1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/jiffies.h> 14 #include <linux/slab.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 42 struct sk_buff *skb, 43 unsigned int rtap_vendor_space) 44 { 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 __pskb_pull(skb, rtap_vendor_space); 57 58 return skb; 59 } 60 61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 62 unsigned int rtap_vendor_space) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + rtap_vendor_space); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return true; 73 74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 75 return true; 76 77 if (ieee80211_is_ctl(hdr->frame_control) && 78 !ieee80211_is_pspoll(hdr->frame_control) && 79 !ieee80211_is_back_req(hdr->frame_control)) 80 return true; 81 82 return false; 83 } 84 85 static int 86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 87 struct ieee80211_rx_status *status, 88 struct sk_buff *skb) 89 { 90 int len; 91 92 /* always present fields */ 93 len = sizeof(struct ieee80211_radiotap_header) + 8; 94 95 /* allocate extra bitmaps */ 96 if (status->chains) 97 len += 4 * hweight8(status->chains); 98 99 if (ieee80211_have_rx_timestamp(status)) { 100 len = ALIGN(len, 8); 101 len += 8; 102 } 103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 104 len += 1; 105 106 /* antenna field, if we don't have per-chain info */ 107 if (!status->chains) 108 len += 1; 109 110 /* padding for RX_FLAGS if necessary */ 111 len = ALIGN(len, 2); 112 113 if (status->flag & RX_FLAG_HT) /* HT info */ 114 len += 3; 115 116 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 117 len = ALIGN(len, 4); 118 len += 8; 119 } 120 121 if (status->flag & RX_FLAG_VHT) { 122 len = ALIGN(len, 2); 123 len += 12; 124 } 125 126 if (status->chains) { 127 /* antenna and antenna signal fields */ 128 len += 2 * hweight8(status->chains); 129 } 130 131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 133 134 /* vendor presence bitmap */ 135 len += 4; 136 /* alignment for fixed 6-byte vendor data header */ 137 len = ALIGN(len, 2); 138 /* vendor data header */ 139 len += 6; 140 if (WARN_ON(rtap->align == 0)) 141 rtap->align = 1; 142 len = ALIGN(len, rtap->align); 143 len += rtap->len + rtap->pad; 144 } 145 146 return len; 147 } 148 149 /* 150 * ieee80211_add_rx_radiotap_header - add radiotap header 151 * 152 * add a radiotap header containing all the fields which the hardware provided. 153 */ 154 static void 155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 156 struct sk_buff *skb, 157 struct ieee80211_rate *rate, 158 int rtap_len, bool has_fcs) 159 { 160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 161 struct ieee80211_radiotap_header *rthdr; 162 unsigned char *pos; 163 __le32 *it_present; 164 u32 it_present_val; 165 u16 rx_flags = 0; 166 u16 channel_flags = 0; 167 int mpdulen, chain; 168 unsigned long chains = status->chains; 169 struct ieee80211_vendor_radiotap rtap = {}; 170 171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 173 /* rtap.len and rtap.pad are undone immediately */ 174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 175 } 176 177 mpdulen = skb->len; 178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 179 mpdulen += FCS_LEN; 180 181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 183 it_present = &rthdr->it_present; 184 185 /* radiotap header, set always present flags */ 186 rthdr->it_len = cpu_to_le16(rtap_len); 187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 188 BIT(IEEE80211_RADIOTAP_CHANNEL) | 189 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 190 191 if (!status->chains) 192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 193 194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 195 it_present_val |= 196 BIT(IEEE80211_RADIOTAP_EXT) | 197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 198 put_unaligned_le32(it_present_val, it_present); 199 it_present++; 200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 202 } 203 204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 206 BIT(IEEE80211_RADIOTAP_EXT); 207 put_unaligned_le32(it_present_val, it_present); 208 it_present++; 209 it_present_val = rtap.present; 210 } 211 212 put_unaligned_le32(it_present_val, it_present); 213 214 pos = (void *)(it_present + 1); 215 216 /* the order of the following fields is important */ 217 218 /* IEEE80211_RADIOTAP_TSFT */ 219 if (ieee80211_have_rx_timestamp(status)) { 220 /* padding */ 221 while ((pos - (u8 *)rthdr) & 7) 222 *pos++ = 0; 223 put_unaligned_le64( 224 ieee80211_calculate_rx_timestamp(local, status, 225 mpdulen, 0), 226 pos); 227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 228 pos += 8; 229 } 230 231 /* IEEE80211_RADIOTAP_FLAGS */ 232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 233 *pos |= IEEE80211_RADIOTAP_F_FCS; 234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 235 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 236 if (status->flag & RX_FLAG_SHORTPRE) 237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 238 pos++; 239 240 /* IEEE80211_RADIOTAP_RATE */ 241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 242 /* 243 * Without rate information don't add it. If we have, 244 * MCS information is a separate field in radiotap, 245 * added below. The byte here is needed as padding 246 * for the channel though, so initialise it to 0. 247 */ 248 *pos = 0; 249 } else { 250 int shift = 0; 251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 252 if (status->flag & RX_FLAG_10MHZ) 253 shift = 1; 254 else if (status->flag & RX_FLAG_5MHZ) 255 shift = 2; 256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 257 } 258 pos++; 259 260 /* IEEE80211_RADIOTAP_CHANNEL */ 261 put_unaligned_le16(status->freq, pos); 262 pos += 2; 263 if (status->flag & RX_FLAG_10MHZ) 264 channel_flags |= IEEE80211_CHAN_HALF; 265 else if (status->flag & RX_FLAG_5MHZ) 266 channel_flags |= IEEE80211_CHAN_QUARTER; 267 268 if (status->band == IEEE80211_BAND_5GHZ) 269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 274 else if (rate) 275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 276 else 277 channel_flags |= IEEE80211_CHAN_2GHZ; 278 put_unaligned_le16(channel_flags, pos); 279 pos += 2; 280 281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 284 *pos = status->signal; 285 rthdr->it_present |= 286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 287 pos++; 288 } 289 290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 291 292 if (!status->chains) { 293 /* IEEE80211_RADIOTAP_ANTENNA */ 294 *pos = status->antenna; 295 pos++; 296 } 297 298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 299 300 /* IEEE80211_RADIOTAP_RX_FLAGS */ 301 /* ensure 2 byte alignment for the 2 byte field as required */ 302 if ((pos - (u8 *)rthdr) & 1) 303 *pos++ = 0; 304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 306 put_unaligned_le16(rx_flags, pos); 307 pos += 2; 308 309 if (status->flag & RX_FLAG_HT) { 310 unsigned int stbc; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 313 *pos++ = local->hw.radiotap_mcs_details; 314 *pos = 0; 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 317 if (status->flag & RX_FLAG_40MHZ) 318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 319 if (status->flag & RX_FLAG_HT_GF) 320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 321 if (status->flag & RX_FLAG_LDPC) 322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 325 pos++; 326 *pos++ = status->rate_idx; 327 } 328 329 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 330 u16 flags = 0; 331 332 /* ensure 4 byte alignment */ 333 while ((pos - (u8 *)rthdr) & 3) 334 pos++; 335 rthdr->it_present |= 336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 337 put_unaligned_le32(status->ampdu_reference, pos); 338 pos += 4; 339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 345 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 351 put_unaligned_le16(flags, pos); 352 pos += 2; 353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 354 *pos++ = status->ampdu_delimiter_crc; 355 else 356 *pos++ = 0; 357 *pos++ = 0; 358 } 359 360 if (status->flag & RX_FLAG_VHT) { 361 u16 known = local->hw.radiotap_vht_details; 362 363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 364 put_unaligned_le16(known, pos); 365 pos += 2; 366 /* flags */ 367 if (status->flag & RX_FLAG_SHORT_GI) 368 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 369 /* in VHT, STBC is binary */ 370 if (status->flag & RX_FLAG_STBC_MASK) 371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 372 if (status->vht_flag & RX_VHT_FLAG_BF) 373 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 374 pos++; 375 /* bandwidth */ 376 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 377 *pos++ = 4; 378 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 379 *pos++ = 11; 380 else if (status->flag & RX_FLAG_40MHZ) 381 *pos++ = 1; 382 else /* 20 MHz */ 383 *pos++ = 0; 384 /* MCS/NSS */ 385 *pos = (status->rate_idx << 4) | status->vht_nss; 386 pos += 4; 387 /* coding field */ 388 if (status->flag & RX_FLAG_LDPC) 389 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 390 pos++; 391 /* group ID */ 392 pos++; 393 /* partial_aid */ 394 pos += 2; 395 } 396 397 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 398 *pos++ = status->chain_signal[chain]; 399 *pos++ = chain; 400 } 401 402 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 403 /* ensure 2 byte alignment for the vendor field as required */ 404 if ((pos - (u8 *)rthdr) & 1) 405 *pos++ = 0; 406 *pos++ = rtap.oui[0]; 407 *pos++ = rtap.oui[1]; 408 *pos++ = rtap.oui[2]; 409 *pos++ = rtap.subns; 410 put_unaligned_le16(rtap.len, pos); 411 pos += 2; 412 /* align the actual payload as requested */ 413 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 414 *pos++ = 0; 415 /* data (and possible padding) already follows */ 416 } 417 } 418 419 /* 420 * This function copies a received frame to all monitor interfaces and 421 * returns a cleaned-up SKB that no longer includes the FCS nor the 422 * radiotap header the driver might have added. 423 */ 424 static struct sk_buff * 425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 426 struct ieee80211_rate *rate) 427 { 428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 429 struct ieee80211_sub_if_data *sdata; 430 int rt_hdrlen, needed_headroom; 431 struct sk_buff *skb, *skb2; 432 struct net_device *prev_dev = NULL; 433 int present_fcs_len = 0; 434 unsigned int rtap_vendor_space = 0; 435 436 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 437 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 438 439 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 440 } 441 442 /* 443 * First, we may need to make a copy of the skb because 444 * (1) we need to modify it for radiotap (if not present), and 445 * (2) the other RX handlers will modify the skb we got. 446 * 447 * We don't need to, of course, if we aren't going to return 448 * the SKB because it has a bad FCS/PLCP checksum. 449 */ 450 451 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 452 present_fcs_len = FCS_LEN; 453 454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 455 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 456 dev_kfree_skb(origskb); 457 return NULL; 458 } 459 460 if (!local->monitors) { 461 if (should_drop_frame(origskb, present_fcs_len, 462 rtap_vendor_space)) { 463 dev_kfree_skb(origskb); 464 return NULL; 465 } 466 467 return remove_monitor_info(local, origskb, rtap_vendor_space); 468 } 469 470 /* room for the radiotap header based on driver features */ 471 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 472 needed_headroom = rt_hdrlen - rtap_vendor_space; 473 474 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 475 /* only need to expand headroom if necessary */ 476 skb = origskb; 477 origskb = NULL; 478 479 /* 480 * This shouldn't trigger often because most devices have an 481 * RX header they pull before we get here, and that should 482 * be big enough for our radiotap information. We should 483 * probably export the length to drivers so that we can have 484 * them allocate enough headroom to start with. 485 */ 486 if (skb_headroom(skb) < needed_headroom && 487 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 488 dev_kfree_skb(skb); 489 return NULL; 490 } 491 } else { 492 /* 493 * Need to make a copy and possibly remove radiotap header 494 * and FCS from the original. 495 */ 496 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 497 498 origskb = remove_monitor_info(local, origskb, 499 rtap_vendor_space); 500 501 if (!skb) 502 return origskb; 503 } 504 505 /* prepend radiotap information */ 506 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 507 508 skb_reset_mac_header(skb); 509 skb->ip_summed = CHECKSUM_UNNECESSARY; 510 skb->pkt_type = PACKET_OTHERHOST; 511 skb->protocol = htons(ETH_P_802_2); 512 513 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 514 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 515 continue; 516 517 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 518 continue; 519 520 if (!ieee80211_sdata_running(sdata)) 521 continue; 522 523 if (prev_dev) { 524 skb2 = skb_clone(skb, GFP_ATOMIC); 525 if (skb2) { 526 skb2->dev = prev_dev; 527 netif_receive_skb(skb2); 528 } 529 } 530 531 prev_dev = sdata->dev; 532 sdata->dev->stats.rx_packets++; 533 sdata->dev->stats.rx_bytes += skb->len; 534 } 535 536 if (prev_dev) { 537 skb->dev = prev_dev; 538 netif_receive_skb(skb); 539 } else 540 dev_kfree_skb(skb); 541 542 return origskb; 543 } 544 545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 546 { 547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 549 int tid, seqno_idx, security_idx; 550 551 /* does the frame have a qos control field? */ 552 if (ieee80211_is_data_qos(hdr->frame_control)) { 553 u8 *qc = ieee80211_get_qos_ctl(hdr); 554 /* frame has qos control */ 555 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 556 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 557 status->rx_flags |= IEEE80211_RX_AMSDU; 558 559 seqno_idx = tid; 560 security_idx = tid; 561 } else { 562 /* 563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 564 * 565 * Sequence numbers for management frames, QoS data 566 * frames with a broadcast/multicast address in the 567 * Address 1 field, and all non-QoS data frames sent 568 * by QoS STAs are assigned using an additional single 569 * modulo-4096 counter, [...] 570 * 571 * We also use that counter for non-QoS STAs. 572 */ 573 seqno_idx = IEEE80211_NUM_TIDS; 574 security_idx = 0; 575 if (ieee80211_is_mgmt(hdr->frame_control)) 576 security_idx = IEEE80211_NUM_TIDS; 577 tid = 0; 578 } 579 580 rx->seqno_idx = seqno_idx; 581 rx->security_idx = security_idx; 582 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 583 * For now, set skb->priority to 0 for other cases. */ 584 rx->skb->priority = (tid > 7) ? 0 : tid; 585 } 586 587 /** 588 * DOC: Packet alignment 589 * 590 * Drivers always need to pass packets that are aligned to two-byte boundaries 591 * to the stack. 592 * 593 * Additionally, should, if possible, align the payload data in a way that 594 * guarantees that the contained IP header is aligned to a four-byte 595 * boundary. In the case of regular frames, this simply means aligning the 596 * payload to a four-byte boundary (because either the IP header is directly 597 * contained, or IV/RFC1042 headers that have a length divisible by four are 598 * in front of it). If the payload data is not properly aligned and the 599 * architecture doesn't support efficient unaligned operations, mac80211 600 * will align the data. 601 * 602 * With A-MSDU frames, however, the payload data address must yield two modulo 603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 604 * push the IP header further back to a multiple of four again. Thankfully, the 605 * specs were sane enough this time around to require padding each A-MSDU 606 * subframe to a length that is a multiple of four. 607 * 608 * Padding like Atheros hardware adds which is between the 802.11 header and 609 * the payload is not supported, the driver is required to move the 802.11 610 * header to be directly in front of the payload in that case. 611 */ 612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 613 { 614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 615 WARN_ONCE((unsigned long)rx->skb->data & 1, 616 "unaligned packet at 0x%p\n", rx->skb->data); 617 #endif 618 } 619 620 621 /* rx handlers */ 622 623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 624 { 625 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 626 627 if (is_multicast_ether_addr(hdr->addr1)) 628 return 0; 629 630 return ieee80211_is_robust_mgmt_frame(skb); 631 } 632 633 634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 635 { 636 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 637 638 if (!is_multicast_ether_addr(hdr->addr1)) 639 return 0; 640 641 return ieee80211_is_robust_mgmt_frame(skb); 642 } 643 644 645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 647 { 648 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 649 struct ieee80211_mmie *mmie; 650 struct ieee80211_mmie_16 *mmie16; 651 652 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 653 return -1; 654 655 if (!ieee80211_is_robust_mgmt_frame(skb)) 656 return -1; /* not a robust management frame */ 657 658 mmie = (struct ieee80211_mmie *) 659 (skb->data + skb->len - sizeof(*mmie)); 660 if (mmie->element_id == WLAN_EID_MMIE && 661 mmie->length == sizeof(*mmie) - 2) 662 return le16_to_cpu(mmie->key_id); 663 664 mmie16 = (struct ieee80211_mmie_16 *) 665 (skb->data + skb->len - sizeof(*mmie16)); 666 if (skb->len >= 24 + sizeof(*mmie16) && 667 mmie16->element_id == WLAN_EID_MMIE && 668 mmie16->length == sizeof(*mmie16) - 2) 669 return le16_to_cpu(mmie16->key_id); 670 671 return -1; 672 } 673 674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 675 struct sk_buff *skb) 676 { 677 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 678 __le16 fc; 679 int hdrlen; 680 u8 keyid; 681 682 fc = hdr->frame_control; 683 hdrlen = ieee80211_hdrlen(fc); 684 685 if (skb->len < hdrlen + cs->hdr_len) 686 return -EINVAL; 687 688 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 689 keyid &= cs->key_idx_mask; 690 keyid >>= cs->key_idx_shift; 691 692 return keyid; 693 } 694 695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 696 { 697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 698 char *dev_addr = rx->sdata->vif.addr; 699 700 if (ieee80211_is_data(hdr->frame_control)) { 701 if (is_multicast_ether_addr(hdr->addr1)) { 702 if (ieee80211_has_tods(hdr->frame_control) || 703 !ieee80211_has_fromds(hdr->frame_control)) 704 return RX_DROP_MONITOR; 705 if (ether_addr_equal(hdr->addr3, dev_addr)) 706 return RX_DROP_MONITOR; 707 } else { 708 if (!ieee80211_has_a4(hdr->frame_control)) 709 return RX_DROP_MONITOR; 710 if (ether_addr_equal(hdr->addr4, dev_addr)) 711 return RX_DROP_MONITOR; 712 } 713 } 714 715 /* If there is not an established peer link and this is not a peer link 716 * establisment frame, beacon or probe, drop the frame. 717 */ 718 719 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 720 struct ieee80211_mgmt *mgmt; 721 722 if (!ieee80211_is_mgmt(hdr->frame_control)) 723 return RX_DROP_MONITOR; 724 725 if (ieee80211_is_action(hdr->frame_control)) { 726 u8 category; 727 728 /* make sure category field is present */ 729 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 730 return RX_DROP_MONITOR; 731 732 mgmt = (struct ieee80211_mgmt *)hdr; 733 category = mgmt->u.action.category; 734 if (category != WLAN_CATEGORY_MESH_ACTION && 735 category != WLAN_CATEGORY_SELF_PROTECTED) 736 return RX_DROP_MONITOR; 737 return RX_CONTINUE; 738 } 739 740 if (ieee80211_is_probe_req(hdr->frame_control) || 741 ieee80211_is_probe_resp(hdr->frame_control) || 742 ieee80211_is_beacon(hdr->frame_control) || 743 ieee80211_is_auth(hdr->frame_control)) 744 return RX_CONTINUE; 745 746 return RX_DROP_MONITOR; 747 } 748 749 return RX_CONTINUE; 750 } 751 752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 753 struct tid_ampdu_rx *tid_agg_rx, 754 int index, 755 struct sk_buff_head *frames) 756 { 757 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 758 struct sk_buff *skb; 759 struct ieee80211_rx_status *status; 760 761 lockdep_assert_held(&tid_agg_rx->reorder_lock); 762 763 if (skb_queue_empty(skb_list)) 764 goto no_frame; 765 766 if (!ieee80211_rx_reorder_ready(skb_list)) { 767 __skb_queue_purge(skb_list); 768 goto no_frame; 769 } 770 771 /* release frames from the reorder ring buffer */ 772 tid_agg_rx->stored_mpdu_num--; 773 while ((skb = __skb_dequeue(skb_list))) { 774 status = IEEE80211_SKB_RXCB(skb); 775 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 776 __skb_queue_tail(frames, skb); 777 } 778 779 no_frame: 780 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 781 } 782 783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 784 struct tid_ampdu_rx *tid_agg_rx, 785 u16 head_seq_num, 786 struct sk_buff_head *frames) 787 { 788 int index; 789 790 lockdep_assert_held(&tid_agg_rx->reorder_lock); 791 792 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 795 frames); 796 } 797 } 798 799 /* 800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 801 * the skb was added to the buffer longer than this time ago, the earlier 802 * frames that have not yet been received are assumed to be lost and the skb 803 * can be released for processing. This may also release other skb's from the 804 * reorder buffer if there are no additional gaps between the frames. 805 * 806 * Callers must hold tid_agg_rx->reorder_lock. 807 */ 808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 809 810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 811 struct tid_ampdu_rx *tid_agg_rx, 812 struct sk_buff_head *frames) 813 { 814 int index, i, j; 815 816 lockdep_assert_held(&tid_agg_rx->reorder_lock); 817 818 /* release the buffer until next missing frame */ 819 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && 821 tid_agg_rx->stored_mpdu_num) { 822 /* 823 * No buffers ready to be released, but check whether any 824 * frames in the reorder buffer have timed out. 825 */ 826 int skipped = 1; 827 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 828 j = (j + 1) % tid_agg_rx->buf_size) { 829 if (!ieee80211_rx_reorder_ready( 830 &tid_agg_rx->reorder_buf[j])) { 831 skipped++; 832 continue; 833 } 834 if (skipped && 835 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 836 HT_RX_REORDER_BUF_TIMEOUT)) 837 goto set_release_timer; 838 839 /* don't leave incomplete A-MSDUs around */ 840 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 841 i = (i + 1) % tid_agg_rx->buf_size) 842 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 843 844 ht_dbg_ratelimited(sdata, 845 "release an RX reorder frame due to timeout on earlier frames\n"); 846 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 847 frames); 848 849 /* 850 * Increment the head seq# also for the skipped slots. 851 */ 852 tid_agg_rx->head_seq_num = 853 (tid_agg_rx->head_seq_num + 854 skipped) & IEEE80211_SN_MASK; 855 skipped = 0; 856 } 857 } else while (ieee80211_rx_reorder_ready( 858 &tid_agg_rx->reorder_buf[index])) { 859 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 860 frames); 861 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 862 } 863 864 if (tid_agg_rx->stored_mpdu_num) { 865 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 866 867 for (; j != (index - 1) % tid_agg_rx->buf_size; 868 j = (j + 1) % tid_agg_rx->buf_size) { 869 if (ieee80211_rx_reorder_ready( 870 &tid_agg_rx->reorder_buf[j])) 871 break; 872 } 873 874 set_release_timer: 875 876 if (!tid_agg_rx->removed) 877 mod_timer(&tid_agg_rx->reorder_timer, 878 tid_agg_rx->reorder_time[j] + 1 + 879 HT_RX_REORDER_BUF_TIMEOUT); 880 } else { 881 del_timer(&tid_agg_rx->reorder_timer); 882 } 883 } 884 885 /* 886 * As this function belongs to the RX path it must be under 887 * rcu_read_lock protection. It returns false if the frame 888 * can be processed immediately, true if it was consumed. 889 */ 890 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 891 struct tid_ampdu_rx *tid_agg_rx, 892 struct sk_buff *skb, 893 struct sk_buff_head *frames) 894 { 895 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 896 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 897 u16 sc = le16_to_cpu(hdr->seq_ctrl); 898 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 899 u16 head_seq_num, buf_size; 900 int index; 901 bool ret = true; 902 903 spin_lock(&tid_agg_rx->reorder_lock); 904 905 /* 906 * Offloaded BA sessions have no known starting sequence number so pick 907 * one from first Rxed frame for this tid after BA was started. 908 */ 909 if (unlikely(tid_agg_rx->auto_seq)) { 910 tid_agg_rx->auto_seq = false; 911 tid_agg_rx->ssn = mpdu_seq_num; 912 tid_agg_rx->head_seq_num = mpdu_seq_num; 913 } 914 915 buf_size = tid_agg_rx->buf_size; 916 head_seq_num = tid_agg_rx->head_seq_num; 917 918 /* frame with out of date sequence number */ 919 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 920 dev_kfree_skb(skb); 921 goto out; 922 } 923 924 /* 925 * If frame the sequence number exceeds our buffering window 926 * size release some previous frames to make room for this one. 927 */ 928 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 929 head_seq_num = ieee80211_sn_inc( 930 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 931 /* release stored frames up to new head to stack */ 932 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 933 head_seq_num, frames); 934 } 935 936 /* Now the new frame is always in the range of the reordering buffer */ 937 938 index = mpdu_seq_num % tid_agg_rx->buf_size; 939 940 /* check if we already stored this frame */ 941 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { 942 dev_kfree_skb(skb); 943 goto out; 944 } 945 946 /* 947 * If the current MPDU is in the right order and nothing else 948 * is stored we can process it directly, no need to buffer it. 949 * If it is first but there's something stored, we may be able 950 * to release frames after this one. 951 */ 952 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 953 tid_agg_rx->stored_mpdu_num == 0) { 954 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 955 tid_agg_rx->head_seq_num = 956 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 957 ret = false; 958 goto out; 959 } 960 961 /* put the frame in the reordering buffer */ 962 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 963 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 964 tid_agg_rx->reorder_time[index] = jiffies; 965 tid_agg_rx->stored_mpdu_num++; 966 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 967 } 968 969 out: 970 spin_unlock(&tid_agg_rx->reorder_lock); 971 return ret; 972 } 973 974 /* 975 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 976 * true if the MPDU was buffered, false if it should be processed. 977 */ 978 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 979 struct sk_buff_head *frames) 980 { 981 struct sk_buff *skb = rx->skb; 982 struct ieee80211_local *local = rx->local; 983 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 985 struct sta_info *sta = rx->sta; 986 struct tid_ampdu_rx *tid_agg_rx; 987 u16 sc; 988 u8 tid, ack_policy; 989 990 if (!ieee80211_is_data_qos(hdr->frame_control) || 991 is_multicast_ether_addr(hdr->addr1)) 992 goto dont_reorder; 993 994 /* 995 * filter the QoS data rx stream according to 996 * STA/TID and check if this STA/TID is on aggregation 997 */ 998 999 if (!sta) 1000 goto dont_reorder; 1001 1002 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1003 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1004 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1005 1006 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1007 if (!tid_agg_rx) 1008 goto dont_reorder; 1009 1010 /* qos null data frames are excluded */ 1011 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1012 goto dont_reorder; 1013 1014 /* not part of a BA session */ 1015 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1016 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1017 goto dont_reorder; 1018 1019 /* not actually part of this BA session */ 1020 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1021 goto dont_reorder; 1022 1023 /* new, potentially un-ordered, ampdu frame - process it */ 1024 1025 /* reset session timer */ 1026 if (tid_agg_rx->timeout) 1027 tid_agg_rx->last_rx = jiffies; 1028 1029 /* if this mpdu is fragmented - terminate rx aggregation session */ 1030 sc = le16_to_cpu(hdr->seq_ctrl); 1031 if (sc & IEEE80211_SCTL_FRAG) { 1032 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1033 skb_queue_tail(&rx->sdata->skb_queue, skb); 1034 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1035 return; 1036 } 1037 1038 /* 1039 * No locking needed -- we will only ever process one 1040 * RX packet at a time, and thus own tid_agg_rx. All 1041 * other code manipulating it needs to (and does) make 1042 * sure that we cannot get to it any more before doing 1043 * anything with it. 1044 */ 1045 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1046 frames)) 1047 return; 1048 1049 dont_reorder: 1050 __skb_queue_tail(frames, skb); 1051 } 1052 1053 static ieee80211_rx_result debug_noinline 1054 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1055 { 1056 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1058 1059 /* 1060 * Drop duplicate 802.11 retransmissions 1061 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1062 */ 1063 1064 if (rx->skb->len < 24) 1065 return RX_CONTINUE; 1066 1067 if (ieee80211_is_ctl(hdr->frame_control) || 1068 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1069 is_multicast_ether_addr(hdr->addr1)) 1070 return RX_CONTINUE; 1071 1072 if (rx->sta) { 1073 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1074 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1075 hdr->seq_ctrl)) { 1076 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1077 rx->local->dot11FrameDuplicateCount++; 1078 rx->sta->num_duplicates++; 1079 } 1080 return RX_DROP_UNUSABLE; 1081 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1082 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1083 } 1084 } 1085 1086 return RX_CONTINUE; 1087 } 1088 1089 static ieee80211_rx_result debug_noinline 1090 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1091 { 1092 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1093 1094 if (unlikely(rx->skb->len < 16)) { 1095 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1096 return RX_DROP_MONITOR; 1097 } 1098 1099 /* Drop disallowed frame classes based on STA auth/assoc state; 1100 * IEEE 802.11, Chap 5.5. 1101 * 1102 * mac80211 filters only based on association state, i.e. it drops 1103 * Class 3 frames from not associated stations. hostapd sends 1104 * deauth/disassoc frames when needed. In addition, hostapd is 1105 * responsible for filtering on both auth and assoc states. 1106 */ 1107 1108 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1109 return ieee80211_rx_mesh_check(rx); 1110 1111 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1112 ieee80211_is_pspoll(hdr->frame_control)) && 1113 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1114 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1115 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1116 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1117 /* 1118 * accept port control frames from the AP even when it's not 1119 * yet marked ASSOC to prevent a race where we don't set the 1120 * assoc bit quickly enough before it sends the first frame 1121 */ 1122 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1123 ieee80211_is_data_present(hdr->frame_control)) { 1124 unsigned int hdrlen; 1125 __be16 ethertype; 1126 1127 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1128 1129 if (rx->skb->len < hdrlen + 8) 1130 return RX_DROP_MONITOR; 1131 1132 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1133 if (ethertype == rx->sdata->control_port_protocol) 1134 return RX_CONTINUE; 1135 } 1136 1137 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1138 cfg80211_rx_spurious_frame(rx->sdata->dev, 1139 hdr->addr2, 1140 GFP_ATOMIC)) 1141 return RX_DROP_UNUSABLE; 1142 1143 return RX_DROP_MONITOR; 1144 } 1145 1146 return RX_CONTINUE; 1147 } 1148 1149 1150 static ieee80211_rx_result debug_noinline 1151 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1152 { 1153 struct ieee80211_local *local; 1154 struct ieee80211_hdr *hdr; 1155 struct sk_buff *skb; 1156 1157 local = rx->local; 1158 skb = rx->skb; 1159 hdr = (struct ieee80211_hdr *) skb->data; 1160 1161 if (!local->pspolling) 1162 return RX_CONTINUE; 1163 1164 if (!ieee80211_has_fromds(hdr->frame_control)) 1165 /* this is not from AP */ 1166 return RX_CONTINUE; 1167 1168 if (!ieee80211_is_data(hdr->frame_control)) 1169 return RX_CONTINUE; 1170 1171 if (!ieee80211_has_moredata(hdr->frame_control)) { 1172 /* AP has no more frames buffered for us */ 1173 local->pspolling = false; 1174 return RX_CONTINUE; 1175 } 1176 1177 /* more data bit is set, let's request a new frame from the AP */ 1178 ieee80211_send_pspoll(local, rx->sdata); 1179 1180 return RX_CONTINUE; 1181 } 1182 1183 static void sta_ps_start(struct sta_info *sta) 1184 { 1185 struct ieee80211_sub_if_data *sdata = sta->sdata; 1186 struct ieee80211_local *local = sdata->local; 1187 struct ps_data *ps; 1188 int tid; 1189 1190 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1191 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1192 ps = &sdata->bss->ps; 1193 else 1194 return; 1195 1196 atomic_inc(&ps->num_sta_ps); 1197 set_sta_flag(sta, WLAN_STA_PS_STA); 1198 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1199 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1200 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1201 sta->sta.addr, sta->sta.aid); 1202 1203 if (!sta->sta.txq[0]) 1204 return; 1205 1206 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1207 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1208 1209 if (!skb_queue_len(&txqi->queue)) 1210 set_bit(tid, &sta->txq_buffered_tids); 1211 else 1212 clear_bit(tid, &sta->txq_buffered_tids); 1213 } 1214 } 1215 1216 static void sta_ps_end(struct sta_info *sta) 1217 { 1218 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1219 sta->sta.addr, sta->sta.aid); 1220 1221 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1222 /* 1223 * Clear the flag only if the other one is still set 1224 * so that the TX path won't start TX'ing new frames 1225 * directly ... In the case that the driver flag isn't 1226 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1227 */ 1228 clear_sta_flag(sta, WLAN_STA_PS_STA); 1229 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1230 sta->sta.addr, sta->sta.aid); 1231 return; 1232 } 1233 1234 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1235 clear_sta_flag(sta, WLAN_STA_PS_STA); 1236 ieee80211_sta_ps_deliver_wakeup(sta); 1237 } 1238 1239 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1240 { 1241 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1242 bool in_ps; 1243 1244 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1245 1246 /* Don't let the same PS state be set twice */ 1247 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1248 if ((start && in_ps) || (!start && !in_ps)) 1249 return -EINVAL; 1250 1251 if (start) 1252 sta_ps_start(sta_inf); 1253 else 1254 sta_ps_end(sta_inf); 1255 1256 return 0; 1257 } 1258 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1259 1260 static ieee80211_rx_result debug_noinline 1261 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1262 { 1263 struct ieee80211_sub_if_data *sdata = rx->sdata; 1264 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1266 int tid, ac; 1267 1268 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1269 return RX_CONTINUE; 1270 1271 if (sdata->vif.type != NL80211_IFTYPE_AP && 1272 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1273 return RX_CONTINUE; 1274 1275 /* 1276 * The device handles station powersave, so don't do anything about 1277 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1278 * it to mac80211 since they're handled.) 1279 */ 1280 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1281 return RX_CONTINUE; 1282 1283 /* 1284 * Don't do anything if the station isn't already asleep. In 1285 * the uAPSD case, the station will probably be marked asleep, 1286 * in the PS-Poll case the station must be confused ... 1287 */ 1288 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1289 return RX_CONTINUE; 1290 1291 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1292 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1293 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1294 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1295 else 1296 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1297 } 1298 1299 /* Free PS Poll skb here instead of returning RX_DROP that would 1300 * count as an dropped frame. */ 1301 dev_kfree_skb(rx->skb); 1302 1303 return RX_QUEUED; 1304 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1305 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1306 ieee80211_has_pm(hdr->frame_control) && 1307 (ieee80211_is_data_qos(hdr->frame_control) || 1308 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1309 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1310 ac = ieee802_1d_to_ac[tid & 7]; 1311 1312 /* 1313 * If this AC is not trigger-enabled do nothing. 1314 * 1315 * NB: This could/should check a separate bitmap of trigger- 1316 * enabled queues, but for now we only implement uAPSD w/o 1317 * TSPEC changes to the ACs, so they're always the same. 1318 */ 1319 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1320 return RX_CONTINUE; 1321 1322 /* if we are in a service period, do nothing */ 1323 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1324 return RX_CONTINUE; 1325 1326 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1327 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1328 else 1329 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1330 } 1331 1332 return RX_CONTINUE; 1333 } 1334 1335 static ieee80211_rx_result debug_noinline 1336 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1337 { 1338 struct sta_info *sta = rx->sta; 1339 struct sk_buff *skb = rx->skb; 1340 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1341 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1342 int i; 1343 1344 if (!sta) 1345 return RX_CONTINUE; 1346 1347 /* 1348 * Update last_rx only for IBSS packets which are for the current 1349 * BSSID and for station already AUTHORIZED to avoid keeping the 1350 * current IBSS network alive in cases where other STAs start 1351 * using different BSSID. This will also give the station another 1352 * chance to restart the authentication/authorization in case 1353 * something went wrong the first time. 1354 */ 1355 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1356 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1357 NL80211_IFTYPE_ADHOC); 1358 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1359 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1360 sta->last_rx = jiffies; 1361 if (ieee80211_is_data(hdr->frame_control) && 1362 !is_multicast_ether_addr(hdr->addr1)) { 1363 sta->last_rx_rate_idx = status->rate_idx; 1364 sta->last_rx_rate_flag = status->flag; 1365 sta->last_rx_rate_vht_flag = status->vht_flag; 1366 sta->last_rx_rate_vht_nss = status->vht_nss; 1367 } 1368 } 1369 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1370 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1371 NL80211_IFTYPE_OCB); 1372 /* OCB uses wild-card BSSID */ 1373 if (is_broadcast_ether_addr(bssid)) 1374 sta->last_rx = jiffies; 1375 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1376 /* 1377 * Mesh beacons will update last_rx when if they are found to 1378 * match the current local configuration when processed. 1379 */ 1380 sta->last_rx = jiffies; 1381 if (ieee80211_is_data(hdr->frame_control)) { 1382 sta->last_rx_rate_idx = status->rate_idx; 1383 sta->last_rx_rate_flag = status->flag; 1384 sta->last_rx_rate_vht_flag = status->vht_flag; 1385 sta->last_rx_rate_vht_nss = status->vht_nss; 1386 } 1387 } 1388 1389 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1390 return RX_CONTINUE; 1391 1392 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1393 ieee80211_sta_rx_notify(rx->sdata, hdr); 1394 1395 sta->rx_fragments++; 1396 sta->rx_bytes += rx->skb->len; 1397 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1398 sta->last_signal = status->signal; 1399 ewma_add(&sta->avg_signal, -status->signal); 1400 } 1401 1402 if (status->chains) { 1403 sta->chains = status->chains; 1404 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1405 int signal = status->chain_signal[i]; 1406 1407 if (!(status->chains & BIT(i))) 1408 continue; 1409 1410 sta->chain_signal_last[i] = signal; 1411 ewma_add(&sta->chain_signal_avg[i], -signal); 1412 } 1413 } 1414 1415 /* 1416 * Change STA power saving mode only at the end of a frame 1417 * exchange sequence. 1418 */ 1419 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1420 !ieee80211_has_morefrags(hdr->frame_control) && 1421 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1422 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1423 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1424 /* PM bit is only checked in frames where it isn't reserved, 1425 * in AP mode it's reserved in non-bufferable management frames 1426 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1427 */ 1428 (!ieee80211_is_mgmt(hdr->frame_control) || 1429 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1430 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1431 if (!ieee80211_has_pm(hdr->frame_control)) 1432 sta_ps_end(sta); 1433 } else { 1434 if (ieee80211_has_pm(hdr->frame_control)) 1435 sta_ps_start(sta); 1436 } 1437 } 1438 1439 /* mesh power save support */ 1440 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1441 ieee80211_mps_rx_h_sta_process(sta, hdr); 1442 1443 /* 1444 * Drop (qos-)data::nullfunc frames silently, since they 1445 * are used only to control station power saving mode. 1446 */ 1447 if (ieee80211_is_nullfunc(hdr->frame_control) || 1448 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1449 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1450 1451 /* 1452 * If we receive a 4-addr nullfunc frame from a STA 1453 * that was not moved to a 4-addr STA vlan yet send 1454 * the event to userspace and for older hostapd drop 1455 * the frame to the monitor interface. 1456 */ 1457 if (ieee80211_has_a4(hdr->frame_control) && 1458 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1459 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1460 !rx->sdata->u.vlan.sta))) { 1461 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1462 cfg80211_rx_unexpected_4addr_frame( 1463 rx->sdata->dev, sta->sta.addr, 1464 GFP_ATOMIC); 1465 return RX_DROP_MONITOR; 1466 } 1467 /* 1468 * Update counter and free packet here to avoid 1469 * counting this as a dropped packed. 1470 */ 1471 sta->rx_packets++; 1472 dev_kfree_skb(rx->skb); 1473 return RX_QUEUED; 1474 } 1475 1476 return RX_CONTINUE; 1477 } /* ieee80211_rx_h_sta_process */ 1478 1479 static ieee80211_rx_result debug_noinline 1480 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1481 { 1482 struct sk_buff *skb = rx->skb; 1483 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1484 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1485 int keyidx; 1486 int hdrlen; 1487 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1488 struct ieee80211_key *sta_ptk = NULL; 1489 int mmie_keyidx = -1; 1490 __le16 fc; 1491 const struct ieee80211_cipher_scheme *cs = NULL; 1492 1493 /* 1494 * Key selection 101 1495 * 1496 * There are four types of keys: 1497 * - GTK (group keys) 1498 * - IGTK (group keys for management frames) 1499 * - PTK (pairwise keys) 1500 * - STK (station-to-station pairwise keys) 1501 * 1502 * When selecting a key, we have to distinguish between multicast 1503 * (including broadcast) and unicast frames, the latter can only 1504 * use PTKs and STKs while the former always use GTKs and IGTKs. 1505 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1506 * unicast frames can also use key indices like GTKs. Hence, if we 1507 * don't have a PTK/STK we check the key index for a WEP key. 1508 * 1509 * Note that in a regular BSS, multicast frames are sent by the 1510 * AP only, associated stations unicast the frame to the AP first 1511 * which then multicasts it on their behalf. 1512 * 1513 * There is also a slight problem in IBSS mode: GTKs are negotiated 1514 * with each station, that is something we don't currently handle. 1515 * The spec seems to expect that one negotiates the same key with 1516 * every station but there's no such requirement; VLANs could be 1517 * possible. 1518 */ 1519 1520 /* 1521 * No point in finding a key and decrypting if the frame is neither 1522 * addressed to us nor a multicast frame. 1523 */ 1524 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1525 return RX_CONTINUE; 1526 1527 /* start without a key */ 1528 rx->key = NULL; 1529 fc = hdr->frame_control; 1530 1531 if (rx->sta) { 1532 int keyid = rx->sta->ptk_idx; 1533 1534 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1535 cs = rx->sta->cipher_scheme; 1536 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1537 if (unlikely(keyid < 0)) 1538 return RX_DROP_UNUSABLE; 1539 } 1540 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1541 } 1542 1543 if (!ieee80211_has_protected(fc)) 1544 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1545 1546 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1547 rx->key = sta_ptk; 1548 if ((status->flag & RX_FLAG_DECRYPTED) && 1549 (status->flag & RX_FLAG_IV_STRIPPED)) 1550 return RX_CONTINUE; 1551 /* Skip decryption if the frame is not protected. */ 1552 if (!ieee80211_has_protected(fc)) 1553 return RX_CONTINUE; 1554 } else if (mmie_keyidx >= 0) { 1555 /* Broadcast/multicast robust management frame / BIP */ 1556 if ((status->flag & RX_FLAG_DECRYPTED) && 1557 (status->flag & RX_FLAG_IV_STRIPPED)) 1558 return RX_CONTINUE; 1559 1560 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1561 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1562 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1563 if (rx->sta) 1564 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1565 if (!rx->key) 1566 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1567 } else if (!ieee80211_has_protected(fc)) { 1568 /* 1569 * The frame was not protected, so skip decryption. However, we 1570 * need to set rx->key if there is a key that could have been 1571 * used so that the frame may be dropped if encryption would 1572 * have been expected. 1573 */ 1574 struct ieee80211_key *key = NULL; 1575 struct ieee80211_sub_if_data *sdata = rx->sdata; 1576 int i; 1577 1578 if (ieee80211_is_mgmt(fc) && 1579 is_multicast_ether_addr(hdr->addr1) && 1580 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1581 rx->key = key; 1582 else { 1583 if (rx->sta) { 1584 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1585 key = rcu_dereference(rx->sta->gtk[i]); 1586 if (key) 1587 break; 1588 } 1589 } 1590 if (!key) { 1591 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1592 key = rcu_dereference(sdata->keys[i]); 1593 if (key) 1594 break; 1595 } 1596 } 1597 if (key) 1598 rx->key = key; 1599 } 1600 return RX_CONTINUE; 1601 } else { 1602 u8 keyid; 1603 1604 /* 1605 * The device doesn't give us the IV so we won't be 1606 * able to look up the key. That's ok though, we 1607 * don't need to decrypt the frame, we just won't 1608 * be able to keep statistics accurate. 1609 * Except for key threshold notifications, should 1610 * we somehow allow the driver to tell us which key 1611 * the hardware used if this flag is set? 1612 */ 1613 if ((status->flag & RX_FLAG_DECRYPTED) && 1614 (status->flag & RX_FLAG_IV_STRIPPED)) 1615 return RX_CONTINUE; 1616 1617 hdrlen = ieee80211_hdrlen(fc); 1618 1619 if (cs) { 1620 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1621 1622 if (unlikely(keyidx < 0)) 1623 return RX_DROP_UNUSABLE; 1624 } else { 1625 if (rx->skb->len < 8 + hdrlen) 1626 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1627 /* 1628 * no need to call ieee80211_wep_get_keyidx, 1629 * it verifies a bunch of things we've done already 1630 */ 1631 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1632 keyidx = keyid >> 6; 1633 } 1634 1635 /* check per-station GTK first, if multicast packet */ 1636 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1637 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1638 1639 /* if not found, try default key */ 1640 if (!rx->key) { 1641 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1642 1643 /* 1644 * RSNA-protected unicast frames should always be 1645 * sent with pairwise or station-to-station keys, 1646 * but for WEP we allow using a key index as well. 1647 */ 1648 if (rx->key && 1649 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1650 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1651 !is_multicast_ether_addr(hdr->addr1)) 1652 rx->key = NULL; 1653 } 1654 } 1655 1656 if (rx->key) { 1657 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1658 return RX_DROP_MONITOR; 1659 1660 rx->key->tx_rx_count++; 1661 /* TODO: add threshold stuff again */ 1662 } else { 1663 return RX_DROP_MONITOR; 1664 } 1665 1666 switch (rx->key->conf.cipher) { 1667 case WLAN_CIPHER_SUITE_WEP40: 1668 case WLAN_CIPHER_SUITE_WEP104: 1669 result = ieee80211_crypto_wep_decrypt(rx); 1670 break; 1671 case WLAN_CIPHER_SUITE_TKIP: 1672 result = ieee80211_crypto_tkip_decrypt(rx); 1673 break; 1674 case WLAN_CIPHER_SUITE_CCMP: 1675 result = ieee80211_crypto_ccmp_decrypt( 1676 rx, IEEE80211_CCMP_MIC_LEN); 1677 break; 1678 case WLAN_CIPHER_SUITE_CCMP_256: 1679 result = ieee80211_crypto_ccmp_decrypt( 1680 rx, IEEE80211_CCMP_256_MIC_LEN); 1681 break; 1682 case WLAN_CIPHER_SUITE_AES_CMAC: 1683 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1684 break; 1685 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1686 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1687 break; 1688 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1689 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1690 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1691 break; 1692 case WLAN_CIPHER_SUITE_GCMP: 1693 case WLAN_CIPHER_SUITE_GCMP_256: 1694 result = ieee80211_crypto_gcmp_decrypt(rx); 1695 break; 1696 default: 1697 result = ieee80211_crypto_hw_decrypt(rx); 1698 } 1699 1700 /* the hdr variable is invalid after the decrypt handlers */ 1701 1702 /* either the frame has been decrypted or will be dropped */ 1703 status->flag |= RX_FLAG_DECRYPTED; 1704 1705 return result; 1706 } 1707 1708 static inline struct ieee80211_fragment_entry * 1709 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1710 unsigned int frag, unsigned int seq, int rx_queue, 1711 struct sk_buff **skb) 1712 { 1713 struct ieee80211_fragment_entry *entry; 1714 1715 entry = &sdata->fragments[sdata->fragment_next++]; 1716 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1717 sdata->fragment_next = 0; 1718 1719 if (!skb_queue_empty(&entry->skb_list)) 1720 __skb_queue_purge(&entry->skb_list); 1721 1722 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1723 *skb = NULL; 1724 entry->first_frag_time = jiffies; 1725 entry->seq = seq; 1726 entry->rx_queue = rx_queue; 1727 entry->last_frag = frag; 1728 entry->ccmp = 0; 1729 entry->extra_len = 0; 1730 1731 return entry; 1732 } 1733 1734 static inline struct ieee80211_fragment_entry * 1735 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1736 unsigned int frag, unsigned int seq, 1737 int rx_queue, struct ieee80211_hdr *hdr) 1738 { 1739 struct ieee80211_fragment_entry *entry; 1740 int i, idx; 1741 1742 idx = sdata->fragment_next; 1743 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1744 struct ieee80211_hdr *f_hdr; 1745 1746 idx--; 1747 if (idx < 0) 1748 idx = IEEE80211_FRAGMENT_MAX - 1; 1749 1750 entry = &sdata->fragments[idx]; 1751 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1752 entry->rx_queue != rx_queue || 1753 entry->last_frag + 1 != frag) 1754 continue; 1755 1756 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1757 1758 /* 1759 * Check ftype and addresses are equal, else check next fragment 1760 */ 1761 if (((hdr->frame_control ^ f_hdr->frame_control) & 1762 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1763 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1764 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1765 continue; 1766 1767 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1768 __skb_queue_purge(&entry->skb_list); 1769 continue; 1770 } 1771 return entry; 1772 } 1773 1774 return NULL; 1775 } 1776 1777 static ieee80211_rx_result debug_noinline 1778 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1779 { 1780 struct ieee80211_hdr *hdr; 1781 u16 sc; 1782 __le16 fc; 1783 unsigned int frag, seq; 1784 struct ieee80211_fragment_entry *entry; 1785 struct sk_buff *skb; 1786 struct ieee80211_rx_status *status; 1787 1788 hdr = (struct ieee80211_hdr *)rx->skb->data; 1789 fc = hdr->frame_control; 1790 1791 if (ieee80211_is_ctl(fc)) 1792 return RX_CONTINUE; 1793 1794 sc = le16_to_cpu(hdr->seq_ctrl); 1795 frag = sc & IEEE80211_SCTL_FRAG; 1796 1797 if (is_multicast_ether_addr(hdr->addr1)) { 1798 rx->local->dot11MulticastReceivedFrameCount++; 1799 goto out_no_led; 1800 } 1801 1802 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1803 goto out; 1804 1805 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1806 1807 if (skb_linearize(rx->skb)) 1808 return RX_DROP_UNUSABLE; 1809 1810 /* 1811 * skb_linearize() might change the skb->data and 1812 * previously cached variables (in this case, hdr) need to 1813 * be refreshed with the new data. 1814 */ 1815 hdr = (struct ieee80211_hdr *)rx->skb->data; 1816 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1817 1818 if (frag == 0) { 1819 /* This is the first fragment of a new frame. */ 1820 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1821 rx->seqno_idx, &(rx->skb)); 1822 if (rx->key && 1823 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1824 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) && 1825 ieee80211_has_protected(fc)) { 1826 int queue = rx->security_idx; 1827 /* Store CCMP PN so that we can verify that the next 1828 * fragment has a sequential PN value. */ 1829 entry->ccmp = 1; 1830 memcpy(entry->last_pn, 1831 rx->key->u.ccmp.rx_pn[queue], 1832 IEEE80211_CCMP_PN_LEN); 1833 } 1834 return RX_QUEUED; 1835 } 1836 1837 /* This is a fragment for a frame that should already be pending in 1838 * fragment cache. Add this fragment to the end of the pending entry. 1839 */ 1840 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1841 rx->seqno_idx, hdr); 1842 if (!entry) { 1843 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1844 return RX_DROP_MONITOR; 1845 } 1846 1847 /* Verify that MPDUs within one MSDU have sequential PN values. 1848 * (IEEE 802.11i, 8.3.3.4.5) */ 1849 if (entry->ccmp) { 1850 int i; 1851 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1852 int queue; 1853 if (!rx->key || 1854 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1855 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256)) 1856 return RX_DROP_UNUSABLE; 1857 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1858 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1859 pn[i]++; 1860 if (pn[i]) 1861 break; 1862 } 1863 queue = rx->security_idx; 1864 rpn = rx->key->u.ccmp.rx_pn[queue]; 1865 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1866 return RX_DROP_UNUSABLE; 1867 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1868 } 1869 1870 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1871 __skb_queue_tail(&entry->skb_list, rx->skb); 1872 entry->last_frag = frag; 1873 entry->extra_len += rx->skb->len; 1874 if (ieee80211_has_morefrags(fc)) { 1875 rx->skb = NULL; 1876 return RX_QUEUED; 1877 } 1878 1879 rx->skb = __skb_dequeue(&entry->skb_list); 1880 if (skb_tailroom(rx->skb) < entry->extra_len) { 1881 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1882 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1883 GFP_ATOMIC))) { 1884 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1885 __skb_queue_purge(&entry->skb_list); 1886 return RX_DROP_UNUSABLE; 1887 } 1888 } 1889 while ((skb = __skb_dequeue(&entry->skb_list))) { 1890 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1891 dev_kfree_skb(skb); 1892 } 1893 1894 /* Complete frame has been reassembled - process it now */ 1895 status = IEEE80211_SKB_RXCB(rx->skb); 1896 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1897 1898 out: 1899 ieee80211_led_rx(rx->local); 1900 out_no_led: 1901 if (rx->sta) 1902 rx->sta->rx_packets++; 1903 return RX_CONTINUE; 1904 } 1905 1906 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1907 { 1908 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1909 return -EACCES; 1910 1911 return 0; 1912 } 1913 1914 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1915 { 1916 struct sk_buff *skb = rx->skb; 1917 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1918 1919 /* 1920 * Pass through unencrypted frames if the hardware has 1921 * decrypted them already. 1922 */ 1923 if (status->flag & RX_FLAG_DECRYPTED) 1924 return 0; 1925 1926 /* Drop unencrypted frames if key is set. */ 1927 if (unlikely(!ieee80211_has_protected(fc) && 1928 !ieee80211_is_nullfunc(fc) && 1929 ieee80211_is_data(fc) && rx->key)) 1930 return -EACCES; 1931 1932 return 0; 1933 } 1934 1935 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1936 { 1937 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1938 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1939 __le16 fc = hdr->frame_control; 1940 1941 /* 1942 * Pass through unencrypted frames if the hardware has 1943 * decrypted them already. 1944 */ 1945 if (status->flag & RX_FLAG_DECRYPTED) 1946 return 0; 1947 1948 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1949 if (unlikely(!ieee80211_has_protected(fc) && 1950 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1951 rx->key)) { 1952 if (ieee80211_is_deauth(fc) || 1953 ieee80211_is_disassoc(fc)) 1954 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1955 rx->skb->data, 1956 rx->skb->len); 1957 return -EACCES; 1958 } 1959 /* BIP does not use Protected field, so need to check MMIE */ 1960 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1961 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1962 if (ieee80211_is_deauth(fc) || 1963 ieee80211_is_disassoc(fc)) 1964 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1965 rx->skb->data, 1966 rx->skb->len); 1967 return -EACCES; 1968 } 1969 /* 1970 * When using MFP, Action frames are not allowed prior to 1971 * having configured keys. 1972 */ 1973 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1974 ieee80211_is_robust_mgmt_frame(rx->skb))) 1975 return -EACCES; 1976 } 1977 1978 return 0; 1979 } 1980 1981 static int 1982 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1983 { 1984 struct ieee80211_sub_if_data *sdata = rx->sdata; 1985 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1986 bool check_port_control = false; 1987 struct ethhdr *ehdr; 1988 int ret; 1989 1990 *port_control = false; 1991 if (ieee80211_has_a4(hdr->frame_control) && 1992 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1993 return -1; 1994 1995 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1996 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1997 1998 if (!sdata->u.mgd.use_4addr) 1999 return -1; 2000 else 2001 check_port_control = true; 2002 } 2003 2004 if (is_multicast_ether_addr(hdr->addr1) && 2005 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2006 return -1; 2007 2008 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2009 if (ret < 0) 2010 return ret; 2011 2012 ehdr = (struct ethhdr *) rx->skb->data; 2013 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2014 *port_control = true; 2015 else if (check_port_control) 2016 return -1; 2017 2018 return 0; 2019 } 2020 2021 /* 2022 * requires that rx->skb is a frame with ethernet header 2023 */ 2024 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2025 { 2026 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2027 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2028 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2029 2030 /* 2031 * Allow EAPOL frames to us/the PAE group address regardless 2032 * of whether the frame was encrypted or not. 2033 */ 2034 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2035 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2036 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2037 return true; 2038 2039 if (ieee80211_802_1x_port_control(rx) || 2040 ieee80211_drop_unencrypted(rx, fc)) 2041 return false; 2042 2043 return true; 2044 } 2045 2046 /* 2047 * requires that rx->skb is a frame with ethernet header 2048 */ 2049 static void 2050 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2051 { 2052 struct ieee80211_sub_if_data *sdata = rx->sdata; 2053 struct net_device *dev = sdata->dev; 2054 struct sk_buff *skb, *xmit_skb; 2055 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2056 struct sta_info *dsta; 2057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2058 2059 dev->stats.rx_packets++; 2060 dev->stats.rx_bytes += rx->skb->len; 2061 2062 skb = rx->skb; 2063 xmit_skb = NULL; 2064 2065 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2066 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2067 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2068 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 2069 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2070 if (is_multicast_ether_addr(ehdr->h_dest)) { 2071 /* 2072 * send multicast frames both to higher layers in 2073 * local net stack and back to the wireless medium 2074 */ 2075 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2076 if (!xmit_skb) 2077 net_info_ratelimited("%s: failed to clone multicast frame\n", 2078 dev->name); 2079 } else { 2080 dsta = sta_info_get(sdata, skb->data); 2081 if (dsta) { 2082 /* 2083 * The destination station is associated to 2084 * this AP (in this VLAN), so send the frame 2085 * directly to it and do not pass it to local 2086 * net stack. 2087 */ 2088 xmit_skb = skb; 2089 skb = NULL; 2090 } 2091 } 2092 } 2093 2094 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2095 if (skb) { 2096 /* 'align' will only take the values 0 or 2 here since all 2097 * frames are required to be aligned to 2-byte boundaries 2098 * when being passed to mac80211; the code here works just 2099 * as well if that isn't true, but mac80211 assumes it can 2100 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2101 */ 2102 int align; 2103 2104 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2105 if (align) { 2106 if (WARN_ON(skb_headroom(skb) < 3)) { 2107 dev_kfree_skb(skb); 2108 skb = NULL; 2109 } else { 2110 u8 *data = skb->data; 2111 size_t len = skb_headlen(skb); 2112 skb->data -= align; 2113 memmove(skb->data, data, len); 2114 skb_set_tail_pointer(skb, len); 2115 } 2116 } 2117 } 2118 #endif 2119 2120 if (skb) { 2121 /* deliver to local stack */ 2122 skb->protocol = eth_type_trans(skb, dev); 2123 memset(skb->cb, 0, sizeof(skb->cb)); 2124 if (rx->local->napi) 2125 napi_gro_receive(rx->local->napi, skb); 2126 else 2127 netif_receive_skb(skb); 2128 } 2129 2130 if (xmit_skb) { 2131 /* 2132 * Send to wireless media and increase priority by 256 to 2133 * keep the received priority instead of reclassifying 2134 * the frame (see cfg80211_classify8021d). 2135 */ 2136 xmit_skb->priority += 256; 2137 xmit_skb->protocol = htons(ETH_P_802_3); 2138 skb_reset_network_header(xmit_skb); 2139 skb_reset_mac_header(xmit_skb); 2140 dev_queue_xmit(xmit_skb); 2141 } 2142 } 2143 2144 static ieee80211_rx_result debug_noinline 2145 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2146 { 2147 struct net_device *dev = rx->sdata->dev; 2148 struct sk_buff *skb = rx->skb; 2149 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2150 __le16 fc = hdr->frame_control; 2151 struct sk_buff_head frame_list; 2152 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2153 2154 if (unlikely(!ieee80211_is_data(fc))) 2155 return RX_CONTINUE; 2156 2157 if (unlikely(!ieee80211_is_data_present(fc))) 2158 return RX_DROP_MONITOR; 2159 2160 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2161 return RX_CONTINUE; 2162 2163 if (ieee80211_has_a4(hdr->frame_control) && 2164 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2165 !rx->sdata->u.vlan.sta) 2166 return RX_DROP_UNUSABLE; 2167 2168 if (is_multicast_ether_addr(hdr->addr1) && 2169 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2170 rx->sdata->u.vlan.sta) || 2171 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2172 rx->sdata->u.mgd.use_4addr))) 2173 return RX_DROP_UNUSABLE; 2174 2175 skb->dev = dev; 2176 __skb_queue_head_init(&frame_list); 2177 2178 if (skb_linearize(skb)) 2179 return RX_DROP_UNUSABLE; 2180 2181 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2182 rx->sdata->vif.type, 2183 rx->local->hw.extra_tx_headroom, true); 2184 2185 while (!skb_queue_empty(&frame_list)) { 2186 rx->skb = __skb_dequeue(&frame_list); 2187 2188 if (!ieee80211_frame_allowed(rx, fc)) { 2189 dev_kfree_skb(rx->skb); 2190 continue; 2191 } 2192 2193 ieee80211_deliver_skb(rx); 2194 } 2195 2196 return RX_QUEUED; 2197 } 2198 2199 #ifdef CONFIG_MAC80211_MESH 2200 static ieee80211_rx_result 2201 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2202 { 2203 struct ieee80211_hdr *fwd_hdr, *hdr; 2204 struct ieee80211_tx_info *info; 2205 struct ieee80211s_hdr *mesh_hdr; 2206 struct sk_buff *skb = rx->skb, *fwd_skb; 2207 struct ieee80211_local *local = rx->local; 2208 struct ieee80211_sub_if_data *sdata = rx->sdata; 2209 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2210 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2211 u16 q, hdrlen; 2212 2213 hdr = (struct ieee80211_hdr *) skb->data; 2214 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2215 2216 /* make sure fixed part of mesh header is there, also checks skb len */ 2217 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2218 return RX_DROP_MONITOR; 2219 2220 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2221 2222 /* make sure full mesh header is there, also checks skb len */ 2223 if (!pskb_may_pull(rx->skb, 2224 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2225 return RX_DROP_MONITOR; 2226 2227 /* reload pointers */ 2228 hdr = (struct ieee80211_hdr *) skb->data; 2229 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2230 2231 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2232 return RX_DROP_MONITOR; 2233 2234 /* frame is in RMC, don't forward */ 2235 if (ieee80211_is_data(hdr->frame_control) && 2236 is_multicast_ether_addr(hdr->addr1) && 2237 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2238 return RX_DROP_MONITOR; 2239 2240 if (!ieee80211_is_data(hdr->frame_control) || 2241 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2242 return RX_CONTINUE; 2243 2244 if (!mesh_hdr->ttl) 2245 return RX_DROP_MONITOR; 2246 2247 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2248 struct mesh_path *mppath; 2249 char *proxied_addr; 2250 char *mpp_addr; 2251 2252 if (is_multicast_ether_addr(hdr->addr1)) { 2253 mpp_addr = hdr->addr3; 2254 proxied_addr = mesh_hdr->eaddr1; 2255 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2256 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2257 mpp_addr = hdr->addr4; 2258 proxied_addr = mesh_hdr->eaddr2; 2259 } else { 2260 return RX_DROP_MONITOR; 2261 } 2262 2263 rcu_read_lock(); 2264 mppath = mpp_path_lookup(sdata, proxied_addr); 2265 if (!mppath) { 2266 mpp_path_add(sdata, proxied_addr, mpp_addr); 2267 } else { 2268 spin_lock_bh(&mppath->state_lock); 2269 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2270 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2271 spin_unlock_bh(&mppath->state_lock); 2272 } 2273 rcu_read_unlock(); 2274 } 2275 2276 /* Frame has reached destination. Don't forward */ 2277 if (!is_multicast_ether_addr(hdr->addr1) && 2278 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2279 return RX_CONTINUE; 2280 2281 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2282 if (ieee80211_queue_stopped(&local->hw, q)) { 2283 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2284 return RX_DROP_MONITOR; 2285 } 2286 skb_set_queue_mapping(skb, q); 2287 2288 if (!--mesh_hdr->ttl) { 2289 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2290 goto out; 2291 } 2292 2293 if (!ifmsh->mshcfg.dot11MeshForwarding) 2294 goto out; 2295 2296 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2297 if (!fwd_skb) { 2298 net_info_ratelimited("%s: failed to clone mesh frame\n", 2299 sdata->name); 2300 goto out; 2301 } 2302 2303 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2304 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2305 info = IEEE80211_SKB_CB(fwd_skb); 2306 memset(info, 0, sizeof(*info)); 2307 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2308 info->control.vif = &rx->sdata->vif; 2309 info->control.jiffies = jiffies; 2310 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2311 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2312 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2313 /* update power mode indication when forwarding */ 2314 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2315 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2316 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2317 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2318 } else { 2319 /* unable to resolve next hop */ 2320 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2321 fwd_hdr->addr3, 0, 2322 WLAN_REASON_MESH_PATH_NOFORWARD, 2323 fwd_hdr->addr2); 2324 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2325 kfree_skb(fwd_skb); 2326 return RX_DROP_MONITOR; 2327 } 2328 2329 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2330 ieee80211_add_pending_skb(local, fwd_skb); 2331 out: 2332 if (is_multicast_ether_addr(hdr->addr1) || 2333 sdata->dev->flags & IFF_PROMISC) 2334 return RX_CONTINUE; 2335 else 2336 return RX_DROP_MONITOR; 2337 } 2338 #endif 2339 2340 static ieee80211_rx_result debug_noinline 2341 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2342 { 2343 struct ieee80211_sub_if_data *sdata = rx->sdata; 2344 struct ieee80211_local *local = rx->local; 2345 struct net_device *dev = sdata->dev; 2346 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2347 __le16 fc = hdr->frame_control; 2348 bool port_control; 2349 int err; 2350 2351 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2352 return RX_CONTINUE; 2353 2354 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2355 return RX_DROP_MONITOR; 2356 2357 if (rx->sta) { 2358 /* The seqno index has the same property as needed 2359 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2360 * for non-QoS-data frames. Here we know it's a data 2361 * frame, so count MSDUs. 2362 */ 2363 rx->sta->rx_msdu[rx->seqno_idx]++; 2364 } 2365 2366 /* 2367 * Send unexpected-4addr-frame event to hostapd. For older versions, 2368 * also drop the frame to cooked monitor interfaces. 2369 */ 2370 if (ieee80211_has_a4(hdr->frame_control) && 2371 sdata->vif.type == NL80211_IFTYPE_AP) { 2372 if (rx->sta && 2373 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2374 cfg80211_rx_unexpected_4addr_frame( 2375 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2376 return RX_DROP_MONITOR; 2377 } 2378 2379 err = __ieee80211_data_to_8023(rx, &port_control); 2380 if (unlikely(err)) 2381 return RX_DROP_UNUSABLE; 2382 2383 if (!ieee80211_frame_allowed(rx, fc)) 2384 return RX_DROP_MONITOR; 2385 2386 /* directly handle TDLS channel switch requests/responses */ 2387 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2388 cpu_to_be16(ETH_P_TDLS))) { 2389 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2390 2391 if (pskb_may_pull(rx->skb, 2392 offsetof(struct ieee80211_tdls_data, u)) && 2393 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2394 tf->category == WLAN_CATEGORY_TDLS && 2395 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2396 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2397 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW; 2398 skb_queue_tail(&sdata->skb_queue, rx->skb); 2399 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2400 if (rx->sta) 2401 rx->sta->rx_packets++; 2402 2403 return RX_QUEUED; 2404 } 2405 } 2406 2407 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2408 unlikely(port_control) && sdata->bss) { 2409 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2410 u.ap); 2411 dev = sdata->dev; 2412 rx->sdata = sdata; 2413 } 2414 2415 rx->skb->dev = dev; 2416 2417 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2418 !is_multicast_ether_addr( 2419 ((struct ethhdr *)rx->skb->data)->h_dest) && 2420 (!local->scanning && 2421 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2422 mod_timer(&local->dynamic_ps_timer, jiffies + 2423 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2424 } 2425 2426 ieee80211_deliver_skb(rx); 2427 2428 return RX_QUEUED; 2429 } 2430 2431 static ieee80211_rx_result debug_noinline 2432 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2433 { 2434 struct sk_buff *skb = rx->skb; 2435 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2436 struct tid_ampdu_rx *tid_agg_rx; 2437 u16 start_seq_num; 2438 u16 tid; 2439 2440 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2441 return RX_CONTINUE; 2442 2443 if (ieee80211_is_back_req(bar->frame_control)) { 2444 struct { 2445 __le16 control, start_seq_num; 2446 } __packed bar_data; 2447 2448 if (!rx->sta) 2449 return RX_DROP_MONITOR; 2450 2451 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2452 &bar_data, sizeof(bar_data))) 2453 return RX_DROP_MONITOR; 2454 2455 tid = le16_to_cpu(bar_data.control) >> 12; 2456 2457 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2458 if (!tid_agg_rx) 2459 return RX_DROP_MONITOR; 2460 2461 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2462 2463 /* reset session timer */ 2464 if (tid_agg_rx->timeout) 2465 mod_timer(&tid_agg_rx->session_timer, 2466 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2467 2468 spin_lock(&tid_agg_rx->reorder_lock); 2469 /* release stored frames up to start of BAR */ 2470 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2471 start_seq_num, frames); 2472 spin_unlock(&tid_agg_rx->reorder_lock); 2473 2474 kfree_skb(skb); 2475 return RX_QUEUED; 2476 } 2477 2478 /* 2479 * After this point, we only want management frames, 2480 * so we can drop all remaining control frames to 2481 * cooked monitor interfaces. 2482 */ 2483 return RX_DROP_MONITOR; 2484 } 2485 2486 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2487 struct ieee80211_mgmt *mgmt, 2488 size_t len) 2489 { 2490 struct ieee80211_local *local = sdata->local; 2491 struct sk_buff *skb; 2492 struct ieee80211_mgmt *resp; 2493 2494 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2495 /* Not to own unicast address */ 2496 return; 2497 } 2498 2499 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2500 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2501 /* Not from the current AP or not associated yet. */ 2502 return; 2503 } 2504 2505 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2506 /* Too short SA Query request frame */ 2507 return; 2508 } 2509 2510 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2511 if (skb == NULL) 2512 return; 2513 2514 skb_reserve(skb, local->hw.extra_tx_headroom); 2515 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2516 memset(resp, 0, 24); 2517 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2518 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2519 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2520 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2521 IEEE80211_STYPE_ACTION); 2522 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2523 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2524 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2525 memcpy(resp->u.action.u.sa_query.trans_id, 2526 mgmt->u.action.u.sa_query.trans_id, 2527 WLAN_SA_QUERY_TR_ID_LEN); 2528 2529 ieee80211_tx_skb(sdata, skb); 2530 } 2531 2532 static ieee80211_rx_result debug_noinline 2533 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2534 { 2535 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2536 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2537 2538 /* 2539 * From here on, look only at management frames. 2540 * Data and control frames are already handled, 2541 * and unknown (reserved) frames are useless. 2542 */ 2543 if (rx->skb->len < 24) 2544 return RX_DROP_MONITOR; 2545 2546 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2547 return RX_DROP_MONITOR; 2548 2549 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2550 ieee80211_is_beacon(mgmt->frame_control) && 2551 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2552 int sig = 0; 2553 2554 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2555 sig = status->signal; 2556 2557 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2558 rx->skb->data, rx->skb->len, 2559 status->freq, sig); 2560 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2561 } 2562 2563 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2564 return RX_DROP_MONITOR; 2565 2566 if (ieee80211_drop_unencrypted_mgmt(rx)) 2567 return RX_DROP_UNUSABLE; 2568 2569 return RX_CONTINUE; 2570 } 2571 2572 static ieee80211_rx_result debug_noinline 2573 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2574 { 2575 struct ieee80211_local *local = rx->local; 2576 struct ieee80211_sub_if_data *sdata = rx->sdata; 2577 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2578 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2579 int len = rx->skb->len; 2580 2581 if (!ieee80211_is_action(mgmt->frame_control)) 2582 return RX_CONTINUE; 2583 2584 /* drop too small frames */ 2585 if (len < IEEE80211_MIN_ACTION_SIZE) 2586 return RX_DROP_UNUSABLE; 2587 2588 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2589 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2590 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2591 return RX_DROP_UNUSABLE; 2592 2593 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2594 return RX_DROP_UNUSABLE; 2595 2596 switch (mgmt->u.action.category) { 2597 case WLAN_CATEGORY_HT: 2598 /* reject HT action frames from stations not supporting HT */ 2599 if (!rx->sta->sta.ht_cap.ht_supported) 2600 goto invalid; 2601 2602 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2603 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2604 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2605 sdata->vif.type != NL80211_IFTYPE_AP && 2606 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2607 break; 2608 2609 /* verify action & smps_control/chanwidth are present */ 2610 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2611 goto invalid; 2612 2613 switch (mgmt->u.action.u.ht_smps.action) { 2614 case WLAN_HT_ACTION_SMPS: { 2615 struct ieee80211_supported_band *sband; 2616 enum ieee80211_smps_mode smps_mode; 2617 2618 /* convert to HT capability */ 2619 switch (mgmt->u.action.u.ht_smps.smps_control) { 2620 case WLAN_HT_SMPS_CONTROL_DISABLED: 2621 smps_mode = IEEE80211_SMPS_OFF; 2622 break; 2623 case WLAN_HT_SMPS_CONTROL_STATIC: 2624 smps_mode = IEEE80211_SMPS_STATIC; 2625 break; 2626 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2627 smps_mode = IEEE80211_SMPS_DYNAMIC; 2628 break; 2629 default: 2630 goto invalid; 2631 } 2632 2633 /* if no change do nothing */ 2634 if (rx->sta->sta.smps_mode == smps_mode) 2635 goto handled; 2636 rx->sta->sta.smps_mode = smps_mode; 2637 2638 sband = rx->local->hw.wiphy->bands[status->band]; 2639 2640 rate_control_rate_update(local, sband, rx->sta, 2641 IEEE80211_RC_SMPS_CHANGED); 2642 goto handled; 2643 } 2644 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2645 struct ieee80211_supported_band *sband; 2646 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2647 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2648 2649 /* If it doesn't support 40 MHz it can't change ... */ 2650 if (!(rx->sta->sta.ht_cap.cap & 2651 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2652 goto handled; 2653 2654 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2655 max_bw = IEEE80211_STA_RX_BW_20; 2656 else 2657 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2658 2659 /* set cur_max_bandwidth and recalc sta bw */ 2660 rx->sta->cur_max_bandwidth = max_bw; 2661 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2662 2663 if (rx->sta->sta.bandwidth == new_bw) 2664 goto handled; 2665 2666 rx->sta->sta.bandwidth = new_bw; 2667 sband = rx->local->hw.wiphy->bands[status->band]; 2668 2669 rate_control_rate_update(local, sband, rx->sta, 2670 IEEE80211_RC_BW_CHANGED); 2671 goto handled; 2672 } 2673 default: 2674 goto invalid; 2675 } 2676 2677 break; 2678 case WLAN_CATEGORY_PUBLIC: 2679 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2680 goto invalid; 2681 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2682 break; 2683 if (!rx->sta) 2684 break; 2685 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2686 break; 2687 if (mgmt->u.action.u.ext_chan_switch.action_code != 2688 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2689 break; 2690 if (len < offsetof(struct ieee80211_mgmt, 2691 u.action.u.ext_chan_switch.variable)) 2692 goto invalid; 2693 goto queue; 2694 case WLAN_CATEGORY_VHT: 2695 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2696 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2697 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2698 sdata->vif.type != NL80211_IFTYPE_AP && 2699 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2700 break; 2701 2702 /* verify action code is present */ 2703 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2704 goto invalid; 2705 2706 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2707 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2708 u8 opmode; 2709 2710 /* verify opmode is present */ 2711 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2712 goto invalid; 2713 2714 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2715 2716 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2717 opmode, status->band, 2718 false); 2719 goto handled; 2720 } 2721 default: 2722 break; 2723 } 2724 break; 2725 case WLAN_CATEGORY_BACK: 2726 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2727 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2728 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2729 sdata->vif.type != NL80211_IFTYPE_AP && 2730 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2731 break; 2732 2733 /* verify action_code is present */ 2734 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2735 break; 2736 2737 switch (mgmt->u.action.u.addba_req.action_code) { 2738 case WLAN_ACTION_ADDBA_REQ: 2739 if (len < (IEEE80211_MIN_ACTION_SIZE + 2740 sizeof(mgmt->u.action.u.addba_req))) 2741 goto invalid; 2742 break; 2743 case WLAN_ACTION_ADDBA_RESP: 2744 if (len < (IEEE80211_MIN_ACTION_SIZE + 2745 sizeof(mgmt->u.action.u.addba_resp))) 2746 goto invalid; 2747 break; 2748 case WLAN_ACTION_DELBA: 2749 if (len < (IEEE80211_MIN_ACTION_SIZE + 2750 sizeof(mgmt->u.action.u.delba))) 2751 goto invalid; 2752 break; 2753 default: 2754 goto invalid; 2755 } 2756 2757 goto queue; 2758 case WLAN_CATEGORY_SPECTRUM_MGMT: 2759 /* verify action_code is present */ 2760 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2761 break; 2762 2763 switch (mgmt->u.action.u.measurement.action_code) { 2764 case WLAN_ACTION_SPCT_MSR_REQ: 2765 if (status->band != IEEE80211_BAND_5GHZ) 2766 break; 2767 2768 if (len < (IEEE80211_MIN_ACTION_SIZE + 2769 sizeof(mgmt->u.action.u.measurement))) 2770 break; 2771 2772 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2773 break; 2774 2775 ieee80211_process_measurement_req(sdata, mgmt, len); 2776 goto handled; 2777 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2778 u8 *bssid; 2779 if (len < (IEEE80211_MIN_ACTION_SIZE + 2780 sizeof(mgmt->u.action.u.chan_switch))) 2781 break; 2782 2783 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2784 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2785 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2786 break; 2787 2788 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2789 bssid = sdata->u.mgd.bssid; 2790 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2791 bssid = sdata->u.ibss.bssid; 2792 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2793 bssid = mgmt->sa; 2794 else 2795 break; 2796 2797 if (!ether_addr_equal(mgmt->bssid, bssid)) 2798 break; 2799 2800 goto queue; 2801 } 2802 } 2803 break; 2804 case WLAN_CATEGORY_SA_QUERY: 2805 if (len < (IEEE80211_MIN_ACTION_SIZE + 2806 sizeof(mgmt->u.action.u.sa_query))) 2807 break; 2808 2809 switch (mgmt->u.action.u.sa_query.action) { 2810 case WLAN_ACTION_SA_QUERY_REQUEST: 2811 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2812 break; 2813 ieee80211_process_sa_query_req(sdata, mgmt, len); 2814 goto handled; 2815 } 2816 break; 2817 case WLAN_CATEGORY_SELF_PROTECTED: 2818 if (len < (IEEE80211_MIN_ACTION_SIZE + 2819 sizeof(mgmt->u.action.u.self_prot.action_code))) 2820 break; 2821 2822 switch (mgmt->u.action.u.self_prot.action_code) { 2823 case WLAN_SP_MESH_PEERING_OPEN: 2824 case WLAN_SP_MESH_PEERING_CLOSE: 2825 case WLAN_SP_MESH_PEERING_CONFIRM: 2826 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2827 goto invalid; 2828 if (sdata->u.mesh.user_mpm) 2829 /* userspace handles this frame */ 2830 break; 2831 goto queue; 2832 case WLAN_SP_MGK_INFORM: 2833 case WLAN_SP_MGK_ACK: 2834 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2835 goto invalid; 2836 break; 2837 } 2838 break; 2839 case WLAN_CATEGORY_MESH_ACTION: 2840 if (len < (IEEE80211_MIN_ACTION_SIZE + 2841 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2842 break; 2843 2844 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2845 break; 2846 if (mesh_action_is_path_sel(mgmt) && 2847 !mesh_path_sel_is_hwmp(sdata)) 2848 break; 2849 goto queue; 2850 } 2851 2852 return RX_CONTINUE; 2853 2854 invalid: 2855 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2856 /* will return in the next handlers */ 2857 return RX_CONTINUE; 2858 2859 handled: 2860 if (rx->sta) 2861 rx->sta->rx_packets++; 2862 dev_kfree_skb(rx->skb); 2863 return RX_QUEUED; 2864 2865 queue: 2866 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2867 skb_queue_tail(&sdata->skb_queue, rx->skb); 2868 ieee80211_queue_work(&local->hw, &sdata->work); 2869 if (rx->sta) 2870 rx->sta->rx_packets++; 2871 return RX_QUEUED; 2872 } 2873 2874 static ieee80211_rx_result debug_noinline 2875 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2876 { 2877 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2878 int sig = 0; 2879 2880 /* skip known-bad action frames and return them in the next handler */ 2881 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2882 return RX_CONTINUE; 2883 2884 /* 2885 * Getting here means the kernel doesn't know how to handle 2886 * it, but maybe userspace does ... include returned frames 2887 * so userspace can register for those to know whether ones 2888 * it transmitted were processed or returned. 2889 */ 2890 2891 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2892 sig = status->signal; 2893 2894 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2895 rx->skb->data, rx->skb->len, 0)) { 2896 if (rx->sta) 2897 rx->sta->rx_packets++; 2898 dev_kfree_skb(rx->skb); 2899 return RX_QUEUED; 2900 } 2901 2902 return RX_CONTINUE; 2903 } 2904 2905 static ieee80211_rx_result debug_noinline 2906 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2907 { 2908 struct ieee80211_local *local = rx->local; 2909 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2910 struct sk_buff *nskb; 2911 struct ieee80211_sub_if_data *sdata = rx->sdata; 2912 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2913 2914 if (!ieee80211_is_action(mgmt->frame_control)) 2915 return RX_CONTINUE; 2916 2917 /* 2918 * For AP mode, hostapd is responsible for handling any action 2919 * frames that we didn't handle, including returning unknown 2920 * ones. For all other modes we will return them to the sender, 2921 * setting the 0x80 bit in the action category, as required by 2922 * 802.11-2012 9.24.4. 2923 * Newer versions of hostapd shall also use the management frame 2924 * registration mechanisms, but older ones still use cooked 2925 * monitor interfaces so push all frames there. 2926 */ 2927 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2928 (sdata->vif.type == NL80211_IFTYPE_AP || 2929 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2930 return RX_DROP_MONITOR; 2931 2932 if (is_multicast_ether_addr(mgmt->da)) 2933 return RX_DROP_MONITOR; 2934 2935 /* do not return rejected action frames */ 2936 if (mgmt->u.action.category & 0x80) 2937 return RX_DROP_UNUSABLE; 2938 2939 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2940 GFP_ATOMIC); 2941 if (nskb) { 2942 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2943 2944 nmgmt->u.action.category |= 0x80; 2945 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2946 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2947 2948 memset(nskb->cb, 0, sizeof(nskb->cb)); 2949 2950 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2951 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2952 2953 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2954 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2955 IEEE80211_TX_CTL_NO_CCK_RATE; 2956 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2957 info->hw_queue = 2958 local->hw.offchannel_tx_hw_queue; 2959 } 2960 2961 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2962 status->band); 2963 } 2964 dev_kfree_skb(rx->skb); 2965 return RX_QUEUED; 2966 } 2967 2968 static ieee80211_rx_result debug_noinline 2969 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2970 { 2971 struct ieee80211_sub_if_data *sdata = rx->sdata; 2972 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2973 __le16 stype; 2974 2975 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2976 2977 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2978 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2979 sdata->vif.type != NL80211_IFTYPE_OCB && 2980 sdata->vif.type != NL80211_IFTYPE_STATION) 2981 return RX_DROP_MONITOR; 2982 2983 switch (stype) { 2984 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2985 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2986 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2987 /* process for all: mesh, mlme, ibss */ 2988 break; 2989 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2990 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2991 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2992 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2993 if (is_multicast_ether_addr(mgmt->da) && 2994 !is_broadcast_ether_addr(mgmt->da)) 2995 return RX_DROP_MONITOR; 2996 2997 /* process only for station */ 2998 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2999 return RX_DROP_MONITOR; 3000 break; 3001 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3002 /* process only for ibss and mesh */ 3003 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3004 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3005 return RX_DROP_MONITOR; 3006 break; 3007 default: 3008 return RX_DROP_MONITOR; 3009 } 3010 3011 /* queue up frame and kick off work to process it */ 3012 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3013 skb_queue_tail(&sdata->skb_queue, rx->skb); 3014 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3015 if (rx->sta) 3016 rx->sta->rx_packets++; 3017 3018 return RX_QUEUED; 3019 } 3020 3021 /* TODO: use IEEE80211_RX_FRAGMENTED */ 3022 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3023 struct ieee80211_rate *rate) 3024 { 3025 struct ieee80211_sub_if_data *sdata; 3026 struct ieee80211_local *local = rx->local; 3027 struct sk_buff *skb = rx->skb, *skb2; 3028 struct net_device *prev_dev = NULL; 3029 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3030 int needed_headroom; 3031 3032 /* 3033 * If cooked monitor has been processed already, then 3034 * don't do it again. If not, set the flag. 3035 */ 3036 if (rx->flags & IEEE80211_RX_CMNTR) 3037 goto out_free_skb; 3038 rx->flags |= IEEE80211_RX_CMNTR; 3039 3040 /* If there are no cooked monitor interfaces, just free the SKB */ 3041 if (!local->cooked_mntrs) 3042 goto out_free_skb; 3043 3044 /* vendor data is long removed here */ 3045 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3046 /* room for the radiotap header based on driver features */ 3047 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3048 3049 if (skb_headroom(skb) < needed_headroom && 3050 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3051 goto out_free_skb; 3052 3053 /* prepend radiotap information */ 3054 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3055 false); 3056 3057 skb_set_mac_header(skb, 0); 3058 skb->ip_summed = CHECKSUM_UNNECESSARY; 3059 skb->pkt_type = PACKET_OTHERHOST; 3060 skb->protocol = htons(ETH_P_802_2); 3061 3062 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3063 if (!ieee80211_sdata_running(sdata)) 3064 continue; 3065 3066 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3067 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3068 continue; 3069 3070 if (prev_dev) { 3071 skb2 = skb_clone(skb, GFP_ATOMIC); 3072 if (skb2) { 3073 skb2->dev = prev_dev; 3074 netif_receive_skb(skb2); 3075 } 3076 } 3077 3078 prev_dev = sdata->dev; 3079 sdata->dev->stats.rx_packets++; 3080 sdata->dev->stats.rx_bytes += skb->len; 3081 } 3082 3083 if (prev_dev) { 3084 skb->dev = prev_dev; 3085 netif_receive_skb(skb); 3086 return; 3087 } 3088 3089 out_free_skb: 3090 dev_kfree_skb(skb); 3091 } 3092 3093 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3094 ieee80211_rx_result res) 3095 { 3096 switch (res) { 3097 case RX_DROP_MONITOR: 3098 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3099 if (rx->sta) 3100 rx->sta->rx_dropped++; 3101 /* fall through */ 3102 case RX_CONTINUE: { 3103 struct ieee80211_rate *rate = NULL; 3104 struct ieee80211_supported_band *sband; 3105 struct ieee80211_rx_status *status; 3106 3107 status = IEEE80211_SKB_RXCB((rx->skb)); 3108 3109 sband = rx->local->hw.wiphy->bands[status->band]; 3110 if (!(status->flag & RX_FLAG_HT) && 3111 !(status->flag & RX_FLAG_VHT)) 3112 rate = &sband->bitrates[status->rate_idx]; 3113 3114 ieee80211_rx_cooked_monitor(rx, rate); 3115 break; 3116 } 3117 case RX_DROP_UNUSABLE: 3118 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3119 if (rx->sta) 3120 rx->sta->rx_dropped++; 3121 dev_kfree_skb(rx->skb); 3122 break; 3123 case RX_QUEUED: 3124 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3125 break; 3126 } 3127 } 3128 3129 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3130 struct sk_buff_head *frames) 3131 { 3132 ieee80211_rx_result res = RX_DROP_MONITOR; 3133 struct sk_buff *skb; 3134 3135 #define CALL_RXH(rxh) \ 3136 do { \ 3137 res = rxh(rx); \ 3138 if (res != RX_CONTINUE) \ 3139 goto rxh_next; \ 3140 } while (0); 3141 3142 /* Lock here to avoid hitting all of the data used in the RX 3143 * path (e.g. key data, station data, ...) concurrently when 3144 * a frame is released from the reorder buffer due to timeout 3145 * from the timer, potentially concurrently with RX from the 3146 * driver. 3147 */ 3148 spin_lock_bh(&rx->local->rx_path_lock); 3149 3150 while ((skb = __skb_dequeue(frames))) { 3151 /* 3152 * all the other fields are valid across frames 3153 * that belong to an aMPDU since they are on the 3154 * same TID from the same station 3155 */ 3156 rx->skb = skb; 3157 3158 CALL_RXH(ieee80211_rx_h_check_more_data) 3159 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 3160 CALL_RXH(ieee80211_rx_h_sta_process) 3161 CALL_RXH(ieee80211_rx_h_decrypt) 3162 CALL_RXH(ieee80211_rx_h_defragment) 3163 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 3164 /* must be after MMIC verify so header is counted in MPDU mic */ 3165 #ifdef CONFIG_MAC80211_MESH 3166 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3167 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3168 #endif 3169 CALL_RXH(ieee80211_rx_h_amsdu) 3170 CALL_RXH(ieee80211_rx_h_data) 3171 3172 /* special treatment -- needs the queue */ 3173 res = ieee80211_rx_h_ctrl(rx, frames); 3174 if (res != RX_CONTINUE) 3175 goto rxh_next; 3176 3177 CALL_RXH(ieee80211_rx_h_mgmt_check) 3178 CALL_RXH(ieee80211_rx_h_action) 3179 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3180 CALL_RXH(ieee80211_rx_h_action_return) 3181 CALL_RXH(ieee80211_rx_h_mgmt) 3182 3183 rxh_next: 3184 ieee80211_rx_handlers_result(rx, res); 3185 3186 #undef CALL_RXH 3187 } 3188 3189 spin_unlock_bh(&rx->local->rx_path_lock); 3190 } 3191 3192 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3193 { 3194 struct sk_buff_head reorder_release; 3195 ieee80211_rx_result res = RX_DROP_MONITOR; 3196 3197 __skb_queue_head_init(&reorder_release); 3198 3199 #define CALL_RXH(rxh) \ 3200 do { \ 3201 res = rxh(rx); \ 3202 if (res != RX_CONTINUE) \ 3203 goto rxh_next; \ 3204 } while (0); 3205 3206 CALL_RXH(ieee80211_rx_h_check_dup) 3207 CALL_RXH(ieee80211_rx_h_check) 3208 3209 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3210 3211 ieee80211_rx_handlers(rx, &reorder_release); 3212 return; 3213 3214 rxh_next: 3215 ieee80211_rx_handlers_result(rx, res); 3216 3217 #undef CALL_RXH 3218 } 3219 3220 /* 3221 * This function makes calls into the RX path, therefore 3222 * it has to be invoked under RCU read lock. 3223 */ 3224 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3225 { 3226 struct sk_buff_head frames; 3227 struct ieee80211_rx_data rx = { 3228 .sta = sta, 3229 .sdata = sta->sdata, 3230 .local = sta->local, 3231 /* This is OK -- must be QoS data frame */ 3232 .security_idx = tid, 3233 .seqno_idx = tid, 3234 .flags = 0, 3235 }; 3236 struct tid_ampdu_rx *tid_agg_rx; 3237 3238 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3239 if (!tid_agg_rx) 3240 return; 3241 3242 __skb_queue_head_init(&frames); 3243 3244 spin_lock(&tid_agg_rx->reorder_lock); 3245 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3246 spin_unlock(&tid_agg_rx->reorder_lock); 3247 3248 ieee80211_rx_handlers(&rx, &frames); 3249 } 3250 3251 /* main receive path */ 3252 3253 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3254 struct ieee80211_hdr *hdr) 3255 { 3256 struct ieee80211_sub_if_data *sdata = rx->sdata; 3257 struct sk_buff *skb = rx->skb; 3258 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3259 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3260 int multicast = is_multicast_ether_addr(hdr->addr1); 3261 3262 switch (sdata->vif.type) { 3263 case NL80211_IFTYPE_STATION: 3264 if (!bssid && !sdata->u.mgd.use_4addr) 3265 return false; 3266 if (!multicast && 3267 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3268 if (!(sdata->dev->flags & IFF_PROMISC) || 3269 sdata->u.mgd.use_4addr) 3270 return false; 3271 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3272 } 3273 break; 3274 case NL80211_IFTYPE_ADHOC: 3275 if (!bssid) 3276 return false; 3277 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3278 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3279 return false; 3280 if (ieee80211_is_beacon(hdr->frame_control)) { 3281 return true; 3282 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3283 return false; 3284 } else if (!multicast && 3285 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3286 if (!(sdata->dev->flags & IFF_PROMISC)) 3287 return false; 3288 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3289 } else if (!rx->sta) { 3290 int rate_idx; 3291 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3292 rate_idx = 0; /* TODO: HT/VHT rates */ 3293 else 3294 rate_idx = status->rate_idx; 3295 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3296 BIT(rate_idx)); 3297 } 3298 break; 3299 case NL80211_IFTYPE_OCB: 3300 if (!bssid) 3301 return false; 3302 if (ieee80211_is_beacon(hdr->frame_control)) { 3303 return false; 3304 } else if (!is_broadcast_ether_addr(bssid)) { 3305 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n"); 3306 return false; 3307 } else if (!multicast && 3308 !ether_addr_equal(sdata->dev->dev_addr, 3309 hdr->addr1)) { 3310 /* if we are in promisc mode we also accept 3311 * packets not destined for us 3312 */ 3313 if (!(sdata->dev->flags & IFF_PROMISC)) 3314 return false; 3315 rx->flags &= ~IEEE80211_RX_RA_MATCH; 3316 } else if (!rx->sta) { 3317 int rate_idx; 3318 if (status->flag & RX_FLAG_HT) 3319 rate_idx = 0; /* TODO: HT rates */ 3320 else 3321 rate_idx = status->rate_idx; 3322 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3323 BIT(rate_idx)); 3324 } 3325 break; 3326 case NL80211_IFTYPE_MESH_POINT: 3327 if (!multicast && 3328 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3329 if (!(sdata->dev->flags & IFF_PROMISC)) 3330 return false; 3331 3332 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3333 } 3334 break; 3335 case NL80211_IFTYPE_AP_VLAN: 3336 case NL80211_IFTYPE_AP: 3337 if (!bssid) { 3338 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3339 return false; 3340 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3341 /* 3342 * Accept public action frames even when the 3343 * BSSID doesn't match, this is used for P2P 3344 * and location updates. Note that mac80211 3345 * itself never looks at these frames. 3346 */ 3347 if (!multicast && 3348 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3349 return false; 3350 if (ieee80211_is_public_action(hdr, skb->len)) 3351 return true; 3352 if (!ieee80211_is_beacon(hdr->frame_control)) 3353 return false; 3354 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3355 } else if (!ieee80211_has_tods(hdr->frame_control)) { 3356 /* ignore data frames to TDLS-peers */ 3357 if (ieee80211_is_data(hdr->frame_control)) 3358 return false; 3359 /* ignore action frames to TDLS-peers */ 3360 if (ieee80211_is_action(hdr->frame_control) && 3361 !ether_addr_equal(bssid, hdr->addr1)) 3362 return false; 3363 } 3364 break; 3365 case NL80211_IFTYPE_WDS: 3366 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3367 return false; 3368 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3369 return false; 3370 break; 3371 case NL80211_IFTYPE_P2P_DEVICE: 3372 if (!ieee80211_is_public_action(hdr, skb->len) && 3373 !ieee80211_is_probe_req(hdr->frame_control) && 3374 !ieee80211_is_probe_resp(hdr->frame_control) && 3375 !ieee80211_is_beacon(hdr->frame_control)) 3376 return false; 3377 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3378 !multicast) 3379 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3380 break; 3381 default: 3382 /* should never get here */ 3383 WARN_ON_ONCE(1); 3384 break; 3385 } 3386 3387 return true; 3388 } 3389 3390 /* 3391 * This function returns whether or not the SKB 3392 * was destined for RX processing or not, which, 3393 * if consume is true, is equivalent to whether 3394 * or not the skb was consumed. 3395 */ 3396 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3397 struct sk_buff *skb, bool consume) 3398 { 3399 struct ieee80211_local *local = rx->local; 3400 struct ieee80211_sub_if_data *sdata = rx->sdata; 3401 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3402 struct ieee80211_hdr *hdr = (void *)skb->data; 3403 3404 rx->skb = skb; 3405 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3406 3407 if (!prepare_for_handlers(rx, hdr)) 3408 return false; 3409 3410 if (!consume) { 3411 skb = skb_copy(skb, GFP_ATOMIC); 3412 if (!skb) { 3413 if (net_ratelimit()) 3414 wiphy_debug(local->hw.wiphy, 3415 "failed to copy skb for %s\n", 3416 sdata->name); 3417 return true; 3418 } 3419 3420 rx->skb = skb; 3421 } 3422 3423 ieee80211_invoke_rx_handlers(rx); 3424 return true; 3425 } 3426 3427 /* 3428 * This is the actual Rx frames handler. as it belongs to Rx path it must 3429 * be called with rcu_read_lock protection. 3430 */ 3431 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3432 struct sk_buff *skb) 3433 { 3434 struct ieee80211_local *local = hw_to_local(hw); 3435 struct ieee80211_sub_if_data *sdata; 3436 struct ieee80211_hdr *hdr; 3437 __le16 fc; 3438 struct ieee80211_rx_data rx; 3439 struct ieee80211_sub_if_data *prev; 3440 struct sta_info *sta, *prev_sta; 3441 struct rhash_head *tmp; 3442 int err = 0; 3443 3444 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3445 memset(&rx, 0, sizeof(rx)); 3446 rx.skb = skb; 3447 rx.local = local; 3448 3449 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3450 local->dot11ReceivedFragmentCount++; 3451 3452 if (ieee80211_is_mgmt(fc)) { 3453 /* drop frame if too short for header */ 3454 if (skb->len < ieee80211_hdrlen(fc)) 3455 err = -ENOBUFS; 3456 else 3457 err = skb_linearize(skb); 3458 } else { 3459 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3460 } 3461 3462 if (err) { 3463 dev_kfree_skb(skb); 3464 return; 3465 } 3466 3467 hdr = (struct ieee80211_hdr *)skb->data; 3468 ieee80211_parse_qos(&rx); 3469 ieee80211_verify_alignment(&rx); 3470 3471 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3472 ieee80211_is_beacon(hdr->frame_control))) 3473 ieee80211_scan_rx(local, skb); 3474 3475 if (ieee80211_is_data(fc)) { 3476 const struct bucket_table *tbl; 3477 3478 prev_sta = NULL; 3479 3480 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 3481 3482 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) { 3483 if (!prev_sta) { 3484 prev_sta = sta; 3485 continue; 3486 } 3487 3488 rx.sta = prev_sta; 3489 rx.sdata = prev_sta->sdata; 3490 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3491 3492 prev_sta = sta; 3493 } 3494 3495 if (prev_sta) { 3496 rx.sta = prev_sta; 3497 rx.sdata = prev_sta->sdata; 3498 3499 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3500 return; 3501 goto out; 3502 } 3503 } 3504 3505 prev = NULL; 3506 3507 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3508 if (!ieee80211_sdata_running(sdata)) 3509 continue; 3510 3511 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3512 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3513 continue; 3514 3515 /* 3516 * frame is destined for this interface, but if it's 3517 * not also for the previous one we handle that after 3518 * the loop to avoid copying the SKB once too much 3519 */ 3520 3521 if (!prev) { 3522 prev = sdata; 3523 continue; 3524 } 3525 3526 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3527 rx.sdata = prev; 3528 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3529 3530 prev = sdata; 3531 } 3532 3533 if (prev) { 3534 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3535 rx.sdata = prev; 3536 3537 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3538 return; 3539 } 3540 3541 out: 3542 dev_kfree_skb(skb); 3543 } 3544 3545 /* 3546 * This is the receive path handler. It is called by a low level driver when an 3547 * 802.11 MPDU is received from the hardware. 3548 */ 3549 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3550 { 3551 struct ieee80211_local *local = hw_to_local(hw); 3552 struct ieee80211_rate *rate = NULL; 3553 struct ieee80211_supported_band *sband; 3554 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3555 3556 WARN_ON_ONCE(softirq_count() == 0); 3557 3558 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3559 goto drop; 3560 3561 sband = local->hw.wiphy->bands[status->band]; 3562 if (WARN_ON(!sband)) 3563 goto drop; 3564 3565 /* 3566 * If we're suspending, it is possible although not too likely 3567 * that we'd be receiving frames after having already partially 3568 * quiesced the stack. We can't process such frames then since 3569 * that might, for example, cause stations to be added or other 3570 * driver callbacks be invoked. 3571 */ 3572 if (unlikely(local->quiescing || local->suspended)) 3573 goto drop; 3574 3575 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3576 if (unlikely(local->in_reconfig)) 3577 goto drop; 3578 3579 /* 3580 * The same happens when we're not even started, 3581 * but that's worth a warning. 3582 */ 3583 if (WARN_ON(!local->started)) 3584 goto drop; 3585 3586 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3587 /* 3588 * Validate the rate, unless a PLCP error means that 3589 * we probably can't have a valid rate here anyway. 3590 */ 3591 3592 if (status->flag & RX_FLAG_HT) { 3593 /* 3594 * rate_idx is MCS index, which can be [0-76] 3595 * as documented on: 3596 * 3597 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3598 * 3599 * Anything else would be some sort of driver or 3600 * hardware error. The driver should catch hardware 3601 * errors. 3602 */ 3603 if (WARN(status->rate_idx > 76, 3604 "Rate marked as an HT rate but passed " 3605 "status->rate_idx is not " 3606 "an MCS index [0-76]: %d (0x%02x)\n", 3607 status->rate_idx, 3608 status->rate_idx)) 3609 goto drop; 3610 } else if (status->flag & RX_FLAG_VHT) { 3611 if (WARN_ONCE(status->rate_idx > 9 || 3612 !status->vht_nss || 3613 status->vht_nss > 8, 3614 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3615 status->rate_idx, status->vht_nss)) 3616 goto drop; 3617 } else { 3618 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3619 goto drop; 3620 rate = &sband->bitrates[status->rate_idx]; 3621 } 3622 } 3623 3624 status->rx_flags = 0; 3625 3626 /* 3627 * key references and virtual interfaces are protected using RCU 3628 * and this requires that we are in a read-side RCU section during 3629 * receive processing 3630 */ 3631 rcu_read_lock(); 3632 3633 /* 3634 * Frames with failed FCS/PLCP checksum are not returned, 3635 * all other frames are returned without radiotap header 3636 * if it was previously present. 3637 * Also, frames with less than 16 bytes are dropped. 3638 */ 3639 skb = ieee80211_rx_monitor(local, skb, rate); 3640 if (!skb) { 3641 rcu_read_unlock(); 3642 return; 3643 } 3644 3645 ieee80211_tpt_led_trig_rx(local, 3646 ((struct ieee80211_hdr *)skb->data)->frame_control, 3647 skb->len); 3648 __ieee80211_rx_handle_packet(hw, skb); 3649 3650 rcu_read_unlock(); 3651 3652 return; 3653 drop: 3654 kfree_skb(skb); 3655 } 3656 EXPORT_SYMBOL(ieee80211_rx); 3657 3658 /* This is a version of the rx handler that can be called from hard irq 3659 * context. Post the skb on the queue and schedule the tasklet */ 3660 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3661 { 3662 struct ieee80211_local *local = hw_to_local(hw); 3663 3664 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3665 3666 skb->pkt_type = IEEE80211_RX_MSG; 3667 skb_queue_tail(&local->skb_queue, skb); 3668 tasklet_schedule(&local->tasklet); 3669 } 3670 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3671