1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/jiffies.h> 14 #include <linux/slab.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 42 struct sk_buff *skb, 43 unsigned int rtap_vendor_space) 44 { 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 __pskb_pull(skb, rtap_vendor_space); 57 58 return skb; 59 } 60 61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 62 unsigned int rtap_vendor_space) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + rtap_vendor_space); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return true; 73 74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 75 return true; 76 77 if (ieee80211_is_ctl(hdr->frame_control) && 78 !ieee80211_is_pspoll(hdr->frame_control) && 79 !ieee80211_is_back_req(hdr->frame_control)) 80 return true; 81 82 return false; 83 } 84 85 static int 86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 87 struct ieee80211_rx_status *status, 88 struct sk_buff *skb) 89 { 90 int len; 91 92 /* always present fields */ 93 len = sizeof(struct ieee80211_radiotap_header) + 8; 94 95 /* allocate extra bitmaps */ 96 if (status->chains) 97 len += 4 * hweight8(status->chains); 98 99 if (ieee80211_have_rx_timestamp(status)) { 100 len = ALIGN(len, 8); 101 len += 8; 102 } 103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 104 len += 1; 105 106 /* antenna field, if we don't have per-chain info */ 107 if (!status->chains) 108 len += 1; 109 110 /* padding for RX_FLAGS if necessary */ 111 len = ALIGN(len, 2); 112 113 if (status->flag & RX_FLAG_HT) /* HT info */ 114 len += 3; 115 116 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 117 len = ALIGN(len, 4); 118 len += 8; 119 } 120 121 if (status->flag & RX_FLAG_VHT) { 122 len = ALIGN(len, 2); 123 len += 12; 124 } 125 126 if (status->chains) { 127 /* antenna and antenna signal fields */ 128 len += 2 * hweight8(status->chains); 129 } 130 131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 133 134 /* vendor presence bitmap */ 135 len += 4; 136 /* alignment for fixed 6-byte vendor data header */ 137 len = ALIGN(len, 2); 138 /* vendor data header */ 139 len += 6; 140 if (WARN_ON(rtap->align == 0)) 141 rtap->align = 1; 142 len = ALIGN(len, rtap->align); 143 len += rtap->len + rtap->pad; 144 } 145 146 return len; 147 } 148 149 /* 150 * ieee80211_add_rx_radiotap_header - add radiotap header 151 * 152 * add a radiotap header containing all the fields which the hardware provided. 153 */ 154 static void 155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 156 struct sk_buff *skb, 157 struct ieee80211_rate *rate, 158 int rtap_len, bool has_fcs) 159 { 160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 161 struct ieee80211_radiotap_header *rthdr; 162 unsigned char *pos; 163 __le32 *it_present; 164 u32 it_present_val; 165 u16 rx_flags = 0; 166 u16 channel_flags = 0; 167 int mpdulen, chain; 168 unsigned long chains = status->chains; 169 struct ieee80211_vendor_radiotap rtap = {}; 170 171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 173 /* rtap.len and rtap.pad are undone immediately */ 174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 175 } 176 177 mpdulen = skb->len; 178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 179 mpdulen += FCS_LEN; 180 181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 183 it_present = &rthdr->it_present; 184 185 /* radiotap header, set always present flags */ 186 rthdr->it_len = cpu_to_le16(rtap_len); 187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 188 BIT(IEEE80211_RADIOTAP_CHANNEL) | 189 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 190 191 if (!status->chains) 192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 193 194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 195 it_present_val |= 196 BIT(IEEE80211_RADIOTAP_EXT) | 197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 198 put_unaligned_le32(it_present_val, it_present); 199 it_present++; 200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 202 } 203 204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 206 BIT(IEEE80211_RADIOTAP_EXT); 207 put_unaligned_le32(it_present_val, it_present); 208 it_present++; 209 it_present_val = rtap.present; 210 } 211 212 put_unaligned_le32(it_present_val, it_present); 213 214 pos = (void *)(it_present + 1); 215 216 /* the order of the following fields is important */ 217 218 /* IEEE80211_RADIOTAP_TSFT */ 219 if (ieee80211_have_rx_timestamp(status)) { 220 /* padding */ 221 while ((pos - (u8 *)rthdr) & 7) 222 *pos++ = 0; 223 put_unaligned_le64( 224 ieee80211_calculate_rx_timestamp(local, status, 225 mpdulen, 0), 226 pos); 227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 228 pos += 8; 229 } 230 231 /* IEEE80211_RADIOTAP_FLAGS */ 232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 233 *pos |= IEEE80211_RADIOTAP_F_FCS; 234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 235 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 236 if (status->flag & RX_FLAG_SHORTPRE) 237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 238 pos++; 239 240 /* IEEE80211_RADIOTAP_RATE */ 241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 242 /* 243 * Without rate information don't add it. If we have, 244 * MCS information is a separate field in radiotap, 245 * added below. The byte here is needed as padding 246 * for the channel though, so initialise it to 0. 247 */ 248 *pos = 0; 249 } else { 250 int shift = 0; 251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 252 if (status->flag & RX_FLAG_10MHZ) 253 shift = 1; 254 else if (status->flag & RX_FLAG_5MHZ) 255 shift = 2; 256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 257 } 258 pos++; 259 260 /* IEEE80211_RADIOTAP_CHANNEL */ 261 put_unaligned_le16(status->freq, pos); 262 pos += 2; 263 if (status->flag & RX_FLAG_10MHZ) 264 channel_flags |= IEEE80211_CHAN_HALF; 265 else if (status->flag & RX_FLAG_5MHZ) 266 channel_flags |= IEEE80211_CHAN_QUARTER; 267 268 if (status->band == IEEE80211_BAND_5GHZ) 269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 274 else if (rate) 275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 276 else 277 channel_flags |= IEEE80211_CHAN_2GHZ; 278 put_unaligned_le16(channel_flags, pos); 279 pos += 2; 280 281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 284 *pos = status->signal; 285 rthdr->it_present |= 286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 287 pos++; 288 } 289 290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 291 292 if (!status->chains) { 293 /* IEEE80211_RADIOTAP_ANTENNA */ 294 *pos = status->antenna; 295 pos++; 296 } 297 298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 299 300 /* IEEE80211_RADIOTAP_RX_FLAGS */ 301 /* ensure 2 byte alignment for the 2 byte field as required */ 302 if ((pos - (u8 *)rthdr) & 1) 303 *pos++ = 0; 304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 306 put_unaligned_le16(rx_flags, pos); 307 pos += 2; 308 309 if (status->flag & RX_FLAG_HT) { 310 unsigned int stbc; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 313 *pos++ = local->hw.radiotap_mcs_details; 314 *pos = 0; 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 317 if (status->flag & RX_FLAG_40MHZ) 318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 319 if (status->flag & RX_FLAG_HT_GF) 320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 321 if (status->flag & RX_FLAG_LDPC) 322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 325 pos++; 326 *pos++ = status->rate_idx; 327 } 328 329 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 330 u16 flags = 0; 331 332 /* ensure 4 byte alignment */ 333 while ((pos - (u8 *)rthdr) & 3) 334 pos++; 335 rthdr->it_present |= 336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 337 put_unaligned_le32(status->ampdu_reference, pos); 338 pos += 4; 339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 345 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 351 put_unaligned_le16(flags, pos); 352 pos += 2; 353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 354 *pos++ = status->ampdu_delimiter_crc; 355 else 356 *pos++ = 0; 357 *pos++ = 0; 358 } 359 360 if (status->flag & RX_FLAG_VHT) { 361 u16 known = local->hw.radiotap_vht_details; 362 363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 364 put_unaligned_le16(known, pos); 365 pos += 2; 366 /* flags */ 367 if (status->flag & RX_FLAG_SHORT_GI) 368 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 369 /* in VHT, STBC is binary */ 370 if (status->flag & RX_FLAG_STBC_MASK) 371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 372 if (status->vht_flag & RX_VHT_FLAG_BF) 373 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 374 pos++; 375 /* bandwidth */ 376 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 377 *pos++ = 4; 378 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 379 *pos++ = 11; 380 else if (status->flag & RX_FLAG_40MHZ) 381 *pos++ = 1; 382 else /* 20 MHz */ 383 *pos++ = 0; 384 /* MCS/NSS */ 385 *pos = (status->rate_idx << 4) | status->vht_nss; 386 pos += 4; 387 /* coding field */ 388 if (status->flag & RX_FLAG_LDPC) 389 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 390 pos++; 391 /* group ID */ 392 pos++; 393 /* partial_aid */ 394 pos += 2; 395 } 396 397 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 398 *pos++ = status->chain_signal[chain]; 399 *pos++ = chain; 400 } 401 402 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 403 /* ensure 2 byte alignment for the vendor field as required */ 404 if ((pos - (u8 *)rthdr) & 1) 405 *pos++ = 0; 406 *pos++ = rtap.oui[0]; 407 *pos++ = rtap.oui[1]; 408 *pos++ = rtap.oui[2]; 409 *pos++ = rtap.subns; 410 put_unaligned_le16(rtap.len, pos); 411 pos += 2; 412 /* align the actual payload as requested */ 413 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 414 *pos++ = 0; 415 /* data (and possible padding) already follows */ 416 } 417 } 418 419 /* 420 * This function copies a received frame to all monitor interfaces and 421 * returns a cleaned-up SKB that no longer includes the FCS nor the 422 * radiotap header the driver might have added. 423 */ 424 static struct sk_buff * 425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 426 struct ieee80211_rate *rate) 427 { 428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 429 struct ieee80211_sub_if_data *sdata; 430 int rt_hdrlen, needed_headroom; 431 struct sk_buff *skb, *skb2; 432 struct net_device *prev_dev = NULL; 433 int present_fcs_len = 0; 434 unsigned int rtap_vendor_space = 0; 435 436 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 437 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 438 439 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 440 } 441 442 /* 443 * First, we may need to make a copy of the skb because 444 * (1) we need to modify it for radiotap (if not present), and 445 * (2) the other RX handlers will modify the skb we got. 446 * 447 * We don't need to, of course, if we aren't going to return 448 * the SKB because it has a bad FCS/PLCP checksum. 449 */ 450 451 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 452 present_fcs_len = FCS_LEN; 453 454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 455 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 456 dev_kfree_skb(origskb); 457 return NULL; 458 } 459 460 if (!local->monitors) { 461 if (should_drop_frame(origskb, present_fcs_len, 462 rtap_vendor_space)) { 463 dev_kfree_skb(origskb); 464 return NULL; 465 } 466 467 return remove_monitor_info(local, origskb, rtap_vendor_space); 468 } 469 470 /* room for the radiotap header based on driver features */ 471 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 472 needed_headroom = rt_hdrlen - rtap_vendor_space; 473 474 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 475 /* only need to expand headroom if necessary */ 476 skb = origskb; 477 origskb = NULL; 478 479 /* 480 * This shouldn't trigger often because most devices have an 481 * RX header they pull before we get here, and that should 482 * be big enough for our radiotap information. We should 483 * probably export the length to drivers so that we can have 484 * them allocate enough headroom to start with. 485 */ 486 if (skb_headroom(skb) < needed_headroom && 487 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 488 dev_kfree_skb(skb); 489 return NULL; 490 } 491 } else { 492 /* 493 * Need to make a copy and possibly remove radiotap header 494 * and FCS from the original. 495 */ 496 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 497 498 origskb = remove_monitor_info(local, origskb, 499 rtap_vendor_space); 500 501 if (!skb) 502 return origskb; 503 } 504 505 /* prepend radiotap information */ 506 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 507 508 skb_reset_mac_header(skb); 509 skb->ip_summed = CHECKSUM_UNNECESSARY; 510 skb->pkt_type = PACKET_OTHERHOST; 511 skb->protocol = htons(ETH_P_802_2); 512 513 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 514 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 515 continue; 516 517 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 518 continue; 519 520 if (!ieee80211_sdata_running(sdata)) 521 continue; 522 523 if (prev_dev) { 524 skb2 = skb_clone(skb, GFP_ATOMIC); 525 if (skb2) { 526 skb2->dev = prev_dev; 527 netif_receive_skb(skb2); 528 } 529 } 530 531 prev_dev = sdata->dev; 532 sdata->dev->stats.rx_packets++; 533 sdata->dev->stats.rx_bytes += skb->len; 534 } 535 536 if (prev_dev) { 537 skb->dev = prev_dev; 538 netif_receive_skb(skb); 539 } else 540 dev_kfree_skb(skb); 541 542 return origskb; 543 } 544 545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 546 { 547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 549 int tid, seqno_idx, security_idx; 550 551 /* does the frame have a qos control field? */ 552 if (ieee80211_is_data_qos(hdr->frame_control)) { 553 u8 *qc = ieee80211_get_qos_ctl(hdr); 554 /* frame has qos control */ 555 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 556 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 557 status->rx_flags |= IEEE80211_RX_AMSDU; 558 559 seqno_idx = tid; 560 security_idx = tid; 561 } else { 562 /* 563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 564 * 565 * Sequence numbers for management frames, QoS data 566 * frames with a broadcast/multicast address in the 567 * Address 1 field, and all non-QoS data frames sent 568 * by QoS STAs are assigned using an additional single 569 * modulo-4096 counter, [...] 570 * 571 * We also use that counter for non-QoS STAs. 572 */ 573 seqno_idx = IEEE80211_NUM_TIDS; 574 security_idx = 0; 575 if (ieee80211_is_mgmt(hdr->frame_control)) 576 security_idx = IEEE80211_NUM_TIDS; 577 tid = 0; 578 } 579 580 rx->seqno_idx = seqno_idx; 581 rx->security_idx = security_idx; 582 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 583 * For now, set skb->priority to 0 for other cases. */ 584 rx->skb->priority = (tid > 7) ? 0 : tid; 585 } 586 587 /** 588 * DOC: Packet alignment 589 * 590 * Drivers always need to pass packets that are aligned to two-byte boundaries 591 * to the stack. 592 * 593 * Additionally, should, if possible, align the payload data in a way that 594 * guarantees that the contained IP header is aligned to a four-byte 595 * boundary. In the case of regular frames, this simply means aligning the 596 * payload to a four-byte boundary (because either the IP header is directly 597 * contained, or IV/RFC1042 headers that have a length divisible by four are 598 * in front of it). If the payload data is not properly aligned and the 599 * architecture doesn't support efficient unaligned operations, mac80211 600 * will align the data. 601 * 602 * With A-MSDU frames, however, the payload data address must yield two modulo 603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 604 * push the IP header further back to a multiple of four again. Thankfully, the 605 * specs were sane enough this time around to require padding each A-MSDU 606 * subframe to a length that is a multiple of four. 607 * 608 * Padding like Atheros hardware adds which is between the 802.11 header and 609 * the payload is not supported, the driver is required to move the 802.11 610 * header to be directly in front of the payload in that case. 611 */ 612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 613 { 614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 615 WARN_ONCE((unsigned long)rx->skb->data & 1, 616 "unaligned packet at 0x%p\n", rx->skb->data); 617 #endif 618 } 619 620 621 /* rx handlers */ 622 623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 624 { 625 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 626 627 if (is_multicast_ether_addr(hdr->addr1)) 628 return 0; 629 630 return ieee80211_is_robust_mgmt_frame(skb); 631 } 632 633 634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 635 { 636 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 637 638 if (!is_multicast_ether_addr(hdr->addr1)) 639 return 0; 640 641 return ieee80211_is_robust_mgmt_frame(skb); 642 } 643 644 645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 647 { 648 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 649 struct ieee80211_mmie *mmie; 650 struct ieee80211_mmie_16 *mmie16; 651 652 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 653 return -1; 654 655 if (!ieee80211_is_robust_mgmt_frame(skb)) 656 return -1; /* not a robust management frame */ 657 658 mmie = (struct ieee80211_mmie *) 659 (skb->data + skb->len - sizeof(*mmie)); 660 if (mmie->element_id == WLAN_EID_MMIE && 661 mmie->length == sizeof(*mmie) - 2) 662 return le16_to_cpu(mmie->key_id); 663 664 mmie16 = (struct ieee80211_mmie_16 *) 665 (skb->data + skb->len - sizeof(*mmie16)); 666 if (skb->len >= 24 + sizeof(*mmie16) && 667 mmie16->element_id == WLAN_EID_MMIE && 668 mmie16->length == sizeof(*mmie16) - 2) 669 return le16_to_cpu(mmie16->key_id); 670 671 return -1; 672 } 673 674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 675 struct sk_buff *skb) 676 { 677 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 678 __le16 fc; 679 int hdrlen; 680 u8 keyid; 681 682 fc = hdr->frame_control; 683 hdrlen = ieee80211_hdrlen(fc); 684 685 if (skb->len < hdrlen + cs->hdr_len) 686 return -EINVAL; 687 688 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 689 keyid &= cs->key_idx_mask; 690 keyid >>= cs->key_idx_shift; 691 692 return keyid; 693 } 694 695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 696 { 697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 698 char *dev_addr = rx->sdata->vif.addr; 699 700 if (ieee80211_is_data(hdr->frame_control)) { 701 if (is_multicast_ether_addr(hdr->addr1)) { 702 if (ieee80211_has_tods(hdr->frame_control) || 703 !ieee80211_has_fromds(hdr->frame_control)) 704 return RX_DROP_MONITOR; 705 if (ether_addr_equal(hdr->addr3, dev_addr)) 706 return RX_DROP_MONITOR; 707 } else { 708 if (!ieee80211_has_a4(hdr->frame_control)) 709 return RX_DROP_MONITOR; 710 if (ether_addr_equal(hdr->addr4, dev_addr)) 711 return RX_DROP_MONITOR; 712 } 713 } 714 715 /* If there is not an established peer link and this is not a peer link 716 * establisment frame, beacon or probe, drop the frame. 717 */ 718 719 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 720 struct ieee80211_mgmt *mgmt; 721 722 if (!ieee80211_is_mgmt(hdr->frame_control)) 723 return RX_DROP_MONITOR; 724 725 if (ieee80211_is_action(hdr->frame_control)) { 726 u8 category; 727 728 /* make sure category field is present */ 729 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 730 return RX_DROP_MONITOR; 731 732 mgmt = (struct ieee80211_mgmt *)hdr; 733 category = mgmt->u.action.category; 734 if (category != WLAN_CATEGORY_MESH_ACTION && 735 category != WLAN_CATEGORY_SELF_PROTECTED) 736 return RX_DROP_MONITOR; 737 return RX_CONTINUE; 738 } 739 740 if (ieee80211_is_probe_req(hdr->frame_control) || 741 ieee80211_is_probe_resp(hdr->frame_control) || 742 ieee80211_is_beacon(hdr->frame_control) || 743 ieee80211_is_auth(hdr->frame_control)) 744 return RX_CONTINUE; 745 746 return RX_DROP_MONITOR; 747 } 748 749 return RX_CONTINUE; 750 } 751 752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 753 struct tid_ampdu_rx *tid_agg_rx, 754 int index, 755 struct sk_buff_head *frames) 756 { 757 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 758 struct sk_buff *skb; 759 struct ieee80211_rx_status *status; 760 761 lockdep_assert_held(&tid_agg_rx->reorder_lock); 762 763 if (skb_queue_empty(skb_list)) 764 goto no_frame; 765 766 if (!ieee80211_rx_reorder_ready(skb_list)) { 767 __skb_queue_purge(skb_list); 768 goto no_frame; 769 } 770 771 /* release frames from the reorder ring buffer */ 772 tid_agg_rx->stored_mpdu_num--; 773 while ((skb = __skb_dequeue(skb_list))) { 774 status = IEEE80211_SKB_RXCB(skb); 775 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 776 __skb_queue_tail(frames, skb); 777 } 778 779 no_frame: 780 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 781 } 782 783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 784 struct tid_ampdu_rx *tid_agg_rx, 785 u16 head_seq_num, 786 struct sk_buff_head *frames) 787 { 788 int index; 789 790 lockdep_assert_held(&tid_agg_rx->reorder_lock); 791 792 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 795 frames); 796 } 797 } 798 799 /* 800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 801 * the skb was added to the buffer longer than this time ago, the earlier 802 * frames that have not yet been received are assumed to be lost and the skb 803 * can be released for processing. This may also release other skb's from the 804 * reorder buffer if there are no additional gaps between the frames. 805 * 806 * Callers must hold tid_agg_rx->reorder_lock. 807 */ 808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 809 810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 811 struct tid_ampdu_rx *tid_agg_rx, 812 struct sk_buff_head *frames) 813 { 814 int index, i, j; 815 816 lockdep_assert_held(&tid_agg_rx->reorder_lock); 817 818 /* release the buffer until next missing frame */ 819 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && 821 tid_agg_rx->stored_mpdu_num) { 822 /* 823 * No buffers ready to be released, but check whether any 824 * frames in the reorder buffer have timed out. 825 */ 826 int skipped = 1; 827 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 828 j = (j + 1) % tid_agg_rx->buf_size) { 829 if (!ieee80211_rx_reorder_ready( 830 &tid_agg_rx->reorder_buf[j])) { 831 skipped++; 832 continue; 833 } 834 if (skipped && 835 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 836 HT_RX_REORDER_BUF_TIMEOUT)) 837 goto set_release_timer; 838 839 /* don't leave incomplete A-MSDUs around */ 840 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 841 i = (i + 1) % tid_agg_rx->buf_size) 842 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 843 844 ht_dbg_ratelimited(sdata, 845 "release an RX reorder frame due to timeout on earlier frames\n"); 846 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 847 frames); 848 849 /* 850 * Increment the head seq# also for the skipped slots. 851 */ 852 tid_agg_rx->head_seq_num = 853 (tid_agg_rx->head_seq_num + 854 skipped) & IEEE80211_SN_MASK; 855 skipped = 0; 856 } 857 } else while (ieee80211_rx_reorder_ready( 858 &tid_agg_rx->reorder_buf[index])) { 859 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 860 frames); 861 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 862 } 863 864 if (tid_agg_rx->stored_mpdu_num) { 865 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 866 867 for (; j != (index - 1) % tid_agg_rx->buf_size; 868 j = (j + 1) % tid_agg_rx->buf_size) { 869 if (ieee80211_rx_reorder_ready( 870 &tid_agg_rx->reorder_buf[j])) 871 break; 872 } 873 874 set_release_timer: 875 876 if (!tid_agg_rx->removed) 877 mod_timer(&tid_agg_rx->reorder_timer, 878 tid_agg_rx->reorder_time[j] + 1 + 879 HT_RX_REORDER_BUF_TIMEOUT); 880 } else { 881 del_timer(&tid_agg_rx->reorder_timer); 882 } 883 } 884 885 /* 886 * As this function belongs to the RX path it must be under 887 * rcu_read_lock protection. It returns false if the frame 888 * can be processed immediately, true if it was consumed. 889 */ 890 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 891 struct tid_ampdu_rx *tid_agg_rx, 892 struct sk_buff *skb, 893 struct sk_buff_head *frames) 894 { 895 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 896 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 897 u16 sc = le16_to_cpu(hdr->seq_ctrl); 898 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 899 u16 head_seq_num, buf_size; 900 int index; 901 bool ret = true; 902 903 spin_lock(&tid_agg_rx->reorder_lock); 904 905 /* 906 * Offloaded BA sessions have no known starting sequence number so pick 907 * one from first Rxed frame for this tid after BA was started. 908 */ 909 if (unlikely(tid_agg_rx->auto_seq)) { 910 tid_agg_rx->auto_seq = false; 911 tid_agg_rx->ssn = mpdu_seq_num; 912 tid_agg_rx->head_seq_num = mpdu_seq_num; 913 } 914 915 buf_size = tid_agg_rx->buf_size; 916 head_seq_num = tid_agg_rx->head_seq_num; 917 918 /* frame with out of date sequence number */ 919 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 920 dev_kfree_skb(skb); 921 goto out; 922 } 923 924 /* 925 * If frame the sequence number exceeds our buffering window 926 * size release some previous frames to make room for this one. 927 */ 928 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 929 head_seq_num = ieee80211_sn_inc( 930 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 931 /* release stored frames up to new head to stack */ 932 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 933 head_seq_num, frames); 934 } 935 936 /* Now the new frame is always in the range of the reordering buffer */ 937 938 index = mpdu_seq_num % tid_agg_rx->buf_size; 939 940 /* check if we already stored this frame */ 941 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { 942 dev_kfree_skb(skb); 943 goto out; 944 } 945 946 /* 947 * If the current MPDU is in the right order and nothing else 948 * is stored we can process it directly, no need to buffer it. 949 * If it is first but there's something stored, we may be able 950 * to release frames after this one. 951 */ 952 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 953 tid_agg_rx->stored_mpdu_num == 0) { 954 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 955 tid_agg_rx->head_seq_num = 956 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 957 ret = false; 958 goto out; 959 } 960 961 /* put the frame in the reordering buffer */ 962 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 963 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 964 tid_agg_rx->reorder_time[index] = jiffies; 965 tid_agg_rx->stored_mpdu_num++; 966 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 967 } 968 969 out: 970 spin_unlock(&tid_agg_rx->reorder_lock); 971 return ret; 972 } 973 974 /* 975 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 976 * true if the MPDU was buffered, false if it should be processed. 977 */ 978 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 979 struct sk_buff_head *frames) 980 { 981 struct sk_buff *skb = rx->skb; 982 struct ieee80211_local *local = rx->local; 983 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 985 struct sta_info *sta = rx->sta; 986 struct tid_ampdu_rx *tid_agg_rx; 987 u16 sc; 988 u8 tid, ack_policy; 989 990 if (!ieee80211_is_data_qos(hdr->frame_control) || 991 is_multicast_ether_addr(hdr->addr1)) 992 goto dont_reorder; 993 994 /* 995 * filter the QoS data rx stream according to 996 * STA/TID and check if this STA/TID is on aggregation 997 */ 998 999 if (!sta) 1000 goto dont_reorder; 1001 1002 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1003 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1004 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1005 1006 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1007 if (!tid_agg_rx) 1008 goto dont_reorder; 1009 1010 /* qos null data frames are excluded */ 1011 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1012 goto dont_reorder; 1013 1014 /* not part of a BA session */ 1015 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1016 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1017 goto dont_reorder; 1018 1019 /* not actually part of this BA session */ 1020 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1021 goto dont_reorder; 1022 1023 /* new, potentially un-ordered, ampdu frame - process it */ 1024 1025 /* reset session timer */ 1026 if (tid_agg_rx->timeout) 1027 tid_agg_rx->last_rx = jiffies; 1028 1029 /* if this mpdu is fragmented - terminate rx aggregation session */ 1030 sc = le16_to_cpu(hdr->seq_ctrl); 1031 if (sc & IEEE80211_SCTL_FRAG) { 1032 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1033 skb_queue_tail(&rx->sdata->skb_queue, skb); 1034 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1035 return; 1036 } 1037 1038 /* 1039 * No locking needed -- we will only ever process one 1040 * RX packet at a time, and thus own tid_agg_rx. All 1041 * other code manipulating it needs to (and does) make 1042 * sure that we cannot get to it any more before doing 1043 * anything with it. 1044 */ 1045 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1046 frames)) 1047 return; 1048 1049 dont_reorder: 1050 __skb_queue_tail(frames, skb); 1051 } 1052 1053 static ieee80211_rx_result debug_noinline 1054 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1055 { 1056 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1058 1059 /* 1060 * Drop duplicate 802.11 retransmissions 1061 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1062 */ 1063 1064 if (rx->skb->len < 24) 1065 return RX_CONTINUE; 1066 1067 if (ieee80211_is_ctl(hdr->frame_control) || 1068 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1069 is_multicast_ether_addr(hdr->addr1)) 1070 return RX_CONTINUE; 1071 1072 if (rx->sta) { 1073 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1074 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1075 hdr->seq_ctrl)) { 1076 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1077 rx->local->dot11FrameDuplicateCount++; 1078 rx->sta->num_duplicates++; 1079 } 1080 return RX_DROP_UNUSABLE; 1081 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1082 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1083 } 1084 } 1085 1086 return RX_CONTINUE; 1087 } 1088 1089 static ieee80211_rx_result debug_noinline 1090 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1091 { 1092 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1093 1094 if (unlikely(rx->skb->len < 16)) { 1095 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1096 return RX_DROP_MONITOR; 1097 } 1098 1099 /* Drop disallowed frame classes based on STA auth/assoc state; 1100 * IEEE 802.11, Chap 5.5. 1101 * 1102 * mac80211 filters only based on association state, i.e. it drops 1103 * Class 3 frames from not associated stations. hostapd sends 1104 * deauth/disassoc frames when needed. In addition, hostapd is 1105 * responsible for filtering on both auth and assoc states. 1106 */ 1107 1108 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1109 return ieee80211_rx_mesh_check(rx); 1110 1111 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1112 ieee80211_is_pspoll(hdr->frame_control)) && 1113 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1114 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1115 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1116 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1117 /* 1118 * accept port control frames from the AP even when it's not 1119 * yet marked ASSOC to prevent a race where we don't set the 1120 * assoc bit quickly enough before it sends the first frame 1121 */ 1122 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1123 ieee80211_is_data_present(hdr->frame_control)) { 1124 unsigned int hdrlen; 1125 __be16 ethertype; 1126 1127 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1128 1129 if (rx->skb->len < hdrlen + 8) 1130 return RX_DROP_MONITOR; 1131 1132 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1133 if (ethertype == rx->sdata->control_port_protocol) 1134 return RX_CONTINUE; 1135 } 1136 1137 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1138 cfg80211_rx_spurious_frame(rx->sdata->dev, 1139 hdr->addr2, 1140 GFP_ATOMIC)) 1141 return RX_DROP_UNUSABLE; 1142 1143 return RX_DROP_MONITOR; 1144 } 1145 1146 return RX_CONTINUE; 1147 } 1148 1149 1150 static ieee80211_rx_result debug_noinline 1151 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1152 { 1153 struct ieee80211_local *local; 1154 struct ieee80211_hdr *hdr; 1155 struct sk_buff *skb; 1156 1157 local = rx->local; 1158 skb = rx->skb; 1159 hdr = (struct ieee80211_hdr *) skb->data; 1160 1161 if (!local->pspolling) 1162 return RX_CONTINUE; 1163 1164 if (!ieee80211_has_fromds(hdr->frame_control)) 1165 /* this is not from AP */ 1166 return RX_CONTINUE; 1167 1168 if (!ieee80211_is_data(hdr->frame_control)) 1169 return RX_CONTINUE; 1170 1171 if (!ieee80211_has_moredata(hdr->frame_control)) { 1172 /* AP has no more frames buffered for us */ 1173 local->pspolling = false; 1174 return RX_CONTINUE; 1175 } 1176 1177 /* more data bit is set, let's request a new frame from the AP */ 1178 ieee80211_send_pspoll(local, rx->sdata); 1179 1180 return RX_CONTINUE; 1181 } 1182 1183 static void sta_ps_start(struct sta_info *sta) 1184 { 1185 struct ieee80211_sub_if_data *sdata = sta->sdata; 1186 struct ieee80211_local *local = sdata->local; 1187 struct ps_data *ps; 1188 int tid; 1189 1190 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1191 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1192 ps = &sdata->bss->ps; 1193 else 1194 return; 1195 1196 atomic_inc(&ps->num_sta_ps); 1197 set_sta_flag(sta, WLAN_STA_PS_STA); 1198 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1199 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1200 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1201 sta->sta.addr, sta->sta.aid); 1202 1203 if (!sta->sta.txq[0]) 1204 return; 1205 1206 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1207 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1208 1209 if (!skb_queue_len(&txqi->queue)) 1210 set_bit(tid, &sta->txq_buffered_tids); 1211 else 1212 clear_bit(tid, &sta->txq_buffered_tids); 1213 } 1214 } 1215 1216 static void sta_ps_end(struct sta_info *sta) 1217 { 1218 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1219 sta->sta.addr, sta->sta.aid); 1220 1221 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1222 /* 1223 * Clear the flag only if the other one is still set 1224 * so that the TX path won't start TX'ing new frames 1225 * directly ... In the case that the driver flag isn't 1226 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1227 */ 1228 clear_sta_flag(sta, WLAN_STA_PS_STA); 1229 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1230 sta->sta.addr, sta->sta.aid); 1231 return; 1232 } 1233 1234 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1235 clear_sta_flag(sta, WLAN_STA_PS_STA); 1236 ieee80211_sta_ps_deliver_wakeup(sta); 1237 } 1238 1239 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1240 { 1241 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1242 bool in_ps; 1243 1244 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1245 1246 /* Don't let the same PS state be set twice */ 1247 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1248 if ((start && in_ps) || (!start && !in_ps)) 1249 return -EINVAL; 1250 1251 if (start) 1252 sta_ps_start(sta_inf); 1253 else 1254 sta_ps_end(sta_inf); 1255 1256 return 0; 1257 } 1258 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1259 1260 static ieee80211_rx_result debug_noinline 1261 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1262 { 1263 struct ieee80211_sub_if_data *sdata = rx->sdata; 1264 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1266 int tid, ac; 1267 1268 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1269 return RX_CONTINUE; 1270 1271 if (sdata->vif.type != NL80211_IFTYPE_AP && 1272 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1273 return RX_CONTINUE; 1274 1275 /* 1276 * The device handles station powersave, so don't do anything about 1277 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1278 * it to mac80211 since they're handled.) 1279 */ 1280 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1281 return RX_CONTINUE; 1282 1283 /* 1284 * Don't do anything if the station isn't already asleep. In 1285 * the uAPSD case, the station will probably be marked asleep, 1286 * in the PS-Poll case the station must be confused ... 1287 */ 1288 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1289 return RX_CONTINUE; 1290 1291 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1292 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1293 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1294 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1295 else 1296 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1297 } 1298 1299 /* Free PS Poll skb here instead of returning RX_DROP that would 1300 * count as an dropped frame. */ 1301 dev_kfree_skb(rx->skb); 1302 1303 return RX_QUEUED; 1304 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1305 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1306 ieee80211_has_pm(hdr->frame_control) && 1307 (ieee80211_is_data_qos(hdr->frame_control) || 1308 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1309 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1310 ac = ieee802_1d_to_ac[tid & 7]; 1311 1312 /* 1313 * If this AC is not trigger-enabled do nothing. 1314 * 1315 * NB: This could/should check a separate bitmap of trigger- 1316 * enabled queues, but for now we only implement uAPSD w/o 1317 * TSPEC changes to the ACs, so they're always the same. 1318 */ 1319 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1320 return RX_CONTINUE; 1321 1322 /* if we are in a service period, do nothing */ 1323 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1324 return RX_CONTINUE; 1325 1326 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1327 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1328 else 1329 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1330 } 1331 1332 return RX_CONTINUE; 1333 } 1334 1335 static ieee80211_rx_result debug_noinline 1336 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1337 { 1338 struct sta_info *sta = rx->sta; 1339 struct sk_buff *skb = rx->skb; 1340 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1341 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1342 int i; 1343 1344 if (!sta) 1345 return RX_CONTINUE; 1346 1347 /* 1348 * Update last_rx only for IBSS packets which are for the current 1349 * BSSID and for station already AUTHORIZED to avoid keeping the 1350 * current IBSS network alive in cases where other STAs start 1351 * using different BSSID. This will also give the station another 1352 * chance to restart the authentication/authorization in case 1353 * something went wrong the first time. 1354 */ 1355 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1356 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1357 NL80211_IFTYPE_ADHOC); 1358 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1359 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1360 sta->last_rx = jiffies; 1361 if (ieee80211_is_data(hdr->frame_control) && 1362 !is_multicast_ether_addr(hdr->addr1)) { 1363 sta->last_rx_rate_idx = status->rate_idx; 1364 sta->last_rx_rate_flag = status->flag; 1365 sta->last_rx_rate_vht_flag = status->vht_flag; 1366 sta->last_rx_rate_vht_nss = status->vht_nss; 1367 } 1368 } 1369 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1370 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1371 NL80211_IFTYPE_OCB); 1372 /* OCB uses wild-card BSSID */ 1373 if (is_broadcast_ether_addr(bssid)) 1374 sta->last_rx = jiffies; 1375 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1376 /* 1377 * Mesh beacons will update last_rx when if they are found to 1378 * match the current local configuration when processed. 1379 */ 1380 sta->last_rx = jiffies; 1381 if (ieee80211_is_data(hdr->frame_control)) { 1382 sta->last_rx_rate_idx = status->rate_idx; 1383 sta->last_rx_rate_flag = status->flag; 1384 sta->last_rx_rate_vht_flag = status->vht_flag; 1385 sta->last_rx_rate_vht_nss = status->vht_nss; 1386 } 1387 } 1388 1389 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1390 return RX_CONTINUE; 1391 1392 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1393 ieee80211_sta_rx_notify(rx->sdata, hdr); 1394 1395 sta->rx_fragments++; 1396 sta->rx_bytes += rx->skb->len; 1397 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1398 sta->last_signal = status->signal; 1399 ewma_add(&sta->avg_signal, -status->signal); 1400 } 1401 1402 if (status->chains) { 1403 sta->chains = status->chains; 1404 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1405 int signal = status->chain_signal[i]; 1406 1407 if (!(status->chains & BIT(i))) 1408 continue; 1409 1410 sta->chain_signal_last[i] = signal; 1411 ewma_add(&sta->chain_signal_avg[i], -signal); 1412 } 1413 } 1414 1415 /* 1416 * Change STA power saving mode only at the end of a frame 1417 * exchange sequence. 1418 */ 1419 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1420 !ieee80211_has_morefrags(hdr->frame_control) && 1421 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1422 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1423 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1424 /* PM bit is only checked in frames where it isn't reserved, 1425 * in AP mode it's reserved in non-bufferable management frames 1426 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1427 */ 1428 (!ieee80211_is_mgmt(hdr->frame_control) || 1429 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1430 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1431 if (!ieee80211_has_pm(hdr->frame_control)) 1432 sta_ps_end(sta); 1433 } else { 1434 if (ieee80211_has_pm(hdr->frame_control)) 1435 sta_ps_start(sta); 1436 } 1437 } 1438 1439 /* mesh power save support */ 1440 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1441 ieee80211_mps_rx_h_sta_process(sta, hdr); 1442 1443 /* 1444 * Drop (qos-)data::nullfunc frames silently, since they 1445 * are used only to control station power saving mode. 1446 */ 1447 if (ieee80211_is_nullfunc(hdr->frame_control) || 1448 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1449 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1450 1451 /* 1452 * If we receive a 4-addr nullfunc frame from a STA 1453 * that was not moved to a 4-addr STA vlan yet send 1454 * the event to userspace and for older hostapd drop 1455 * the frame to the monitor interface. 1456 */ 1457 if (ieee80211_has_a4(hdr->frame_control) && 1458 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1459 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1460 !rx->sdata->u.vlan.sta))) { 1461 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1462 cfg80211_rx_unexpected_4addr_frame( 1463 rx->sdata->dev, sta->sta.addr, 1464 GFP_ATOMIC); 1465 return RX_DROP_MONITOR; 1466 } 1467 /* 1468 * Update counter and free packet here to avoid 1469 * counting this as a dropped packed. 1470 */ 1471 sta->rx_packets++; 1472 dev_kfree_skb(rx->skb); 1473 return RX_QUEUED; 1474 } 1475 1476 return RX_CONTINUE; 1477 } /* ieee80211_rx_h_sta_process */ 1478 1479 static ieee80211_rx_result debug_noinline 1480 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1481 { 1482 struct sk_buff *skb = rx->skb; 1483 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1484 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1485 int keyidx; 1486 int hdrlen; 1487 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1488 struct ieee80211_key *sta_ptk = NULL; 1489 int mmie_keyidx = -1; 1490 __le16 fc; 1491 const struct ieee80211_cipher_scheme *cs = NULL; 1492 1493 /* 1494 * Key selection 101 1495 * 1496 * There are four types of keys: 1497 * - GTK (group keys) 1498 * - IGTK (group keys for management frames) 1499 * - PTK (pairwise keys) 1500 * - STK (station-to-station pairwise keys) 1501 * 1502 * When selecting a key, we have to distinguish between multicast 1503 * (including broadcast) and unicast frames, the latter can only 1504 * use PTKs and STKs while the former always use GTKs and IGTKs. 1505 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1506 * unicast frames can also use key indices like GTKs. Hence, if we 1507 * don't have a PTK/STK we check the key index for a WEP key. 1508 * 1509 * Note that in a regular BSS, multicast frames are sent by the 1510 * AP only, associated stations unicast the frame to the AP first 1511 * which then multicasts it on their behalf. 1512 * 1513 * There is also a slight problem in IBSS mode: GTKs are negotiated 1514 * with each station, that is something we don't currently handle. 1515 * The spec seems to expect that one negotiates the same key with 1516 * every station but there's no such requirement; VLANs could be 1517 * possible. 1518 */ 1519 1520 /* 1521 * No point in finding a key and decrypting if the frame is neither 1522 * addressed to us nor a multicast frame. 1523 */ 1524 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1525 return RX_CONTINUE; 1526 1527 /* start without a key */ 1528 rx->key = NULL; 1529 fc = hdr->frame_control; 1530 1531 if (rx->sta) { 1532 int keyid = rx->sta->ptk_idx; 1533 1534 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1535 cs = rx->sta->cipher_scheme; 1536 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1537 if (unlikely(keyid < 0)) 1538 return RX_DROP_UNUSABLE; 1539 } 1540 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1541 } 1542 1543 if (!ieee80211_has_protected(fc)) 1544 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1545 1546 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1547 rx->key = sta_ptk; 1548 if ((status->flag & RX_FLAG_DECRYPTED) && 1549 (status->flag & RX_FLAG_IV_STRIPPED)) 1550 return RX_CONTINUE; 1551 /* Skip decryption if the frame is not protected. */ 1552 if (!ieee80211_has_protected(fc)) 1553 return RX_CONTINUE; 1554 } else if (mmie_keyidx >= 0) { 1555 /* Broadcast/multicast robust management frame / BIP */ 1556 if ((status->flag & RX_FLAG_DECRYPTED) && 1557 (status->flag & RX_FLAG_IV_STRIPPED)) 1558 return RX_CONTINUE; 1559 1560 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1561 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1562 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1563 if (rx->sta) 1564 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1565 if (!rx->key) 1566 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1567 } else if (!ieee80211_has_protected(fc)) { 1568 /* 1569 * The frame was not protected, so skip decryption. However, we 1570 * need to set rx->key if there is a key that could have been 1571 * used so that the frame may be dropped if encryption would 1572 * have been expected. 1573 */ 1574 struct ieee80211_key *key = NULL; 1575 struct ieee80211_sub_if_data *sdata = rx->sdata; 1576 int i; 1577 1578 if (ieee80211_is_mgmt(fc) && 1579 is_multicast_ether_addr(hdr->addr1) && 1580 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1581 rx->key = key; 1582 else { 1583 if (rx->sta) { 1584 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1585 key = rcu_dereference(rx->sta->gtk[i]); 1586 if (key) 1587 break; 1588 } 1589 } 1590 if (!key) { 1591 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1592 key = rcu_dereference(sdata->keys[i]); 1593 if (key) 1594 break; 1595 } 1596 } 1597 if (key) 1598 rx->key = key; 1599 } 1600 return RX_CONTINUE; 1601 } else { 1602 u8 keyid; 1603 1604 /* 1605 * The device doesn't give us the IV so we won't be 1606 * able to look up the key. That's ok though, we 1607 * don't need to decrypt the frame, we just won't 1608 * be able to keep statistics accurate. 1609 * Except for key threshold notifications, should 1610 * we somehow allow the driver to tell us which key 1611 * the hardware used if this flag is set? 1612 */ 1613 if ((status->flag & RX_FLAG_DECRYPTED) && 1614 (status->flag & RX_FLAG_IV_STRIPPED)) 1615 return RX_CONTINUE; 1616 1617 hdrlen = ieee80211_hdrlen(fc); 1618 1619 if (cs) { 1620 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1621 1622 if (unlikely(keyidx < 0)) 1623 return RX_DROP_UNUSABLE; 1624 } else { 1625 if (rx->skb->len < 8 + hdrlen) 1626 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1627 /* 1628 * no need to call ieee80211_wep_get_keyidx, 1629 * it verifies a bunch of things we've done already 1630 */ 1631 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1632 keyidx = keyid >> 6; 1633 } 1634 1635 /* check per-station GTK first, if multicast packet */ 1636 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1637 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1638 1639 /* if not found, try default key */ 1640 if (!rx->key) { 1641 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1642 1643 /* 1644 * RSNA-protected unicast frames should always be 1645 * sent with pairwise or station-to-station keys, 1646 * but for WEP we allow using a key index as well. 1647 */ 1648 if (rx->key && 1649 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1650 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1651 !is_multicast_ether_addr(hdr->addr1)) 1652 rx->key = NULL; 1653 } 1654 } 1655 1656 if (rx->key) { 1657 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1658 return RX_DROP_MONITOR; 1659 1660 rx->key->tx_rx_count++; 1661 /* TODO: add threshold stuff again */ 1662 } else { 1663 return RX_DROP_MONITOR; 1664 } 1665 1666 switch (rx->key->conf.cipher) { 1667 case WLAN_CIPHER_SUITE_WEP40: 1668 case WLAN_CIPHER_SUITE_WEP104: 1669 result = ieee80211_crypto_wep_decrypt(rx); 1670 break; 1671 case WLAN_CIPHER_SUITE_TKIP: 1672 result = ieee80211_crypto_tkip_decrypt(rx); 1673 break; 1674 case WLAN_CIPHER_SUITE_CCMP: 1675 result = ieee80211_crypto_ccmp_decrypt( 1676 rx, IEEE80211_CCMP_MIC_LEN); 1677 break; 1678 case WLAN_CIPHER_SUITE_CCMP_256: 1679 result = ieee80211_crypto_ccmp_decrypt( 1680 rx, IEEE80211_CCMP_256_MIC_LEN); 1681 break; 1682 case WLAN_CIPHER_SUITE_AES_CMAC: 1683 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1684 break; 1685 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1686 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1687 break; 1688 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1689 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1690 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1691 break; 1692 case WLAN_CIPHER_SUITE_GCMP: 1693 case WLAN_CIPHER_SUITE_GCMP_256: 1694 result = ieee80211_crypto_gcmp_decrypt(rx); 1695 break; 1696 default: 1697 result = ieee80211_crypto_hw_decrypt(rx); 1698 } 1699 1700 /* the hdr variable is invalid after the decrypt handlers */ 1701 1702 /* either the frame has been decrypted or will be dropped */ 1703 status->flag |= RX_FLAG_DECRYPTED; 1704 1705 return result; 1706 } 1707 1708 static inline struct ieee80211_fragment_entry * 1709 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1710 unsigned int frag, unsigned int seq, int rx_queue, 1711 struct sk_buff **skb) 1712 { 1713 struct ieee80211_fragment_entry *entry; 1714 1715 entry = &sdata->fragments[sdata->fragment_next++]; 1716 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1717 sdata->fragment_next = 0; 1718 1719 if (!skb_queue_empty(&entry->skb_list)) 1720 __skb_queue_purge(&entry->skb_list); 1721 1722 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1723 *skb = NULL; 1724 entry->first_frag_time = jiffies; 1725 entry->seq = seq; 1726 entry->rx_queue = rx_queue; 1727 entry->last_frag = frag; 1728 entry->ccmp = 0; 1729 entry->extra_len = 0; 1730 1731 return entry; 1732 } 1733 1734 static inline struct ieee80211_fragment_entry * 1735 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1736 unsigned int frag, unsigned int seq, 1737 int rx_queue, struct ieee80211_hdr *hdr) 1738 { 1739 struct ieee80211_fragment_entry *entry; 1740 int i, idx; 1741 1742 idx = sdata->fragment_next; 1743 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1744 struct ieee80211_hdr *f_hdr; 1745 1746 idx--; 1747 if (idx < 0) 1748 idx = IEEE80211_FRAGMENT_MAX - 1; 1749 1750 entry = &sdata->fragments[idx]; 1751 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1752 entry->rx_queue != rx_queue || 1753 entry->last_frag + 1 != frag) 1754 continue; 1755 1756 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1757 1758 /* 1759 * Check ftype and addresses are equal, else check next fragment 1760 */ 1761 if (((hdr->frame_control ^ f_hdr->frame_control) & 1762 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1763 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1764 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1765 continue; 1766 1767 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1768 __skb_queue_purge(&entry->skb_list); 1769 continue; 1770 } 1771 return entry; 1772 } 1773 1774 return NULL; 1775 } 1776 1777 static ieee80211_rx_result debug_noinline 1778 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1779 { 1780 struct ieee80211_hdr *hdr; 1781 u16 sc; 1782 __le16 fc; 1783 unsigned int frag, seq; 1784 struct ieee80211_fragment_entry *entry; 1785 struct sk_buff *skb; 1786 struct ieee80211_rx_status *status; 1787 1788 hdr = (struct ieee80211_hdr *)rx->skb->data; 1789 fc = hdr->frame_control; 1790 1791 if (ieee80211_is_ctl(fc)) 1792 return RX_CONTINUE; 1793 1794 sc = le16_to_cpu(hdr->seq_ctrl); 1795 frag = sc & IEEE80211_SCTL_FRAG; 1796 1797 if (is_multicast_ether_addr(hdr->addr1)) { 1798 rx->local->dot11MulticastReceivedFrameCount++; 1799 goto out_no_led; 1800 } 1801 1802 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1803 goto out; 1804 1805 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1806 1807 if (skb_linearize(rx->skb)) 1808 return RX_DROP_UNUSABLE; 1809 1810 /* 1811 * skb_linearize() might change the skb->data and 1812 * previously cached variables (in this case, hdr) need to 1813 * be refreshed with the new data. 1814 */ 1815 hdr = (struct ieee80211_hdr *)rx->skb->data; 1816 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1817 1818 if (frag == 0) { 1819 /* This is the first fragment of a new frame. */ 1820 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1821 rx->seqno_idx, &(rx->skb)); 1822 if (rx->key && 1823 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1824 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) && 1825 ieee80211_has_protected(fc)) { 1826 int queue = rx->security_idx; 1827 /* Store CCMP PN so that we can verify that the next 1828 * fragment has a sequential PN value. */ 1829 entry->ccmp = 1; 1830 memcpy(entry->last_pn, 1831 rx->key->u.ccmp.rx_pn[queue], 1832 IEEE80211_CCMP_PN_LEN); 1833 } 1834 return RX_QUEUED; 1835 } 1836 1837 /* This is a fragment for a frame that should already be pending in 1838 * fragment cache. Add this fragment to the end of the pending entry. 1839 */ 1840 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1841 rx->seqno_idx, hdr); 1842 if (!entry) { 1843 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1844 return RX_DROP_MONITOR; 1845 } 1846 1847 /* Verify that MPDUs within one MSDU have sequential PN values. 1848 * (IEEE 802.11i, 8.3.3.4.5) */ 1849 if (entry->ccmp) { 1850 int i; 1851 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1852 int queue; 1853 if (!rx->key || 1854 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1855 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256)) 1856 return RX_DROP_UNUSABLE; 1857 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1858 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1859 pn[i]++; 1860 if (pn[i]) 1861 break; 1862 } 1863 queue = rx->security_idx; 1864 rpn = rx->key->u.ccmp.rx_pn[queue]; 1865 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1866 return RX_DROP_UNUSABLE; 1867 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1868 } 1869 1870 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1871 __skb_queue_tail(&entry->skb_list, rx->skb); 1872 entry->last_frag = frag; 1873 entry->extra_len += rx->skb->len; 1874 if (ieee80211_has_morefrags(fc)) { 1875 rx->skb = NULL; 1876 return RX_QUEUED; 1877 } 1878 1879 rx->skb = __skb_dequeue(&entry->skb_list); 1880 if (skb_tailroom(rx->skb) < entry->extra_len) { 1881 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1882 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1883 GFP_ATOMIC))) { 1884 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1885 __skb_queue_purge(&entry->skb_list); 1886 return RX_DROP_UNUSABLE; 1887 } 1888 } 1889 while ((skb = __skb_dequeue(&entry->skb_list))) { 1890 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1891 dev_kfree_skb(skb); 1892 } 1893 1894 /* Complete frame has been reassembled - process it now */ 1895 status = IEEE80211_SKB_RXCB(rx->skb); 1896 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1897 1898 out: 1899 ieee80211_led_rx(rx->local); 1900 out_no_led: 1901 if (rx->sta) 1902 rx->sta->rx_packets++; 1903 return RX_CONTINUE; 1904 } 1905 1906 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1907 { 1908 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1909 return -EACCES; 1910 1911 return 0; 1912 } 1913 1914 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1915 { 1916 struct sk_buff *skb = rx->skb; 1917 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1918 1919 /* 1920 * Pass through unencrypted frames if the hardware has 1921 * decrypted them already. 1922 */ 1923 if (status->flag & RX_FLAG_DECRYPTED) 1924 return 0; 1925 1926 /* Drop unencrypted frames if key is set. */ 1927 if (unlikely(!ieee80211_has_protected(fc) && 1928 !ieee80211_is_nullfunc(fc) && 1929 ieee80211_is_data(fc) && rx->key)) 1930 return -EACCES; 1931 1932 return 0; 1933 } 1934 1935 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1936 { 1937 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1938 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1939 __le16 fc = hdr->frame_control; 1940 1941 /* 1942 * Pass through unencrypted frames if the hardware has 1943 * decrypted them already. 1944 */ 1945 if (status->flag & RX_FLAG_DECRYPTED) 1946 return 0; 1947 1948 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1949 if (unlikely(!ieee80211_has_protected(fc) && 1950 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1951 rx->key)) { 1952 if (ieee80211_is_deauth(fc) || 1953 ieee80211_is_disassoc(fc)) 1954 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1955 rx->skb->data, 1956 rx->skb->len); 1957 return -EACCES; 1958 } 1959 /* BIP does not use Protected field, so need to check MMIE */ 1960 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1961 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1962 if (ieee80211_is_deauth(fc) || 1963 ieee80211_is_disassoc(fc)) 1964 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1965 rx->skb->data, 1966 rx->skb->len); 1967 return -EACCES; 1968 } 1969 /* 1970 * When using MFP, Action frames are not allowed prior to 1971 * having configured keys. 1972 */ 1973 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1974 ieee80211_is_robust_mgmt_frame(rx->skb))) 1975 return -EACCES; 1976 } 1977 1978 return 0; 1979 } 1980 1981 static int 1982 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1983 { 1984 struct ieee80211_sub_if_data *sdata = rx->sdata; 1985 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1986 bool check_port_control = false; 1987 struct ethhdr *ehdr; 1988 int ret; 1989 1990 *port_control = false; 1991 if (ieee80211_has_a4(hdr->frame_control) && 1992 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1993 return -1; 1994 1995 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1996 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1997 1998 if (!sdata->u.mgd.use_4addr) 1999 return -1; 2000 else 2001 check_port_control = true; 2002 } 2003 2004 if (is_multicast_ether_addr(hdr->addr1) && 2005 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2006 return -1; 2007 2008 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2009 if (ret < 0) 2010 return ret; 2011 2012 ehdr = (struct ethhdr *) rx->skb->data; 2013 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2014 *port_control = true; 2015 else if (check_port_control) 2016 return -1; 2017 2018 return 0; 2019 } 2020 2021 /* 2022 * requires that rx->skb is a frame with ethernet header 2023 */ 2024 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2025 { 2026 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2027 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2028 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2029 2030 /* 2031 * Allow EAPOL frames to us/the PAE group address regardless 2032 * of whether the frame was encrypted or not. 2033 */ 2034 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2035 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2036 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2037 return true; 2038 2039 if (ieee80211_802_1x_port_control(rx) || 2040 ieee80211_drop_unencrypted(rx, fc)) 2041 return false; 2042 2043 return true; 2044 } 2045 2046 /* 2047 * requires that rx->skb is a frame with ethernet header 2048 */ 2049 static void 2050 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2051 { 2052 struct ieee80211_sub_if_data *sdata = rx->sdata; 2053 struct net_device *dev = sdata->dev; 2054 struct sk_buff *skb, *xmit_skb; 2055 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2056 struct sta_info *dsta; 2057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2058 2059 dev->stats.rx_packets++; 2060 dev->stats.rx_bytes += rx->skb->len; 2061 2062 skb = rx->skb; 2063 xmit_skb = NULL; 2064 2065 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2066 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2067 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2068 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 2069 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2070 if (is_multicast_ether_addr(ehdr->h_dest)) { 2071 /* 2072 * send multicast frames both to higher layers in 2073 * local net stack and back to the wireless medium 2074 */ 2075 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2076 if (!xmit_skb) 2077 net_info_ratelimited("%s: failed to clone multicast frame\n", 2078 dev->name); 2079 } else { 2080 dsta = sta_info_get(sdata, skb->data); 2081 if (dsta) { 2082 /* 2083 * The destination station is associated to 2084 * this AP (in this VLAN), so send the frame 2085 * directly to it and do not pass it to local 2086 * net stack. 2087 */ 2088 xmit_skb = skb; 2089 skb = NULL; 2090 } 2091 } 2092 } 2093 2094 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2095 if (skb) { 2096 /* 'align' will only take the values 0 or 2 here since all 2097 * frames are required to be aligned to 2-byte boundaries 2098 * when being passed to mac80211; the code here works just 2099 * as well if that isn't true, but mac80211 assumes it can 2100 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2101 */ 2102 int align; 2103 2104 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2105 if (align) { 2106 if (WARN_ON(skb_headroom(skb) < 3)) { 2107 dev_kfree_skb(skb); 2108 skb = NULL; 2109 } else { 2110 u8 *data = skb->data; 2111 size_t len = skb_headlen(skb); 2112 skb->data -= align; 2113 memmove(skb->data, data, len); 2114 skb_set_tail_pointer(skb, len); 2115 } 2116 } 2117 } 2118 #endif 2119 2120 if (skb) { 2121 /* deliver to local stack */ 2122 skb->protocol = eth_type_trans(skb, dev); 2123 memset(skb->cb, 0, sizeof(skb->cb)); 2124 if (!(rx->flags & IEEE80211_RX_REORDER_TIMER) && 2125 rx->local->napi) 2126 napi_gro_receive(rx->local->napi, skb); 2127 else 2128 netif_receive_skb(skb); 2129 } 2130 2131 if (xmit_skb) { 2132 /* 2133 * Send to wireless media and increase priority by 256 to 2134 * keep the received priority instead of reclassifying 2135 * the frame (see cfg80211_classify8021d). 2136 */ 2137 xmit_skb->priority += 256; 2138 xmit_skb->protocol = htons(ETH_P_802_3); 2139 skb_reset_network_header(xmit_skb); 2140 skb_reset_mac_header(xmit_skb); 2141 dev_queue_xmit(xmit_skb); 2142 } 2143 } 2144 2145 static ieee80211_rx_result debug_noinline 2146 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2147 { 2148 struct net_device *dev = rx->sdata->dev; 2149 struct sk_buff *skb = rx->skb; 2150 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2151 __le16 fc = hdr->frame_control; 2152 struct sk_buff_head frame_list; 2153 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2154 2155 if (unlikely(!ieee80211_is_data(fc))) 2156 return RX_CONTINUE; 2157 2158 if (unlikely(!ieee80211_is_data_present(fc))) 2159 return RX_DROP_MONITOR; 2160 2161 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2162 return RX_CONTINUE; 2163 2164 if (ieee80211_has_a4(hdr->frame_control) && 2165 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2166 !rx->sdata->u.vlan.sta) 2167 return RX_DROP_UNUSABLE; 2168 2169 if (is_multicast_ether_addr(hdr->addr1) && 2170 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2171 rx->sdata->u.vlan.sta) || 2172 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2173 rx->sdata->u.mgd.use_4addr))) 2174 return RX_DROP_UNUSABLE; 2175 2176 skb->dev = dev; 2177 __skb_queue_head_init(&frame_list); 2178 2179 if (skb_linearize(skb)) 2180 return RX_DROP_UNUSABLE; 2181 2182 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2183 rx->sdata->vif.type, 2184 rx->local->hw.extra_tx_headroom, true); 2185 2186 while (!skb_queue_empty(&frame_list)) { 2187 rx->skb = __skb_dequeue(&frame_list); 2188 2189 if (!ieee80211_frame_allowed(rx, fc)) { 2190 dev_kfree_skb(rx->skb); 2191 continue; 2192 } 2193 2194 ieee80211_deliver_skb(rx); 2195 } 2196 2197 return RX_QUEUED; 2198 } 2199 2200 #ifdef CONFIG_MAC80211_MESH 2201 static ieee80211_rx_result 2202 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2203 { 2204 struct ieee80211_hdr *fwd_hdr, *hdr; 2205 struct ieee80211_tx_info *info; 2206 struct ieee80211s_hdr *mesh_hdr; 2207 struct sk_buff *skb = rx->skb, *fwd_skb; 2208 struct ieee80211_local *local = rx->local; 2209 struct ieee80211_sub_if_data *sdata = rx->sdata; 2210 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2211 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2212 u16 q, hdrlen; 2213 2214 hdr = (struct ieee80211_hdr *) skb->data; 2215 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2216 2217 /* make sure fixed part of mesh header is there, also checks skb len */ 2218 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2219 return RX_DROP_MONITOR; 2220 2221 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2222 2223 /* make sure full mesh header is there, also checks skb len */ 2224 if (!pskb_may_pull(rx->skb, 2225 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2226 return RX_DROP_MONITOR; 2227 2228 /* reload pointers */ 2229 hdr = (struct ieee80211_hdr *) skb->data; 2230 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2231 2232 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2233 return RX_DROP_MONITOR; 2234 2235 /* frame is in RMC, don't forward */ 2236 if (ieee80211_is_data(hdr->frame_control) && 2237 is_multicast_ether_addr(hdr->addr1) && 2238 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2239 return RX_DROP_MONITOR; 2240 2241 if (!ieee80211_is_data(hdr->frame_control) || 2242 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2243 return RX_CONTINUE; 2244 2245 if (!mesh_hdr->ttl) 2246 return RX_DROP_MONITOR; 2247 2248 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2249 struct mesh_path *mppath; 2250 char *proxied_addr; 2251 char *mpp_addr; 2252 2253 if (is_multicast_ether_addr(hdr->addr1)) { 2254 mpp_addr = hdr->addr3; 2255 proxied_addr = mesh_hdr->eaddr1; 2256 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2257 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2258 mpp_addr = hdr->addr4; 2259 proxied_addr = mesh_hdr->eaddr2; 2260 } else { 2261 return RX_DROP_MONITOR; 2262 } 2263 2264 rcu_read_lock(); 2265 mppath = mpp_path_lookup(sdata, proxied_addr); 2266 if (!mppath) { 2267 mpp_path_add(sdata, proxied_addr, mpp_addr); 2268 } else { 2269 spin_lock_bh(&mppath->state_lock); 2270 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2271 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2272 spin_unlock_bh(&mppath->state_lock); 2273 } 2274 rcu_read_unlock(); 2275 } 2276 2277 /* Frame has reached destination. Don't forward */ 2278 if (!is_multicast_ether_addr(hdr->addr1) && 2279 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2280 return RX_CONTINUE; 2281 2282 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2283 if (ieee80211_queue_stopped(&local->hw, q)) { 2284 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2285 return RX_DROP_MONITOR; 2286 } 2287 skb_set_queue_mapping(skb, q); 2288 2289 if (!--mesh_hdr->ttl) { 2290 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2291 goto out; 2292 } 2293 2294 if (!ifmsh->mshcfg.dot11MeshForwarding) 2295 goto out; 2296 2297 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2298 if (!fwd_skb) { 2299 net_info_ratelimited("%s: failed to clone mesh frame\n", 2300 sdata->name); 2301 goto out; 2302 } 2303 2304 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2305 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2306 info = IEEE80211_SKB_CB(fwd_skb); 2307 memset(info, 0, sizeof(*info)); 2308 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2309 info->control.vif = &rx->sdata->vif; 2310 info->control.jiffies = jiffies; 2311 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2312 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2313 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2314 /* update power mode indication when forwarding */ 2315 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2316 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2317 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2318 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2319 } else { 2320 /* unable to resolve next hop */ 2321 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2322 fwd_hdr->addr3, 0, 2323 WLAN_REASON_MESH_PATH_NOFORWARD, 2324 fwd_hdr->addr2); 2325 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2326 kfree_skb(fwd_skb); 2327 return RX_DROP_MONITOR; 2328 } 2329 2330 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2331 ieee80211_add_pending_skb(local, fwd_skb); 2332 out: 2333 if (is_multicast_ether_addr(hdr->addr1) || 2334 sdata->dev->flags & IFF_PROMISC) 2335 return RX_CONTINUE; 2336 else 2337 return RX_DROP_MONITOR; 2338 } 2339 #endif 2340 2341 static ieee80211_rx_result debug_noinline 2342 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2343 { 2344 struct ieee80211_sub_if_data *sdata = rx->sdata; 2345 struct ieee80211_local *local = rx->local; 2346 struct net_device *dev = sdata->dev; 2347 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2348 __le16 fc = hdr->frame_control; 2349 bool port_control; 2350 int err; 2351 2352 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2353 return RX_CONTINUE; 2354 2355 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2356 return RX_DROP_MONITOR; 2357 2358 if (rx->sta) { 2359 /* The seqno index has the same property as needed 2360 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2361 * for non-QoS-data frames. Here we know it's a data 2362 * frame, so count MSDUs. 2363 */ 2364 rx->sta->rx_msdu[rx->seqno_idx]++; 2365 } 2366 2367 /* 2368 * Send unexpected-4addr-frame event to hostapd. For older versions, 2369 * also drop the frame to cooked monitor interfaces. 2370 */ 2371 if (ieee80211_has_a4(hdr->frame_control) && 2372 sdata->vif.type == NL80211_IFTYPE_AP) { 2373 if (rx->sta && 2374 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2375 cfg80211_rx_unexpected_4addr_frame( 2376 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2377 return RX_DROP_MONITOR; 2378 } 2379 2380 err = __ieee80211_data_to_8023(rx, &port_control); 2381 if (unlikely(err)) 2382 return RX_DROP_UNUSABLE; 2383 2384 if (!ieee80211_frame_allowed(rx, fc)) 2385 return RX_DROP_MONITOR; 2386 2387 /* directly handle TDLS channel switch requests/responses */ 2388 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2389 cpu_to_be16(ETH_P_TDLS))) { 2390 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2391 2392 if (pskb_may_pull(rx->skb, 2393 offsetof(struct ieee80211_tdls_data, u)) && 2394 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2395 tf->category == WLAN_CATEGORY_TDLS && 2396 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2397 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2398 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW; 2399 skb_queue_tail(&sdata->skb_queue, rx->skb); 2400 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2401 if (rx->sta) 2402 rx->sta->rx_packets++; 2403 2404 return RX_QUEUED; 2405 } 2406 } 2407 2408 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2409 unlikely(port_control) && sdata->bss) { 2410 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2411 u.ap); 2412 dev = sdata->dev; 2413 rx->sdata = sdata; 2414 } 2415 2416 rx->skb->dev = dev; 2417 2418 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2419 !is_multicast_ether_addr( 2420 ((struct ethhdr *)rx->skb->data)->h_dest) && 2421 (!local->scanning && 2422 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2423 mod_timer(&local->dynamic_ps_timer, jiffies + 2424 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2425 } 2426 2427 ieee80211_deliver_skb(rx); 2428 2429 return RX_QUEUED; 2430 } 2431 2432 static ieee80211_rx_result debug_noinline 2433 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2434 { 2435 struct sk_buff *skb = rx->skb; 2436 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2437 struct tid_ampdu_rx *tid_agg_rx; 2438 u16 start_seq_num; 2439 u16 tid; 2440 2441 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2442 return RX_CONTINUE; 2443 2444 if (ieee80211_is_back_req(bar->frame_control)) { 2445 struct { 2446 __le16 control, start_seq_num; 2447 } __packed bar_data; 2448 2449 if (!rx->sta) 2450 return RX_DROP_MONITOR; 2451 2452 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2453 &bar_data, sizeof(bar_data))) 2454 return RX_DROP_MONITOR; 2455 2456 tid = le16_to_cpu(bar_data.control) >> 12; 2457 2458 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2459 if (!tid_agg_rx) 2460 return RX_DROP_MONITOR; 2461 2462 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2463 2464 /* reset session timer */ 2465 if (tid_agg_rx->timeout) 2466 mod_timer(&tid_agg_rx->session_timer, 2467 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2468 2469 spin_lock(&tid_agg_rx->reorder_lock); 2470 /* release stored frames up to start of BAR */ 2471 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2472 start_seq_num, frames); 2473 spin_unlock(&tid_agg_rx->reorder_lock); 2474 2475 kfree_skb(skb); 2476 return RX_QUEUED; 2477 } 2478 2479 /* 2480 * After this point, we only want management frames, 2481 * so we can drop all remaining control frames to 2482 * cooked monitor interfaces. 2483 */ 2484 return RX_DROP_MONITOR; 2485 } 2486 2487 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2488 struct ieee80211_mgmt *mgmt, 2489 size_t len) 2490 { 2491 struct ieee80211_local *local = sdata->local; 2492 struct sk_buff *skb; 2493 struct ieee80211_mgmt *resp; 2494 2495 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2496 /* Not to own unicast address */ 2497 return; 2498 } 2499 2500 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2501 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2502 /* Not from the current AP or not associated yet. */ 2503 return; 2504 } 2505 2506 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2507 /* Too short SA Query request frame */ 2508 return; 2509 } 2510 2511 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2512 if (skb == NULL) 2513 return; 2514 2515 skb_reserve(skb, local->hw.extra_tx_headroom); 2516 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2517 memset(resp, 0, 24); 2518 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2519 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2520 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2521 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2522 IEEE80211_STYPE_ACTION); 2523 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2524 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2525 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2526 memcpy(resp->u.action.u.sa_query.trans_id, 2527 mgmt->u.action.u.sa_query.trans_id, 2528 WLAN_SA_QUERY_TR_ID_LEN); 2529 2530 ieee80211_tx_skb(sdata, skb); 2531 } 2532 2533 static ieee80211_rx_result debug_noinline 2534 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2535 { 2536 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2537 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2538 2539 /* 2540 * From here on, look only at management frames. 2541 * Data and control frames are already handled, 2542 * and unknown (reserved) frames are useless. 2543 */ 2544 if (rx->skb->len < 24) 2545 return RX_DROP_MONITOR; 2546 2547 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2548 return RX_DROP_MONITOR; 2549 2550 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2551 ieee80211_is_beacon(mgmt->frame_control) && 2552 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2553 int sig = 0; 2554 2555 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2556 sig = status->signal; 2557 2558 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2559 rx->skb->data, rx->skb->len, 2560 status->freq, sig); 2561 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2562 } 2563 2564 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2565 return RX_DROP_MONITOR; 2566 2567 if (ieee80211_drop_unencrypted_mgmt(rx)) 2568 return RX_DROP_UNUSABLE; 2569 2570 return RX_CONTINUE; 2571 } 2572 2573 static ieee80211_rx_result debug_noinline 2574 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2575 { 2576 struct ieee80211_local *local = rx->local; 2577 struct ieee80211_sub_if_data *sdata = rx->sdata; 2578 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2579 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2580 int len = rx->skb->len; 2581 2582 if (!ieee80211_is_action(mgmt->frame_control)) 2583 return RX_CONTINUE; 2584 2585 /* drop too small frames */ 2586 if (len < IEEE80211_MIN_ACTION_SIZE) 2587 return RX_DROP_UNUSABLE; 2588 2589 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2590 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2591 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2592 return RX_DROP_UNUSABLE; 2593 2594 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2595 return RX_DROP_UNUSABLE; 2596 2597 switch (mgmt->u.action.category) { 2598 case WLAN_CATEGORY_HT: 2599 /* reject HT action frames from stations not supporting HT */ 2600 if (!rx->sta->sta.ht_cap.ht_supported) 2601 goto invalid; 2602 2603 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2604 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2605 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2606 sdata->vif.type != NL80211_IFTYPE_AP && 2607 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2608 break; 2609 2610 /* verify action & smps_control/chanwidth are present */ 2611 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2612 goto invalid; 2613 2614 switch (mgmt->u.action.u.ht_smps.action) { 2615 case WLAN_HT_ACTION_SMPS: { 2616 struct ieee80211_supported_band *sband; 2617 enum ieee80211_smps_mode smps_mode; 2618 2619 /* convert to HT capability */ 2620 switch (mgmt->u.action.u.ht_smps.smps_control) { 2621 case WLAN_HT_SMPS_CONTROL_DISABLED: 2622 smps_mode = IEEE80211_SMPS_OFF; 2623 break; 2624 case WLAN_HT_SMPS_CONTROL_STATIC: 2625 smps_mode = IEEE80211_SMPS_STATIC; 2626 break; 2627 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2628 smps_mode = IEEE80211_SMPS_DYNAMIC; 2629 break; 2630 default: 2631 goto invalid; 2632 } 2633 2634 /* if no change do nothing */ 2635 if (rx->sta->sta.smps_mode == smps_mode) 2636 goto handled; 2637 rx->sta->sta.smps_mode = smps_mode; 2638 2639 sband = rx->local->hw.wiphy->bands[status->band]; 2640 2641 rate_control_rate_update(local, sband, rx->sta, 2642 IEEE80211_RC_SMPS_CHANGED); 2643 goto handled; 2644 } 2645 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2646 struct ieee80211_supported_band *sband; 2647 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2648 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2649 2650 /* If it doesn't support 40 MHz it can't change ... */ 2651 if (!(rx->sta->sta.ht_cap.cap & 2652 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2653 goto handled; 2654 2655 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2656 max_bw = IEEE80211_STA_RX_BW_20; 2657 else 2658 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2659 2660 /* set cur_max_bandwidth and recalc sta bw */ 2661 rx->sta->cur_max_bandwidth = max_bw; 2662 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2663 2664 if (rx->sta->sta.bandwidth == new_bw) 2665 goto handled; 2666 2667 rx->sta->sta.bandwidth = new_bw; 2668 sband = rx->local->hw.wiphy->bands[status->band]; 2669 2670 rate_control_rate_update(local, sband, rx->sta, 2671 IEEE80211_RC_BW_CHANGED); 2672 goto handled; 2673 } 2674 default: 2675 goto invalid; 2676 } 2677 2678 break; 2679 case WLAN_CATEGORY_PUBLIC: 2680 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2681 goto invalid; 2682 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2683 break; 2684 if (!rx->sta) 2685 break; 2686 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2687 break; 2688 if (mgmt->u.action.u.ext_chan_switch.action_code != 2689 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2690 break; 2691 if (len < offsetof(struct ieee80211_mgmt, 2692 u.action.u.ext_chan_switch.variable)) 2693 goto invalid; 2694 goto queue; 2695 case WLAN_CATEGORY_VHT: 2696 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2697 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2698 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2699 sdata->vif.type != NL80211_IFTYPE_AP && 2700 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2701 break; 2702 2703 /* verify action code is present */ 2704 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2705 goto invalid; 2706 2707 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2708 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2709 u8 opmode; 2710 2711 /* verify opmode is present */ 2712 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2713 goto invalid; 2714 2715 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2716 2717 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2718 opmode, status->band, 2719 false); 2720 goto handled; 2721 } 2722 default: 2723 break; 2724 } 2725 break; 2726 case WLAN_CATEGORY_BACK: 2727 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2728 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2729 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2730 sdata->vif.type != NL80211_IFTYPE_AP && 2731 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2732 break; 2733 2734 /* verify action_code is present */ 2735 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2736 break; 2737 2738 switch (mgmt->u.action.u.addba_req.action_code) { 2739 case WLAN_ACTION_ADDBA_REQ: 2740 if (len < (IEEE80211_MIN_ACTION_SIZE + 2741 sizeof(mgmt->u.action.u.addba_req))) 2742 goto invalid; 2743 break; 2744 case WLAN_ACTION_ADDBA_RESP: 2745 if (len < (IEEE80211_MIN_ACTION_SIZE + 2746 sizeof(mgmt->u.action.u.addba_resp))) 2747 goto invalid; 2748 break; 2749 case WLAN_ACTION_DELBA: 2750 if (len < (IEEE80211_MIN_ACTION_SIZE + 2751 sizeof(mgmt->u.action.u.delba))) 2752 goto invalid; 2753 break; 2754 default: 2755 goto invalid; 2756 } 2757 2758 goto queue; 2759 case WLAN_CATEGORY_SPECTRUM_MGMT: 2760 /* verify action_code is present */ 2761 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2762 break; 2763 2764 switch (mgmt->u.action.u.measurement.action_code) { 2765 case WLAN_ACTION_SPCT_MSR_REQ: 2766 if (status->band != IEEE80211_BAND_5GHZ) 2767 break; 2768 2769 if (len < (IEEE80211_MIN_ACTION_SIZE + 2770 sizeof(mgmt->u.action.u.measurement))) 2771 break; 2772 2773 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2774 break; 2775 2776 ieee80211_process_measurement_req(sdata, mgmt, len); 2777 goto handled; 2778 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2779 u8 *bssid; 2780 if (len < (IEEE80211_MIN_ACTION_SIZE + 2781 sizeof(mgmt->u.action.u.chan_switch))) 2782 break; 2783 2784 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2785 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2786 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2787 break; 2788 2789 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2790 bssid = sdata->u.mgd.bssid; 2791 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2792 bssid = sdata->u.ibss.bssid; 2793 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2794 bssid = mgmt->sa; 2795 else 2796 break; 2797 2798 if (!ether_addr_equal(mgmt->bssid, bssid)) 2799 break; 2800 2801 goto queue; 2802 } 2803 } 2804 break; 2805 case WLAN_CATEGORY_SA_QUERY: 2806 if (len < (IEEE80211_MIN_ACTION_SIZE + 2807 sizeof(mgmt->u.action.u.sa_query))) 2808 break; 2809 2810 switch (mgmt->u.action.u.sa_query.action) { 2811 case WLAN_ACTION_SA_QUERY_REQUEST: 2812 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2813 break; 2814 ieee80211_process_sa_query_req(sdata, mgmt, len); 2815 goto handled; 2816 } 2817 break; 2818 case WLAN_CATEGORY_SELF_PROTECTED: 2819 if (len < (IEEE80211_MIN_ACTION_SIZE + 2820 sizeof(mgmt->u.action.u.self_prot.action_code))) 2821 break; 2822 2823 switch (mgmt->u.action.u.self_prot.action_code) { 2824 case WLAN_SP_MESH_PEERING_OPEN: 2825 case WLAN_SP_MESH_PEERING_CLOSE: 2826 case WLAN_SP_MESH_PEERING_CONFIRM: 2827 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2828 goto invalid; 2829 if (sdata->u.mesh.user_mpm) 2830 /* userspace handles this frame */ 2831 break; 2832 goto queue; 2833 case WLAN_SP_MGK_INFORM: 2834 case WLAN_SP_MGK_ACK: 2835 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2836 goto invalid; 2837 break; 2838 } 2839 break; 2840 case WLAN_CATEGORY_MESH_ACTION: 2841 if (len < (IEEE80211_MIN_ACTION_SIZE + 2842 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2843 break; 2844 2845 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2846 break; 2847 if (mesh_action_is_path_sel(mgmt) && 2848 !mesh_path_sel_is_hwmp(sdata)) 2849 break; 2850 goto queue; 2851 } 2852 2853 return RX_CONTINUE; 2854 2855 invalid: 2856 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2857 /* will return in the next handlers */ 2858 return RX_CONTINUE; 2859 2860 handled: 2861 if (rx->sta) 2862 rx->sta->rx_packets++; 2863 dev_kfree_skb(rx->skb); 2864 return RX_QUEUED; 2865 2866 queue: 2867 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2868 skb_queue_tail(&sdata->skb_queue, rx->skb); 2869 ieee80211_queue_work(&local->hw, &sdata->work); 2870 if (rx->sta) 2871 rx->sta->rx_packets++; 2872 return RX_QUEUED; 2873 } 2874 2875 static ieee80211_rx_result debug_noinline 2876 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2877 { 2878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2879 int sig = 0; 2880 2881 /* skip known-bad action frames and return them in the next handler */ 2882 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2883 return RX_CONTINUE; 2884 2885 /* 2886 * Getting here means the kernel doesn't know how to handle 2887 * it, but maybe userspace does ... include returned frames 2888 * so userspace can register for those to know whether ones 2889 * it transmitted were processed or returned. 2890 */ 2891 2892 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2893 sig = status->signal; 2894 2895 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2896 rx->skb->data, rx->skb->len, 0)) { 2897 if (rx->sta) 2898 rx->sta->rx_packets++; 2899 dev_kfree_skb(rx->skb); 2900 return RX_QUEUED; 2901 } 2902 2903 return RX_CONTINUE; 2904 } 2905 2906 static ieee80211_rx_result debug_noinline 2907 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2908 { 2909 struct ieee80211_local *local = rx->local; 2910 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2911 struct sk_buff *nskb; 2912 struct ieee80211_sub_if_data *sdata = rx->sdata; 2913 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2914 2915 if (!ieee80211_is_action(mgmt->frame_control)) 2916 return RX_CONTINUE; 2917 2918 /* 2919 * For AP mode, hostapd is responsible for handling any action 2920 * frames that we didn't handle, including returning unknown 2921 * ones. For all other modes we will return them to the sender, 2922 * setting the 0x80 bit in the action category, as required by 2923 * 802.11-2012 9.24.4. 2924 * Newer versions of hostapd shall also use the management frame 2925 * registration mechanisms, but older ones still use cooked 2926 * monitor interfaces so push all frames there. 2927 */ 2928 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2929 (sdata->vif.type == NL80211_IFTYPE_AP || 2930 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2931 return RX_DROP_MONITOR; 2932 2933 if (is_multicast_ether_addr(mgmt->da)) 2934 return RX_DROP_MONITOR; 2935 2936 /* do not return rejected action frames */ 2937 if (mgmt->u.action.category & 0x80) 2938 return RX_DROP_UNUSABLE; 2939 2940 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2941 GFP_ATOMIC); 2942 if (nskb) { 2943 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2944 2945 nmgmt->u.action.category |= 0x80; 2946 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2947 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2948 2949 memset(nskb->cb, 0, sizeof(nskb->cb)); 2950 2951 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2952 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2953 2954 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2955 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2956 IEEE80211_TX_CTL_NO_CCK_RATE; 2957 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2958 info->hw_queue = 2959 local->hw.offchannel_tx_hw_queue; 2960 } 2961 2962 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2963 status->band); 2964 } 2965 dev_kfree_skb(rx->skb); 2966 return RX_QUEUED; 2967 } 2968 2969 static ieee80211_rx_result debug_noinline 2970 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2971 { 2972 struct ieee80211_sub_if_data *sdata = rx->sdata; 2973 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2974 __le16 stype; 2975 2976 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2977 2978 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2979 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2980 sdata->vif.type != NL80211_IFTYPE_OCB && 2981 sdata->vif.type != NL80211_IFTYPE_STATION) 2982 return RX_DROP_MONITOR; 2983 2984 switch (stype) { 2985 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2986 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2987 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2988 /* process for all: mesh, mlme, ibss */ 2989 break; 2990 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2991 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2992 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2993 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2994 if (is_multicast_ether_addr(mgmt->da) && 2995 !is_broadcast_ether_addr(mgmt->da)) 2996 return RX_DROP_MONITOR; 2997 2998 /* process only for station */ 2999 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3000 return RX_DROP_MONITOR; 3001 break; 3002 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3003 /* process only for ibss and mesh */ 3004 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3005 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3006 return RX_DROP_MONITOR; 3007 break; 3008 default: 3009 return RX_DROP_MONITOR; 3010 } 3011 3012 /* queue up frame and kick off work to process it */ 3013 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3014 skb_queue_tail(&sdata->skb_queue, rx->skb); 3015 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3016 if (rx->sta) 3017 rx->sta->rx_packets++; 3018 3019 return RX_QUEUED; 3020 } 3021 3022 /* TODO: use IEEE80211_RX_FRAGMENTED */ 3023 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3024 struct ieee80211_rate *rate) 3025 { 3026 struct ieee80211_sub_if_data *sdata; 3027 struct ieee80211_local *local = rx->local; 3028 struct sk_buff *skb = rx->skb, *skb2; 3029 struct net_device *prev_dev = NULL; 3030 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3031 int needed_headroom; 3032 3033 /* 3034 * If cooked monitor has been processed already, then 3035 * don't do it again. If not, set the flag. 3036 */ 3037 if (rx->flags & IEEE80211_RX_CMNTR) 3038 goto out_free_skb; 3039 rx->flags |= IEEE80211_RX_CMNTR; 3040 3041 /* If there are no cooked monitor interfaces, just free the SKB */ 3042 if (!local->cooked_mntrs) 3043 goto out_free_skb; 3044 3045 /* vendor data is long removed here */ 3046 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3047 /* room for the radiotap header based on driver features */ 3048 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3049 3050 if (skb_headroom(skb) < needed_headroom && 3051 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3052 goto out_free_skb; 3053 3054 /* prepend radiotap information */ 3055 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3056 false); 3057 3058 skb_set_mac_header(skb, 0); 3059 skb->ip_summed = CHECKSUM_UNNECESSARY; 3060 skb->pkt_type = PACKET_OTHERHOST; 3061 skb->protocol = htons(ETH_P_802_2); 3062 3063 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3064 if (!ieee80211_sdata_running(sdata)) 3065 continue; 3066 3067 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3068 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3069 continue; 3070 3071 if (prev_dev) { 3072 skb2 = skb_clone(skb, GFP_ATOMIC); 3073 if (skb2) { 3074 skb2->dev = prev_dev; 3075 netif_receive_skb(skb2); 3076 } 3077 } 3078 3079 prev_dev = sdata->dev; 3080 sdata->dev->stats.rx_packets++; 3081 sdata->dev->stats.rx_bytes += skb->len; 3082 } 3083 3084 if (prev_dev) { 3085 skb->dev = prev_dev; 3086 netif_receive_skb(skb); 3087 return; 3088 } 3089 3090 out_free_skb: 3091 dev_kfree_skb(skb); 3092 } 3093 3094 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3095 ieee80211_rx_result res) 3096 { 3097 switch (res) { 3098 case RX_DROP_MONITOR: 3099 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3100 if (rx->sta) 3101 rx->sta->rx_dropped++; 3102 /* fall through */ 3103 case RX_CONTINUE: { 3104 struct ieee80211_rate *rate = NULL; 3105 struct ieee80211_supported_band *sband; 3106 struct ieee80211_rx_status *status; 3107 3108 status = IEEE80211_SKB_RXCB((rx->skb)); 3109 3110 sband = rx->local->hw.wiphy->bands[status->band]; 3111 if (!(status->flag & RX_FLAG_HT) && 3112 !(status->flag & RX_FLAG_VHT)) 3113 rate = &sband->bitrates[status->rate_idx]; 3114 3115 ieee80211_rx_cooked_monitor(rx, rate); 3116 break; 3117 } 3118 case RX_DROP_UNUSABLE: 3119 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3120 if (rx->sta) 3121 rx->sta->rx_dropped++; 3122 dev_kfree_skb(rx->skb); 3123 break; 3124 case RX_QUEUED: 3125 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3126 break; 3127 } 3128 } 3129 3130 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3131 struct sk_buff_head *frames) 3132 { 3133 ieee80211_rx_result res = RX_DROP_MONITOR; 3134 struct sk_buff *skb; 3135 3136 #define CALL_RXH(rxh) \ 3137 do { \ 3138 res = rxh(rx); \ 3139 if (res != RX_CONTINUE) \ 3140 goto rxh_next; \ 3141 } while (0); 3142 3143 /* Lock here to avoid hitting all of the data used in the RX 3144 * path (e.g. key data, station data, ...) concurrently when 3145 * a frame is released from the reorder buffer due to timeout 3146 * from the timer, potentially concurrently with RX from the 3147 * driver. 3148 */ 3149 spin_lock_bh(&rx->local->rx_path_lock); 3150 3151 while ((skb = __skb_dequeue(frames))) { 3152 /* 3153 * all the other fields are valid across frames 3154 * that belong to an aMPDU since they are on the 3155 * same TID from the same station 3156 */ 3157 rx->skb = skb; 3158 3159 CALL_RXH(ieee80211_rx_h_check_more_data) 3160 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 3161 CALL_RXH(ieee80211_rx_h_sta_process) 3162 CALL_RXH(ieee80211_rx_h_decrypt) 3163 CALL_RXH(ieee80211_rx_h_defragment) 3164 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 3165 /* must be after MMIC verify so header is counted in MPDU mic */ 3166 #ifdef CONFIG_MAC80211_MESH 3167 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3168 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3169 #endif 3170 CALL_RXH(ieee80211_rx_h_amsdu) 3171 CALL_RXH(ieee80211_rx_h_data) 3172 3173 /* special treatment -- needs the queue */ 3174 res = ieee80211_rx_h_ctrl(rx, frames); 3175 if (res != RX_CONTINUE) 3176 goto rxh_next; 3177 3178 CALL_RXH(ieee80211_rx_h_mgmt_check) 3179 CALL_RXH(ieee80211_rx_h_action) 3180 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3181 CALL_RXH(ieee80211_rx_h_action_return) 3182 CALL_RXH(ieee80211_rx_h_mgmt) 3183 3184 rxh_next: 3185 ieee80211_rx_handlers_result(rx, res); 3186 3187 #undef CALL_RXH 3188 } 3189 3190 spin_unlock_bh(&rx->local->rx_path_lock); 3191 } 3192 3193 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3194 { 3195 struct sk_buff_head reorder_release; 3196 ieee80211_rx_result res = RX_DROP_MONITOR; 3197 3198 __skb_queue_head_init(&reorder_release); 3199 3200 #define CALL_RXH(rxh) \ 3201 do { \ 3202 res = rxh(rx); \ 3203 if (res != RX_CONTINUE) \ 3204 goto rxh_next; \ 3205 } while (0); 3206 3207 CALL_RXH(ieee80211_rx_h_check_dup) 3208 CALL_RXH(ieee80211_rx_h_check) 3209 3210 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3211 3212 ieee80211_rx_handlers(rx, &reorder_release); 3213 return; 3214 3215 rxh_next: 3216 ieee80211_rx_handlers_result(rx, res); 3217 3218 #undef CALL_RXH 3219 } 3220 3221 /* 3222 * This function makes calls into the RX path, therefore 3223 * it has to be invoked under RCU read lock. 3224 */ 3225 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3226 { 3227 struct sk_buff_head frames; 3228 struct ieee80211_rx_data rx = { 3229 .sta = sta, 3230 .sdata = sta->sdata, 3231 .local = sta->local, 3232 /* This is OK -- must be QoS data frame */ 3233 .security_idx = tid, 3234 .seqno_idx = tid, 3235 .flags = IEEE80211_RX_REORDER_TIMER, 3236 }; 3237 struct tid_ampdu_rx *tid_agg_rx; 3238 3239 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3240 if (!tid_agg_rx) 3241 return; 3242 3243 __skb_queue_head_init(&frames); 3244 3245 spin_lock(&tid_agg_rx->reorder_lock); 3246 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3247 spin_unlock(&tid_agg_rx->reorder_lock); 3248 3249 ieee80211_rx_handlers(&rx, &frames); 3250 } 3251 3252 /* main receive path */ 3253 3254 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3255 struct ieee80211_hdr *hdr) 3256 { 3257 struct ieee80211_sub_if_data *sdata = rx->sdata; 3258 struct sk_buff *skb = rx->skb; 3259 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3260 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3261 int multicast = is_multicast_ether_addr(hdr->addr1); 3262 3263 switch (sdata->vif.type) { 3264 case NL80211_IFTYPE_STATION: 3265 if (!bssid && !sdata->u.mgd.use_4addr) 3266 return false; 3267 if (!multicast && 3268 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3269 if (!(sdata->dev->flags & IFF_PROMISC) || 3270 sdata->u.mgd.use_4addr) 3271 return false; 3272 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3273 } 3274 break; 3275 case NL80211_IFTYPE_ADHOC: 3276 if (!bssid) 3277 return false; 3278 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3279 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3280 return false; 3281 if (ieee80211_is_beacon(hdr->frame_control)) { 3282 return true; 3283 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3284 return false; 3285 } else if (!multicast && 3286 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3287 if (!(sdata->dev->flags & IFF_PROMISC)) 3288 return false; 3289 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3290 } else if (!rx->sta) { 3291 int rate_idx; 3292 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3293 rate_idx = 0; /* TODO: HT/VHT rates */ 3294 else 3295 rate_idx = status->rate_idx; 3296 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3297 BIT(rate_idx)); 3298 } 3299 break; 3300 case NL80211_IFTYPE_OCB: 3301 if (!bssid) 3302 return false; 3303 if (ieee80211_is_beacon(hdr->frame_control)) { 3304 return false; 3305 } else if (!is_broadcast_ether_addr(bssid)) { 3306 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n"); 3307 return false; 3308 } else if (!multicast && 3309 !ether_addr_equal(sdata->dev->dev_addr, 3310 hdr->addr1)) { 3311 /* if we are in promisc mode we also accept 3312 * packets not destined for us 3313 */ 3314 if (!(sdata->dev->flags & IFF_PROMISC)) 3315 return false; 3316 rx->flags &= ~IEEE80211_RX_RA_MATCH; 3317 } else if (!rx->sta) { 3318 int rate_idx; 3319 if (status->flag & RX_FLAG_HT) 3320 rate_idx = 0; /* TODO: HT rates */ 3321 else 3322 rate_idx = status->rate_idx; 3323 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3324 BIT(rate_idx)); 3325 } 3326 break; 3327 case NL80211_IFTYPE_MESH_POINT: 3328 if (!multicast && 3329 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3330 if (!(sdata->dev->flags & IFF_PROMISC)) 3331 return false; 3332 3333 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3334 } 3335 break; 3336 case NL80211_IFTYPE_AP_VLAN: 3337 case NL80211_IFTYPE_AP: 3338 if (!bssid) { 3339 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3340 return false; 3341 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3342 /* 3343 * Accept public action frames even when the 3344 * BSSID doesn't match, this is used for P2P 3345 * and location updates. Note that mac80211 3346 * itself never looks at these frames. 3347 */ 3348 if (!multicast && 3349 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3350 return false; 3351 if (ieee80211_is_public_action(hdr, skb->len)) 3352 return true; 3353 if (!ieee80211_is_beacon(hdr->frame_control)) 3354 return false; 3355 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3356 } else if (!ieee80211_has_tods(hdr->frame_control)) { 3357 /* ignore data frames to TDLS-peers */ 3358 if (ieee80211_is_data(hdr->frame_control)) 3359 return false; 3360 /* ignore action frames to TDLS-peers */ 3361 if (ieee80211_is_action(hdr->frame_control) && 3362 !ether_addr_equal(bssid, hdr->addr1)) 3363 return false; 3364 } 3365 break; 3366 case NL80211_IFTYPE_WDS: 3367 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3368 return false; 3369 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3370 return false; 3371 break; 3372 case NL80211_IFTYPE_P2P_DEVICE: 3373 if (!ieee80211_is_public_action(hdr, skb->len) && 3374 !ieee80211_is_probe_req(hdr->frame_control) && 3375 !ieee80211_is_probe_resp(hdr->frame_control) && 3376 !ieee80211_is_beacon(hdr->frame_control)) 3377 return false; 3378 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3379 !multicast) 3380 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3381 break; 3382 default: 3383 /* should never get here */ 3384 WARN_ON_ONCE(1); 3385 break; 3386 } 3387 3388 return true; 3389 } 3390 3391 /* 3392 * This function returns whether or not the SKB 3393 * was destined for RX processing or not, which, 3394 * if consume is true, is equivalent to whether 3395 * or not the skb was consumed. 3396 */ 3397 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3398 struct sk_buff *skb, bool consume) 3399 { 3400 struct ieee80211_local *local = rx->local; 3401 struct ieee80211_sub_if_data *sdata = rx->sdata; 3402 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3403 struct ieee80211_hdr *hdr = (void *)skb->data; 3404 3405 rx->skb = skb; 3406 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3407 3408 if (!prepare_for_handlers(rx, hdr)) 3409 return false; 3410 3411 if (!consume) { 3412 skb = skb_copy(skb, GFP_ATOMIC); 3413 if (!skb) { 3414 if (net_ratelimit()) 3415 wiphy_debug(local->hw.wiphy, 3416 "failed to copy skb for %s\n", 3417 sdata->name); 3418 return true; 3419 } 3420 3421 rx->skb = skb; 3422 } 3423 3424 ieee80211_invoke_rx_handlers(rx); 3425 return true; 3426 } 3427 3428 /* 3429 * This is the actual Rx frames handler. as it belongs to Rx path it must 3430 * be called with rcu_read_lock protection. 3431 */ 3432 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3433 struct sk_buff *skb) 3434 { 3435 struct ieee80211_local *local = hw_to_local(hw); 3436 struct ieee80211_sub_if_data *sdata; 3437 struct ieee80211_hdr *hdr; 3438 __le16 fc; 3439 struct ieee80211_rx_data rx; 3440 struct ieee80211_sub_if_data *prev; 3441 struct sta_info *sta, *prev_sta; 3442 struct rhash_head *tmp; 3443 int err = 0; 3444 3445 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3446 memset(&rx, 0, sizeof(rx)); 3447 rx.skb = skb; 3448 rx.local = local; 3449 3450 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3451 local->dot11ReceivedFragmentCount++; 3452 3453 if (ieee80211_is_mgmt(fc)) { 3454 /* drop frame if too short for header */ 3455 if (skb->len < ieee80211_hdrlen(fc)) 3456 err = -ENOBUFS; 3457 else 3458 err = skb_linearize(skb); 3459 } else { 3460 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3461 } 3462 3463 if (err) { 3464 dev_kfree_skb(skb); 3465 return; 3466 } 3467 3468 hdr = (struct ieee80211_hdr *)skb->data; 3469 ieee80211_parse_qos(&rx); 3470 ieee80211_verify_alignment(&rx); 3471 3472 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3473 ieee80211_is_beacon(hdr->frame_control))) 3474 ieee80211_scan_rx(local, skb); 3475 3476 if (ieee80211_is_data(fc)) { 3477 const struct bucket_table *tbl; 3478 3479 prev_sta = NULL; 3480 3481 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 3482 3483 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) { 3484 if (!prev_sta) { 3485 prev_sta = sta; 3486 continue; 3487 } 3488 3489 rx.sta = prev_sta; 3490 rx.sdata = prev_sta->sdata; 3491 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3492 3493 prev_sta = sta; 3494 } 3495 3496 if (prev_sta) { 3497 rx.sta = prev_sta; 3498 rx.sdata = prev_sta->sdata; 3499 3500 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3501 return; 3502 goto out; 3503 } 3504 } 3505 3506 prev = NULL; 3507 3508 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3509 if (!ieee80211_sdata_running(sdata)) 3510 continue; 3511 3512 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3513 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3514 continue; 3515 3516 /* 3517 * frame is destined for this interface, but if it's 3518 * not also for the previous one we handle that after 3519 * the loop to avoid copying the SKB once too much 3520 */ 3521 3522 if (!prev) { 3523 prev = sdata; 3524 continue; 3525 } 3526 3527 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3528 rx.sdata = prev; 3529 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3530 3531 prev = sdata; 3532 } 3533 3534 if (prev) { 3535 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3536 rx.sdata = prev; 3537 3538 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3539 return; 3540 } 3541 3542 out: 3543 dev_kfree_skb(skb); 3544 } 3545 3546 /* 3547 * This is the receive path handler. It is called by a low level driver when an 3548 * 802.11 MPDU is received from the hardware. 3549 */ 3550 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3551 { 3552 struct ieee80211_local *local = hw_to_local(hw); 3553 struct ieee80211_rate *rate = NULL; 3554 struct ieee80211_supported_band *sband; 3555 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3556 3557 WARN_ON_ONCE(softirq_count() == 0); 3558 3559 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3560 goto drop; 3561 3562 sband = local->hw.wiphy->bands[status->band]; 3563 if (WARN_ON(!sband)) 3564 goto drop; 3565 3566 /* 3567 * If we're suspending, it is possible although not too likely 3568 * that we'd be receiving frames after having already partially 3569 * quiesced the stack. We can't process such frames then since 3570 * that might, for example, cause stations to be added or other 3571 * driver callbacks be invoked. 3572 */ 3573 if (unlikely(local->quiescing || local->suspended)) 3574 goto drop; 3575 3576 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3577 if (unlikely(local->in_reconfig)) 3578 goto drop; 3579 3580 /* 3581 * The same happens when we're not even started, 3582 * but that's worth a warning. 3583 */ 3584 if (WARN_ON(!local->started)) 3585 goto drop; 3586 3587 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3588 /* 3589 * Validate the rate, unless a PLCP error means that 3590 * we probably can't have a valid rate here anyway. 3591 */ 3592 3593 if (status->flag & RX_FLAG_HT) { 3594 /* 3595 * rate_idx is MCS index, which can be [0-76] 3596 * as documented on: 3597 * 3598 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3599 * 3600 * Anything else would be some sort of driver or 3601 * hardware error. The driver should catch hardware 3602 * errors. 3603 */ 3604 if (WARN(status->rate_idx > 76, 3605 "Rate marked as an HT rate but passed " 3606 "status->rate_idx is not " 3607 "an MCS index [0-76]: %d (0x%02x)\n", 3608 status->rate_idx, 3609 status->rate_idx)) 3610 goto drop; 3611 } else if (status->flag & RX_FLAG_VHT) { 3612 if (WARN_ONCE(status->rate_idx > 9 || 3613 !status->vht_nss || 3614 status->vht_nss > 8, 3615 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3616 status->rate_idx, status->vht_nss)) 3617 goto drop; 3618 } else { 3619 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3620 goto drop; 3621 rate = &sband->bitrates[status->rate_idx]; 3622 } 3623 } 3624 3625 status->rx_flags = 0; 3626 3627 /* 3628 * key references and virtual interfaces are protected using RCU 3629 * and this requires that we are in a read-side RCU section during 3630 * receive processing 3631 */ 3632 rcu_read_lock(); 3633 3634 /* 3635 * Frames with failed FCS/PLCP checksum are not returned, 3636 * all other frames are returned without radiotap header 3637 * if it was previously present. 3638 * Also, frames with less than 16 bytes are dropped. 3639 */ 3640 skb = ieee80211_rx_monitor(local, skb, rate); 3641 if (!skb) { 3642 rcu_read_unlock(); 3643 return; 3644 } 3645 3646 ieee80211_tpt_led_trig_rx(local, 3647 ((struct ieee80211_hdr *)skb->data)->frame_control, 3648 skb->len); 3649 __ieee80211_rx_handle_packet(hw, skb); 3650 3651 rcu_read_unlock(); 3652 3653 return; 3654 drop: 3655 kfree_skb(skb); 3656 } 3657 EXPORT_SYMBOL(ieee80211_rx); 3658 3659 /* This is a version of the rx handler that can be called from hard irq 3660 * context. Post the skb on the queue and schedule the tasklet */ 3661 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3662 { 3663 struct ieee80211_local *local = hw_to_local(hw); 3664 3665 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3666 3667 skb->pkt_type = IEEE80211_RX_MSG; 3668 skb_queue_tail(&local->skb_queue, skb); 3669 tasklet_schedule(&local->tasklet); 3670 } 3671 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3672