *)rthdr) & 1) 254 *pos++ = 0; 255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 257 put_unaligned_le16(rx_flags, pos); 258 pos += 2; 259 260 if (status->flag & RX_FLAG_HT) { 261 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 262 *pos++ = local->hw.radiotap_mcs_details; 263 *pos = 0; 264 if (status->flag & RX_FLAG_SHORT_GI) 265 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 266 if (status->flag & RX_FLAG_40MHZ) 267 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 268 if (status->flag & RX_FLAG_HT_GF) 269 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 270 pos++; 271 *pos++ = status->rate_idx; 272 } 273 274 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 275 u16 flags = 0; 276 277 /* ensure 4 byte alignment */ 278 while ((pos - (u8 *)rthdr) & 3) 279 pos++; 280 rthdr->it_present |= 281 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 282 put_unaligned_le32(status->ampdu_reference, pos); 283 pos += 4; 284 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 285 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 286 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 287 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 288 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 289 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 290 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 292 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 293 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 294 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 295 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 296 put_unaligned_le16(flags, pos); 297 pos += 2; 298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 299 *pos++ = status->ampdu_delimiter_crc; 300 else 301 *pos++ = 0; 302 *pos++ = 0; 303 } 304 305 if (status->flag & RX_FLAG_VHT) { 306 u16 known = local->hw.radiotap_vht_details; 307 308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 309 /* known field - how to handle 80+80? */ 310 if (status->flag & RX_FLAG_80P80MHZ) 311 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 312 put_unaligned_le16(known, pos); 313 pos += 2; 314 /* flags */ 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 317 pos++; 318 /* bandwidth */ 319 if (status->flag & RX_FLAG_80MHZ) 320 *pos++ = 4; 321 else if (status->flag & RX_FLAG_80P80MHZ) 322 *pos++ = 0; /* marked not known above */ 323 else if (status->flag & RX_FLAG_160MHZ) 324 *pos++ = 11; 325 else if (status->flag & RX_FLAG_40MHZ) 326 *pos++ = 1; 327 else /* 20 MHz */ 328 *pos++ = 0; 329 /* MCS/NSS */ 330 *pos = (status->rate_idx << 4) | status->vht_nss; 331 pos += 4; 332 /* coding field */ 333 pos++; 334 /* group ID */ 335 pos++; 336 /* partial_aid */ 337 pos += 2; 338 } 339 340 if (status->vendor_radiotap_len) { 341 /* ensure 2 byte alignment for the vendor field as required */ 342 if ((pos - (u8 *)rthdr) & 1) 343 *pos++ = 0; 344 *pos++ = status->vendor_radiotap_oui[0]; 345 *pos++ = status->vendor_radiotap_oui[1]; 346 *pos++ = status->vendor_radiotap_oui[2]; 347 *pos++ = status->vendor_radiotap_subns; 348 put_unaligned_le16(status->vendor_radiotap_len, pos); 349 pos += 2; 350 /* align the actual payload as requested */ 351 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1)) 352 *pos++ = 0; 353 } 354 } 355 356 /* 357 * This function copies a received frame to all monitor interfaces and 358 * returns a cleaned-up SKB that no longer includes the FCS nor the 359 * radiotap header the driver might have added. 360 */ 361 static struct sk_buff * 362 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 363 struct ieee80211_rate *rate) 364 { 365 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 366 struct ieee80211_sub_if_data *sdata; 367 int needed_headroom; 368 struct sk_buff *skb, *skb2; 369 struct net_device *prev_dev = NULL; 370 int present_fcs_len = 0; 371 372 /* 373 * First, we may need to make a copy of the skb because 374 * (1) we need to modify it for radiotap (if not present), and 375 * (2) the other RX handlers will modify the skb we got. 376 * 377 * We don't need to, of course, if we aren't going to return 378 * the SKB because it has a bad FCS/PLCP checksum. 379 */ 380 381 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 382 present_fcs_len = FCS_LEN; 383 384 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 385 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) { 386 dev_kfree_skb(origskb); 387 return NULL; 388 } 389 390 if (!local->monitors) { 391 if (should_drop_frame(origskb, present_fcs_len)) { 392 dev_kfree_skb(origskb); 393 return NULL; 394 } 395 396 return remove_monitor_info(local, origskb); 397 } 398 399 /* room for the radiotap header based on driver features */ 400 needed_headroom = ieee80211_rx_radiotap_space(local, status); 401 402 if (should_drop_frame(origskb, present_fcs_len)) { 403 /* only need to expand headroom if necessary */ 404 skb = origskb; 405 origskb = NULL; 406 407 /* 408 * This shouldn't trigger often because most devices have an 409 * RX header they pull before we get here, and that should 410 * be big enough for our radiotap information. We should 411 * probably export the length to drivers so that we can have 412 * them allocate enough headroom to start with. 413 */ 414 if (skb_headroom(skb) < needed_headroom && 415 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 416 dev_kfree_skb(skb); 417 return NULL; 418 } 419 } else { 420 /* 421 * Need to make a copy and possibly remove radiotap header 422 * and FCS from the original. 423 */ 424 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 425 426 origskb = remove_monitor_info(local, origskb); 427 428 if (!skb) 429 return origskb; 430 } 431 432 /* prepend radiotap information */ 433 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 434 true); 435 436 skb_reset_mac_header(skb); 437 skb->ip_summed = CHECKSUM_UNNECESSARY; 438 skb->pkt_type = PACKET_OTHERHOST; 439 skb->protocol = htons(ETH_P_802_2); 440 441 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 442 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 443 continue; 444 445 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 446 continue; 447 448 if (!ieee80211_sdata_running(sdata)) 449 continue; 450 451 if (prev_dev) { 452 skb2 = skb_clone(skb, GFP_ATOMIC); 453 if (skb2) { 454 skb2->dev = prev_dev; 455 netif_receive_skb(skb2); 456 } 457 } 458 459 prev_dev = sdata->dev; 460 sdata->dev->stats.rx_packets++; 461 sdata->dev->stats.rx_bytes += skb->len; 462 } 463 464 if (prev_dev) { 465 skb->dev = prev_dev; 466 netif_receive_skb(skb); 467 } else 468 dev_kfree_skb(skb); 469 470 return origskb; 471 } 472 473 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 474 { 475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 476 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 477 int tid, seqno_idx, security_idx; 478 479 /* does the frame have a qos control field? */ 480 if (ieee80211_is_data_qos(hdr->frame_control)) { 481 u8 *qc = ieee80211_get_qos_ctl(hdr); 482 /* frame has qos control */ 483 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 484 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 485 status->rx_flags |= IEEE80211_RX_AMSDU; 486 487 seqno_idx = tid; 488 security_idx = tid; 489 } else { 490 /* 491 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 492 * 493 * Sequence numbers for management frames, QoS data 494 * frames with a broadcast/multicast address in the 495 * Address 1 field, and all non-QoS data frames sent 496 * by QoS STAs are assigned using an additional single 497 * modulo-4096 counter, [...] 498 * 499 * We also use that counter for non-QoS STAs. 500 */ 501 seqno_idx = IEEE80211_NUM_TIDS; 502 security_idx = 0; 503 if (ieee80211_is_mgmt(hdr->frame_control)) 504 security_idx = IEEE80211_NUM_TIDS; 505 tid = 0; 506 } 507 508 rx->seqno_idx = seqno_idx; 509 rx->security_idx = security_idx; 510 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 511 * For now, set skb->priority to 0 for other cases. */ 512 rx->skb->priority = (tid > 7) ? 0 : tid; 513 } 514 515 /** 516 * DOC: Packet alignment 517 * 518 * Drivers always need to pass packets that are aligned to two-byte boundaries 519 * to the stack. 520 * 521 * Additionally, should, if possible, align the payload data in a way that 522 * guarantees that the contained IP header is aligned to a four-byte 523 * boundary. In the case of regular frames, this simply means aligning the 524 * payload to a four-byte boundary (because either the IP header is directly 525 * contained, or IV/RFC1042 headers that have a length divisible by four are 526 * in front of it). If the payload data is not properly aligned and the 527 * architecture doesn't support efficient unaligned operations, mac80211 528 * will align the data. 529 * 530 * With A-MSDU frames, however, the payload data address must yield two modulo 531 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 532 * push the IP header further back to a multiple of four again. Thankfully, the 533 * specs were sane enough this time around to require padding each A-MSDU 534 * subframe to a length that is a multiple of four. 535 * 536 * Padding like Atheros hardware adds which is between the 802.11 header and 537 * the payload is not supported, the driver is required to move the 802.11 538 * header to be directly in front of the payload in that case. 539 */ 540 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 541 { 542 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 543 WARN_ONCE((unsigned long)rx->skb->data & 1, 544 "unaligned packet at 0x%p\n", rx->skb->data); 545 #endif 546 } 547 548 549 /* rx handlers */ 550 551 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 552 { 553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 554 555 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 556 return 0; 557 558 return ieee80211_is_robust_mgmt_frame(hdr); 559 } 560 561 562 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 563 { 564 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 565 566 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 567 return 0; 568 569 return ieee80211_is_robust_mgmt_frame(hdr); 570 } 571 572 573 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 574 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 575 { 576 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 577 struct ieee80211_mmie *mmie; 578 579 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 580 return -1; 581 582 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 583 return -1; /* not a robust management frame */ 584 585 mmie = (struct ieee80211_mmie *) 586 (skb->data + skb->len - sizeof(*mmie)); 587 if (mmie->element_id != WLAN_EID_MMIE || 588 mmie->length != sizeof(*mmie) - 2) 589 return -1; 590 591 return le16_to_cpu(mmie->key_id); 592 } 593 594 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 595 { 596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 597 char *dev_addr = rx->sdata->vif.addr; 598 599 if (ieee80211_is_data(hdr->frame_control)) { 600 if (is_multicast_ether_addr(hdr->addr1)) { 601 if (ieee80211_has_tods(hdr->frame_control) || 602 !ieee80211_has_fromds(hdr->frame_control)) 603 return RX_DROP_MONITOR; 604 if (ether_addr_equal(hdr->addr3, dev_addr)) 605 return RX_DROP_MONITOR; 606 } else { 607 if (!ieee80211_has_a4(hdr->frame_control)) 608 return RX_DROP_MONITOR; 609 if (ether_addr_equal(hdr->addr4, dev_addr)) 610 return RX_DROP_MONITOR; 611 } 612 } 613 614 /* If there is not an established peer link and this is not a peer link 615 * establisment frame, beacon or probe, drop the frame. 616 */ 617 618 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 619 struct ieee80211_mgmt *mgmt; 620 621 if (!ieee80211_is_mgmt(hdr->frame_control)) 622 return RX_DROP_MONITOR; 623 624 if (ieee80211_is_action(hdr->frame_control)) { 625 u8 category; 626 627 /* make sure category field is present */ 628 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 629 return RX_DROP_MONITOR; 630 631 mgmt = (struct ieee80211_mgmt *)hdr; 632 category = mgmt->u.action.category; 633 if (category != WLAN_CATEGORY_MESH_ACTION && 634 category != WLAN_CATEGORY_SELF_PROTECTED) 635 return RX_DROP_MONITOR; 636 return RX_CONTINUE; 637 } 638 639 if (ieee80211_is_probe_req(hdr->frame_control) || 640 ieee80211_is_probe_resp(hdr->frame_control) || 641 ieee80211_is_beacon(hdr->frame_control) || 642 ieee80211_is_auth(hdr->frame_control)) 643 return RX_CONTINUE; 644 645 return RX_DROP_MONITOR; 646 } 647 648 return RX_CONTINUE; 649 } 650 651 #define SEQ_MODULO 0x1000 652 #define SEQ_MASK 0xfff 653 654 static inline int seq_less(u16 sq1, u16 sq2) 655 { 656 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 657 } 658 659 static inline u16 seq_inc(u16 sq) 660 { 661 return (sq + 1) & SEQ_MASK; 662 } 663 664 static inline u16 seq_sub(u16 sq1, u16 sq2) 665 { 666 return (sq1 - sq2) & SEQ_MASK; 667 } 668 669 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 670 struct tid_ampdu_rx *tid_agg_rx, 671 int index) 672 { 673 struct ieee80211_local *local = sdata->local; 674 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 675 struct ieee80211_rx_status *status; 676 677 lockdep_assert_held(&tid_agg_rx->reorder_lock); 678 679 if (!skb) 680 goto no_frame; 681 682 /* release the frame from the reorder ring buffer */ 683 tid_agg_rx->stored_mpdu_num--; 684 tid_agg_rx->reorder_buf[index] = NULL; 685 status = IEEE80211_SKB_RXCB(skb); 686 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 687 skb_queue_tail(&local->rx_skb_queue, skb); 688 689 no_frame: 690 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 691 } 692 693 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 694 struct tid_ampdu_rx *tid_agg_rx, 695 u16 head_seq_num) 696 { 697 int index; 698 699 lockdep_assert_held(&tid_agg_rx->reorder_lock); 700 701 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 702 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 703 tid_agg_rx->buf_size; 704 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index); 705 } 706 } 707 708 /* 709 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 710 * the skb was added to the buffer longer than this time ago, the earlier 711 * frames that have not yet been received are assumed to be lost and the skb 712 * can be released for processing. This may also release other skb's from the 713 * reorder buffer if there are no additional gaps between the frames. 714 * 715 * Callers must hold tid_agg_rx->reorder_lock. 716 */ 717 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 718 719 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 720 struct tid_ampdu_rx *tid_agg_rx) 721 { 722 int index, j; 723 724 lockdep_assert_held(&tid_agg_rx->reorder_lock); 725 726 /* release the buffer until next missing frame */ 727 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 728 tid_agg_rx->buf_size; 729 if (!tid_agg_rx->reorder_buf[index] && 730 tid_agg_rx->stored_mpdu_num) { 731 /* 732 * No buffers ready to be released, but check whether any 733 * frames in the reorder buffer have timed out. 734 */ 735 int skipped = 1; 736 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 737 j = (j + 1) % tid_agg_rx->buf_size) { 738 if (!tid_agg_rx->reorder_buf[j]) { 739 skipped++; 740 continue; 741 } 742 if (skipped && 743 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 744 HT_RX_REORDER_BUF_TIMEOUT)) 745 goto set_release_timer; 746 747 ht_dbg_ratelimited(sdata, 748 "release an RX reorder frame due to timeout on earlier frames\n"); 749 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j); 750 751 /* 752 * Increment the head seq# also for the skipped slots. 753 */ 754 tid_agg_rx->head_seq_num = 755 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 756 skipped = 0; 757 } 758 } else while (tid_agg_rx->reorder_buf[index]) { 759 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index); 760 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 761 tid_agg_rx->buf_size; 762 } 763 764 if (tid_agg_rx->stored_mpdu_num) { 765 j = index = seq_sub(tid_agg_rx->head_seq_num, 766 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 767 768 for (; j != (index - 1) % tid_agg_rx->buf_size; 769 j = (j + 1) % tid_agg_rx->buf_size) { 770 if (tid_agg_rx->reorder_buf[j]) 771 break; 772 } 773 774 set_release_timer: 775 776 mod_timer(&tid_agg_rx->reorder_timer, 777 tid_agg_rx->reorder_time[j] + 1 + 778 HT_RX_REORDER_BUF_TIMEOUT); 779 } else { 780 del_timer(&tid_agg_rx->reorder_timer); 781 } 782 } 783 784 /* 785 * As this function belongs to the RX path it must be under 786 * rcu_read_lock protection. It returns false if the frame 787 * can be processed immediately, true if it was consumed. 788 */ 789 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 790 struct tid_ampdu_rx *tid_agg_rx, 791 struct sk_buff *skb) 792 { 793 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 794 u16 sc = le16_to_cpu(hdr->seq_ctrl); 795 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 796 u16 head_seq_num, buf_size; 797 int index; 798 bool ret = true; 799 800 spin_lock(&tid_agg_rx->reorder_lock); 801 802 buf_size = tid_agg_rx->buf_size; 803 head_seq_num = tid_agg_rx->head_seq_num; 804 805 /* frame with out of date sequence number */ 806 if (seq_less(mpdu_seq_num, head_seq_num)) { 807 dev_kfree_skb(skb); 808 goto out; 809 } 810 811 /* 812 * If frame the sequence number exceeds our buffering window 813 * size release some previous frames to make room for this one. 814 */ 815 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 816 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 817 /* release stored frames up to new head to stack */ 818 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 819 head_seq_num); 820 } 821 822 /* Now the new frame is always in the range of the reordering buffer */ 823 824 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 825 826 /* check if we already stored this frame */ 827 if (tid_agg_rx->reorder_buf[index]) { 828 dev_kfree_skb(skb); 829 goto out; 830 } 831 832 /* 833 * If the current MPDU is in the right order and nothing else 834 * is stored we can process it directly, no need to buffer it. 835 * If it is first but there's something stored, we may be able 836 * to release frames after this one. 837 */ 838 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 839 tid_agg_rx->stored_mpdu_num == 0) { 840 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 841 ret = false; 842 goto out; 843 } 844 845 /* put the frame in the reordering buffer */ 846 tid_agg_rx->reorder_buf[index] = skb; 847 tid_agg_rx->reorder_time[index] = jiffies; 848 tid_agg_rx->stored_mpdu_num++; 849 ieee80211_sta_reorder_release(sdata, tid_agg_rx); 850 851 out: 852 spin_unlock(&tid_agg_rx->reorder_lock); 853 return ret; 854 } 855 856 /* 857 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 858 * true if the MPDU was buffered, false if it should be processed. 859 */ 860 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx) 861 { 862 struct sk_buff *skb = rx->skb; 863 struct ieee80211_local *local = rx->local; 864 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 866 struct sta_info *sta = rx->sta; 867 struct tid_ampdu_rx *tid_agg_rx; 868 u16 sc; 869 u8 tid, ack_policy; 870 871 if (!ieee80211_is_data_qos(hdr->frame_control)) 872 goto dont_reorder; 873 874 /* 875 * filter the QoS data rx stream according to 876 * STA/TID and check if this STA/TID is on aggregation 877 */ 878 879 if (!sta) 880 goto dont_reorder; 881 882 ack_policy = *ieee80211_get_qos_ctl(hdr) & 883 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 884 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 885 886 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 887 if (!tid_agg_rx) 888 goto dont_reorder; 889 890 /* qos null data frames are excluded */ 891 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 892 goto dont_reorder; 893 894 /* not part of a BA session */ 895 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 896 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 897 goto dont_reorder; 898 899 /* not actually part of this BA session */ 900 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 901 goto dont_reorder; 902 903 /* new, potentially un-ordered, ampdu frame - process it */ 904 905 /* reset session timer */ 906 if (tid_agg_rx->timeout) 907 tid_agg_rx->last_rx = jiffies; 908 909 /* if this mpdu is fragmented - terminate rx aggregation session */ 910 sc = le16_to_cpu(hdr->seq_ctrl); 911 if (sc & IEEE80211_SCTL_FRAG) { 912 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 913 skb_queue_tail(&rx->sdata->skb_queue, skb); 914 ieee80211_queue_work(&local->hw, &rx->sdata->work); 915 return; 916 } 917 918 /* 919 * No locking needed -- we will only ever process one 920 * RX packet at a time, and thus own tid_agg_rx. All 921 * other code manipulating it needs to (and does) make 922 * sure that we cannot get to it any more before doing 923 * anything with it. 924 */ 925 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb)) 926 return; 927 928 dont_reorder: 929 skb_queue_tail(&local->rx_skb_queue, skb); 930 } 931 932 static ieee80211_rx_result debug_noinline 933 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 934 { 935 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 936 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 937 938 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 939 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 940 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 941 rx->sta->last_seq_ctrl[rx->seqno_idx] == 942 hdr->seq_ctrl)) { 943 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 944 rx->local->dot11FrameDuplicateCount++; 945 rx->sta->num_duplicates++; 946 } 947 return RX_DROP_UNUSABLE; 948 } else 949 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 950 } 951 952 if (unlikely(rx->skb->len < 16)) { 953 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 954 return RX_DROP_MONITOR; 955 } 956 957 /* Drop disallowed frame classes based on STA auth/assoc state; 958 * IEEE 802.11, Chap 5.5. 959 * 960 * mac80211 filters only based on association state, i.e. it drops 961 * Class 3 frames from not associated stations. hostapd sends 962 * deauth/disassoc frames when needed. In addition, hostapd is 963 * responsible for filtering on both auth and assoc states. 964 */ 965 966 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 967 return ieee80211_rx_mesh_check(rx); 968 969 if (unlikely((ieee80211_is_data(hdr->frame_control) || 970 ieee80211_is_pspoll(hdr->frame_control)) && 971 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 972 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 973 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 974 /* 975 * accept port control frames from the AP even when it's not 976 * yet marked ASSOC to prevent a race where we don't set the 977 * assoc bit quickly enough before it sends the first frame 978 */ 979 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 980 ieee80211_is_data_present(hdr->frame_control)) { 981 unsigned int hdrlen; 982 __be16 ethertype; 983 984 hdrlen = ieee80211_hdrlen(hdr->frame_control); 985 986 if (rx->skb->len < hdrlen + 8) 987 return RX_DROP_MONITOR; 988 989 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 990 if (ethertype == rx->sdata->control_port_protocol) 991 return RX_CONTINUE; 992 } 993 994 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 995 cfg80211_rx_spurious_frame(rx->sdata->dev, 996 hdr->addr2, 997 GFP_ATOMIC)) 998 return RX_DROP_UNUSABLE; 999 1000 return RX_DROP_MONITOR; 1001 } 1002 1003 return RX_CONTINUE; 1004 } 1005 1006 1007 static ieee80211_rx_result debug_noinline 1008 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1009 { 1010 struct sk_buff *skb = rx->skb; 1011 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1012 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1013 int keyidx; 1014 int hdrlen; 1015 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1016 struct ieee80211_key *sta_ptk = NULL; 1017 int mmie_keyidx = -1; 1018 __le16 fc; 1019 1020 /* 1021 * Key selection 101 1022 * 1023 * There are four types of keys: 1024 * - GTK (group keys) 1025 * - IGTK (group keys for management frames) 1026 * - PTK (pairwise keys) 1027 * - STK (station-to-station pairwise keys) 1028 * 1029 * When selecting a key, we have to distinguish between multicast 1030 * (including broadcast) and unicast frames, the latter can only 1031 * use PTKs and STKs while the former always use GTKs and IGTKs. 1032 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1033 * unicast frames can also use key indices like GTKs. Hence, if we 1034 * don't have a PTK/STK we check the key index for a WEP key. 1035 * 1036 * Note that in a regular BSS, multicast frames are sent by the 1037 * AP only, associated stations unicast the frame to the AP first 1038 * which then multicasts it on their behalf. 1039 * 1040 * There is also a slight problem in IBSS mode: GTKs are negotiated 1041 * with each station, that is something we don't currently handle. 1042 * The spec seems to expect that one negotiates the same key with 1043 * every station but there's no such requirement; VLANs could be 1044 * possible. 1045 */ 1046 1047 /* 1048 * No point in finding a key and decrypting if the frame is neither 1049 * addressed to us nor a multicast frame. 1050 */ 1051 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1052 return RX_CONTINUE; 1053 1054 /* start without a key */ 1055 rx->key = NULL; 1056 1057 if (rx->sta) 1058 sta_ptk = rcu_dereference(rx->sta->ptk); 1059 1060 fc = hdr->frame_control; 1061 1062 if (!ieee80211_has_protected(fc)) 1063 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1064 1065 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1066 rx->key = sta_ptk; 1067 if ((status->flag & RX_FLAG_DECRYPTED) && 1068 (status->flag & RX_FLAG_IV_STRIPPED)) 1069 return RX_CONTINUE; 1070 /* Skip decryption if the frame is not protected. */ 1071 if (!ieee80211_has_protected(fc)) 1072 return RX_CONTINUE; 1073 } else if (mmie_keyidx >= 0) { 1074 /* Broadcast/multicast robust management frame / BIP */ 1075 if ((status->flag & RX_FLAG_DECRYPTED) && 1076 (status->flag & RX_FLAG_IV_STRIPPED)) 1077 return RX_CONTINUE; 1078 1079 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1080 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1081 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1082 if (rx->sta) 1083 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1084 if (!rx->key) 1085 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1086 } else if (!ieee80211_has_protected(fc)) { 1087 /* 1088 * The frame was not protected, so skip decryption. However, we 1089 * need to set rx->key if there is a key that could have been 1090 * used so that the frame may be dropped if encryption would 1091 * have been expected. 1092 */ 1093 struct ieee80211_key *key = NULL; 1094 struct ieee80211_sub_if_data *sdata = rx->sdata; 1095 int i; 1096 1097 if (ieee80211_is_mgmt(fc) && 1098 is_multicast_ether_addr(hdr->addr1) && 1099 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1100 rx->key = key; 1101 else { 1102 if (rx->sta) { 1103 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1104 key = rcu_dereference(rx->sta->gtk[i]); 1105 if (key) 1106 break; 1107 } 1108 } 1109 if (!key) { 1110 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1111 key = rcu_dereference(sdata->keys[i]); 1112 if (key) 1113 break; 1114 } 1115 } 1116 if (key) 1117 rx->key = key; 1118 } 1119 return RX_CONTINUE; 1120 } else { 1121 u8 keyid; 1122 /* 1123 * The device doesn't give us the IV so we won't be 1124 * able to look up the key. That's ok though, we 1125 * don't need to decrypt the frame, we just won't 1126 * be able to keep statistics accurate. 1127 * Except for key threshold notifications, should 1128 * we somehow allow the driver to tell us which key 1129 * the hardware used if this flag is set? 1130 */ 1131 if ((status->flag & RX_FLAG_DECRYPTED) && 1132 (status->flag & RX_FLAG_IV_STRIPPED)) 1133 return RX_CONTINUE; 1134 1135 hdrlen = ieee80211_hdrlen(fc); 1136 1137 if (rx->skb->len < 8 + hdrlen) 1138 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1139 1140 /* 1141 * no need to call ieee80211_wep_get_keyidx, 1142 * it verifies a bunch of things we've done already 1143 */ 1144 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1145 keyidx = keyid >> 6; 1146 1147 /* check per-station GTK first, if multicast packet */ 1148 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1149 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1150 1151 /* if not found, try default key */ 1152 if (!rx->key) { 1153 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1154 1155 /* 1156 * RSNA-protected unicast frames should always be 1157 * sent with pairwise or station-to-station keys, 1158 * but for WEP we allow using a key index as well. 1159 */ 1160 if (rx->key && 1161 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1162 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1163 !is_multicast_ether_addr(hdr->addr1)) 1164 rx->key = NULL; 1165 } 1166 } 1167 1168 if (rx->key) { 1169 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1170 return RX_DROP_MONITOR; 1171 1172 rx->key->tx_rx_count++; 1173 /* TODO: add threshold stuff again */ 1174 } else { 1175 return RX_DROP_MONITOR; 1176 } 1177 1178 switch (rx->key->conf.cipher) { 1179 case WLAN_CIPHER_SUITE_WEP40: 1180 case WLAN_CIPHER_SUITE_WEP104: 1181 result = ieee80211_crypto_wep_decrypt(rx); 1182 break; 1183 case WLAN_CIPHER_SUITE_TKIP: 1184 result = ieee80211_crypto_tkip_decrypt(rx); 1185 break; 1186 case WLAN_CIPHER_SUITE_CCMP: 1187 result = ieee80211_crypto_ccmp_decrypt(rx); 1188 break; 1189 case WLAN_CIPHER_SUITE_AES_CMAC: 1190 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1191 break; 1192 default: 1193 /* 1194 * We can reach here only with HW-only algorithms 1195 * but why didn't it decrypt the frame?! 1196 */ 1197 return RX_DROP_UNUSABLE; 1198 } 1199 1200 /* the hdr variable is invalid after the decrypt handlers */ 1201 1202 /* either the frame has been decrypted or will be dropped */ 1203 status->flag |= RX_FLAG_DECRYPTED; 1204 1205 return result; 1206 } 1207 1208 static ieee80211_rx_result debug_noinline 1209 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1210 { 1211 struct ieee80211_local *local; 1212 struct ieee80211_hdr *hdr; 1213 struct sk_buff *skb; 1214 1215 local = rx->local; 1216 skb = rx->skb; 1217 hdr = (struct ieee80211_hdr *) skb->data; 1218 1219 if (!local->pspolling) 1220 return RX_CONTINUE; 1221 1222 if (!ieee80211_has_fromds(hdr->frame_control)) 1223 /* this is not from AP */ 1224 return RX_CONTINUE; 1225 1226 if (!ieee80211_is_data(hdr->frame_control)) 1227 return RX_CONTINUE; 1228 1229 if (!ieee80211_has_moredata(hdr->frame_control)) { 1230 /* AP has no more frames buffered for us */ 1231 local->pspolling = false; 1232 return RX_CONTINUE; 1233 } 1234 1235 /* more data bit is set, let's request a new frame from the AP */ 1236 ieee80211_send_pspoll(local, rx->sdata); 1237 1238 return RX_CONTINUE; 1239 } 1240 1241 static void sta_ps_start(struct sta_info *sta) 1242 { 1243 struct ieee80211_sub_if_data *sdata = sta->sdata; 1244 struct ieee80211_local *local = sdata->local; 1245 struct ps_data *ps; 1246 1247 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1248 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1249 ps = &sdata->bss->ps; 1250 else 1251 return; 1252 1253 atomic_inc(&ps->num_sta_ps); 1254 set_sta_flag(sta, WLAN_STA_PS_STA); 1255 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1256 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1257 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1258 sta->sta.addr, sta->sta.aid); 1259 } 1260 1261 static void sta_ps_end(struct sta_info *sta) 1262 { 1263 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1264 sta->sta.addr, sta->sta.aid); 1265 1266 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1267 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1268 sta->sta.addr, sta->sta.aid); 1269 return; 1270 } 1271 1272 ieee80211_sta_ps_deliver_wakeup(sta); 1273 } 1274 1275 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1276 { 1277 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1278 bool in_ps; 1279 1280 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1281 1282 /* Don't let the same PS state be set twice */ 1283 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1284 if ((start && in_ps) || (!start && !in_ps)) 1285 return -EINVAL; 1286 1287 if (start) 1288 sta_ps_start(sta_inf); 1289 else 1290 sta_ps_end(sta_inf); 1291 1292 return 0; 1293 } 1294 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1295 1296 static ieee80211_rx_result debug_noinline 1297 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1298 { 1299 struct ieee80211_sub_if_data *sdata = rx->sdata; 1300 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1301 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1302 int tid, ac; 1303 1304 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1305 return RX_CONTINUE; 1306 1307 if (sdata->vif.type != NL80211_IFTYPE_AP && 1308 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1309 return RX_CONTINUE; 1310 1311 /* 1312 * The device handles station powersave, so don't do anything about 1313 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1314 * it to mac80211 since they're handled.) 1315 */ 1316 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1317 return RX_CONTINUE; 1318 1319 /* 1320 * Don't do anything if the station isn't already asleep. In 1321 * the uAPSD case, the station will probably be marked asleep, 1322 * in the PS-Poll case the station must be confused ... 1323 */ 1324 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1325 return RX_CONTINUE; 1326 1327 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1328 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1329 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1330 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1331 else 1332 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1333 } 1334 1335 /* Free PS Poll skb here instead of returning RX_DROP that would 1336 * count as an dropped frame. */ 1337 dev_kfree_skb(rx->skb); 1338 1339 return RX_QUEUED; 1340 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1341 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1342 ieee80211_has_pm(hdr->frame_control) && 1343 (ieee80211_is_data_qos(hdr->frame_control) || 1344 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1345 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1346 ac = ieee802_1d_to_ac[tid & 7]; 1347 1348 /* 1349 * If this AC is not trigger-enabled do nothing. 1350 * 1351 * NB: This could/should check a separate bitmap of trigger- 1352 * enabled queues, but for now we only implement uAPSD w/o 1353 * TSPEC changes to the ACs, so they're always the same. 1354 */ 1355 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1356 return RX_CONTINUE; 1357 1358 /* if we are in a service period, do nothing */ 1359 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1360 return RX_CONTINUE; 1361 1362 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1363 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1364 else 1365 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1366 } 1367 1368 return RX_CONTINUE; 1369 } 1370 1371 static ieee80211_rx_result debug_noinline 1372 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1373 { 1374 struct sta_info *sta = rx->sta; 1375 struct sk_buff *skb = rx->skb; 1376 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1377 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1378 1379 if (!sta) 1380 return RX_CONTINUE; 1381 1382 /* 1383 * Update last_rx only for IBSS packets which are for the current 1384 * BSSID and for station already AUTHORIZED to avoid keeping the 1385 * current IBSS network alive in cases where other STAs start 1386 * using different BSSID. This will also give the station another 1387 * chance to restart the authentication/authorization in case 1388 * something went wrong the first time. 1389 */ 1390 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1391 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1392 NL80211_IFTYPE_ADHOC); 1393 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1394 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1395 sta->last_rx = jiffies; 1396 if (ieee80211_is_data(hdr->frame_control)) { 1397 sta->last_rx_rate_idx = status->rate_idx; 1398 sta->last_rx_rate_flag = status->flag; 1399 sta->last_rx_rate_vht_nss = status->vht_nss; 1400 } 1401 } 1402 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1403 /* 1404 * Mesh beacons will update last_rx when if they are found to 1405 * match the current local configuration when processed. 1406 */ 1407 sta->last_rx = jiffies; 1408 if (ieee80211_is_data(hdr->frame_control)) { 1409 sta->last_rx_rate_idx = status->rate_idx; 1410 sta->last_rx_rate_flag = status->flag; 1411 sta->last_rx_rate_vht_nss = status->vht_nss; 1412 } 1413 } 1414 1415 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1416 return RX_CONTINUE; 1417 1418 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1419 ieee80211_sta_rx_notify(rx->sdata, hdr); 1420 1421 sta->rx_fragments++; 1422 sta->rx_bytes += rx->skb->len; 1423 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1424 sta->last_signal = status->signal; 1425 ewma_add(&sta->avg_signal, -status->signal); 1426 } 1427 1428 /* 1429 * Change STA power saving mode only at the end of a frame 1430 * exchange sequence. 1431 */ 1432 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1433 !ieee80211_has_morefrags(hdr->frame_control) && 1434 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1435 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1436 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1437 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1438 /* 1439 * Ignore doze->wake transitions that are 1440 * indicated by non-data frames, the standard 1441 * is unclear here, but for example going to 1442 * PS mode and then scanning would cause a 1443 * doze->wake transition for the probe request, 1444 * and that is clearly undesirable. 1445 */ 1446 if (ieee80211_is_data(hdr->frame_control) && 1447 !ieee80211_has_pm(hdr->frame_control)) 1448 sta_ps_end(sta); 1449 } else { 1450 if (ieee80211_has_pm(hdr->frame_control)) 1451 sta_ps_start(sta); 1452 } 1453 } 1454 1455 /* 1456 * Drop (qos-)data::nullfunc frames silently, since they 1457 * are used only to control station power saving mode. 1458 */ 1459 if (ieee80211_is_nullfunc(hdr->frame_control) || 1460 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1461 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1462 1463 /* 1464 * If we receive a 4-addr nullfunc frame from a STA 1465 * that was not moved to a 4-addr STA vlan yet send 1466 * the event to userspace and for older hostapd drop 1467 * the frame to the monitor interface. 1468 */ 1469 if (ieee80211_has_a4(hdr->frame_control) && 1470 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1471 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1472 !rx->sdata->u.vlan.sta))) { 1473 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1474 cfg80211_rx_unexpected_4addr_frame( 1475 rx->sdata->dev, sta->sta.addr, 1476 GFP_ATOMIC); 1477 return RX_DROP_MONITOR; 1478 } 1479 /* 1480 * Update counter and free packet here to avoid 1481 * counting this as a dropped packed. 1482 */ 1483 sta->rx_packets++; 1484 dev_kfree_skb(rx->skb); 1485 return RX_QUEUED; 1486 } 1487 1488 return RX_CONTINUE; 1489 } /* ieee80211_rx_h_sta_process */ 1490 1491 static inline struct ieee80211_fragment_entry * 1492 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1493 unsigned int frag, unsigned int seq, int rx_queue, 1494 struct sk_buff **skb) 1495 { 1496 struct ieee80211_fragment_entry *entry; 1497 1498 entry = &sdata->fragments[sdata->fragment_next++]; 1499 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1500 sdata->fragment_next = 0; 1501 1502 if (!skb_queue_empty(&entry->skb_list)) 1503 __skb_queue_purge(&entry->skb_list); 1504 1505 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1506 *skb = NULL; 1507 entry->first_frag_time = jiffies; 1508 entry->seq = seq; 1509 entry->rx_queue = rx_queue; 1510 entry->last_frag = frag; 1511 entry->ccmp = 0; 1512 entry->extra_len = 0; 1513 1514 return entry; 1515 } 1516 1517 static inline struct ieee80211_fragment_entry * 1518 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1519 unsigned int frag, unsigned int seq, 1520 int rx_queue, struct ieee80211_hdr *hdr) 1521 { 1522 struct ieee80211_fragment_entry *entry; 1523 int i, idx; 1524 1525 idx = sdata->fragment_next; 1526 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1527 struct ieee80211_hdr *f_hdr; 1528 1529 idx--; 1530 if (idx < 0) 1531 idx = IEEE80211_FRAGMENT_MAX - 1; 1532 1533 entry = &sdata->fragments[idx]; 1534 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1535 entry->rx_queue != rx_queue || 1536 entry->last_frag + 1 != frag) 1537 continue; 1538 1539 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1540 1541 /* 1542 * Check ftype and addresses are equal, else check next fragment 1543 */ 1544 if (((hdr->frame_control ^ f_hdr->frame_control) & 1545 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1546 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1547 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1548 continue; 1549 1550 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1551 __skb_queue_purge(&entry->skb_list); 1552 continue; 1553 } 1554 return entry; 1555 } 1556 1557 return NULL; 1558 } 1559 1560 static ieee80211_rx_result debug_noinline 1561 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1562 { 1563 struct ieee80211_hdr *hdr; 1564 u16 sc; 1565 __le16 fc; 1566 unsigned int frag, seq; 1567 struct ieee80211_fragment_entry *entry; 1568 struct sk_buff *skb; 1569 struct ieee80211_rx_status *status; 1570 1571 hdr = (struct ieee80211_hdr *)rx->skb->data; 1572 fc = hdr->frame_control; 1573 1574 if (ieee80211_is_ctl(fc)) 1575 return RX_CONTINUE; 1576 1577 sc = le16_to_cpu(hdr->seq_ctrl); 1578 frag = sc & IEEE80211_SCTL_FRAG; 1579 1580 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1581 is_multicast_ether_addr(hdr->addr1))) { 1582 /* not fragmented */ 1583 goto out; 1584 } 1585 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1586 1587 if (skb_linearize(rx->skb)) 1588 return RX_DROP_UNUSABLE; 1589 1590 /* 1591 * skb_linearize() might change the skb->data and 1592 * previously cached variables (in this case, hdr) need to 1593 * be refreshed with the new data. 1594 */ 1595 hdr = (struct ieee80211_hdr *)rx->skb->data; 1596 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1597 1598 if (frag == 0) { 1599 /* This is the first fragment of a new frame. */ 1600 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1601 rx->seqno_idx, &(rx->skb)); 1602 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1603 ieee80211_has_protected(fc)) { 1604 int queue = rx->security_idx; 1605 /* Store CCMP PN so that we can verify that the next 1606 * fragment has a sequential PN value. */ 1607 entry->ccmp = 1; 1608 memcpy(entry->last_pn, 1609 rx->key->u.ccmp.rx_pn[queue], 1610 CCMP_PN_LEN); 1611 } 1612 return RX_QUEUED; 1613 } 1614 1615 /* This is a fragment for a frame that should already be pending in 1616 * fragment cache. Add this fragment to the end of the pending entry. 1617 */ 1618 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1619 rx->seqno_idx, hdr); 1620 if (!entry) { 1621 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1622 return RX_DROP_MONITOR; 1623 } 1624 1625 /* Verify that MPDUs within one MSDU have sequential PN values. 1626 * (IEEE 802.11i, 8.3.3.4.5) */ 1627 if (entry->ccmp) { 1628 int i; 1629 u8 pn[CCMP_PN_LEN], *rpn; 1630 int queue; 1631 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1632 return RX_DROP_UNUSABLE; 1633 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1634 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1635 pn[i]++; 1636 if (pn[i]) 1637 break; 1638 } 1639 queue = rx->security_idx; 1640 rpn = rx->key->u.ccmp.rx_pn[queue]; 1641 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1642 return RX_DROP_UNUSABLE; 1643 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1644 } 1645 1646 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1647 __skb_queue_tail(&entry->skb_list, rx->skb); 1648 entry->last_frag = frag; 1649 entry->extra_len += rx->skb->len; 1650 if (ieee80211_has_morefrags(fc)) { 1651 rx->skb = NULL; 1652 return RX_QUEUED; 1653 } 1654 1655 rx->skb = __skb_dequeue(&entry->skb_list); 1656 if (skb_tailroom(rx->skb) < entry->extra_len) { 1657 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1658 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1659 GFP_ATOMIC))) { 1660 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1661 __skb_queue_purge(&entry->skb_list); 1662 return RX_DROP_UNUSABLE; 1663 } 1664 } 1665 while ((skb = __skb_dequeue(&entry->skb_list))) { 1666 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1667 dev_kfree_skb(skb); 1668 } 1669 1670 /* Complete frame has been reassembled - process it now */ 1671 status = IEEE80211_SKB_RXCB(rx->skb); 1672 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1673 1674 out: 1675 if (rx->sta) 1676 rx->sta->rx_packets++; 1677 if (is_multicast_ether_addr(hdr->addr1)) 1678 rx->local->dot11MulticastReceivedFrameCount++; 1679 else 1680 ieee80211_led_rx(rx->local); 1681 return RX_CONTINUE; 1682 } 1683 1684 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1685 { 1686 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1687 return -EACCES; 1688 1689 return 0; 1690 } 1691 1692 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1693 { 1694 struct sk_buff *skb = rx->skb; 1695 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1696 1697 /* 1698 * Pass through unencrypted frames if the hardware has 1699 * decrypted them already. 1700 */ 1701 if (status->flag & RX_FLAG_DECRYPTED) 1702 return 0; 1703 1704 /* Drop unencrypted frames if key is set. */ 1705 if (unlikely(!ieee80211_has_protected(fc) && 1706 !ieee80211_is_nullfunc(fc) && 1707 ieee80211_is_data(fc) && 1708 (rx->key || rx->sdata->drop_unencrypted))) 1709 return -EACCES; 1710 1711 return 0; 1712 } 1713 1714 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1715 { 1716 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1717 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1718 __le16 fc = hdr->frame_control; 1719 1720 /* 1721 * Pass through unencrypted frames if the hardware has 1722 * decrypted them already. 1723 */ 1724 if (status->flag & RX_FLAG_DECRYPTED) 1725 return 0; 1726 1727 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1728 if (unlikely(!ieee80211_has_protected(fc) && 1729 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1730 rx->key)) { 1731 if (ieee80211_is_deauth(fc)) 1732 cfg80211_send_unprot_deauth(rx->sdata->dev, 1733 rx->skb->data, 1734 rx->skb->len); 1735 else if (ieee80211_is_disassoc(fc)) 1736 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1737 rx->skb->data, 1738 rx->skb->len); 1739 return -EACCES; 1740 } 1741 /* BIP does not use Protected field, so need to check MMIE */ 1742 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1743 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1744 if (ieee80211_is_deauth(fc)) 1745 cfg80211_send_unprot_deauth(rx->sdata->dev, 1746 rx->skb->data, 1747 rx->skb->len); 1748 else if (ieee80211_is_disassoc(fc)) 1749 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1750 rx->skb->data, 1751 rx->skb->len); 1752 return -EACCES; 1753 } 1754 /* 1755 * When using MFP, Action frames are not allowed prior to 1756 * having configured keys. 1757 */ 1758 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1759 ieee80211_is_robust_mgmt_frame( 1760 (struct ieee80211_hdr *) rx->skb->data))) 1761 return -EACCES; 1762 } 1763 1764 return 0; 1765 } 1766 1767 static int 1768 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1769 { 1770 struct ieee80211_sub_if_data *sdata = rx->sdata; 1771 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1772 bool check_port_control = false; 1773 struct ethhdr *ehdr; 1774 int ret; 1775 1776 *port_control = false; 1777 if (ieee80211_has_a4(hdr->frame_control) && 1778 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1779 return -1; 1780 1781 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1782 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1783 1784 if (!sdata->u.mgd.use_4addr) 1785 return -1; 1786 else 1787 check_port_control = true; 1788 } 1789 1790 if (is_multicast_ether_addr(hdr->addr1) && 1791 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1792 return -1; 1793 1794 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1795 if (ret < 0) 1796 return ret; 1797 1798 ehdr = (struct ethhdr *) rx->skb->data; 1799 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1800 *port_control = true; 1801 else if (check_port_control) 1802 return -1; 1803 1804 return 0; 1805 } 1806 1807 /* 1808 * requires that rx->skb is a frame with ethernet header 1809 */ 1810 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1811 { 1812 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1813 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1814 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1815 1816 /* 1817 * Allow EAPOL frames to us/the PAE group address regardless 1818 * of whether the frame was encrypted or not. 1819 */ 1820 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1821 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1822 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1823 return true; 1824 1825 if (ieee80211_802_1x_port_control(rx) || 1826 ieee80211_drop_unencrypted(rx, fc)) 1827 return false; 1828 1829 return true; 1830 } 1831 1832 /* 1833 * requires that rx->skb is a frame with ethernet header 1834 */ 1835 static void 1836 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1837 { 1838 struct ieee80211_sub_if_data *sdata = rx->sdata; 1839 struct net_device *dev = sdata->dev; 1840 struct sk_buff *skb, *xmit_skb; 1841 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1842 struct sta_info *dsta; 1843 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1844 1845 skb = rx->skb; 1846 xmit_skb = NULL; 1847 1848 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1849 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1850 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1851 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1852 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1853 if (is_multicast_ether_addr(ehdr->h_dest)) { 1854 /* 1855 * send multicast frames both to higher layers in 1856 * local net stack and back to the wireless medium 1857 */ 1858 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1859 if (!xmit_skb) 1860 net_info_ratelimited("%s: failed to clone multicast frame\n", 1861 dev->name); 1862 } else { 1863 dsta = sta_info_get(sdata, skb->data); 1864 if (dsta) { 1865 /* 1866 * The destination station is associated to 1867 * this AP (in this VLAN), so send the frame 1868 * directly to it and do not pass it to local 1869 * net stack. 1870 */ 1871 xmit_skb = skb; 1872 skb = NULL; 1873 } 1874 } 1875 } 1876 1877 if (skb) { 1878 int align __maybe_unused; 1879 1880 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1881 /* 1882 * 'align' will only take the values 0 or 2 here 1883 * since all frames are required to be aligned 1884 * to 2-byte boundaries when being passed to 1885 * mac80211. That also explains the __skb_push() 1886 * below. 1887 */ 1888 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1889 if (align) { 1890 if (WARN_ON(skb_headroom(skb) < 3)) { 1891 dev_kfree_skb(skb); 1892 skb = NULL; 1893 } else { 1894 u8 *data = skb->data; 1895 size_t len = skb_headlen(skb); 1896 skb->data -= align; 1897 memmove(skb->data, data, len); 1898 skb_set_tail_pointer(skb, len); 1899 } 1900 } 1901 #endif 1902 1903 if (skb) { 1904 /* deliver to local stack */ 1905 skb->protocol = eth_type_trans(skb, dev); 1906 memset(skb->cb, 0, sizeof(skb->cb)); 1907 netif_receive_skb(skb); 1908 } 1909 } 1910 1911 if (xmit_skb) { 1912 /* 1913 * Send to wireless media and increase priority by 256 to 1914 * keep the received priority instead of reclassifying 1915 * the frame (see cfg80211_classify8021d). 1916 */ 1917 xmit_skb->priority += 256; 1918 xmit_skb->protocol = htons(ETH_P_802_3); 1919 skb_reset_network_header(xmit_skb); 1920 skb_reset_mac_header(xmit_skb); 1921 dev_queue_xmit(xmit_skb); 1922 } 1923 } 1924 1925 static ieee80211_rx_result debug_noinline 1926 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1927 { 1928 struct net_device *dev = rx->sdata->dev; 1929 struct sk_buff *skb = rx->skb; 1930 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1931 __le16 fc = hdr->frame_control; 1932 struct sk_buff_head frame_list; 1933 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1934 1935 if (unlikely(!ieee80211_is_data(fc))) 1936 return RX_CONTINUE; 1937 1938 if (unlikely(!ieee80211_is_data_present(fc))) 1939 return RX_DROP_MONITOR; 1940 1941 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1942 return RX_CONTINUE; 1943 1944 if (ieee80211_has_a4(hdr->frame_control) && 1945 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1946 !rx->sdata->u.vlan.sta) 1947 return RX_DROP_UNUSABLE; 1948 1949 if (is_multicast_ether_addr(hdr->addr1) && 1950 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1951 rx->sdata->u.vlan.sta) || 1952 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1953 rx->sdata->u.mgd.use_4addr))) 1954 return RX_DROP_UNUSABLE; 1955 1956 skb->dev = dev; 1957 __skb_queue_head_init(&frame_list); 1958 1959 if (skb_linearize(skb)) 1960 return RX_DROP_UNUSABLE; 1961 1962 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1963 rx->sdata->vif.type, 1964 rx->local->hw.extra_tx_headroom, true); 1965 1966 while (!skb_queue_empty(&frame_list)) { 1967 rx->skb = __skb_dequeue(&frame_list); 1968 1969 if (!ieee80211_frame_allowed(rx, fc)) { 1970 dev_kfree_skb(rx->skb); 1971 continue; 1972 } 1973 dev->stats.rx_packets++; 1974 dev->stats.rx_bytes += rx->skb->len; 1975 1976 ieee80211_deliver_skb(rx); 1977 } 1978 1979 return RX_QUEUED; 1980 } 1981 1982 #ifdef CONFIG_MAC80211_MESH 1983 static ieee80211_rx_result 1984 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1985 { 1986 struct ieee80211_hdr *fwd_hdr, *hdr; 1987 struct ieee80211_tx_info *info; 1988 struct ieee80211s_hdr *mesh_hdr; 1989 struct sk_buff *skb = rx->skb, *fwd_skb; 1990 struct ieee80211_local *local = rx->local; 1991 struct ieee80211_sub_if_data *sdata = rx->sdata; 1992 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1993 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 1994 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 1995 u16 q, hdrlen; 1996 1997 hdr = (struct ieee80211_hdr *) skb->data; 1998 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1999 2000 /* make sure fixed part of mesh header is there, also checks skb len */ 2001 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2002 return RX_DROP_MONITOR; 2003 2004 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2005 2006 /* make sure full mesh header is there, also checks skb len */ 2007 if (!pskb_may_pull(rx->skb, 2008 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2009 return RX_DROP_MONITOR; 2010 2011 /* reload pointers */ 2012 hdr = (struct ieee80211_hdr *) skb->data; 2013 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2014 2015 /* frame is in RMC, don't forward */ 2016 if (ieee80211_is_data(hdr->frame_control) && 2017 is_multicast_ether_addr(hdr->addr1) && 2018 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata)) 2019 return RX_DROP_MONITOR; 2020 2021 if (!ieee80211_is_data(hdr->frame_control) || 2022 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2023 return RX_CONTINUE; 2024 2025 if (!mesh_hdr->ttl) 2026 return RX_DROP_MONITOR; 2027 2028 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2029 struct mesh_path *mppath; 2030 char *proxied_addr; 2031 char *mpp_addr; 2032 2033 if (is_multicast_ether_addr(hdr->addr1)) { 2034 mpp_addr = hdr->addr3; 2035 proxied_addr = mesh_hdr->eaddr1; 2036 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2037 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2038 mpp_addr = hdr->addr4; 2039 proxied_addr = mesh_hdr->eaddr2; 2040 } else { 2041 return RX_DROP_MONITOR; 2042 } 2043 2044 rcu_read_lock(); 2045 mppath = mpp_path_lookup(proxied_addr, sdata); 2046 if (!mppath) { 2047 mpp_path_add(proxied_addr, mpp_addr, sdata); 2048 } else { 2049 spin_lock_bh(&mppath->state_lock); 2050 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2051 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2052 spin_unlock_bh(&mppath->state_lock); 2053 } 2054 rcu_read_unlock(); 2055 } 2056 2057 /* Frame has reached destination. Don't forward */ 2058 if (!is_multicast_ether_addr(hdr->addr1) && 2059 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2060 return RX_CONTINUE; 2061 2062 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2063 if (ieee80211_queue_stopped(&local->hw, q)) { 2064 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2065 return RX_DROP_MONITOR; 2066 } 2067 skb_set_queue_mapping(skb, q); 2068 2069 if (!--mesh_hdr->ttl) { 2070 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2071 goto out; 2072 } 2073 2074 if (!ifmsh->mshcfg.dot11MeshForwarding) 2075 goto out; 2076 2077 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2078 if (!fwd_skb) { 2079 net_info_ratelimited("%s: failed to clone mesh frame\n", 2080 sdata->name); 2081 goto out; 2082 } 2083 2084 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2085 info = IEEE80211_SKB_CB(fwd_skb); 2086 memset(info, 0, sizeof(*info)); 2087 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2088 info->control.vif = &rx->sdata->vif; 2089 info->control.jiffies = jiffies; 2090 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2091 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2092 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2093 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) { 2094 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2095 } else { 2096 /* unable to resolve next hop */ 2097 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3, 2098 0, reason, fwd_hdr->addr2, sdata); 2099 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2100 kfree_skb(fwd_skb); 2101 return RX_DROP_MONITOR; 2102 } 2103 2104 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2105 ieee80211_add_pending_skb(local, fwd_skb); 2106 out: 2107 if (is_multicast_ether_addr(hdr->addr1) || 2108 sdata->dev->flags & IFF_PROMISC) 2109 return RX_CONTINUE; 2110 else 2111 return RX_DROP_MONITOR; 2112 } 2113 #endif 2114 2115 static ieee80211_rx_result debug_noinline 2116 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2117 { 2118 struct ieee80211_sub_if_data *sdata = rx->sdata; 2119 struct ieee80211_local *local = rx->local; 2120 struct net_device *dev = sdata->dev; 2121 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2122 __le16 fc = hdr->frame_control; 2123 bool port_control; 2124 int err; 2125 2126 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2127 return RX_CONTINUE; 2128 2129 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2130 return RX_DROP_MONITOR; 2131 2132 /* 2133 * Send unexpected-4addr-frame event to hostapd. For older versions, 2134 * also drop the frame to cooked monitor interfaces. 2135 */ 2136 if (ieee80211_has_a4(hdr->frame_control) && 2137 sdata->vif.type == NL80211_IFTYPE_AP) { 2138 if (rx->sta && 2139 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2140 cfg80211_rx_unexpected_4addr_frame( 2141 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2142 return RX_DROP_MONITOR; 2143 } 2144 2145 err = __ieee80211_data_to_8023(rx, &port_control); 2146 if (unlikely(err)) 2147 return RX_DROP_UNUSABLE; 2148 2149 if (!ieee80211_frame_allowed(rx, fc)) 2150 return RX_DROP_MONITOR; 2151 2152 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2153 unlikely(port_control) && sdata->bss) { 2154 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2155 u.ap); 2156 dev = sdata->dev; 2157 rx->sdata = sdata; 2158 } 2159 2160 rx->skb->dev = dev; 2161 2162 dev->stats.rx_packets++; 2163 dev->stats.rx_bytes += rx->skb->len; 2164 2165 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2166 !is_multicast_ether_addr( 2167 ((struct ethhdr *)rx->skb->data)->h_dest) && 2168 (!local->scanning && 2169 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2170 mod_timer(&local->dynamic_ps_timer, jiffies + 2171 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2172 } 2173 2174 ieee80211_deliver_skb(rx); 2175 2176 return RX_QUEUED; 2177 } 2178 2179 static ieee80211_rx_result debug_noinline 2180 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 2181 { 2182 struct sk_buff *skb = rx->skb; 2183 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2184 struct tid_ampdu_rx *tid_agg_rx; 2185 u16 start_seq_num; 2186 u16 tid; 2187 2188 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2189 return RX_CONTINUE; 2190 2191 if (ieee80211_is_back_req(bar->frame_control)) { 2192 struct { 2193 __le16 control, start_seq_num; 2194 } __packed bar_data; 2195 2196 if (!rx->sta) 2197 return RX_DROP_MONITOR; 2198 2199 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2200 &bar_data, sizeof(bar_data))) 2201 return RX_DROP_MONITOR; 2202 2203 tid = le16_to_cpu(bar_data.control) >> 12; 2204 2205 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2206 if (!tid_agg_rx) 2207 return RX_DROP_MONITOR; 2208 2209 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2210 2211 /* reset session timer */ 2212 if (tid_agg_rx->timeout) 2213 mod_timer(&tid_agg_rx->session_timer, 2214 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2215 2216 spin_lock(&tid_agg_rx->reorder_lock); 2217 /* release stored frames up to start of BAR */ 2218 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2219 start_seq_num); 2220 spin_unlock(&tid_agg_rx->reorder_lock); 2221 2222 kfree_skb(skb); 2223 return RX_QUEUED; 2224 } 2225 2226 /* 2227 * After this point, we only want management frames, 2228 * so we can drop all remaining control frames to 2229 * cooked monitor interfaces. 2230 */ 2231 return RX_DROP_MONITOR; 2232 } 2233 2234 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2235 struct ieee80211_mgmt *mgmt, 2236 size_t len) 2237 { 2238 struct ieee80211_local *local = sdata->local; 2239 struct sk_buff *skb; 2240 struct ieee80211_mgmt *resp; 2241 2242 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2243 /* Not to own unicast address */ 2244 return; 2245 } 2246 2247 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2248 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2249 /* Not from the current AP or not associated yet. */ 2250 return; 2251 } 2252 2253 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2254 /* Too short SA Query request frame */ 2255 return; 2256 } 2257 2258 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2259 if (skb == NULL) 2260 return; 2261 2262 skb_reserve(skb, local->hw.extra_tx_headroom); 2263 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2264 memset(resp, 0, 24); 2265 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2266 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2267 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2268 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2269 IEEE80211_STYPE_ACTION); 2270 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2271 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2272 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2273 memcpy(resp->u.action.u.sa_query.trans_id, 2274 mgmt->u.action.u.sa_query.trans_id, 2275 WLAN_SA_QUERY_TR_ID_LEN); 2276 2277 ieee80211_tx_skb(sdata, skb); 2278 } 2279 2280 static ieee80211_rx_result debug_noinline 2281 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2282 { 2283 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2284 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2285 2286 /* 2287 * From here on, look only at management frames. 2288 * Data and control frames are already handled, 2289 * and unknown (reserved) frames are useless. 2290 */ 2291 if (rx->skb->len < 24) 2292 return RX_DROP_MONITOR; 2293 2294 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2295 return RX_DROP_MONITOR; 2296 2297 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2298 ieee80211_is_beacon(mgmt->frame_control) && 2299 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2300 int sig = 0; 2301 2302 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2303 sig = status->signal; 2304 2305 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2306 rx->skb->data, rx->skb->len, 2307 status->freq, sig); 2308 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2309 } 2310 2311 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2312 return RX_DROP_MONITOR; 2313 2314 if (ieee80211_drop_unencrypted_mgmt(rx)) 2315 return RX_DROP_UNUSABLE; 2316 2317 return RX_CONTINUE; 2318 } 2319 2320 static ieee80211_rx_result debug_noinline 2321 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2322 { 2323 struct ieee80211_local *local = rx->local; 2324 struct ieee80211_sub_if_data *sdata = rx->sdata; 2325 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2327 int len = rx->skb->len; 2328 2329 if (!ieee80211_is_action(mgmt->frame_control)) 2330 return RX_CONTINUE; 2331 2332 /* drop too small frames */ 2333 if (len < IEEE80211_MIN_ACTION_SIZE) 2334 return RX_DROP_UNUSABLE; 2335 2336 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2337 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED) 2338 return RX_DROP_UNUSABLE; 2339 2340 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2341 return RX_DROP_UNUSABLE; 2342 2343 switch (mgmt->u.action.category) { 2344 case WLAN_CATEGORY_HT: 2345 /* reject HT action frames from stations not supporting HT */ 2346 if (!rx->sta->sta.ht_cap.ht_supported) 2347 goto invalid; 2348 2349 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2350 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2351 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2352 sdata->vif.type != NL80211_IFTYPE_AP && 2353 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2354 break; 2355 2356 /* verify action & smps_control are present */ 2357 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2358 goto invalid; 2359 2360 switch (mgmt->u.action.u.ht_smps.action) { 2361 case WLAN_HT_ACTION_SMPS: { 2362 struct ieee80211_supported_band *sband; 2363 u8 smps; 2364 2365 /* convert to HT capability */ 2366 switch (mgmt->u.action.u.ht_smps.smps_control) { 2367 case WLAN_HT_SMPS_CONTROL_DISABLED: 2368 smps = WLAN_HT_CAP_SM_PS_DISABLED; 2369 break; 2370 case WLAN_HT_SMPS_CONTROL_STATIC: 2371 smps = WLAN_HT_CAP_SM_PS_STATIC; 2372 break; 2373 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2374 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 2375 break; 2376 default: 2377 goto invalid; 2378 } 2379 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 2380 2381 /* if no change do nothing */ 2382 if ((rx->sta->sta.ht_cap.cap & 2383 IEEE80211_HT_CAP_SM_PS) == smps) 2384 goto handled; 2385 2386 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS; 2387 rx->sta->sta.ht_cap.cap |= smps; 2388 2389 sband = rx->local->hw.wiphy->bands[status->band]; 2390 2391 rate_control_rate_update(local, sband, rx->sta, 2392 IEEE80211_RC_SMPS_CHANGED); 2393 goto handled; 2394 } 2395 default: 2396 goto invalid; 2397 } 2398 2399 break; 2400 case WLAN_CATEGORY_BACK: 2401 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2402 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2403 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2404 sdata->vif.type != NL80211_IFTYPE_AP && 2405 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2406 break; 2407 2408 /* verify action_code is present */ 2409 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2410 break; 2411 2412 switch (mgmt->u.action.u.addba_req.action_code) { 2413 case WLAN_ACTION_ADDBA_REQ: 2414 if (len < (IEEE80211_MIN_ACTION_SIZE + 2415 sizeof(mgmt->u.action.u.addba_req))) 2416 goto invalid; 2417 break; 2418 case WLAN_ACTION_ADDBA_RESP: 2419 if (len < (IEEE80211_MIN_ACTION_SIZE + 2420 sizeof(mgmt->u.action.u.addba_resp))) 2421 goto invalid; 2422 break; 2423 case WLAN_ACTION_DELBA: 2424 if (len < (IEEE80211_MIN_ACTION_SIZE + 2425 sizeof(mgmt->u.action.u.delba))) 2426 goto invalid; 2427 break; 2428 default: 2429 goto invalid; 2430 } 2431 2432 goto queue; 2433 case WLAN_CATEGORY_SPECTRUM_MGMT: 2434 if (status->band != IEEE80211_BAND_5GHZ) 2435 break; 2436 2437 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2438 break; 2439 2440 /* verify action_code is present */ 2441 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2442 break; 2443 2444 switch (mgmt->u.action.u.measurement.action_code) { 2445 case WLAN_ACTION_SPCT_MSR_REQ: 2446 if (len < (IEEE80211_MIN_ACTION_SIZE + 2447 sizeof(mgmt->u.action.u.measurement))) 2448 break; 2449 ieee80211_process_measurement_req(sdata, mgmt, len); 2450 goto handled; 2451 case WLAN_ACTION_SPCT_CHL_SWITCH: 2452 if (len < (IEEE80211_MIN_ACTION_SIZE + 2453 sizeof(mgmt->u.action.u.chan_switch))) 2454 break; 2455 2456 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2457 break; 2458 2459 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2460 break; 2461 2462 goto queue; 2463 } 2464 break; 2465 case WLAN_CATEGORY_SA_QUERY: 2466 if (len < (IEEE80211_MIN_ACTION_SIZE + 2467 sizeof(mgmt->u.action.u.sa_query))) 2468 break; 2469 2470 switch (mgmt->u.action.u.sa_query.action) { 2471 case WLAN_ACTION_SA_QUERY_REQUEST: 2472 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2473 break; 2474 ieee80211_process_sa_query_req(sdata, mgmt, len); 2475 goto handled; 2476 } 2477 break; 2478 case WLAN_CATEGORY_SELF_PROTECTED: 2479 if (len < (IEEE80211_MIN_ACTION_SIZE + 2480 sizeof(mgmt->u.action.u.self_prot.action_code))) 2481 break; 2482 2483 switch (mgmt->u.action.u.self_prot.action_code) { 2484 case WLAN_SP_MESH_PEERING_OPEN: 2485 case WLAN_SP_MESH_PEERING_CLOSE: 2486 case WLAN_SP_MESH_PEERING_CONFIRM: 2487 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2488 goto invalid; 2489 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) 2490 /* userspace handles this frame */ 2491 break; 2492 goto queue; 2493 case WLAN_SP_MGK_INFORM: 2494 case WLAN_SP_MGK_ACK: 2495 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2496 goto invalid; 2497 break; 2498 } 2499 break; 2500 case WLAN_CATEGORY_MESH_ACTION: 2501 if (len < (IEEE80211_MIN_ACTION_SIZE + 2502 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2503 break; 2504 2505 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2506 break; 2507 if (mesh_action_is_path_sel(mgmt) && 2508 !mesh_path_sel_is_hwmp(sdata)) 2509 break; 2510 goto queue; 2511 } 2512 2513 return RX_CONTINUE; 2514 2515 invalid: 2516 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2517 /* will return in the next handlers */ 2518 return RX_CONTINUE; 2519 2520 handled: 2521 if (rx->sta) 2522 rx->sta->rx_packets++; 2523 dev_kfree_skb(rx->skb); 2524 return RX_QUEUED; 2525 2526 queue: 2527 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2528 skb_queue_tail(&sdata->skb_queue, rx->skb); 2529 ieee80211_queue_work(&local->hw, &sdata->work); 2530 if (rx->sta) 2531 rx->sta->rx_packets++; 2532 return RX_QUEUED; 2533 } 2534 2535 static ieee80211_rx_result debug_noinline 2536 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2537 { 2538 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2539 int sig = 0; 2540 2541 /* skip known-bad action frames and return them in the next handler */ 2542 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2543 return RX_CONTINUE; 2544 2545 /* 2546 * Getting here means the kernel doesn't know how to handle 2547 * it, but maybe userspace does ... include returned frames 2548 * so userspace can register for those to know whether ones 2549 * it transmitted were processed or returned. 2550 */ 2551 2552 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2553 sig = status->signal; 2554 2555 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2556 rx->skb->data, rx->skb->len, 2557 GFP_ATOMIC)) { 2558 if (rx->sta) 2559 rx->sta->rx_packets++; 2560 dev_kfree_skb(rx->skb); 2561 return RX_QUEUED; 2562 } 2563 2564 return RX_CONTINUE; 2565 } 2566 2567 static ieee80211_rx_result debug_noinline 2568 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2569 { 2570 struct ieee80211_local *local = rx->local; 2571 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2572 struct sk_buff *nskb; 2573 struct ieee80211_sub_if_data *sdata = rx->sdata; 2574 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2575 2576 if (!ieee80211_is_action(mgmt->frame_control)) 2577 return RX_CONTINUE; 2578 2579 /* 2580 * For AP mode, hostapd is responsible for handling any action 2581 * frames that we didn't handle, including returning unknown 2582 * ones. For all other modes we will return them to the sender, 2583 * setting the 0x80 bit in the action category, as required by 2584 * 802.11-2012 9.24.4. 2585 * Newer versions of hostapd shall also use the management frame 2586 * registration mechanisms, but older ones still use cooked 2587 * monitor interfaces so push all frames there. 2588 */ 2589 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2590 (sdata->vif.type == NL80211_IFTYPE_AP || 2591 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2592 return RX_DROP_MONITOR; 2593 2594 if (is_multicast_ether_addr(mgmt->da)) 2595 return RX_DROP_MONITOR; 2596 2597 /* do not return rejected action frames */ 2598 if (mgmt->u.action.category & 0x80) 2599 return RX_DROP_UNUSABLE; 2600 2601 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2602 GFP_ATOMIC); 2603 if (nskb) { 2604 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2605 2606 nmgmt->u.action.category |= 0x80; 2607 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2608 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2609 2610 memset(nskb->cb, 0, sizeof(nskb->cb)); 2611 2612 ieee80211_tx_skb(rx->sdata, nskb); 2613 } 2614 dev_kfree_skb(rx->skb); 2615 return RX_QUEUED; 2616 } 2617 2618 static ieee80211_rx_result debug_noinline 2619 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2620 { 2621 struct ieee80211_sub_if_data *sdata = rx->sdata; 2622 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2623 __le16 stype; 2624 2625 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2626 2627 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2628 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2629 sdata->vif.type != NL80211_IFTYPE_STATION) 2630 return RX_DROP_MONITOR; 2631 2632 switch (stype) { 2633 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2634 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2635 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2636 /* process for all: mesh, mlme, ibss */ 2637 break; 2638 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2639 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2640 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2641 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2642 if (is_multicast_ether_addr(mgmt->da) && 2643 !is_broadcast_ether_addr(mgmt->da)) 2644 return RX_DROP_MONITOR; 2645 2646 /* process only for station */ 2647 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2648 return RX_DROP_MONITOR; 2649 break; 2650 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2651 /* process only for ibss */ 2652 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 2653 return RX_DROP_MONITOR; 2654 break; 2655 default: 2656 return RX_DROP_MONITOR; 2657 } 2658 2659 /* queue up frame and kick off work to process it */ 2660 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2661 skb_queue_tail(&sdata->skb_queue, rx->skb); 2662 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2663 if (rx->sta) 2664 rx->sta->rx_packets++; 2665 2666 return RX_QUEUED; 2667 } 2668 2669 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2670 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2671 struct ieee80211_rate *rate) 2672 { 2673 struct ieee80211_sub_if_data *sdata; 2674 struct ieee80211_local *local = rx->local; 2675 struct sk_buff *skb = rx->skb, *skb2; 2676 struct net_device *prev_dev = NULL; 2677 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2678 int needed_headroom; 2679 2680 /* 2681 * If cooked monitor has been processed already, then 2682 * don't do it again. If not, set the flag. 2683 */ 2684 if (rx->flags & IEEE80211_RX_CMNTR) 2685 goto out_free_skb; 2686 rx->flags |= IEEE80211_RX_CMNTR; 2687 2688 /* If there are no cooked monitor interfaces, just free the SKB */ 2689 if (!local->cooked_mntrs) 2690 goto out_free_skb; 2691 2692 /* room for the radiotap header based on driver features */ 2693 needed_headroom = ieee80211_rx_radiotap_space(local, status); 2694 2695 if (skb_headroom(skb) < needed_headroom && 2696 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2697 goto out_free_skb; 2698 2699 /* prepend radiotap information */ 2700 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2701 false); 2702 2703 skb_set_mac_header(skb, 0); 2704 skb->ip_summed = CHECKSUM_UNNECESSARY; 2705 skb->pkt_type = PACKET_OTHERHOST; 2706 skb->protocol = htons(ETH_P_802_2); 2707 2708 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2709 if (!ieee80211_sdata_running(sdata)) 2710 continue; 2711 2712 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2713 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2714 continue; 2715 2716 if (prev_dev) { 2717 skb2 = skb_clone(skb, GFP_ATOMIC); 2718 if (skb2) { 2719 skb2->dev = prev_dev; 2720 netif_receive_skb(skb2); 2721 } 2722 } 2723 2724 prev_dev = sdata->dev; 2725 sdata->dev->stats.rx_packets++; 2726 sdata->dev->stats.rx_bytes += skb->len; 2727 } 2728 2729 if (prev_dev) { 2730 skb->dev = prev_dev; 2731 netif_receive_skb(skb); 2732 return; 2733 } 2734 2735 out_free_skb: 2736 dev_kfree_skb(skb); 2737 } 2738 2739 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2740 ieee80211_rx_result res) 2741 { 2742 switch (res) { 2743 case RX_DROP_MONITOR: 2744 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2745 if (rx->sta) 2746 rx->sta->rx_dropped++; 2747 /* fall through */ 2748 case RX_CONTINUE: { 2749 struct ieee80211_rate *rate = NULL; 2750 struct ieee80211_supported_band *sband; 2751 struct ieee80211_rx_status *status; 2752 2753 status = IEEE80211_SKB_RXCB((rx->skb)); 2754 2755 sband = rx->local->hw.wiphy->bands[status->band]; 2756 if (!(status->flag & RX_FLAG_HT) && 2757 !(status->flag & RX_FLAG_VHT)) 2758 rate = &sband->bitrates[status->rate_idx]; 2759 2760 ieee80211_rx_cooked_monitor(rx, rate); 2761 break; 2762 } 2763 case RX_DROP_UNUSABLE: 2764 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2765 if (rx->sta) 2766 rx->sta->rx_dropped++; 2767 dev_kfree_skb(rx->skb); 2768 break; 2769 case RX_QUEUED: 2770 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2771 break; 2772 } 2773 } 2774 2775 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx) 2776 { 2777 ieee80211_rx_result res = RX_DROP_MONITOR; 2778 struct sk_buff *skb; 2779 2780 #define CALL_RXH(rxh) \ 2781 do { \ 2782 res = rxh(rx); \ 2783 if (res != RX_CONTINUE) \ 2784 goto rxh_next; \ 2785 } while (0); 2786 2787 spin_lock(&rx->local->rx_skb_queue.lock); 2788 if (rx->local->running_rx_handler) 2789 goto unlock; 2790 2791 rx->local->running_rx_handler = true; 2792 2793 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) { 2794 spin_unlock(&rx->local->rx_skb_queue.lock); 2795 2796 /* 2797 * all the other fields are valid across frames 2798 * that belong to an aMPDU since they are on the 2799 * same TID from the same station 2800 */ 2801 rx->skb = skb; 2802 2803 CALL_RXH(ieee80211_rx_h_decrypt) 2804 CALL_RXH(ieee80211_rx_h_check_more_data) 2805 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2806 CALL_RXH(ieee80211_rx_h_sta_process) 2807 CALL_RXH(ieee80211_rx_h_defragment) 2808 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2809 /* must be after MMIC verify so header is counted in MPDU mic */ 2810 #ifdef CONFIG_MAC80211_MESH 2811 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2812 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2813 #endif 2814 CALL_RXH(ieee80211_rx_h_amsdu) 2815 CALL_RXH(ieee80211_rx_h_data) 2816 CALL_RXH(ieee80211_rx_h_ctrl); 2817 CALL_RXH(ieee80211_rx_h_mgmt_check) 2818 CALL_RXH(ieee80211_rx_h_action) 2819 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2820 CALL_RXH(ieee80211_rx_h_action_return) 2821 CALL_RXH(ieee80211_rx_h_mgmt) 2822 2823 rxh_next: 2824 ieee80211_rx_handlers_result(rx, res); 2825 spin_lock(&rx->local->rx_skb_queue.lock); 2826 #undef CALL_RXH 2827 } 2828 2829 rx->local->running_rx_handler = false; 2830 2831 unlock: 2832 spin_unlock(&rx->local->rx_skb_queue.lock); 2833 } 2834 2835 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2836 { 2837 ieee80211_rx_result res = RX_DROP_MONITOR; 2838 2839 #define CALL_RXH(rxh) \ 2840 do { \ 2841 res = rxh(rx); \ 2842 if (res != RX_CONTINUE) \ 2843 goto rxh_next; \ 2844 } while (0); 2845 2846 CALL_RXH(ieee80211_rx_h_check) 2847 2848 ieee80211_rx_reorder_ampdu(rx); 2849 2850 ieee80211_rx_handlers(rx); 2851 return; 2852 2853 rxh_next: 2854 ieee80211_rx_handlers_result(rx, res); 2855 2856 #undef CALL_RXH 2857 } 2858 2859 /* 2860 * This function makes calls into the RX path, therefore 2861 * it has to be invoked under RCU read lock. 2862 */ 2863 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2864 { 2865 struct ieee80211_rx_data rx = { 2866 .sta = sta, 2867 .sdata = sta->sdata, 2868 .local = sta->local, 2869 /* This is OK -- must be QoS data frame */ 2870 .security_idx = tid, 2871 .seqno_idx = tid, 2872 .flags = 0, 2873 }; 2874 struct tid_ampdu_rx *tid_agg_rx; 2875 2876 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2877 if (!tid_agg_rx) 2878 return; 2879 2880 spin_lock(&tid_agg_rx->reorder_lock); 2881 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx); 2882 spin_unlock(&tid_agg_rx->reorder_lock); 2883 2884 ieee80211_rx_handlers(&rx); 2885 } 2886 2887 /* main receive path */ 2888 2889 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2890 struct ieee80211_hdr *hdr) 2891 { 2892 struct ieee80211_sub_if_data *sdata = rx->sdata; 2893 struct sk_buff *skb = rx->skb; 2894 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2895 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2896 int multicast = is_multicast_ether_addr(hdr->addr1); 2897 2898 switch (sdata->vif.type) { 2899 case NL80211_IFTYPE_STATION: 2900 if (!bssid && !sdata->u.mgd.use_4addr) 2901 return 0; 2902 if (!multicast && 2903 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2904 if (!(sdata->dev->flags & IFF_PROMISC) || 2905 sdata->u.mgd.use_4addr) 2906 return 0; 2907 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2908 } 2909 break; 2910 case NL80211_IFTYPE_ADHOC: 2911 if (!bssid) 2912 return 0; 2913 if (ieee80211_is_beacon(hdr->frame_control)) { 2914 return 1; 2915 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2916 return 0; 2917 } else if (!multicast && 2918 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2919 if (!(sdata->dev->flags & IFF_PROMISC)) 2920 return 0; 2921 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2922 } else if (!rx->sta) { 2923 int rate_idx; 2924 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 2925 rate_idx = 0; /* TODO: HT/VHT rates */ 2926 else 2927 rate_idx = status->rate_idx; 2928 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 2929 BIT(rate_idx)); 2930 } 2931 break; 2932 case NL80211_IFTYPE_MESH_POINT: 2933 if (!multicast && 2934 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 2935 if (!(sdata->dev->flags & IFF_PROMISC)) 2936 return 0; 2937 2938 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2939 } 2940 break; 2941 case NL80211_IFTYPE_AP_VLAN: 2942 case NL80211_IFTYPE_AP: 2943 if (!bssid) { 2944 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 2945 return 0; 2946 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 2947 /* 2948 * Accept public action frames even when the 2949 * BSSID doesn't match, this is used for P2P 2950 * and location updates. Note that mac80211 2951 * itself never looks at these frames. 2952 */ 2953 if (ieee80211_is_public_action(hdr, skb->len)) 2954 return 1; 2955 if (!ieee80211_is_beacon(hdr->frame_control)) 2956 return 0; 2957 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2958 } 2959 break; 2960 case NL80211_IFTYPE_WDS: 2961 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2962 return 0; 2963 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 2964 return 0; 2965 break; 2966 case NL80211_IFTYPE_P2P_DEVICE: 2967 if (!ieee80211_is_public_action(hdr, skb->len) && 2968 !ieee80211_is_probe_req(hdr->frame_control) && 2969 !ieee80211_is_probe_resp(hdr->frame_control) && 2970 !ieee80211_is_beacon(hdr->frame_control)) 2971 return 0; 2972 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 2973 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2974 break; 2975 default: 2976 /* should never get here */ 2977 WARN_ON_ONCE(1); 2978 break; 2979 } 2980 2981 return 1; 2982 } 2983 2984 /* 2985 * This function returns whether or not the SKB 2986 * was destined for RX processing or not, which, 2987 * if consume is true, is equivalent to whether 2988 * or not the skb was consumed. 2989 */ 2990 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 2991 struct sk_buff *skb, bool consume) 2992 { 2993 struct ieee80211_local *local = rx->local; 2994 struct ieee80211_sub_if_data *sdata = rx->sdata; 2995 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2996 struct ieee80211_hdr *hdr = (void *)skb->data; 2997 int prepares; 2998 2999 rx->skb = skb; 3000 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3001 prepares = prepare_for_handlers(rx, hdr); 3002 3003 if (!prepares) 3004 return false; 3005 3006 if (!consume) { 3007 skb = skb_copy(skb, GFP_ATOMIC); 3008 if (!skb) { 3009 if (net_ratelimit()) 3010 wiphy_debug(local->hw.wiphy, 3011 "failed to copy skb for %s\n", 3012 sdata->name); 3013 return true; 3014 } 3015 3016 rx->skb = skb; 3017 } 3018 3019 ieee80211_invoke_rx_handlers(rx); 3020 return true; 3021 } 3022 3023 /* 3024 * This is the actual Rx frames handler. as it blongs to Rx path it must 3025 * be called with rcu_read_lock protection. 3026 */ 3027 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3028 struct sk_buff *skb) 3029 { 3030 struct ieee80211_local *local = hw_to_local(hw); 3031 struct ieee80211_sub_if_data *sdata; 3032 struct ieee80211_hdr *hdr; 3033 __le16 fc; 3034 struct ieee80211_rx_data rx; 3035 struct ieee80211_sub_if_data *prev; 3036 struct sta_info *sta, *tmp, *prev_sta; 3037 int err = 0; 3038 3039 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3040 memset(&rx, 0, sizeof(rx)); 3041 rx.skb = skb; 3042 rx.local = local; 3043 3044 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3045 local->dot11ReceivedFragmentCount++; 3046 3047 if (ieee80211_is_mgmt(fc)) { 3048 /* drop frame if too short for header */ 3049 if (skb->len < ieee80211_hdrlen(fc)) 3050 err = -ENOBUFS; 3051 else 3052 err = skb_linearize(skb); 3053 } else { 3054 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3055 } 3056 3057 if (err) { 3058 dev_kfree_skb(skb); 3059 return; 3060 } 3061 3062 hdr = (struct ieee80211_hdr *)skb->data; 3063 ieee80211_parse_qos(&rx); 3064 ieee80211_verify_alignment(&rx); 3065 3066 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3067 ieee80211_is_beacon(hdr->frame_control))) 3068 ieee80211_scan_rx(local, skb); 3069 3070 if (ieee80211_is_data(fc)) { 3071 prev_sta = NULL; 3072 3073 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3074 if (!prev_sta) { 3075 prev_sta = sta; 3076 continue; 3077 } 3078 3079 rx.sta = prev_sta; 3080 rx.sdata = prev_sta->sdata; 3081 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3082 3083 prev_sta = sta; 3084 } 3085 3086 if (prev_sta) { 3087 rx.sta = prev_sta; 3088 rx.sdata = prev_sta->sdata; 3089 3090 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3091 return; 3092 goto out; 3093 } 3094 } 3095 3096 prev = NULL; 3097 3098 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3099 if (!ieee80211_sdata_running(sdata)) 3100 continue; 3101 3102 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3103 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3104 continue; 3105 3106 /* 3107 * frame is destined for this interface, but if it's 3108 * not also for the previous one we handle that after 3109 * the loop to avoid copying the SKB once too much 3110 */ 3111 3112 if (!prev) { 3113 prev = sdata; 3114 continue; 3115 } 3116 3117 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3118 rx.sdata = prev; 3119 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3120 3121 prev = sdata; 3122 } 3123 3124 if (prev) { 3125 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3126 rx.sdata = prev; 3127 3128 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3129 return; 3130 } 3131 3132 out: 3133 dev_kfree_skb(skb); 3134 } 3135 3136 /* 3137 * This is the receive path handler. It is called by a low level driver when an 3138 * 802.11 MPDU is received from the hardware. 3139 */ 3140 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3141 { 3142 struct ieee80211_local *local = hw_to_local(hw); 3143 struct ieee80211_rate *rate = NULL; 3144 struct ieee80211_supported_band *sband; 3145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3146 3147 WARN_ON_ONCE(softirq_count() == 0); 3148 3149 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3150 goto drop; 3151 3152 sband = local->hw.wiphy->bands[status->band]; 3153 if (WARN_ON(!sband)) 3154 goto drop; 3155 3156 /* 3157 * If we're suspending, it is possible although not too likely 3158 * that we'd be receiving frames after having already partially 3159 * quiesced the stack. We can't process such frames then since 3160 * that might, for example, cause stations to be added or other 3161 * driver callbacks be invoked. 3162 */ 3163 if (unlikely(local->quiescing || local->suspended)) 3164 goto drop; 3165 3166 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3167 if (unlikely(local->in_reconfig)) 3168 goto drop; 3169 3170 /* 3171 * The same happens when we're not even started, 3172 * but that's worth a warning. 3173 */ 3174 if (WARN_ON(!local->started)) 3175 goto drop; 3176 3177 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3178 /* 3179 * Validate the rate, unless a PLCP error means that 3180 * we probably can't have a valid rate here anyway. 3181 */ 3182 3183 if (status->flag & RX_FLAG_HT) { 3184 /* 3185 * rate_idx is MCS index, which can be [0-76] 3186 * as documented on: 3187 * 3188 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3189 * 3190 * Anything else would be some sort of driver or 3191 * hardware error. The driver should catch hardware 3192 * errors. 3193 */ 3194 if (WARN(status->rate_idx > 76, 3195 "Rate marked as an HT rate but passed " 3196 "status->rate_idx is not " 3197 "an MCS index [0-76]: %d (0x%02x)\n", 3198 status->rate_idx, 3199 status->rate_idx)) 3200 goto drop; 3201 } else if (status->flag & RX_FLAG_VHT) { 3202 if (WARN_ONCE(status->rate_idx > 9 || 3203 !status->vht_nss || 3204 status->vht_nss > 8, 3205 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3206 status->rate_idx, status->vht_nss)) 3207 goto drop; 3208 } else { 3209 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3210 goto drop; 3211 rate = &sband->bitrates[status->rate_idx]; 3212 } 3213 } 3214 3215 status->rx_flags = 0; 3216 3217 /* 3218 * key references and virtual interfaces are protected using RCU 3219 * and this requires that we are in a read-side RCU section during 3220 * receive processing 3221 */ 3222 rcu_read_lock(); 3223 3224 /* 3225 * Frames with failed FCS/PLCP checksum are not returned, 3226 * all other frames are returned without radiotap header 3227 * if it was previously present. 3228 * Also, frames with less than 16 bytes are dropped. 3229 */ 3230 skb = ieee80211_rx_monitor(local, skb, rate); 3231 if (!skb) { 3232 rcu_read_unlock(); 3233 return; 3234 } 3235 3236 ieee80211_tpt_led_trig_rx(local, 3237 ((struct ieee80211_hdr *)skb->data)->frame_control, 3238 skb->len); 3239 __ieee80211_rx_handle_packet(hw, skb); 3240 3241 rcu_read_unlock(); 3242 3243 return; 3244 drop: 3245 kfree_skb(skb); 3246 } 3247 EXPORT_SYMBOL(ieee80211_rx); 3248 3249 /* This is a version of the rx handler that can be called from hard irq 3250 * context. Post the skb on the queue and schedule the tasklet */ 3251 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3252 { 3253 struct ieee80211_local *local = hw_to_local(hw); 3254 3255 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3256 3257 skb->pkt_type = IEEE80211_RX_MSG; 3258 skb_queue_tail(&local->skb_queue, skb); 3259 tasklet_schedule(&local->tasklet); 3260 } 3261 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3262