xref: /openbmc/linux/net/mac80211/rx.c (revision 4da722ca)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static void remove_monitor_info(struct sk_buff *skb,
99 				unsigned int present_fcs_len,
100 				unsigned int rtap_vendor_space)
101 {
102 	if (present_fcs_len)
103 		__pskb_trim(skb, skb->len - present_fcs_len);
104 	__pskb_pull(skb, rtap_vendor_space);
105 }
106 
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 				     unsigned int rtap_vendor_space)
109 {
110 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 	struct ieee80211_hdr *hdr;
112 
113 	hdr = (void *)(skb->data + rtap_vendor_space);
114 
115 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 			    RX_FLAG_FAILED_PLCP_CRC |
117 			    RX_FLAG_ONLY_MONITOR))
118 		return true;
119 
120 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 		return true;
122 
123 	if (ieee80211_is_ctl(hdr->frame_control) &&
124 	    !ieee80211_is_pspoll(hdr->frame_control) &&
125 	    !ieee80211_is_back_req(hdr->frame_control))
126 		return true;
127 
128 	return false;
129 }
130 
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 			     struct ieee80211_rx_status *status,
134 			     struct sk_buff *skb)
135 {
136 	int len;
137 
138 	/* always present fields */
139 	len = sizeof(struct ieee80211_radiotap_header) + 8;
140 
141 	/* allocate extra bitmaps */
142 	if (status->chains)
143 		len += 4 * hweight8(status->chains);
144 
145 	if (ieee80211_have_rx_timestamp(status)) {
146 		len = ALIGN(len, 8);
147 		len += 8;
148 	}
149 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 		len += 1;
151 
152 	/* antenna field, if we don't have per-chain info */
153 	if (!status->chains)
154 		len += 1;
155 
156 	/* padding for RX_FLAGS if necessary */
157 	len = ALIGN(len, 2);
158 
159 	if (status->encoding == RX_ENC_HT) /* HT info */
160 		len += 3;
161 
162 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 		len = ALIGN(len, 4);
164 		len += 8;
165 	}
166 
167 	if (status->encoding == RX_ENC_VHT) {
168 		len = ALIGN(len, 2);
169 		len += 12;
170 	}
171 
172 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 		len = ALIGN(len, 8);
174 		len += 12;
175 	}
176 
177 	if (status->chains) {
178 		/* antenna and antenna signal fields */
179 		len += 2 * hweight8(status->chains);
180 	}
181 
182 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
184 
185 		/* vendor presence bitmap */
186 		len += 4;
187 		/* alignment for fixed 6-byte vendor data header */
188 		len = ALIGN(len, 2);
189 		/* vendor data header */
190 		len += 6;
191 		if (WARN_ON(rtap->align == 0))
192 			rtap->align = 1;
193 		len = ALIGN(len, rtap->align);
194 		len += rtap->len + rtap->pad;
195 	}
196 
197 	return len;
198 }
199 
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 					 struct sk_buff *skb,
202 					 int rtap_vendor_space)
203 {
204 	struct {
205 		struct ieee80211_hdr_3addr hdr;
206 		u8 category;
207 		u8 action_code;
208 	} __packed action;
209 
210 	if (!sdata)
211 		return;
212 
213 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
214 
215 	if (skb->len < rtap_vendor_space + sizeof(action) +
216 		       VHT_MUMIMO_GROUPS_DATA_LEN)
217 		return;
218 
219 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 		return;
221 
222 	skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
223 
224 	if (!ieee80211_is_action(action.hdr.frame_control))
225 		return;
226 
227 	if (action.category != WLAN_CATEGORY_VHT)
228 		return;
229 
230 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 		return;
232 
233 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 		return;
235 
236 	skb = skb_copy(skb, GFP_ATOMIC);
237 	if (!skb)
238 		return;
239 
240 	skb_queue_tail(&sdata->skb_queue, skb);
241 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
242 }
243 
244 /*
245  * ieee80211_add_rx_radiotap_header - add radiotap header
246  *
247  * add a radiotap header containing all the fields which the hardware provided.
248  */
249 static void
250 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
251 				 struct sk_buff *skb,
252 				 struct ieee80211_rate *rate,
253 				 int rtap_len, bool has_fcs)
254 {
255 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
256 	struct ieee80211_radiotap_header *rthdr;
257 	unsigned char *pos;
258 	__le32 *it_present;
259 	u32 it_present_val;
260 	u16 rx_flags = 0;
261 	u16 channel_flags = 0;
262 	int mpdulen, chain;
263 	unsigned long chains = status->chains;
264 	struct ieee80211_vendor_radiotap rtap = {};
265 
266 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
268 		/* rtap.len and rtap.pad are undone immediately */
269 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
270 	}
271 
272 	mpdulen = skb->len;
273 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
274 		mpdulen += FCS_LEN;
275 
276 	rthdr = skb_push(skb, rtap_len);
277 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
278 	it_present = &rthdr->it_present;
279 
280 	/* radiotap header, set always present flags */
281 	rthdr->it_len = cpu_to_le16(rtap_len);
282 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
283 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
284 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
285 
286 	if (!status->chains)
287 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
288 
289 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
290 		it_present_val |=
291 			BIT(IEEE80211_RADIOTAP_EXT) |
292 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
293 		put_unaligned_le32(it_present_val, it_present);
294 		it_present++;
295 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
296 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
297 	}
298 
299 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
300 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
301 				  BIT(IEEE80211_RADIOTAP_EXT);
302 		put_unaligned_le32(it_present_val, it_present);
303 		it_present++;
304 		it_present_val = rtap.present;
305 	}
306 
307 	put_unaligned_le32(it_present_val, it_present);
308 
309 	pos = (void *)(it_present + 1);
310 
311 	/* the order of the following fields is important */
312 
313 	/* IEEE80211_RADIOTAP_TSFT */
314 	if (ieee80211_have_rx_timestamp(status)) {
315 		/* padding */
316 		while ((pos - (u8 *)rthdr) & 7)
317 			*pos++ = 0;
318 		put_unaligned_le64(
319 			ieee80211_calculate_rx_timestamp(local, status,
320 							 mpdulen, 0),
321 			pos);
322 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
323 		pos += 8;
324 	}
325 
326 	/* IEEE80211_RADIOTAP_FLAGS */
327 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
328 		*pos |= IEEE80211_RADIOTAP_F_FCS;
329 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
330 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
331 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
332 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
333 	pos++;
334 
335 	/* IEEE80211_RADIOTAP_RATE */
336 	if (!rate || status->encoding != RX_ENC_LEGACY) {
337 		/*
338 		 * Without rate information don't add it. If we have,
339 		 * MCS information is a separate field in radiotap,
340 		 * added below. The byte here is needed as padding
341 		 * for the channel though, so initialise it to 0.
342 		 */
343 		*pos = 0;
344 	} else {
345 		int shift = 0;
346 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
347 		if (status->bw == RATE_INFO_BW_10)
348 			shift = 1;
349 		else if (status->bw == RATE_INFO_BW_5)
350 			shift = 2;
351 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
352 	}
353 	pos++;
354 
355 	/* IEEE80211_RADIOTAP_CHANNEL */
356 	put_unaligned_le16(status->freq, pos);
357 	pos += 2;
358 	if (status->bw == RATE_INFO_BW_10)
359 		channel_flags |= IEEE80211_CHAN_HALF;
360 	else if (status->bw == RATE_INFO_BW_5)
361 		channel_flags |= IEEE80211_CHAN_QUARTER;
362 
363 	if (status->band == NL80211_BAND_5GHZ)
364 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
365 	else if (status->encoding != RX_ENC_LEGACY)
366 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
367 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
368 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
369 	else if (rate)
370 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
371 	else
372 		channel_flags |= IEEE80211_CHAN_2GHZ;
373 	put_unaligned_le16(channel_flags, pos);
374 	pos += 2;
375 
376 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
377 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
378 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
379 		*pos = status->signal;
380 		rthdr->it_present |=
381 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
382 		pos++;
383 	}
384 
385 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
386 
387 	if (!status->chains) {
388 		/* IEEE80211_RADIOTAP_ANTENNA */
389 		*pos = status->antenna;
390 		pos++;
391 	}
392 
393 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
394 
395 	/* IEEE80211_RADIOTAP_RX_FLAGS */
396 	/* ensure 2 byte alignment for the 2 byte field as required */
397 	if ((pos - (u8 *)rthdr) & 1)
398 		*pos++ = 0;
399 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
400 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
401 	put_unaligned_le16(rx_flags, pos);
402 	pos += 2;
403 
404 	if (status->encoding == RX_ENC_HT) {
405 		unsigned int stbc;
406 
407 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
408 		*pos++ = local->hw.radiotap_mcs_details;
409 		*pos = 0;
410 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
411 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
412 		if (status->bw == RATE_INFO_BW_40)
413 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
414 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
415 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
416 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
417 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
418 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
419 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
420 		pos++;
421 		*pos++ = status->rate_idx;
422 	}
423 
424 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
425 		u16 flags = 0;
426 
427 		/* ensure 4 byte alignment */
428 		while ((pos - (u8 *)rthdr) & 3)
429 			pos++;
430 		rthdr->it_present |=
431 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
432 		put_unaligned_le32(status->ampdu_reference, pos);
433 		pos += 4;
434 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
435 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
436 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
437 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
438 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
439 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
440 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
441 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
442 		put_unaligned_le16(flags, pos);
443 		pos += 2;
444 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
445 			*pos++ = status->ampdu_delimiter_crc;
446 		else
447 			*pos++ = 0;
448 		*pos++ = 0;
449 	}
450 
451 	if (status->encoding == RX_ENC_VHT) {
452 		u16 known = local->hw.radiotap_vht_details;
453 
454 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
455 		put_unaligned_le16(known, pos);
456 		pos += 2;
457 		/* flags */
458 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
459 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
460 		/* in VHT, STBC is binary */
461 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
462 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
463 		if (status->enc_flags & RX_ENC_FLAG_BF)
464 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
465 		pos++;
466 		/* bandwidth */
467 		switch (status->bw) {
468 		case RATE_INFO_BW_80:
469 			*pos++ = 4;
470 			break;
471 		case RATE_INFO_BW_160:
472 			*pos++ = 11;
473 			break;
474 		case RATE_INFO_BW_40:
475 			*pos++ = 1;
476 			break;
477 		default:
478 			*pos++ = 0;
479 		}
480 		/* MCS/NSS */
481 		*pos = (status->rate_idx << 4) | status->nss;
482 		pos += 4;
483 		/* coding field */
484 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
485 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
486 		pos++;
487 		/* group ID */
488 		pos++;
489 		/* partial_aid */
490 		pos += 2;
491 	}
492 
493 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
494 		u16 accuracy = 0;
495 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
496 
497 		rthdr->it_present |=
498 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
499 
500 		/* ensure 8 byte alignment */
501 		while ((pos - (u8 *)rthdr) & 7)
502 			pos++;
503 
504 		put_unaligned_le64(status->device_timestamp, pos);
505 		pos += sizeof(u64);
506 
507 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
508 			accuracy = local->hw.radiotap_timestamp.accuracy;
509 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
510 		}
511 		put_unaligned_le16(accuracy, pos);
512 		pos += sizeof(u16);
513 
514 		*pos++ = local->hw.radiotap_timestamp.units_pos;
515 		*pos++ = flags;
516 	}
517 
518 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
519 		*pos++ = status->chain_signal[chain];
520 		*pos++ = chain;
521 	}
522 
523 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
524 		/* ensure 2 byte alignment for the vendor field as required */
525 		if ((pos - (u8 *)rthdr) & 1)
526 			*pos++ = 0;
527 		*pos++ = rtap.oui[0];
528 		*pos++ = rtap.oui[1];
529 		*pos++ = rtap.oui[2];
530 		*pos++ = rtap.subns;
531 		put_unaligned_le16(rtap.len, pos);
532 		pos += 2;
533 		/* align the actual payload as requested */
534 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
535 			*pos++ = 0;
536 		/* data (and possible padding) already follows */
537 	}
538 }
539 
540 static struct sk_buff *
541 ieee80211_make_monitor_skb(struct ieee80211_local *local,
542 			   struct sk_buff **origskb,
543 			   struct ieee80211_rate *rate,
544 			   int rtap_vendor_space, bool use_origskb)
545 {
546 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
547 	int rt_hdrlen, needed_headroom;
548 	struct sk_buff *skb;
549 
550 	/* room for the radiotap header based on driver features */
551 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
552 	needed_headroom = rt_hdrlen - rtap_vendor_space;
553 
554 	if (use_origskb) {
555 		/* only need to expand headroom if necessary */
556 		skb = *origskb;
557 		*origskb = NULL;
558 
559 		/*
560 		 * This shouldn't trigger often because most devices have an
561 		 * RX header they pull before we get here, and that should
562 		 * be big enough for our radiotap information. We should
563 		 * probably export the length to drivers so that we can have
564 		 * them allocate enough headroom to start with.
565 		 */
566 		if (skb_headroom(skb) < needed_headroom &&
567 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
568 			dev_kfree_skb(skb);
569 			return NULL;
570 		}
571 	} else {
572 		/*
573 		 * Need to make a copy and possibly remove radiotap header
574 		 * and FCS from the original.
575 		 */
576 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
577 
578 		if (!skb)
579 			return NULL;
580 	}
581 
582 	/* prepend radiotap information */
583 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
584 
585 	skb_reset_mac_header(skb);
586 	skb->ip_summed = CHECKSUM_UNNECESSARY;
587 	skb->pkt_type = PACKET_OTHERHOST;
588 	skb->protocol = htons(ETH_P_802_2);
589 
590 	return skb;
591 }
592 
593 /*
594  * This function copies a received frame to all monitor interfaces and
595  * returns a cleaned-up SKB that no longer includes the FCS nor the
596  * radiotap header the driver might have added.
597  */
598 static struct sk_buff *
599 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
600 		     struct ieee80211_rate *rate)
601 {
602 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
603 	struct ieee80211_sub_if_data *sdata;
604 	struct sk_buff *monskb = NULL;
605 	int present_fcs_len = 0;
606 	unsigned int rtap_vendor_space = 0;
607 	struct ieee80211_sub_if_data *monitor_sdata =
608 		rcu_dereference(local->monitor_sdata);
609 	bool only_monitor = false;
610 
611 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
612 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
613 
614 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
615 	}
616 
617 	/*
618 	 * First, we may need to make a copy of the skb because
619 	 *  (1) we need to modify it for radiotap (if not present), and
620 	 *  (2) the other RX handlers will modify the skb we got.
621 	 *
622 	 * We don't need to, of course, if we aren't going to return
623 	 * the SKB because it has a bad FCS/PLCP checksum.
624 	 */
625 
626 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
627 		if (unlikely(origskb->len <= FCS_LEN)) {
628 			/* driver bug */
629 			WARN_ON(1);
630 			dev_kfree_skb(origskb);
631 			return NULL;
632 		}
633 		present_fcs_len = FCS_LEN;
634 	}
635 
636 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
637 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
638 		dev_kfree_skb(origskb);
639 		return NULL;
640 	}
641 
642 	only_monitor = should_drop_frame(origskb, present_fcs_len,
643 					 rtap_vendor_space);
644 
645 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
646 		if (only_monitor) {
647 			dev_kfree_skb(origskb);
648 			return NULL;
649 		}
650 
651 		remove_monitor_info(origskb, present_fcs_len,
652 				    rtap_vendor_space);
653 		return origskb;
654 	}
655 
656 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
657 
658 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
659 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
660 						 &local->mon_list);
661 
662 		if (!monskb)
663 			monskb = ieee80211_make_monitor_skb(local, &origskb,
664 							    rate,
665 							    rtap_vendor_space,
666 							    only_monitor &&
667 							    last_monitor);
668 
669 		if (monskb) {
670 			struct sk_buff *skb;
671 
672 			if (last_monitor) {
673 				skb = monskb;
674 				monskb = NULL;
675 			} else {
676 				skb = skb_clone(monskb, GFP_ATOMIC);
677 			}
678 
679 			if (skb) {
680 				skb->dev = sdata->dev;
681 				ieee80211_rx_stats(skb->dev, skb->len);
682 				netif_receive_skb(skb);
683 			}
684 		}
685 
686 		if (last_monitor)
687 			break;
688 	}
689 
690 	/* this happens if last_monitor was erroneously false */
691 	dev_kfree_skb(monskb);
692 
693 	/* ditto */
694 	if (!origskb)
695 		return NULL;
696 
697 	remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
698 	return origskb;
699 }
700 
701 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
702 {
703 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
704 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
705 	int tid, seqno_idx, security_idx;
706 
707 	/* does the frame have a qos control field? */
708 	if (ieee80211_is_data_qos(hdr->frame_control)) {
709 		u8 *qc = ieee80211_get_qos_ctl(hdr);
710 		/* frame has qos control */
711 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
712 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
713 			status->rx_flags |= IEEE80211_RX_AMSDU;
714 
715 		seqno_idx = tid;
716 		security_idx = tid;
717 	} else {
718 		/*
719 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
720 		 *
721 		 *	Sequence numbers for management frames, QoS data
722 		 *	frames with a broadcast/multicast address in the
723 		 *	Address 1 field, and all non-QoS data frames sent
724 		 *	by QoS STAs are assigned using an additional single
725 		 *	modulo-4096 counter, [...]
726 		 *
727 		 * We also use that counter for non-QoS STAs.
728 		 */
729 		seqno_idx = IEEE80211_NUM_TIDS;
730 		security_idx = 0;
731 		if (ieee80211_is_mgmt(hdr->frame_control))
732 			security_idx = IEEE80211_NUM_TIDS;
733 		tid = 0;
734 	}
735 
736 	rx->seqno_idx = seqno_idx;
737 	rx->security_idx = security_idx;
738 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
739 	 * For now, set skb->priority to 0 for other cases. */
740 	rx->skb->priority = (tid > 7) ? 0 : tid;
741 }
742 
743 /**
744  * DOC: Packet alignment
745  *
746  * Drivers always need to pass packets that are aligned to two-byte boundaries
747  * to the stack.
748  *
749  * Additionally, should, if possible, align the payload data in a way that
750  * guarantees that the contained IP header is aligned to a four-byte
751  * boundary. In the case of regular frames, this simply means aligning the
752  * payload to a four-byte boundary (because either the IP header is directly
753  * contained, or IV/RFC1042 headers that have a length divisible by four are
754  * in front of it).  If the payload data is not properly aligned and the
755  * architecture doesn't support efficient unaligned operations, mac80211
756  * will align the data.
757  *
758  * With A-MSDU frames, however, the payload data address must yield two modulo
759  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
760  * push the IP header further back to a multiple of four again. Thankfully, the
761  * specs were sane enough this time around to require padding each A-MSDU
762  * subframe to a length that is a multiple of four.
763  *
764  * Padding like Atheros hardware adds which is between the 802.11 header and
765  * the payload is not supported, the driver is required to move the 802.11
766  * header to be directly in front of the payload in that case.
767  */
768 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
769 {
770 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
771 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
772 #endif
773 }
774 
775 
776 /* rx handlers */
777 
778 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
779 {
780 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
781 
782 	if (is_multicast_ether_addr(hdr->addr1))
783 		return 0;
784 
785 	return ieee80211_is_robust_mgmt_frame(skb);
786 }
787 
788 
789 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
790 {
791 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
792 
793 	if (!is_multicast_ether_addr(hdr->addr1))
794 		return 0;
795 
796 	return ieee80211_is_robust_mgmt_frame(skb);
797 }
798 
799 
800 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
801 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
802 {
803 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
804 	struct ieee80211_mmie *mmie;
805 	struct ieee80211_mmie_16 *mmie16;
806 
807 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
808 		return -1;
809 
810 	if (!ieee80211_is_robust_mgmt_frame(skb))
811 		return -1; /* not a robust management frame */
812 
813 	mmie = (struct ieee80211_mmie *)
814 		(skb->data + skb->len - sizeof(*mmie));
815 	if (mmie->element_id == WLAN_EID_MMIE &&
816 	    mmie->length == sizeof(*mmie) - 2)
817 		return le16_to_cpu(mmie->key_id);
818 
819 	mmie16 = (struct ieee80211_mmie_16 *)
820 		(skb->data + skb->len - sizeof(*mmie16));
821 	if (skb->len >= 24 + sizeof(*mmie16) &&
822 	    mmie16->element_id == WLAN_EID_MMIE &&
823 	    mmie16->length == sizeof(*mmie16) - 2)
824 		return le16_to_cpu(mmie16->key_id);
825 
826 	return -1;
827 }
828 
829 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
830 				  struct sk_buff *skb)
831 {
832 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
833 	__le16 fc;
834 	int hdrlen;
835 	u8 keyid;
836 
837 	fc = hdr->frame_control;
838 	hdrlen = ieee80211_hdrlen(fc);
839 
840 	if (skb->len < hdrlen + cs->hdr_len)
841 		return -EINVAL;
842 
843 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
844 	keyid &= cs->key_idx_mask;
845 	keyid >>= cs->key_idx_shift;
846 
847 	return keyid;
848 }
849 
850 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
851 {
852 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
853 	char *dev_addr = rx->sdata->vif.addr;
854 
855 	if (ieee80211_is_data(hdr->frame_control)) {
856 		if (is_multicast_ether_addr(hdr->addr1)) {
857 			if (ieee80211_has_tods(hdr->frame_control) ||
858 			    !ieee80211_has_fromds(hdr->frame_control))
859 				return RX_DROP_MONITOR;
860 			if (ether_addr_equal(hdr->addr3, dev_addr))
861 				return RX_DROP_MONITOR;
862 		} else {
863 			if (!ieee80211_has_a4(hdr->frame_control))
864 				return RX_DROP_MONITOR;
865 			if (ether_addr_equal(hdr->addr4, dev_addr))
866 				return RX_DROP_MONITOR;
867 		}
868 	}
869 
870 	/* If there is not an established peer link and this is not a peer link
871 	 * establisment frame, beacon or probe, drop the frame.
872 	 */
873 
874 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
875 		struct ieee80211_mgmt *mgmt;
876 
877 		if (!ieee80211_is_mgmt(hdr->frame_control))
878 			return RX_DROP_MONITOR;
879 
880 		if (ieee80211_is_action(hdr->frame_control)) {
881 			u8 category;
882 
883 			/* make sure category field is present */
884 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
885 				return RX_DROP_MONITOR;
886 
887 			mgmt = (struct ieee80211_mgmt *)hdr;
888 			category = mgmt->u.action.category;
889 			if (category != WLAN_CATEGORY_MESH_ACTION &&
890 			    category != WLAN_CATEGORY_SELF_PROTECTED)
891 				return RX_DROP_MONITOR;
892 			return RX_CONTINUE;
893 		}
894 
895 		if (ieee80211_is_probe_req(hdr->frame_control) ||
896 		    ieee80211_is_probe_resp(hdr->frame_control) ||
897 		    ieee80211_is_beacon(hdr->frame_control) ||
898 		    ieee80211_is_auth(hdr->frame_control))
899 			return RX_CONTINUE;
900 
901 		return RX_DROP_MONITOR;
902 	}
903 
904 	return RX_CONTINUE;
905 }
906 
907 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
908 					      int index)
909 {
910 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
911 	struct sk_buff *tail = skb_peek_tail(frames);
912 	struct ieee80211_rx_status *status;
913 
914 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
915 		return true;
916 
917 	if (!tail)
918 		return false;
919 
920 	status = IEEE80211_SKB_RXCB(tail);
921 	if (status->flag & RX_FLAG_AMSDU_MORE)
922 		return false;
923 
924 	return true;
925 }
926 
927 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
928 					    struct tid_ampdu_rx *tid_agg_rx,
929 					    int index,
930 					    struct sk_buff_head *frames)
931 {
932 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
933 	struct sk_buff *skb;
934 	struct ieee80211_rx_status *status;
935 
936 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
937 
938 	if (skb_queue_empty(skb_list))
939 		goto no_frame;
940 
941 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
942 		__skb_queue_purge(skb_list);
943 		goto no_frame;
944 	}
945 
946 	/* release frames from the reorder ring buffer */
947 	tid_agg_rx->stored_mpdu_num--;
948 	while ((skb = __skb_dequeue(skb_list))) {
949 		status = IEEE80211_SKB_RXCB(skb);
950 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
951 		__skb_queue_tail(frames, skb);
952 	}
953 
954 no_frame:
955 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
956 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
957 }
958 
959 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
960 					     struct tid_ampdu_rx *tid_agg_rx,
961 					     u16 head_seq_num,
962 					     struct sk_buff_head *frames)
963 {
964 	int index;
965 
966 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
967 
968 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
969 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
970 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
971 						frames);
972 	}
973 }
974 
975 /*
976  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
977  * the skb was added to the buffer longer than this time ago, the earlier
978  * frames that have not yet been received are assumed to be lost and the skb
979  * can be released for processing. This may also release other skb's from the
980  * reorder buffer if there are no additional gaps between the frames.
981  *
982  * Callers must hold tid_agg_rx->reorder_lock.
983  */
984 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
985 
986 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
987 					  struct tid_ampdu_rx *tid_agg_rx,
988 					  struct sk_buff_head *frames)
989 {
990 	int index, i, j;
991 
992 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
993 
994 	/* release the buffer until next missing frame */
995 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
996 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
997 	    tid_agg_rx->stored_mpdu_num) {
998 		/*
999 		 * No buffers ready to be released, but check whether any
1000 		 * frames in the reorder buffer have timed out.
1001 		 */
1002 		int skipped = 1;
1003 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1004 		     j = (j + 1) % tid_agg_rx->buf_size) {
1005 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1006 				skipped++;
1007 				continue;
1008 			}
1009 			if (skipped &&
1010 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1011 					HT_RX_REORDER_BUF_TIMEOUT))
1012 				goto set_release_timer;
1013 
1014 			/* don't leave incomplete A-MSDUs around */
1015 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1016 			     i = (i + 1) % tid_agg_rx->buf_size)
1017 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1018 
1019 			ht_dbg_ratelimited(sdata,
1020 					   "release an RX reorder frame due to timeout on earlier frames\n");
1021 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1022 							frames);
1023 
1024 			/*
1025 			 * Increment the head seq# also for the skipped slots.
1026 			 */
1027 			tid_agg_rx->head_seq_num =
1028 				(tid_agg_rx->head_seq_num +
1029 				 skipped) & IEEE80211_SN_MASK;
1030 			skipped = 0;
1031 		}
1032 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1033 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1034 						frames);
1035 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1036 	}
1037 
1038 	if (tid_agg_rx->stored_mpdu_num) {
1039 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1040 
1041 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1042 		     j = (j + 1) % tid_agg_rx->buf_size) {
1043 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1044 				break;
1045 		}
1046 
1047  set_release_timer:
1048 
1049 		if (!tid_agg_rx->removed)
1050 			mod_timer(&tid_agg_rx->reorder_timer,
1051 				  tid_agg_rx->reorder_time[j] + 1 +
1052 				  HT_RX_REORDER_BUF_TIMEOUT);
1053 	} else {
1054 		del_timer(&tid_agg_rx->reorder_timer);
1055 	}
1056 }
1057 
1058 /*
1059  * As this function belongs to the RX path it must be under
1060  * rcu_read_lock protection. It returns false if the frame
1061  * can be processed immediately, true if it was consumed.
1062  */
1063 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1064 					     struct tid_ampdu_rx *tid_agg_rx,
1065 					     struct sk_buff *skb,
1066 					     struct sk_buff_head *frames)
1067 {
1068 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1069 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1070 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1071 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1072 	u16 head_seq_num, buf_size;
1073 	int index;
1074 	bool ret = true;
1075 
1076 	spin_lock(&tid_agg_rx->reorder_lock);
1077 
1078 	/*
1079 	 * Offloaded BA sessions have no known starting sequence number so pick
1080 	 * one from first Rxed frame for this tid after BA was started.
1081 	 */
1082 	if (unlikely(tid_agg_rx->auto_seq)) {
1083 		tid_agg_rx->auto_seq = false;
1084 		tid_agg_rx->ssn = mpdu_seq_num;
1085 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1086 	}
1087 
1088 	buf_size = tid_agg_rx->buf_size;
1089 	head_seq_num = tid_agg_rx->head_seq_num;
1090 
1091 	/*
1092 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1093 	 * be reordered.
1094 	 */
1095 	if (unlikely(!tid_agg_rx->started)) {
1096 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1097 			ret = false;
1098 			goto out;
1099 		}
1100 		tid_agg_rx->started = true;
1101 	}
1102 
1103 	/* frame with out of date sequence number */
1104 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1105 		dev_kfree_skb(skb);
1106 		goto out;
1107 	}
1108 
1109 	/*
1110 	 * If frame the sequence number exceeds our buffering window
1111 	 * size release some previous frames to make room for this one.
1112 	 */
1113 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1114 		head_seq_num = ieee80211_sn_inc(
1115 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1116 		/* release stored frames up to new head to stack */
1117 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1118 						 head_seq_num, frames);
1119 	}
1120 
1121 	/* Now the new frame is always in the range of the reordering buffer */
1122 
1123 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1124 
1125 	/* check if we already stored this frame */
1126 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1127 		dev_kfree_skb(skb);
1128 		goto out;
1129 	}
1130 
1131 	/*
1132 	 * If the current MPDU is in the right order and nothing else
1133 	 * is stored we can process it directly, no need to buffer it.
1134 	 * If it is first but there's something stored, we may be able
1135 	 * to release frames after this one.
1136 	 */
1137 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1138 	    tid_agg_rx->stored_mpdu_num == 0) {
1139 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1140 			tid_agg_rx->head_seq_num =
1141 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1142 		ret = false;
1143 		goto out;
1144 	}
1145 
1146 	/* put the frame in the reordering buffer */
1147 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1148 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1149 		tid_agg_rx->reorder_time[index] = jiffies;
1150 		tid_agg_rx->stored_mpdu_num++;
1151 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1152 	}
1153 
1154  out:
1155 	spin_unlock(&tid_agg_rx->reorder_lock);
1156 	return ret;
1157 }
1158 
1159 /*
1160  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1161  * true if the MPDU was buffered, false if it should be processed.
1162  */
1163 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1164 				       struct sk_buff_head *frames)
1165 {
1166 	struct sk_buff *skb = rx->skb;
1167 	struct ieee80211_local *local = rx->local;
1168 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1169 	struct sta_info *sta = rx->sta;
1170 	struct tid_ampdu_rx *tid_agg_rx;
1171 	u16 sc;
1172 	u8 tid, ack_policy;
1173 
1174 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1175 	    is_multicast_ether_addr(hdr->addr1))
1176 		goto dont_reorder;
1177 
1178 	/*
1179 	 * filter the QoS data rx stream according to
1180 	 * STA/TID and check if this STA/TID is on aggregation
1181 	 */
1182 
1183 	if (!sta)
1184 		goto dont_reorder;
1185 
1186 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1187 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1188 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1189 
1190 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1191 	if (!tid_agg_rx) {
1192 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1193 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1194 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1195 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1196 					     WLAN_BACK_RECIPIENT,
1197 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1198 		goto dont_reorder;
1199 	}
1200 
1201 	/* qos null data frames are excluded */
1202 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1203 		goto dont_reorder;
1204 
1205 	/* not part of a BA session */
1206 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1207 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1208 		goto dont_reorder;
1209 
1210 	/* new, potentially un-ordered, ampdu frame - process it */
1211 
1212 	/* reset session timer */
1213 	if (tid_agg_rx->timeout)
1214 		tid_agg_rx->last_rx = jiffies;
1215 
1216 	/* if this mpdu is fragmented - terminate rx aggregation session */
1217 	sc = le16_to_cpu(hdr->seq_ctrl);
1218 	if (sc & IEEE80211_SCTL_FRAG) {
1219 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1220 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1221 		return;
1222 	}
1223 
1224 	/*
1225 	 * No locking needed -- we will only ever process one
1226 	 * RX packet at a time, and thus own tid_agg_rx. All
1227 	 * other code manipulating it needs to (and does) make
1228 	 * sure that we cannot get to it any more before doing
1229 	 * anything with it.
1230 	 */
1231 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1232 					     frames))
1233 		return;
1234 
1235  dont_reorder:
1236 	__skb_queue_tail(frames, skb);
1237 }
1238 
1239 static ieee80211_rx_result debug_noinline
1240 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1241 {
1242 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1243 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1244 
1245 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1246 		return RX_CONTINUE;
1247 
1248 	/*
1249 	 * Drop duplicate 802.11 retransmissions
1250 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1251 	 */
1252 
1253 	if (rx->skb->len < 24)
1254 		return RX_CONTINUE;
1255 
1256 	if (ieee80211_is_ctl(hdr->frame_control) ||
1257 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1258 	    is_multicast_ether_addr(hdr->addr1))
1259 		return RX_CONTINUE;
1260 
1261 	if (!rx->sta)
1262 		return RX_CONTINUE;
1263 
1264 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1265 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1266 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1267 		rx->sta->rx_stats.num_duplicates++;
1268 		return RX_DROP_UNUSABLE;
1269 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1270 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1271 	}
1272 
1273 	return RX_CONTINUE;
1274 }
1275 
1276 static ieee80211_rx_result debug_noinline
1277 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1278 {
1279 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1280 
1281 	/* Drop disallowed frame classes based on STA auth/assoc state;
1282 	 * IEEE 802.11, Chap 5.5.
1283 	 *
1284 	 * mac80211 filters only based on association state, i.e. it drops
1285 	 * Class 3 frames from not associated stations. hostapd sends
1286 	 * deauth/disassoc frames when needed. In addition, hostapd is
1287 	 * responsible for filtering on both auth and assoc states.
1288 	 */
1289 
1290 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1291 		return ieee80211_rx_mesh_check(rx);
1292 
1293 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1294 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1295 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1296 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1297 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1298 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1299 		/*
1300 		 * accept port control frames from the AP even when it's not
1301 		 * yet marked ASSOC to prevent a race where we don't set the
1302 		 * assoc bit quickly enough before it sends the first frame
1303 		 */
1304 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1305 		    ieee80211_is_data_present(hdr->frame_control)) {
1306 			unsigned int hdrlen;
1307 			__be16 ethertype;
1308 
1309 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1310 
1311 			if (rx->skb->len < hdrlen + 8)
1312 				return RX_DROP_MONITOR;
1313 
1314 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1315 			if (ethertype == rx->sdata->control_port_protocol)
1316 				return RX_CONTINUE;
1317 		}
1318 
1319 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1320 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1321 					       hdr->addr2,
1322 					       GFP_ATOMIC))
1323 			return RX_DROP_UNUSABLE;
1324 
1325 		return RX_DROP_MONITOR;
1326 	}
1327 
1328 	return RX_CONTINUE;
1329 }
1330 
1331 
1332 static ieee80211_rx_result debug_noinline
1333 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1334 {
1335 	struct ieee80211_local *local;
1336 	struct ieee80211_hdr *hdr;
1337 	struct sk_buff *skb;
1338 
1339 	local = rx->local;
1340 	skb = rx->skb;
1341 	hdr = (struct ieee80211_hdr *) skb->data;
1342 
1343 	if (!local->pspolling)
1344 		return RX_CONTINUE;
1345 
1346 	if (!ieee80211_has_fromds(hdr->frame_control))
1347 		/* this is not from AP */
1348 		return RX_CONTINUE;
1349 
1350 	if (!ieee80211_is_data(hdr->frame_control))
1351 		return RX_CONTINUE;
1352 
1353 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1354 		/* AP has no more frames buffered for us */
1355 		local->pspolling = false;
1356 		return RX_CONTINUE;
1357 	}
1358 
1359 	/* more data bit is set, let's request a new frame from the AP */
1360 	ieee80211_send_pspoll(local, rx->sdata);
1361 
1362 	return RX_CONTINUE;
1363 }
1364 
1365 static void sta_ps_start(struct sta_info *sta)
1366 {
1367 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1368 	struct ieee80211_local *local = sdata->local;
1369 	struct ps_data *ps;
1370 	int tid;
1371 
1372 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1373 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1374 		ps = &sdata->bss->ps;
1375 	else
1376 		return;
1377 
1378 	atomic_inc(&ps->num_sta_ps);
1379 	set_sta_flag(sta, WLAN_STA_PS_STA);
1380 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1381 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1382 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1383 	       sta->sta.addr, sta->sta.aid);
1384 
1385 	ieee80211_clear_fast_xmit(sta);
1386 
1387 	if (!sta->sta.txq[0])
1388 		return;
1389 
1390 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1391 		if (txq_has_queue(sta->sta.txq[tid]))
1392 			set_bit(tid, &sta->txq_buffered_tids);
1393 		else
1394 			clear_bit(tid, &sta->txq_buffered_tids);
1395 	}
1396 }
1397 
1398 static void sta_ps_end(struct sta_info *sta)
1399 {
1400 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1401 	       sta->sta.addr, sta->sta.aid);
1402 
1403 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1404 		/*
1405 		 * Clear the flag only if the other one is still set
1406 		 * so that the TX path won't start TX'ing new frames
1407 		 * directly ... In the case that the driver flag isn't
1408 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1409 		 */
1410 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1411 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1412 		       sta->sta.addr, sta->sta.aid);
1413 		return;
1414 	}
1415 
1416 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1417 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1418 	ieee80211_sta_ps_deliver_wakeup(sta);
1419 }
1420 
1421 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1422 {
1423 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1424 	bool in_ps;
1425 
1426 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1427 
1428 	/* Don't let the same PS state be set twice */
1429 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1430 	if ((start && in_ps) || (!start && !in_ps))
1431 		return -EINVAL;
1432 
1433 	if (start)
1434 		sta_ps_start(sta);
1435 	else
1436 		sta_ps_end(sta);
1437 
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1441 
1442 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1443 {
1444 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1445 
1446 	if (test_sta_flag(sta, WLAN_STA_SP))
1447 		return;
1448 
1449 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1450 		ieee80211_sta_ps_deliver_poll_response(sta);
1451 	else
1452 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1453 }
1454 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1455 
1456 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1457 {
1458 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1459 	int ac = ieee80211_ac_from_tid(tid);
1460 
1461 	/*
1462 	 * If this AC is not trigger-enabled do nothing unless the
1463 	 * driver is calling us after it already checked.
1464 	 *
1465 	 * NB: This could/should check a separate bitmap of trigger-
1466 	 * enabled queues, but for now we only implement uAPSD w/o
1467 	 * TSPEC changes to the ACs, so they're always the same.
1468 	 */
1469 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1470 	    tid != IEEE80211_NUM_TIDS)
1471 		return;
1472 
1473 	/* if we are in a service period, do nothing */
1474 	if (test_sta_flag(sta, WLAN_STA_SP))
1475 		return;
1476 
1477 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1478 		ieee80211_sta_ps_deliver_uapsd(sta);
1479 	else
1480 		set_sta_flag(sta, WLAN_STA_UAPSD);
1481 }
1482 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1483 
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1486 {
1487 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1488 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1489 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1490 
1491 	if (!rx->sta)
1492 		return RX_CONTINUE;
1493 
1494 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1495 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1496 		return RX_CONTINUE;
1497 
1498 	/*
1499 	 * The device handles station powersave, so don't do anything about
1500 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1501 	 * it to mac80211 since they're handled.)
1502 	 */
1503 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1504 		return RX_CONTINUE;
1505 
1506 	/*
1507 	 * Don't do anything if the station isn't already asleep. In
1508 	 * the uAPSD case, the station will probably be marked asleep,
1509 	 * in the PS-Poll case the station must be confused ...
1510 	 */
1511 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1512 		return RX_CONTINUE;
1513 
1514 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1515 		ieee80211_sta_pspoll(&rx->sta->sta);
1516 
1517 		/* Free PS Poll skb here instead of returning RX_DROP that would
1518 		 * count as an dropped frame. */
1519 		dev_kfree_skb(rx->skb);
1520 
1521 		return RX_QUEUED;
1522 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1523 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1524 		   ieee80211_has_pm(hdr->frame_control) &&
1525 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1526 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1527 		u8 tid;
1528 
1529 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1530 
1531 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1532 	}
1533 
1534 	return RX_CONTINUE;
1535 }
1536 
1537 static ieee80211_rx_result debug_noinline
1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1539 {
1540 	struct sta_info *sta = rx->sta;
1541 	struct sk_buff *skb = rx->skb;
1542 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1543 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1544 	int i;
1545 
1546 	if (!sta)
1547 		return RX_CONTINUE;
1548 
1549 	/*
1550 	 * Update last_rx only for IBSS packets which are for the current
1551 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1552 	 * current IBSS network alive in cases where other STAs start
1553 	 * using different BSSID. This will also give the station another
1554 	 * chance to restart the authentication/authorization in case
1555 	 * something went wrong the first time.
1556 	 */
1557 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1558 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1559 						NL80211_IFTYPE_ADHOC);
1560 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1561 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1562 			sta->rx_stats.last_rx = jiffies;
1563 			if (ieee80211_is_data(hdr->frame_control) &&
1564 			    !is_multicast_ether_addr(hdr->addr1))
1565 				sta->rx_stats.last_rate =
1566 					sta_stats_encode_rate(status);
1567 		}
1568 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1569 		sta->rx_stats.last_rx = jiffies;
1570 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1571 		/*
1572 		 * Mesh beacons will update last_rx when if they are found to
1573 		 * match the current local configuration when processed.
1574 		 */
1575 		sta->rx_stats.last_rx = jiffies;
1576 		if (ieee80211_is_data(hdr->frame_control))
1577 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1578 	}
1579 
1580 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1581 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1582 
1583 	sta->rx_stats.fragments++;
1584 
1585 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1586 	sta->rx_stats.bytes += rx->skb->len;
1587 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1588 
1589 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1590 		sta->rx_stats.last_signal = status->signal;
1591 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1592 	}
1593 
1594 	if (status->chains) {
1595 		sta->rx_stats.chains = status->chains;
1596 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1597 			int signal = status->chain_signal[i];
1598 
1599 			if (!(status->chains & BIT(i)))
1600 				continue;
1601 
1602 			sta->rx_stats.chain_signal_last[i] = signal;
1603 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1604 					-signal);
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * Change STA power saving mode only at the end of a frame
1610 	 * exchange sequence.
1611 	 */
1612 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1613 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1614 	    !ieee80211_is_back_req(hdr->frame_control) &&
1615 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1616 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1617 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1618 	    /*
1619 	     * PM bit is only checked in frames where it isn't reserved,
1620 	     * in AP mode it's reserved in non-bufferable management frames
1621 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1622 	     * BAR frames should be ignored as specified in
1623 	     * IEEE 802.11-2012 10.2.1.2.
1624 	     */
1625 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1626 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1627 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1628 			if (!ieee80211_has_pm(hdr->frame_control))
1629 				sta_ps_end(sta);
1630 		} else {
1631 			if (ieee80211_has_pm(hdr->frame_control))
1632 				sta_ps_start(sta);
1633 		}
1634 	}
1635 
1636 	/* mesh power save support */
1637 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1638 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1639 
1640 	/*
1641 	 * Drop (qos-)data::nullfunc frames silently, since they
1642 	 * are used only to control station power saving mode.
1643 	 */
1644 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1645 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1646 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1647 
1648 		/*
1649 		 * If we receive a 4-addr nullfunc frame from a STA
1650 		 * that was not moved to a 4-addr STA vlan yet send
1651 		 * the event to userspace and for older hostapd drop
1652 		 * the frame to the monitor interface.
1653 		 */
1654 		if (ieee80211_has_a4(hdr->frame_control) &&
1655 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1656 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1657 		      !rx->sdata->u.vlan.sta))) {
1658 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1659 				cfg80211_rx_unexpected_4addr_frame(
1660 					rx->sdata->dev, sta->sta.addr,
1661 					GFP_ATOMIC);
1662 			return RX_DROP_MONITOR;
1663 		}
1664 		/*
1665 		 * Update counter and free packet here to avoid
1666 		 * counting this as a dropped packed.
1667 		 */
1668 		sta->rx_stats.packets++;
1669 		dev_kfree_skb(rx->skb);
1670 		return RX_QUEUED;
1671 	}
1672 
1673 	return RX_CONTINUE;
1674 } /* ieee80211_rx_h_sta_process */
1675 
1676 static ieee80211_rx_result debug_noinline
1677 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1678 {
1679 	struct sk_buff *skb = rx->skb;
1680 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1681 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1682 	int keyidx;
1683 	int hdrlen;
1684 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1685 	struct ieee80211_key *sta_ptk = NULL;
1686 	int mmie_keyidx = -1;
1687 	__le16 fc;
1688 	const struct ieee80211_cipher_scheme *cs = NULL;
1689 
1690 	/*
1691 	 * Key selection 101
1692 	 *
1693 	 * There are four types of keys:
1694 	 *  - GTK (group keys)
1695 	 *  - IGTK (group keys for management frames)
1696 	 *  - PTK (pairwise keys)
1697 	 *  - STK (station-to-station pairwise keys)
1698 	 *
1699 	 * When selecting a key, we have to distinguish between multicast
1700 	 * (including broadcast) and unicast frames, the latter can only
1701 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1702 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1703 	 * unicast frames can also use key indices like GTKs. Hence, if we
1704 	 * don't have a PTK/STK we check the key index for a WEP key.
1705 	 *
1706 	 * Note that in a regular BSS, multicast frames are sent by the
1707 	 * AP only, associated stations unicast the frame to the AP first
1708 	 * which then multicasts it on their behalf.
1709 	 *
1710 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1711 	 * with each station, that is something we don't currently handle.
1712 	 * The spec seems to expect that one negotiates the same key with
1713 	 * every station but there's no such requirement; VLANs could be
1714 	 * possible.
1715 	 */
1716 
1717 	/* start without a key */
1718 	rx->key = NULL;
1719 	fc = hdr->frame_control;
1720 
1721 	if (rx->sta) {
1722 		int keyid = rx->sta->ptk_idx;
1723 
1724 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1725 			cs = rx->sta->cipher_scheme;
1726 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1727 			if (unlikely(keyid < 0))
1728 				return RX_DROP_UNUSABLE;
1729 		}
1730 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1731 	}
1732 
1733 	if (!ieee80211_has_protected(fc))
1734 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1735 
1736 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1737 		rx->key = sta_ptk;
1738 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1739 		    (status->flag & RX_FLAG_IV_STRIPPED))
1740 			return RX_CONTINUE;
1741 		/* Skip decryption if the frame is not protected. */
1742 		if (!ieee80211_has_protected(fc))
1743 			return RX_CONTINUE;
1744 	} else if (mmie_keyidx >= 0) {
1745 		/* Broadcast/multicast robust management frame / BIP */
1746 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1747 		    (status->flag & RX_FLAG_IV_STRIPPED))
1748 			return RX_CONTINUE;
1749 
1750 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1751 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1752 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1753 		if (rx->sta) {
1754 			if (ieee80211_is_group_privacy_action(skb) &&
1755 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1756 				return RX_DROP_MONITOR;
1757 
1758 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1759 		}
1760 		if (!rx->key)
1761 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1762 	} else if (!ieee80211_has_protected(fc)) {
1763 		/*
1764 		 * The frame was not protected, so skip decryption. However, we
1765 		 * need to set rx->key if there is a key that could have been
1766 		 * used so that the frame may be dropped if encryption would
1767 		 * have been expected.
1768 		 */
1769 		struct ieee80211_key *key = NULL;
1770 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1771 		int i;
1772 
1773 		if (ieee80211_is_mgmt(fc) &&
1774 		    is_multicast_ether_addr(hdr->addr1) &&
1775 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1776 			rx->key = key;
1777 		else {
1778 			if (rx->sta) {
1779 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1780 					key = rcu_dereference(rx->sta->gtk[i]);
1781 					if (key)
1782 						break;
1783 				}
1784 			}
1785 			if (!key) {
1786 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1787 					key = rcu_dereference(sdata->keys[i]);
1788 					if (key)
1789 						break;
1790 				}
1791 			}
1792 			if (key)
1793 				rx->key = key;
1794 		}
1795 		return RX_CONTINUE;
1796 	} else {
1797 		u8 keyid;
1798 
1799 		/*
1800 		 * The device doesn't give us the IV so we won't be
1801 		 * able to look up the key. That's ok though, we
1802 		 * don't need to decrypt the frame, we just won't
1803 		 * be able to keep statistics accurate.
1804 		 * Except for key threshold notifications, should
1805 		 * we somehow allow the driver to tell us which key
1806 		 * the hardware used if this flag is set?
1807 		 */
1808 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1809 		    (status->flag & RX_FLAG_IV_STRIPPED))
1810 			return RX_CONTINUE;
1811 
1812 		hdrlen = ieee80211_hdrlen(fc);
1813 
1814 		if (cs) {
1815 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1816 
1817 			if (unlikely(keyidx < 0))
1818 				return RX_DROP_UNUSABLE;
1819 		} else {
1820 			if (rx->skb->len < 8 + hdrlen)
1821 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1822 			/*
1823 			 * no need to call ieee80211_wep_get_keyidx,
1824 			 * it verifies a bunch of things we've done already
1825 			 */
1826 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1827 			keyidx = keyid >> 6;
1828 		}
1829 
1830 		/* check per-station GTK first, if multicast packet */
1831 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1832 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1833 
1834 		/* if not found, try default key */
1835 		if (!rx->key) {
1836 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1837 
1838 			/*
1839 			 * RSNA-protected unicast frames should always be
1840 			 * sent with pairwise or station-to-station keys,
1841 			 * but for WEP we allow using a key index as well.
1842 			 */
1843 			if (rx->key &&
1844 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1845 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1846 			    !is_multicast_ether_addr(hdr->addr1))
1847 				rx->key = NULL;
1848 		}
1849 	}
1850 
1851 	if (rx->key) {
1852 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1853 			return RX_DROP_MONITOR;
1854 
1855 		/* TODO: add threshold stuff again */
1856 	} else {
1857 		return RX_DROP_MONITOR;
1858 	}
1859 
1860 	switch (rx->key->conf.cipher) {
1861 	case WLAN_CIPHER_SUITE_WEP40:
1862 	case WLAN_CIPHER_SUITE_WEP104:
1863 		result = ieee80211_crypto_wep_decrypt(rx);
1864 		break;
1865 	case WLAN_CIPHER_SUITE_TKIP:
1866 		result = ieee80211_crypto_tkip_decrypt(rx);
1867 		break;
1868 	case WLAN_CIPHER_SUITE_CCMP:
1869 		result = ieee80211_crypto_ccmp_decrypt(
1870 			rx, IEEE80211_CCMP_MIC_LEN);
1871 		break;
1872 	case WLAN_CIPHER_SUITE_CCMP_256:
1873 		result = ieee80211_crypto_ccmp_decrypt(
1874 			rx, IEEE80211_CCMP_256_MIC_LEN);
1875 		break;
1876 	case WLAN_CIPHER_SUITE_AES_CMAC:
1877 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1878 		break;
1879 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1880 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1881 		break;
1882 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1883 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1884 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1885 		break;
1886 	case WLAN_CIPHER_SUITE_GCMP:
1887 	case WLAN_CIPHER_SUITE_GCMP_256:
1888 		result = ieee80211_crypto_gcmp_decrypt(rx);
1889 		break;
1890 	default:
1891 		result = ieee80211_crypto_hw_decrypt(rx);
1892 	}
1893 
1894 	/* the hdr variable is invalid after the decrypt handlers */
1895 
1896 	/* either the frame has been decrypted or will be dropped */
1897 	status->flag |= RX_FLAG_DECRYPTED;
1898 
1899 	return result;
1900 }
1901 
1902 static inline struct ieee80211_fragment_entry *
1903 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1904 			 unsigned int frag, unsigned int seq, int rx_queue,
1905 			 struct sk_buff **skb)
1906 {
1907 	struct ieee80211_fragment_entry *entry;
1908 
1909 	entry = &sdata->fragments[sdata->fragment_next++];
1910 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1911 		sdata->fragment_next = 0;
1912 
1913 	if (!skb_queue_empty(&entry->skb_list))
1914 		__skb_queue_purge(&entry->skb_list);
1915 
1916 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1917 	*skb = NULL;
1918 	entry->first_frag_time = jiffies;
1919 	entry->seq = seq;
1920 	entry->rx_queue = rx_queue;
1921 	entry->last_frag = frag;
1922 	entry->check_sequential_pn = false;
1923 	entry->extra_len = 0;
1924 
1925 	return entry;
1926 }
1927 
1928 static inline struct ieee80211_fragment_entry *
1929 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1930 			  unsigned int frag, unsigned int seq,
1931 			  int rx_queue, struct ieee80211_hdr *hdr)
1932 {
1933 	struct ieee80211_fragment_entry *entry;
1934 	int i, idx;
1935 
1936 	idx = sdata->fragment_next;
1937 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1938 		struct ieee80211_hdr *f_hdr;
1939 
1940 		idx--;
1941 		if (idx < 0)
1942 			idx = IEEE80211_FRAGMENT_MAX - 1;
1943 
1944 		entry = &sdata->fragments[idx];
1945 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1946 		    entry->rx_queue != rx_queue ||
1947 		    entry->last_frag + 1 != frag)
1948 			continue;
1949 
1950 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1951 
1952 		/*
1953 		 * Check ftype and addresses are equal, else check next fragment
1954 		 */
1955 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1956 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1957 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1958 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1959 			continue;
1960 
1961 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1962 			__skb_queue_purge(&entry->skb_list);
1963 			continue;
1964 		}
1965 		return entry;
1966 	}
1967 
1968 	return NULL;
1969 }
1970 
1971 static ieee80211_rx_result debug_noinline
1972 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1973 {
1974 	struct ieee80211_hdr *hdr;
1975 	u16 sc;
1976 	__le16 fc;
1977 	unsigned int frag, seq;
1978 	struct ieee80211_fragment_entry *entry;
1979 	struct sk_buff *skb;
1980 
1981 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1982 	fc = hdr->frame_control;
1983 
1984 	if (ieee80211_is_ctl(fc))
1985 		return RX_CONTINUE;
1986 
1987 	sc = le16_to_cpu(hdr->seq_ctrl);
1988 	frag = sc & IEEE80211_SCTL_FRAG;
1989 
1990 	if (is_multicast_ether_addr(hdr->addr1)) {
1991 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1992 		goto out_no_led;
1993 	}
1994 
1995 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1996 		goto out;
1997 
1998 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1999 
2000 	if (skb_linearize(rx->skb))
2001 		return RX_DROP_UNUSABLE;
2002 
2003 	/*
2004 	 *  skb_linearize() might change the skb->data and
2005 	 *  previously cached variables (in this case, hdr) need to
2006 	 *  be refreshed with the new data.
2007 	 */
2008 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2009 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2010 
2011 	if (frag == 0) {
2012 		/* This is the first fragment of a new frame. */
2013 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2014 						 rx->seqno_idx, &(rx->skb));
2015 		if (rx->key &&
2016 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2017 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2018 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2019 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2020 		    ieee80211_has_protected(fc)) {
2021 			int queue = rx->security_idx;
2022 
2023 			/* Store CCMP/GCMP PN so that we can verify that the
2024 			 * next fragment has a sequential PN value.
2025 			 */
2026 			entry->check_sequential_pn = true;
2027 			memcpy(entry->last_pn,
2028 			       rx->key->u.ccmp.rx_pn[queue],
2029 			       IEEE80211_CCMP_PN_LEN);
2030 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2031 					      u.ccmp.rx_pn) !=
2032 				     offsetof(struct ieee80211_key,
2033 					      u.gcmp.rx_pn));
2034 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2035 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2036 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2037 				     IEEE80211_GCMP_PN_LEN);
2038 		}
2039 		return RX_QUEUED;
2040 	}
2041 
2042 	/* This is a fragment for a frame that should already be pending in
2043 	 * fragment cache. Add this fragment to the end of the pending entry.
2044 	 */
2045 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2046 					  rx->seqno_idx, hdr);
2047 	if (!entry) {
2048 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2049 		return RX_DROP_MONITOR;
2050 	}
2051 
2052 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2053 	 *  MPDU PN values are not incrementing in steps of 1."
2054 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2055 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2056 	 */
2057 	if (entry->check_sequential_pn) {
2058 		int i;
2059 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2060 		int queue;
2061 
2062 		if (!rx->key ||
2063 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2064 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2065 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2066 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2067 			return RX_DROP_UNUSABLE;
2068 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2069 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2070 			pn[i]++;
2071 			if (pn[i])
2072 				break;
2073 		}
2074 		queue = rx->security_idx;
2075 		rpn = rx->key->u.ccmp.rx_pn[queue];
2076 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2077 			return RX_DROP_UNUSABLE;
2078 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2079 	}
2080 
2081 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2082 	__skb_queue_tail(&entry->skb_list, rx->skb);
2083 	entry->last_frag = frag;
2084 	entry->extra_len += rx->skb->len;
2085 	if (ieee80211_has_morefrags(fc)) {
2086 		rx->skb = NULL;
2087 		return RX_QUEUED;
2088 	}
2089 
2090 	rx->skb = __skb_dequeue(&entry->skb_list);
2091 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2092 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2093 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2094 					      GFP_ATOMIC))) {
2095 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2096 			__skb_queue_purge(&entry->skb_list);
2097 			return RX_DROP_UNUSABLE;
2098 		}
2099 	}
2100 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2101 		skb_put_data(rx->skb, skb->data, skb->len);
2102 		dev_kfree_skb(skb);
2103 	}
2104 
2105  out:
2106 	ieee80211_led_rx(rx->local);
2107  out_no_led:
2108 	if (rx->sta)
2109 		rx->sta->rx_stats.packets++;
2110 	return RX_CONTINUE;
2111 }
2112 
2113 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2114 {
2115 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2116 		return -EACCES;
2117 
2118 	return 0;
2119 }
2120 
2121 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2122 {
2123 	struct sk_buff *skb = rx->skb;
2124 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2125 
2126 	/*
2127 	 * Pass through unencrypted frames if the hardware has
2128 	 * decrypted them already.
2129 	 */
2130 	if (status->flag & RX_FLAG_DECRYPTED)
2131 		return 0;
2132 
2133 	/* Drop unencrypted frames if key is set. */
2134 	if (unlikely(!ieee80211_has_protected(fc) &&
2135 		     !ieee80211_is_nullfunc(fc) &&
2136 		     ieee80211_is_data(fc) && rx->key))
2137 		return -EACCES;
2138 
2139 	return 0;
2140 }
2141 
2142 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2143 {
2144 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2145 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2146 	__le16 fc = hdr->frame_control;
2147 
2148 	/*
2149 	 * Pass through unencrypted frames if the hardware has
2150 	 * decrypted them already.
2151 	 */
2152 	if (status->flag & RX_FLAG_DECRYPTED)
2153 		return 0;
2154 
2155 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2156 		if (unlikely(!ieee80211_has_protected(fc) &&
2157 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2158 			     rx->key)) {
2159 			if (ieee80211_is_deauth(fc) ||
2160 			    ieee80211_is_disassoc(fc))
2161 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2162 							     rx->skb->data,
2163 							     rx->skb->len);
2164 			return -EACCES;
2165 		}
2166 		/* BIP does not use Protected field, so need to check MMIE */
2167 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2168 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2169 			if (ieee80211_is_deauth(fc) ||
2170 			    ieee80211_is_disassoc(fc))
2171 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2172 							     rx->skb->data,
2173 							     rx->skb->len);
2174 			return -EACCES;
2175 		}
2176 		/*
2177 		 * When using MFP, Action frames are not allowed prior to
2178 		 * having configured keys.
2179 		 */
2180 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2181 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2182 			return -EACCES;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static int
2189 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2190 {
2191 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2192 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2193 	bool check_port_control = false;
2194 	struct ethhdr *ehdr;
2195 	int ret;
2196 
2197 	*port_control = false;
2198 	if (ieee80211_has_a4(hdr->frame_control) &&
2199 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2200 		return -1;
2201 
2202 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2203 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2204 
2205 		if (!sdata->u.mgd.use_4addr)
2206 			return -1;
2207 		else
2208 			check_port_control = true;
2209 	}
2210 
2211 	if (is_multicast_ether_addr(hdr->addr1) &&
2212 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2213 		return -1;
2214 
2215 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2216 	if (ret < 0)
2217 		return ret;
2218 
2219 	ehdr = (struct ethhdr *) rx->skb->data;
2220 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2221 		*port_control = true;
2222 	else if (check_port_control)
2223 		return -1;
2224 
2225 	return 0;
2226 }
2227 
2228 /*
2229  * requires that rx->skb is a frame with ethernet header
2230  */
2231 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2232 {
2233 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2234 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2235 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2236 
2237 	/*
2238 	 * Allow EAPOL frames to us/the PAE group address regardless
2239 	 * of whether the frame was encrypted or not.
2240 	 */
2241 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2242 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2243 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2244 		return true;
2245 
2246 	if (ieee80211_802_1x_port_control(rx) ||
2247 	    ieee80211_drop_unencrypted(rx, fc))
2248 		return false;
2249 
2250 	return true;
2251 }
2252 
2253 /*
2254  * requires that rx->skb is a frame with ethernet header
2255  */
2256 static void
2257 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2258 {
2259 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2260 	struct net_device *dev = sdata->dev;
2261 	struct sk_buff *skb, *xmit_skb;
2262 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2263 	struct sta_info *dsta;
2264 
2265 	skb = rx->skb;
2266 	xmit_skb = NULL;
2267 
2268 	ieee80211_rx_stats(dev, skb->len);
2269 
2270 	if (rx->sta) {
2271 		/* The seqno index has the same property as needed
2272 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2273 		 * for non-QoS-data frames. Here we know it's a data
2274 		 * frame, so count MSDUs.
2275 		 */
2276 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2277 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2278 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2279 	}
2280 
2281 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2282 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2283 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2284 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2285 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2286 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2287 			/*
2288 			 * send multicast frames both to higher layers in
2289 			 * local net stack and back to the wireless medium
2290 			 */
2291 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2292 			if (!xmit_skb)
2293 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2294 						    dev->name);
2295 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2296 			dsta = sta_info_get(sdata, skb->data);
2297 			if (dsta) {
2298 				/*
2299 				 * The destination station is associated to
2300 				 * this AP (in this VLAN), so send the frame
2301 				 * directly to it and do not pass it to local
2302 				 * net stack.
2303 				 */
2304 				xmit_skb = skb;
2305 				skb = NULL;
2306 			}
2307 		}
2308 	}
2309 
2310 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2311 	if (skb) {
2312 		/* 'align' will only take the values 0 or 2 here since all
2313 		 * frames are required to be aligned to 2-byte boundaries
2314 		 * when being passed to mac80211; the code here works just
2315 		 * as well if that isn't true, but mac80211 assumes it can
2316 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2317 		 */
2318 		int align;
2319 
2320 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2321 		if (align) {
2322 			if (WARN_ON(skb_headroom(skb) < 3)) {
2323 				dev_kfree_skb(skb);
2324 				skb = NULL;
2325 			} else {
2326 				u8 *data = skb->data;
2327 				size_t len = skb_headlen(skb);
2328 				skb->data -= align;
2329 				memmove(skb->data, data, len);
2330 				skb_set_tail_pointer(skb, len);
2331 			}
2332 		}
2333 	}
2334 #endif
2335 
2336 	if (skb) {
2337 		/* deliver to local stack */
2338 		skb->protocol = eth_type_trans(skb, dev);
2339 		memset(skb->cb, 0, sizeof(skb->cb));
2340 		if (rx->napi)
2341 			napi_gro_receive(rx->napi, skb);
2342 		else
2343 			netif_receive_skb(skb);
2344 	}
2345 
2346 	if (xmit_skb) {
2347 		/*
2348 		 * Send to wireless media and increase priority by 256 to
2349 		 * keep the received priority instead of reclassifying
2350 		 * the frame (see cfg80211_classify8021d).
2351 		 */
2352 		xmit_skb->priority += 256;
2353 		xmit_skb->protocol = htons(ETH_P_802_3);
2354 		skb_reset_network_header(xmit_skb);
2355 		skb_reset_mac_header(xmit_skb);
2356 		dev_queue_xmit(xmit_skb);
2357 	}
2358 }
2359 
2360 static ieee80211_rx_result debug_noinline
2361 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2362 {
2363 	struct net_device *dev = rx->sdata->dev;
2364 	struct sk_buff *skb = rx->skb;
2365 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2366 	__le16 fc = hdr->frame_control;
2367 	struct sk_buff_head frame_list;
2368 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2369 	struct ethhdr ethhdr;
2370 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2371 
2372 	if (unlikely(!ieee80211_is_data(fc)))
2373 		return RX_CONTINUE;
2374 
2375 	if (unlikely(!ieee80211_is_data_present(fc)))
2376 		return RX_DROP_MONITOR;
2377 
2378 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2379 		return RX_CONTINUE;
2380 
2381 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2382 		switch (rx->sdata->vif.type) {
2383 		case NL80211_IFTYPE_AP_VLAN:
2384 			if (!rx->sdata->u.vlan.sta)
2385 				return RX_DROP_UNUSABLE;
2386 			break;
2387 		case NL80211_IFTYPE_STATION:
2388 			if (!rx->sdata->u.mgd.use_4addr)
2389 				return RX_DROP_UNUSABLE;
2390 			break;
2391 		default:
2392 			return RX_DROP_UNUSABLE;
2393 		}
2394 		check_da = NULL;
2395 		check_sa = NULL;
2396 	} else switch (rx->sdata->vif.type) {
2397 		case NL80211_IFTYPE_AP:
2398 		case NL80211_IFTYPE_AP_VLAN:
2399 			check_da = NULL;
2400 			break;
2401 		case NL80211_IFTYPE_STATION:
2402 			if (!rx->sta ||
2403 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2404 				check_sa = NULL;
2405 			break;
2406 		case NL80211_IFTYPE_MESH_POINT:
2407 			check_sa = NULL;
2408 			break;
2409 		default:
2410 			break;
2411 	}
2412 
2413 	if (is_multicast_ether_addr(hdr->addr1))
2414 		return RX_DROP_UNUSABLE;
2415 
2416 	skb->dev = dev;
2417 	__skb_queue_head_init(&frame_list);
2418 
2419 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2420 					  rx->sdata->vif.addr,
2421 					  rx->sdata->vif.type))
2422 		return RX_DROP_UNUSABLE;
2423 
2424 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2425 				 rx->sdata->vif.type,
2426 				 rx->local->hw.extra_tx_headroom,
2427 				 check_da, check_sa);
2428 
2429 	while (!skb_queue_empty(&frame_list)) {
2430 		rx->skb = __skb_dequeue(&frame_list);
2431 
2432 		if (!ieee80211_frame_allowed(rx, fc)) {
2433 			dev_kfree_skb(rx->skb);
2434 			continue;
2435 		}
2436 
2437 		ieee80211_deliver_skb(rx);
2438 	}
2439 
2440 	return RX_QUEUED;
2441 }
2442 
2443 #ifdef CONFIG_MAC80211_MESH
2444 static ieee80211_rx_result
2445 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2446 {
2447 	struct ieee80211_hdr *fwd_hdr, *hdr;
2448 	struct ieee80211_tx_info *info;
2449 	struct ieee80211s_hdr *mesh_hdr;
2450 	struct sk_buff *skb = rx->skb, *fwd_skb;
2451 	struct ieee80211_local *local = rx->local;
2452 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2453 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2454 	u16 ac, q, hdrlen;
2455 
2456 	hdr = (struct ieee80211_hdr *) skb->data;
2457 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2458 
2459 	/* make sure fixed part of mesh header is there, also checks skb len */
2460 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2461 		return RX_DROP_MONITOR;
2462 
2463 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2464 
2465 	/* make sure full mesh header is there, also checks skb len */
2466 	if (!pskb_may_pull(rx->skb,
2467 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2468 		return RX_DROP_MONITOR;
2469 
2470 	/* reload pointers */
2471 	hdr = (struct ieee80211_hdr *) skb->data;
2472 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2473 
2474 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2475 		return RX_DROP_MONITOR;
2476 
2477 	/* frame is in RMC, don't forward */
2478 	if (ieee80211_is_data(hdr->frame_control) &&
2479 	    is_multicast_ether_addr(hdr->addr1) &&
2480 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2481 		return RX_DROP_MONITOR;
2482 
2483 	if (!ieee80211_is_data(hdr->frame_control))
2484 		return RX_CONTINUE;
2485 
2486 	if (!mesh_hdr->ttl)
2487 		return RX_DROP_MONITOR;
2488 
2489 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2490 		struct mesh_path *mppath;
2491 		char *proxied_addr;
2492 		char *mpp_addr;
2493 
2494 		if (is_multicast_ether_addr(hdr->addr1)) {
2495 			mpp_addr = hdr->addr3;
2496 			proxied_addr = mesh_hdr->eaddr1;
2497 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2498 			    MESH_FLAGS_AE_A5_A6) {
2499 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2500 			mpp_addr = hdr->addr4;
2501 			proxied_addr = mesh_hdr->eaddr2;
2502 		} else {
2503 			return RX_DROP_MONITOR;
2504 		}
2505 
2506 		rcu_read_lock();
2507 		mppath = mpp_path_lookup(sdata, proxied_addr);
2508 		if (!mppath) {
2509 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2510 		} else {
2511 			spin_lock_bh(&mppath->state_lock);
2512 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2513 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2514 			mppath->exp_time = jiffies;
2515 			spin_unlock_bh(&mppath->state_lock);
2516 		}
2517 		rcu_read_unlock();
2518 	}
2519 
2520 	/* Frame has reached destination.  Don't forward */
2521 	if (!is_multicast_ether_addr(hdr->addr1) &&
2522 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2523 		return RX_CONTINUE;
2524 
2525 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2526 	q = sdata->vif.hw_queue[ac];
2527 	if (ieee80211_queue_stopped(&local->hw, q)) {
2528 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2529 		return RX_DROP_MONITOR;
2530 	}
2531 	skb_set_queue_mapping(skb, q);
2532 
2533 	if (!--mesh_hdr->ttl) {
2534 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2535 		goto out;
2536 	}
2537 
2538 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2539 		goto out;
2540 
2541 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2542 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2543 	if (!fwd_skb) {
2544 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2545 				    sdata->name);
2546 		goto out;
2547 	}
2548 
2549 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2550 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2551 	info = IEEE80211_SKB_CB(fwd_skb);
2552 	memset(info, 0, sizeof(*info));
2553 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2554 	info->control.vif = &rx->sdata->vif;
2555 	info->control.jiffies = jiffies;
2556 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2557 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2558 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2559 		/* update power mode indication when forwarding */
2560 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2561 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2562 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2563 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2564 	} else {
2565 		/* unable to resolve next hop */
2566 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2567 				   fwd_hdr->addr3, 0,
2568 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2569 				   fwd_hdr->addr2);
2570 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2571 		kfree_skb(fwd_skb);
2572 		return RX_DROP_MONITOR;
2573 	}
2574 
2575 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2576 	ieee80211_add_pending_skb(local, fwd_skb);
2577  out:
2578 	if (is_multicast_ether_addr(hdr->addr1))
2579 		return RX_CONTINUE;
2580 	return RX_DROP_MONITOR;
2581 }
2582 #endif
2583 
2584 static ieee80211_rx_result debug_noinline
2585 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2586 {
2587 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2588 	struct ieee80211_local *local = rx->local;
2589 	struct net_device *dev = sdata->dev;
2590 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2591 	__le16 fc = hdr->frame_control;
2592 	bool port_control;
2593 	int err;
2594 
2595 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2596 		return RX_CONTINUE;
2597 
2598 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2599 		return RX_DROP_MONITOR;
2600 
2601 	/*
2602 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2603 	 * also drop the frame to cooked monitor interfaces.
2604 	 */
2605 	if (ieee80211_has_a4(hdr->frame_control) &&
2606 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2607 		if (rx->sta &&
2608 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2609 			cfg80211_rx_unexpected_4addr_frame(
2610 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2611 		return RX_DROP_MONITOR;
2612 	}
2613 
2614 	err = __ieee80211_data_to_8023(rx, &port_control);
2615 	if (unlikely(err))
2616 		return RX_DROP_UNUSABLE;
2617 
2618 	if (!ieee80211_frame_allowed(rx, fc))
2619 		return RX_DROP_MONITOR;
2620 
2621 	/* directly handle TDLS channel switch requests/responses */
2622 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2623 						cpu_to_be16(ETH_P_TDLS))) {
2624 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2625 
2626 		if (pskb_may_pull(rx->skb,
2627 				  offsetof(struct ieee80211_tdls_data, u)) &&
2628 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2629 		    tf->category == WLAN_CATEGORY_TDLS &&
2630 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2631 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2632 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2633 			schedule_work(&local->tdls_chsw_work);
2634 			if (rx->sta)
2635 				rx->sta->rx_stats.packets++;
2636 
2637 			return RX_QUEUED;
2638 		}
2639 	}
2640 
2641 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2642 	    unlikely(port_control) && sdata->bss) {
2643 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2644 				     u.ap);
2645 		dev = sdata->dev;
2646 		rx->sdata = sdata;
2647 	}
2648 
2649 	rx->skb->dev = dev;
2650 
2651 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2652 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2653 	    !is_multicast_ether_addr(
2654 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2655 	    (!local->scanning &&
2656 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2657 		mod_timer(&local->dynamic_ps_timer, jiffies +
2658 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2659 
2660 	ieee80211_deliver_skb(rx);
2661 
2662 	return RX_QUEUED;
2663 }
2664 
2665 static ieee80211_rx_result debug_noinline
2666 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2667 {
2668 	struct sk_buff *skb = rx->skb;
2669 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2670 	struct tid_ampdu_rx *tid_agg_rx;
2671 	u16 start_seq_num;
2672 	u16 tid;
2673 
2674 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2675 		return RX_CONTINUE;
2676 
2677 	if (ieee80211_is_back_req(bar->frame_control)) {
2678 		struct {
2679 			__le16 control, start_seq_num;
2680 		} __packed bar_data;
2681 		struct ieee80211_event event = {
2682 			.type = BAR_RX_EVENT,
2683 		};
2684 
2685 		if (!rx->sta)
2686 			return RX_DROP_MONITOR;
2687 
2688 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2689 				  &bar_data, sizeof(bar_data)))
2690 			return RX_DROP_MONITOR;
2691 
2692 		tid = le16_to_cpu(bar_data.control) >> 12;
2693 
2694 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2695 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2696 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2697 					     WLAN_BACK_RECIPIENT,
2698 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2699 
2700 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2701 		if (!tid_agg_rx)
2702 			return RX_DROP_MONITOR;
2703 
2704 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2705 		event.u.ba.tid = tid;
2706 		event.u.ba.ssn = start_seq_num;
2707 		event.u.ba.sta = &rx->sta->sta;
2708 
2709 		/* reset session timer */
2710 		if (tid_agg_rx->timeout)
2711 			mod_timer(&tid_agg_rx->session_timer,
2712 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2713 
2714 		spin_lock(&tid_agg_rx->reorder_lock);
2715 		/* release stored frames up to start of BAR */
2716 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2717 						 start_seq_num, frames);
2718 		spin_unlock(&tid_agg_rx->reorder_lock);
2719 
2720 		drv_event_callback(rx->local, rx->sdata, &event);
2721 
2722 		kfree_skb(skb);
2723 		return RX_QUEUED;
2724 	}
2725 
2726 	/*
2727 	 * After this point, we only want management frames,
2728 	 * so we can drop all remaining control frames to
2729 	 * cooked monitor interfaces.
2730 	 */
2731 	return RX_DROP_MONITOR;
2732 }
2733 
2734 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2735 					   struct ieee80211_mgmt *mgmt,
2736 					   size_t len)
2737 {
2738 	struct ieee80211_local *local = sdata->local;
2739 	struct sk_buff *skb;
2740 	struct ieee80211_mgmt *resp;
2741 
2742 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2743 		/* Not to own unicast address */
2744 		return;
2745 	}
2746 
2747 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2748 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2749 		/* Not from the current AP or not associated yet. */
2750 		return;
2751 	}
2752 
2753 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2754 		/* Too short SA Query request frame */
2755 		return;
2756 	}
2757 
2758 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2759 	if (skb == NULL)
2760 		return;
2761 
2762 	skb_reserve(skb, local->hw.extra_tx_headroom);
2763 	resp = skb_put_zero(skb, 24);
2764 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2765 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2766 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2767 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2768 					  IEEE80211_STYPE_ACTION);
2769 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2770 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2771 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2772 	memcpy(resp->u.action.u.sa_query.trans_id,
2773 	       mgmt->u.action.u.sa_query.trans_id,
2774 	       WLAN_SA_QUERY_TR_ID_LEN);
2775 
2776 	ieee80211_tx_skb(sdata, skb);
2777 }
2778 
2779 static ieee80211_rx_result debug_noinline
2780 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2781 {
2782 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2783 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2784 
2785 	/*
2786 	 * From here on, look only at management frames.
2787 	 * Data and control frames are already handled,
2788 	 * and unknown (reserved) frames are useless.
2789 	 */
2790 	if (rx->skb->len < 24)
2791 		return RX_DROP_MONITOR;
2792 
2793 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2794 		return RX_DROP_MONITOR;
2795 
2796 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2797 	    ieee80211_is_beacon(mgmt->frame_control) &&
2798 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2799 		int sig = 0;
2800 
2801 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2802 			sig = status->signal;
2803 
2804 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2805 					    rx->skb->data, rx->skb->len,
2806 					    status->freq, sig);
2807 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2808 	}
2809 
2810 	if (ieee80211_drop_unencrypted_mgmt(rx))
2811 		return RX_DROP_UNUSABLE;
2812 
2813 	return RX_CONTINUE;
2814 }
2815 
2816 static ieee80211_rx_result debug_noinline
2817 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2818 {
2819 	struct ieee80211_local *local = rx->local;
2820 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2821 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2822 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2823 	int len = rx->skb->len;
2824 
2825 	if (!ieee80211_is_action(mgmt->frame_control))
2826 		return RX_CONTINUE;
2827 
2828 	/* drop too small frames */
2829 	if (len < IEEE80211_MIN_ACTION_SIZE)
2830 		return RX_DROP_UNUSABLE;
2831 
2832 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2833 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2834 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2835 		return RX_DROP_UNUSABLE;
2836 
2837 	switch (mgmt->u.action.category) {
2838 	case WLAN_CATEGORY_HT:
2839 		/* reject HT action frames from stations not supporting HT */
2840 		if (!rx->sta->sta.ht_cap.ht_supported)
2841 			goto invalid;
2842 
2843 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2844 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2845 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2846 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2847 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2848 			break;
2849 
2850 		/* verify action & smps_control/chanwidth are present */
2851 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2852 			goto invalid;
2853 
2854 		switch (mgmt->u.action.u.ht_smps.action) {
2855 		case WLAN_HT_ACTION_SMPS: {
2856 			struct ieee80211_supported_band *sband;
2857 			enum ieee80211_smps_mode smps_mode;
2858 
2859 			/* convert to HT capability */
2860 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2861 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2862 				smps_mode = IEEE80211_SMPS_OFF;
2863 				break;
2864 			case WLAN_HT_SMPS_CONTROL_STATIC:
2865 				smps_mode = IEEE80211_SMPS_STATIC;
2866 				break;
2867 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2868 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2869 				break;
2870 			default:
2871 				goto invalid;
2872 			}
2873 
2874 			/* if no change do nothing */
2875 			if (rx->sta->sta.smps_mode == smps_mode)
2876 				goto handled;
2877 			rx->sta->sta.smps_mode = smps_mode;
2878 
2879 			sband = rx->local->hw.wiphy->bands[status->band];
2880 
2881 			rate_control_rate_update(local, sband, rx->sta,
2882 						 IEEE80211_RC_SMPS_CHANGED);
2883 			goto handled;
2884 		}
2885 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2886 			struct ieee80211_supported_band *sband;
2887 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2888 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2889 
2890 			/* If it doesn't support 40 MHz it can't change ... */
2891 			if (!(rx->sta->sta.ht_cap.cap &
2892 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2893 				goto handled;
2894 
2895 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2896 				max_bw = IEEE80211_STA_RX_BW_20;
2897 			else
2898 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2899 
2900 			/* set cur_max_bandwidth and recalc sta bw */
2901 			rx->sta->cur_max_bandwidth = max_bw;
2902 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2903 
2904 			if (rx->sta->sta.bandwidth == new_bw)
2905 				goto handled;
2906 
2907 			rx->sta->sta.bandwidth = new_bw;
2908 			sband = rx->local->hw.wiphy->bands[status->band];
2909 
2910 			rate_control_rate_update(local, sband, rx->sta,
2911 						 IEEE80211_RC_BW_CHANGED);
2912 			goto handled;
2913 		}
2914 		default:
2915 			goto invalid;
2916 		}
2917 
2918 		break;
2919 	case WLAN_CATEGORY_PUBLIC:
2920 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2921 			goto invalid;
2922 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2923 			break;
2924 		if (!rx->sta)
2925 			break;
2926 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2927 			break;
2928 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2929 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2930 			break;
2931 		if (len < offsetof(struct ieee80211_mgmt,
2932 				   u.action.u.ext_chan_switch.variable))
2933 			goto invalid;
2934 		goto queue;
2935 	case WLAN_CATEGORY_VHT:
2936 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2937 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2938 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2939 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2940 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2941 			break;
2942 
2943 		/* verify action code is present */
2944 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2945 			goto invalid;
2946 
2947 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2948 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2949 			/* verify opmode is present */
2950 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2951 				goto invalid;
2952 			goto queue;
2953 		}
2954 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2955 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2956 				goto invalid;
2957 			goto queue;
2958 		}
2959 		default:
2960 			break;
2961 		}
2962 		break;
2963 	case WLAN_CATEGORY_BACK:
2964 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2965 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2966 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2967 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2968 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2969 			break;
2970 
2971 		/* verify action_code is present */
2972 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2973 			break;
2974 
2975 		switch (mgmt->u.action.u.addba_req.action_code) {
2976 		case WLAN_ACTION_ADDBA_REQ:
2977 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2978 				   sizeof(mgmt->u.action.u.addba_req)))
2979 				goto invalid;
2980 			break;
2981 		case WLAN_ACTION_ADDBA_RESP:
2982 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2983 				   sizeof(mgmt->u.action.u.addba_resp)))
2984 				goto invalid;
2985 			break;
2986 		case WLAN_ACTION_DELBA:
2987 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2988 				   sizeof(mgmt->u.action.u.delba)))
2989 				goto invalid;
2990 			break;
2991 		default:
2992 			goto invalid;
2993 		}
2994 
2995 		goto queue;
2996 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2997 		/* verify action_code is present */
2998 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2999 			break;
3000 
3001 		switch (mgmt->u.action.u.measurement.action_code) {
3002 		case WLAN_ACTION_SPCT_MSR_REQ:
3003 			if (status->band != NL80211_BAND_5GHZ)
3004 				break;
3005 
3006 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3007 				   sizeof(mgmt->u.action.u.measurement)))
3008 				break;
3009 
3010 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3011 				break;
3012 
3013 			ieee80211_process_measurement_req(sdata, mgmt, len);
3014 			goto handled;
3015 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3016 			u8 *bssid;
3017 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3018 				   sizeof(mgmt->u.action.u.chan_switch)))
3019 				break;
3020 
3021 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3022 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3023 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3024 				break;
3025 
3026 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3027 				bssid = sdata->u.mgd.bssid;
3028 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3029 				bssid = sdata->u.ibss.bssid;
3030 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3031 				bssid = mgmt->sa;
3032 			else
3033 				break;
3034 
3035 			if (!ether_addr_equal(mgmt->bssid, bssid))
3036 				break;
3037 
3038 			goto queue;
3039 			}
3040 		}
3041 		break;
3042 	case WLAN_CATEGORY_SA_QUERY:
3043 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3044 			   sizeof(mgmt->u.action.u.sa_query)))
3045 			break;
3046 
3047 		switch (mgmt->u.action.u.sa_query.action) {
3048 		case WLAN_ACTION_SA_QUERY_REQUEST:
3049 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3050 				break;
3051 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3052 			goto handled;
3053 		}
3054 		break;
3055 	case WLAN_CATEGORY_SELF_PROTECTED:
3056 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3057 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3058 			break;
3059 
3060 		switch (mgmt->u.action.u.self_prot.action_code) {
3061 		case WLAN_SP_MESH_PEERING_OPEN:
3062 		case WLAN_SP_MESH_PEERING_CLOSE:
3063 		case WLAN_SP_MESH_PEERING_CONFIRM:
3064 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3065 				goto invalid;
3066 			if (sdata->u.mesh.user_mpm)
3067 				/* userspace handles this frame */
3068 				break;
3069 			goto queue;
3070 		case WLAN_SP_MGK_INFORM:
3071 		case WLAN_SP_MGK_ACK:
3072 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3073 				goto invalid;
3074 			break;
3075 		}
3076 		break;
3077 	case WLAN_CATEGORY_MESH_ACTION:
3078 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3079 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3080 			break;
3081 
3082 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3083 			break;
3084 		if (mesh_action_is_path_sel(mgmt) &&
3085 		    !mesh_path_sel_is_hwmp(sdata))
3086 			break;
3087 		goto queue;
3088 	}
3089 
3090 	return RX_CONTINUE;
3091 
3092  invalid:
3093 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3094 	/* will return in the next handlers */
3095 	return RX_CONTINUE;
3096 
3097  handled:
3098 	if (rx->sta)
3099 		rx->sta->rx_stats.packets++;
3100 	dev_kfree_skb(rx->skb);
3101 	return RX_QUEUED;
3102 
3103  queue:
3104 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3105 	ieee80211_queue_work(&local->hw, &sdata->work);
3106 	if (rx->sta)
3107 		rx->sta->rx_stats.packets++;
3108 	return RX_QUEUED;
3109 }
3110 
3111 static ieee80211_rx_result debug_noinline
3112 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3113 {
3114 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3115 	int sig = 0;
3116 
3117 	/* skip known-bad action frames and return them in the next handler */
3118 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3119 		return RX_CONTINUE;
3120 
3121 	/*
3122 	 * Getting here means the kernel doesn't know how to handle
3123 	 * it, but maybe userspace does ... include returned frames
3124 	 * so userspace can register for those to know whether ones
3125 	 * it transmitted were processed or returned.
3126 	 */
3127 
3128 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3129 		sig = status->signal;
3130 
3131 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3132 			     rx->skb->data, rx->skb->len, 0)) {
3133 		if (rx->sta)
3134 			rx->sta->rx_stats.packets++;
3135 		dev_kfree_skb(rx->skb);
3136 		return RX_QUEUED;
3137 	}
3138 
3139 	return RX_CONTINUE;
3140 }
3141 
3142 static ieee80211_rx_result debug_noinline
3143 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3144 {
3145 	struct ieee80211_local *local = rx->local;
3146 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3147 	struct sk_buff *nskb;
3148 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3149 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3150 
3151 	if (!ieee80211_is_action(mgmt->frame_control))
3152 		return RX_CONTINUE;
3153 
3154 	/*
3155 	 * For AP mode, hostapd is responsible for handling any action
3156 	 * frames that we didn't handle, including returning unknown
3157 	 * ones. For all other modes we will return them to the sender,
3158 	 * setting the 0x80 bit in the action category, as required by
3159 	 * 802.11-2012 9.24.4.
3160 	 * Newer versions of hostapd shall also use the management frame
3161 	 * registration mechanisms, but older ones still use cooked
3162 	 * monitor interfaces so push all frames there.
3163 	 */
3164 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3165 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3166 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3167 		return RX_DROP_MONITOR;
3168 
3169 	if (is_multicast_ether_addr(mgmt->da))
3170 		return RX_DROP_MONITOR;
3171 
3172 	/* do not return rejected action frames */
3173 	if (mgmt->u.action.category & 0x80)
3174 		return RX_DROP_UNUSABLE;
3175 
3176 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3177 			       GFP_ATOMIC);
3178 	if (nskb) {
3179 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3180 
3181 		nmgmt->u.action.category |= 0x80;
3182 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3183 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3184 
3185 		memset(nskb->cb, 0, sizeof(nskb->cb));
3186 
3187 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3188 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3189 
3190 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3191 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3192 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3193 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3194 				info->hw_queue =
3195 					local->hw.offchannel_tx_hw_queue;
3196 		}
3197 
3198 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3199 					    status->band);
3200 	}
3201 	dev_kfree_skb(rx->skb);
3202 	return RX_QUEUED;
3203 }
3204 
3205 static ieee80211_rx_result debug_noinline
3206 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3207 {
3208 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3209 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3210 	__le16 stype;
3211 
3212 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3213 
3214 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3215 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3216 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3217 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3218 		return RX_DROP_MONITOR;
3219 
3220 	switch (stype) {
3221 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3222 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3223 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3224 		/* process for all: mesh, mlme, ibss */
3225 		break;
3226 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3227 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3228 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3229 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3230 		if (is_multicast_ether_addr(mgmt->da) &&
3231 		    !is_broadcast_ether_addr(mgmt->da))
3232 			return RX_DROP_MONITOR;
3233 
3234 		/* process only for station */
3235 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3236 			return RX_DROP_MONITOR;
3237 		break;
3238 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3239 		/* process only for ibss and mesh */
3240 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3241 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3242 			return RX_DROP_MONITOR;
3243 		break;
3244 	default:
3245 		return RX_DROP_MONITOR;
3246 	}
3247 
3248 	/* queue up frame and kick off work to process it */
3249 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3250 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3251 	if (rx->sta)
3252 		rx->sta->rx_stats.packets++;
3253 
3254 	return RX_QUEUED;
3255 }
3256 
3257 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3258 					struct ieee80211_rate *rate)
3259 {
3260 	struct ieee80211_sub_if_data *sdata;
3261 	struct ieee80211_local *local = rx->local;
3262 	struct sk_buff *skb = rx->skb, *skb2;
3263 	struct net_device *prev_dev = NULL;
3264 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3265 	int needed_headroom;
3266 
3267 	/*
3268 	 * If cooked monitor has been processed already, then
3269 	 * don't do it again. If not, set the flag.
3270 	 */
3271 	if (rx->flags & IEEE80211_RX_CMNTR)
3272 		goto out_free_skb;
3273 	rx->flags |= IEEE80211_RX_CMNTR;
3274 
3275 	/* If there are no cooked monitor interfaces, just free the SKB */
3276 	if (!local->cooked_mntrs)
3277 		goto out_free_skb;
3278 
3279 	/* vendor data is long removed here */
3280 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3281 	/* room for the radiotap header based on driver features */
3282 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3283 
3284 	if (skb_headroom(skb) < needed_headroom &&
3285 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3286 		goto out_free_skb;
3287 
3288 	/* prepend radiotap information */
3289 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3290 					 false);
3291 
3292 	skb_reset_mac_header(skb);
3293 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3294 	skb->pkt_type = PACKET_OTHERHOST;
3295 	skb->protocol = htons(ETH_P_802_2);
3296 
3297 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3298 		if (!ieee80211_sdata_running(sdata))
3299 			continue;
3300 
3301 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3302 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3303 			continue;
3304 
3305 		if (prev_dev) {
3306 			skb2 = skb_clone(skb, GFP_ATOMIC);
3307 			if (skb2) {
3308 				skb2->dev = prev_dev;
3309 				netif_receive_skb(skb2);
3310 			}
3311 		}
3312 
3313 		prev_dev = sdata->dev;
3314 		ieee80211_rx_stats(sdata->dev, skb->len);
3315 	}
3316 
3317 	if (prev_dev) {
3318 		skb->dev = prev_dev;
3319 		netif_receive_skb(skb);
3320 		return;
3321 	}
3322 
3323  out_free_skb:
3324 	dev_kfree_skb(skb);
3325 }
3326 
3327 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3328 					 ieee80211_rx_result res)
3329 {
3330 	switch (res) {
3331 	case RX_DROP_MONITOR:
3332 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3333 		if (rx->sta)
3334 			rx->sta->rx_stats.dropped++;
3335 		/* fall through */
3336 	case RX_CONTINUE: {
3337 		struct ieee80211_rate *rate = NULL;
3338 		struct ieee80211_supported_band *sband;
3339 		struct ieee80211_rx_status *status;
3340 
3341 		status = IEEE80211_SKB_RXCB((rx->skb));
3342 
3343 		sband = rx->local->hw.wiphy->bands[status->band];
3344 		if (!(status->encoding == RX_ENC_HT) &&
3345 		    !(status->encoding == RX_ENC_VHT))
3346 			rate = &sband->bitrates[status->rate_idx];
3347 
3348 		ieee80211_rx_cooked_monitor(rx, rate);
3349 		break;
3350 		}
3351 	case RX_DROP_UNUSABLE:
3352 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3353 		if (rx->sta)
3354 			rx->sta->rx_stats.dropped++;
3355 		dev_kfree_skb(rx->skb);
3356 		break;
3357 	case RX_QUEUED:
3358 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3359 		break;
3360 	}
3361 }
3362 
3363 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3364 				  struct sk_buff_head *frames)
3365 {
3366 	ieee80211_rx_result res = RX_DROP_MONITOR;
3367 	struct sk_buff *skb;
3368 
3369 #define CALL_RXH(rxh)			\
3370 	do {				\
3371 		res = rxh(rx);		\
3372 		if (res != RX_CONTINUE)	\
3373 			goto rxh_next;  \
3374 	} while (0)
3375 
3376 	/* Lock here to avoid hitting all of the data used in the RX
3377 	 * path (e.g. key data, station data, ...) concurrently when
3378 	 * a frame is released from the reorder buffer due to timeout
3379 	 * from the timer, potentially concurrently with RX from the
3380 	 * driver.
3381 	 */
3382 	spin_lock_bh(&rx->local->rx_path_lock);
3383 
3384 	while ((skb = __skb_dequeue(frames))) {
3385 		/*
3386 		 * all the other fields are valid across frames
3387 		 * that belong to an aMPDU since they are on the
3388 		 * same TID from the same station
3389 		 */
3390 		rx->skb = skb;
3391 
3392 		CALL_RXH(ieee80211_rx_h_check_more_data);
3393 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3394 		CALL_RXH(ieee80211_rx_h_sta_process);
3395 		CALL_RXH(ieee80211_rx_h_decrypt);
3396 		CALL_RXH(ieee80211_rx_h_defragment);
3397 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3398 		/* must be after MMIC verify so header is counted in MPDU mic */
3399 #ifdef CONFIG_MAC80211_MESH
3400 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3401 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3402 #endif
3403 		CALL_RXH(ieee80211_rx_h_amsdu);
3404 		CALL_RXH(ieee80211_rx_h_data);
3405 
3406 		/* special treatment -- needs the queue */
3407 		res = ieee80211_rx_h_ctrl(rx, frames);
3408 		if (res != RX_CONTINUE)
3409 			goto rxh_next;
3410 
3411 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3412 		CALL_RXH(ieee80211_rx_h_action);
3413 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3414 		CALL_RXH(ieee80211_rx_h_action_return);
3415 		CALL_RXH(ieee80211_rx_h_mgmt);
3416 
3417  rxh_next:
3418 		ieee80211_rx_handlers_result(rx, res);
3419 
3420 #undef CALL_RXH
3421 	}
3422 
3423 	spin_unlock_bh(&rx->local->rx_path_lock);
3424 }
3425 
3426 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3427 {
3428 	struct sk_buff_head reorder_release;
3429 	ieee80211_rx_result res = RX_DROP_MONITOR;
3430 
3431 	__skb_queue_head_init(&reorder_release);
3432 
3433 #define CALL_RXH(rxh)			\
3434 	do {				\
3435 		res = rxh(rx);		\
3436 		if (res != RX_CONTINUE)	\
3437 			goto rxh_next;  \
3438 	} while (0)
3439 
3440 	CALL_RXH(ieee80211_rx_h_check_dup);
3441 	CALL_RXH(ieee80211_rx_h_check);
3442 
3443 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3444 
3445 	ieee80211_rx_handlers(rx, &reorder_release);
3446 	return;
3447 
3448  rxh_next:
3449 	ieee80211_rx_handlers_result(rx, res);
3450 
3451 #undef CALL_RXH
3452 }
3453 
3454 /*
3455  * This function makes calls into the RX path, therefore
3456  * it has to be invoked under RCU read lock.
3457  */
3458 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3459 {
3460 	struct sk_buff_head frames;
3461 	struct ieee80211_rx_data rx = {
3462 		.sta = sta,
3463 		.sdata = sta->sdata,
3464 		.local = sta->local,
3465 		/* This is OK -- must be QoS data frame */
3466 		.security_idx = tid,
3467 		.seqno_idx = tid,
3468 		.napi = NULL, /* must be NULL to not have races */
3469 	};
3470 	struct tid_ampdu_rx *tid_agg_rx;
3471 
3472 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3473 	if (!tid_agg_rx)
3474 		return;
3475 
3476 	__skb_queue_head_init(&frames);
3477 
3478 	spin_lock(&tid_agg_rx->reorder_lock);
3479 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3480 	spin_unlock(&tid_agg_rx->reorder_lock);
3481 
3482 	if (!skb_queue_empty(&frames)) {
3483 		struct ieee80211_event event = {
3484 			.type = BA_FRAME_TIMEOUT,
3485 			.u.ba.tid = tid,
3486 			.u.ba.sta = &sta->sta,
3487 		};
3488 		drv_event_callback(rx.local, rx.sdata, &event);
3489 	}
3490 
3491 	ieee80211_rx_handlers(&rx, &frames);
3492 }
3493 
3494 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3495 					  u16 ssn, u64 filtered,
3496 					  u16 received_mpdus)
3497 {
3498 	struct sta_info *sta;
3499 	struct tid_ampdu_rx *tid_agg_rx;
3500 	struct sk_buff_head frames;
3501 	struct ieee80211_rx_data rx = {
3502 		/* This is OK -- must be QoS data frame */
3503 		.security_idx = tid,
3504 		.seqno_idx = tid,
3505 	};
3506 	int i, diff;
3507 
3508 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3509 		return;
3510 
3511 	__skb_queue_head_init(&frames);
3512 
3513 	sta = container_of(pubsta, struct sta_info, sta);
3514 
3515 	rx.sta = sta;
3516 	rx.sdata = sta->sdata;
3517 	rx.local = sta->local;
3518 
3519 	rcu_read_lock();
3520 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3521 	if (!tid_agg_rx)
3522 		goto out;
3523 
3524 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3525 
3526 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3527 		int release;
3528 
3529 		/* release all frames in the reorder buffer */
3530 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3531 			   IEEE80211_SN_MODULO;
3532 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3533 						 release, &frames);
3534 		/* update ssn to match received ssn */
3535 		tid_agg_rx->head_seq_num = ssn;
3536 	} else {
3537 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3538 						 &frames);
3539 	}
3540 
3541 	/* handle the case that received ssn is behind the mac ssn.
3542 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3543 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3544 	if (diff >= tid_agg_rx->buf_size) {
3545 		tid_agg_rx->reorder_buf_filtered = 0;
3546 		goto release;
3547 	}
3548 	filtered = filtered >> diff;
3549 	ssn += diff;
3550 
3551 	/* update bitmap */
3552 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3553 		int index = (ssn + i) % tid_agg_rx->buf_size;
3554 
3555 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3556 		if (filtered & BIT_ULL(i))
3557 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3558 	}
3559 
3560 	/* now process also frames that the filter marking released */
3561 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3562 
3563 release:
3564 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3565 
3566 	ieee80211_rx_handlers(&rx, &frames);
3567 
3568  out:
3569 	rcu_read_unlock();
3570 }
3571 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3572 
3573 /* main receive path */
3574 
3575 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3576 {
3577 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3578 	struct sk_buff *skb = rx->skb;
3579 	struct ieee80211_hdr *hdr = (void *)skb->data;
3580 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3581 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3582 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3583 
3584 	switch (sdata->vif.type) {
3585 	case NL80211_IFTYPE_STATION:
3586 		if (!bssid && !sdata->u.mgd.use_4addr)
3587 			return false;
3588 		if (multicast)
3589 			return true;
3590 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3591 	case NL80211_IFTYPE_ADHOC:
3592 		if (!bssid)
3593 			return false;
3594 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3595 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3596 			return false;
3597 		if (ieee80211_is_beacon(hdr->frame_control))
3598 			return true;
3599 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3600 			return false;
3601 		if (!multicast &&
3602 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3603 			return false;
3604 		if (!rx->sta) {
3605 			int rate_idx;
3606 			if (status->encoding != RX_ENC_LEGACY)
3607 				rate_idx = 0; /* TODO: HT/VHT rates */
3608 			else
3609 				rate_idx = status->rate_idx;
3610 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3611 						 BIT(rate_idx));
3612 		}
3613 		return true;
3614 	case NL80211_IFTYPE_OCB:
3615 		if (!bssid)
3616 			return false;
3617 		if (!ieee80211_is_data_present(hdr->frame_control))
3618 			return false;
3619 		if (!is_broadcast_ether_addr(bssid))
3620 			return false;
3621 		if (!multicast &&
3622 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3623 			return false;
3624 		if (!rx->sta) {
3625 			int rate_idx;
3626 			if (status->encoding != RX_ENC_LEGACY)
3627 				rate_idx = 0; /* TODO: HT rates */
3628 			else
3629 				rate_idx = status->rate_idx;
3630 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3631 						BIT(rate_idx));
3632 		}
3633 		return true;
3634 	case NL80211_IFTYPE_MESH_POINT:
3635 		if (multicast)
3636 			return true;
3637 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3638 	case NL80211_IFTYPE_AP_VLAN:
3639 	case NL80211_IFTYPE_AP:
3640 		if (!bssid)
3641 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3642 
3643 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3644 			/*
3645 			 * Accept public action frames even when the
3646 			 * BSSID doesn't match, this is used for P2P
3647 			 * and location updates. Note that mac80211
3648 			 * itself never looks at these frames.
3649 			 */
3650 			if (!multicast &&
3651 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3652 				return false;
3653 			if (ieee80211_is_public_action(hdr, skb->len))
3654 				return true;
3655 			return ieee80211_is_beacon(hdr->frame_control);
3656 		}
3657 
3658 		if (!ieee80211_has_tods(hdr->frame_control)) {
3659 			/* ignore data frames to TDLS-peers */
3660 			if (ieee80211_is_data(hdr->frame_control))
3661 				return false;
3662 			/* ignore action frames to TDLS-peers */
3663 			if (ieee80211_is_action(hdr->frame_control) &&
3664 			    !is_broadcast_ether_addr(bssid) &&
3665 			    !ether_addr_equal(bssid, hdr->addr1))
3666 				return false;
3667 		}
3668 
3669 		/*
3670 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3671 		 * the BSSID - we've checked that already but may have accepted
3672 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3673 		 *
3674 		 * It also says:
3675 		 *	The BSSID of the Data frame is determined as follows:
3676 		 *	a) If the STA is contained within an AP or is associated
3677 		 *	   with an AP, the BSSID is the address currently in use
3678 		 *	   by the STA contained in the AP.
3679 		 *
3680 		 * So we should not accept data frames with an address that's
3681 		 * multicast.
3682 		 *
3683 		 * Accepting it also opens a security problem because stations
3684 		 * could encrypt it with the GTK and inject traffic that way.
3685 		 */
3686 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3687 			return false;
3688 
3689 		return true;
3690 	case NL80211_IFTYPE_WDS:
3691 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3692 			return false;
3693 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3694 	case NL80211_IFTYPE_P2P_DEVICE:
3695 		return ieee80211_is_public_action(hdr, skb->len) ||
3696 		       ieee80211_is_probe_req(hdr->frame_control) ||
3697 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3698 		       ieee80211_is_beacon(hdr->frame_control);
3699 	case NL80211_IFTYPE_NAN:
3700 		/* Currently no frames on NAN interface are allowed */
3701 		return false;
3702 	default:
3703 		break;
3704 	}
3705 
3706 	WARN_ON_ONCE(1);
3707 	return false;
3708 }
3709 
3710 void ieee80211_check_fast_rx(struct sta_info *sta)
3711 {
3712 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3713 	struct ieee80211_local *local = sdata->local;
3714 	struct ieee80211_key *key;
3715 	struct ieee80211_fast_rx fastrx = {
3716 		.dev = sdata->dev,
3717 		.vif_type = sdata->vif.type,
3718 		.control_port_protocol = sdata->control_port_protocol,
3719 	}, *old, *new = NULL;
3720 	bool assign = false;
3721 
3722 	/* use sparse to check that we don't return without updating */
3723 	__acquire(check_fast_rx);
3724 
3725 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3726 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3727 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3728 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3729 
3730 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3731 
3732 	/* fast-rx doesn't do reordering */
3733 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3734 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3735 		goto clear;
3736 
3737 	switch (sdata->vif.type) {
3738 	case NL80211_IFTYPE_STATION:
3739 		/* 4-addr is harder to deal with, later maybe */
3740 		if (sdata->u.mgd.use_4addr)
3741 			goto clear;
3742 		/* software powersave is a huge mess, avoid all of it */
3743 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3744 			goto clear;
3745 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3746 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3747 			goto clear;
3748 		if (sta->sta.tdls) {
3749 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3750 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3751 			fastrx.expected_ds_bits = 0;
3752 		} else {
3753 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3754 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3755 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3756 			fastrx.expected_ds_bits =
3757 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3758 		}
3759 		break;
3760 	case NL80211_IFTYPE_AP_VLAN:
3761 	case NL80211_IFTYPE_AP:
3762 		/* parallel-rx requires this, at least with calls to
3763 		 * ieee80211_sta_ps_transition()
3764 		 */
3765 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3766 			goto clear;
3767 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3768 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3769 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3770 
3771 		fastrx.internal_forward =
3772 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3773 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3774 			 !sdata->u.vlan.sta);
3775 		break;
3776 	default:
3777 		goto clear;
3778 	}
3779 
3780 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3781 		goto clear;
3782 
3783 	rcu_read_lock();
3784 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3785 	if (key) {
3786 		switch (key->conf.cipher) {
3787 		case WLAN_CIPHER_SUITE_TKIP:
3788 			/* we don't want to deal with MMIC in fast-rx */
3789 			goto clear_rcu;
3790 		case WLAN_CIPHER_SUITE_CCMP:
3791 		case WLAN_CIPHER_SUITE_CCMP_256:
3792 		case WLAN_CIPHER_SUITE_GCMP:
3793 		case WLAN_CIPHER_SUITE_GCMP_256:
3794 			break;
3795 		default:
3796 			/* we also don't want to deal with WEP or cipher scheme
3797 			 * since those require looking up the key idx in the
3798 			 * frame, rather than assuming the PTK is used
3799 			 * (we need to revisit this once we implement the real
3800 			 * PTK index, which is now valid in the spec, but we
3801 			 * haven't implemented that part yet)
3802 			 */
3803 			goto clear_rcu;
3804 		}
3805 
3806 		fastrx.key = true;
3807 		fastrx.icv_len = key->conf.icv_len;
3808 	}
3809 
3810 	assign = true;
3811  clear_rcu:
3812 	rcu_read_unlock();
3813  clear:
3814 	__release(check_fast_rx);
3815 
3816 	if (assign)
3817 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3818 
3819 	spin_lock_bh(&sta->lock);
3820 	old = rcu_dereference_protected(sta->fast_rx, true);
3821 	rcu_assign_pointer(sta->fast_rx, new);
3822 	spin_unlock_bh(&sta->lock);
3823 
3824 	if (old)
3825 		kfree_rcu(old, rcu_head);
3826 }
3827 
3828 void ieee80211_clear_fast_rx(struct sta_info *sta)
3829 {
3830 	struct ieee80211_fast_rx *old;
3831 
3832 	spin_lock_bh(&sta->lock);
3833 	old = rcu_dereference_protected(sta->fast_rx, true);
3834 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3835 	spin_unlock_bh(&sta->lock);
3836 
3837 	if (old)
3838 		kfree_rcu(old, rcu_head);
3839 }
3840 
3841 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3842 {
3843 	struct ieee80211_local *local = sdata->local;
3844 	struct sta_info *sta;
3845 
3846 	lockdep_assert_held(&local->sta_mtx);
3847 
3848 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3849 		if (sdata != sta->sdata &&
3850 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3851 			continue;
3852 		ieee80211_check_fast_rx(sta);
3853 	}
3854 }
3855 
3856 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3857 {
3858 	struct ieee80211_local *local = sdata->local;
3859 
3860 	mutex_lock(&local->sta_mtx);
3861 	__ieee80211_check_fast_rx_iface(sdata);
3862 	mutex_unlock(&local->sta_mtx);
3863 }
3864 
3865 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3866 				     struct ieee80211_fast_rx *fast_rx)
3867 {
3868 	struct sk_buff *skb = rx->skb;
3869 	struct ieee80211_hdr *hdr = (void *)skb->data;
3870 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3871 	struct sta_info *sta = rx->sta;
3872 	int orig_len = skb->len;
3873 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3874 	struct {
3875 		u8 snap[sizeof(rfc1042_header)];
3876 		__be16 proto;
3877 	} *payload __aligned(2);
3878 	struct {
3879 		u8 da[ETH_ALEN];
3880 		u8 sa[ETH_ALEN];
3881 	} addrs __aligned(2);
3882 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3883 
3884 	if (fast_rx->uses_rss)
3885 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3886 
3887 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3888 	 * to a common data structure; drivers can implement that per queue
3889 	 * but we don't have that information in mac80211
3890 	 */
3891 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3892 		return false;
3893 
3894 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3895 
3896 	/* If using encryption, we also need to have:
3897 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3898 	 *  - DECRYPTED: necessary for PN_VALIDATED
3899 	 */
3900 	if (fast_rx->key &&
3901 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3902 		return false;
3903 
3904 	/* we don't deal with A-MSDU deaggregation here */
3905 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3906 		return false;
3907 
3908 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3909 		return false;
3910 
3911 	if (unlikely(ieee80211_is_frag(hdr)))
3912 		return false;
3913 
3914 	/* Since our interface address cannot be multicast, this
3915 	 * implicitly also rejects multicast frames without the
3916 	 * explicit check.
3917 	 *
3918 	 * We shouldn't get any *data* frames not addressed to us
3919 	 * (AP mode will accept multicast *management* frames), but
3920 	 * punting here will make it go through the full checks in
3921 	 * ieee80211_accept_frame().
3922 	 */
3923 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3924 		return false;
3925 
3926 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3927 					      IEEE80211_FCTL_TODS)) !=
3928 	    fast_rx->expected_ds_bits)
3929 		goto drop;
3930 
3931 	/* assign the key to drop unencrypted frames (later)
3932 	 * and strip the IV/MIC if necessary
3933 	 */
3934 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3935 		/* GCMP header length is the same */
3936 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3937 	}
3938 
3939 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3940 		goto drop;
3941 	payload = (void *)(skb->data + snap_offs);
3942 
3943 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3944 		return false;
3945 
3946 	/* Don't handle these here since they require special code.
3947 	 * Accept AARP and IPX even though they should come with a
3948 	 * bridge-tunnel header - but if we get them this way then
3949 	 * there's little point in discarding them.
3950 	 */
3951 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3952 		     payload->proto == fast_rx->control_port_protocol))
3953 		return false;
3954 
3955 	/* after this point, don't punt to the slowpath! */
3956 
3957 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3958 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3959 		goto drop;
3960 
3961 	if (unlikely(fast_rx->sta_notify)) {
3962 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3963 		fast_rx->sta_notify = false;
3964 	}
3965 
3966 	/* statistics part of ieee80211_rx_h_sta_process() */
3967 	stats->last_rx = jiffies;
3968 	stats->last_rate = sta_stats_encode_rate(status);
3969 
3970 	stats->fragments++;
3971 	stats->packets++;
3972 
3973 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3974 		stats->last_signal = status->signal;
3975 		if (!fast_rx->uses_rss)
3976 			ewma_signal_add(&sta->rx_stats_avg.signal,
3977 					-status->signal);
3978 	}
3979 
3980 	if (status->chains) {
3981 		int i;
3982 
3983 		stats->chains = status->chains;
3984 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3985 			int signal = status->chain_signal[i];
3986 
3987 			if (!(status->chains & BIT(i)))
3988 				continue;
3989 
3990 			stats->chain_signal_last[i] = signal;
3991 			if (!fast_rx->uses_rss)
3992 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3993 						-signal);
3994 		}
3995 	}
3996 	/* end of statistics */
3997 
3998 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3999 		goto drop;
4000 
4001 	/* do the header conversion - first grab the addresses */
4002 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4003 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4004 	/* remove the SNAP but leave the ethertype */
4005 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4006 	/* push the addresses in front */
4007 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4008 
4009 	skb->dev = fast_rx->dev;
4010 
4011 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4012 
4013 	/* The seqno index has the same property as needed
4014 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4015 	 * for non-QoS-data frames. Here we know it's a data
4016 	 * frame, so count MSDUs.
4017 	 */
4018 	u64_stats_update_begin(&stats->syncp);
4019 	stats->msdu[rx->seqno_idx]++;
4020 	stats->bytes += orig_len;
4021 	u64_stats_update_end(&stats->syncp);
4022 
4023 	if (fast_rx->internal_forward) {
4024 		struct sk_buff *xmit_skb = NULL;
4025 		bool multicast = is_multicast_ether_addr(skb->data);
4026 
4027 		if (multicast) {
4028 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4029 		} else if (sta_info_get(rx->sdata, skb->data)) {
4030 			xmit_skb = skb;
4031 			skb = NULL;
4032 		}
4033 
4034 		if (xmit_skb) {
4035 			/*
4036 			 * Send to wireless media and increase priority by 256
4037 			 * to keep the received priority instead of
4038 			 * reclassifying the frame (see cfg80211_classify8021d).
4039 			 */
4040 			xmit_skb->priority += 256;
4041 			xmit_skb->protocol = htons(ETH_P_802_3);
4042 			skb_reset_network_header(xmit_skb);
4043 			skb_reset_mac_header(xmit_skb);
4044 			dev_queue_xmit(xmit_skb);
4045 		}
4046 
4047 		if (!skb)
4048 			return true;
4049 	}
4050 
4051 	/* deliver to local stack */
4052 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4053 	memset(skb->cb, 0, sizeof(skb->cb));
4054 	if (rx->napi)
4055 		napi_gro_receive(rx->napi, skb);
4056 	else
4057 		netif_receive_skb(skb);
4058 
4059 	return true;
4060  drop:
4061 	dev_kfree_skb(skb);
4062 	stats->dropped++;
4063 	return true;
4064 }
4065 
4066 /*
4067  * This function returns whether or not the SKB
4068  * was destined for RX processing or not, which,
4069  * if consume is true, is equivalent to whether
4070  * or not the skb was consumed.
4071  */
4072 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4073 					    struct sk_buff *skb, bool consume)
4074 {
4075 	struct ieee80211_local *local = rx->local;
4076 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4077 
4078 	rx->skb = skb;
4079 
4080 	/* See if we can do fast-rx; if we have to copy we already lost,
4081 	 * so punt in that case. We should never have to deliver a data
4082 	 * frame to multiple interfaces anyway.
4083 	 *
4084 	 * We skip the ieee80211_accept_frame() call and do the necessary
4085 	 * checking inside ieee80211_invoke_fast_rx().
4086 	 */
4087 	if (consume && rx->sta) {
4088 		struct ieee80211_fast_rx *fast_rx;
4089 
4090 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4091 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4092 			return true;
4093 	}
4094 
4095 	if (!ieee80211_accept_frame(rx))
4096 		return false;
4097 
4098 	if (!consume) {
4099 		skb = skb_copy(skb, GFP_ATOMIC);
4100 		if (!skb) {
4101 			if (net_ratelimit())
4102 				wiphy_debug(local->hw.wiphy,
4103 					"failed to copy skb for %s\n",
4104 					sdata->name);
4105 			return true;
4106 		}
4107 
4108 		rx->skb = skb;
4109 	}
4110 
4111 	ieee80211_invoke_rx_handlers(rx);
4112 	return true;
4113 }
4114 
4115 /*
4116  * This is the actual Rx frames handler. as it belongs to Rx path it must
4117  * be called with rcu_read_lock protection.
4118  */
4119 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4120 					 struct ieee80211_sta *pubsta,
4121 					 struct sk_buff *skb,
4122 					 struct napi_struct *napi)
4123 {
4124 	struct ieee80211_local *local = hw_to_local(hw);
4125 	struct ieee80211_sub_if_data *sdata;
4126 	struct ieee80211_hdr *hdr;
4127 	__le16 fc;
4128 	struct ieee80211_rx_data rx;
4129 	struct ieee80211_sub_if_data *prev;
4130 	struct rhlist_head *tmp;
4131 	int err = 0;
4132 
4133 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4134 	memset(&rx, 0, sizeof(rx));
4135 	rx.skb = skb;
4136 	rx.local = local;
4137 	rx.napi = napi;
4138 
4139 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4140 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4141 
4142 	if (ieee80211_is_mgmt(fc)) {
4143 		/* drop frame if too short for header */
4144 		if (skb->len < ieee80211_hdrlen(fc))
4145 			err = -ENOBUFS;
4146 		else
4147 			err = skb_linearize(skb);
4148 	} else {
4149 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4150 	}
4151 
4152 	if (err) {
4153 		dev_kfree_skb(skb);
4154 		return;
4155 	}
4156 
4157 	hdr = (struct ieee80211_hdr *)skb->data;
4158 	ieee80211_parse_qos(&rx);
4159 	ieee80211_verify_alignment(&rx);
4160 
4161 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4162 		     ieee80211_is_beacon(hdr->frame_control)))
4163 		ieee80211_scan_rx(local, skb);
4164 
4165 	if (ieee80211_is_data(fc)) {
4166 		struct sta_info *sta, *prev_sta;
4167 
4168 		if (pubsta) {
4169 			rx.sta = container_of(pubsta, struct sta_info, sta);
4170 			rx.sdata = rx.sta->sdata;
4171 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4172 				return;
4173 			goto out;
4174 		}
4175 
4176 		prev_sta = NULL;
4177 
4178 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4179 			if (!prev_sta) {
4180 				prev_sta = sta;
4181 				continue;
4182 			}
4183 
4184 			rx.sta = prev_sta;
4185 			rx.sdata = prev_sta->sdata;
4186 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4187 
4188 			prev_sta = sta;
4189 		}
4190 
4191 		if (prev_sta) {
4192 			rx.sta = prev_sta;
4193 			rx.sdata = prev_sta->sdata;
4194 
4195 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4196 				return;
4197 			goto out;
4198 		}
4199 	}
4200 
4201 	prev = NULL;
4202 
4203 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4204 		if (!ieee80211_sdata_running(sdata))
4205 			continue;
4206 
4207 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4208 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4209 			continue;
4210 
4211 		/*
4212 		 * frame is destined for this interface, but if it's
4213 		 * not also for the previous one we handle that after
4214 		 * the loop to avoid copying the SKB once too much
4215 		 */
4216 
4217 		if (!prev) {
4218 			prev = sdata;
4219 			continue;
4220 		}
4221 
4222 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4223 		rx.sdata = prev;
4224 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4225 
4226 		prev = sdata;
4227 	}
4228 
4229 	if (prev) {
4230 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4231 		rx.sdata = prev;
4232 
4233 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4234 			return;
4235 	}
4236 
4237  out:
4238 	dev_kfree_skb(skb);
4239 }
4240 
4241 /*
4242  * This is the receive path handler. It is called by a low level driver when an
4243  * 802.11 MPDU is received from the hardware.
4244  */
4245 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4246 		       struct sk_buff *skb, struct napi_struct *napi)
4247 {
4248 	struct ieee80211_local *local = hw_to_local(hw);
4249 	struct ieee80211_rate *rate = NULL;
4250 	struct ieee80211_supported_band *sband;
4251 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4252 
4253 	WARN_ON_ONCE(softirq_count() == 0);
4254 
4255 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4256 		goto drop;
4257 
4258 	sband = local->hw.wiphy->bands[status->band];
4259 	if (WARN_ON(!sband))
4260 		goto drop;
4261 
4262 	/*
4263 	 * If we're suspending, it is possible although not too likely
4264 	 * that we'd be receiving frames after having already partially
4265 	 * quiesced the stack. We can't process such frames then since
4266 	 * that might, for example, cause stations to be added or other
4267 	 * driver callbacks be invoked.
4268 	 */
4269 	if (unlikely(local->quiescing || local->suspended))
4270 		goto drop;
4271 
4272 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4273 	if (unlikely(local->in_reconfig))
4274 		goto drop;
4275 
4276 	/*
4277 	 * The same happens when we're not even started,
4278 	 * but that's worth a warning.
4279 	 */
4280 	if (WARN_ON(!local->started))
4281 		goto drop;
4282 
4283 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4284 		/*
4285 		 * Validate the rate, unless a PLCP error means that
4286 		 * we probably can't have a valid rate here anyway.
4287 		 */
4288 
4289 		switch (status->encoding) {
4290 		case RX_ENC_HT:
4291 			/*
4292 			 * rate_idx is MCS index, which can be [0-76]
4293 			 * as documented on:
4294 			 *
4295 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4296 			 *
4297 			 * Anything else would be some sort of driver or
4298 			 * hardware error. The driver should catch hardware
4299 			 * errors.
4300 			 */
4301 			if (WARN(status->rate_idx > 76,
4302 				 "Rate marked as an HT rate but passed "
4303 				 "status->rate_idx is not "
4304 				 "an MCS index [0-76]: %d (0x%02x)\n",
4305 				 status->rate_idx,
4306 				 status->rate_idx))
4307 				goto drop;
4308 			break;
4309 		case RX_ENC_VHT:
4310 			if (WARN_ONCE(status->rate_idx > 9 ||
4311 				      !status->nss ||
4312 				      status->nss > 8,
4313 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4314 				      status->rate_idx, status->nss))
4315 				goto drop;
4316 			break;
4317 		default:
4318 			WARN_ON_ONCE(1);
4319 			/* fall through */
4320 		case RX_ENC_LEGACY:
4321 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4322 				goto drop;
4323 			rate = &sband->bitrates[status->rate_idx];
4324 		}
4325 	}
4326 
4327 	status->rx_flags = 0;
4328 
4329 	/*
4330 	 * key references and virtual interfaces are protected using RCU
4331 	 * and this requires that we are in a read-side RCU section during
4332 	 * receive processing
4333 	 */
4334 	rcu_read_lock();
4335 
4336 	/*
4337 	 * Frames with failed FCS/PLCP checksum are not returned,
4338 	 * all other frames are returned without radiotap header
4339 	 * if it was previously present.
4340 	 * Also, frames with less than 16 bytes are dropped.
4341 	 */
4342 	skb = ieee80211_rx_monitor(local, skb, rate);
4343 	if (!skb) {
4344 		rcu_read_unlock();
4345 		return;
4346 	}
4347 
4348 	ieee80211_tpt_led_trig_rx(local,
4349 			((struct ieee80211_hdr *)skb->data)->frame_control,
4350 			skb->len);
4351 
4352 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4353 
4354 	rcu_read_unlock();
4355 
4356 	return;
4357  drop:
4358 	kfree_skb(skb);
4359 }
4360 EXPORT_SYMBOL(ieee80211_rx_napi);
4361 
4362 /* This is a version of the rx handler that can be called from hard irq
4363  * context. Post the skb on the queue and schedule the tasklet */
4364 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4365 {
4366 	struct ieee80211_local *local = hw_to_local(hw);
4367 
4368 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4369 
4370 	skb->pkt_type = IEEE80211_RX_MSG;
4371 	skb_queue_tail(&local->skb_queue, skb);
4372 	tasklet_schedule(&local->tasklet);
4373 }
4374 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4375