1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 struct ieee80211_hdr *hdr; 101 unsigned int hdrlen; 102 __le16 fc; 103 104 if (present_fcs_len) 105 __pskb_trim(skb, skb->len - present_fcs_len); 106 __pskb_pull(skb, rtap_space); 107 108 hdr = (void *)skb->data; 109 fc = hdr->frame_control; 110 111 /* 112 * Remove the HT-Control field (if present) on management 113 * frames after we've sent the frame to monitoring. We 114 * (currently) don't need it, and don't properly parse 115 * frames with it present, due to the assumption of a 116 * fixed management header length. 117 */ 118 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 119 return skb; 120 121 hdrlen = ieee80211_hdrlen(fc); 122 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 123 124 if (!pskb_may_pull(skb, hdrlen)) { 125 dev_kfree_skb(skb); 126 return NULL; 127 } 128 129 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 130 hdrlen - IEEE80211_HT_CTL_LEN); 131 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 132 133 return skb; 134 } 135 136 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 137 unsigned int rtap_space) 138 { 139 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 140 struct ieee80211_hdr *hdr; 141 142 hdr = (void *)(skb->data + rtap_space); 143 144 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 145 RX_FLAG_FAILED_PLCP_CRC | 146 RX_FLAG_ONLY_MONITOR | 147 RX_FLAG_NO_PSDU)) 148 return true; 149 150 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 151 return true; 152 153 if (ieee80211_is_ctl(hdr->frame_control) && 154 !ieee80211_is_pspoll(hdr->frame_control) && 155 !ieee80211_is_back_req(hdr->frame_control)) 156 return true; 157 158 return false; 159 } 160 161 static int 162 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 163 struct ieee80211_rx_status *status, 164 struct sk_buff *skb) 165 { 166 int len; 167 168 /* always present fields */ 169 len = sizeof(struct ieee80211_radiotap_header) + 8; 170 171 /* allocate extra bitmaps */ 172 if (status->chains) 173 len += 4 * hweight8(status->chains); 174 /* vendor presence bitmap */ 175 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 176 len += 4; 177 178 if (ieee80211_have_rx_timestamp(status)) { 179 len = ALIGN(len, 8); 180 len += 8; 181 } 182 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 183 len += 1; 184 185 /* antenna field, if we don't have per-chain info */ 186 if (!status->chains) 187 len += 1; 188 189 /* padding for RX_FLAGS if necessary */ 190 len = ALIGN(len, 2); 191 192 if (status->encoding == RX_ENC_HT) /* HT info */ 193 len += 3; 194 195 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 196 len = ALIGN(len, 4); 197 len += 8; 198 } 199 200 if (status->encoding == RX_ENC_VHT) { 201 len = ALIGN(len, 2); 202 len += 12; 203 } 204 205 if (local->hw.radiotap_timestamp.units_pos >= 0) { 206 len = ALIGN(len, 8); 207 len += 12; 208 } 209 210 if (status->encoding == RX_ENC_HE && 211 status->flag & RX_FLAG_RADIOTAP_HE) { 212 len = ALIGN(len, 2); 213 len += 12; 214 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 215 } 216 217 if (status->encoding == RX_ENC_HE && 218 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 219 len = ALIGN(len, 2); 220 len += 12; 221 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 222 } 223 224 if (status->flag & RX_FLAG_NO_PSDU) 225 len += 1; 226 227 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 228 len = ALIGN(len, 2); 229 len += 4; 230 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 231 } 232 233 if (status->chains) { 234 /* antenna and antenna signal fields */ 235 len += 2 * hweight8(status->chains); 236 } 237 238 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 239 struct ieee80211_vendor_radiotap *rtap; 240 int vendor_data_offset = 0; 241 242 /* 243 * The position to look at depends on the existence (or non- 244 * existence) of other elements, so take that into account... 245 */ 246 if (status->flag & RX_FLAG_RADIOTAP_HE) 247 vendor_data_offset += 248 sizeof(struct ieee80211_radiotap_he); 249 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 250 vendor_data_offset += 251 sizeof(struct ieee80211_radiotap_he_mu); 252 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 253 vendor_data_offset += 254 sizeof(struct ieee80211_radiotap_lsig); 255 256 rtap = (void *)&skb->data[vendor_data_offset]; 257 258 /* alignment for fixed 6-byte vendor data header */ 259 len = ALIGN(len, 2); 260 /* vendor data header */ 261 len += 6; 262 if (WARN_ON(rtap->align == 0)) 263 rtap->align = 1; 264 len = ALIGN(len, rtap->align); 265 len += rtap->len + rtap->pad; 266 } 267 268 return len; 269 } 270 271 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 272 struct sk_buff *skb, 273 int rtap_space) 274 { 275 struct { 276 struct ieee80211_hdr_3addr hdr; 277 u8 category; 278 u8 action_code; 279 } __packed __aligned(2) action; 280 281 if (!sdata) 282 return; 283 284 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 285 286 if (skb->len < rtap_space + sizeof(action) + 287 VHT_MUMIMO_GROUPS_DATA_LEN) 288 return; 289 290 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 291 return; 292 293 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 294 295 if (!ieee80211_is_action(action.hdr.frame_control)) 296 return; 297 298 if (action.category != WLAN_CATEGORY_VHT) 299 return; 300 301 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 302 return; 303 304 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 305 return; 306 307 skb = skb_copy(skb, GFP_ATOMIC); 308 if (!skb) 309 return; 310 311 skb_queue_tail(&sdata->skb_queue, skb); 312 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 313 } 314 315 /* 316 * ieee80211_add_rx_radiotap_header - add radiotap header 317 * 318 * add a radiotap header containing all the fields which the hardware provided. 319 */ 320 static void 321 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 322 struct sk_buff *skb, 323 struct ieee80211_rate *rate, 324 int rtap_len, bool has_fcs) 325 { 326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 327 struct ieee80211_radiotap_header *rthdr; 328 unsigned char *pos; 329 __le32 *it_present; 330 u32 it_present_val; 331 u16 rx_flags = 0; 332 u16 channel_flags = 0; 333 int mpdulen, chain; 334 unsigned long chains = status->chains; 335 struct ieee80211_vendor_radiotap rtap = {}; 336 struct ieee80211_radiotap_he he = {}; 337 struct ieee80211_radiotap_he_mu he_mu = {}; 338 struct ieee80211_radiotap_lsig lsig = {}; 339 340 if (status->flag & RX_FLAG_RADIOTAP_HE) { 341 he = *(struct ieee80211_radiotap_he *)skb->data; 342 skb_pull(skb, sizeof(he)); 343 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 344 } 345 346 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 347 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 348 skb_pull(skb, sizeof(he_mu)); 349 } 350 351 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 352 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 353 skb_pull(skb, sizeof(lsig)); 354 } 355 356 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 357 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 358 /* rtap.len and rtap.pad are undone immediately */ 359 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 360 } 361 362 mpdulen = skb->len; 363 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 364 mpdulen += FCS_LEN; 365 366 rthdr = skb_push(skb, rtap_len); 367 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 368 it_present = &rthdr->it_present; 369 370 /* radiotap header, set always present flags */ 371 rthdr->it_len = cpu_to_le16(rtap_len); 372 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 373 BIT(IEEE80211_RADIOTAP_CHANNEL) | 374 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 375 376 if (!status->chains) 377 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 378 379 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 380 it_present_val |= 381 BIT(IEEE80211_RADIOTAP_EXT) | 382 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 383 put_unaligned_le32(it_present_val, it_present); 384 it_present++; 385 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 386 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 387 } 388 389 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 390 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 391 BIT(IEEE80211_RADIOTAP_EXT); 392 put_unaligned_le32(it_present_val, it_present); 393 it_present++; 394 it_present_val = rtap.present; 395 } 396 397 put_unaligned_le32(it_present_val, it_present); 398 399 pos = (void *)(it_present + 1); 400 401 /* the order of the following fields is important */ 402 403 /* IEEE80211_RADIOTAP_TSFT */ 404 if (ieee80211_have_rx_timestamp(status)) { 405 /* padding */ 406 while ((pos - (u8 *)rthdr) & 7) 407 *pos++ = 0; 408 put_unaligned_le64( 409 ieee80211_calculate_rx_timestamp(local, status, 410 mpdulen, 0), 411 pos); 412 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 413 pos += 8; 414 } 415 416 /* IEEE80211_RADIOTAP_FLAGS */ 417 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 418 *pos |= IEEE80211_RADIOTAP_F_FCS; 419 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 420 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 421 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 422 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 423 pos++; 424 425 /* IEEE80211_RADIOTAP_RATE */ 426 if (!rate || status->encoding != RX_ENC_LEGACY) { 427 /* 428 * Without rate information don't add it. If we have, 429 * MCS information is a separate field in radiotap, 430 * added below. The byte here is needed as padding 431 * for the channel though, so initialise it to 0. 432 */ 433 *pos = 0; 434 } else { 435 int shift = 0; 436 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 437 if (status->bw == RATE_INFO_BW_10) 438 shift = 1; 439 else if (status->bw == RATE_INFO_BW_5) 440 shift = 2; 441 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 442 } 443 pos++; 444 445 /* IEEE80211_RADIOTAP_CHANNEL */ 446 /* TODO: frequency offset in KHz */ 447 put_unaligned_le16(status->freq, pos); 448 pos += 2; 449 if (status->bw == RATE_INFO_BW_10) 450 channel_flags |= IEEE80211_CHAN_HALF; 451 else if (status->bw == RATE_INFO_BW_5) 452 channel_flags |= IEEE80211_CHAN_QUARTER; 453 454 if (status->band == NL80211_BAND_5GHZ) 455 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 456 else if (status->encoding != RX_ENC_LEGACY) 457 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 458 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 459 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 460 else if (rate) 461 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 462 else 463 channel_flags |= IEEE80211_CHAN_2GHZ; 464 put_unaligned_le16(channel_flags, pos); 465 pos += 2; 466 467 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 468 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 469 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 470 *pos = status->signal; 471 rthdr->it_present |= 472 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 473 pos++; 474 } 475 476 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 477 478 if (!status->chains) { 479 /* IEEE80211_RADIOTAP_ANTENNA */ 480 *pos = status->antenna; 481 pos++; 482 } 483 484 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 485 486 /* IEEE80211_RADIOTAP_RX_FLAGS */ 487 /* ensure 2 byte alignment for the 2 byte field as required */ 488 if ((pos - (u8 *)rthdr) & 1) 489 *pos++ = 0; 490 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 491 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 492 put_unaligned_le16(rx_flags, pos); 493 pos += 2; 494 495 if (status->encoding == RX_ENC_HT) { 496 unsigned int stbc; 497 498 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 499 *pos++ = local->hw.radiotap_mcs_details; 500 *pos = 0; 501 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 502 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 503 if (status->bw == RATE_INFO_BW_40) 504 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 505 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 506 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 507 if (status->enc_flags & RX_ENC_FLAG_LDPC) 508 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 509 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 510 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 511 pos++; 512 *pos++ = status->rate_idx; 513 } 514 515 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 516 u16 flags = 0; 517 518 /* ensure 4 byte alignment */ 519 while ((pos - (u8 *)rthdr) & 3) 520 pos++; 521 rthdr->it_present |= 522 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 523 put_unaligned_le32(status->ampdu_reference, pos); 524 pos += 4; 525 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 526 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 527 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 528 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 529 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 530 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 531 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 532 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 533 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 534 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 535 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 536 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 537 put_unaligned_le16(flags, pos); 538 pos += 2; 539 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 540 *pos++ = status->ampdu_delimiter_crc; 541 else 542 *pos++ = 0; 543 *pos++ = 0; 544 } 545 546 if (status->encoding == RX_ENC_VHT) { 547 u16 known = local->hw.radiotap_vht_details; 548 549 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 550 put_unaligned_le16(known, pos); 551 pos += 2; 552 /* flags */ 553 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 554 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 555 /* in VHT, STBC is binary */ 556 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 557 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 558 if (status->enc_flags & RX_ENC_FLAG_BF) 559 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 560 pos++; 561 /* bandwidth */ 562 switch (status->bw) { 563 case RATE_INFO_BW_80: 564 *pos++ = 4; 565 break; 566 case RATE_INFO_BW_160: 567 *pos++ = 11; 568 break; 569 case RATE_INFO_BW_40: 570 *pos++ = 1; 571 break; 572 default: 573 *pos++ = 0; 574 } 575 /* MCS/NSS */ 576 *pos = (status->rate_idx << 4) | status->nss; 577 pos += 4; 578 /* coding field */ 579 if (status->enc_flags & RX_ENC_FLAG_LDPC) 580 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 581 pos++; 582 /* group ID */ 583 pos++; 584 /* partial_aid */ 585 pos += 2; 586 } 587 588 if (local->hw.radiotap_timestamp.units_pos >= 0) { 589 u16 accuracy = 0; 590 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 591 592 rthdr->it_present |= 593 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 594 595 /* ensure 8 byte alignment */ 596 while ((pos - (u8 *)rthdr) & 7) 597 pos++; 598 599 put_unaligned_le64(status->device_timestamp, pos); 600 pos += sizeof(u64); 601 602 if (local->hw.radiotap_timestamp.accuracy >= 0) { 603 accuracy = local->hw.radiotap_timestamp.accuracy; 604 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 605 } 606 put_unaligned_le16(accuracy, pos); 607 pos += sizeof(u16); 608 609 *pos++ = local->hw.radiotap_timestamp.units_pos; 610 *pos++ = flags; 611 } 612 613 if (status->encoding == RX_ENC_HE && 614 status->flag & RX_FLAG_RADIOTAP_HE) { 615 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 616 617 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 618 he.data6 |= HE_PREP(DATA6_NSTS, 619 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 620 status->enc_flags)); 621 he.data3 |= HE_PREP(DATA3_STBC, 1); 622 } else { 623 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 624 } 625 626 #define CHECK_GI(s) \ 627 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 628 (int)NL80211_RATE_INFO_HE_GI_##s) 629 630 CHECK_GI(0_8); 631 CHECK_GI(1_6); 632 CHECK_GI(3_2); 633 634 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 635 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 636 he.data3 |= HE_PREP(DATA3_CODING, 637 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 638 639 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 640 641 switch (status->bw) { 642 case RATE_INFO_BW_20: 643 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 644 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 645 break; 646 case RATE_INFO_BW_40: 647 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 648 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 649 break; 650 case RATE_INFO_BW_80: 651 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 652 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 653 break; 654 case RATE_INFO_BW_160: 655 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 656 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 657 break; 658 case RATE_INFO_BW_HE_RU: 659 #define CHECK_RU_ALLOC(s) \ 660 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 661 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 662 663 CHECK_RU_ALLOC(26); 664 CHECK_RU_ALLOC(52); 665 CHECK_RU_ALLOC(106); 666 CHECK_RU_ALLOC(242); 667 CHECK_RU_ALLOC(484); 668 CHECK_RU_ALLOC(996); 669 CHECK_RU_ALLOC(2x996); 670 671 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 672 status->he_ru + 4); 673 break; 674 default: 675 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 676 } 677 678 /* ensure 2 byte alignment */ 679 while ((pos - (u8 *)rthdr) & 1) 680 pos++; 681 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 682 memcpy(pos, &he, sizeof(he)); 683 pos += sizeof(he); 684 } 685 686 if (status->encoding == RX_ENC_HE && 687 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 688 /* ensure 2 byte alignment */ 689 while ((pos - (u8 *)rthdr) & 1) 690 pos++; 691 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 692 memcpy(pos, &he_mu, sizeof(he_mu)); 693 pos += sizeof(he_mu); 694 } 695 696 if (status->flag & RX_FLAG_NO_PSDU) { 697 rthdr->it_present |= 698 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 699 *pos++ = status->zero_length_psdu_type; 700 } 701 702 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 703 /* ensure 2 byte alignment */ 704 while ((pos - (u8 *)rthdr) & 1) 705 pos++; 706 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 707 memcpy(pos, &lsig, sizeof(lsig)); 708 pos += sizeof(lsig); 709 } 710 711 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 712 *pos++ = status->chain_signal[chain]; 713 *pos++ = chain; 714 } 715 716 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 717 /* ensure 2 byte alignment for the vendor field as required */ 718 if ((pos - (u8 *)rthdr) & 1) 719 *pos++ = 0; 720 *pos++ = rtap.oui[0]; 721 *pos++ = rtap.oui[1]; 722 *pos++ = rtap.oui[2]; 723 *pos++ = rtap.subns; 724 put_unaligned_le16(rtap.len, pos); 725 pos += 2; 726 /* align the actual payload as requested */ 727 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 728 *pos++ = 0; 729 /* data (and possible padding) already follows */ 730 } 731 } 732 733 static struct sk_buff * 734 ieee80211_make_monitor_skb(struct ieee80211_local *local, 735 struct sk_buff **origskb, 736 struct ieee80211_rate *rate, 737 int rtap_space, bool use_origskb) 738 { 739 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 740 int rt_hdrlen, needed_headroom; 741 struct sk_buff *skb; 742 743 /* room for the radiotap header based on driver features */ 744 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 745 needed_headroom = rt_hdrlen - rtap_space; 746 747 if (use_origskb) { 748 /* only need to expand headroom if necessary */ 749 skb = *origskb; 750 *origskb = NULL; 751 752 /* 753 * This shouldn't trigger often because most devices have an 754 * RX header they pull before we get here, and that should 755 * be big enough for our radiotap information. We should 756 * probably export the length to drivers so that we can have 757 * them allocate enough headroom to start with. 758 */ 759 if (skb_headroom(skb) < needed_headroom && 760 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 761 dev_kfree_skb(skb); 762 return NULL; 763 } 764 } else { 765 /* 766 * Need to make a copy and possibly remove radiotap header 767 * and FCS from the original. 768 */ 769 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 770 771 if (!skb) 772 return NULL; 773 } 774 775 /* prepend radiotap information */ 776 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 777 778 skb_reset_mac_header(skb); 779 skb->ip_summed = CHECKSUM_UNNECESSARY; 780 skb->pkt_type = PACKET_OTHERHOST; 781 skb->protocol = htons(ETH_P_802_2); 782 783 return skb; 784 } 785 786 /* 787 * This function copies a received frame to all monitor interfaces and 788 * returns a cleaned-up SKB that no longer includes the FCS nor the 789 * radiotap header the driver might have added. 790 */ 791 static struct sk_buff * 792 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 793 struct ieee80211_rate *rate) 794 { 795 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 796 struct ieee80211_sub_if_data *sdata; 797 struct sk_buff *monskb = NULL; 798 int present_fcs_len = 0; 799 unsigned int rtap_space = 0; 800 struct ieee80211_sub_if_data *monitor_sdata = 801 rcu_dereference(local->monitor_sdata); 802 bool only_monitor = false; 803 unsigned int min_head_len; 804 805 if (status->flag & RX_FLAG_RADIOTAP_HE) 806 rtap_space += sizeof(struct ieee80211_radiotap_he); 807 808 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 809 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 810 811 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 812 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 813 814 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 815 struct ieee80211_vendor_radiotap *rtap = 816 (void *)(origskb->data + rtap_space); 817 818 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 819 } 820 821 min_head_len = rtap_space; 822 823 /* 824 * First, we may need to make a copy of the skb because 825 * (1) we need to modify it for radiotap (if not present), and 826 * (2) the other RX handlers will modify the skb we got. 827 * 828 * We don't need to, of course, if we aren't going to return 829 * the SKB because it has a bad FCS/PLCP checksum. 830 */ 831 832 if (!(status->flag & RX_FLAG_NO_PSDU)) { 833 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 834 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 835 /* driver bug */ 836 WARN_ON(1); 837 dev_kfree_skb(origskb); 838 return NULL; 839 } 840 present_fcs_len = FCS_LEN; 841 } 842 843 /* also consider the hdr->frame_control */ 844 min_head_len += 2; 845 } 846 847 /* ensure that the expected data elements are in skb head */ 848 if (!pskb_may_pull(origskb, min_head_len)) { 849 dev_kfree_skb(origskb); 850 return NULL; 851 } 852 853 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 854 855 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 856 if (only_monitor) { 857 dev_kfree_skb(origskb); 858 return NULL; 859 } 860 861 return ieee80211_clean_skb(origskb, present_fcs_len, 862 rtap_space); 863 } 864 865 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 866 867 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 868 bool last_monitor = list_is_last(&sdata->u.mntr.list, 869 &local->mon_list); 870 871 if (!monskb) 872 monskb = ieee80211_make_monitor_skb(local, &origskb, 873 rate, rtap_space, 874 only_monitor && 875 last_monitor); 876 877 if (monskb) { 878 struct sk_buff *skb; 879 880 if (last_monitor) { 881 skb = monskb; 882 monskb = NULL; 883 } else { 884 skb = skb_clone(monskb, GFP_ATOMIC); 885 } 886 887 if (skb) { 888 skb->dev = sdata->dev; 889 ieee80211_rx_stats(skb->dev, skb->len); 890 netif_receive_skb(skb); 891 } 892 } 893 894 if (last_monitor) 895 break; 896 } 897 898 /* this happens if last_monitor was erroneously false */ 899 dev_kfree_skb(monskb); 900 901 /* ditto */ 902 if (!origskb) 903 return NULL; 904 905 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 906 } 907 908 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 909 { 910 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 912 int tid, seqno_idx, security_idx; 913 914 /* does the frame have a qos control field? */ 915 if (ieee80211_is_data_qos(hdr->frame_control)) { 916 u8 *qc = ieee80211_get_qos_ctl(hdr); 917 /* frame has qos control */ 918 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 919 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 920 status->rx_flags |= IEEE80211_RX_AMSDU; 921 922 seqno_idx = tid; 923 security_idx = tid; 924 } else { 925 /* 926 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 927 * 928 * Sequence numbers for management frames, QoS data 929 * frames with a broadcast/multicast address in the 930 * Address 1 field, and all non-QoS data frames sent 931 * by QoS STAs are assigned using an additional single 932 * modulo-4096 counter, [...] 933 * 934 * We also use that counter for non-QoS STAs. 935 */ 936 seqno_idx = IEEE80211_NUM_TIDS; 937 security_idx = 0; 938 if (ieee80211_is_mgmt(hdr->frame_control)) 939 security_idx = IEEE80211_NUM_TIDS; 940 tid = 0; 941 } 942 943 rx->seqno_idx = seqno_idx; 944 rx->security_idx = security_idx; 945 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 946 * For now, set skb->priority to 0 for other cases. */ 947 rx->skb->priority = (tid > 7) ? 0 : tid; 948 } 949 950 /** 951 * DOC: Packet alignment 952 * 953 * Drivers always need to pass packets that are aligned to two-byte boundaries 954 * to the stack. 955 * 956 * Additionally, should, if possible, align the payload data in a way that 957 * guarantees that the contained IP header is aligned to a four-byte 958 * boundary. In the case of regular frames, this simply means aligning the 959 * payload to a four-byte boundary (because either the IP header is directly 960 * contained, or IV/RFC1042 headers that have a length divisible by four are 961 * in front of it). If the payload data is not properly aligned and the 962 * architecture doesn't support efficient unaligned operations, mac80211 963 * will align the data. 964 * 965 * With A-MSDU frames, however, the payload data address must yield two modulo 966 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 967 * push the IP header further back to a multiple of four again. Thankfully, the 968 * specs were sane enough this time around to require padding each A-MSDU 969 * subframe to a length that is a multiple of four. 970 * 971 * Padding like Atheros hardware adds which is between the 802.11 header and 972 * the payload is not supported, the driver is required to move the 802.11 973 * header to be directly in front of the payload in that case. 974 */ 975 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 976 { 977 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 978 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 979 #endif 980 } 981 982 983 /* rx handlers */ 984 985 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 986 { 987 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 988 989 if (is_multicast_ether_addr(hdr->addr1)) 990 return 0; 991 992 return ieee80211_is_robust_mgmt_frame(skb); 993 } 994 995 996 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 997 { 998 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 999 1000 if (!is_multicast_ether_addr(hdr->addr1)) 1001 return 0; 1002 1003 return ieee80211_is_robust_mgmt_frame(skb); 1004 } 1005 1006 1007 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 1008 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 1009 { 1010 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 1011 struct ieee80211_mmie *mmie; 1012 struct ieee80211_mmie_16 *mmie16; 1013 1014 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 1015 return -1; 1016 1017 if (!ieee80211_is_robust_mgmt_frame(skb) && 1018 !ieee80211_is_beacon(hdr->frame_control)) 1019 return -1; /* not a robust management frame */ 1020 1021 mmie = (struct ieee80211_mmie *) 1022 (skb->data + skb->len - sizeof(*mmie)); 1023 if (mmie->element_id == WLAN_EID_MMIE && 1024 mmie->length == sizeof(*mmie) - 2) 1025 return le16_to_cpu(mmie->key_id); 1026 1027 mmie16 = (struct ieee80211_mmie_16 *) 1028 (skb->data + skb->len - sizeof(*mmie16)); 1029 if (skb->len >= 24 + sizeof(*mmie16) && 1030 mmie16->element_id == WLAN_EID_MMIE && 1031 mmie16->length == sizeof(*mmie16) - 2) 1032 return le16_to_cpu(mmie16->key_id); 1033 1034 return -1; 1035 } 1036 1037 static int ieee80211_get_keyid(struct sk_buff *skb, 1038 const struct ieee80211_cipher_scheme *cs) 1039 { 1040 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1041 __le16 fc; 1042 int hdrlen; 1043 int minlen; 1044 u8 key_idx_off; 1045 u8 key_idx_shift; 1046 u8 keyid; 1047 1048 fc = hdr->frame_control; 1049 hdrlen = ieee80211_hdrlen(fc); 1050 1051 if (cs) { 1052 minlen = hdrlen + cs->hdr_len; 1053 key_idx_off = hdrlen + cs->key_idx_off; 1054 key_idx_shift = cs->key_idx_shift; 1055 } else { 1056 /* WEP, TKIP, CCMP and GCMP */ 1057 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1058 key_idx_off = hdrlen + 3; 1059 key_idx_shift = 6; 1060 } 1061 1062 if (unlikely(skb->len < minlen)) 1063 return -EINVAL; 1064 1065 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1066 1067 if (cs) 1068 keyid &= cs->key_idx_mask; 1069 keyid >>= key_idx_shift; 1070 1071 /* cs could use more than the usual two bits for the keyid */ 1072 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1073 return -EINVAL; 1074 1075 return keyid; 1076 } 1077 1078 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1079 { 1080 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1081 char *dev_addr = rx->sdata->vif.addr; 1082 1083 if (ieee80211_is_data(hdr->frame_control)) { 1084 if (is_multicast_ether_addr(hdr->addr1)) { 1085 if (ieee80211_has_tods(hdr->frame_control) || 1086 !ieee80211_has_fromds(hdr->frame_control)) 1087 return RX_DROP_MONITOR; 1088 if (ether_addr_equal(hdr->addr3, dev_addr)) 1089 return RX_DROP_MONITOR; 1090 } else { 1091 if (!ieee80211_has_a4(hdr->frame_control)) 1092 return RX_DROP_MONITOR; 1093 if (ether_addr_equal(hdr->addr4, dev_addr)) 1094 return RX_DROP_MONITOR; 1095 } 1096 } 1097 1098 /* If there is not an established peer link and this is not a peer link 1099 * establisment frame, beacon or probe, drop the frame. 1100 */ 1101 1102 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1103 struct ieee80211_mgmt *mgmt; 1104 1105 if (!ieee80211_is_mgmt(hdr->frame_control)) 1106 return RX_DROP_MONITOR; 1107 1108 if (ieee80211_is_action(hdr->frame_control)) { 1109 u8 category; 1110 1111 /* make sure category field is present */ 1112 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1113 return RX_DROP_MONITOR; 1114 1115 mgmt = (struct ieee80211_mgmt *)hdr; 1116 category = mgmt->u.action.category; 1117 if (category != WLAN_CATEGORY_MESH_ACTION && 1118 category != WLAN_CATEGORY_SELF_PROTECTED) 1119 return RX_DROP_MONITOR; 1120 return RX_CONTINUE; 1121 } 1122 1123 if (ieee80211_is_probe_req(hdr->frame_control) || 1124 ieee80211_is_probe_resp(hdr->frame_control) || 1125 ieee80211_is_beacon(hdr->frame_control) || 1126 ieee80211_is_auth(hdr->frame_control)) 1127 return RX_CONTINUE; 1128 1129 return RX_DROP_MONITOR; 1130 } 1131 1132 return RX_CONTINUE; 1133 } 1134 1135 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1136 int index) 1137 { 1138 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1139 struct sk_buff *tail = skb_peek_tail(frames); 1140 struct ieee80211_rx_status *status; 1141 1142 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1143 return true; 1144 1145 if (!tail) 1146 return false; 1147 1148 status = IEEE80211_SKB_RXCB(tail); 1149 if (status->flag & RX_FLAG_AMSDU_MORE) 1150 return false; 1151 1152 return true; 1153 } 1154 1155 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1156 struct tid_ampdu_rx *tid_agg_rx, 1157 int index, 1158 struct sk_buff_head *frames) 1159 { 1160 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1161 struct sk_buff *skb; 1162 struct ieee80211_rx_status *status; 1163 1164 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1165 1166 if (skb_queue_empty(skb_list)) 1167 goto no_frame; 1168 1169 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1170 __skb_queue_purge(skb_list); 1171 goto no_frame; 1172 } 1173 1174 /* release frames from the reorder ring buffer */ 1175 tid_agg_rx->stored_mpdu_num--; 1176 while ((skb = __skb_dequeue(skb_list))) { 1177 status = IEEE80211_SKB_RXCB(skb); 1178 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1179 __skb_queue_tail(frames, skb); 1180 } 1181 1182 no_frame: 1183 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1184 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1185 } 1186 1187 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1188 struct tid_ampdu_rx *tid_agg_rx, 1189 u16 head_seq_num, 1190 struct sk_buff_head *frames) 1191 { 1192 int index; 1193 1194 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1195 1196 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1197 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1198 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1199 frames); 1200 } 1201 } 1202 1203 /* 1204 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1205 * the skb was added to the buffer longer than this time ago, the earlier 1206 * frames that have not yet been received are assumed to be lost and the skb 1207 * can be released for processing. This may also release other skb's from the 1208 * reorder buffer if there are no additional gaps between the frames. 1209 * 1210 * Callers must hold tid_agg_rx->reorder_lock. 1211 */ 1212 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1213 1214 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1215 struct tid_ampdu_rx *tid_agg_rx, 1216 struct sk_buff_head *frames) 1217 { 1218 int index, i, j; 1219 1220 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1221 1222 /* release the buffer until next missing frame */ 1223 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1224 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1225 tid_agg_rx->stored_mpdu_num) { 1226 /* 1227 * No buffers ready to be released, but check whether any 1228 * frames in the reorder buffer have timed out. 1229 */ 1230 int skipped = 1; 1231 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1232 j = (j + 1) % tid_agg_rx->buf_size) { 1233 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1234 skipped++; 1235 continue; 1236 } 1237 if (skipped && 1238 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1239 HT_RX_REORDER_BUF_TIMEOUT)) 1240 goto set_release_timer; 1241 1242 /* don't leave incomplete A-MSDUs around */ 1243 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1244 i = (i + 1) % tid_agg_rx->buf_size) 1245 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1246 1247 ht_dbg_ratelimited(sdata, 1248 "release an RX reorder frame due to timeout on earlier frames\n"); 1249 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1250 frames); 1251 1252 /* 1253 * Increment the head seq# also for the skipped slots. 1254 */ 1255 tid_agg_rx->head_seq_num = 1256 (tid_agg_rx->head_seq_num + 1257 skipped) & IEEE80211_SN_MASK; 1258 skipped = 0; 1259 } 1260 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1261 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1262 frames); 1263 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1264 } 1265 1266 if (tid_agg_rx->stored_mpdu_num) { 1267 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1268 1269 for (; j != (index - 1) % tid_agg_rx->buf_size; 1270 j = (j + 1) % tid_agg_rx->buf_size) { 1271 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1272 break; 1273 } 1274 1275 set_release_timer: 1276 1277 if (!tid_agg_rx->removed) 1278 mod_timer(&tid_agg_rx->reorder_timer, 1279 tid_agg_rx->reorder_time[j] + 1 + 1280 HT_RX_REORDER_BUF_TIMEOUT); 1281 } else { 1282 del_timer(&tid_agg_rx->reorder_timer); 1283 } 1284 } 1285 1286 /* 1287 * As this function belongs to the RX path it must be under 1288 * rcu_read_lock protection. It returns false if the frame 1289 * can be processed immediately, true if it was consumed. 1290 */ 1291 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1292 struct tid_ampdu_rx *tid_agg_rx, 1293 struct sk_buff *skb, 1294 struct sk_buff_head *frames) 1295 { 1296 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1297 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1298 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1299 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1300 u16 head_seq_num, buf_size; 1301 int index; 1302 bool ret = true; 1303 1304 spin_lock(&tid_agg_rx->reorder_lock); 1305 1306 /* 1307 * Offloaded BA sessions have no known starting sequence number so pick 1308 * one from first Rxed frame for this tid after BA was started. 1309 */ 1310 if (unlikely(tid_agg_rx->auto_seq)) { 1311 tid_agg_rx->auto_seq = false; 1312 tid_agg_rx->ssn = mpdu_seq_num; 1313 tid_agg_rx->head_seq_num = mpdu_seq_num; 1314 } 1315 1316 buf_size = tid_agg_rx->buf_size; 1317 head_seq_num = tid_agg_rx->head_seq_num; 1318 1319 /* 1320 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1321 * be reordered. 1322 */ 1323 if (unlikely(!tid_agg_rx->started)) { 1324 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1325 ret = false; 1326 goto out; 1327 } 1328 tid_agg_rx->started = true; 1329 } 1330 1331 /* frame with out of date sequence number */ 1332 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1333 dev_kfree_skb(skb); 1334 goto out; 1335 } 1336 1337 /* 1338 * If frame the sequence number exceeds our buffering window 1339 * size release some previous frames to make room for this one. 1340 */ 1341 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1342 head_seq_num = ieee80211_sn_inc( 1343 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1344 /* release stored frames up to new head to stack */ 1345 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1346 head_seq_num, frames); 1347 } 1348 1349 /* Now the new frame is always in the range of the reordering buffer */ 1350 1351 index = mpdu_seq_num % tid_agg_rx->buf_size; 1352 1353 /* check if we already stored this frame */ 1354 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1355 dev_kfree_skb(skb); 1356 goto out; 1357 } 1358 1359 /* 1360 * If the current MPDU is in the right order and nothing else 1361 * is stored we can process it directly, no need to buffer it. 1362 * If it is first but there's something stored, we may be able 1363 * to release frames after this one. 1364 */ 1365 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1366 tid_agg_rx->stored_mpdu_num == 0) { 1367 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1368 tid_agg_rx->head_seq_num = 1369 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1370 ret = false; 1371 goto out; 1372 } 1373 1374 /* put the frame in the reordering buffer */ 1375 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1376 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1377 tid_agg_rx->reorder_time[index] = jiffies; 1378 tid_agg_rx->stored_mpdu_num++; 1379 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1380 } 1381 1382 out: 1383 spin_unlock(&tid_agg_rx->reorder_lock); 1384 return ret; 1385 } 1386 1387 /* 1388 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1389 * true if the MPDU was buffered, false if it should be processed. 1390 */ 1391 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1392 struct sk_buff_head *frames) 1393 { 1394 struct sk_buff *skb = rx->skb; 1395 struct ieee80211_local *local = rx->local; 1396 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1397 struct sta_info *sta = rx->sta; 1398 struct tid_ampdu_rx *tid_agg_rx; 1399 u16 sc; 1400 u8 tid, ack_policy; 1401 1402 if (!ieee80211_is_data_qos(hdr->frame_control) || 1403 is_multicast_ether_addr(hdr->addr1)) 1404 goto dont_reorder; 1405 1406 /* 1407 * filter the QoS data rx stream according to 1408 * STA/TID and check if this STA/TID is on aggregation 1409 */ 1410 1411 if (!sta) 1412 goto dont_reorder; 1413 1414 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1415 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1416 tid = ieee80211_get_tid(hdr); 1417 1418 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1419 if (!tid_agg_rx) { 1420 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1421 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1422 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1423 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1424 WLAN_BACK_RECIPIENT, 1425 WLAN_REASON_QSTA_REQUIRE_SETUP); 1426 goto dont_reorder; 1427 } 1428 1429 /* qos null data frames are excluded */ 1430 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1431 goto dont_reorder; 1432 1433 /* not part of a BA session */ 1434 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1435 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1436 goto dont_reorder; 1437 1438 /* new, potentially un-ordered, ampdu frame - process it */ 1439 1440 /* reset session timer */ 1441 if (tid_agg_rx->timeout) 1442 tid_agg_rx->last_rx = jiffies; 1443 1444 /* if this mpdu is fragmented - terminate rx aggregation session */ 1445 sc = le16_to_cpu(hdr->seq_ctrl); 1446 if (sc & IEEE80211_SCTL_FRAG) { 1447 skb_queue_tail(&rx->sdata->skb_queue, skb); 1448 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1449 return; 1450 } 1451 1452 /* 1453 * No locking needed -- we will only ever process one 1454 * RX packet at a time, and thus own tid_agg_rx. All 1455 * other code manipulating it needs to (and does) make 1456 * sure that we cannot get to it any more before doing 1457 * anything with it. 1458 */ 1459 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1460 frames)) 1461 return; 1462 1463 dont_reorder: 1464 __skb_queue_tail(frames, skb); 1465 } 1466 1467 static ieee80211_rx_result debug_noinline 1468 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1469 { 1470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1471 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1472 1473 if (status->flag & RX_FLAG_DUP_VALIDATED) 1474 return RX_CONTINUE; 1475 1476 /* 1477 * Drop duplicate 802.11 retransmissions 1478 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1479 */ 1480 1481 if (rx->skb->len < 24) 1482 return RX_CONTINUE; 1483 1484 if (ieee80211_is_ctl(hdr->frame_control) || 1485 ieee80211_is_any_nullfunc(hdr->frame_control) || 1486 is_multicast_ether_addr(hdr->addr1)) 1487 return RX_CONTINUE; 1488 1489 if (!rx->sta) 1490 return RX_CONTINUE; 1491 1492 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1493 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1494 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1495 rx->sta->rx_stats.num_duplicates++; 1496 return RX_DROP_UNUSABLE; 1497 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1498 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1499 } 1500 1501 return RX_CONTINUE; 1502 } 1503 1504 static ieee80211_rx_result debug_noinline 1505 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1506 { 1507 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1508 1509 /* Drop disallowed frame classes based on STA auth/assoc state; 1510 * IEEE 802.11, Chap 5.5. 1511 * 1512 * mac80211 filters only based on association state, i.e. it drops 1513 * Class 3 frames from not associated stations. hostapd sends 1514 * deauth/disassoc frames when needed. In addition, hostapd is 1515 * responsible for filtering on both auth and assoc states. 1516 */ 1517 1518 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1519 return ieee80211_rx_mesh_check(rx); 1520 1521 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1522 ieee80211_is_pspoll(hdr->frame_control)) && 1523 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1524 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1525 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1526 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1527 /* 1528 * accept port control frames from the AP even when it's not 1529 * yet marked ASSOC to prevent a race where we don't set the 1530 * assoc bit quickly enough before it sends the first frame 1531 */ 1532 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1533 ieee80211_is_data_present(hdr->frame_control)) { 1534 unsigned int hdrlen; 1535 __be16 ethertype; 1536 1537 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1538 1539 if (rx->skb->len < hdrlen + 8) 1540 return RX_DROP_MONITOR; 1541 1542 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1543 if (ethertype == rx->sdata->control_port_protocol) 1544 return RX_CONTINUE; 1545 } 1546 1547 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1548 cfg80211_rx_spurious_frame(rx->sdata->dev, 1549 hdr->addr2, 1550 GFP_ATOMIC)) 1551 return RX_DROP_UNUSABLE; 1552 1553 return RX_DROP_MONITOR; 1554 } 1555 1556 return RX_CONTINUE; 1557 } 1558 1559 1560 static ieee80211_rx_result debug_noinline 1561 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1562 { 1563 struct ieee80211_local *local; 1564 struct ieee80211_hdr *hdr; 1565 struct sk_buff *skb; 1566 1567 local = rx->local; 1568 skb = rx->skb; 1569 hdr = (struct ieee80211_hdr *) skb->data; 1570 1571 if (!local->pspolling) 1572 return RX_CONTINUE; 1573 1574 if (!ieee80211_has_fromds(hdr->frame_control)) 1575 /* this is not from AP */ 1576 return RX_CONTINUE; 1577 1578 if (!ieee80211_is_data(hdr->frame_control)) 1579 return RX_CONTINUE; 1580 1581 if (!ieee80211_has_moredata(hdr->frame_control)) { 1582 /* AP has no more frames buffered for us */ 1583 local->pspolling = false; 1584 return RX_CONTINUE; 1585 } 1586 1587 /* more data bit is set, let's request a new frame from the AP */ 1588 ieee80211_send_pspoll(local, rx->sdata); 1589 1590 return RX_CONTINUE; 1591 } 1592 1593 static void sta_ps_start(struct sta_info *sta) 1594 { 1595 struct ieee80211_sub_if_data *sdata = sta->sdata; 1596 struct ieee80211_local *local = sdata->local; 1597 struct ps_data *ps; 1598 int tid; 1599 1600 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1601 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1602 ps = &sdata->bss->ps; 1603 else 1604 return; 1605 1606 atomic_inc(&ps->num_sta_ps); 1607 set_sta_flag(sta, WLAN_STA_PS_STA); 1608 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1609 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1610 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1611 sta->sta.addr, sta->sta.aid); 1612 1613 ieee80211_clear_fast_xmit(sta); 1614 1615 if (!sta->sta.txq[0]) 1616 return; 1617 1618 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1619 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1620 struct txq_info *txqi = to_txq_info(txq); 1621 1622 spin_lock(&local->active_txq_lock[txq->ac]); 1623 if (!list_empty(&txqi->schedule_order)) 1624 list_del_init(&txqi->schedule_order); 1625 spin_unlock(&local->active_txq_lock[txq->ac]); 1626 1627 if (txq_has_queue(txq)) 1628 set_bit(tid, &sta->txq_buffered_tids); 1629 else 1630 clear_bit(tid, &sta->txq_buffered_tids); 1631 } 1632 } 1633 1634 static void sta_ps_end(struct sta_info *sta) 1635 { 1636 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1637 sta->sta.addr, sta->sta.aid); 1638 1639 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1640 /* 1641 * Clear the flag only if the other one is still set 1642 * so that the TX path won't start TX'ing new frames 1643 * directly ... In the case that the driver flag isn't 1644 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1645 */ 1646 clear_sta_flag(sta, WLAN_STA_PS_STA); 1647 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1648 sta->sta.addr, sta->sta.aid); 1649 return; 1650 } 1651 1652 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1653 clear_sta_flag(sta, WLAN_STA_PS_STA); 1654 ieee80211_sta_ps_deliver_wakeup(sta); 1655 } 1656 1657 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1658 { 1659 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1660 bool in_ps; 1661 1662 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1663 1664 /* Don't let the same PS state be set twice */ 1665 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1666 if ((start && in_ps) || (!start && !in_ps)) 1667 return -EINVAL; 1668 1669 if (start) 1670 sta_ps_start(sta); 1671 else 1672 sta_ps_end(sta); 1673 1674 return 0; 1675 } 1676 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1677 1678 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1679 { 1680 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1681 1682 if (test_sta_flag(sta, WLAN_STA_SP)) 1683 return; 1684 1685 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1686 ieee80211_sta_ps_deliver_poll_response(sta); 1687 else 1688 set_sta_flag(sta, WLAN_STA_PSPOLL); 1689 } 1690 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1691 1692 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1693 { 1694 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1695 int ac = ieee80211_ac_from_tid(tid); 1696 1697 /* 1698 * If this AC is not trigger-enabled do nothing unless the 1699 * driver is calling us after it already checked. 1700 * 1701 * NB: This could/should check a separate bitmap of trigger- 1702 * enabled queues, but for now we only implement uAPSD w/o 1703 * TSPEC changes to the ACs, so they're always the same. 1704 */ 1705 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1706 tid != IEEE80211_NUM_TIDS) 1707 return; 1708 1709 /* if we are in a service period, do nothing */ 1710 if (test_sta_flag(sta, WLAN_STA_SP)) 1711 return; 1712 1713 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1714 ieee80211_sta_ps_deliver_uapsd(sta); 1715 else 1716 set_sta_flag(sta, WLAN_STA_UAPSD); 1717 } 1718 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1719 1720 static ieee80211_rx_result debug_noinline 1721 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1722 { 1723 struct ieee80211_sub_if_data *sdata = rx->sdata; 1724 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1725 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1726 1727 if (!rx->sta) 1728 return RX_CONTINUE; 1729 1730 if (sdata->vif.type != NL80211_IFTYPE_AP && 1731 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1732 return RX_CONTINUE; 1733 1734 /* 1735 * The device handles station powersave, so don't do anything about 1736 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1737 * it to mac80211 since they're handled.) 1738 */ 1739 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1740 return RX_CONTINUE; 1741 1742 /* 1743 * Don't do anything if the station isn't already asleep. In 1744 * the uAPSD case, the station will probably be marked asleep, 1745 * in the PS-Poll case the station must be confused ... 1746 */ 1747 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1748 return RX_CONTINUE; 1749 1750 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1751 ieee80211_sta_pspoll(&rx->sta->sta); 1752 1753 /* Free PS Poll skb here instead of returning RX_DROP that would 1754 * count as an dropped frame. */ 1755 dev_kfree_skb(rx->skb); 1756 1757 return RX_QUEUED; 1758 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1759 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1760 ieee80211_has_pm(hdr->frame_control) && 1761 (ieee80211_is_data_qos(hdr->frame_control) || 1762 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1763 u8 tid = ieee80211_get_tid(hdr); 1764 1765 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1766 } 1767 1768 return RX_CONTINUE; 1769 } 1770 1771 static ieee80211_rx_result debug_noinline 1772 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1773 { 1774 struct sta_info *sta = rx->sta; 1775 struct sk_buff *skb = rx->skb; 1776 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1777 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1778 int i; 1779 1780 if (!sta) 1781 return RX_CONTINUE; 1782 1783 /* 1784 * Update last_rx only for IBSS packets which are for the current 1785 * BSSID and for station already AUTHORIZED to avoid keeping the 1786 * current IBSS network alive in cases where other STAs start 1787 * using different BSSID. This will also give the station another 1788 * chance to restart the authentication/authorization in case 1789 * something went wrong the first time. 1790 */ 1791 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1792 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1793 NL80211_IFTYPE_ADHOC); 1794 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1795 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1796 sta->rx_stats.last_rx = jiffies; 1797 if (ieee80211_is_data(hdr->frame_control) && 1798 !is_multicast_ether_addr(hdr->addr1)) 1799 sta->rx_stats.last_rate = 1800 sta_stats_encode_rate(status); 1801 } 1802 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1803 sta->rx_stats.last_rx = jiffies; 1804 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1805 /* 1806 * Mesh beacons will update last_rx when if they are found to 1807 * match the current local configuration when processed. 1808 */ 1809 sta->rx_stats.last_rx = jiffies; 1810 if (ieee80211_is_data(hdr->frame_control)) 1811 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1812 } 1813 1814 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1815 ieee80211_sta_rx_notify(rx->sdata, hdr); 1816 1817 sta->rx_stats.fragments++; 1818 1819 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1820 sta->rx_stats.bytes += rx->skb->len; 1821 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1822 1823 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1824 sta->rx_stats.last_signal = status->signal; 1825 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1826 } 1827 1828 if (status->chains) { 1829 sta->rx_stats.chains = status->chains; 1830 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1831 int signal = status->chain_signal[i]; 1832 1833 if (!(status->chains & BIT(i))) 1834 continue; 1835 1836 sta->rx_stats.chain_signal_last[i] = signal; 1837 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1838 -signal); 1839 } 1840 } 1841 1842 /* 1843 * Change STA power saving mode only at the end of a frame 1844 * exchange sequence, and only for a data or management 1845 * frame as specified in IEEE 802.11-2016 11.2.3.2 1846 */ 1847 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1848 !ieee80211_has_morefrags(hdr->frame_control) && 1849 !is_multicast_ether_addr(hdr->addr1) && 1850 (ieee80211_is_mgmt(hdr->frame_control) || 1851 ieee80211_is_data(hdr->frame_control)) && 1852 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1853 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1854 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1855 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1856 if (!ieee80211_has_pm(hdr->frame_control)) 1857 sta_ps_end(sta); 1858 } else { 1859 if (ieee80211_has_pm(hdr->frame_control)) 1860 sta_ps_start(sta); 1861 } 1862 } 1863 1864 /* mesh power save support */ 1865 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1866 ieee80211_mps_rx_h_sta_process(sta, hdr); 1867 1868 /* 1869 * Drop (qos-)data::nullfunc frames silently, since they 1870 * are used only to control station power saving mode. 1871 */ 1872 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1873 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1874 1875 /* 1876 * If we receive a 4-addr nullfunc frame from a STA 1877 * that was not moved to a 4-addr STA vlan yet send 1878 * the event to userspace and for older hostapd drop 1879 * the frame to the monitor interface. 1880 */ 1881 if (ieee80211_has_a4(hdr->frame_control) && 1882 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1883 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1884 !rx->sdata->u.vlan.sta))) { 1885 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1886 cfg80211_rx_unexpected_4addr_frame( 1887 rx->sdata->dev, sta->sta.addr, 1888 GFP_ATOMIC); 1889 return RX_DROP_MONITOR; 1890 } 1891 /* 1892 * Update counter and free packet here to avoid 1893 * counting this as a dropped packed. 1894 */ 1895 sta->rx_stats.packets++; 1896 dev_kfree_skb(rx->skb); 1897 return RX_QUEUED; 1898 } 1899 1900 return RX_CONTINUE; 1901 } /* ieee80211_rx_h_sta_process */ 1902 1903 static struct ieee80211_key * 1904 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1905 { 1906 struct ieee80211_key *key = NULL; 1907 struct ieee80211_sub_if_data *sdata = rx->sdata; 1908 int idx2; 1909 1910 /* Make sure key gets set if either BIGTK key index is set so that 1911 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1912 * Beacon frames and Beacon frames that claim to use another BIGTK key 1913 * index (i.e., a key that we do not have). 1914 */ 1915 1916 if (idx < 0) { 1917 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1918 idx2 = idx + 1; 1919 } else { 1920 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1921 idx2 = idx + 1; 1922 else 1923 idx2 = idx - 1; 1924 } 1925 1926 if (rx->sta) 1927 key = rcu_dereference(rx->sta->gtk[idx]); 1928 if (!key) 1929 key = rcu_dereference(sdata->keys[idx]); 1930 if (!key && rx->sta) 1931 key = rcu_dereference(rx->sta->gtk[idx2]); 1932 if (!key) 1933 key = rcu_dereference(sdata->keys[idx2]); 1934 1935 return key; 1936 } 1937 1938 static ieee80211_rx_result debug_noinline 1939 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1940 { 1941 struct sk_buff *skb = rx->skb; 1942 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1944 int keyidx; 1945 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1946 struct ieee80211_key *sta_ptk = NULL; 1947 struct ieee80211_key *ptk_idx = NULL; 1948 int mmie_keyidx = -1; 1949 __le16 fc; 1950 const struct ieee80211_cipher_scheme *cs = NULL; 1951 1952 /* 1953 * Key selection 101 1954 * 1955 * There are five types of keys: 1956 * - GTK (group keys) 1957 * - IGTK (group keys for management frames) 1958 * - BIGTK (group keys for Beacon frames) 1959 * - PTK (pairwise keys) 1960 * - STK (station-to-station pairwise keys) 1961 * 1962 * When selecting a key, we have to distinguish between multicast 1963 * (including broadcast) and unicast frames, the latter can only 1964 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1965 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1966 * then unicast frames can also use key indices like GTKs. Hence, if we 1967 * don't have a PTK/STK we check the key index for a WEP key. 1968 * 1969 * Note that in a regular BSS, multicast frames are sent by the 1970 * AP only, associated stations unicast the frame to the AP first 1971 * which then multicasts it on their behalf. 1972 * 1973 * There is also a slight problem in IBSS mode: GTKs are negotiated 1974 * with each station, that is something we don't currently handle. 1975 * The spec seems to expect that one negotiates the same key with 1976 * every station but there's no such requirement; VLANs could be 1977 * possible. 1978 */ 1979 1980 /* start without a key */ 1981 rx->key = NULL; 1982 fc = hdr->frame_control; 1983 1984 if (rx->sta) { 1985 int keyid = rx->sta->ptk_idx; 1986 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1987 1988 if (ieee80211_has_protected(fc)) { 1989 cs = rx->sta->cipher_scheme; 1990 keyid = ieee80211_get_keyid(rx->skb, cs); 1991 1992 if (unlikely(keyid < 0)) 1993 return RX_DROP_UNUSABLE; 1994 1995 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1996 } 1997 } 1998 1999 if (!ieee80211_has_protected(fc)) 2000 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 2001 2002 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 2003 rx->key = ptk_idx ? ptk_idx : sta_ptk; 2004 if ((status->flag & RX_FLAG_DECRYPTED) && 2005 (status->flag & RX_FLAG_IV_STRIPPED)) 2006 return RX_CONTINUE; 2007 /* Skip decryption if the frame is not protected. */ 2008 if (!ieee80211_has_protected(fc)) 2009 return RX_CONTINUE; 2010 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 2011 /* Broadcast/multicast robust management frame / BIP */ 2012 if ((status->flag & RX_FLAG_DECRYPTED) && 2013 (status->flag & RX_FLAG_IV_STRIPPED)) 2014 return RX_CONTINUE; 2015 2016 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 2017 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 2018 NUM_DEFAULT_BEACON_KEYS) { 2019 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2020 skb->data, 2021 skb->len); 2022 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2023 } 2024 2025 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 2026 if (!rx->key) 2027 return RX_CONTINUE; /* Beacon protection not in use */ 2028 } else if (mmie_keyidx >= 0) { 2029 /* Broadcast/multicast robust management frame / BIP */ 2030 if ((status->flag & RX_FLAG_DECRYPTED) && 2031 (status->flag & RX_FLAG_IV_STRIPPED)) 2032 return RX_CONTINUE; 2033 2034 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2035 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2036 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2037 if (rx->sta) { 2038 if (ieee80211_is_group_privacy_action(skb) && 2039 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2040 return RX_DROP_MONITOR; 2041 2042 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2043 } 2044 if (!rx->key) 2045 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2046 } else if (!ieee80211_has_protected(fc)) { 2047 /* 2048 * The frame was not protected, so skip decryption. However, we 2049 * need to set rx->key if there is a key that could have been 2050 * used so that the frame may be dropped if encryption would 2051 * have been expected. 2052 */ 2053 struct ieee80211_key *key = NULL; 2054 struct ieee80211_sub_if_data *sdata = rx->sdata; 2055 int i; 2056 2057 if (ieee80211_is_beacon(fc)) { 2058 key = ieee80211_rx_get_bigtk(rx, -1); 2059 } else if (ieee80211_is_mgmt(fc) && 2060 is_multicast_ether_addr(hdr->addr1)) { 2061 key = rcu_dereference(rx->sdata->default_mgmt_key); 2062 } else { 2063 if (rx->sta) { 2064 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2065 key = rcu_dereference(rx->sta->gtk[i]); 2066 if (key) 2067 break; 2068 } 2069 } 2070 if (!key) { 2071 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2072 key = rcu_dereference(sdata->keys[i]); 2073 if (key) 2074 break; 2075 } 2076 } 2077 } 2078 if (key) 2079 rx->key = key; 2080 return RX_CONTINUE; 2081 } else { 2082 /* 2083 * The device doesn't give us the IV so we won't be 2084 * able to look up the key. That's ok though, we 2085 * don't need to decrypt the frame, we just won't 2086 * be able to keep statistics accurate. 2087 * Except for key threshold notifications, should 2088 * we somehow allow the driver to tell us which key 2089 * the hardware used if this flag is set? 2090 */ 2091 if ((status->flag & RX_FLAG_DECRYPTED) && 2092 (status->flag & RX_FLAG_IV_STRIPPED)) 2093 return RX_CONTINUE; 2094 2095 keyidx = ieee80211_get_keyid(rx->skb, cs); 2096 2097 if (unlikely(keyidx < 0)) 2098 return RX_DROP_UNUSABLE; 2099 2100 /* check per-station GTK first, if multicast packet */ 2101 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2102 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2103 2104 /* if not found, try default key */ 2105 if (!rx->key) { 2106 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2107 2108 /* 2109 * RSNA-protected unicast frames should always be 2110 * sent with pairwise or station-to-station keys, 2111 * but for WEP we allow using a key index as well. 2112 */ 2113 if (rx->key && 2114 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2115 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2116 !is_multicast_ether_addr(hdr->addr1)) 2117 rx->key = NULL; 2118 } 2119 } 2120 2121 if (rx->key) { 2122 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2123 return RX_DROP_MONITOR; 2124 2125 /* TODO: add threshold stuff again */ 2126 } else { 2127 return RX_DROP_MONITOR; 2128 } 2129 2130 switch (rx->key->conf.cipher) { 2131 case WLAN_CIPHER_SUITE_WEP40: 2132 case WLAN_CIPHER_SUITE_WEP104: 2133 result = ieee80211_crypto_wep_decrypt(rx); 2134 break; 2135 case WLAN_CIPHER_SUITE_TKIP: 2136 result = ieee80211_crypto_tkip_decrypt(rx); 2137 break; 2138 case WLAN_CIPHER_SUITE_CCMP: 2139 result = ieee80211_crypto_ccmp_decrypt( 2140 rx, IEEE80211_CCMP_MIC_LEN); 2141 break; 2142 case WLAN_CIPHER_SUITE_CCMP_256: 2143 result = ieee80211_crypto_ccmp_decrypt( 2144 rx, IEEE80211_CCMP_256_MIC_LEN); 2145 break; 2146 case WLAN_CIPHER_SUITE_AES_CMAC: 2147 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2148 break; 2149 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2150 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2151 break; 2152 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2153 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2154 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2155 break; 2156 case WLAN_CIPHER_SUITE_GCMP: 2157 case WLAN_CIPHER_SUITE_GCMP_256: 2158 result = ieee80211_crypto_gcmp_decrypt(rx); 2159 break; 2160 default: 2161 result = ieee80211_crypto_hw_decrypt(rx); 2162 } 2163 2164 /* the hdr variable is invalid after the decrypt handlers */ 2165 2166 /* either the frame has been decrypted or will be dropped */ 2167 status->flag |= RX_FLAG_DECRYPTED; 2168 2169 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2170 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2171 skb->data, skb->len); 2172 2173 return result; 2174 } 2175 2176 static inline struct ieee80211_fragment_entry * 2177 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2178 unsigned int frag, unsigned int seq, int rx_queue, 2179 struct sk_buff **skb) 2180 { 2181 struct ieee80211_fragment_entry *entry; 2182 2183 entry = &sdata->fragments[sdata->fragment_next++]; 2184 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2185 sdata->fragment_next = 0; 2186 2187 if (!skb_queue_empty(&entry->skb_list)) 2188 __skb_queue_purge(&entry->skb_list); 2189 2190 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2191 *skb = NULL; 2192 entry->first_frag_time = jiffies; 2193 entry->seq = seq; 2194 entry->rx_queue = rx_queue; 2195 entry->last_frag = frag; 2196 entry->check_sequential_pn = false; 2197 entry->extra_len = 0; 2198 2199 return entry; 2200 } 2201 2202 static inline struct ieee80211_fragment_entry * 2203 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2204 unsigned int frag, unsigned int seq, 2205 int rx_queue, struct ieee80211_hdr *hdr) 2206 { 2207 struct ieee80211_fragment_entry *entry; 2208 int i, idx; 2209 2210 idx = sdata->fragment_next; 2211 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2212 struct ieee80211_hdr *f_hdr; 2213 struct sk_buff *f_skb; 2214 2215 idx--; 2216 if (idx < 0) 2217 idx = IEEE80211_FRAGMENT_MAX - 1; 2218 2219 entry = &sdata->fragments[idx]; 2220 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2221 entry->rx_queue != rx_queue || 2222 entry->last_frag + 1 != frag) 2223 continue; 2224 2225 f_skb = __skb_peek(&entry->skb_list); 2226 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2227 2228 /* 2229 * Check ftype and addresses are equal, else check next fragment 2230 */ 2231 if (((hdr->frame_control ^ f_hdr->frame_control) & 2232 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2233 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2234 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2235 continue; 2236 2237 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2238 __skb_queue_purge(&entry->skb_list); 2239 continue; 2240 } 2241 return entry; 2242 } 2243 2244 return NULL; 2245 } 2246 2247 static ieee80211_rx_result debug_noinline 2248 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2249 { 2250 struct ieee80211_hdr *hdr; 2251 u16 sc; 2252 __le16 fc; 2253 unsigned int frag, seq; 2254 struct ieee80211_fragment_entry *entry; 2255 struct sk_buff *skb; 2256 2257 hdr = (struct ieee80211_hdr *)rx->skb->data; 2258 fc = hdr->frame_control; 2259 2260 if (ieee80211_is_ctl(fc)) 2261 return RX_CONTINUE; 2262 2263 sc = le16_to_cpu(hdr->seq_ctrl); 2264 frag = sc & IEEE80211_SCTL_FRAG; 2265 2266 if (is_multicast_ether_addr(hdr->addr1)) { 2267 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2268 goto out_no_led; 2269 } 2270 2271 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2272 goto out; 2273 2274 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2275 2276 if (skb_linearize(rx->skb)) 2277 return RX_DROP_UNUSABLE; 2278 2279 /* 2280 * skb_linearize() might change the skb->data and 2281 * previously cached variables (in this case, hdr) need to 2282 * be refreshed with the new data. 2283 */ 2284 hdr = (struct ieee80211_hdr *)rx->skb->data; 2285 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2286 2287 if (frag == 0) { 2288 /* This is the first fragment of a new frame. */ 2289 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2290 rx->seqno_idx, &(rx->skb)); 2291 if (rx->key && 2292 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2293 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2294 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2295 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2296 ieee80211_has_protected(fc)) { 2297 int queue = rx->security_idx; 2298 2299 /* Store CCMP/GCMP PN so that we can verify that the 2300 * next fragment has a sequential PN value. 2301 */ 2302 entry->check_sequential_pn = true; 2303 memcpy(entry->last_pn, 2304 rx->key->u.ccmp.rx_pn[queue], 2305 IEEE80211_CCMP_PN_LEN); 2306 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2307 u.ccmp.rx_pn) != 2308 offsetof(struct ieee80211_key, 2309 u.gcmp.rx_pn)); 2310 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2311 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2312 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2313 IEEE80211_GCMP_PN_LEN); 2314 } 2315 return RX_QUEUED; 2316 } 2317 2318 /* This is a fragment for a frame that should already be pending in 2319 * fragment cache. Add this fragment to the end of the pending entry. 2320 */ 2321 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2322 rx->seqno_idx, hdr); 2323 if (!entry) { 2324 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2325 return RX_DROP_MONITOR; 2326 } 2327 2328 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2329 * MPDU PN values are not incrementing in steps of 1." 2330 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2331 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2332 */ 2333 if (entry->check_sequential_pn) { 2334 int i; 2335 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2336 int queue; 2337 2338 if (!rx->key || 2339 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2340 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2341 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2342 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2343 return RX_DROP_UNUSABLE; 2344 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2345 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2346 pn[i]++; 2347 if (pn[i]) 2348 break; 2349 } 2350 queue = rx->security_idx; 2351 rpn = rx->key->u.ccmp.rx_pn[queue]; 2352 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2353 return RX_DROP_UNUSABLE; 2354 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2355 } 2356 2357 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2358 __skb_queue_tail(&entry->skb_list, rx->skb); 2359 entry->last_frag = frag; 2360 entry->extra_len += rx->skb->len; 2361 if (ieee80211_has_morefrags(fc)) { 2362 rx->skb = NULL; 2363 return RX_QUEUED; 2364 } 2365 2366 rx->skb = __skb_dequeue(&entry->skb_list); 2367 if (skb_tailroom(rx->skb) < entry->extra_len) { 2368 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2369 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2370 GFP_ATOMIC))) { 2371 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2372 __skb_queue_purge(&entry->skb_list); 2373 return RX_DROP_UNUSABLE; 2374 } 2375 } 2376 while ((skb = __skb_dequeue(&entry->skb_list))) { 2377 skb_put_data(rx->skb, skb->data, skb->len); 2378 dev_kfree_skb(skb); 2379 } 2380 2381 out: 2382 ieee80211_led_rx(rx->local); 2383 out_no_led: 2384 if (rx->sta) 2385 rx->sta->rx_stats.packets++; 2386 return RX_CONTINUE; 2387 } 2388 2389 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2390 { 2391 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2392 return -EACCES; 2393 2394 return 0; 2395 } 2396 2397 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2398 { 2399 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2400 struct sk_buff *skb = rx->skb; 2401 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2402 2403 /* 2404 * Pass through unencrypted frames if the hardware has 2405 * decrypted them already. 2406 */ 2407 if (status->flag & RX_FLAG_DECRYPTED) 2408 return 0; 2409 2410 /* check mesh EAPOL frames first */ 2411 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2412 ieee80211_is_data(fc))) { 2413 struct ieee80211s_hdr *mesh_hdr; 2414 u16 hdr_len = ieee80211_hdrlen(fc); 2415 u16 ethertype_offset; 2416 __be16 ethertype; 2417 2418 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2419 goto drop_check; 2420 2421 /* make sure fixed part of mesh header is there, also checks skb len */ 2422 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2423 goto drop_check; 2424 2425 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2426 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2427 sizeof(rfc1042_header); 2428 2429 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2430 ethertype == rx->sdata->control_port_protocol) 2431 return 0; 2432 } 2433 2434 drop_check: 2435 /* Drop unencrypted frames if key is set. */ 2436 if (unlikely(!ieee80211_has_protected(fc) && 2437 !ieee80211_is_any_nullfunc(fc) && 2438 ieee80211_is_data(fc) && rx->key)) 2439 return -EACCES; 2440 2441 return 0; 2442 } 2443 2444 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2445 { 2446 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2447 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2448 __le16 fc = hdr->frame_control; 2449 2450 /* 2451 * Pass through unencrypted frames if the hardware has 2452 * decrypted them already. 2453 */ 2454 if (status->flag & RX_FLAG_DECRYPTED) 2455 return 0; 2456 2457 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2458 if (unlikely(!ieee80211_has_protected(fc) && 2459 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2460 rx->key)) { 2461 if (ieee80211_is_deauth(fc) || 2462 ieee80211_is_disassoc(fc)) 2463 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2464 rx->skb->data, 2465 rx->skb->len); 2466 return -EACCES; 2467 } 2468 /* BIP does not use Protected field, so need to check MMIE */ 2469 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2470 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2471 if (ieee80211_is_deauth(fc) || 2472 ieee80211_is_disassoc(fc)) 2473 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2474 rx->skb->data, 2475 rx->skb->len); 2476 return -EACCES; 2477 } 2478 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2479 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2480 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2481 rx->skb->data, 2482 rx->skb->len); 2483 return -EACCES; 2484 } 2485 /* 2486 * When using MFP, Action frames are not allowed prior to 2487 * having configured keys. 2488 */ 2489 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2490 ieee80211_is_robust_mgmt_frame(rx->skb))) 2491 return -EACCES; 2492 } 2493 2494 return 0; 2495 } 2496 2497 static int 2498 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2499 { 2500 struct ieee80211_sub_if_data *sdata = rx->sdata; 2501 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2502 bool check_port_control = false; 2503 struct ethhdr *ehdr; 2504 int ret; 2505 2506 *port_control = false; 2507 if (ieee80211_has_a4(hdr->frame_control) && 2508 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2509 return -1; 2510 2511 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2512 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2513 2514 if (!sdata->u.mgd.use_4addr) 2515 return -1; 2516 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2517 check_port_control = true; 2518 } 2519 2520 if (is_multicast_ether_addr(hdr->addr1) && 2521 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2522 return -1; 2523 2524 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2525 if (ret < 0) 2526 return ret; 2527 2528 ehdr = (struct ethhdr *) rx->skb->data; 2529 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2530 *port_control = true; 2531 else if (check_port_control) 2532 return -1; 2533 2534 return 0; 2535 } 2536 2537 /* 2538 * requires that rx->skb is a frame with ethernet header 2539 */ 2540 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2541 { 2542 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2543 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2544 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2545 2546 /* 2547 * Allow EAPOL frames to us/the PAE group address regardless 2548 * of whether the frame was encrypted or not. 2549 */ 2550 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2551 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2552 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2553 return true; 2554 2555 if (ieee80211_802_1x_port_control(rx) || 2556 ieee80211_drop_unencrypted(rx, fc)) 2557 return false; 2558 2559 return true; 2560 } 2561 2562 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2563 struct ieee80211_rx_data *rx) 2564 { 2565 struct ieee80211_sub_if_data *sdata = rx->sdata; 2566 struct net_device *dev = sdata->dev; 2567 2568 if (unlikely((skb->protocol == sdata->control_port_protocol || 2569 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2570 !sdata->control_port_no_preauth)) && 2571 sdata->control_port_over_nl80211)) { 2572 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2573 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2574 2575 cfg80211_rx_control_port(dev, skb, noencrypt); 2576 dev_kfree_skb(skb); 2577 } else { 2578 memset(skb->cb, 0, sizeof(skb->cb)); 2579 2580 /* deliver to local stack */ 2581 if (rx->list) 2582 list_add_tail(&skb->list, rx->list); 2583 else 2584 netif_receive_skb(skb); 2585 } 2586 } 2587 2588 /* 2589 * requires that rx->skb is a frame with ethernet header 2590 */ 2591 static void 2592 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2593 { 2594 struct ieee80211_sub_if_data *sdata = rx->sdata; 2595 struct net_device *dev = sdata->dev; 2596 struct sk_buff *skb, *xmit_skb; 2597 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2598 struct sta_info *dsta; 2599 2600 skb = rx->skb; 2601 xmit_skb = NULL; 2602 2603 ieee80211_rx_stats(dev, skb->len); 2604 2605 if (rx->sta) { 2606 /* The seqno index has the same property as needed 2607 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2608 * for non-QoS-data frames. Here we know it's a data 2609 * frame, so count MSDUs. 2610 */ 2611 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2612 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2613 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2614 } 2615 2616 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2617 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2618 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2619 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2620 if (is_multicast_ether_addr(ehdr->h_dest) && 2621 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2622 /* 2623 * send multicast frames both to higher layers in 2624 * local net stack and back to the wireless medium 2625 */ 2626 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2627 if (!xmit_skb) 2628 net_info_ratelimited("%s: failed to clone multicast frame\n", 2629 dev->name); 2630 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2631 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2632 dsta = sta_info_get(sdata, ehdr->h_dest); 2633 if (dsta) { 2634 /* 2635 * The destination station is associated to 2636 * this AP (in this VLAN), so send the frame 2637 * directly to it and do not pass it to local 2638 * net stack. 2639 */ 2640 xmit_skb = skb; 2641 skb = NULL; 2642 } 2643 } 2644 } 2645 2646 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2647 if (skb) { 2648 /* 'align' will only take the values 0 or 2 here since all 2649 * frames are required to be aligned to 2-byte boundaries 2650 * when being passed to mac80211; the code here works just 2651 * as well if that isn't true, but mac80211 assumes it can 2652 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2653 */ 2654 int align; 2655 2656 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2657 if (align) { 2658 if (WARN_ON(skb_headroom(skb) < 3)) { 2659 dev_kfree_skb(skb); 2660 skb = NULL; 2661 } else { 2662 u8 *data = skb->data; 2663 size_t len = skb_headlen(skb); 2664 skb->data -= align; 2665 memmove(skb->data, data, len); 2666 skb_set_tail_pointer(skb, len); 2667 } 2668 } 2669 } 2670 #endif 2671 2672 if (skb) { 2673 skb->protocol = eth_type_trans(skb, dev); 2674 ieee80211_deliver_skb_to_local_stack(skb, rx); 2675 } 2676 2677 if (xmit_skb) { 2678 /* 2679 * Send to wireless media and increase priority by 256 to 2680 * keep the received priority instead of reclassifying 2681 * the frame (see cfg80211_classify8021d). 2682 */ 2683 xmit_skb->priority += 256; 2684 xmit_skb->protocol = htons(ETH_P_802_3); 2685 skb_reset_network_header(xmit_skb); 2686 skb_reset_mac_header(xmit_skb); 2687 dev_queue_xmit(xmit_skb); 2688 } 2689 } 2690 2691 static ieee80211_rx_result debug_noinline 2692 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2693 { 2694 struct net_device *dev = rx->sdata->dev; 2695 struct sk_buff *skb = rx->skb; 2696 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2697 __le16 fc = hdr->frame_control; 2698 struct sk_buff_head frame_list; 2699 struct ethhdr ethhdr; 2700 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2701 2702 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2703 check_da = NULL; 2704 check_sa = NULL; 2705 } else switch (rx->sdata->vif.type) { 2706 case NL80211_IFTYPE_AP: 2707 case NL80211_IFTYPE_AP_VLAN: 2708 check_da = NULL; 2709 break; 2710 case NL80211_IFTYPE_STATION: 2711 if (!rx->sta || 2712 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2713 check_sa = NULL; 2714 break; 2715 case NL80211_IFTYPE_MESH_POINT: 2716 check_sa = NULL; 2717 break; 2718 default: 2719 break; 2720 } 2721 2722 skb->dev = dev; 2723 __skb_queue_head_init(&frame_list); 2724 2725 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2726 rx->sdata->vif.addr, 2727 rx->sdata->vif.type, 2728 data_offset)) 2729 return RX_DROP_UNUSABLE; 2730 2731 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2732 rx->sdata->vif.type, 2733 rx->local->hw.extra_tx_headroom, 2734 check_da, check_sa); 2735 2736 while (!skb_queue_empty(&frame_list)) { 2737 rx->skb = __skb_dequeue(&frame_list); 2738 2739 if (!ieee80211_frame_allowed(rx, fc)) { 2740 dev_kfree_skb(rx->skb); 2741 continue; 2742 } 2743 2744 ieee80211_deliver_skb(rx); 2745 } 2746 2747 return RX_QUEUED; 2748 } 2749 2750 static ieee80211_rx_result debug_noinline 2751 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2752 { 2753 struct sk_buff *skb = rx->skb; 2754 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2756 __le16 fc = hdr->frame_control; 2757 2758 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2759 return RX_CONTINUE; 2760 2761 if (unlikely(!ieee80211_is_data(fc))) 2762 return RX_CONTINUE; 2763 2764 if (unlikely(!ieee80211_is_data_present(fc))) 2765 return RX_DROP_MONITOR; 2766 2767 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2768 switch (rx->sdata->vif.type) { 2769 case NL80211_IFTYPE_AP_VLAN: 2770 if (!rx->sdata->u.vlan.sta) 2771 return RX_DROP_UNUSABLE; 2772 break; 2773 case NL80211_IFTYPE_STATION: 2774 if (!rx->sdata->u.mgd.use_4addr) 2775 return RX_DROP_UNUSABLE; 2776 break; 2777 default: 2778 return RX_DROP_UNUSABLE; 2779 } 2780 } 2781 2782 if (is_multicast_ether_addr(hdr->addr1)) 2783 return RX_DROP_UNUSABLE; 2784 2785 return __ieee80211_rx_h_amsdu(rx, 0); 2786 } 2787 2788 #ifdef CONFIG_MAC80211_MESH 2789 static ieee80211_rx_result 2790 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2791 { 2792 struct ieee80211_hdr *fwd_hdr, *hdr; 2793 struct ieee80211_tx_info *info; 2794 struct ieee80211s_hdr *mesh_hdr; 2795 struct sk_buff *skb = rx->skb, *fwd_skb; 2796 struct ieee80211_local *local = rx->local; 2797 struct ieee80211_sub_if_data *sdata = rx->sdata; 2798 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2799 u16 ac, q, hdrlen; 2800 int tailroom = 0; 2801 2802 hdr = (struct ieee80211_hdr *) skb->data; 2803 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2804 2805 /* make sure fixed part of mesh header is there, also checks skb len */ 2806 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2807 return RX_DROP_MONITOR; 2808 2809 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2810 2811 /* make sure full mesh header is there, also checks skb len */ 2812 if (!pskb_may_pull(rx->skb, 2813 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2814 return RX_DROP_MONITOR; 2815 2816 /* reload pointers */ 2817 hdr = (struct ieee80211_hdr *) skb->data; 2818 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2819 2820 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2821 return RX_DROP_MONITOR; 2822 2823 /* frame is in RMC, don't forward */ 2824 if (ieee80211_is_data(hdr->frame_control) && 2825 is_multicast_ether_addr(hdr->addr1) && 2826 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2827 return RX_DROP_MONITOR; 2828 2829 if (!ieee80211_is_data(hdr->frame_control)) 2830 return RX_CONTINUE; 2831 2832 if (!mesh_hdr->ttl) 2833 return RX_DROP_MONITOR; 2834 2835 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2836 struct mesh_path *mppath; 2837 char *proxied_addr; 2838 char *mpp_addr; 2839 2840 if (is_multicast_ether_addr(hdr->addr1)) { 2841 mpp_addr = hdr->addr3; 2842 proxied_addr = mesh_hdr->eaddr1; 2843 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2844 MESH_FLAGS_AE_A5_A6) { 2845 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2846 mpp_addr = hdr->addr4; 2847 proxied_addr = mesh_hdr->eaddr2; 2848 } else { 2849 return RX_DROP_MONITOR; 2850 } 2851 2852 rcu_read_lock(); 2853 mppath = mpp_path_lookup(sdata, proxied_addr); 2854 if (!mppath) { 2855 mpp_path_add(sdata, proxied_addr, mpp_addr); 2856 } else { 2857 spin_lock_bh(&mppath->state_lock); 2858 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2859 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2860 mppath->exp_time = jiffies; 2861 spin_unlock_bh(&mppath->state_lock); 2862 } 2863 rcu_read_unlock(); 2864 } 2865 2866 /* Frame has reached destination. Don't forward */ 2867 if (!is_multicast_ether_addr(hdr->addr1) && 2868 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2869 return RX_CONTINUE; 2870 2871 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2872 q = sdata->vif.hw_queue[ac]; 2873 if (ieee80211_queue_stopped(&local->hw, q)) { 2874 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2875 return RX_DROP_MONITOR; 2876 } 2877 skb_set_queue_mapping(skb, q); 2878 2879 if (!--mesh_hdr->ttl) { 2880 if (!is_multicast_ether_addr(hdr->addr1)) 2881 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2882 dropped_frames_ttl); 2883 goto out; 2884 } 2885 2886 if (!ifmsh->mshcfg.dot11MeshForwarding) 2887 goto out; 2888 2889 if (sdata->crypto_tx_tailroom_needed_cnt) 2890 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2891 2892 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2893 sdata->encrypt_headroom, 2894 tailroom, GFP_ATOMIC); 2895 if (!fwd_skb) 2896 goto out; 2897 2898 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2899 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2900 info = IEEE80211_SKB_CB(fwd_skb); 2901 memset(info, 0, sizeof(*info)); 2902 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2903 info->control.vif = &rx->sdata->vif; 2904 info->control.jiffies = jiffies; 2905 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2906 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2907 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2908 /* update power mode indication when forwarding */ 2909 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2910 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2911 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2912 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2913 } else { 2914 /* unable to resolve next hop */ 2915 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2916 fwd_hdr->addr3, 0, 2917 WLAN_REASON_MESH_PATH_NOFORWARD, 2918 fwd_hdr->addr2); 2919 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2920 kfree_skb(fwd_skb); 2921 return RX_DROP_MONITOR; 2922 } 2923 2924 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2925 ieee80211_add_pending_skb(local, fwd_skb); 2926 out: 2927 if (is_multicast_ether_addr(hdr->addr1)) 2928 return RX_CONTINUE; 2929 return RX_DROP_MONITOR; 2930 } 2931 #endif 2932 2933 static ieee80211_rx_result debug_noinline 2934 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2935 { 2936 struct ieee80211_sub_if_data *sdata = rx->sdata; 2937 struct ieee80211_local *local = rx->local; 2938 struct net_device *dev = sdata->dev; 2939 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2940 __le16 fc = hdr->frame_control; 2941 bool port_control; 2942 int err; 2943 2944 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2945 return RX_CONTINUE; 2946 2947 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2948 return RX_DROP_MONITOR; 2949 2950 /* 2951 * Send unexpected-4addr-frame event to hostapd. For older versions, 2952 * also drop the frame to cooked monitor interfaces. 2953 */ 2954 if (ieee80211_has_a4(hdr->frame_control) && 2955 sdata->vif.type == NL80211_IFTYPE_AP) { 2956 if (rx->sta && 2957 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2958 cfg80211_rx_unexpected_4addr_frame( 2959 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2960 return RX_DROP_MONITOR; 2961 } 2962 2963 err = __ieee80211_data_to_8023(rx, &port_control); 2964 if (unlikely(err)) 2965 return RX_DROP_UNUSABLE; 2966 2967 if (!ieee80211_frame_allowed(rx, fc)) 2968 return RX_DROP_MONITOR; 2969 2970 /* directly handle TDLS channel switch requests/responses */ 2971 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2972 cpu_to_be16(ETH_P_TDLS))) { 2973 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2974 2975 if (pskb_may_pull(rx->skb, 2976 offsetof(struct ieee80211_tdls_data, u)) && 2977 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2978 tf->category == WLAN_CATEGORY_TDLS && 2979 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2980 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2981 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2982 schedule_work(&local->tdls_chsw_work); 2983 if (rx->sta) 2984 rx->sta->rx_stats.packets++; 2985 2986 return RX_QUEUED; 2987 } 2988 } 2989 2990 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2991 unlikely(port_control) && sdata->bss) { 2992 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2993 u.ap); 2994 dev = sdata->dev; 2995 rx->sdata = sdata; 2996 } 2997 2998 rx->skb->dev = dev; 2999 3000 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3001 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3002 !is_multicast_ether_addr( 3003 ((struct ethhdr *)rx->skb->data)->h_dest) && 3004 (!local->scanning && 3005 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3006 mod_timer(&local->dynamic_ps_timer, jiffies + 3007 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3008 3009 ieee80211_deliver_skb(rx); 3010 3011 return RX_QUEUED; 3012 } 3013 3014 static ieee80211_rx_result debug_noinline 3015 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3016 { 3017 struct sk_buff *skb = rx->skb; 3018 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3019 struct tid_ampdu_rx *tid_agg_rx; 3020 u16 start_seq_num; 3021 u16 tid; 3022 3023 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3024 return RX_CONTINUE; 3025 3026 if (ieee80211_is_back_req(bar->frame_control)) { 3027 struct { 3028 __le16 control, start_seq_num; 3029 } __packed bar_data; 3030 struct ieee80211_event event = { 3031 .type = BAR_RX_EVENT, 3032 }; 3033 3034 if (!rx->sta) 3035 return RX_DROP_MONITOR; 3036 3037 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3038 &bar_data, sizeof(bar_data))) 3039 return RX_DROP_MONITOR; 3040 3041 tid = le16_to_cpu(bar_data.control) >> 12; 3042 3043 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3044 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3045 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3046 WLAN_BACK_RECIPIENT, 3047 WLAN_REASON_QSTA_REQUIRE_SETUP); 3048 3049 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3050 if (!tid_agg_rx) 3051 return RX_DROP_MONITOR; 3052 3053 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3054 event.u.ba.tid = tid; 3055 event.u.ba.ssn = start_seq_num; 3056 event.u.ba.sta = &rx->sta->sta; 3057 3058 /* reset session timer */ 3059 if (tid_agg_rx->timeout) 3060 mod_timer(&tid_agg_rx->session_timer, 3061 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3062 3063 spin_lock(&tid_agg_rx->reorder_lock); 3064 /* release stored frames up to start of BAR */ 3065 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3066 start_seq_num, frames); 3067 spin_unlock(&tid_agg_rx->reorder_lock); 3068 3069 drv_event_callback(rx->local, rx->sdata, &event); 3070 3071 kfree_skb(skb); 3072 return RX_QUEUED; 3073 } 3074 3075 /* 3076 * After this point, we only want management frames, 3077 * so we can drop all remaining control frames to 3078 * cooked monitor interfaces. 3079 */ 3080 return RX_DROP_MONITOR; 3081 } 3082 3083 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3084 struct ieee80211_mgmt *mgmt, 3085 size_t len) 3086 { 3087 struct ieee80211_local *local = sdata->local; 3088 struct sk_buff *skb; 3089 struct ieee80211_mgmt *resp; 3090 3091 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3092 /* Not to own unicast address */ 3093 return; 3094 } 3095 3096 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3097 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3098 /* Not from the current AP or not associated yet. */ 3099 return; 3100 } 3101 3102 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3103 /* Too short SA Query request frame */ 3104 return; 3105 } 3106 3107 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3108 if (skb == NULL) 3109 return; 3110 3111 skb_reserve(skb, local->hw.extra_tx_headroom); 3112 resp = skb_put_zero(skb, 24); 3113 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3114 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3115 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3116 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3117 IEEE80211_STYPE_ACTION); 3118 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3119 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3120 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3121 memcpy(resp->u.action.u.sa_query.trans_id, 3122 mgmt->u.action.u.sa_query.trans_id, 3123 WLAN_SA_QUERY_TR_ID_LEN); 3124 3125 ieee80211_tx_skb(sdata, skb); 3126 } 3127 3128 static ieee80211_rx_result debug_noinline 3129 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3130 { 3131 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3132 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3133 3134 /* 3135 * From here on, look only at management frames. 3136 * Data and control frames are already handled, 3137 * and unknown (reserved) frames are useless. 3138 */ 3139 if (rx->skb->len < 24) 3140 return RX_DROP_MONITOR; 3141 3142 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3143 return RX_DROP_MONITOR; 3144 3145 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3146 ieee80211_is_beacon(mgmt->frame_control) && 3147 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3148 int sig = 0; 3149 3150 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3151 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3152 sig = status->signal; 3153 3154 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3155 rx->skb->data, rx->skb->len, 3156 ieee80211_rx_status_to_khz(status), 3157 sig); 3158 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3159 } 3160 3161 if (ieee80211_drop_unencrypted_mgmt(rx)) 3162 return RX_DROP_UNUSABLE; 3163 3164 return RX_CONTINUE; 3165 } 3166 3167 static ieee80211_rx_result debug_noinline 3168 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3169 { 3170 struct ieee80211_local *local = rx->local; 3171 struct ieee80211_sub_if_data *sdata = rx->sdata; 3172 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3173 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3174 int len = rx->skb->len; 3175 3176 if (!ieee80211_is_action(mgmt->frame_control)) 3177 return RX_CONTINUE; 3178 3179 /* drop too small frames */ 3180 if (len < IEEE80211_MIN_ACTION_SIZE) 3181 return RX_DROP_UNUSABLE; 3182 3183 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3184 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3185 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3186 return RX_DROP_UNUSABLE; 3187 3188 switch (mgmt->u.action.category) { 3189 case WLAN_CATEGORY_HT: 3190 /* reject HT action frames from stations not supporting HT */ 3191 if (!rx->sta->sta.ht_cap.ht_supported) 3192 goto invalid; 3193 3194 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3195 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3196 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3197 sdata->vif.type != NL80211_IFTYPE_AP && 3198 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3199 break; 3200 3201 /* verify action & smps_control/chanwidth are present */ 3202 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3203 goto invalid; 3204 3205 switch (mgmt->u.action.u.ht_smps.action) { 3206 case WLAN_HT_ACTION_SMPS: { 3207 struct ieee80211_supported_band *sband; 3208 enum ieee80211_smps_mode smps_mode; 3209 struct sta_opmode_info sta_opmode = {}; 3210 3211 if (sdata->vif.type != NL80211_IFTYPE_AP && 3212 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3213 goto handled; 3214 3215 /* convert to HT capability */ 3216 switch (mgmt->u.action.u.ht_smps.smps_control) { 3217 case WLAN_HT_SMPS_CONTROL_DISABLED: 3218 smps_mode = IEEE80211_SMPS_OFF; 3219 break; 3220 case WLAN_HT_SMPS_CONTROL_STATIC: 3221 smps_mode = IEEE80211_SMPS_STATIC; 3222 break; 3223 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3224 smps_mode = IEEE80211_SMPS_DYNAMIC; 3225 break; 3226 default: 3227 goto invalid; 3228 } 3229 3230 /* if no change do nothing */ 3231 if (rx->sta->sta.smps_mode == smps_mode) 3232 goto handled; 3233 rx->sta->sta.smps_mode = smps_mode; 3234 sta_opmode.smps_mode = 3235 ieee80211_smps_mode_to_smps_mode(smps_mode); 3236 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3237 3238 sband = rx->local->hw.wiphy->bands[status->band]; 3239 3240 rate_control_rate_update(local, sband, rx->sta, 3241 IEEE80211_RC_SMPS_CHANGED); 3242 cfg80211_sta_opmode_change_notify(sdata->dev, 3243 rx->sta->addr, 3244 &sta_opmode, 3245 GFP_ATOMIC); 3246 goto handled; 3247 } 3248 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3249 struct ieee80211_supported_band *sband; 3250 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3251 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3252 struct sta_opmode_info sta_opmode = {}; 3253 3254 /* If it doesn't support 40 MHz it can't change ... */ 3255 if (!(rx->sta->sta.ht_cap.cap & 3256 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3257 goto handled; 3258 3259 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3260 max_bw = IEEE80211_STA_RX_BW_20; 3261 else 3262 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3263 3264 /* set cur_max_bandwidth and recalc sta bw */ 3265 rx->sta->cur_max_bandwidth = max_bw; 3266 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3267 3268 if (rx->sta->sta.bandwidth == new_bw) 3269 goto handled; 3270 3271 rx->sta->sta.bandwidth = new_bw; 3272 sband = rx->local->hw.wiphy->bands[status->band]; 3273 sta_opmode.bw = 3274 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3275 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3276 3277 rate_control_rate_update(local, sband, rx->sta, 3278 IEEE80211_RC_BW_CHANGED); 3279 cfg80211_sta_opmode_change_notify(sdata->dev, 3280 rx->sta->addr, 3281 &sta_opmode, 3282 GFP_ATOMIC); 3283 goto handled; 3284 } 3285 default: 3286 goto invalid; 3287 } 3288 3289 break; 3290 case WLAN_CATEGORY_PUBLIC: 3291 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3292 goto invalid; 3293 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3294 break; 3295 if (!rx->sta) 3296 break; 3297 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3298 break; 3299 if (mgmt->u.action.u.ext_chan_switch.action_code != 3300 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3301 break; 3302 if (len < offsetof(struct ieee80211_mgmt, 3303 u.action.u.ext_chan_switch.variable)) 3304 goto invalid; 3305 goto queue; 3306 case WLAN_CATEGORY_VHT: 3307 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3308 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3309 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3310 sdata->vif.type != NL80211_IFTYPE_AP && 3311 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3312 break; 3313 3314 /* verify action code is present */ 3315 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3316 goto invalid; 3317 3318 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3319 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3320 /* verify opmode is present */ 3321 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3322 goto invalid; 3323 goto queue; 3324 } 3325 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3326 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3327 goto invalid; 3328 goto queue; 3329 } 3330 default: 3331 break; 3332 } 3333 break; 3334 case WLAN_CATEGORY_BACK: 3335 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3336 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3337 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3338 sdata->vif.type != NL80211_IFTYPE_AP && 3339 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3340 break; 3341 3342 /* verify action_code is present */ 3343 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3344 break; 3345 3346 switch (mgmt->u.action.u.addba_req.action_code) { 3347 case WLAN_ACTION_ADDBA_REQ: 3348 if (len < (IEEE80211_MIN_ACTION_SIZE + 3349 sizeof(mgmt->u.action.u.addba_req))) 3350 goto invalid; 3351 break; 3352 case WLAN_ACTION_ADDBA_RESP: 3353 if (len < (IEEE80211_MIN_ACTION_SIZE + 3354 sizeof(mgmt->u.action.u.addba_resp))) 3355 goto invalid; 3356 break; 3357 case WLAN_ACTION_DELBA: 3358 if (len < (IEEE80211_MIN_ACTION_SIZE + 3359 sizeof(mgmt->u.action.u.delba))) 3360 goto invalid; 3361 break; 3362 default: 3363 goto invalid; 3364 } 3365 3366 goto queue; 3367 case WLAN_CATEGORY_SPECTRUM_MGMT: 3368 /* verify action_code is present */ 3369 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3370 break; 3371 3372 switch (mgmt->u.action.u.measurement.action_code) { 3373 case WLAN_ACTION_SPCT_MSR_REQ: 3374 if (status->band != NL80211_BAND_5GHZ) 3375 break; 3376 3377 if (len < (IEEE80211_MIN_ACTION_SIZE + 3378 sizeof(mgmt->u.action.u.measurement))) 3379 break; 3380 3381 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3382 break; 3383 3384 ieee80211_process_measurement_req(sdata, mgmt, len); 3385 goto handled; 3386 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3387 u8 *bssid; 3388 if (len < (IEEE80211_MIN_ACTION_SIZE + 3389 sizeof(mgmt->u.action.u.chan_switch))) 3390 break; 3391 3392 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3393 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3394 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3395 break; 3396 3397 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3398 bssid = sdata->u.mgd.bssid; 3399 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3400 bssid = sdata->u.ibss.bssid; 3401 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3402 bssid = mgmt->sa; 3403 else 3404 break; 3405 3406 if (!ether_addr_equal(mgmt->bssid, bssid)) 3407 break; 3408 3409 goto queue; 3410 } 3411 } 3412 break; 3413 case WLAN_CATEGORY_SELF_PROTECTED: 3414 if (len < (IEEE80211_MIN_ACTION_SIZE + 3415 sizeof(mgmt->u.action.u.self_prot.action_code))) 3416 break; 3417 3418 switch (mgmt->u.action.u.self_prot.action_code) { 3419 case WLAN_SP_MESH_PEERING_OPEN: 3420 case WLAN_SP_MESH_PEERING_CLOSE: 3421 case WLAN_SP_MESH_PEERING_CONFIRM: 3422 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3423 goto invalid; 3424 if (sdata->u.mesh.user_mpm) 3425 /* userspace handles this frame */ 3426 break; 3427 goto queue; 3428 case WLAN_SP_MGK_INFORM: 3429 case WLAN_SP_MGK_ACK: 3430 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3431 goto invalid; 3432 break; 3433 } 3434 break; 3435 case WLAN_CATEGORY_MESH_ACTION: 3436 if (len < (IEEE80211_MIN_ACTION_SIZE + 3437 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3438 break; 3439 3440 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3441 break; 3442 if (mesh_action_is_path_sel(mgmt) && 3443 !mesh_path_sel_is_hwmp(sdata)) 3444 break; 3445 goto queue; 3446 } 3447 3448 return RX_CONTINUE; 3449 3450 invalid: 3451 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3452 /* will return in the next handlers */ 3453 return RX_CONTINUE; 3454 3455 handled: 3456 if (rx->sta) 3457 rx->sta->rx_stats.packets++; 3458 dev_kfree_skb(rx->skb); 3459 return RX_QUEUED; 3460 3461 queue: 3462 skb_queue_tail(&sdata->skb_queue, rx->skb); 3463 ieee80211_queue_work(&local->hw, &sdata->work); 3464 if (rx->sta) 3465 rx->sta->rx_stats.packets++; 3466 return RX_QUEUED; 3467 } 3468 3469 static ieee80211_rx_result debug_noinline 3470 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3471 { 3472 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3473 int sig = 0; 3474 3475 /* skip known-bad action frames and return them in the next handler */ 3476 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3477 return RX_CONTINUE; 3478 3479 /* 3480 * Getting here means the kernel doesn't know how to handle 3481 * it, but maybe userspace does ... include returned frames 3482 * so userspace can register for those to know whether ones 3483 * it transmitted were processed or returned. 3484 */ 3485 3486 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3487 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3488 sig = status->signal; 3489 3490 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3491 ieee80211_rx_status_to_khz(status), sig, 3492 rx->skb->data, rx->skb->len, 0)) { 3493 if (rx->sta) 3494 rx->sta->rx_stats.packets++; 3495 dev_kfree_skb(rx->skb); 3496 return RX_QUEUED; 3497 } 3498 3499 return RX_CONTINUE; 3500 } 3501 3502 static ieee80211_rx_result debug_noinline 3503 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3504 { 3505 struct ieee80211_sub_if_data *sdata = rx->sdata; 3506 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3507 int len = rx->skb->len; 3508 3509 if (!ieee80211_is_action(mgmt->frame_control)) 3510 return RX_CONTINUE; 3511 3512 switch (mgmt->u.action.category) { 3513 case WLAN_CATEGORY_SA_QUERY: 3514 if (len < (IEEE80211_MIN_ACTION_SIZE + 3515 sizeof(mgmt->u.action.u.sa_query))) 3516 break; 3517 3518 switch (mgmt->u.action.u.sa_query.action) { 3519 case WLAN_ACTION_SA_QUERY_REQUEST: 3520 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3521 break; 3522 ieee80211_process_sa_query_req(sdata, mgmt, len); 3523 goto handled; 3524 } 3525 break; 3526 } 3527 3528 return RX_CONTINUE; 3529 3530 handled: 3531 if (rx->sta) 3532 rx->sta->rx_stats.packets++; 3533 dev_kfree_skb(rx->skb); 3534 return RX_QUEUED; 3535 } 3536 3537 static ieee80211_rx_result debug_noinline 3538 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3539 { 3540 struct ieee80211_local *local = rx->local; 3541 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3542 struct sk_buff *nskb; 3543 struct ieee80211_sub_if_data *sdata = rx->sdata; 3544 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3545 3546 if (!ieee80211_is_action(mgmt->frame_control)) 3547 return RX_CONTINUE; 3548 3549 /* 3550 * For AP mode, hostapd is responsible for handling any action 3551 * frames that we didn't handle, including returning unknown 3552 * ones. For all other modes we will return them to the sender, 3553 * setting the 0x80 bit in the action category, as required by 3554 * 802.11-2012 9.24.4. 3555 * Newer versions of hostapd shall also use the management frame 3556 * registration mechanisms, but older ones still use cooked 3557 * monitor interfaces so push all frames there. 3558 */ 3559 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3560 (sdata->vif.type == NL80211_IFTYPE_AP || 3561 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3562 return RX_DROP_MONITOR; 3563 3564 if (is_multicast_ether_addr(mgmt->da)) 3565 return RX_DROP_MONITOR; 3566 3567 /* do not return rejected action frames */ 3568 if (mgmt->u.action.category & 0x80) 3569 return RX_DROP_UNUSABLE; 3570 3571 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3572 GFP_ATOMIC); 3573 if (nskb) { 3574 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3575 3576 nmgmt->u.action.category |= 0x80; 3577 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3578 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3579 3580 memset(nskb->cb, 0, sizeof(nskb->cb)); 3581 3582 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3583 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3584 3585 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3586 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3587 IEEE80211_TX_CTL_NO_CCK_RATE; 3588 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3589 info->hw_queue = 3590 local->hw.offchannel_tx_hw_queue; 3591 } 3592 3593 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3594 status->band); 3595 } 3596 dev_kfree_skb(rx->skb); 3597 return RX_QUEUED; 3598 } 3599 3600 static ieee80211_rx_result debug_noinline 3601 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3602 { 3603 struct ieee80211_sub_if_data *sdata = rx->sdata; 3604 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3605 __le16 stype; 3606 3607 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3608 3609 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3610 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3611 sdata->vif.type != NL80211_IFTYPE_OCB && 3612 sdata->vif.type != NL80211_IFTYPE_STATION) 3613 return RX_DROP_MONITOR; 3614 3615 switch (stype) { 3616 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3617 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3618 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3619 /* process for all: mesh, mlme, ibss */ 3620 break; 3621 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3622 if (is_multicast_ether_addr(mgmt->da) && 3623 !is_broadcast_ether_addr(mgmt->da)) 3624 return RX_DROP_MONITOR; 3625 3626 /* process only for station/IBSS */ 3627 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3628 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3629 return RX_DROP_MONITOR; 3630 break; 3631 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3632 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3633 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3634 if (is_multicast_ether_addr(mgmt->da) && 3635 !is_broadcast_ether_addr(mgmt->da)) 3636 return RX_DROP_MONITOR; 3637 3638 /* process only for station */ 3639 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3640 return RX_DROP_MONITOR; 3641 break; 3642 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3643 /* process only for ibss and mesh */ 3644 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3645 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3646 return RX_DROP_MONITOR; 3647 break; 3648 default: 3649 return RX_DROP_MONITOR; 3650 } 3651 3652 /* queue up frame and kick off work to process it */ 3653 skb_queue_tail(&sdata->skb_queue, rx->skb); 3654 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3655 if (rx->sta) 3656 rx->sta->rx_stats.packets++; 3657 3658 return RX_QUEUED; 3659 } 3660 3661 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3662 struct ieee80211_rate *rate) 3663 { 3664 struct ieee80211_sub_if_data *sdata; 3665 struct ieee80211_local *local = rx->local; 3666 struct sk_buff *skb = rx->skb, *skb2; 3667 struct net_device *prev_dev = NULL; 3668 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3669 int needed_headroom; 3670 3671 /* 3672 * If cooked monitor has been processed already, then 3673 * don't do it again. If not, set the flag. 3674 */ 3675 if (rx->flags & IEEE80211_RX_CMNTR) 3676 goto out_free_skb; 3677 rx->flags |= IEEE80211_RX_CMNTR; 3678 3679 /* If there are no cooked monitor interfaces, just free the SKB */ 3680 if (!local->cooked_mntrs) 3681 goto out_free_skb; 3682 3683 /* vendor data is long removed here */ 3684 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3685 /* room for the radiotap header based on driver features */ 3686 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3687 3688 if (skb_headroom(skb) < needed_headroom && 3689 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3690 goto out_free_skb; 3691 3692 /* prepend radiotap information */ 3693 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3694 false); 3695 3696 skb_reset_mac_header(skb); 3697 skb->ip_summed = CHECKSUM_UNNECESSARY; 3698 skb->pkt_type = PACKET_OTHERHOST; 3699 skb->protocol = htons(ETH_P_802_2); 3700 3701 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3702 if (!ieee80211_sdata_running(sdata)) 3703 continue; 3704 3705 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3706 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3707 continue; 3708 3709 if (prev_dev) { 3710 skb2 = skb_clone(skb, GFP_ATOMIC); 3711 if (skb2) { 3712 skb2->dev = prev_dev; 3713 netif_receive_skb(skb2); 3714 } 3715 } 3716 3717 prev_dev = sdata->dev; 3718 ieee80211_rx_stats(sdata->dev, skb->len); 3719 } 3720 3721 if (prev_dev) { 3722 skb->dev = prev_dev; 3723 netif_receive_skb(skb); 3724 return; 3725 } 3726 3727 out_free_skb: 3728 dev_kfree_skb(skb); 3729 } 3730 3731 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3732 ieee80211_rx_result res) 3733 { 3734 switch (res) { 3735 case RX_DROP_MONITOR: 3736 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3737 if (rx->sta) 3738 rx->sta->rx_stats.dropped++; 3739 fallthrough; 3740 case RX_CONTINUE: { 3741 struct ieee80211_rate *rate = NULL; 3742 struct ieee80211_supported_band *sband; 3743 struct ieee80211_rx_status *status; 3744 3745 status = IEEE80211_SKB_RXCB((rx->skb)); 3746 3747 sband = rx->local->hw.wiphy->bands[status->band]; 3748 if (status->encoding == RX_ENC_LEGACY) 3749 rate = &sband->bitrates[status->rate_idx]; 3750 3751 ieee80211_rx_cooked_monitor(rx, rate); 3752 break; 3753 } 3754 case RX_DROP_UNUSABLE: 3755 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3756 if (rx->sta) 3757 rx->sta->rx_stats.dropped++; 3758 dev_kfree_skb(rx->skb); 3759 break; 3760 case RX_QUEUED: 3761 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3762 break; 3763 } 3764 } 3765 3766 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3767 struct sk_buff_head *frames) 3768 { 3769 ieee80211_rx_result res = RX_DROP_MONITOR; 3770 struct sk_buff *skb; 3771 3772 #define CALL_RXH(rxh) \ 3773 do { \ 3774 res = rxh(rx); \ 3775 if (res != RX_CONTINUE) \ 3776 goto rxh_next; \ 3777 } while (0) 3778 3779 /* Lock here to avoid hitting all of the data used in the RX 3780 * path (e.g. key data, station data, ...) concurrently when 3781 * a frame is released from the reorder buffer due to timeout 3782 * from the timer, potentially concurrently with RX from the 3783 * driver. 3784 */ 3785 spin_lock_bh(&rx->local->rx_path_lock); 3786 3787 while ((skb = __skb_dequeue(frames))) { 3788 /* 3789 * all the other fields are valid across frames 3790 * that belong to an aMPDU since they are on the 3791 * same TID from the same station 3792 */ 3793 rx->skb = skb; 3794 3795 CALL_RXH(ieee80211_rx_h_check_more_data); 3796 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3797 CALL_RXH(ieee80211_rx_h_sta_process); 3798 CALL_RXH(ieee80211_rx_h_decrypt); 3799 CALL_RXH(ieee80211_rx_h_defragment); 3800 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3801 /* must be after MMIC verify so header is counted in MPDU mic */ 3802 #ifdef CONFIG_MAC80211_MESH 3803 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3804 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3805 #endif 3806 CALL_RXH(ieee80211_rx_h_amsdu); 3807 CALL_RXH(ieee80211_rx_h_data); 3808 3809 /* special treatment -- needs the queue */ 3810 res = ieee80211_rx_h_ctrl(rx, frames); 3811 if (res != RX_CONTINUE) 3812 goto rxh_next; 3813 3814 CALL_RXH(ieee80211_rx_h_mgmt_check); 3815 CALL_RXH(ieee80211_rx_h_action); 3816 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3817 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3818 CALL_RXH(ieee80211_rx_h_action_return); 3819 CALL_RXH(ieee80211_rx_h_mgmt); 3820 3821 rxh_next: 3822 ieee80211_rx_handlers_result(rx, res); 3823 3824 #undef CALL_RXH 3825 } 3826 3827 spin_unlock_bh(&rx->local->rx_path_lock); 3828 } 3829 3830 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3831 { 3832 struct sk_buff_head reorder_release; 3833 ieee80211_rx_result res = RX_DROP_MONITOR; 3834 3835 __skb_queue_head_init(&reorder_release); 3836 3837 #define CALL_RXH(rxh) \ 3838 do { \ 3839 res = rxh(rx); \ 3840 if (res != RX_CONTINUE) \ 3841 goto rxh_next; \ 3842 } while (0) 3843 3844 CALL_RXH(ieee80211_rx_h_check_dup); 3845 CALL_RXH(ieee80211_rx_h_check); 3846 3847 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3848 3849 ieee80211_rx_handlers(rx, &reorder_release); 3850 return; 3851 3852 rxh_next: 3853 ieee80211_rx_handlers_result(rx, res); 3854 3855 #undef CALL_RXH 3856 } 3857 3858 /* 3859 * This function makes calls into the RX path, therefore 3860 * it has to be invoked under RCU read lock. 3861 */ 3862 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3863 { 3864 struct sk_buff_head frames; 3865 struct ieee80211_rx_data rx = { 3866 .sta = sta, 3867 .sdata = sta->sdata, 3868 .local = sta->local, 3869 /* This is OK -- must be QoS data frame */ 3870 .security_idx = tid, 3871 .seqno_idx = tid, 3872 }; 3873 struct tid_ampdu_rx *tid_agg_rx; 3874 3875 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3876 if (!tid_agg_rx) 3877 return; 3878 3879 __skb_queue_head_init(&frames); 3880 3881 spin_lock(&tid_agg_rx->reorder_lock); 3882 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3883 spin_unlock(&tid_agg_rx->reorder_lock); 3884 3885 if (!skb_queue_empty(&frames)) { 3886 struct ieee80211_event event = { 3887 .type = BA_FRAME_TIMEOUT, 3888 .u.ba.tid = tid, 3889 .u.ba.sta = &sta->sta, 3890 }; 3891 drv_event_callback(rx.local, rx.sdata, &event); 3892 } 3893 3894 ieee80211_rx_handlers(&rx, &frames); 3895 } 3896 3897 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3898 u16 ssn, u64 filtered, 3899 u16 received_mpdus) 3900 { 3901 struct sta_info *sta; 3902 struct tid_ampdu_rx *tid_agg_rx; 3903 struct sk_buff_head frames; 3904 struct ieee80211_rx_data rx = { 3905 /* This is OK -- must be QoS data frame */ 3906 .security_idx = tid, 3907 .seqno_idx = tid, 3908 }; 3909 int i, diff; 3910 3911 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3912 return; 3913 3914 __skb_queue_head_init(&frames); 3915 3916 sta = container_of(pubsta, struct sta_info, sta); 3917 3918 rx.sta = sta; 3919 rx.sdata = sta->sdata; 3920 rx.local = sta->local; 3921 3922 rcu_read_lock(); 3923 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3924 if (!tid_agg_rx) 3925 goto out; 3926 3927 spin_lock_bh(&tid_agg_rx->reorder_lock); 3928 3929 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3930 int release; 3931 3932 /* release all frames in the reorder buffer */ 3933 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3934 IEEE80211_SN_MODULO; 3935 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3936 release, &frames); 3937 /* update ssn to match received ssn */ 3938 tid_agg_rx->head_seq_num = ssn; 3939 } else { 3940 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3941 &frames); 3942 } 3943 3944 /* handle the case that received ssn is behind the mac ssn. 3945 * it can be tid_agg_rx->buf_size behind and still be valid */ 3946 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3947 if (diff >= tid_agg_rx->buf_size) { 3948 tid_agg_rx->reorder_buf_filtered = 0; 3949 goto release; 3950 } 3951 filtered = filtered >> diff; 3952 ssn += diff; 3953 3954 /* update bitmap */ 3955 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3956 int index = (ssn + i) % tid_agg_rx->buf_size; 3957 3958 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3959 if (filtered & BIT_ULL(i)) 3960 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3961 } 3962 3963 /* now process also frames that the filter marking released */ 3964 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3965 3966 release: 3967 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3968 3969 ieee80211_rx_handlers(&rx, &frames); 3970 3971 out: 3972 rcu_read_unlock(); 3973 } 3974 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3975 3976 /* main receive path */ 3977 3978 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3979 { 3980 struct ieee80211_sub_if_data *sdata = rx->sdata; 3981 struct sk_buff *skb = rx->skb; 3982 struct ieee80211_hdr *hdr = (void *)skb->data; 3983 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3984 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3985 bool multicast = is_multicast_ether_addr(hdr->addr1); 3986 3987 switch (sdata->vif.type) { 3988 case NL80211_IFTYPE_STATION: 3989 if (!bssid && !sdata->u.mgd.use_4addr) 3990 return false; 3991 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3992 return false; 3993 if (multicast) 3994 return true; 3995 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3996 case NL80211_IFTYPE_ADHOC: 3997 if (!bssid) 3998 return false; 3999 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4000 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 4001 return false; 4002 if (ieee80211_is_beacon(hdr->frame_control)) 4003 return true; 4004 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4005 return false; 4006 if (!multicast && 4007 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4008 return false; 4009 if (!rx->sta) { 4010 int rate_idx; 4011 if (status->encoding != RX_ENC_LEGACY) 4012 rate_idx = 0; /* TODO: HT/VHT rates */ 4013 else 4014 rate_idx = status->rate_idx; 4015 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4016 BIT(rate_idx)); 4017 } 4018 return true; 4019 case NL80211_IFTYPE_OCB: 4020 if (!bssid) 4021 return false; 4022 if (!ieee80211_is_data_present(hdr->frame_control)) 4023 return false; 4024 if (!is_broadcast_ether_addr(bssid)) 4025 return false; 4026 if (!multicast && 4027 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4028 return false; 4029 if (!rx->sta) { 4030 int rate_idx; 4031 if (status->encoding != RX_ENC_LEGACY) 4032 rate_idx = 0; /* TODO: HT rates */ 4033 else 4034 rate_idx = status->rate_idx; 4035 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4036 BIT(rate_idx)); 4037 } 4038 return true; 4039 case NL80211_IFTYPE_MESH_POINT: 4040 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4041 return false; 4042 if (multicast) 4043 return true; 4044 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4045 case NL80211_IFTYPE_AP_VLAN: 4046 case NL80211_IFTYPE_AP: 4047 if (!bssid) 4048 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4049 4050 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4051 /* 4052 * Accept public action frames even when the 4053 * BSSID doesn't match, this is used for P2P 4054 * and location updates. Note that mac80211 4055 * itself never looks at these frames. 4056 */ 4057 if (!multicast && 4058 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4059 return false; 4060 if (ieee80211_is_public_action(hdr, skb->len)) 4061 return true; 4062 return ieee80211_is_beacon(hdr->frame_control); 4063 } 4064 4065 if (!ieee80211_has_tods(hdr->frame_control)) { 4066 /* ignore data frames to TDLS-peers */ 4067 if (ieee80211_is_data(hdr->frame_control)) 4068 return false; 4069 /* ignore action frames to TDLS-peers */ 4070 if (ieee80211_is_action(hdr->frame_control) && 4071 !is_broadcast_ether_addr(bssid) && 4072 !ether_addr_equal(bssid, hdr->addr1)) 4073 return false; 4074 } 4075 4076 /* 4077 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4078 * the BSSID - we've checked that already but may have accepted 4079 * the wildcard (ff:ff:ff:ff:ff:ff). 4080 * 4081 * It also says: 4082 * The BSSID of the Data frame is determined as follows: 4083 * a) If the STA is contained within an AP or is associated 4084 * with an AP, the BSSID is the address currently in use 4085 * by the STA contained in the AP. 4086 * 4087 * So we should not accept data frames with an address that's 4088 * multicast. 4089 * 4090 * Accepting it also opens a security problem because stations 4091 * could encrypt it with the GTK and inject traffic that way. 4092 */ 4093 if (ieee80211_is_data(hdr->frame_control) && multicast) 4094 return false; 4095 4096 return true; 4097 case NL80211_IFTYPE_WDS: 4098 if (bssid || !ieee80211_is_data(hdr->frame_control)) 4099 return false; 4100 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 4101 case NL80211_IFTYPE_P2P_DEVICE: 4102 return ieee80211_is_public_action(hdr, skb->len) || 4103 ieee80211_is_probe_req(hdr->frame_control) || 4104 ieee80211_is_probe_resp(hdr->frame_control) || 4105 ieee80211_is_beacon(hdr->frame_control); 4106 case NL80211_IFTYPE_NAN: 4107 /* Currently no frames on NAN interface are allowed */ 4108 return false; 4109 default: 4110 break; 4111 } 4112 4113 WARN_ON_ONCE(1); 4114 return false; 4115 } 4116 4117 void ieee80211_check_fast_rx(struct sta_info *sta) 4118 { 4119 struct ieee80211_sub_if_data *sdata = sta->sdata; 4120 struct ieee80211_local *local = sdata->local; 4121 struct ieee80211_key *key; 4122 struct ieee80211_fast_rx fastrx = { 4123 .dev = sdata->dev, 4124 .vif_type = sdata->vif.type, 4125 .control_port_protocol = sdata->control_port_protocol, 4126 }, *old, *new = NULL; 4127 bool assign = false; 4128 4129 /* use sparse to check that we don't return without updating */ 4130 __acquire(check_fast_rx); 4131 4132 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4133 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4134 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4135 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4136 4137 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4138 4139 /* fast-rx doesn't do reordering */ 4140 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4141 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4142 goto clear; 4143 4144 switch (sdata->vif.type) { 4145 case NL80211_IFTYPE_STATION: 4146 if (sta->sta.tdls) { 4147 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4148 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4149 fastrx.expected_ds_bits = 0; 4150 } else { 4151 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 4152 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4153 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4154 fastrx.expected_ds_bits = 4155 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4156 } 4157 4158 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4159 fastrx.expected_ds_bits |= 4160 cpu_to_le16(IEEE80211_FCTL_TODS); 4161 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4162 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4163 } 4164 4165 if (!sdata->u.mgd.powersave) 4166 break; 4167 4168 /* software powersave is a huge mess, avoid all of it */ 4169 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4170 goto clear; 4171 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4172 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4173 goto clear; 4174 break; 4175 case NL80211_IFTYPE_AP_VLAN: 4176 case NL80211_IFTYPE_AP: 4177 /* parallel-rx requires this, at least with calls to 4178 * ieee80211_sta_ps_transition() 4179 */ 4180 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4181 goto clear; 4182 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4183 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4184 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4185 4186 fastrx.internal_forward = 4187 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4188 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4189 !sdata->u.vlan.sta); 4190 4191 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4192 sdata->u.vlan.sta) { 4193 fastrx.expected_ds_bits |= 4194 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4195 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4196 fastrx.internal_forward = 0; 4197 } 4198 4199 break; 4200 default: 4201 goto clear; 4202 } 4203 4204 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4205 goto clear; 4206 4207 rcu_read_lock(); 4208 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4209 if (key) { 4210 switch (key->conf.cipher) { 4211 case WLAN_CIPHER_SUITE_TKIP: 4212 /* we don't want to deal with MMIC in fast-rx */ 4213 goto clear_rcu; 4214 case WLAN_CIPHER_SUITE_CCMP: 4215 case WLAN_CIPHER_SUITE_CCMP_256: 4216 case WLAN_CIPHER_SUITE_GCMP: 4217 case WLAN_CIPHER_SUITE_GCMP_256: 4218 break; 4219 default: 4220 /* We also don't want to deal with 4221 * WEP or cipher scheme. 4222 */ 4223 goto clear_rcu; 4224 } 4225 4226 fastrx.key = true; 4227 fastrx.icv_len = key->conf.icv_len; 4228 } 4229 4230 assign = true; 4231 clear_rcu: 4232 rcu_read_unlock(); 4233 clear: 4234 __release(check_fast_rx); 4235 4236 if (assign) 4237 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4238 4239 spin_lock_bh(&sta->lock); 4240 old = rcu_dereference_protected(sta->fast_rx, true); 4241 rcu_assign_pointer(sta->fast_rx, new); 4242 spin_unlock_bh(&sta->lock); 4243 4244 if (old) 4245 kfree_rcu(old, rcu_head); 4246 } 4247 4248 void ieee80211_clear_fast_rx(struct sta_info *sta) 4249 { 4250 struct ieee80211_fast_rx *old; 4251 4252 spin_lock_bh(&sta->lock); 4253 old = rcu_dereference_protected(sta->fast_rx, true); 4254 RCU_INIT_POINTER(sta->fast_rx, NULL); 4255 spin_unlock_bh(&sta->lock); 4256 4257 if (old) 4258 kfree_rcu(old, rcu_head); 4259 } 4260 4261 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4262 { 4263 struct ieee80211_local *local = sdata->local; 4264 struct sta_info *sta; 4265 4266 lockdep_assert_held(&local->sta_mtx); 4267 4268 list_for_each_entry(sta, &local->sta_list, list) { 4269 if (sdata != sta->sdata && 4270 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4271 continue; 4272 ieee80211_check_fast_rx(sta); 4273 } 4274 } 4275 4276 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4277 { 4278 struct ieee80211_local *local = sdata->local; 4279 4280 mutex_lock(&local->sta_mtx); 4281 __ieee80211_check_fast_rx_iface(sdata); 4282 mutex_unlock(&local->sta_mtx); 4283 } 4284 4285 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4286 struct ieee80211_fast_rx *fast_rx) 4287 { 4288 struct sk_buff *skb = rx->skb; 4289 struct ieee80211_hdr *hdr = (void *)skb->data; 4290 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4291 struct sta_info *sta = rx->sta; 4292 int orig_len = skb->len; 4293 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4294 int snap_offs = hdrlen; 4295 struct { 4296 u8 snap[sizeof(rfc1042_header)]; 4297 __be16 proto; 4298 } *payload __aligned(2); 4299 struct { 4300 u8 da[ETH_ALEN]; 4301 u8 sa[ETH_ALEN]; 4302 } addrs __aligned(2); 4303 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4304 4305 if (fast_rx->uses_rss) 4306 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4307 4308 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4309 * to a common data structure; drivers can implement that per queue 4310 * but we don't have that information in mac80211 4311 */ 4312 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4313 return false; 4314 4315 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4316 4317 /* If using encryption, we also need to have: 4318 * - PN_VALIDATED: similar, but the implementation is tricky 4319 * - DECRYPTED: necessary for PN_VALIDATED 4320 */ 4321 if (fast_rx->key && 4322 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4323 return false; 4324 4325 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4326 return false; 4327 4328 if (unlikely(ieee80211_is_frag(hdr))) 4329 return false; 4330 4331 /* Since our interface address cannot be multicast, this 4332 * implicitly also rejects multicast frames without the 4333 * explicit check. 4334 * 4335 * We shouldn't get any *data* frames not addressed to us 4336 * (AP mode will accept multicast *management* frames), but 4337 * punting here will make it go through the full checks in 4338 * ieee80211_accept_frame(). 4339 */ 4340 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4341 return false; 4342 4343 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4344 IEEE80211_FCTL_TODS)) != 4345 fast_rx->expected_ds_bits) 4346 return false; 4347 4348 /* assign the key to drop unencrypted frames (later) 4349 * and strip the IV/MIC if necessary 4350 */ 4351 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4352 /* GCMP header length is the same */ 4353 snap_offs += IEEE80211_CCMP_HDR_LEN; 4354 } 4355 4356 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4357 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4358 goto drop; 4359 4360 payload = (void *)(skb->data + snap_offs); 4361 4362 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4363 return false; 4364 4365 /* Don't handle these here since they require special code. 4366 * Accept AARP and IPX even though they should come with a 4367 * bridge-tunnel header - but if we get them this way then 4368 * there's little point in discarding them. 4369 */ 4370 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4371 payload->proto == fast_rx->control_port_protocol)) 4372 return false; 4373 } 4374 4375 /* after this point, don't punt to the slowpath! */ 4376 4377 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4378 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4379 goto drop; 4380 4381 if (unlikely(fast_rx->sta_notify)) { 4382 ieee80211_sta_rx_notify(rx->sdata, hdr); 4383 fast_rx->sta_notify = false; 4384 } 4385 4386 /* statistics part of ieee80211_rx_h_sta_process() */ 4387 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4388 stats->last_signal = status->signal; 4389 if (!fast_rx->uses_rss) 4390 ewma_signal_add(&sta->rx_stats_avg.signal, 4391 -status->signal); 4392 } 4393 4394 if (status->chains) { 4395 int i; 4396 4397 stats->chains = status->chains; 4398 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4399 int signal = status->chain_signal[i]; 4400 4401 if (!(status->chains & BIT(i))) 4402 continue; 4403 4404 stats->chain_signal_last[i] = signal; 4405 if (!fast_rx->uses_rss) 4406 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4407 -signal); 4408 } 4409 } 4410 /* end of statistics */ 4411 4412 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4413 goto drop; 4414 4415 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4416 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4417 RX_QUEUED) 4418 goto drop; 4419 4420 return true; 4421 } 4422 4423 stats->last_rx = jiffies; 4424 stats->last_rate = sta_stats_encode_rate(status); 4425 4426 stats->fragments++; 4427 stats->packets++; 4428 4429 /* do the header conversion - first grab the addresses */ 4430 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4431 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4432 /* remove the SNAP but leave the ethertype */ 4433 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4434 /* push the addresses in front */ 4435 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4436 4437 skb->dev = fast_rx->dev; 4438 4439 ieee80211_rx_stats(fast_rx->dev, skb->len); 4440 4441 /* The seqno index has the same property as needed 4442 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4443 * for non-QoS-data frames. Here we know it's a data 4444 * frame, so count MSDUs. 4445 */ 4446 u64_stats_update_begin(&stats->syncp); 4447 stats->msdu[rx->seqno_idx]++; 4448 stats->bytes += orig_len; 4449 u64_stats_update_end(&stats->syncp); 4450 4451 if (fast_rx->internal_forward) { 4452 struct sk_buff *xmit_skb = NULL; 4453 if (is_multicast_ether_addr(addrs.da)) { 4454 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4455 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4456 sta_info_get(rx->sdata, addrs.da)) { 4457 xmit_skb = skb; 4458 skb = NULL; 4459 } 4460 4461 if (xmit_skb) { 4462 /* 4463 * Send to wireless media and increase priority by 256 4464 * to keep the received priority instead of 4465 * reclassifying the frame (see cfg80211_classify8021d). 4466 */ 4467 xmit_skb->priority += 256; 4468 xmit_skb->protocol = htons(ETH_P_802_3); 4469 skb_reset_network_header(xmit_skb); 4470 skb_reset_mac_header(xmit_skb); 4471 dev_queue_xmit(xmit_skb); 4472 } 4473 4474 if (!skb) 4475 return true; 4476 } 4477 4478 /* deliver to local stack */ 4479 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4480 memset(skb->cb, 0, sizeof(skb->cb)); 4481 if (rx->list) 4482 list_add_tail(&skb->list, rx->list); 4483 else 4484 netif_receive_skb(skb); 4485 4486 return true; 4487 drop: 4488 dev_kfree_skb(skb); 4489 stats->dropped++; 4490 return true; 4491 } 4492 4493 /* 4494 * This function returns whether or not the SKB 4495 * was destined for RX processing or not, which, 4496 * if consume is true, is equivalent to whether 4497 * or not the skb was consumed. 4498 */ 4499 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4500 struct sk_buff *skb, bool consume) 4501 { 4502 struct ieee80211_local *local = rx->local; 4503 struct ieee80211_sub_if_data *sdata = rx->sdata; 4504 4505 rx->skb = skb; 4506 4507 /* See if we can do fast-rx; if we have to copy we already lost, 4508 * so punt in that case. We should never have to deliver a data 4509 * frame to multiple interfaces anyway. 4510 * 4511 * We skip the ieee80211_accept_frame() call and do the necessary 4512 * checking inside ieee80211_invoke_fast_rx(). 4513 */ 4514 if (consume && rx->sta) { 4515 struct ieee80211_fast_rx *fast_rx; 4516 4517 fast_rx = rcu_dereference(rx->sta->fast_rx); 4518 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4519 return true; 4520 } 4521 4522 if (!ieee80211_accept_frame(rx)) 4523 return false; 4524 4525 if (!consume) { 4526 skb = skb_copy(skb, GFP_ATOMIC); 4527 if (!skb) { 4528 if (net_ratelimit()) 4529 wiphy_debug(local->hw.wiphy, 4530 "failed to copy skb for %s\n", 4531 sdata->name); 4532 return true; 4533 } 4534 4535 rx->skb = skb; 4536 } 4537 4538 ieee80211_invoke_rx_handlers(rx); 4539 return true; 4540 } 4541 4542 /* 4543 * This is the actual Rx frames handler. as it belongs to Rx path it must 4544 * be called with rcu_read_lock protection. 4545 */ 4546 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4547 struct ieee80211_sta *pubsta, 4548 struct sk_buff *skb, 4549 struct list_head *list) 4550 { 4551 struct ieee80211_local *local = hw_to_local(hw); 4552 struct ieee80211_sub_if_data *sdata; 4553 struct ieee80211_hdr *hdr; 4554 __le16 fc; 4555 struct ieee80211_rx_data rx; 4556 struct ieee80211_sub_if_data *prev; 4557 struct rhlist_head *tmp; 4558 int err = 0; 4559 4560 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4561 memset(&rx, 0, sizeof(rx)); 4562 rx.skb = skb; 4563 rx.local = local; 4564 rx.list = list; 4565 4566 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4567 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4568 4569 if (ieee80211_is_mgmt(fc)) { 4570 /* drop frame if too short for header */ 4571 if (skb->len < ieee80211_hdrlen(fc)) 4572 err = -ENOBUFS; 4573 else 4574 err = skb_linearize(skb); 4575 } else { 4576 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4577 } 4578 4579 if (err) { 4580 dev_kfree_skb(skb); 4581 return; 4582 } 4583 4584 hdr = (struct ieee80211_hdr *)skb->data; 4585 ieee80211_parse_qos(&rx); 4586 ieee80211_verify_alignment(&rx); 4587 4588 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4589 ieee80211_is_beacon(hdr->frame_control))) 4590 ieee80211_scan_rx(local, skb); 4591 4592 if (ieee80211_is_data(fc)) { 4593 struct sta_info *sta, *prev_sta; 4594 4595 if (pubsta) { 4596 rx.sta = container_of(pubsta, struct sta_info, sta); 4597 rx.sdata = rx.sta->sdata; 4598 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4599 return; 4600 goto out; 4601 } 4602 4603 prev_sta = NULL; 4604 4605 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4606 if (!prev_sta) { 4607 prev_sta = sta; 4608 continue; 4609 } 4610 4611 rx.sta = prev_sta; 4612 rx.sdata = prev_sta->sdata; 4613 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4614 4615 prev_sta = sta; 4616 } 4617 4618 if (prev_sta) { 4619 rx.sta = prev_sta; 4620 rx.sdata = prev_sta->sdata; 4621 4622 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4623 return; 4624 goto out; 4625 } 4626 } 4627 4628 prev = NULL; 4629 4630 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4631 if (!ieee80211_sdata_running(sdata)) 4632 continue; 4633 4634 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4635 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4636 continue; 4637 4638 /* 4639 * frame is destined for this interface, but if it's 4640 * not also for the previous one we handle that after 4641 * the loop to avoid copying the SKB once too much 4642 */ 4643 4644 if (!prev) { 4645 prev = sdata; 4646 continue; 4647 } 4648 4649 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4650 rx.sdata = prev; 4651 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4652 4653 prev = sdata; 4654 } 4655 4656 if (prev) { 4657 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4658 rx.sdata = prev; 4659 4660 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4661 return; 4662 } 4663 4664 out: 4665 dev_kfree_skb(skb); 4666 } 4667 4668 /* 4669 * This is the receive path handler. It is called by a low level driver when an 4670 * 802.11 MPDU is received from the hardware. 4671 */ 4672 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4673 struct sk_buff *skb, struct list_head *list) 4674 { 4675 struct ieee80211_local *local = hw_to_local(hw); 4676 struct ieee80211_rate *rate = NULL; 4677 struct ieee80211_supported_band *sband; 4678 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4679 4680 WARN_ON_ONCE(softirq_count() == 0); 4681 4682 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4683 goto drop; 4684 4685 sband = local->hw.wiphy->bands[status->band]; 4686 if (WARN_ON(!sband)) 4687 goto drop; 4688 4689 /* 4690 * If we're suspending, it is possible although not too likely 4691 * that we'd be receiving frames after having already partially 4692 * quiesced the stack. We can't process such frames then since 4693 * that might, for example, cause stations to be added or other 4694 * driver callbacks be invoked. 4695 */ 4696 if (unlikely(local->quiescing || local->suspended)) 4697 goto drop; 4698 4699 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4700 if (unlikely(local->in_reconfig)) 4701 goto drop; 4702 4703 /* 4704 * The same happens when we're not even started, 4705 * but that's worth a warning. 4706 */ 4707 if (WARN_ON(!local->started)) 4708 goto drop; 4709 4710 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4711 /* 4712 * Validate the rate, unless a PLCP error means that 4713 * we probably can't have a valid rate here anyway. 4714 */ 4715 4716 switch (status->encoding) { 4717 case RX_ENC_HT: 4718 /* 4719 * rate_idx is MCS index, which can be [0-76] 4720 * as documented on: 4721 * 4722 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4723 * 4724 * Anything else would be some sort of driver or 4725 * hardware error. The driver should catch hardware 4726 * errors. 4727 */ 4728 if (WARN(status->rate_idx > 76, 4729 "Rate marked as an HT rate but passed " 4730 "status->rate_idx is not " 4731 "an MCS index [0-76]: %d (0x%02x)\n", 4732 status->rate_idx, 4733 status->rate_idx)) 4734 goto drop; 4735 break; 4736 case RX_ENC_VHT: 4737 if (WARN_ONCE(status->rate_idx > 9 || 4738 !status->nss || 4739 status->nss > 8, 4740 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4741 status->rate_idx, status->nss)) 4742 goto drop; 4743 break; 4744 case RX_ENC_HE: 4745 if (WARN_ONCE(status->rate_idx > 11 || 4746 !status->nss || 4747 status->nss > 8, 4748 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4749 status->rate_idx, status->nss)) 4750 goto drop; 4751 break; 4752 default: 4753 WARN_ON_ONCE(1); 4754 fallthrough; 4755 case RX_ENC_LEGACY: 4756 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4757 goto drop; 4758 rate = &sband->bitrates[status->rate_idx]; 4759 } 4760 } 4761 4762 status->rx_flags = 0; 4763 4764 /* 4765 * Frames with failed FCS/PLCP checksum are not returned, 4766 * all other frames are returned without radiotap header 4767 * if it was previously present. 4768 * Also, frames with less than 16 bytes are dropped. 4769 */ 4770 skb = ieee80211_rx_monitor(local, skb, rate); 4771 if (!skb) 4772 return; 4773 4774 ieee80211_tpt_led_trig_rx(local, 4775 ((struct ieee80211_hdr *)skb->data)->frame_control, 4776 skb->len); 4777 4778 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4779 4780 return; 4781 drop: 4782 kfree_skb(skb); 4783 } 4784 EXPORT_SYMBOL(ieee80211_rx_list); 4785 4786 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4787 struct sk_buff *skb, struct napi_struct *napi) 4788 { 4789 struct sk_buff *tmp; 4790 LIST_HEAD(list); 4791 4792 4793 /* 4794 * key references and virtual interfaces are protected using RCU 4795 * and this requires that we are in a read-side RCU section during 4796 * receive processing 4797 */ 4798 rcu_read_lock(); 4799 ieee80211_rx_list(hw, pubsta, skb, &list); 4800 rcu_read_unlock(); 4801 4802 if (!napi) { 4803 netif_receive_skb_list(&list); 4804 return; 4805 } 4806 4807 list_for_each_entry_safe(skb, tmp, &list, list) { 4808 skb_list_del_init(skb); 4809 napi_gro_receive(napi, skb); 4810 } 4811 } 4812 EXPORT_SYMBOL(ieee80211_rx_napi); 4813 4814 /* This is a version of the rx handler that can be called from hard irq 4815 * context. Post the skb on the queue and schedule the tasklet */ 4816 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4817 { 4818 struct ieee80211_local *local = hw_to_local(hw); 4819 4820 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4821 4822 skb->pkt_type = IEEE80211_RX_MSG; 4823 skb_queue_tail(&local->skb_queue, skb); 4824 tasklet_schedule(&local->tasklet); 4825 } 4826 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4827