xref: /openbmc/linux/net/mac80211/rx.c (revision 4bce6fce)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 /*
36  * monitor mode reception
37  *
38  * This function cleans up the SKB, i.e. it removes all the stuff
39  * only useful for monitoring.
40  */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 					   struct sk_buff *skb,
43 					   unsigned int rtap_vendor_space)
44 {
45 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 		if (likely(skb->len > FCS_LEN))
47 			__pskb_trim(skb, skb->len - FCS_LEN);
48 		else {
49 			/* driver bug */
50 			WARN_ON(1);
51 			dev_kfree_skb(skb);
52 			return NULL;
53 		}
54 	}
55 
56 	__pskb_pull(skb, rtap_vendor_space);
57 
58 	return skb;
59 }
60 
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 				     unsigned int rtap_vendor_space)
63 {
64 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 	struct ieee80211_hdr *hdr;
66 
67 	hdr = (void *)(skb->data + rtap_vendor_space);
68 
69 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 			    RX_FLAG_FAILED_PLCP_CRC |
71 			    RX_FLAG_AMPDU_IS_ZEROLEN))
72 		return true;
73 
74 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 		return true;
76 
77 	if (ieee80211_is_ctl(hdr->frame_control) &&
78 	    !ieee80211_is_pspoll(hdr->frame_control) &&
79 	    !ieee80211_is_back_req(hdr->frame_control))
80 		return true;
81 
82 	return false;
83 }
84 
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 			     struct ieee80211_rx_status *status,
88 			     struct sk_buff *skb)
89 {
90 	int len;
91 
92 	/* always present fields */
93 	len = sizeof(struct ieee80211_radiotap_header) + 8;
94 
95 	/* allocate extra bitmaps */
96 	if (status->chains)
97 		len += 4 * hweight8(status->chains);
98 
99 	if (ieee80211_have_rx_timestamp(status)) {
100 		len = ALIGN(len, 8);
101 		len += 8;
102 	}
103 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 		len += 1;
105 
106 	/* antenna field, if we don't have per-chain info */
107 	if (!status->chains)
108 		len += 1;
109 
110 	/* padding for RX_FLAGS if necessary */
111 	len = ALIGN(len, 2);
112 
113 	if (status->flag & RX_FLAG_HT) /* HT info */
114 		len += 3;
115 
116 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 		len = ALIGN(len, 4);
118 		len += 8;
119 	}
120 
121 	if (status->flag & RX_FLAG_VHT) {
122 		len = ALIGN(len, 2);
123 		len += 12;
124 	}
125 
126 	if (status->chains) {
127 		/* antenna and antenna signal fields */
128 		len += 2 * hweight8(status->chains);
129 	}
130 
131 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
133 
134 		/* vendor presence bitmap */
135 		len += 4;
136 		/* alignment for fixed 6-byte vendor data header */
137 		len = ALIGN(len, 2);
138 		/* vendor data header */
139 		len += 6;
140 		if (WARN_ON(rtap->align == 0))
141 			rtap->align = 1;
142 		len = ALIGN(len, rtap->align);
143 		len += rtap->len + rtap->pad;
144 	}
145 
146 	return len;
147 }
148 
149 /*
150  * ieee80211_add_rx_radiotap_header - add radiotap header
151  *
152  * add a radiotap header containing all the fields which the hardware provided.
153  */
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 				 struct sk_buff *skb,
157 				 struct ieee80211_rate *rate,
158 				 int rtap_len, bool has_fcs)
159 {
160 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 	struct ieee80211_radiotap_header *rthdr;
162 	unsigned char *pos;
163 	__le32 *it_present;
164 	u32 it_present_val;
165 	u16 rx_flags = 0;
166 	u16 channel_flags = 0;
167 	int mpdulen, chain;
168 	unsigned long chains = status->chains;
169 	struct ieee80211_vendor_radiotap rtap = {};
170 
171 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 		/* rtap.len and rtap.pad are undone immediately */
174 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
175 	}
176 
177 	mpdulen = skb->len;
178 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 		mpdulen += FCS_LEN;
180 
181 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 	it_present = &rthdr->it_present;
184 
185 	/* radiotap header, set always present flags */
186 	rthdr->it_len = cpu_to_le16(rtap_len);
187 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
190 
191 	if (!status->chains)
192 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
193 
194 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 		it_present_val |=
196 			BIT(IEEE80211_RADIOTAP_EXT) |
197 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 		put_unaligned_le32(it_present_val, it_present);
199 		it_present++;
200 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
202 	}
203 
204 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 				  BIT(IEEE80211_RADIOTAP_EXT);
207 		put_unaligned_le32(it_present_val, it_present);
208 		it_present++;
209 		it_present_val = rtap.present;
210 	}
211 
212 	put_unaligned_le32(it_present_val, it_present);
213 
214 	pos = (void *)(it_present + 1);
215 
216 	/* the order of the following fields is important */
217 
218 	/* IEEE80211_RADIOTAP_TSFT */
219 	if (ieee80211_have_rx_timestamp(status)) {
220 		/* padding */
221 		while ((pos - (u8 *)rthdr) & 7)
222 			*pos++ = 0;
223 		put_unaligned_le64(
224 			ieee80211_calculate_rx_timestamp(local, status,
225 							 mpdulen, 0),
226 			pos);
227 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 		pos += 8;
229 	}
230 
231 	/* IEEE80211_RADIOTAP_FLAGS */
232 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 		*pos |= IEEE80211_RADIOTAP_F_FCS;
234 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 	if (status->flag & RX_FLAG_SHORTPRE)
237 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 	pos++;
239 
240 	/* IEEE80211_RADIOTAP_RATE */
241 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
242 		/*
243 		 * Without rate information don't add it. If we have,
244 		 * MCS information is a separate field in radiotap,
245 		 * added below. The byte here is needed as padding
246 		 * for the channel though, so initialise it to 0.
247 		 */
248 		*pos = 0;
249 	} else {
250 		int shift = 0;
251 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 		if (status->flag & RX_FLAG_10MHZ)
253 			shift = 1;
254 		else if (status->flag & RX_FLAG_5MHZ)
255 			shift = 2;
256 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
257 	}
258 	pos++;
259 
260 	/* IEEE80211_RADIOTAP_CHANNEL */
261 	put_unaligned_le16(status->freq, pos);
262 	pos += 2;
263 	if (status->flag & RX_FLAG_10MHZ)
264 		channel_flags |= IEEE80211_CHAN_HALF;
265 	else if (status->flag & RX_FLAG_5MHZ)
266 		channel_flags |= IEEE80211_CHAN_QUARTER;
267 
268 	if (status->band == IEEE80211_BAND_5GHZ)
269 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 	else if (rate)
275 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
276 	else
277 		channel_flags |= IEEE80211_CHAN_2GHZ;
278 	put_unaligned_le16(channel_flags, pos);
279 	pos += 2;
280 
281 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 		*pos = status->signal;
285 		rthdr->it_present |=
286 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 		pos++;
288 	}
289 
290 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
291 
292 	if (!status->chains) {
293 		/* IEEE80211_RADIOTAP_ANTENNA */
294 		*pos = status->antenna;
295 		pos++;
296 	}
297 
298 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
299 
300 	/* IEEE80211_RADIOTAP_RX_FLAGS */
301 	/* ensure 2 byte alignment for the 2 byte field as required */
302 	if ((pos - (u8 *)rthdr) & 1)
303 		*pos++ = 0;
304 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 	put_unaligned_le16(rx_flags, pos);
307 	pos += 2;
308 
309 	if (status->flag & RX_FLAG_HT) {
310 		unsigned int stbc;
311 
312 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 		*pos++ = local->hw.radiotap_mcs_details;
314 		*pos = 0;
315 		if (status->flag & RX_FLAG_SHORT_GI)
316 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 		if (status->flag & RX_FLAG_40MHZ)
318 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 		if (status->flag & RX_FLAG_HT_GF)
320 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 		if (status->flag & RX_FLAG_LDPC)
322 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 		pos++;
326 		*pos++ = status->rate_idx;
327 	}
328 
329 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 		u16 flags = 0;
331 
332 		/* ensure 4 byte alignment */
333 		while ((pos - (u8 *)rthdr) & 3)
334 			pos++;
335 		rthdr->it_present |=
336 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 		put_unaligned_le32(status->ampdu_reference, pos);
338 		pos += 4;
339 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 		put_unaligned_le16(flags, pos);
352 		pos += 2;
353 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 			*pos++ = status->ampdu_delimiter_crc;
355 		else
356 			*pos++ = 0;
357 		*pos++ = 0;
358 	}
359 
360 	if (status->flag & RX_FLAG_VHT) {
361 		u16 known = local->hw.radiotap_vht_details;
362 
363 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 		put_unaligned_le16(known, pos);
365 		pos += 2;
366 		/* flags */
367 		if (status->flag & RX_FLAG_SHORT_GI)
368 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
369 		/* in VHT, STBC is binary */
370 		if (status->flag & RX_FLAG_STBC_MASK)
371 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
372 		if (status->vht_flag & RX_VHT_FLAG_BF)
373 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
374 		pos++;
375 		/* bandwidth */
376 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
377 			*pos++ = 4;
378 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
379 			*pos++ = 11;
380 		else if (status->flag & RX_FLAG_40MHZ)
381 			*pos++ = 1;
382 		else /* 20 MHz */
383 			*pos++ = 0;
384 		/* MCS/NSS */
385 		*pos = (status->rate_idx << 4) | status->vht_nss;
386 		pos += 4;
387 		/* coding field */
388 		if (status->flag & RX_FLAG_LDPC)
389 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
390 		pos++;
391 		/* group ID */
392 		pos++;
393 		/* partial_aid */
394 		pos += 2;
395 	}
396 
397 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
398 		*pos++ = status->chain_signal[chain];
399 		*pos++ = chain;
400 	}
401 
402 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
403 		/* ensure 2 byte alignment for the vendor field as required */
404 		if ((pos - (u8 *)rthdr) & 1)
405 			*pos++ = 0;
406 		*pos++ = rtap.oui[0];
407 		*pos++ = rtap.oui[1];
408 		*pos++ = rtap.oui[2];
409 		*pos++ = rtap.subns;
410 		put_unaligned_le16(rtap.len, pos);
411 		pos += 2;
412 		/* align the actual payload as requested */
413 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
414 			*pos++ = 0;
415 		/* data (and possible padding) already follows */
416 	}
417 }
418 
419 /*
420  * This function copies a received frame to all monitor interfaces and
421  * returns a cleaned-up SKB that no longer includes the FCS nor the
422  * radiotap header the driver might have added.
423  */
424 static struct sk_buff *
425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
426 		     struct ieee80211_rate *rate)
427 {
428 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
429 	struct ieee80211_sub_if_data *sdata;
430 	int rt_hdrlen, needed_headroom;
431 	struct sk_buff *skb, *skb2;
432 	struct net_device *prev_dev = NULL;
433 	int present_fcs_len = 0;
434 	unsigned int rtap_vendor_space = 0;
435 
436 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
437 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
438 
439 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
440 	}
441 
442 	/*
443 	 * First, we may need to make a copy of the skb because
444 	 *  (1) we need to modify it for radiotap (if not present), and
445 	 *  (2) the other RX handlers will modify the skb we got.
446 	 *
447 	 * We don't need to, of course, if we aren't going to return
448 	 * the SKB because it has a bad FCS/PLCP checksum.
449 	 */
450 
451 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
452 		present_fcs_len = FCS_LEN;
453 
454 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
455 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
456 		dev_kfree_skb(origskb);
457 		return NULL;
458 	}
459 
460 	if (!local->monitors) {
461 		if (should_drop_frame(origskb, present_fcs_len,
462 				      rtap_vendor_space)) {
463 			dev_kfree_skb(origskb);
464 			return NULL;
465 		}
466 
467 		return remove_monitor_info(local, origskb, rtap_vendor_space);
468 	}
469 
470 	/* room for the radiotap header based on driver features */
471 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
472 	needed_headroom = rt_hdrlen - rtap_vendor_space;
473 
474 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
475 		/* only need to expand headroom if necessary */
476 		skb = origskb;
477 		origskb = NULL;
478 
479 		/*
480 		 * This shouldn't trigger often because most devices have an
481 		 * RX header they pull before we get here, and that should
482 		 * be big enough for our radiotap information. We should
483 		 * probably export the length to drivers so that we can have
484 		 * them allocate enough headroom to start with.
485 		 */
486 		if (skb_headroom(skb) < needed_headroom &&
487 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
488 			dev_kfree_skb(skb);
489 			return NULL;
490 		}
491 	} else {
492 		/*
493 		 * Need to make a copy and possibly remove radiotap header
494 		 * and FCS from the original.
495 		 */
496 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
497 
498 		origskb = remove_monitor_info(local, origskb,
499 					      rtap_vendor_space);
500 
501 		if (!skb)
502 			return origskb;
503 	}
504 
505 	/* prepend radiotap information */
506 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
507 
508 	skb_reset_mac_header(skb);
509 	skb->ip_summed = CHECKSUM_UNNECESSARY;
510 	skb->pkt_type = PACKET_OTHERHOST;
511 	skb->protocol = htons(ETH_P_802_2);
512 
513 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
514 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
515 			continue;
516 
517 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
518 			continue;
519 
520 		if (!ieee80211_sdata_running(sdata))
521 			continue;
522 
523 		if (prev_dev) {
524 			skb2 = skb_clone(skb, GFP_ATOMIC);
525 			if (skb2) {
526 				skb2->dev = prev_dev;
527 				netif_receive_skb(skb2);
528 			}
529 		}
530 
531 		prev_dev = sdata->dev;
532 		sdata->dev->stats.rx_packets++;
533 		sdata->dev->stats.rx_bytes += skb->len;
534 	}
535 
536 	if (prev_dev) {
537 		skb->dev = prev_dev;
538 		netif_receive_skb(skb);
539 	} else
540 		dev_kfree_skb(skb);
541 
542 	return origskb;
543 }
544 
545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
546 {
547 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
548 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
549 	int tid, seqno_idx, security_idx;
550 
551 	/* does the frame have a qos control field? */
552 	if (ieee80211_is_data_qos(hdr->frame_control)) {
553 		u8 *qc = ieee80211_get_qos_ctl(hdr);
554 		/* frame has qos control */
555 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
556 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
557 			status->rx_flags |= IEEE80211_RX_AMSDU;
558 
559 		seqno_idx = tid;
560 		security_idx = tid;
561 	} else {
562 		/*
563 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
564 		 *
565 		 *	Sequence numbers for management frames, QoS data
566 		 *	frames with a broadcast/multicast address in the
567 		 *	Address 1 field, and all non-QoS data frames sent
568 		 *	by QoS STAs are assigned using an additional single
569 		 *	modulo-4096 counter, [...]
570 		 *
571 		 * We also use that counter for non-QoS STAs.
572 		 */
573 		seqno_idx = IEEE80211_NUM_TIDS;
574 		security_idx = 0;
575 		if (ieee80211_is_mgmt(hdr->frame_control))
576 			security_idx = IEEE80211_NUM_TIDS;
577 		tid = 0;
578 	}
579 
580 	rx->seqno_idx = seqno_idx;
581 	rx->security_idx = security_idx;
582 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
583 	 * For now, set skb->priority to 0 for other cases. */
584 	rx->skb->priority = (tid > 7) ? 0 : tid;
585 }
586 
587 /**
588  * DOC: Packet alignment
589  *
590  * Drivers always need to pass packets that are aligned to two-byte boundaries
591  * to the stack.
592  *
593  * Additionally, should, if possible, align the payload data in a way that
594  * guarantees that the contained IP header is aligned to a four-byte
595  * boundary. In the case of regular frames, this simply means aligning the
596  * payload to a four-byte boundary (because either the IP header is directly
597  * contained, or IV/RFC1042 headers that have a length divisible by four are
598  * in front of it).  If the payload data is not properly aligned and the
599  * architecture doesn't support efficient unaligned operations, mac80211
600  * will align the data.
601  *
602  * With A-MSDU frames, however, the payload data address must yield two modulo
603  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
604  * push the IP header further back to a multiple of four again. Thankfully, the
605  * specs were sane enough this time around to require padding each A-MSDU
606  * subframe to a length that is a multiple of four.
607  *
608  * Padding like Atheros hardware adds which is between the 802.11 header and
609  * the payload is not supported, the driver is required to move the 802.11
610  * header to be directly in front of the payload in that case.
611  */
612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
613 {
614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
615 	WARN_ONCE((unsigned long)rx->skb->data & 1,
616 		  "unaligned packet at 0x%p\n", rx->skb->data);
617 #endif
618 }
619 
620 
621 /* rx handlers */
622 
623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
624 {
625 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
626 
627 	if (is_multicast_ether_addr(hdr->addr1))
628 		return 0;
629 
630 	return ieee80211_is_robust_mgmt_frame(skb);
631 }
632 
633 
634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
635 {
636 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
637 
638 	if (!is_multicast_ether_addr(hdr->addr1))
639 		return 0;
640 
641 	return ieee80211_is_robust_mgmt_frame(skb);
642 }
643 
644 
645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
647 {
648 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
649 	struct ieee80211_mmie *mmie;
650 	struct ieee80211_mmie_16 *mmie16;
651 
652 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
653 		return -1;
654 
655 	if (!ieee80211_is_robust_mgmt_frame(skb))
656 		return -1; /* not a robust management frame */
657 
658 	mmie = (struct ieee80211_mmie *)
659 		(skb->data + skb->len - sizeof(*mmie));
660 	if (mmie->element_id == WLAN_EID_MMIE &&
661 	    mmie->length == sizeof(*mmie) - 2)
662 		return le16_to_cpu(mmie->key_id);
663 
664 	mmie16 = (struct ieee80211_mmie_16 *)
665 		(skb->data + skb->len - sizeof(*mmie16));
666 	if (skb->len >= 24 + sizeof(*mmie16) &&
667 	    mmie16->element_id == WLAN_EID_MMIE &&
668 	    mmie16->length == sizeof(*mmie16) - 2)
669 		return le16_to_cpu(mmie16->key_id);
670 
671 	return -1;
672 }
673 
674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
675 				 struct sk_buff *skb)
676 {
677 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
678 	__le16 fc;
679 	int hdrlen;
680 	u8 keyid;
681 
682 	fc = hdr->frame_control;
683 	hdrlen = ieee80211_hdrlen(fc);
684 
685 	if (skb->len < hdrlen + cs->hdr_len)
686 		return -EINVAL;
687 
688 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
689 	keyid &= cs->key_idx_mask;
690 	keyid >>= cs->key_idx_shift;
691 
692 	return keyid;
693 }
694 
695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
696 {
697 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
698 	char *dev_addr = rx->sdata->vif.addr;
699 
700 	if (ieee80211_is_data(hdr->frame_control)) {
701 		if (is_multicast_ether_addr(hdr->addr1)) {
702 			if (ieee80211_has_tods(hdr->frame_control) ||
703 			    !ieee80211_has_fromds(hdr->frame_control))
704 				return RX_DROP_MONITOR;
705 			if (ether_addr_equal(hdr->addr3, dev_addr))
706 				return RX_DROP_MONITOR;
707 		} else {
708 			if (!ieee80211_has_a4(hdr->frame_control))
709 				return RX_DROP_MONITOR;
710 			if (ether_addr_equal(hdr->addr4, dev_addr))
711 				return RX_DROP_MONITOR;
712 		}
713 	}
714 
715 	/* If there is not an established peer link and this is not a peer link
716 	 * establisment frame, beacon or probe, drop the frame.
717 	 */
718 
719 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
720 		struct ieee80211_mgmt *mgmt;
721 
722 		if (!ieee80211_is_mgmt(hdr->frame_control))
723 			return RX_DROP_MONITOR;
724 
725 		if (ieee80211_is_action(hdr->frame_control)) {
726 			u8 category;
727 
728 			/* make sure category field is present */
729 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
730 				return RX_DROP_MONITOR;
731 
732 			mgmt = (struct ieee80211_mgmt *)hdr;
733 			category = mgmt->u.action.category;
734 			if (category != WLAN_CATEGORY_MESH_ACTION &&
735 			    category != WLAN_CATEGORY_SELF_PROTECTED)
736 				return RX_DROP_MONITOR;
737 			return RX_CONTINUE;
738 		}
739 
740 		if (ieee80211_is_probe_req(hdr->frame_control) ||
741 		    ieee80211_is_probe_resp(hdr->frame_control) ||
742 		    ieee80211_is_beacon(hdr->frame_control) ||
743 		    ieee80211_is_auth(hdr->frame_control))
744 			return RX_CONTINUE;
745 
746 		return RX_DROP_MONITOR;
747 	}
748 
749 	return RX_CONTINUE;
750 }
751 
752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
753 					    struct tid_ampdu_rx *tid_agg_rx,
754 					    int index,
755 					    struct sk_buff_head *frames)
756 {
757 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
758 	struct sk_buff *skb;
759 	struct ieee80211_rx_status *status;
760 
761 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
762 
763 	if (skb_queue_empty(skb_list))
764 		goto no_frame;
765 
766 	if (!ieee80211_rx_reorder_ready(skb_list)) {
767 		__skb_queue_purge(skb_list);
768 		goto no_frame;
769 	}
770 
771 	/* release frames from the reorder ring buffer */
772 	tid_agg_rx->stored_mpdu_num--;
773 	while ((skb = __skb_dequeue(skb_list))) {
774 		status = IEEE80211_SKB_RXCB(skb);
775 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
776 		__skb_queue_tail(frames, skb);
777 	}
778 
779 no_frame:
780 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
781 }
782 
783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
784 					     struct tid_ampdu_rx *tid_agg_rx,
785 					     u16 head_seq_num,
786 					     struct sk_buff_head *frames)
787 {
788 	int index;
789 
790 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
791 
792 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
793 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
794 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 						frames);
796 	}
797 }
798 
799 /*
800  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
801  * the skb was added to the buffer longer than this time ago, the earlier
802  * frames that have not yet been received are assumed to be lost and the skb
803  * can be released for processing. This may also release other skb's from the
804  * reorder buffer if there are no additional gaps between the frames.
805  *
806  * Callers must hold tid_agg_rx->reorder_lock.
807  */
808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
809 
810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
811 					  struct tid_ampdu_rx *tid_agg_rx,
812 					  struct sk_buff_head *frames)
813 {
814 	int index, i, j;
815 
816 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
817 
818 	/* release the buffer until next missing frame */
819 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
820 	if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
821 	    tid_agg_rx->stored_mpdu_num) {
822 		/*
823 		 * No buffers ready to be released, but check whether any
824 		 * frames in the reorder buffer have timed out.
825 		 */
826 		int skipped = 1;
827 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
828 		     j = (j + 1) % tid_agg_rx->buf_size) {
829 			if (!ieee80211_rx_reorder_ready(
830 					&tid_agg_rx->reorder_buf[j])) {
831 				skipped++;
832 				continue;
833 			}
834 			if (skipped &&
835 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
836 					HT_RX_REORDER_BUF_TIMEOUT))
837 				goto set_release_timer;
838 
839 			/* don't leave incomplete A-MSDUs around */
840 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
841 			     i = (i + 1) % tid_agg_rx->buf_size)
842 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
843 
844 			ht_dbg_ratelimited(sdata,
845 					   "release an RX reorder frame due to timeout on earlier frames\n");
846 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
847 							frames);
848 
849 			/*
850 			 * Increment the head seq# also for the skipped slots.
851 			 */
852 			tid_agg_rx->head_seq_num =
853 				(tid_agg_rx->head_seq_num +
854 				 skipped) & IEEE80211_SN_MASK;
855 			skipped = 0;
856 		}
857 	} else while (ieee80211_rx_reorder_ready(
858 				&tid_agg_rx->reorder_buf[index])) {
859 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
860 						frames);
861 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
862 	}
863 
864 	if (tid_agg_rx->stored_mpdu_num) {
865 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866 
867 		for (; j != (index - 1) % tid_agg_rx->buf_size;
868 		     j = (j + 1) % tid_agg_rx->buf_size) {
869 			if (ieee80211_rx_reorder_ready(
870 					&tid_agg_rx->reorder_buf[j]))
871 				break;
872 		}
873 
874  set_release_timer:
875 
876 		if (!tid_agg_rx->removed)
877 			mod_timer(&tid_agg_rx->reorder_timer,
878 				  tid_agg_rx->reorder_time[j] + 1 +
879 				  HT_RX_REORDER_BUF_TIMEOUT);
880 	} else {
881 		del_timer(&tid_agg_rx->reorder_timer);
882 	}
883 }
884 
885 /*
886  * As this function belongs to the RX path it must be under
887  * rcu_read_lock protection. It returns false if the frame
888  * can be processed immediately, true if it was consumed.
889  */
890 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
891 					     struct tid_ampdu_rx *tid_agg_rx,
892 					     struct sk_buff *skb,
893 					     struct sk_buff_head *frames)
894 {
895 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
896 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
897 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
898 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
899 	u16 head_seq_num, buf_size;
900 	int index;
901 	bool ret = true;
902 
903 	spin_lock(&tid_agg_rx->reorder_lock);
904 
905 	/*
906 	 * Offloaded BA sessions have no known starting sequence number so pick
907 	 * one from first Rxed frame for this tid after BA was started.
908 	 */
909 	if (unlikely(tid_agg_rx->auto_seq)) {
910 		tid_agg_rx->auto_seq = false;
911 		tid_agg_rx->ssn = mpdu_seq_num;
912 		tid_agg_rx->head_seq_num = mpdu_seq_num;
913 	}
914 
915 	buf_size = tid_agg_rx->buf_size;
916 	head_seq_num = tid_agg_rx->head_seq_num;
917 
918 	/* frame with out of date sequence number */
919 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
920 		dev_kfree_skb(skb);
921 		goto out;
922 	}
923 
924 	/*
925 	 * If frame the sequence number exceeds our buffering window
926 	 * size release some previous frames to make room for this one.
927 	 */
928 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
929 		head_seq_num = ieee80211_sn_inc(
930 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
931 		/* release stored frames up to new head to stack */
932 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
933 						 head_seq_num, frames);
934 	}
935 
936 	/* Now the new frame is always in the range of the reordering buffer */
937 
938 	index = mpdu_seq_num % tid_agg_rx->buf_size;
939 
940 	/* check if we already stored this frame */
941 	if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
942 		dev_kfree_skb(skb);
943 		goto out;
944 	}
945 
946 	/*
947 	 * If the current MPDU is in the right order and nothing else
948 	 * is stored we can process it directly, no need to buffer it.
949 	 * If it is first but there's something stored, we may be able
950 	 * to release frames after this one.
951 	 */
952 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
953 	    tid_agg_rx->stored_mpdu_num == 0) {
954 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
955 			tid_agg_rx->head_seq_num =
956 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
957 		ret = false;
958 		goto out;
959 	}
960 
961 	/* put the frame in the reordering buffer */
962 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
963 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
964 		tid_agg_rx->reorder_time[index] = jiffies;
965 		tid_agg_rx->stored_mpdu_num++;
966 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
967 	}
968 
969  out:
970 	spin_unlock(&tid_agg_rx->reorder_lock);
971 	return ret;
972 }
973 
974 /*
975  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
976  * true if the MPDU was buffered, false if it should be processed.
977  */
978 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
979 				       struct sk_buff_head *frames)
980 {
981 	struct sk_buff *skb = rx->skb;
982 	struct ieee80211_local *local = rx->local;
983 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
984 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
985 	struct sta_info *sta = rx->sta;
986 	struct tid_ampdu_rx *tid_agg_rx;
987 	u16 sc;
988 	u8 tid, ack_policy;
989 
990 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
991 	    is_multicast_ether_addr(hdr->addr1))
992 		goto dont_reorder;
993 
994 	/*
995 	 * filter the QoS data rx stream according to
996 	 * STA/TID and check if this STA/TID is on aggregation
997 	 */
998 
999 	if (!sta)
1000 		goto dont_reorder;
1001 
1002 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1003 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1004 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1005 
1006 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1007 	if (!tid_agg_rx)
1008 		goto dont_reorder;
1009 
1010 	/* qos null data frames are excluded */
1011 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1012 		goto dont_reorder;
1013 
1014 	/* not part of a BA session */
1015 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1016 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1017 		goto dont_reorder;
1018 
1019 	/* not actually part of this BA session */
1020 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1021 		goto dont_reorder;
1022 
1023 	/* new, potentially un-ordered, ampdu frame - process it */
1024 
1025 	/* reset session timer */
1026 	if (tid_agg_rx->timeout)
1027 		tid_agg_rx->last_rx = jiffies;
1028 
1029 	/* if this mpdu is fragmented - terminate rx aggregation session */
1030 	sc = le16_to_cpu(hdr->seq_ctrl);
1031 	if (sc & IEEE80211_SCTL_FRAG) {
1032 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1033 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1034 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1035 		return;
1036 	}
1037 
1038 	/*
1039 	 * No locking needed -- we will only ever process one
1040 	 * RX packet at a time, and thus own tid_agg_rx. All
1041 	 * other code manipulating it needs to (and does) make
1042 	 * sure that we cannot get to it any more before doing
1043 	 * anything with it.
1044 	 */
1045 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1046 					     frames))
1047 		return;
1048 
1049  dont_reorder:
1050 	__skb_queue_tail(frames, skb);
1051 }
1052 
1053 static ieee80211_rx_result debug_noinline
1054 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1055 {
1056 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1057 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1058 
1059 	/*
1060 	 * Drop duplicate 802.11 retransmissions
1061 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1062 	 */
1063 
1064 	if (rx->skb->len < 24)
1065 		return RX_CONTINUE;
1066 
1067 	if (ieee80211_is_ctl(hdr->frame_control) ||
1068 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1069 	    is_multicast_ether_addr(hdr->addr1))
1070 		return RX_CONTINUE;
1071 
1072 	if (rx->sta) {
1073 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1074 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1075 			     hdr->seq_ctrl)) {
1076 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1077 				rx->local->dot11FrameDuplicateCount++;
1078 				rx->sta->num_duplicates++;
1079 			}
1080 			return RX_DROP_UNUSABLE;
1081 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1082 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1083 		}
1084 	}
1085 
1086 	return RX_CONTINUE;
1087 }
1088 
1089 static ieee80211_rx_result debug_noinline
1090 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1091 {
1092 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1093 
1094 	if (unlikely(rx->skb->len < 16)) {
1095 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1096 		return RX_DROP_MONITOR;
1097 	}
1098 
1099 	/* Drop disallowed frame classes based on STA auth/assoc state;
1100 	 * IEEE 802.11, Chap 5.5.
1101 	 *
1102 	 * mac80211 filters only based on association state, i.e. it drops
1103 	 * Class 3 frames from not associated stations. hostapd sends
1104 	 * deauth/disassoc frames when needed. In addition, hostapd is
1105 	 * responsible for filtering on both auth and assoc states.
1106 	 */
1107 
1108 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1109 		return ieee80211_rx_mesh_check(rx);
1110 
1111 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1112 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1113 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1114 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1115 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1116 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1117 		/*
1118 		 * accept port control frames from the AP even when it's not
1119 		 * yet marked ASSOC to prevent a race where we don't set the
1120 		 * assoc bit quickly enough before it sends the first frame
1121 		 */
1122 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1123 		    ieee80211_is_data_present(hdr->frame_control)) {
1124 			unsigned int hdrlen;
1125 			__be16 ethertype;
1126 
1127 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1128 
1129 			if (rx->skb->len < hdrlen + 8)
1130 				return RX_DROP_MONITOR;
1131 
1132 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1133 			if (ethertype == rx->sdata->control_port_protocol)
1134 				return RX_CONTINUE;
1135 		}
1136 
1137 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1138 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1139 					       hdr->addr2,
1140 					       GFP_ATOMIC))
1141 			return RX_DROP_UNUSABLE;
1142 
1143 		return RX_DROP_MONITOR;
1144 	}
1145 
1146 	return RX_CONTINUE;
1147 }
1148 
1149 
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1152 {
1153 	struct ieee80211_local *local;
1154 	struct ieee80211_hdr *hdr;
1155 	struct sk_buff *skb;
1156 
1157 	local = rx->local;
1158 	skb = rx->skb;
1159 	hdr = (struct ieee80211_hdr *) skb->data;
1160 
1161 	if (!local->pspolling)
1162 		return RX_CONTINUE;
1163 
1164 	if (!ieee80211_has_fromds(hdr->frame_control))
1165 		/* this is not from AP */
1166 		return RX_CONTINUE;
1167 
1168 	if (!ieee80211_is_data(hdr->frame_control))
1169 		return RX_CONTINUE;
1170 
1171 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1172 		/* AP has no more frames buffered for us */
1173 		local->pspolling = false;
1174 		return RX_CONTINUE;
1175 	}
1176 
1177 	/* more data bit is set, let's request a new frame from the AP */
1178 	ieee80211_send_pspoll(local, rx->sdata);
1179 
1180 	return RX_CONTINUE;
1181 }
1182 
1183 static void sta_ps_start(struct sta_info *sta)
1184 {
1185 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1186 	struct ieee80211_local *local = sdata->local;
1187 	struct ps_data *ps;
1188 	int tid;
1189 
1190 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1191 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1192 		ps = &sdata->bss->ps;
1193 	else
1194 		return;
1195 
1196 	atomic_inc(&ps->num_sta_ps);
1197 	set_sta_flag(sta, WLAN_STA_PS_STA);
1198 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1199 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1200 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1201 	       sta->sta.addr, sta->sta.aid);
1202 
1203 	if (!sta->sta.txq[0])
1204 		return;
1205 
1206 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1207 		struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1208 
1209 		if (!skb_queue_len(&txqi->queue))
1210 			set_bit(tid, &sta->txq_buffered_tids);
1211 		else
1212 			clear_bit(tid, &sta->txq_buffered_tids);
1213 	}
1214 }
1215 
1216 static void sta_ps_end(struct sta_info *sta)
1217 {
1218 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1219 	       sta->sta.addr, sta->sta.aid);
1220 
1221 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1222 		/*
1223 		 * Clear the flag only if the other one is still set
1224 		 * so that the TX path won't start TX'ing new frames
1225 		 * directly ... In the case that the driver flag isn't
1226 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1227 		 */
1228 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1229 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1230 		       sta->sta.addr, sta->sta.aid);
1231 		return;
1232 	}
1233 
1234 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1235 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1236 	ieee80211_sta_ps_deliver_wakeup(sta);
1237 }
1238 
1239 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1240 {
1241 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1242 	bool in_ps;
1243 
1244 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1245 
1246 	/* Don't let the same PS state be set twice */
1247 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1248 	if ((start && in_ps) || (!start && !in_ps))
1249 		return -EINVAL;
1250 
1251 	if (start)
1252 		sta_ps_start(sta_inf);
1253 	else
1254 		sta_ps_end(sta_inf);
1255 
1256 	return 0;
1257 }
1258 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1259 
1260 static ieee80211_rx_result debug_noinline
1261 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1262 {
1263 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1264 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1265 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1266 	int tid, ac;
1267 
1268 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1269 		return RX_CONTINUE;
1270 
1271 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1272 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1273 		return RX_CONTINUE;
1274 
1275 	/*
1276 	 * The device handles station powersave, so don't do anything about
1277 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1278 	 * it to mac80211 since they're handled.)
1279 	 */
1280 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1281 		return RX_CONTINUE;
1282 
1283 	/*
1284 	 * Don't do anything if the station isn't already asleep. In
1285 	 * the uAPSD case, the station will probably be marked asleep,
1286 	 * in the PS-Poll case the station must be confused ...
1287 	 */
1288 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1289 		return RX_CONTINUE;
1290 
1291 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1292 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1293 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1294 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1295 			else
1296 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1297 		}
1298 
1299 		/* Free PS Poll skb here instead of returning RX_DROP that would
1300 		 * count as an dropped frame. */
1301 		dev_kfree_skb(rx->skb);
1302 
1303 		return RX_QUEUED;
1304 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1305 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1306 		   ieee80211_has_pm(hdr->frame_control) &&
1307 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1308 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1309 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1310 		ac = ieee802_1d_to_ac[tid & 7];
1311 
1312 		/*
1313 		 * If this AC is not trigger-enabled do nothing.
1314 		 *
1315 		 * NB: This could/should check a separate bitmap of trigger-
1316 		 * enabled queues, but for now we only implement uAPSD w/o
1317 		 * TSPEC changes to the ACs, so they're always the same.
1318 		 */
1319 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1320 			return RX_CONTINUE;
1321 
1322 		/* if we are in a service period, do nothing */
1323 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1324 			return RX_CONTINUE;
1325 
1326 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1327 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1328 		else
1329 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1330 	}
1331 
1332 	return RX_CONTINUE;
1333 }
1334 
1335 static ieee80211_rx_result debug_noinline
1336 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1337 {
1338 	struct sta_info *sta = rx->sta;
1339 	struct sk_buff *skb = rx->skb;
1340 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1341 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1342 	int i;
1343 
1344 	if (!sta)
1345 		return RX_CONTINUE;
1346 
1347 	/*
1348 	 * Update last_rx only for IBSS packets which are for the current
1349 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1350 	 * current IBSS network alive in cases where other STAs start
1351 	 * using different BSSID. This will also give the station another
1352 	 * chance to restart the authentication/authorization in case
1353 	 * something went wrong the first time.
1354 	 */
1355 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1356 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1357 						NL80211_IFTYPE_ADHOC);
1358 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1359 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1360 			sta->last_rx = jiffies;
1361 			if (ieee80211_is_data(hdr->frame_control) &&
1362 			    !is_multicast_ether_addr(hdr->addr1)) {
1363 				sta->last_rx_rate_idx = status->rate_idx;
1364 				sta->last_rx_rate_flag = status->flag;
1365 				sta->last_rx_rate_vht_flag = status->vht_flag;
1366 				sta->last_rx_rate_vht_nss = status->vht_nss;
1367 			}
1368 		}
1369 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1370 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1371 						NL80211_IFTYPE_OCB);
1372 		/* OCB uses wild-card BSSID */
1373 		if (is_broadcast_ether_addr(bssid))
1374 			sta->last_rx = jiffies;
1375 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1376 		/*
1377 		 * Mesh beacons will update last_rx when if they are found to
1378 		 * match the current local configuration when processed.
1379 		 */
1380 		sta->last_rx = jiffies;
1381 		if (ieee80211_is_data(hdr->frame_control)) {
1382 			sta->last_rx_rate_idx = status->rate_idx;
1383 			sta->last_rx_rate_flag = status->flag;
1384 			sta->last_rx_rate_vht_flag = status->vht_flag;
1385 			sta->last_rx_rate_vht_nss = status->vht_nss;
1386 		}
1387 	}
1388 
1389 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1390 		return RX_CONTINUE;
1391 
1392 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1393 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1394 
1395 	sta->rx_fragments++;
1396 	sta->rx_bytes += rx->skb->len;
1397 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1398 		sta->last_signal = status->signal;
1399 		ewma_add(&sta->avg_signal, -status->signal);
1400 	}
1401 
1402 	if (status->chains) {
1403 		sta->chains = status->chains;
1404 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1405 			int signal = status->chain_signal[i];
1406 
1407 			if (!(status->chains & BIT(i)))
1408 				continue;
1409 
1410 			sta->chain_signal_last[i] = signal;
1411 			ewma_add(&sta->chain_signal_avg[i], -signal);
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * Change STA power saving mode only at the end of a frame
1417 	 * exchange sequence.
1418 	 */
1419 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1420 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1421 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1422 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1423 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1424 	    /* PM bit is only checked in frames where it isn't reserved,
1425 	     * in AP mode it's reserved in non-bufferable management frames
1426 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1427 	     */
1428 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1429 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1430 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1431 			if (!ieee80211_has_pm(hdr->frame_control))
1432 				sta_ps_end(sta);
1433 		} else {
1434 			if (ieee80211_has_pm(hdr->frame_control))
1435 				sta_ps_start(sta);
1436 		}
1437 	}
1438 
1439 	/* mesh power save support */
1440 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1441 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1442 
1443 	/*
1444 	 * Drop (qos-)data::nullfunc frames silently, since they
1445 	 * are used only to control station power saving mode.
1446 	 */
1447 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1448 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1449 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1450 
1451 		/*
1452 		 * If we receive a 4-addr nullfunc frame from a STA
1453 		 * that was not moved to a 4-addr STA vlan yet send
1454 		 * the event to userspace and for older hostapd drop
1455 		 * the frame to the monitor interface.
1456 		 */
1457 		if (ieee80211_has_a4(hdr->frame_control) &&
1458 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1459 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1460 		      !rx->sdata->u.vlan.sta))) {
1461 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1462 				cfg80211_rx_unexpected_4addr_frame(
1463 					rx->sdata->dev, sta->sta.addr,
1464 					GFP_ATOMIC);
1465 			return RX_DROP_MONITOR;
1466 		}
1467 		/*
1468 		 * Update counter and free packet here to avoid
1469 		 * counting this as a dropped packed.
1470 		 */
1471 		sta->rx_packets++;
1472 		dev_kfree_skb(rx->skb);
1473 		return RX_QUEUED;
1474 	}
1475 
1476 	return RX_CONTINUE;
1477 } /* ieee80211_rx_h_sta_process */
1478 
1479 static ieee80211_rx_result debug_noinline
1480 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1481 {
1482 	struct sk_buff *skb = rx->skb;
1483 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1484 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1485 	int keyidx;
1486 	int hdrlen;
1487 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1488 	struct ieee80211_key *sta_ptk = NULL;
1489 	int mmie_keyidx = -1;
1490 	__le16 fc;
1491 	const struct ieee80211_cipher_scheme *cs = NULL;
1492 
1493 	/*
1494 	 * Key selection 101
1495 	 *
1496 	 * There are four types of keys:
1497 	 *  - GTK (group keys)
1498 	 *  - IGTK (group keys for management frames)
1499 	 *  - PTK (pairwise keys)
1500 	 *  - STK (station-to-station pairwise keys)
1501 	 *
1502 	 * When selecting a key, we have to distinguish between multicast
1503 	 * (including broadcast) and unicast frames, the latter can only
1504 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1505 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1506 	 * unicast frames can also use key indices like GTKs. Hence, if we
1507 	 * don't have a PTK/STK we check the key index for a WEP key.
1508 	 *
1509 	 * Note that in a regular BSS, multicast frames are sent by the
1510 	 * AP only, associated stations unicast the frame to the AP first
1511 	 * which then multicasts it on their behalf.
1512 	 *
1513 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1514 	 * with each station, that is something we don't currently handle.
1515 	 * The spec seems to expect that one negotiates the same key with
1516 	 * every station but there's no such requirement; VLANs could be
1517 	 * possible.
1518 	 */
1519 
1520 	/*
1521 	 * No point in finding a key and decrypting if the frame is neither
1522 	 * addressed to us nor a multicast frame.
1523 	 */
1524 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1525 		return RX_CONTINUE;
1526 
1527 	/* start without a key */
1528 	rx->key = NULL;
1529 	fc = hdr->frame_control;
1530 
1531 	if (rx->sta) {
1532 		int keyid = rx->sta->ptk_idx;
1533 
1534 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1535 			cs = rx->sta->cipher_scheme;
1536 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1537 			if (unlikely(keyid < 0))
1538 				return RX_DROP_UNUSABLE;
1539 		}
1540 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1541 	}
1542 
1543 	if (!ieee80211_has_protected(fc))
1544 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1545 
1546 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1547 		rx->key = sta_ptk;
1548 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1549 		    (status->flag & RX_FLAG_IV_STRIPPED))
1550 			return RX_CONTINUE;
1551 		/* Skip decryption if the frame is not protected. */
1552 		if (!ieee80211_has_protected(fc))
1553 			return RX_CONTINUE;
1554 	} else if (mmie_keyidx >= 0) {
1555 		/* Broadcast/multicast robust management frame / BIP */
1556 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1557 		    (status->flag & RX_FLAG_IV_STRIPPED))
1558 			return RX_CONTINUE;
1559 
1560 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1561 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1562 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1563 		if (rx->sta)
1564 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1565 		if (!rx->key)
1566 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1567 	} else if (!ieee80211_has_protected(fc)) {
1568 		/*
1569 		 * The frame was not protected, so skip decryption. However, we
1570 		 * need to set rx->key if there is a key that could have been
1571 		 * used so that the frame may be dropped if encryption would
1572 		 * have been expected.
1573 		 */
1574 		struct ieee80211_key *key = NULL;
1575 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1576 		int i;
1577 
1578 		if (ieee80211_is_mgmt(fc) &&
1579 		    is_multicast_ether_addr(hdr->addr1) &&
1580 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1581 			rx->key = key;
1582 		else {
1583 			if (rx->sta) {
1584 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1585 					key = rcu_dereference(rx->sta->gtk[i]);
1586 					if (key)
1587 						break;
1588 				}
1589 			}
1590 			if (!key) {
1591 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1592 					key = rcu_dereference(sdata->keys[i]);
1593 					if (key)
1594 						break;
1595 				}
1596 			}
1597 			if (key)
1598 				rx->key = key;
1599 		}
1600 		return RX_CONTINUE;
1601 	} else {
1602 		u8 keyid;
1603 
1604 		/*
1605 		 * The device doesn't give us the IV so we won't be
1606 		 * able to look up the key. That's ok though, we
1607 		 * don't need to decrypt the frame, we just won't
1608 		 * be able to keep statistics accurate.
1609 		 * Except for key threshold notifications, should
1610 		 * we somehow allow the driver to tell us which key
1611 		 * the hardware used if this flag is set?
1612 		 */
1613 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1614 		    (status->flag & RX_FLAG_IV_STRIPPED))
1615 			return RX_CONTINUE;
1616 
1617 		hdrlen = ieee80211_hdrlen(fc);
1618 
1619 		if (cs) {
1620 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1621 
1622 			if (unlikely(keyidx < 0))
1623 				return RX_DROP_UNUSABLE;
1624 		} else {
1625 			if (rx->skb->len < 8 + hdrlen)
1626 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1627 			/*
1628 			 * no need to call ieee80211_wep_get_keyidx,
1629 			 * it verifies a bunch of things we've done already
1630 			 */
1631 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1632 			keyidx = keyid >> 6;
1633 		}
1634 
1635 		/* check per-station GTK first, if multicast packet */
1636 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1637 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1638 
1639 		/* if not found, try default key */
1640 		if (!rx->key) {
1641 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1642 
1643 			/*
1644 			 * RSNA-protected unicast frames should always be
1645 			 * sent with pairwise or station-to-station keys,
1646 			 * but for WEP we allow using a key index as well.
1647 			 */
1648 			if (rx->key &&
1649 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1650 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1651 			    !is_multicast_ether_addr(hdr->addr1))
1652 				rx->key = NULL;
1653 		}
1654 	}
1655 
1656 	if (rx->key) {
1657 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1658 			return RX_DROP_MONITOR;
1659 
1660 		rx->key->tx_rx_count++;
1661 		/* TODO: add threshold stuff again */
1662 	} else {
1663 		return RX_DROP_MONITOR;
1664 	}
1665 
1666 	switch (rx->key->conf.cipher) {
1667 	case WLAN_CIPHER_SUITE_WEP40:
1668 	case WLAN_CIPHER_SUITE_WEP104:
1669 		result = ieee80211_crypto_wep_decrypt(rx);
1670 		break;
1671 	case WLAN_CIPHER_SUITE_TKIP:
1672 		result = ieee80211_crypto_tkip_decrypt(rx);
1673 		break;
1674 	case WLAN_CIPHER_SUITE_CCMP:
1675 		result = ieee80211_crypto_ccmp_decrypt(
1676 			rx, IEEE80211_CCMP_MIC_LEN);
1677 		break;
1678 	case WLAN_CIPHER_SUITE_CCMP_256:
1679 		result = ieee80211_crypto_ccmp_decrypt(
1680 			rx, IEEE80211_CCMP_256_MIC_LEN);
1681 		break;
1682 	case WLAN_CIPHER_SUITE_AES_CMAC:
1683 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1684 		break;
1685 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1686 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1687 		break;
1688 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1689 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1690 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1691 		break;
1692 	case WLAN_CIPHER_SUITE_GCMP:
1693 	case WLAN_CIPHER_SUITE_GCMP_256:
1694 		result = ieee80211_crypto_gcmp_decrypt(rx);
1695 		break;
1696 	default:
1697 		result = ieee80211_crypto_hw_decrypt(rx);
1698 	}
1699 
1700 	/* the hdr variable is invalid after the decrypt handlers */
1701 
1702 	/* either the frame has been decrypted or will be dropped */
1703 	status->flag |= RX_FLAG_DECRYPTED;
1704 
1705 	return result;
1706 }
1707 
1708 static inline struct ieee80211_fragment_entry *
1709 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1710 			 unsigned int frag, unsigned int seq, int rx_queue,
1711 			 struct sk_buff **skb)
1712 {
1713 	struct ieee80211_fragment_entry *entry;
1714 
1715 	entry = &sdata->fragments[sdata->fragment_next++];
1716 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1717 		sdata->fragment_next = 0;
1718 
1719 	if (!skb_queue_empty(&entry->skb_list))
1720 		__skb_queue_purge(&entry->skb_list);
1721 
1722 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1723 	*skb = NULL;
1724 	entry->first_frag_time = jiffies;
1725 	entry->seq = seq;
1726 	entry->rx_queue = rx_queue;
1727 	entry->last_frag = frag;
1728 	entry->ccmp = 0;
1729 	entry->extra_len = 0;
1730 
1731 	return entry;
1732 }
1733 
1734 static inline struct ieee80211_fragment_entry *
1735 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1736 			  unsigned int frag, unsigned int seq,
1737 			  int rx_queue, struct ieee80211_hdr *hdr)
1738 {
1739 	struct ieee80211_fragment_entry *entry;
1740 	int i, idx;
1741 
1742 	idx = sdata->fragment_next;
1743 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1744 		struct ieee80211_hdr *f_hdr;
1745 
1746 		idx--;
1747 		if (idx < 0)
1748 			idx = IEEE80211_FRAGMENT_MAX - 1;
1749 
1750 		entry = &sdata->fragments[idx];
1751 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1752 		    entry->rx_queue != rx_queue ||
1753 		    entry->last_frag + 1 != frag)
1754 			continue;
1755 
1756 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1757 
1758 		/*
1759 		 * Check ftype and addresses are equal, else check next fragment
1760 		 */
1761 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1762 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1763 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1764 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1765 			continue;
1766 
1767 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1768 			__skb_queue_purge(&entry->skb_list);
1769 			continue;
1770 		}
1771 		return entry;
1772 	}
1773 
1774 	return NULL;
1775 }
1776 
1777 static ieee80211_rx_result debug_noinline
1778 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1779 {
1780 	struct ieee80211_hdr *hdr;
1781 	u16 sc;
1782 	__le16 fc;
1783 	unsigned int frag, seq;
1784 	struct ieee80211_fragment_entry *entry;
1785 	struct sk_buff *skb;
1786 	struct ieee80211_rx_status *status;
1787 
1788 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1789 	fc = hdr->frame_control;
1790 
1791 	if (ieee80211_is_ctl(fc))
1792 		return RX_CONTINUE;
1793 
1794 	sc = le16_to_cpu(hdr->seq_ctrl);
1795 	frag = sc & IEEE80211_SCTL_FRAG;
1796 
1797 	if (is_multicast_ether_addr(hdr->addr1)) {
1798 		rx->local->dot11MulticastReceivedFrameCount++;
1799 		goto out_no_led;
1800 	}
1801 
1802 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1803 		goto out;
1804 
1805 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1806 
1807 	if (skb_linearize(rx->skb))
1808 		return RX_DROP_UNUSABLE;
1809 
1810 	/*
1811 	 *  skb_linearize() might change the skb->data and
1812 	 *  previously cached variables (in this case, hdr) need to
1813 	 *  be refreshed with the new data.
1814 	 */
1815 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1816 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1817 
1818 	if (frag == 0) {
1819 		/* This is the first fragment of a new frame. */
1820 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1821 						 rx->seqno_idx, &(rx->skb));
1822 		if (rx->key &&
1823 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1824 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1825 		    ieee80211_has_protected(fc)) {
1826 			int queue = rx->security_idx;
1827 			/* Store CCMP PN so that we can verify that the next
1828 			 * fragment has a sequential PN value. */
1829 			entry->ccmp = 1;
1830 			memcpy(entry->last_pn,
1831 			       rx->key->u.ccmp.rx_pn[queue],
1832 			       IEEE80211_CCMP_PN_LEN);
1833 		}
1834 		return RX_QUEUED;
1835 	}
1836 
1837 	/* This is a fragment for a frame that should already be pending in
1838 	 * fragment cache. Add this fragment to the end of the pending entry.
1839 	 */
1840 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1841 					  rx->seqno_idx, hdr);
1842 	if (!entry) {
1843 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1844 		return RX_DROP_MONITOR;
1845 	}
1846 
1847 	/* Verify that MPDUs within one MSDU have sequential PN values.
1848 	 * (IEEE 802.11i, 8.3.3.4.5) */
1849 	if (entry->ccmp) {
1850 		int i;
1851 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1852 		int queue;
1853 		if (!rx->key ||
1854 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1855 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1856 			return RX_DROP_UNUSABLE;
1857 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1858 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1859 			pn[i]++;
1860 			if (pn[i])
1861 				break;
1862 		}
1863 		queue = rx->security_idx;
1864 		rpn = rx->key->u.ccmp.rx_pn[queue];
1865 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1866 			return RX_DROP_UNUSABLE;
1867 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1868 	}
1869 
1870 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1871 	__skb_queue_tail(&entry->skb_list, rx->skb);
1872 	entry->last_frag = frag;
1873 	entry->extra_len += rx->skb->len;
1874 	if (ieee80211_has_morefrags(fc)) {
1875 		rx->skb = NULL;
1876 		return RX_QUEUED;
1877 	}
1878 
1879 	rx->skb = __skb_dequeue(&entry->skb_list);
1880 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1881 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1882 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1883 					      GFP_ATOMIC))) {
1884 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1885 			__skb_queue_purge(&entry->skb_list);
1886 			return RX_DROP_UNUSABLE;
1887 		}
1888 	}
1889 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1890 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1891 		dev_kfree_skb(skb);
1892 	}
1893 
1894 	/* Complete frame has been reassembled - process it now */
1895 	status = IEEE80211_SKB_RXCB(rx->skb);
1896 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1897 
1898  out:
1899 	ieee80211_led_rx(rx->local);
1900  out_no_led:
1901 	if (rx->sta)
1902 		rx->sta->rx_packets++;
1903 	return RX_CONTINUE;
1904 }
1905 
1906 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1907 {
1908 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1909 		return -EACCES;
1910 
1911 	return 0;
1912 }
1913 
1914 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1915 {
1916 	struct sk_buff *skb = rx->skb;
1917 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1918 
1919 	/*
1920 	 * Pass through unencrypted frames if the hardware has
1921 	 * decrypted them already.
1922 	 */
1923 	if (status->flag & RX_FLAG_DECRYPTED)
1924 		return 0;
1925 
1926 	/* Drop unencrypted frames if key is set. */
1927 	if (unlikely(!ieee80211_has_protected(fc) &&
1928 		     !ieee80211_is_nullfunc(fc) &&
1929 		     ieee80211_is_data(fc) && rx->key))
1930 		return -EACCES;
1931 
1932 	return 0;
1933 }
1934 
1935 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1936 {
1937 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1938 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1939 	__le16 fc = hdr->frame_control;
1940 
1941 	/*
1942 	 * Pass through unencrypted frames if the hardware has
1943 	 * decrypted them already.
1944 	 */
1945 	if (status->flag & RX_FLAG_DECRYPTED)
1946 		return 0;
1947 
1948 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1949 		if (unlikely(!ieee80211_has_protected(fc) &&
1950 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1951 			     rx->key)) {
1952 			if (ieee80211_is_deauth(fc) ||
1953 			    ieee80211_is_disassoc(fc))
1954 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1955 							     rx->skb->data,
1956 							     rx->skb->len);
1957 			return -EACCES;
1958 		}
1959 		/* BIP does not use Protected field, so need to check MMIE */
1960 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1961 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1962 			if (ieee80211_is_deauth(fc) ||
1963 			    ieee80211_is_disassoc(fc))
1964 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1965 							     rx->skb->data,
1966 							     rx->skb->len);
1967 			return -EACCES;
1968 		}
1969 		/*
1970 		 * When using MFP, Action frames are not allowed prior to
1971 		 * having configured keys.
1972 		 */
1973 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1974 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
1975 			return -EACCES;
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static int
1982 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1983 {
1984 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1985 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1986 	bool check_port_control = false;
1987 	struct ethhdr *ehdr;
1988 	int ret;
1989 
1990 	*port_control = false;
1991 	if (ieee80211_has_a4(hdr->frame_control) &&
1992 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1993 		return -1;
1994 
1995 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1996 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1997 
1998 		if (!sdata->u.mgd.use_4addr)
1999 			return -1;
2000 		else
2001 			check_port_control = true;
2002 	}
2003 
2004 	if (is_multicast_ether_addr(hdr->addr1) &&
2005 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2006 		return -1;
2007 
2008 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2009 	if (ret < 0)
2010 		return ret;
2011 
2012 	ehdr = (struct ethhdr *) rx->skb->data;
2013 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2014 		*port_control = true;
2015 	else if (check_port_control)
2016 		return -1;
2017 
2018 	return 0;
2019 }
2020 
2021 /*
2022  * requires that rx->skb is a frame with ethernet header
2023  */
2024 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2025 {
2026 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2027 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2028 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2029 
2030 	/*
2031 	 * Allow EAPOL frames to us/the PAE group address regardless
2032 	 * of whether the frame was encrypted or not.
2033 	 */
2034 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2035 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2036 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2037 		return true;
2038 
2039 	if (ieee80211_802_1x_port_control(rx) ||
2040 	    ieee80211_drop_unencrypted(rx, fc))
2041 		return false;
2042 
2043 	return true;
2044 }
2045 
2046 /*
2047  * requires that rx->skb is a frame with ethernet header
2048  */
2049 static void
2050 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2051 {
2052 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2053 	struct net_device *dev = sdata->dev;
2054 	struct sk_buff *skb, *xmit_skb;
2055 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2056 	struct sta_info *dsta;
2057 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2058 
2059 	dev->stats.rx_packets++;
2060 	dev->stats.rx_bytes += rx->skb->len;
2061 
2062 	skb = rx->skb;
2063 	xmit_skb = NULL;
2064 
2065 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2066 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2067 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2068 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2069 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2070 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2071 			/*
2072 			 * send multicast frames both to higher layers in
2073 			 * local net stack and back to the wireless medium
2074 			 */
2075 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2076 			if (!xmit_skb)
2077 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2078 						    dev->name);
2079 		} else {
2080 			dsta = sta_info_get(sdata, skb->data);
2081 			if (dsta) {
2082 				/*
2083 				 * The destination station is associated to
2084 				 * this AP (in this VLAN), so send the frame
2085 				 * directly to it and do not pass it to local
2086 				 * net stack.
2087 				 */
2088 				xmit_skb = skb;
2089 				skb = NULL;
2090 			}
2091 		}
2092 	}
2093 
2094 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2095 	if (skb) {
2096 		/* 'align' will only take the values 0 or 2 here since all
2097 		 * frames are required to be aligned to 2-byte boundaries
2098 		 * when being passed to mac80211; the code here works just
2099 		 * as well if that isn't true, but mac80211 assumes it can
2100 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2101 		 */
2102 		int align;
2103 
2104 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2105 		if (align) {
2106 			if (WARN_ON(skb_headroom(skb) < 3)) {
2107 				dev_kfree_skb(skb);
2108 				skb = NULL;
2109 			} else {
2110 				u8 *data = skb->data;
2111 				size_t len = skb_headlen(skb);
2112 				skb->data -= align;
2113 				memmove(skb->data, data, len);
2114 				skb_set_tail_pointer(skb, len);
2115 			}
2116 		}
2117 	}
2118 #endif
2119 
2120 	if (skb) {
2121 		/* deliver to local stack */
2122 		skb->protocol = eth_type_trans(skb, dev);
2123 		memset(skb->cb, 0, sizeof(skb->cb));
2124 		if (rx->local->napi)
2125 			napi_gro_receive(rx->local->napi, skb);
2126 		else
2127 			netif_receive_skb(skb);
2128 	}
2129 
2130 	if (xmit_skb) {
2131 		/*
2132 		 * Send to wireless media and increase priority by 256 to
2133 		 * keep the received priority instead of reclassifying
2134 		 * the frame (see cfg80211_classify8021d).
2135 		 */
2136 		xmit_skb->priority += 256;
2137 		xmit_skb->protocol = htons(ETH_P_802_3);
2138 		skb_reset_network_header(xmit_skb);
2139 		skb_reset_mac_header(xmit_skb);
2140 		dev_queue_xmit(xmit_skb);
2141 	}
2142 }
2143 
2144 static ieee80211_rx_result debug_noinline
2145 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2146 {
2147 	struct net_device *dev = rx->sdata->dev;
2148 	struct sk_buff *skb = rx->skb;
2149 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2150 	__le16 fc = hdr->frame_control;
2151 	struct sk_buff_head frame_list;
2152 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2153 
2154 	if (unlikely(!ieee80211_is_data(fc)))
2155 		return RX_CONTINUE;
2156 
2157 	if (unlikely(!ieee80211_is_data_present(fc)))
2158 		return RX_DROP_MONITOR;
2159 
2160 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2161 		return RX_CONTINUE;
2162 
2163 	if (ieee80211_has_a4(hdr->frame_control) &&
2164 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2165 	    !rx->sdata->u.vlan.sta)
2166 		return RX_DROP_UNUSABLE;
2167 
2168 	if (is_multicast_ether_addr(hdr->addr1) &&
2169 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2170 	      rx->sdata->u.vlan.sta) ||
2171 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2172 	      rx->sdata->u.mgd.use_4addr)))
2173 		return RX_DROP_UNUSABLE;
2174 
2175 	skb->dev = dev;
2176 	__skb_queue_head_init(&frame_list);
2177 
2178 	if (skb_linearize(skb))
2179 		return RX_DROP_UNUSABLE;
2180 
2181 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2182 				 rx->sdata->vif.type,
2183 				 rx->local->hw.extra_tx_headroom, true);
2184 
2185 	while (!skb_queue_empty(&frame_list)) {
2186 		rx->skb = __skb_dequeue(&frame_list);
2187 
2188 		if (!ieee80211_frame_allowed(rx, fc)) {
2189 			dev_kfree_skb(rx->skb);
2190 			continue;
2191 		}
2192 
2193 		ieee80211_deliver_skb(rx);
2194 	}
2195 
2196 	return RX_QUEUED;
2197 }
2198 
2199 #ifdef CONFIG_MAC80211_MESH
2200 static ieee80211_rx_result
2201 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2202 {
2203 	struct ieee80211_hdr *fwd_hdr, *hdr;
2204 	struct ieee80211_tx_info *info;
2205 	struct ieee80211s_hdr *mesh_hdr;
2206 	struct sk_buff *skb = rx->skb, *fwd_skb;
2207 	struct ieee80211_local *local = rx->local;
2208 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2209 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2210 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2211 	u16 q, hdrlen;
2212 
2213 	hdr = (struct ieee80211_hdr *) skb->data;
2214 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2215 
2216 	/* make sure fixed part of mesh header is there, also checks skb len */
2217 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2218 		return RX_DROP_MONITOR;
2219 
2220 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2221 
2222 	/* make sure full mesh header is there, also checks skb len */
2223 	if (!pskb_may_pull(rx->skb,
2224 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2225 		return RX_DROP_MONITOR;
2226 
2227 	/* reload pointers */
2228 	hdr = (struct ieee80211_hdr *) skb->data;
2229 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2230 
2231 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2232 		return RX_DROP_MONITOR;
2233 
2234 	/* frame is in RMC, don't forward */
2235 	if (ieee80211_is_data(hdr->frame_control) &&
2236 	    is_multicast_ether_addr(hdr->addr1) &&
2237 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2238 		return RX_DROP_MONITOR;
2239 
2240 	if (!ieee80211_is_data(hdr->frame_control) ||
2241 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2242 		return RX_CONTINUE;
2243 
2244 	if (!mesh_hdr->ttl)
2245 		return RX_DROP_MONITOR;
2246 
2247 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2248 		struct mesh_path *mppath;
2249 		char *proxied_addr;
2250 		char *mpp_addr;
2251 
2252 		if (is_multicast_ether_addr(hdr->addr1)) {
2253 			mpp_addr = hdr->addr3;
2254 			proxied_addr = mesh_hdr->eaddr1;
2255 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2256 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2257 			mpp_addr = hdr->addr4;
2258 			proxied_addr = mesh_hdr->eaddr2;
2259 		} else {
2260 			return RX_DROP_MONITOR;
2261 		}
2262 
2263 		rcu_read_lock();
2264 		mppath = mpp_path_lookup(sdata, proxied_addr);
2265 		if (!mppath) {
2266 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2267 		} else {
2268 			spin_lock_bh(&mppath->state_lock);
2269 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2270 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2271 			spin_unlock_bh(&mppath->state_lock);
2272 		}
2273 		rcu_read_unlock();
2274 	}
2275 
2276 	/* Frame has reached destination.  Don't forward */
2277 	if (!is_multicast_ether_addr(hdr->addr1) &&
2278 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2279 		return RX_CONTINUE;
2280 
2281 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2282 	if (ieee80211_queue_stopped(&local->hw, q)) {
2283 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2284 		return RX_DROP_MONITOR;
2285 	}
2286 	skb_set_queue_mapping(skb, q);
2287 
2288 	if (!--mesh_hdr->ttl) {
2289 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2290 		goto out;
2291 	}
2292 
2293 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2294 		goto out;
2295 
2296 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2297 	if (!fwd_skb) {
2298 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2299 				    sdata->name);
2300 		goto out;
2301 	}
2302 
2303 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2304 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2305 	info = IEEE80211_SKB_CB(fwd_skb);
2306 	memset(info, 0, sizeof(*info));
2307 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2308 	info->control.vif = &rx->sdata->vif;
2309 	info->control.jiffies = jiffies;
2310 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2311 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2312 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2313 		/* update power mode indication when forwarding */
2314 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2315 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2316 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2317 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2318 	} else {
2319 		/* unable to resolve next hop */
2320 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2321 				   fwd_hdr->addr3, 0,
2322 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2323 				   fwd_hdr->addr2);
2324 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2325 		kfree_skb(fwd_skb);
2326 		return RX_DROP_MONITOR;
2327 	}
2328 
2329 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2330 	ieee80211_add_pending_skb(local, fwd_skb);
2331  out:
2332 	if (is_multicast_ether_addr(hdr->addr1) ||
2333 	    sdata->dev->flags & IFF_PROMISC)
2334 		return RX_CONTINUE;
2335 	else
2336 		return RX_DROP_MONITOR;
2337 }
2338 #endif
2339 
2340 static ieee80211_rx_result debug_noinline
2341 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2342 {
2343 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2344 	struct ieee80211_local *local = rx->local;
2345 	struct net_device *dev = sdata->dev;
2346 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2347 	__le16 fc = hdr->frame_control;
2348 	bool port_control;
2349 	int err;
2350 
2351 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2352 		return RX_CONTINUE;
2353 
2354 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2355 		return RX_DROP_MONITOR;
2356 
2357 	if (rx->sta) {
2358 		/* The seqno index has the same property as needed
2359 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2360 		 * for non-QoS-data frames. Here we know it's a data
2361 		 * frame, so count MSDUs.
2362 		 */
2363 		rx->sta->rx_msdu[rx->seqno_idx]++;
2364 	}
2365 
2366 	/*
2367 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2368 	 * also drop the frame to cooked monitor interfaces.
2369 	 */
2370 	if (ieee80211_has_a4(hdr->frame_control) &&
2371 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2372 		if (rx->sta &&
2373 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2374 			cfg80211_rx_unexpected_4addr_frame(
2375 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2376 		return RX_DROP_MONITOR;
2377 	}
2378 
2379 	err = __ieee80211_data_to_8023(rx, &port_control);
2380 	if (unlikely(err))
2381 		return RX_DROP_UNUSABLE;
2382 
2383 	if (!ieee80211_frame_allowed(rx, fc))
2384 		return RX_DROP_MONITOR;
2385 
2386 	/* directly handle TDLS channel switch requests/responses */
2387 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2388 						cpu_to_be16(ETH_P_TDLS))) {
2389 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2390 
2391 		if (pskb_may_pull(rx->skb,
2392 				  offsetof(struct ieee80211_tdls_data, u)) &&
2393 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2394 		    tf->category == WLAN_CATEGORY_TDLS &&
2395 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2396 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2397 			rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2398 			skb_queue_tail(&sdata->skb_queue, rx->skb);
2399 			ieee80211_queue_work(&rx->local->hw, &sdata->work);
2400 			if (rx->sta)
2401 				rx->sta->rx_packets++;
2402 
2403 			return RX_QUEUED;
2404 		}
2405 	}
2406 
2407 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2408 	    unlikely(port_control) && sdata->bss) {
2409 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2410 				     u.ap);
2411 		dev = sdata->dev;
2412 		rx->sdata = sdata;
2413 	}
2414 
2415 	rx->skb->dev = dev;
2416 
2417 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2418 	    !is_multicast_ether_addr(
2419 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2420 	    (!local->scanning &&
2421 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2422 			mod_timer(&local->dynamic_ps_timer, jiffies +
2423 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2424 	}
2425 
2426 	ieee80211_deliver_skb(rx);
2427 
2428 	return RX_QUEUED;
2429 }
2430 
2431 static ieee80211_rx_result debug_noinline
2432 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2433 {
2434 	struct sk_buff *skb = rx->skb;
2435 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2436 	struct tid_ampdu_rx *tid_agg_rx;
2437 	u16 start_seq_num;
2438 	u16 tid;
2439 
2440 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2441 		return RX_CONTINUE;
2442 
2443 	if (ieee80211_is_back_req(bar->frame_control)) {
2444 		struct {
2445 			__le16 control, start_seq_num;
2446 		} __packed bar_data;
2447 
2448 		if (!rx->sta)
2449 			return RX_DROP_MONITOR;
2450 
2451 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2452 				  &bar_data, sizeof(bar_data)))
2453 			return RX_DROP_MONITOR;
2454 
2455 		tid = le16_to_cpu(bar_data.control) >> 12;
2456 
2457 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2458 		if (!tid_agg_rx)
2459 			return RX_DROP_MONITOR;
2460 
2461 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2462 
2463 		/* reset session timer */
2464 		if (tid_agg_rx->timeout)
2465 			mod_timer(&tid_agg_rx->session_timer,
2466 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2467 
2468 		spin_lock(&tid_agg_rx->reorder_lock);
2469 		/* release stored frames up to start of BAR */
2470 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2471 						 start_seq_num, frames);
2472 		spin_unlock(&tid_agg_rx->reorder_lock);
2473 
2474 		kfree_skb(skb);
2475 		return RX_QUEUED;
2476 	}
2477 
2478 	/*
2479 	 * After this point, we only want management frames,
2480 	 * so we can drop all remaining control frames to
2481 	 * cooked monitor interfaces.
2482 	 */
2483 	return RX_DROP_MONITOR;
2484 }
2485 
2486 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2487 					   struct ieee80211_mgmt *mgmt,
2488 					   size_t len)
2489 {
2490 	struct ieee80211_local *local = sdata->local;
2491 	struct sk_buff *skb;
2492 	struct ieee80211_mgmt *resp;
2493 
2494 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2495 		/* Not to own unicast address */
2496 		return;
2497 	}
2498 
2499 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2500 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2501 		/* Not from the current AP or not associated yet. */
2502 		return;
2503 	}
2504 
2505 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2506 		/* Too short SA Query request frame */
2507 		return;
2508 	}
2509 
2510 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2511 	if (skb == NULL)
2512 		return;
2513 
2514 	skb_reserve(skb, local->hw.extra_tx_headroom);
2515 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2516 	memset(resp, 0, 24);
2517 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2518 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2519 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2520 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2521 					  IEEE80211_STYPE_ACTION);
2522 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2523 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2524 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2525 	memcpy(resp->u.action.u.sa_query.trans_id,
2526 	       mgmt->u.action.u.sa_query.trans_id,
2527 	       WLAN_SA_QUERY_TR_ID_LEN);
2528 
2529 	ieee80211_tx_skb(sdata, skb);
2530 }
2531 
2532 static ieee80211_rx_result debug_noinline
2533 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2534 {
2535 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2536 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2537 
2538 	/*
2539 	 * From here on, look only at management frames.
2540 	 * Data and control frames are already handled,
2541 	 * and unknown (reserved) frames are useless.
2542 	 */
2543 	if (rx->skb->len < 24)
2544 		return RX_DROP_MONITOR;
2545 
2546 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2547 		return RX_DROP_MONITOR;
2548 
2549 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2550 	    ieee80211_is_beacon(mgmt->frame_control) &&
2551 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2552 		int sig = 0;
2553 
2554 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2555 			sig = status->signal;
2556 
2557 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2558 					    rx->skb->data, rx->skb->len,
2559 					    status->freq, sig);
2560 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2561 	}
2562 
2563 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2564 		return RX_DROP_MONITOR;
2565 
2566 	if (ieee80211_drop_unencrypted_mgmt(rx))
2567 		return RX_DROP_UNUSABLE;
2568 
2569 	return RX_CONTINUE;
2570 }
2571 
2572 static ieee80211_rx_result debug_noinline
2573 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2574 {
2575 	struct ieee80211_local *local = rx->local;
2576 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2577 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2578 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2579 	int len = rx->skb->len;
2580 
2581 	if (!ieee80211_is_action(mgmt->frame_control))
2582 		return RX_CONTINUE;
2583 
2584 	/* drop too small frames */
2585 	if (len < IEEE80211_MIN_ACTION_SIZE)
2586 		return RX_DROP_UNUSABLE;
2587 
2588 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2589 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2590 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2591 		return RX_DROP_UNUSABLE;
2592 
2593 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2594 		return RX_DROP_UNUSABLE;
2595 
2596 	switch (mgmt->u.action.category) {
2597 	case WLAN_CATEGORY_HT:
2598 		/* reject HT action frames from stations not supporting HT */
2599 		if (!rx->sta->sta.ht_cap.ht_supported)
2600 			goto invalid;
2601 
2602 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2603 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2604 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2605 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2606 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2607 			break;
2608 
2609 		/* verify action & smps_control/chanwidth are present */
2610 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2611 			goto invalid;
2612 
2613 		switch (mgmt->u.action.u.ht_smps.action) {
2614 		case WLAN_HT_ACTION_SMPS: {
2615 			struct ieee80211_supported_band *sband;
2616 			enum ieee80211_smps_mode smps_mode;
2617 
2618 			/* convert to HT capability */
2619 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2620 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2621 				smps_mode = IEEE80211_SMPS_OFF;
2622 				break;
2623 			case WLAN_HT_SMPS_CONTROL_STATIC:
2624 				smps_mode = IEEE80211_SMPS_STATIC;
2625 				break;
2626 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2627 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2628 				break;
2629 			default:
2630 				goto invalid;
2631 			}
2632 
2633 			/* if no change do nothing */
2634 			if (rx->sta->sta.smps_mode == smps_mode)
2635 				goto handled;
2636 			rx->sta->sta.smps_mode = smps_mode;
2637 
2638 			sband = rx->local->hw.wiphy->bands[status->band];
2639 
2640 			rate_control_rate_update(local, sband, rx->sta,
2641 						 IEEE80211_RC_SMPS_CHANGED);
2642 			goto handled;
2643 		}
2644 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2645 			struct ieee80211_supported_band *sband;
2646 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2647 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2648 
2649 			/* If it doesn't support 40 MHz it can't change ... */
2650 			if (!(rx->sta->sta.ht_cap.cap &
2651 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2652 				goto handled;
2653 
2654 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2655 				max_bw = IEEE80211_STA_RX_BW_20;
2656 			else
2657 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2658 
2659 			/* set cur_max_bandwidth and recalc sta bw */
2660 			rx->sta->cur_max_bandwidth = max_bw;
2661 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2662 
2663 			if (rx->sta->sta.bandwidth == new_bw)
2664 				goto handled;
2665 
2666 			rx->sta->sta.bandwidth = new_bw;
2667 			sband = rx->local->hw.wiphy->bands[status->band];
2668 
2669 			rate_control_rate_update(local, sband, rx->sta,
2670 						 IEEE80211_RC_BW_CHANGED);
2671 			goto handled;
2672 		}
2673 		default:
2674 			goto invalid;
2675 		}
2676 
2677 		break;
2678 	case WLAN_CATEGORY_PUBLIC:
2679 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2680 			goto invalid;
2681 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2682 			break;
2683 		if (!rx->sta)
2684 			break;
2685 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2686 			break;
2687 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2688 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2689 			break;
2690 		if (len < offsetof(struct ieee80211_mgmt,
2691 				   u.action.u.ext_chan_switch.variable))
2692 			goto invalid;
2693 		goto queue;
2694 	case WLAN_CATEGORY_VHT:
2695 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2696 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2697 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2698 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2699 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2700 			break;
2701 
2702 		/* verify action code is present */
2703 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2704 			goto invalid;
2705 
2706 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2707 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2708 			u8 opmode;
2709 
2710 			/* verify opmode is present */
2711 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2712 				goto invalid;
2713 
2714 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2715 
2716 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2717 						    opmode, status->band,
2718 						    false);
2719 			goto handled;
2720 		}
2721 		default:
2722 			break;
2723 		}
2724 		break;
2725 	case WLAN_CATEGORY_BACK:
2726 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2727 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2728 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2729 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2730 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2731 			break;
2732 
2733 		/* verify action_code is present */
2734 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2735 			break;
2736 
2737 		switch (mgmt->u.action.u.addba_req.action_code) {
2738 		case WLAN_ACTION_ADDBA_REQ:
2739 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2740 				   sizeof(mgmt->u.action.u.addba_req)))
2741 				goto invalid;
2742 			break;
2743 		case WLAN_ACTION_ADDBA_RESP:
2744 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2745 				   sizeof(mgmt->u.action.u.addba_resp)))
2746 				goto invalid;
2747 			break;
2748 		case WLAN_ACTION_DELBA:
2749 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2750 				   sizeof(mgmt->u.action.u.delba)))
2751 				goto invalid;
2752 			break;
2753 		default:
2754 			goto invalid;
2755 		}
2756 
2757 		goto queue;
2758 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2759 		/* verify action_code is present */
2760 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2761 			break;
2762 
2763 		switch (mgmt->u.action.u.measurement.action_code) {
2764 		case WLAN_ACTION_SPCT_MSR_REQ:
2765 			if (status->band != IEEE80211_BAND_5GHZ)
2766 				break;
2767 
2768 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2769 				   sizeof(mgmt->u.action.u.measurement)))
2770 				break;
2771 
2772 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2773 				break;
2774 
2775 			ieee80211_process_measurement_req(sdata, mgmt, len);
2776 			goto handled;
2777 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2778 			u8 *bssid;
2779 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2780 				   sizeof(mgmt->u.action.u.chan_switch)))
2781 				break;
2782 
2783 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2784 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2785 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2786 				break;
2787 
2788 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2789 				bssid = sdata->u.mgd.bssid;
2790 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2791 				bssid = sdata->u.ibss.bssid;
2792 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2793 				bssid = mgmt->sa;
2794 			else
2795 				break;
2796 
2797 			if (!ether_addr_equal(mgmt->bssid, bssid))
2798 				break;
2799 
2800 			goto queue;
2801 			}
2802 		}
2803 		break;
2804 	case WLAN_CATEGORY_SA_QUERY:
2805 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2806 			   sizeof(mgmt->u.action.u.sa_query)))
2807 			break;
2808 
2809 		switch (mgmt->u.action.u.sa_query.action) {
2810 		case WLAN_ACTION_SA_QUERY_REQUEST:
2811 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2812 				break;
2813 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2814 			goto handled;
2815 		}
2816 		break;
2817 	case WLAN_CATEGORY_SELF_PROTECTED:
2818 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2819 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2820 			break;
2821 
2822 		switch (mgmt->u.action.u.self_prot.action_code) {
2823 		case WLAN_SP_MESH_PEERING_OPEN:
2824 		case WLAN_SP_MESH_PEERING_CLOSE:
2825 		case WLAN_SP_MESH_PEERING_CONFIRM:
2826 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2827 				goto invalid;
2828 			if (sdata->u.mesh.user_mpm)
2829 				/* userspace handles this frame */
2830 				break;
2831 			goto queue;
2832 		case WLAN_SP_MGK_INFORM:
2833 		case WLAN_SP_MGK_ACK:
2834 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2835 				goto invalid;
2836 			break;
2837 		}
2838 		break;
2839 	case WLAN_CATEGORY_MESH_ACTION:
2840 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2841 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2842 			break;
2843 
2844 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2845 			break;
2846 		if (mesh_action_is_path_sel(mgmt) &&
2847 		    !mesh_path_sel_is_hwmp(sdata))
2848 			break;
2849 		goto queue;
2850 	}
2851 
2852 	return RX_CONTINUE;
2853 
2854  invalid:
2855 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2856 	/* will return in the next handlers */
2857 	return RX_CONTINUE;
2858 
2859  handled:
2860 	if (rx->sta)
2861 		rx->sta->rx_packets++;
2862 	dev_kfree_skb(rx->skb);
2863 	return RX_QUEUED;
2864 
2865  queue:
2866 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2867 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2868 	ieee80211_queue_work(&local->hw, &sdata->work);
2869 	if (rx->sta)
2870 		rx->sta->rx_packets++;
2871 	return RX_QUEUED;
2872 }
2873 
2874 static ieee80211_rx_result debug_noinline
2875 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2876 {
2877 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2878 	int sig = 0;
2879 
2880 	/* skip known-bad action frames and return them in the next handler */
2881 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2882 		return RX_CONTINUE;
2883 
2884 	/*
2885 	 * Getting here means the kernel doesn't know how to handle
2886 	 * it, but maybe userspace does ... include returned frames
2887 	 * so userspace can register for those to know whether ones
2888 	 * it transmitted were processed or returned.
2889 	 */
2890 
2891 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2892 		sig = status->signal;
2893 
2894 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2895 			     rx->skb->data, rx->skb->len, 0)) {
2896 		if (rx->sta)
2897 			rx->sta->rx_packets++;
2898 		dev_kfree_skb(rx->skb);
2899 		return RX_QUEUED;
2900 	}
2901 
2902 	return RX_CONTINUE;
2903 }
2904 
2905 static ieee80211_rx_result debug_noinline
2906 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2907 {
2908 	struct ieee80211_local *local = rx->local;
2909 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2910 	struct sk_buff *nskb;
2911 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2912 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2913 
2914 	if (!ieee80211_is_action(mgmt->frame_control))
2915 		return RX_CONTINUE;
2916 
2917 	/*
2918 	 * For AP mode, hostapd is responsible for handling any action
2919 	 * frames that we didn't handle, including returning unknown
2920 	 * ones. For all other modes we will return them to the sender,
2921 	 * setting the 0x80 bit in the action category, as required by
2922 	 * 802.11-2012 9.24.4.
2923 	 * Newer versions of hostapd shall also use the management frame
2924 	 * registration mechanisms, but older ones still use cooked
2925 	 * monitor interfaces so push all frames there.
2926 	 */
2927 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2928 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2929 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2930 		return RX_DROP_MONITOR;
2931 
2932 	if (is_multicast_ether_addr(mgmt->da))
2933 		return RX_DROP_MONITOR;
2934 
2935 	/* do not return rejected action frames */
2936 	if (mgmt->u.action.category & 0x80)
2937 		return RX_DROP_UNUSABLE;
2938 
2939 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2940 			       GFP_ATOMIC);
2941 	if (nskb) {
2942 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2943 
2944 		nmgmt->u.action.category |= 0x80;
2945 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2946 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2947 
2948 		memset(nskb->cb, 0, sizeof(nskb->cb));
2949 
2950 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2951 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2952 
2953 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2954 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2955 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2956 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2957 				info->hw_queue =
2958 					local->hw.offchannel_tx_hw_queue;
2959 		}
2960 
2961 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2962 					    status->band);
2963 	}
2964 	dev_kfree_skb(rx->skb);
2965 	return RX_QUEUED;
2966 }
2967 
2968 static ieee80211_rx_result debug_noinline
2969 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2970 {
2971 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2972 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2973 	__le16 stype;
2974 
2975 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2976 
2977 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2978 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2979 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
2980 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2981 		return RX_DROP_MONITOR;
2982 
2983 	switch (stype) {
2984 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2985 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2986 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2987 		/* process for all: mesh, mlme, ibss */
2988 		break;
2989 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2990 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2991 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2992 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2993 		if (is_multicast_ether_addr(mgmt->da) &&
2994 		    !is_broadcast_ether_addr(mgmt->da))
2995 			return RX_DROP_MONITOR;
2996 
2997 		/* process only for station */
2998 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2999 			return RX_DROP_MONITOR;
3000 		break;
3001 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3002 		/* process only for ibss and mesh */
3003 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3004 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3005 			return RX_DROP_MONITOR;
3006 		break;
3007 	default:
3008 		return RX_DROP_MONITOR;
3009 	}
3010 
3011 	/* queue up frame and kick off work to process it */
3012 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3013 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3014 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3015 	if (rx->sta)
3016 		rx->sta->rx_packets++;
3017 
3018 	return RX_QUEUED;
3019 }
3020 
3021 /* TODO: use IEEE80211_RX_FRAGMENTED */
3022 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3023 					struct ieee80211_rate *rate)
3024 {
3025 	struct ieee80211_sub_if_data *sdata;
3026 	struct ieee80211_local *local = rx->local;
3027 	struct sk_buff *skb = rx->skb, *skb2;
3028 	struct net_device *prev_dev = NULL;
3029 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3030 	int needed_headroom;
3031 
3032 	/*
3033 	 * If cooked monitor has been processed already, then
3034 	 * don't do it again. If not, set the flag.
3035 	 */
3036 	if (rx->flags & IEEE80211_RX_CMNTR)
3037 		goto out_free_skb;
3038 	rx->flags |= IEEE80211_RX_CMNTR;
3039 
3040 	/* If there are no cooked monitor interfaces, just free the SKB */
3041 	if (!local->cooked_mntrs)
3042 		goto out_free_skb;
3043 
3044 	/* vendor data is long removed here */
3045 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3046 	/* room for the radiotap header based on driver features */
3047 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3048 
3049 	if (skb_headroom(skb) < needed_headroom &&
3050 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3051 		goto out_free_skb;
3052 
3053 	/* prepend radiotap information */
3054 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3055 					 false);
3056 
3057 	skb_set_mac_header(skb, 0);
3058 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3059 	skb->pkt_type = PACKET_OTHERHOST;
3060 	skb->protocol = htons(ETH_P_802_2);
3061 
3062 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3063 		if (!ieee80211_sdata_running(sdata))
3064 			continue;
3065 
3066 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3067 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3068 			continue;
3069 
3070 		if (prev_dev) {
3071 			skb2 = skb_clone(skb, GFP_ATOMIC);
3072 			if (skb2) {
3073 				skb2->dev = prev_dev;
3074 				netif_receive_skb(skb2);
3075 			}
3076 		}
3077 
3078 		prev_dev = sdata->dev;
3079 		sdata->dev->stats.rx_packets++;
3080 		sdata->dev->stats.rx_bytes += skb->len;
3081 	}
3082 
3083 	if (prev_dev) {
3084 		skb->dev = prev_dev;
3085 		netif_receive_skb(skb);
3086 		return;
3087 	}
3088 
3089  out_free_skb:
3090 	dev_kfree_skb(skb);
3091 }
3092 
3093 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3094 					 ieee80211_rx_result res)
3095 {
3096 	switch (res) {
3097 	case RX_DROP_MONITOR:
3098 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3099 		if (rx->sta)
3100 			rx->sta->rx_dropped++;
3101 		/* fall through */
3102 	case RX_CONTINUE: {
3103 		struct ieee80211_rate *rate = NULL;
3104 		struct ieee80211_supported_band *sband;
3105 		struct ieee80211_rx_status *status;
3106 
3107 		status = IEEE80211_SKB_RXCB((rx->skb));
3108 
3109 		sband = rx->local->hw.wiphy->bands[status->band];
3110 		if (!(status->flag & RX_FLAG_HT) &&
3111 		    !(status->flag & RX_FLAG_VHT))
3112 			rate = &sband->bitrates[status->rate_idx];
3113 
3114 		ieee80211_rx_cooked_monitor(rx, rate);
3115 		break;
3116 		}
3117 	case RX_DROP_UNUSABLE:
3118 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3119 		if (rx->sta)
3120 			rx->sta->rx_dropped++;
3121 		dev_kfree_skb(rx->skb);
3122 		break;
3123 	case RX_QUEUED:
3124 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3125 		break;
3126 	}
3127 }
3128 
3129 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3130 				  struct sk_buff_head *frames)
3131 {
3132 	ieee80211_rx_result res = RX_DROP_MONITOR;
3133 	struct sk_buff *skb;
3134 
3135 #define CALL_RXH(rxh)			\
3136 	do {				\
3137 		res = rxh(rx);		\
3138 		if (res != RX_CONTINUE)	\
3139 			goto rxh_next;  \
3140 	} while (0);
3141 
3142 	/* Lock here to avoid hitting all of the data used in the RX
3143 	 * path (e.g. key data, station data, ...) concurrently when
3144 	 * a frame is released from the reorder buffer due to timeout
3145 	 * from the timer, potentially concurrently with RX from the
3146 	 * driver.
3147 	 */
3148 	spin_lock_bh(&rx->local->rx_path_lock);
3149 
3150 	while ((skb = __skb_dequeue(frames))) {
3151 		/*
3152 		 * all the other fields are valid across frames
3153 		 * that belong to an aMPDU since they are on the
3154 		 * same TID from the same station
3155 		 */
3156 		rx->skb = skb;
3157 
3158 		CALL_RXH(ieee80211_rx_h_check_more_data)
3159 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3160 		CALL_RXH(ieee80211_rx_h_sta_process)
3161 		CALL_RXH(ieee80211_rx_h_decrypt)
3162 		CALL_RXH(ieee80211_rx_h_defragment)
3163 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3164 		/* must be after MMIC verify so header is counted in MPDU mic */
3165 #ifdef CONFIG_MAC80211_MESH
3166 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3167 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3168 #endif
3169 		CALL_RXH(ieee80211_rx_h_amsdu)
3170 		CALL_RXH(ieee80211_rx_h_data)
3171 
3172 		/* special treatment -- needs the queue */
3173 		res = ieee80211_rx_h_ctrl(rx, frames);
3174 		if (res != RX_CONTINUE)
3175 			goto rxh_next;
3176 
3177 		CALL_RXH(ieee80211_rx_h_mgmt_check)
3178 		CALL_RXH(ieee80211_rx_h_action)
3179 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3180 		CALL_RXH(ieee80211_rx_h_action_return)
3181 		CALL_RXH(ieee80211_rx_h_mgmt)
3182 
3183  rxh_next:
3184 		ieee80211_rx_handlers_result(rx, res);
3185 
3186 #undef CALL_RXH
3187 	}
3188 
3189 	spin_unlock_bh(&rx->local->rx_path_lock);
3190 }
3191 
3192 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3193 {
3194 	struct sk_buff_head reorder_release;
3195 	ieee80211_rx_result res = RX_DROP_MONITOR;
3196 
3197 	__skb_queue_head_init(&reorder_release);
3198 
3199 #define CALL_RXH(rxh)			\
3200 	do {				\
3201 		res = rxh(rx);		\
3202 		if (res != RX_CONTINUE)	\
3203 			goto rxh_next;  \
3204 	} while (0);
3205 
3206 	CALL_RXH(ieee80211_rx_h_check_dup)
3207 	CALL_RXH(ieee80211_rx_h_check)
3208 
3209 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3210 
3211 	ieee80211_rx_handlers(rx, &reorder_release);
3212 	return;
3213 
3214  rxh_next:
3215 	ieee80211_rx_handlers_result(rx, res);
3216 
3217 #undef CALL_RXH
3218 }
3219 
3220 /*
3221  * This function makes calls into the RX path, therefore
3222  * it has to be invoked under RCU read lock.
3223  */
3224 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3225 {
3226 	struct sk_buff_head frames;
3227 	struct ieee80211_rx_data rx = {
3228 		.sta = sta,
3229 		.sdata = sta->sdata,
3230 		.local = sta->local,
3231 		/* This is OK -- must be QoS data frame */
3232 		.security_idx = tid,
3233 		.seqno_idx = tid,
3234 		.flags = 0,
3235 	};
3236 	struct tid_ampdu_rx *tid_agg_rx;
3237 
3238 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3239 	if (!tid_agg_rx)
3240 		return;
3241 
3242 	__skb_queue_head_init(&frames);
3243 
3244 	spin_lock(&tid_agg_rx->reorder_lock);
3245 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3246 	spin_unlock(&tid_agg_rx->reorder_lock);
3247 
3248 	ieee80211_rx_handlers(&rx, &frames);
3249 }
3250 
3251 /* main receive path */
3252 
3253 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3254 				 struct ieee80211_hdr *hdr)
3255 {
3256 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3257 	struct sk_buff *skb = rx->skb;
3258 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3259 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3260 	int multicast = is_multicast_ether_addr(hdr->addr1);
3261 
3262 	switch (sdata->vif.type) {
3263 	case NL80211_IFTYPE_STATION:
3264 		if (!bssid && !sdata->u.mgd.use_4addr)
3265 			return false;
3266 		if (!multicast &&
3267 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3268 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3269 			    sdata->u.mgd.use_4addr)
3270 				return false;
3271 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3272 		}
3273 		break;
3274 	case NL80211_IFTYPE_ADHOC:
3275 		if (!bssid)
3276 			return false;
3277 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3278 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3279 			return false;
3280 		if (ieee80211_is_beacon(hdr->frame_control)) {
3281 			return true;
3282 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3283 			return false;
3284 		} else if (!multicast &&
3285 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3286 			if (!(sdata->dev->flags & IFF_PROMISC))
3287 				return false;
3288 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3289 		} else if (!rx->sta) {
3290 			int rate_idx;
3291 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3292 				rate_idx = 0; /* TODO: HT/VHT rates */
3293 			else
3294 				rate_idx = status->rate_idx;
3295 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3296 						 BIT(rate_idx));
3297 		}
3298 		break;
3299 	case NL80211_IFTYPE_OCB:
3300 		if (!bssid)
3301 			return false;
3302 		if (ieee80211_is_beacon(hdr->frame_control)) {
3303 			return false;
3304 		} else if (!is_broadcast_ether_addr(bssid)) {
3305 			ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3306 			return false;
3307 		} else if (!multicast &&
3308 			   !ether_addr_equal(sdata->dev->dev_addr,
3309 					     hdr->addr1)) {
3310 			/* if we are in promisc mode we also accept
3311 			 * packets not destined for us
3312 			 */
3313 			if (!(sdata->dev->flags & IFF_PROMISC))
3314 				return false;
3315 			rx->flags &= ~IEEE80211_RX_RA_MATCH;
3316 		} else if (!rx->sta) {
3317 			int rate_idx;
3318 			if (status->flag & RX_FLAG_HT)
3319 				rate_idx = 0; /* TODO: HT rates */
3320 			else
3321 				rate_idx = status->rate_idx;
3322 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3323 						BIT(rate_idx));
3324 		}
3325 		break;
3326 	case NL80211_IFTYPE_MESH_POINT:
3327 		if (!multicast &&
3328 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3329 			if (!(sdata->dev->flags & IFF_PROMISC))
3330 				return false;
3331 
3332 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3333 		}
3334 		break;
3335 	case NL80211_IFTYPE_AP_VLAN:
3336 	case NL80211_IFTYPE_AP:
3337 		if (!bssid) {
3338 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3339 				return false;
3340 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3341 			/*
3342 			 * Accept public action frames even when the
3343 			 * BSSID doesn't match, this is used for P2P
3344 			 * and location updates. Note that mac80211
3345 			 * itself never looks at these frames.
3346 			 */
3347 			if (!multicast &&
3348 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3349 				return false;
3350 			if (ieee80211_is_public_action(hdr, skb->len))
3351 				return true;
3352 			if (!ieee80211_is_beacon(hdr->frame_control))
3353 				return false;
3354 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3355 		} else if (!ieee80211_has_tods(hdr->frame_control)) {
3356 			/* ignore data frames to TDLS-peers */
3357 			if (ieee80211_is_data(hdr->frame_control))
3358 				return false;
3359 			/* ignore action frames to TDLS-peers */
3360 			if (ieee80211_is_action(hdr->frame_control) &&
3361 			    !ether_addr_equal(bssid, hdr->addr1))
3362 				return false;
3363 		}
3364 		break;
3365 	case NL80211_IFTYPE_WDS:
3366 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3367 			return false;
3368 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3369 			return false;
3370 		break;
3371 	case NL80211_IFTYPE_P2P_DEVICE:
3372 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3373 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3374 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3375 		    !ieee80211_is_beacon(hdr->frame_control))
3376 			return false;
3377 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3378 		    !multicast)
3379 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3380 		break;
3381 	default:
3382 		/* should never get here */
3383 		WARN_ON_ONCE(1);
3384 		break;
3385 	}
3386 
3387 	return true;
3388 }
3389 
3390 /*
3391  * This function returns whether or not the SKB
3392  * was destined for RX processing or not, which,
3393  * if consume is true, is equivalent to whether
3394  * or not the skb was consumed.
3395  */
3396 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3397 					    struct sk_buff *skb, bool consume)
3398 {
3399 	struct ieee80211_local *local = rx->local;
3400 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3401 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3402 	struct ieee80211_hdr *hdr = (void *)skb->data;
3403 
3404 	rx->skb = skb;
3405 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3406 
3407 	if (!prepare_for_handlers(rx, hdr))
3408 		return false;
3409 
3410 	if (!consume) {
3411 		skb = skb_copy(skb, GFP_ATOMIC);
3412 		if (!skb) {
3413 			if (net_ratelimit())
3414 				wiphy_debug(local->hw.wiphy,
3415 					"failed to copy skb for %s\n",
3416 					sdata->name);
3417 			return true;
3418 		}
3419 
3420 		rx->skb = skb;
3421 	}
3422 
3423 	ieee80211_invoke_rx_handlers(rx);
3424 	return true;
3425 }
3426 
3427 /*
3428  * This is the actual Rx frames handler. as it belongs to Rx path it must
3429  * be called with rcu_read_lock protection.
3430  */
3431 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3432 					 struct sk_buff *skb)
3433 {
3434 	struct ieee80211_local *local = hw_to_local(hw);
3435 	struct ieee80211_sub_if_data *sdata;
3436 	struct ieee80211_hdr *hdr;
3437 	__le16 fc;
3438 	struct ieee80211_rx_data rx;
3439 	struct ieee80211_sub_if_data *prev;
3440 	struct sta_info *sta, *prev_sta;
3441 	struct rhash_head *tmp;
3442 	int err = 0;
3443 
3444 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3445 	memset(&rx, 0, sizeof(rx));
3446 	rx.skb = skb;
3447 	rx.local = local;
3448 
3449 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3450 		local->dot11ReceivedFragmentCount++;
3451 
3452 	if (ieee80211_is_mgmt(fc)) {
3453 		/* drop frame if too short for header */
3454 		if (skb->len < ieee80211_hdrlen(fc))
3455 			err = -ENOBUFS;
3456 		else
3457 			err = skb_linearize(skb);
3458 	} else {
3459 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3460 	}
3461 
3462 	if (err) {
3463 		dev_kfree_skb(skb);
3464 		return;
3465 	}
3466 
3467 	hdr = (struct ieee80211_hdr *)skb->data;
3468 	ieee80211_parse_qos(&rx);
3469 	ieee80211_verify_alignment(&rx);
3470 
3471 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3472 		     ieee80211_is_beacon(hdr->frame_control)))
3473 		ieee80211_scan_rx(local, skb);
3474 
3475 	if (ieee80211_is_data(fc)) {
3476 		const struct bucket_table *tbl;
3477 
3478 		prev_sta = NULL;
3479 
3480 		tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3481 
3482 		for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3483 			if (!prev_sta) {
3484 				prev_sta = sta;
3485 				continue;
3486 			}
3487 
3488 			rx.sta = prev_sta;
3489 			rx.sdata = prev_sta->sdata;
3490 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3491 
3492 			prev_sta = sta;
3493 		}
3494 
3495 		if (prev_sta) {
3496 			rx.sta = prev_sta;
3497 			rx.sdata = prev_sta->sdata;
3498 
3499 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3500 				return;
3501 			goto out;
3502 		}
3503 	}
3504 
3505 	prev = NULL;
3506 
3507 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3508 		if (!ieee80211_sdata_running(sdata))
3509 			continue;
3510 
3511 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3512 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3513 			continue;
3514 
3515 		/*
3516 		 * frame is destined for this interface, but if it's
3517 		 * not also for the previous one we handle that after
3518 		 * the loop to avoid copying the SKB once too much
3519 		 */
3520 
3521 		if (!prev) {
3522 			prev = sdata;
3523 			continue;
3524 		}
3525 
3526 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3527 		rx.sdata = prev;
3528 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3529 
3530 		prev = sdata;
3531 	}
3532 
3533 	if (prev) {
3534 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3535 		rx.sdata = prev;
3536 
3537 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3538 			return;
3539 	}
3540 
3541  out:
3542 	dev_kfree_skb(skb);
3543 }
3544 
3545 /*
3546  * This is the receive path handler. It is called by a low level driver when an
3547  * 802.11 MPDU is received from the hardware.
3548  */
3549 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3550 {
3551 	struct ieee80211_local *local = hw_to_local(hw);
3552 	struct ieee80211_rate *rate = NULL;
3553 	struct ieee80211_supported_band *sband;
3554 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3555 
3556 	WARN_ON_ONCE(softirq_count() == 0);
3557 
3558 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3559 		goto drop;
3560 
3561 	sband = local->hw.wiphy->bands[status->band];
3562 	if (WARN_ON(!sband))
3563 		goto drop;
3564 
3565 	/*
3566 	 * If we're suspending, it is possible although not too likely
3567 	 * that we'd be receiving frames after having already partially
3568 	 * quiesced the stack. We can't process such frames then since
3569 	 * that might, for example, cause stations to be added or other
3570 	 * driver callbacks be invoked.
3571 	 */
3572 	if (unlikely(local->quiescing || local->suspended))
3573 		goto drop;
3574 
3575 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3576 	if (unlikely(local->in_reconfig))
3577 		goto drop;
3578 
3579 	/*
3580 	 * The same happens when we're not even started,
3581 	 * but that's worth a warning.
3582 	 */
3583 	if (WARN_ON(!local->started))
3584 		goto drop;
3585 
3586 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3587 		/*
3588 		 * Validate the rate, unless a PLCP error means that
3589 		 * we probably can't have a valid rate here anyway.
3590 		 */
3591 
3592 		if (status->flag & RX_FLAG_HT) {
3593 			/*
3594 			 * rate_idx is MCS index, which can be [0-76]
3595 			 * as documented on:
3596 			 *
3597 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3598 			 *
3599 			 * Anything else would be some sort of driver or
3600 			 * hardware error. The driver should catch hardware
3601 			 * errors.
3602 			 */
3603 			if (WARN(status->rate_idx > 76,
3604 				 "Rate marked as an HT rate but passed "
3605 				 "status->rate_idx is not "
3606 				 "an MCS index [0-76]: %d (0x%02x)\n",
3607 				 status->rate_idx,
3608 				 status->rate_idx))
3609 				goto drop;
3610 		} else if (status->flag & RX_FLAG_VHT) {
3611 			if (WARN_ONCE(status->rate_idx > 9 ||
3612 				      !status->vht_nss ||
3613 				      status->vht_nss > 8,
3614 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3615 				      status->rate_idx, status->vht_nss))
3616 				goto drop;
3617 		} else {
3618 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3619 				goto drop;
3620 			rate = &sband->bitrates[status->rate_idx];
3621 		}
3622 	}
3623 
3624 	status->rx_flags = 0;
3625 
3626 	/*
3627 	 * key references and virtual interfaces are protected using RCU
3628 	 * and this requires that we are in a read-side RCU section during
3629 	 * receive processing
3630 	 */
3631 	rcu_read_lock();
3632 
3633 	/*
3634 	 * Frames with failed FCS/PLCP checksum are not returned,
3635 	 * all other frames are returned without radiotap header
3636 	 * if it was previously present.
3637 	 * Also, frames with less than 16 bytes are dropped.
3638 	 */
3639 	skb = ieee80211_rx_monitor(local, skb, rate);
3640 	if (!skb) {
3641 		rcu_read_unlock();
3642 		return;
3643 	}
3644 
3645 	ieee80211_tpt_led_trig_rx(local,
3646 			((struct ieee80211_hdr *)skb->data)->frame_control,
3647 			skb->len);
3648 	__ieee80211_rx_handle_packet(hw, skb);
3649 
3650 	rcu_read_unlock();
3651 
3652 	return;
3653  drop:
3654 	kfree_skb(skb);
3655 }
3656 EXPORT_SYMBOL(ieee80211_rx);
3657 
3658 /* This is a version of the rx handler that can be called from hard irq
3659  * context. Post the skb on the queue and schedule the tasklet */
3660 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3661 {
3662 	struct ieee80211_local *local = hw_to_local(hw);
3663 
3664 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3665 
3666 	skb->pkt_type = IEEE80211_RX_MSG;
3667 	skb_queue_tail(&local->skb_queue, skb);
3668 	tasklet_schedule(&local->tasklet);
3669 }
3670 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3671