xref: /openbmc/linux/net/mac80211/rx.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
37 
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 {
40 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 
42 	u64_stats_update_begin(&tstats->syncp);
43 	tstats->rx_packets++;
44 	tstats->rx_bytes += len;
45 	u64_stats_update_end(&tstats->syncp);
46 }
47 
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			       enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_mgmt(fc)) {
68 		if (len < 24) /* drop incorrect hdr len (mgmt) */
69 			return NULL;
70 		return hdr->addr3;
71 	}
72 
73 	if (ieee80211_is_ctl(fc)) {
74 		if (ieee80211_is_pspoll(fc))
75 			return hdr->addr1;
76 
77 		if (ieee80211_is_back_req(fc)) {
78 			switch (type) {
79 			case NL80211_IFTYPE_STATION:
80 				return hdr->addr2;
81 			case NL80211_IFTYPE_AP:
82 			case NL80211_IFTYPE_AP_VLAN:
83 				return hdr->addr1;
84 			default:
85 				break; /* fall through to the return */
86 			}
87 		}
88 	}
89 
90 	return NULL;
91 }
92 
93 /*
94  * monitor mode reception
95  *
96  * This function cleans up the SKB, i.e. it removes all the stuff
97  * only useful for monitoring.
98  */
99 static void remove_monitor_info(struct sk_buff *skb,
100 				unsigned int present_fcs_len,
101 				unsigned int rtap_space)
102 {
103 	if (present_fcs_len)
104 		__pskb_trim(skb, skb->len - present_fcs_len);
105 	__pskb_pull(skb, rtap_space);
106 }
107 
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 				     unsigned int rtap_space)
110 {
111 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 	struct ieee80211_hdr *hdr;
113 
114 	hdr = (void *)(skb->data + rtap_space);
115 
116 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 			    RX_FLAG_FAILED_PLCP_CRC |
118 			    RX_FLAG_ONLY_MONITOR))
119 		return true;
120 
121 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
122 		return true;
123 
124 	if (ieee80211_is_ctl(hdr->frame_control) &&
125 	    !ieee80211_is_pspoll(hdr->frame_control) &&
126 	    !ieee80211_is_back_req(hdr->frame_control))
127 		return true;
128 
129 	return false;
130 }
131 
132 static int
133 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
134 			     struct ieee80211_rx_status *status,
135 			     struct sk_buff *skb)
136 {
137 	int len;
138 
139 	/* always present fields */
140 	len = sizeof(struct ieee80211_radiotap_header) + 8;
141 
142 	/* allocate extra bitmaps */
143 	if (status->chains)
144 		len += 4 * hweight8(status->chains);
145 
146 	if (ieee80211_have_rx_timestamp(status)) {
147 		len = ALIGN(len, 8);
148 		len += 8;
149 	}
150 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
151 		len += 1;
152 
153 	/* antenna field, if we don't have per-chain info */
154 	if (!status->chains)
155 		len += 1;
156 
157 	/* padding for RX_FLAGS if necessary */
158 	len = ALIGN(len, 2);
159 
160 	if (status->encoding == RX_ENC_HT) /* HT info */
161 		len += 3;
162 
163 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
164 		len = ALIGN(len, 4);
165 		len += 8;
166 	}
167 
168 	if (status->encoding == RX_ENC_VHT) {
169 		len = ALIGN(len, 2);
170 		len += 12;
171 	}
172 
173 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
174 		len = ALIGN(len, 8);
175 		len += 12;
176 	}
177 
178 	if (status->encoding == RX_ENC_HE &&
179 	    status->flag & RX_FLAG_RADIOTAP_HE) {
180 		len = ALIGN(len, 2);
181 		len += 12;
182 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
183 	}
184 
185 	if (status->encoding == RX_ENC_HE &&
186 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
187 		len = ALIGN(len, 2);
188 		len += 12;
189 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
190 	}
191 
192 	if (status->chains) {
193 		/* antenna and antenna signal fields */
194 		len += 2 * hweight8(status->chains);
195 	}
196 
197 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
198 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
199 
200 		/* vendor presence bitmap */
201 		len += 4;
202 		/* alignment for fixed 6-byte vendor data header */
203 		len = ALIGN(len, 2);
204 		/* vendor data header */
205 		len += 6;
206 		if (WARN_ON(rtap->align == 0))
207 			rtap->align = 1;
208 		len = ALIGN(len, rtap->align);
209 		len += rtap->len + rtap->pad;
210 	}
211 
212 	return len;
213 }
214 
215 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
216 					 struct sk_buff *skb,
217 					 int rtap_space)
218 {
219 	struct {
220 		struct ieee80211_hdr_3addr hdr;
221 		u8 category;
222 		u8 action_code;
223 	} __packed action;
224 
225 	if (!sdata)
226 		return;
227 
228 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
229 
230 	if (skb->len < rtap_space + sizeof(action) +
231 		       VHT_MUMIMO_GROUPS_DATA_LEN)
232 		return;
233 
234 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
235 		return;
236 
237 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
238 
239 	if (!ieee80211_is_action(action.hdr.frame_control))
240 		return;
241 
242 	if (action.category != WLAN_CATEGORY_VHT)
243 		return;
244 
245 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
246 		return;
247 
248 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
249 		return;
250 
251 	skb = skb_copy(skb, GFP_ATOMIC);
252 	if (!skb)
253 		return;
254 
255 	skb_queue_tail(&sdata->skb_queue, skb);
256 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
257 }
258 
259 /*
260  * ieee80211_add_rx_radiotap_header - add radiotap header
261  *
262  * add a radiotap header containing all the fields which the hardware provided.
263  */
264 static void
265 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
266 				 struct sk_buff *skb,
267 				 struct ieee80211_rate *rate,
268 				 int rtap_len, bool has_fcs)
269 {
270 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
271 	struct ieee80211_radiotap_header *rthdr;
272 	unsigned char *pos;
273 	__le32 *it_present;
274 	u32 it_present_val;
275 	u16 rx_flags = 0;
276 	u16 channel_flags = 0;
277 	int mpdulen, chain;
278 	unsigned long chains = status->chains;
279 	struct ieee80211_vendor_radiotap rtap = {};
280 	struct ieee80211_radiotap_he he = {};
281 	struct ieee80211_radiotap_he_mu he_mu = {};
282 
283 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
284 		he = *(struct ieee80211_radiotap_he *)skb->data;
285 		skb_pull(skb, sizeof(he));
286 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
287 	}
288 
289 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
290 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
291 		skb_pull(skb, sizeof(he_mu));
292 	}
293 
294 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
295 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
296 		/* rtap.len and rtap.pad are undone immediately */
297 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
298 	}
299 
300 	mpdulen = skb->len;
301 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
302 		mpdulen += FCS_LEN;
303 
304 	rthdr = skb_push(skb, rtap_len);
305 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
306 	it_present = &rthdr->it_present;
307 
308 	/* radiotap header, set always present flags */
309 	rthdr->it_len = cpu_to_le16(rtap_len);
310 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
311 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
312 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
313 
314 	if (!status->chains)
315 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
316 
317 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
318 		it_present_val |=
319 			BIT(IEEE80211_RADIOTAP_EXT) |
320 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
321 		put_unaligned_le32(it_present_val, it_present);
322 		it_present++;
323 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
324 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
325 	}
326 
327 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
328 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
329 				  BIT(IEEE80211_RADIOTAP_EXT);
330 		put_unaligned_le32(it_present_val, it_present);
331 		it_present++;
332 		it_present_val = rtap.present;
333 	}
334 
335 	put_unaligned_le32(it_present_val, it_present);
336 
337 	pos = (void *)(it_present + 1);
338 
339 	/* the order of the following fields is important */
340 
341 	/* IEEE80211_RADIOTAP_TSFT */
342 	if (ieee80211_have_rx_timestamp(status)) {
343 		/* padding */
344 		while ((pos - (u8 *)rthdr) & 7)
345 			*pos++ = 0;
346 		put_unaligned_le64(
347 			ieee80211_calculate_rx_timestamp(local, status,
348 							 mpdulen, 0),
349 			pos);
350 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
351 		pos += 8;
352 	}
353 
354 	/* IEEE80211_RADIOTAP_FLAGS */
355 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
356 		*pos |= IEEE80211_RADIOTAP_F_FCS;
357 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
358 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
359 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
360 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
361 	pos++;
362 
363 	/* IEEE80211_RADIOTAP_RATE */
364 	if (!rate || status->encoding != RX_ENC_LEGACY) {
365 		/*
366 		 * Without rate information don't add it. If we have,
367 		 * MCS information is a separate field in radiotap,
368 		 * added below. The byte here is needed as padding
369 		 * for the channel though, so initialise it to 0.
370 		 */
371 		*pos = 0;
372 	} else {
373 		int shift = 0;
374 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
375 		if (status->bw == RATE_INFO_BW_10)
376 			shift = 1;
377 		else if (status->bw == RATE_INFO_BW_5)
378 			shift = 2;
379 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
380 	}
381 	pos++;
382 
383 	/* IEEE80211_RADIOTAP_CHANNEL */
384 	put_unaligned_le16(status->freq, pos);
385 	pos += 2;
386 	if (status->bw == RATE_INFO_BW_10)
387 		channel_flags |= IEEE80211_CHAN_HALF;
388 	else if (status->bw == RATE_INFO_BW_5)
389 		channel_flags |= IEEE80211_CHAN_QUARTER;
390 
391 	if (status->band == NL80211_BAND_5GHZ)
392 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
393 	else if (status->encoding != RX_ENC_LEGACY)
394 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
395 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
396 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
397 	else if (rate)
398 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
399 	else
400 		channel_flags |= IEEE80211_CHAN_2GHZ;
401 	put_unaligned_le16(channel_flags, pos);
402 	pos += 2;
403 
404 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
405 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
406 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
407 		*pos = status->signal;
408 		rthdr->it_present |=
409 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
410 		pos++;
411 	}
412 
413 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
414 
415 	if (!status->chains) {
416 		/* IEEE80211_RADIOTAP_ANTENNA */
417 		*pos = status->antenna;
418 		pos++;
419 	}
420 
421 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
422 
423 	/* IEEE80211_RADIOTAP_RX_FLAGS */
424 	/* ensure 2 byte alignment for the 2 byte field as required */
425 	if ((pos - (u8 *)rthdr) & 1)
426 		*pos++ = 0;
427 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
428 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
429 	put_unaligned_le16(rx_flags, pos);
430 	pos += 2;
431 
432 	if (status->encoding == RX_ENC_HT) {
433 		unsigned int stbc;
434 
435 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
436 		*pos++ = local->hw.radiotap_mcs_details;
437 		*pos = 0;
438 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
439 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
440 		if (status->bw == RATE_INFO_BW_40)
441 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
442 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
443 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
444 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
445 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
446 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
447 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
448 		pos++;
449 		*pos++ = status->rate_idx;
450 	}
451 
452 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
453 		u16 flags = 0;
454 
455 		/* ensure 4 byte alignment */
456 		while ((pos - (u8 *)rthdr) & 3)
457 			pos++;
458 		rthdr->it_present |=
459 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
460 		put_unaligned_le32(status->ampdu_reference, pos);
461 		pos += 4;
462 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
463 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
464 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
465 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
466 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
467 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
468 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
469 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
470 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
471 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
472 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
473 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
474 		put_unaligned_le16(flags, pos);
475 		pos += 2;
476 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
477 			*pos++ = status->ampdu_delimiter_crc;
478 		else
479 			*pos++ = 0;
480 		*pos++ = 0;
481 	}
482 
483 	if (status->encoding == RX_ENC_VHT) {
484 		u16 known = local->hw.radiotap_vht_details;
485 
486 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
487 		put_unaligned_le16(known, pos);
488 		pos += 2;
489 		/* flags */
490 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
491 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
492 		/* in VHT, STBC is binary */
493 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
494 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
495 		if (status->enc_flags & RX_ENC_FLAG_BF)
496 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
497 		pos++;
498 		/* bandwidth */
499 		switch (status->bw) {
500 		case RATE_INFO_BW_80:
501 			*pos++ = 4;
502 			break;
503 		case RATE_INFO_BW_160:
504 			*pos++ = 11;
505 			break;
506 		case RATE_INFO_BW_40:
507 			*pos++ = 1;
508 			break;
509 		default:
510 			*pos++ = 0;
511 		}
512 		/* MCS/NSS */
513 		*pos = (status->rate_idx << 4) | status->nss;
514 		pos += 4;
515 		/* coding field */
516 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
517 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
518 		pos++;
519 		/* group ID */
520 		pos++;
521 		/* partial_aid */
522 		pos += 2;
523 	}
524 
525 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
526 		u16 accuracy = 0;
527 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
528 
529 		rthdr->it_present |=
530 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
531 
532 		/* ensure 8 byte alignment */
533 		while ((pos - (u8 *)rthdr) & 7)
534 			pos++;
535 
536 		put_unaligned_le64(status->device_timestamp, pos);
537 		pos += sizeof(u64);
538 
539 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
540 			accuracy = local->hw.radiotap_timestamp.accuracy;
541 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
542 		}
543 		put_unaligned_le16(accuracy, pos);
544 		pos += sizeof(u16);
545 
546 		*pos++ = local->hw.radiotap_timestamp.units_pos;
547 		*pos++ = flags;
548 	}
549 
550 	if (status->encoding == RX_ENC_HE &&
551 	    status->flag & RX_FLAG_RADIOTAP_HE) {
552 #define HE_PREP(f, val)	cpu_to_le16(FIELD_PREP(IEEE80211_RADIOTAP_HE_##f, val))
553 
554 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
555 			he.data6 |= HE_PREP(DATA6_NSTS,
556 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
557 						      status->enc_flags));
558 			he.data3 |= HE_PREP(DATA3_STBC, 1);
559 		} else {
560 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
561 		}
562 
563 #define CHECK_GI(s) \
564 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
565 		     (int)NL80211_RATE_INFO_HE_GI_##s)
566 
567 		CHECK_GI(0_8);
568 		CHECK_GI(1_6);
569 		CHECK_GI(3_2);
570 
571 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
572 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
573 		he.data3 |= HE_PREP(DATA3_CODING,
574 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
575 
576 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
577 
578 		switch (status->bw) {
579 		case RATE_INFO_BW_20:
580 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
581 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
582 			break;
583 		case RATE_INFO_BW_40:
584 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
585 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
586 			break;
587 		case RATE_INFO_BW_80:
588 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
589 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
590 			break;
591 		case RATE_INFO_BW_160:
592 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
593 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
594 			break;
595 		case RATE_INFO_BW_HE_RU:
596 #define CHECK_RU_ALLOC(s) \
597 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
598 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
599 
600 			CHECK_RU_ALLOC(26);
601 			CHECK_RU_ALLOC(52);
602 			CHECK_RU_ALLOC(106);
603 			CHECK_RU_ALLOC(242);
604 			CHECK_RU_ALLOC(484);
605 			CHECK_RU_ALLOC(996);
606 			CHECK_RU_ALLOC(2x996);
607 
608 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
609 					    status->he_ru + 4);
610 			break;
611 		default:
612 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
613 		}
614 
615 		/* ensure 2 byte alignment */
616 		while ((pos - (u8 *)rthdr) & 1)
617 			pos++;
618 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
619 		memcpy(pos, &he, sizeof(he));
620 		pos += sizeof(he);
621 	}
622 
623 	if (status->encoding == RX_ENC_HE &&
624 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
625 		/* ensure 2 byte alignment */
626 		while ((pos - (u8 *)rthdr) & 1)
627 			pos++;
628 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
629 		memcpy(pos, &he_mu, sizeof(he_mu));
630 		pos += sizeof(he_mu);
631 	}
632 
633 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
634 		*pos++ = status->chain_signal[chain];
635 		*pos++ = chain;
636 	}
637 
638 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
639 		/* ensure 2 byte alignment for the vendor field as required */
640 		if ((pos - (u8 *)rthdr) & 1)
641 			*pos++ = 0;
642 		*pos++ = rtap.oui[0];
643 		*pos++ = rtap.oui[1];
644 		*pos++ = rtap.oui[2];
645 		*pos++ = rtap.subns;
646 		put_unaligned_le16(rtap.len, pos);
647 		pos += 2;
648 		/* align the actual payload as requested */
649 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
650 			*pos++ = 0;
651 		/* data (and possible padding) already follows */
652 	}
653 }
654 
655 static struct sk_buff *
656 ieee80211_make_monitor_skb(struct ieee80211_local *local,
657 			   struct sk_buff **origskb,
658 			   struct ieee80211_rate *rate,
659 			   int rtap_space, bool use_origskb)
660 {
661 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
662 	int rt_hdrlen, needed_headroom;
663 	struct sk_buff *skb;
664 
665 	/* room for the radiotap header based on driver features */
666 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
667 	needed_headroom = rt_hdrlen - rtap_space;
668 
669 	if (use_origskb) {
670 		/* only need to expand headroom if necessary */
671 		skb = *origskb;
672 		*origskb = NULL;
673 
674 		/*
675 		 * This shouldn't trigger often because most devices have an
676 		 * RX header they pull before we get here, and that should
677 		 * be big enough for our radiotap information. We should
678 		 * probably export the length to drivers so that we can have
679 		 * them allocate enough headroom to start with.
680 		 */
681 		if (skb_headroom(skb) < needed_headroom &&
682 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
683 			dev_kfree_skb(skb);
684 			return NULL;
685 		}
686 	} else {
687 		/*
688 		 * Need to make a copy and possibly remove radiotap header
689 		 * and FCS from the original.
690 		 */
691 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
692 
693 		if (!skb)
694 			return NULL;
695 	}
696 
697 	/* prepend radiotap information */
698 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
699 
700 	skb_reset_mac_header(skb);
701 	skb->ip_summed = CHECKSUM_UNNECESSARY;
702 	skb->pkt_type = PACKET_OTHERHOST;
703 	skb->protocol = htons(ETH_P_802_2);
704 
705 	return skb;
706 }
707 
708 /*
709  * This function copies a received frame to all monitor interfaces and
710  * returns a cleaned-up SKB that no longer includes the FCS nor the
711  * radiotap header the driver might have added.
712  */
713 static struct sk_buff *
714 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
715 		     struct ieee80211_rate *rate)
716 {
717 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
718 	struct ieee80211_sub_if_data *sdata;
719 	struct sk_buff *monskb = NULL;
720 	int present_fcs_len = 0;
721 	unsigned int rtap_space = 0;
722 	struct ieee80211_sub_if_data *monitor_sdata =
723 		rcu_dereference(local->monitor_sdata);
724 	bool only_monitor = false;
725 
726 	if (status->flag & RX_FLAG_RADIOTAP_HE)
727 		rtap_space += sizeof(struct ieee80211_radiotap_he);
728 
729 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
730 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
731 
732 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
733 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
734 
735 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
736 	}
737 
738 	/*
739 	 * First, we may need to make a copy of the skb because
740 	 *  (1) we need to modify it for radiotap (if not present), and
741 	 *  (2) the other RX handlers will modify the skb we got.
742 	 *
743 	 * We don't need to, of course, if we aren't going to return
744 	 * the SKB because it has a bad FCS/PLCP checksum.
745 	 */
746 
747 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
748 		if (unlikely(origskb->len <= FCS_LEN)) {
749 			/* driver bug */
750 			WARN_ON(1);
751 			dev_kfree_skb(origskb);
752 			return NULL;
753 		}
754 		present_fcs_len = FCS_LEN;
755 	}
756 
757 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
758 	if (!pskb_may_pull(origskb, 2 + rtap_space)) {
759 		dev_kfree_skb(origskb);
760 		return NULL;
761 	}
762 
763 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
764 
765 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
766 		if (only_monitor) {
767 			dev_kfree_skb(origskb);
768 			return NULL;
769 		}
770 
771 		remove_monitor_info(origskb, present_fcs_len, rtap_space);
772 		return origskb;
773 	}
774 
775 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
776 
777 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
778 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
779 						 &local->mon_list);
780 
781 		if (!monskb)
782 			monskb = ieee80211_make_monitor_skb(local, &origskb,
783 							    rate, rtap_space,
784 							    only_monitor &&
785 							    last_monitor);
786 
787 		if (monskb) {
788 			struct sk_buff *skb;
789 
790 			if (last_monitor) {
791 				skb = monskb;
792 				monskb = NULL;
793 			} else {
794 				skb = skb_clone(monskb, GFP_ATOMIC);
795 			}
796 
797 			if (skb) {
798 				skb->dev = sdata->dev;
799 				ieee80211_rx_stats(skb->dev, skb->len);
800 				netif_receive_skb(skb);
801 			}
802 		}
803 
804 		if (last_monitor)
805 			break;
806 	}
807 
808 	/* this happens if last_monitor was erroneously false */
809 	dev_kfree_skb(monskb);
810 
811 	/* ditto */
812 	if (!origskb)
813 		return NULL;
814 
815 	remove_monitor_info(origskb, present_fcs_len, rtap_space);
816 	return origskb;
817 }
818 
819 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
820 {
821 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
822 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
823 	int tid, seqno_idx, security_idx;
824 
825 	/* does the frame have a qos control field? */
826 	if (ieee80211_is_data_qos(hdr->frame_control)) {
827 		u8 *qc = ieee80211_get_qos_ctl(hdr);
828 		/* frame has qos control */
829 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
830 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
831 			status->rx_flags |= IEEE80211_RX_AMSDU;
832 
833 		seqno_idx = tid;
834 		security_idx = tid;
835 	} else {
836 		/*
837 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
838 		 *
839 		 *	Sequence numbers for management frames, QoS data
840 		 *	frames with a broadcast/multicast address in the
841 		 *	Address 1 field, and all non-QoS data frames sent
842 		 *	by QoS STAs are assigned using an additional single
843 		 *	modulo-4096 counter, [...]
844 		 *
845 		 * We also use that counter for non-QoS STAs.
846 		 */
847 		seqno_idx = IEEE80211_NUM_TIDS;
848 		security_idx = 0;
849 		if (ieee80211_is_mgmt(hdr->frame_control))
850 			security_idx = IEEE80211_NUM_TIDS;
851 		tid = 0;
852 	}
853 
854 	rx->seqno_idx = seqno_idx;
855 	rx->security_idx = security_idx;
856 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
857 	 * For now, set skb->priority to 0 for other cases. */
858 	rx->skb->priority = (tid > 7) ? 0 : tid;
859 }
860 
861 /**
862  * DOC: Packet alignment
863  *
864  * Drivers always need to pass packets that are aligned to two-byte boundaries
865  * to the stack.
866  *
867  * Additionally, should, if possible, align the payload data in a way that
868  * guarantees that the contained IP header is aligned to a four-byte
869  * boundary. In the case of regular frames, this simply means aligning the
870  * payload to a four-byte boundary (because either the IP header is directly
871  * contained, or IV/RFC1042 headers that have a length divisible by four are
872  * in front of it).  If the payload data is not properly aligned and the
873  * architecture doesn't support efficient unaligned operations, mac80211
874  * will align the data.
875  *
876  * With A-MSDU frames, however, the payload data address must yield two modulo
877  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
878  * push the IP header further back to a multiple of four again. Thankfully, the
879  * specs were sane enough this time around to require padding each A-MSDU
880  * subframe to a length that is a multiple of four.
881  *
882  * Padding like Atheros hardware adds which is between the 802.11 header and
883  * the payload is not supported, the driver is required to move the 802.11
884  * header to be directly in front of the payload in that case.
885  */
886 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
887 {
888 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
889 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
890 #endif
891 }
892 
893 
894 /* rx handlers */
895 
896 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
897 {
898 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
899 
900 	if (is_multicast_ether_addr(hdr->addr1))
901 		return 0;
902 
903 	return ieee80211_is_robust_mgmt_frame(skb);
904 }
905 
906 
907 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
908 {
909 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
910 
911 	if (!is_multicast_ether_addr(hdr->addr1))
912 		return 0;
913 
914 	return ieee80211_is_robust_mgmt_frame(skb);
915 }
916 
917 
918 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
919 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
920 {
921 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
922 	struct ieee80211_mmie *mmie;
923 	struct ieee80211_mmie_16 *mmie16;
924 
925 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
926 		return -1;
927 
928 	if (!ieee80211_is_robust_mgmt_frame(skb))
929 		return -1; /* not a robust management frame */
930 
931 	mmie = (struct ieee80211_mmie *)
932 		(skb->data + skb->len - sizeof(*mmie));
933 	if (mmie->element_id == WLAN_EID_MMIE &&
934 	    mmie->length == sizeof(*mmie) - 2)
935 		return le16_to_cpu(mmie->key_id);
936 
937 	mmie16 = (struct ieee80211_mmie_16 *)
938 		(skb->data + skb->len - sizeof(*mmie16));
939 	if (skb->len >= 24 + sizeof(*mmie16) &&
940 	    mmie16->element_id == WLAN_EID_MMIE &&
941 	    mmie16->length == sizeof(*mmie16) - 2)
942 		return le16_to_cpu(mmie16->key_id);
943 
944 	return -1;
945 }
946 
947 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
948 				  struct sk_buff *skb)
949 {
950 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
951 	__le16 fc;
952 	int hdrlen;
953 	u8 keyid;
954 
955 	fc = hdr->frame_control;
956 	hdrlen = ieee80211_hdrlen(fc);
957 
958 	if (skb->len < hdrlen + cs->hdr_len)
959 		return -EINVAL;
960 
961 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
962 	keyid &= cs->key_idx_mask;
963 	keyid >>= cs->key_idx_shift;
964 
965 	return keyid;
966 }
967 
968 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
969 {
970 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
971 	char *dev_addr = rx->sdata->vif.addr;
972 
973 	if (ieee80211_is_data(hdr->frame_control)) {
974 		if (is_multicast_ether_addr(hdr->addr1)) {
975 			if (ieee80211_has_tods(hdr->frame_control) ||
976 			    !ieee80211_has_fromds(hdr->frame_control))
977 				return RX_DROP_MONITOR;
978 			if (ether_addr_equal(hdr->addr3, dev_addr))
979 				return RX_DROP_MONITOR;
980 		} else {
981 			if (!ieee80211_has_a4(hdr->frame_control))
982 				return RX_DROP_MONITOR;
983 			if (ether_addr_equal(hdr->addr4, dev_addr))
984 				return RX_DROP_MONITOR;
985 		}
986 	}
987 
988 	/* If there is not an established peer link and this is not a peer link
989 	 * establisment frame, beacon or probe, drop the frame.
990 	 */
991 
992 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
993 		struct ieee80211_mgmt *mgmt;
994 
995 		if (!ieee80211_is_mgmt(hdr->frame_control))
996 			return RX_DROP_MONITOR;
997 
998 		if (ieee80211_is_action(hdr->frame_control)) {
999 			u8 category;
1000 
1001 			/* make sure category field is present */
1002 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1003 				return RX_DROP_MONITOR;
1004 
1005 			mgmt = (struct ieee80211_mgmt *)hdr;
1006 			category = mgmt->u.action.category;
1007 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1008 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1009 				return RX_DROP_MONITOR;
1010 			return RX_CONTINUE;
1011 		}
1012 
1013 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1014 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1015 		    ieee80211_is_beacon(hdr->frame_control) ||
1016 		    ieee80211_is_auth(hdr->frame_control))
1017 			return RX_CONTINUE;
1018 
1019 		return RX_DROP_MONITOR;
1020 	}
1021 
1022 	return RX_CONTINUE;
1023 }
1024 
1025 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1026 					      int index)
1027 {
1028 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1029 	struct sk_buff *tail = skb_peek_tail(frames);
1030 	struct ieee80211_rx_status *status;
1031 
1032 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1033 		return true;
1034 
1035 	if (!tail)
1036 		return false;
1037 
1038 	status = IEEE80211_SKB_RXCB(tail);
1039 	if (status->flag & RX_FLAG_AMSDU_MORE)
1040 		return false;
1041 
1042 	return true;
1043 }
1044 
1045 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1046 					    struct tid_ampdu_rx *tid_agg_rx,
1047 					    int index,
1048 					    struct sk_buff_head *frames)
1049 {
1050 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1051 	struct sk_buff *skb;
1052 	struct ieee80211_rx_status *status;
1053 
1054 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1055 
1056 	if (skb_queue_empty(skb_list))
1057 		goto no_frame;
1058 
1059 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1060 		__skb_queue_purge(skb_list);
1061 		goto no_frame;
1062 	}
1063 
1064 	/* release frames from the reorder ring buffer */
1065 	tid_agg_rx->stored_mpdu_num--;
1066 	while ((skb = __skb_dequeue(skb_list))) {
1067 		status = IEEE80211_SKB_RXCB(skb);
1068 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1069 		__skb_queue_tail(frames, skb);
1070 	}
1071 
1072 no_frame:
1073 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1074 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1075 }
1076 
1077 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1078 					     struct tid_ampdu_rx *tid_agg_rx,
1079 					     u16 head_seq_num,
1080 					     struct sk_buff_head *frames)
1081 {
1082 	int index;
1083 
1084 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1085 
1086 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1087 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1088 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1089 						frames);
1090 	}
1091 }
1092 
1093 /*
1094  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1095  * the skb was added to the buffer longer than this time ago, the earlier
1096  * frames that have not yet been received are assumed to be lost and the skb
1097  * can be released for processing. This may also release other skb's from the
1098  * reorder buffer if there are no additional gaps between the frames.
1099  *
1100  * Callers must hold tid_agg_rx->reorder_lock.
1101  */
1102 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1103 
1104 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1105 					  struct tid_ampdu_rx *tid_agg_rx,
1106 					  struct sk_buff_head *frames)
1107 {
1108 	int index, i, j;
1109 
1110 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1111 
1112 	/* release the buffer until next missing frame */
1113 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1114 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1115 	    tid_agg_rx->stored_mpdu_num) {
1116 		/*
1117 		 * No buffers ready to be released, but check whether any
1118 		 * frames in the reorder buffer have timed out.
1119 		 */
1120 		int skipped = 1;
1121 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1122 		     j = (j + 1) % tid_agg_rx->buf_size) {
1123 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1124 				skipped++;
1125 				continue;
1126 			}
1127 			if (skipped &&
1128 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1129 					HT_RX_REORDER_BUF_TIMEOUT))
1130 				goto set_release_timer;
1131 
1132 			/* don't leave incomplete A-MSDUs around */
1133 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1134 			     i = (i + 1) % tid_agg_rx->buf_size)
1135 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1136 
1137 			ht_dbg_ratelimited(sdata,
1138 					   "release an RX reorder frame due to timeout on earlier frames\n");
1139 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1140 							frames);
1141 
1142 			/*
1143 			 * Increment the head seq# also for the skipped slots.
1144 			 */
1145 			tid_agg_rx->head_seq_num =
1146 				(tid_agg_rx->head_seq_num +
1147 				 skipped) & IEEE80211_SN_MASK;
1148 			skipped = 0;
1149 		}
1150 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1151 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1152 						frames);
1153 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1154 	}
1155 
1156 	if (tid_agg_rx->stored_mpdu_num) {
1157 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1158 
1159 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1160 		     j = (j + 1) % tid_agg_rx->buf_size) {
1161 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1162 				break;
1163 		}
1164 
1165  set_release_timer:
1166 
1167 		if (!tid_agg_rx->removed)
1168 			mod_timer(&tid_agg_rx->reorder_timer,
1169 				  tid_agg_rx->reorder_time[j] + 1 +
1170 				  HT_RX_REORDER_BUF_TIMEOUT);
1171 	} else {
1172 		del_timer(&tid_agg_rx->reorder_timer);
1173 	}
1174 }
1175 
1176 /*
1177  * As this function belongs to the RX path it must be under
1178  * rcu_read_lock protection. It returns false if the frame
1179  * can be processed immediately, true if it was consumed.
1180  */
1181 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1182 					     struct tid_ampdu_rx *tid_agg_rx,
1183 					     struct sk_buff *skb,
1184 					     struct sk_buff_head *frames)
1185 {
1186 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1187 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1188 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1189 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1190 	u16 head_seq_num, buf_size;
1191 	int index;
1192 	bool ret = true;
1193 
1194 	spin_lock(&tid_agg_rx->reorder_lock);
1195 
1196 	/*
1197 	 * Offloaded BA sessions have no known starting sequence number so pick
1198 	 * one from first Rxed frame for this tid after BA was started.
1199 	 */
1200 	if (unlikely(tid_agg_rx->auto_seq)) {
1201 		tid_agg_rx->auto_seq = false;
1202 		tid_agg_rx->ssn = mpdu_seq_num;
1203 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1204 	}
1205 
1206 	buf_size = tid_agg_rx->buf_size;
1207 	head_seq_num = tid_agg_rx->head_seq_num;
1208 
1209 	/*
1210 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1211 	 * be reordered.
1212 	 */
1213 	if (unlikely(!tid_agg_rx->started)) {
1214 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1215 			ret = false;
1216 			goto out;
1217 		}
1218 		tid_agg_rx->started = true;
1219 	}
1220 
1221 	/* frame with out of date sequence number */
1222 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1223 		dev_kfree_skb(skb);
1224 		goto out;
1225 	}
1226 
1227 	/*
1228 	 * If frame the sequence number exceeds our buffering window
1229 	 * size release some previous frames to make room for this one.
1230 	 */
1231 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1232 		head_seq_num = ieee80211_sn_inc(
1233 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1234 		/* release stored frames up to new head to stack */
1235 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1236 						 head_seq_num, frames);
1237 	}
1238 
1239 	/* Now the new frame is always in the range of the reordering buffer */
1240 
1241 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1242 
1243 	/* check if we already stored this frame */
1244 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1245 		dev_kfree_skb(skb);
1246 		goto out;
1247 	}
1248 
1249 	/*
1250 	 * If the current MPDU is in the right order and nothing else
1251 	 * is stored we can process it directly, no need to buffer it.
1252 	 * If it is first but there's something stored, we may be able
1253 	 * to release frames after this one.
1254 	 */
1255 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1256 	    tid_agg_rx->stored_mpdu_num == 0) {
1257 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1258 			tid_agg_rx->head_seq_num =
1259 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1260 		ret = false;
1261 		goto out;
1262 	}
1263 
1264 	/* put the frame in the reordering buffer */
1265 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1266 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1267 		tid_agg_rx->reorder_time[index] = jiffies;
1268 		tid_agg_rx->stored_mpdu_num++;
1269 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1270 	}
1271 
1272  out:
1273 	spin_unlock(&tid_agg_rx->reorder_lock);
1274 	return ret;
1275 }
1276 
1277 /*
1278  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1279  * true if the MPDU was buffered, false if it should be processed.
1280  */
1281 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1282 				       struct sk_buff_head *frames)
1283 {
1284 	struct sk_buff *skb = rx->skb;
1285 	struct ieee80211_local *local = rx->local;
1286 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1287 	struct sta_info *sta = rx->sta;
1288 	struct tid_ampdu_rx *tid_agg_rx;
1289 	u16 sc;
1290 	u8 tid, ack_policy;
1291 
1292 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1293 	    is_multicast_ether_addr(hdr->addr1))
1294 		goto dont_reorder;
1295 
1296 	/*
1297 	 * filter the QoS data rx stream according to
1298 	 * STA/TID and check if this STA/TID is on aggregation
1299 	 */
1300 
1301 	if (!sta)
1302 		goto dont_reorder;
1303 
1304 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1305 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1306 	tid = ieee80211_get_tid(hdr);
1307 
1308 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1309 	if (!tid_agg_rx) {
1310 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1311 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1312 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1313 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1314 					     WLAN_BACK_RECIPIENT,
1315 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1316 		goto dont_reorder;
1317 	}
1318 
1319 	/* qos null data frames are excluded */
1320 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1321 		goto dont_reorder;
1322 
1323 	/* not part of a BA session */
1324 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1325 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1326 		goto dont_reorder;
1327 
1328 	/* new, potentially un-ordered, ampdu frame - process it */
1329 
1330 	/* reset session timer */
1331 	if (tid_agg_rx->timeout)
1332 		tid_agg_rx->last_rx = jiffies;
1333 
1334 	/* if this mpdu is fragmented - terminate rx aggregation session */
1335 	sc = le16_to_cpu(hdr->seq_ctrl);
1336 	if (sc & IEEE80211_SCTL_FRAG) {
1337 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1338 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1339 		return;
1340 	}
1341 
1342 	/*
1343 	 * No locking needed -- we will only ever process one
1344 	 * RX packet at a time, and thus own tid_agg_rx. All
1345 	 * other code manipulating it needs to (and does) make
1346 	 * sure that we cannot get to it any more before doing
1347 	 * anything with it.
1348 	 */
1349 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1350 					     frames))
1351 		return;
1352 
1353  dont_reorder:
1354 	__skb_queue_tail(frames, skb);
1355 }
1356 
1357 static ieee80211_rx_result debug_noinline
1358 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1359 {
1360 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1361 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1362 
1363 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1364 		return RX_CONTINUE;
1365 
1366 	/*
1367 	 * Drop duplicate 802.11 retransmissions
1368 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1369 	 */
1370 
1371 	if (rx->skb->len < 24)
1372 		return RX_CONTINUE;
1373 
1374 	if (ieee80211_is_ctl(hdr->frame_control) ||
1375 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1376 	    is_multicast_ether_addr(hdr->addr1))
1377 		return RX_CONTINUE;
1378 
1379 	if (!rx->sta)
1380 		return RX_CONTINUE;
1381 
1382 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1383 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1384 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1385 		rx->sta->rx_stats.num_duplicates++;
1386 		return RX_DROP_UNUSABLE;
1387 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1388 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1389 	}
1390 
1391 	return RX_CONTINUE;
1392 }
1393 
1394 static ieee80211_rx_result debug_noinline
1395 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1396 {
1397 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1398 
1399 	/* Drop disallowed frame classes based on STA auth/assoc state;
1400 	 * IEEE 802.11, Chap 5.5.
1401 	 *
1402 	 * mac80211 filters only based on association state, i.e. it drops
1403 	 * Class 3 frames from not associated stations. hostapd sends
1404 	 * deauth/disassoc frames when needed. In addition, hostapd is
1405 	 * responsible for filtering on both auth and assoc states.
1406 	 */
1407 
1408 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1409 		return ieee80211_rx_mesh_check(rx);
1410 
1411 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1412 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1413 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1414 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1415 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1416 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1417 		/*
1418 		 * accept port control frames from the AP even when it's not
1419 		 * yet marked ASSOC to prevent a race where we don't set the
1420 		 * assoc bit quickly enough before it sends the first frame
1421 		 */
1422 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1423 		    ieee80211_is_data_present(hdr->frame_control)) {
1424 			unsigned int hdrlen;
1425 			__be16 ethertype;
1426 
1427 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1428 
1429 			if (rx->skb->len < hdrlen + 8)
1430 				return RX_DROP_MONITOR;
1431 
1432 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1433 			if (ethertype == rx->sdata->control_port_protocol)
1434 				return RX_CONTINUE;
1435 		}
1436 
1437 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1438 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1439 					       hdr->addr2,
1440 					       GFP_ATOMIC))
1441 			return RX_DROP_UNUSABLE;
1442 
1443 		return RX_DROP_MONITOR;
1444 	}
1445 
1446 	return RX_CONTINUE;
1447 }
1448 
1449 
1450 static ieee80211_rx_result debug_noinline
1451 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1452 {
1453 	struct ieee80211_local *local;
1454 	struct ieee80211_hdr *hdr;
1455 	struct sk_buff *skb;
1456 
1457 	local = rx->local;
1458 	skb = rx->skb;
1459 	hdr = (struct ieee80211_hdr *) skb->data;
1460 
1461 	if (!local->pspolling)
1462 		return RX_CONTINUE;
1463 
1464 	if (!ieee80211_has_fromds(hdr->frame_control))
1465 		/* this is not from AP */
1466 		return RX_CONTINUE;
1467 
1468 	if (!ieee80211_is_data(hdr->frame_control))
1469 		return RX_CONTINUE;
1470 
1471 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1472 		/* AP has no more frames buffered for us */
1473 		local->pspolling = false;
1474 		return RX_CONTINUE;
1475 	}
1476 
1477 	/* more data bit is set, let's request a new frame from the AP */
1478 	ieee80211_send_pspoll(local, rx->sdata);
1479 
1480 	return RX_CONTINUE;
1481 }
1482 
1483 static void sta_ps_start(struct sta_info *sta)
1484 {
1485 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1486 	struct ieee80211_local *local = sdata->local;
1487 	struct ps_data *ps;
1488 	int tid;
1489 
1490 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1491 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1492 		ps = &sdata->bss->ps;
1493 	else
1494 		return;
1495 
1496 	atomic_inc(&ps->num_sta_ps);
1497 	set_sta_flag(sta, WLAN_STA_PS_STA);
1498 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1499 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1500 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1501 	       sta->sta.addr, sta->sta.aid);
1502 
1503 	ieee80211_clear_fast_xmit(sta);
1504 
1505 	if (!sta->sta.txq[0])
1506 		return;
1507 
1508 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1509 		if (txq_has_queue(sta->sta.txq[tid]))
1510 			set_bit(tid, &sta->txq_buffered_tids);
1511 		else
1512 			clear_bit(tid, &sta->txq_buffered_tids);
1513 	}
1514 }
1515 
1516 static void sta_ps_end(struct sta_info *sta)
1517 {
1518 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1519 	       sta->sta.addr, sta->sta.aid);
1520 
1521 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1522 		/*
1523 		 * Clear the flag only if the other one is still set
1524 		 * so that the TX path won't start TX'ing new frames
1525 		 * directly ... In the case that the driver flag isn't
1526 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1527 		 */
1528 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1529 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1530 		       sta->sta.addr, sta->sta.aid);
1531 		return;
1532 	}
1533 
1534 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1535 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1536 	ieee80211_sta_ps_deliver_wakeup(sta);
1537 }
1538 
1539 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1540 {
1541 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1542 	bool in_ps;
1543 
1544 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1545 
1546 	/* Don't let the same PS state be set twice */
1547 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1548 	if ((start && in_ps) || (!start && !in_ps))
1549 		return -EINVAL;
1550 
1551 	if (start)
1552 		sta_ps_start(sta);
1553 	else
1554 		sta_ps_end(sta);
1555 
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1559 
1560 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1561 {
1562 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1563 
1564 	if (test_sta_flag(sta, WLAN_STA_SP))
1565 		return;
1566 
1567 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1568 		ieee80211_sta_ps_deliver_poll_response(sta);
1569 	else
1570 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1571 }
1572 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1573 
1574 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1575 {
1576 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1577 	int ac = ieee80211_ac_from_tid(tid);
1578 
1579 	/*
1580 	 * If this AC is not trigger-enabled do nothing unless the
1581 	 * driver is calling us after it already checked.
1582 	 *
1583 	 * NB: This could/should check a separate bitmap of trigger-
1584 	 * enabled queues, but for now we only implement uAPSD w/o
1585 	 * TSPEC changes to the ACs, so they're always the same.
1586 	 */
1587 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1588 	    tid != IEEE80211_NUM_TIDS)
1589 		return;
1590 
1591 	/* if we are in a service period, do nothing */
1592 	if (test_sta_flag(sta, WLAN_STA_SP))
1593 		return;
1594 
1595 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1596 		ieee80211_sta_ps_deliver_uapsd(sta);
1597 	else
1598 		set_sta_flag(sta, WLAN_STA_UAPSD);
1599 }
1600 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1601 
1602 static ieee80211_rx_result debug_noinline
1603 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1604 {
1605 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1606 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1607 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1608 
1609 	if (!rx->sta)
1610 		return RX_CONTINUE;
1611 
1612 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1613 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1614 		return RX_CONTINUE;
1615 
1616 	/*
1617 	 * The device handles station powersave, so don't do anything about
1618 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1619 	 * it to mac80211 since they're handled.)
1620 	 */
1621 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1622 		return RX_CONTINUE;
1623 
1624 	/*
1625 	 * Don't do anything if the station isn't already asleep. In
1626 	 * the uAPSD case, the station will probably be marked asleep,
1627 	 * in the PS-Poll case the station must be confused ...
1628 	 */
1629 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1630 		return RX_CONTINUE;
1631 
1632 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1633 		ieee80211_sta_pspoll(&rx->sta->sta);
1634 
1635 		/* Free PS Poll skb here instead of returning RX_DROP that would
1636 		 * count as an dropped frame. */
1637 		dev_kfree_skb(rx->skb);
1638 
1639 		return RX_QUEUED;
1640 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1641 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1642 		   ieee80211_has_pm(hdr->frame_control) &&
1643 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1644 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1645 		u8 tid = ieee80211_get_tid(hdr);
1646 
1647 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1648 	}
1649 
1650 	return RX_CONTINUE;
1651 }
1652 
1653 static ieee80211_rx_result debug_noinline
1654 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1655 {
1656 	struct sta_info *sta = rx->sta;
1657 	struct sk_buff *skb = rx->skb;
1658 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1659 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1660 	int i;
1661 
1662 	if (!sta)
1663 		return RX_CONTINUE;
1664 
1665 	/*
1666 	 * Update last_rx only for IBSS packets which are for the current
1667 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1668 	 * current IBSS network alive in cases where other STAs start
1669 	 * using different BSSID. This will also give the station another
1670 	 * chance to restart the authentication/authorization in case
1671 	 * something went wrong the first time.
1672 	 */
1673 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1674 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1675 						NL80211_IFTYPE_ADHOC);
1676 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1677 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1678 			sta->rx_stats.last_rx = jiffies;
1679 			if (ieee80211_is_data(hdr->frame_control) &&
1680 			    !is_multicast_ether_addr(hdr->addr1))
1681 				sta->rx_stats.last_rate =
1682 					sta_stats_encode_rate(status);
1683 		}
1684 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1685 		sta->rx_stats.last_rx = jiffies;
1686 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1687 		/*
1688 		 * Mesh beacons will update last_rx when if they are found to
1689 		 * match the current local configuration when processed.
1690 		 */
1691 		sta->rx_stats.last_rx = jiffies;
1692 		if (ieee80211_is_data(hdr->frame_control))
1693 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1694 	}
1695 
1696 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1697 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1698 
1699 	sta->rx_stats.fragments++;
1700 
1701 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1702 	sta->rx_stats.bytes += rx->skb->len;
1703 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1704 
1705 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1706 		sta->rx_stats.last_signal = status->signal;
1707 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1708 	}
1709 
1710 	if (status->chains) {
1711 		sta->rx_stats.chains = status->chains;
1712 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1713 			int signal = status->chain_signal[i];
1714 
1715 			if (!(status->chains & BIT(i)))
1716 				continue;
1717 
1718 			sta->rx_stats.chain_signal_last[i] = signal;
1719 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1720 					-signal);
1721 		}
1722 	}
1723 
1724 	/*
1725 	 * Change STA power saving mode only at the end of a frame
1726 	 * exchange sequence, and only for a data or management
1727 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1728 	 */
1729 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1730 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1731 	    !is_multicast_ether_addr(hdr->addr1) &&
1732 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1733 	     ieee80211_is_data(hdr->frame_control)) &&
1734 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1735 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1736 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1737 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1738 			if (!ieee80211_has_pm(hdr->frame_control))
1739 				sta_ps_end(sta);
1740 		} else {
1741 			if (ieee80211_has_pm(hdr->frame_control))
1742 				sta_ps_start(sta);
1743 		}
1744 	}
1745 
1746 	/* mesh power save support */
1747 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1748 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1749 
1750 	/*
1751 	 * Drop (qos-)data::nullfunc frames silently, since they
1752 	 * are used only to control station power saving mode.
1753 	 */
1754 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1755 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1756 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1757 
1758 		/*
1759 		 * If we receive a 4-addr nullfunc frame from a STA
1760 		 * that was not moved to a 4-addr STA vlan yet send
1761 		 * the event to userspace and for older hostapd drop
1762 		 * the frame to the monitor interface.
1763 		 */
1764 		if (ieee80211_has_a4(hdr->frame_control) &&
1765 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1766 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1767 		      !rx->sdata->u.vlan.sta))) {
1768 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1769 				cfg80211_rx_unexpected_4addr_frame(
1770 					rx->sdata->dev, sta->sta.addr,
1771 					GFP_ATOMIC);
1772 			return RX_DROP_MONITOR;
1773 		}
1774 		/*
1775 		 * Update counter and free packet here to avoid
1776 		 * counting this as a dropped packed.
1777 		 */
1778 		sta->rx_stats.packets++;
1779 		dev_kfree_skb(rx->skb);
1780 		return RX_QUEUED;
1781 	}
1782 
1783 	return RX_CONTINUE;
1784 } /* ieee80211_rx_h_sta_process */
1785 
1786 static ieee80211_rx_result debug_noinline
1787 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1788 {
1789 	struct sk_buff *skb = rx->skb;
1790 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1791 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1792 	int keyidx;
1793 	int hdrlen;
1794 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1795 	struct ieee80211_key *sta_ptk = NULL;
1796 	int mmie_keyidx = -1;
1797 	__le16 fc;
1798 	const struct ieee80211_cipher_scheme *cs = NULL;
1799 
1800 	/*
1801 	 * Key selection 101
1802 	 *
1803 	 * There are four types of keys:
1804 	 *  - GTK (group keys)
1805 	 *  - IGTK (group keys for management frames)
1806 	 *  - PTK (pairwise keys)
1807 	 *  - STK (station-to-station pairwise keys)
1808 	 *
1809 	 * When selecting a key, we have to distinguish between multicast
1810 	 * (including broadcast) and unicast frames, the latter can only
1811 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1812 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1813 	 * unicast frames can also use key indices like GTKs. Hence, if we
1814 	 * don't have a PTK/STK we check the key index for a WEP key.
1815 	 *
1816 	 * Note that in a regular BSS, multicast frames are sent by the
1817 	 * AP only, associated stations unicast the frame to the AP first
1818 	 * which then multicasts it on their behalf.
1819 	 *
1820 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1821 	 * with each station, that is something we don't currently handle.
1822 	 * The spec seems to expect that one negotiates the same key with
1823 	 * every station but there's no such requirement; VLANs could be
1824 	 * possible.
1825 	 */
1826 
1827 	/* start without a key */
1828 	rx->key = NULL;
1829 	fc = hdr->frame_control;
1830 
1831 	if (rx->sta) {
1832 		int keyid = rx->sta->ptk_idx;
1833 
1834 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1835 			cs = rx->sta->cipher_scheme;
1836 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1837 			if (unlikely(keyid < 0))
1838 				return RX_DROP_UNUSABLE;
1839 		}
1840 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1841 	}
1842 
1843 	if (!ieee80211_has_protected(fc))
1844 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1845 
1846 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1847 		rx->key = sta_ptk;
1848 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1849 		    (status->flag & RX_FLAG_IV_STRIPPED))
1850 			return RX_CONTINUE;
1851 		/* Skip decryption if the frame is not protected. */
1852 		if (!ieee80211_has_protected(fc))
1853 			return RX_CONTINUE;
1854 	} else if (mmie_keyidx >= 0) {
1855 		/* Broadcast/multicast robust management frame / BIP */
1856 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1857 		    (status->flag & RX_FLAG_IV_STRIPPED))
1858 			return RX_CONTINUE;
1859 
1860 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1861 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1862 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1863 		if (rx->sta) {
1864 			if (ieee80211_is_group_privacy_action(skb) &&
1865 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1866 				return RX_DROP_MONITOR;
1867 
1868 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1869 		}
1870 		if (!rx->key)
1871 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1872 	} else if (!ieee80211_has_protected(fc)) {
1873 		/*
1874 		 * The frame was not protected, so skip decryption. However, we
1875 		 * need to set rx->key if there is a key that could have been
1876 		 * used so that the frame may be dropped if encryption would
1877 		 * have been expected.
1878 		 */
1879 		struct ieee80211_key *key = NULL;
1880 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1881 		int i;
1882 
1883 		if (ieee80211_is_mgmt(fc) &&
1884 		    is_multicast_ether_addr(hdr->addr1) &&
1885 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1886 			rx->key = key;
1887 		else {
1888 			if (rx->sta) {
1889 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1890 					key = rcu_dereference(rx->sta->gtk[i]);
1891 					if (key)
1892 						break;
1893 				}
1894 			}
1895 			if (!key) {
1896 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1897 					key = rcu_dereference(sdata->keys[i]);
1898 					if (key)
1899 						break;
1900 				}
1901 			}
1902 			if (key)
1903 				rx->key = key;
1904 		}
1905 		return RX_CONTINUE;
1906 	} else {
1907 		u8 keyid;
1908 
1909 		/*
1910 		 * The device doesn't give us the IV so we won't be
1911 		 * able to look up the key. That's ok though, we
1912 		 * don't need to decrypt the frame, we just won't
1913 		 * be able to keep statistics accurate.
1914 		 * Except for key threshold notifications, should
1915 		 * we somehow allow the driver to tell us which key
1916 		 * the hardware used if this flag is set?
1917 		 */
1918 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1919 		    (status->flag & RX_FLAG_IV_STRIPPED))
1920 			return RX_CONTINUE;
1921 
1922 		hdrlen = ieee80211_hdrlen(fc);
1923 
1924 		if (cs) {
1925 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1926 
1927 			if (unlikely(keyidx < 0))
1928 				return RX_DROP_UNUSABLE;
1929 		} else {
1930 			if (rx->skb->len < 8 + hdrlen)
1931 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1932 			/*
1933 			 * no need to call ieee80211_wep_get_keyidx,
1934 			 * it verifies a bunch of things we've done already
1935 			 */
1936 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1937 			keyidx = keyid >> 6;
1938 		}
1939 
1940 		/* check per-station GTK first, if multicast packet */
1941 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1942 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1943 
1944 		/* if not found, try default key */
1945 		if (!rx->key) {
1946 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1947 
1948 			/*
1949 			 * RSNA-protected unicast frames should always be
1950 			 * sent with pairwise or station-to-station keys,
1951 			 * but for WEP we allow using a key index as well.
1952 			 */
1953 			if (rx->key &&
1954 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1955 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1956 			    !is_multicast_ether_addr(hdr->addr1))
1957 				rx->key = NULL;
1958 		}
1959 	}
1960 
1961 	if (rx->key) {
1962 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1963 			return RX_DROP_MONITOR;
1964 
1965 		/* TODO: add threshold stuff again */
1966 	} else {
1967 		return RX_DROP_MONITOR;
1968 	}
1969 
1970 	switch (rx->key->conf.cipher) {
1971 	case WLAN_CIPHER_SUITE_WEP40:
1972 	case WLAN_CIPHER_SUITE_WEP104:
1973 		result = ieee80211_crypto_wep_decrypt(rx);
1974 		break;
1975 	case WLAN_CIPHER_SUITE_TKIP:
1976 		result = ieee80211_crypto_tkip_decrypt(rx);
1977 		break;
1978 	case WLAN_CIPHER_SUITE_CCMP:
1979 		result = ieee80211_crypto_ccmp_decrypt(
1980 			rx, IEEE80211_CCMP_MIC_LEN);
1981 		break;
1982 	case WLAN_CIPHER_SUITE_CCMP_256:
1983 		result = ieee80211_crypto_ccmp_decrypt(
1984 			rx, IEEE80211_CCMP_256_MIC_LEN);
1985 		break;
1986 	case WLAN_CIPHER_SUITE_AES_CMAC:
1987 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1988 		break;
1989 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1990 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1991 		break;
1992 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1993 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1994 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1995 		break;
1996 	case WLAN_CIPHER_SUITE_GCMP:
1997 	case WLAN_CIPHER_SUITE_GCMP_256:
1998 		result = ieee80211_crypto_gcmp_decrypt(rx);
1999 		break;
2000 	default:
2001 		result = ieee80211_crypto_hw_decrypt(rx);
2002 	}
2003 
2004 	/* the hdr variable is invalid after the decrypt handlers */
2005 
2006 	/* either the frame has been decrypted or will be dropped */
2007 	status->flag |= RX_FLAG_DECRYPTED;
2008 
2009 	return result;
2010 }
2011 
2012 static inline struct ieee80211_fragment_entry *
2013 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2014 			 unsigned int frag, unsigned int seq, int rx_queue,
2015 			 struct sk_buff **skb)
2016 {
2017 	struct ieee80211_fragment_entry *entry;
2018 
2019 	entry = &sdata->fragments[sdata->fragment_next++];
2020 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2021 		sdata->fragment_next = 0;
2022 
2023 	if (!skb_queue_empty(&entry->skb_list))
2024 		__skb_queue_purge(&entry->skb_list);
2025 
2026 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2027 	*skb = NULL;
2028 	entry->first_frag_time = jiffies;
2029 	entry->seq = seq;
2030 	entry->rx_queue = rx_queue;
2031 	entry->last_frag = frag;
2032 	entry->check_sequential_pn = false;
2033 	entry->extra_len = 0;
2034 
2035 	return entry;
2036 }
2037 
2038 static inline struct ieee80211_fragment_entry *
2039 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2040 			  unsigned int frag, unsigned int seq,
2041 			  int rx_queue, struct ieee80211_hdr *hdr)
2042 {
2043 	struct ieee80211_fragment_entry *entry;
2044 	int i, idx;
2045 
2046 	idx = sdata->fragment_next;
2047 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2048 		struct ieee80211_hdr *f_hdr;
2049 
2050 		idx--;
2051 		if (idx < 0)
2052 			idx = IEEE80211_FRAGMENT_MAX - 1;
2053 
2054 		entry = &sdata->fragments[idx];
2055 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2056 		    entry->rx_queue != rx_queue ||
2057 		    entry->last_frag + 1 != frag)
2058 			continue;
2059 
2060 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
2061 
2062 		/*
2063 		 * Check ftype and addresses are equal, else check next fragment
2064 		 */
2065 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2066 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2067 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2068 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2069 			continue;
2070 
2071 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2072 			__skb_queue_purge(&entry->skb_list);
2073 			continue;
2074 		}
2075 		return entry;
2076 	}
2077 
2078 	return NULL;
2079 }
2080 
2081 static ieee80211_rx_result debug_noinline
2082 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2083 {
2084 	struct ieee80211_hdr *hdr;
2085 	u16 sc;
2086 	__le16 fc;
2087 	unsigned int frag, seq;
2088 	struct ieee80211_fragment_entry *entry;
2089 	struct sk_buff *skb;
2090 
2091 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2092 	fc = hdr->frame_control;
2093 
2094 	if (ieee80211_is_ctl(fc))
2095 		return RX_CONTINUE;
2096 
2097 	sc = le16_to_cpu(hdr->seq_ctrl);
2098 	frag = sc & IEEE80211_SCTL_FRAG;
2099 
2100 	if (is_multicast_ether_addr(hdr->addr1)) {
2101 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2102 		goto out_no_led;
2103 	}
2104 
2105 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2106 		goto out;
2107 
2108 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2109 
2110 	if (skb_linearize(rx->skb))
2111 		return RX_DROP_UNUSABLE;
2112 
2113 	/*
2114 	 *  skb_linearize() might change the skb->data and
2115 	 *  previously cached variables (in this case, hdr) need to
2116 	 *  be refreshed with the new data.
2117 	 */
2118 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2119 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2120 
2121 	if (frag == 0) {
2122 		/* This is the first fragment of a new frame. */
2123 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2124 						 rx->seqno_idx, &(rx->skb));
2125 		if (rx->key &&
2126 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2127 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2128 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2129 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2130 		    ieee80211_has_protected(fc)) {
2131 			int queue = rx->security_idx;
2132 
2133 			/* Store CCMP/GCMP PN so that we can verify that the
2134 			 * next fragment has a sequential PN value.
2135 			 */
2136 			entry->check_sequential_pn = true;
2137 			memcpy(entry->last_pn,
2138 			       rx->key->u.ccmp.rx_pn[queue],
2139 			       IEEE80211_CCMP_PN_LEN);
2140 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2141 					      u.ccmp.rx_pn) !=
2142 				     offsetof(struct ieee80211_key,
2143 					      u.gcmp.rx_pn));
2144 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2145 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2146 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2147 				     IEEE80211_GCMP_PN_LEN);
2148 		}
2149 		return RX_QUEUED;
2150 	}
2151 
2152 	/* This is a fragment for a frame that should already be pending in
2153 	 * fragment cache. Add this fragment to the end of the pending entry.
2154 	 */
2155 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2156 					  rx->seqno_idx, hdr);
2157 	if (!entry) {
2158 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2159 		return RX_DROP_MONITOR;
2160 	}
2161 
2162 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2163 	 *  MPDU PN values are not incrementing in steps of 1."
2164 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2165 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2166 	 */
2167 	if (entry->check_sequential_pn) {
2168 		int i;
2169 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2170 		int queue;
2171 
2172 		if (!rx->key ||
2173 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2174 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2175 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2176 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2177 			return RX_DROP_UNUSABLE;
2178 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2179 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2180 			pn[i]++;
2181 			if (pn[i])
2182 				break;
2183 		}
2184 		queue = rx->security_idx;
2185 		rpn = rx->key->u.ccmp.rx_pn[queue];
2186 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2187 			return RX_DROP_UNUSABLE;
2188 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2189 	}
2190 
2191 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2192 	__skb_queue_tail(&entry->skb_list, rx->skb);
2193 	entry->last_frag = frag;
2194 	entry->extra_len += rx->skb->len;
2195 	if (ieee80211_has_morefrags(fc)) {
2196 		rx->skb = NULL;
2197 		return RX_QUEUED;
2198 	}
2199 
2200 	rx->skb = __skb_dequeue(&entry->skb_list);
2201 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2202 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2203 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2204 					      GFP_ATOMIC))) {
2205 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2206 			__skb_queue_purge(&entry->skb_list);
2207 			return RX_DROP_UNUSABLE;
2208 		}
2209 	}
2210 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2211 		skb_put_data(rx->skb, skb->data, skb->len);
2212 		dev_kfree_skb(skb);
2213 	}
2214 
2215  out:
2216 	ieee80211_led_rx(rx->local);
2217  out_no_led:
2218 	if (rx->sta)
2219 		rx->sta->rx_stats.packets++;
2220 	return RX_CONTINUE;
2221 }
2222 
2223 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2224 {
2225 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2226 		return -EACCES;
2227 
2228 	return 0;
2229 }
2230 
2231 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2232 {
2233 	struct sk_buff *skb = rx->skb;
2234 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2235 
2236 	/*
2237 	 * Pass through unencrypted frames if the hardware has
2238 	 * decrypted them already.
2239 	 */
2240 	if (status->flag & RX_FLAG_DECRYPTED)
2241 		return 0;
2242 
2243 	/* Drop unencrypted frames if key is set. */
2244 	if (unlikely(!ieee80211_has_protected(fc) &&
2245 		     !ieee80211_is_nullfunc(fc) &&
2246 		     ieee80211_is_data(fc) && rx->key))
2247 		return -EACCES;
2248 
2249 	return 0;
2250 }
2251 
2252 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2253 {
2254 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2255 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2256 	__le16 fc = hdr->frame_control;
2257 
2258 	/*
2259 	 * Pass through unencrypted frames if the hardware has
2260 	 * decrypted them already.
2261 	 */
2262 	if (status->flag & RX_FLAG_DECRYPTED)
2263 		return 0;
2264 
2265 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2266 		if (unlikely(!ieee80211_has_protected(fc) &&
2267 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2268 			     rx->key)) {
2269 			if (ieee80211_is_deauth(fc) ||
2270 			    ieee80211_is_disassoc(fc))
2271 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2272 							     rx->skb->data,
2273 							     rx->skb->len);
2274 			return -EACCES;
2275 		}
2276 		/* BIP does not use Protected field, so need to check MMIE */
2277 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2278 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2279 			if (ieee80211_is_deauth(fc) ||
2280 			    ieee80211_is_disassoc(fc))
2281 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2282 							     rx->skb->data,
2283 							     rx->skb->len);
2284 			return -EACCES;
2285 		}
2286 		/*
2287 		 * When using MFP, Action frames are not allowed prior to
2288 		 * having configured keys.
2289 		 */
2290 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2291 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2292 			return -EACCES;
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int
2299 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2300 {
2301 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2302 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2303 	bool check_port_control = false;
2304 	struct ethhdr *ehdr;
2305 	int ret;
2306 
2307 	*port_control = false;
2308 	if (ieee80211_has_a4(hdr->frame_control) &&
2309 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2310 		return -1;
2311 
2312 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2313 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2314 
2315 		if (!sdata->u.mgd.use_4addr)
2316 			return -1;
2317 		else
2318 			check_port_control = true;
2319 	}
2320 
2321 	if (is_multicast_ether_addr(hdr->addr1) &&
2322 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2323 		return -1;
2324 
2325 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2326 	if (ret < 0)
2327 		return ret;
2328 
2329 	ehdr = (struct ethhdr *) rx->skb->data;
2330 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2331 		*port_control = true;
2332 	else if (check_port_control)
2333 		return -1;
2334 
2335 	return 0;
2336 }
2337 
2338 /*
2339  * requires that rx->skb is a frame with ethernet header
2340  */
2341 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2342 {
2343 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2344 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2345 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2346 
2347 	/*
2348 	 * Allow EAPOL frames to us/the PAE group address regardless
2349 	 * of whether the frame was encrypted or not.
2350 	 */
2351 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2352 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2353 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2354 		return true;
2355 
2356 	if (ieee80211_802_1x_port_control(rx) ||
2357 	    ieee80211_drop_unencrypted(rx, fc))
2358 		return false;
2359 
2360 	return true;
2361 }
2362 
2363 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2364 						 struct ieee80211_rx_data *rx)
2365 {
2366 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2367 	struct net_device *dev = sdata->dev;
2368 
2369 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2370 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2371 		     sdata->control_port_over_nl80211)) {
2372 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2373 		bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2374 
2375 		cfg80211_rx_control_port(dev, skb, noencrypt);
2376 		dev_kfree_skb(skb);
2377 	} else {
2378 		/* deliver to local stack */
2379 		if (rx->napi)
2380 			napi_gro_receive(rx->napi, skb);
2381 		else
2382 			netif_receive_skb(skb);
2383 	}
2384 }
2385 
2386 /*
2387  * requires that rx->skb is a frame with ethernet header
2388  */
2389 static void
2390 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2391 {
2392 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2393 	struct net_device *dev = sdata->dev;
2394 	struct sk_buff *skb, *xmit_skb;
2395 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2396 	struct sta_info *dsta;
2397 
2398 	skb = rx->skb;
2399 	xmit_skb = NULL;
2400 
2401 	ieee80211_rx_stats(dev, skb->len);
2402 
2403 	if (rx->sta) {
2404 		/* The seqno index has the same property as needed
2405 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2406 		 * for non-QoS-data frames. Here we know it's a data
2407 		 * frame, so count MSDUs.
2408 		 */
2409 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2410 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2411 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2412 	}
2413 
2414 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2415 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2416 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2417 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2418 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2419 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2420 			/*
2421 			 * send multicast frames both to higher layers in
2422 			 * local net stack and back to the wireless medium
2423 			 */
2424 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2425 			if (!xmit_skb)
2426 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2427 						    dev->name);
2428 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2429 			dsta = sta_info_get(sdata, skb->data);
2430 			if (dsta) {
2431 				/*
2432 				 * The destination station is associated to
2433 				 * this AP (in this VLAN), so send the frame
2434 				 * directly to it and do not pass it to local
2435 				 * net stack.
2436 				 */
2437 				xmit_skb = skb;
2438 				skb = NULL;
2439 			}
2440 		}
2441 	}
2442 
2443 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2444 	if (skb) {
2445 		/* 'align' will only take the values 0 or 2 here since all
2446 		 * frames are required to be aligned to 2-byte boundaries
2447 		 * when being passed to mac80211; the code here works just
2448 		 * as well if that isn't true, but mac80211 assumes it can
2449 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2450 		 */
2451 		int align;
2452 
2453 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2454 		if (align) {
2455 			if (WARN_ON(skb_headroom(skb) < 3)) {
2456 				dev_kfree_skb(skb);
2457 				skb = NULL;
2458 			} else {
2459 				u8 *data = skb->data;
2460 				size_t len = skb_headlen(skb);
2461 				skb->data -= align;
2462 				memmove(skb->data, data, len);
2463 				skb_set_tail_pointer(skb, len);
2464 			}
2465 		}
2466 	}
2467 #endif
2468 
2469 	if (skb) {
2470 		skb->protocol = eth_type_trans(skb, dev);
2471 		memset(skb->cb, 0, sizeof(skb->cb));
2472 
2473 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2474 	}
2475 
2476 	if (xmit_skb) {
2477 		/*
2478 		 * Send to wireless media and increase priority by 256 to
2479 		 * keep the received priority instead of reclassifying
2480 		 * the frame (see cfg80211_classify8021d).
2481 		 */
2482 		xmit_skb->priority += 256;
2483 		xmit_skb->protocol = htons(ETH_P_802_3);
2484 		skb_reset_network_header(xmit_skb);
2485 		skb_reset_mac_header(xmit_skb);
2486 		dev_queue_xmit(xmit_skb);
2487 	}
2488 }
2489 
2490 static ieee80211_rx_result debug_noinline
2491 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2492 {
2493 	struct net_device *dev = rx->sdata->dev;
2494 	struct sk_buff *skb = rx->skb;
2495 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2496 	__le16 fc = hdr->frame_control;
2497 	struct sk_buff_head frame_list;
2498 	struct ethhdr ethhdr;
2499 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2500 
2501 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2502 		check_da = NULL;
2503 		check_sa = NULL;
2504 	} else switch (rx->sdata->vif.type) {
2505 		case NL80211_IFTYPE_AP:
2506 		case NL80211_IFTYPE_AP_VLAN:
2507 			check_da = NULL;
2508 			break;
2509 		case NL80211_IFTYPE_STATION:
2510 			if (!rx->sta ||
2511 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2512 				check_sa = NULL;
2513 			break;
2514 		case NL80211_IFTYPE_MESH_POINT:
2515 			check_sa = NULL;
2516 			break;
2517 		default:
2518 			break;
2519 	}
2520 
2521 	skb->dev = dev;
2522 	__skb_queue_head_init(&frame_list);
2523 
2524 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2525 					  rx->sdata->vif.addr,
2526 					  rx->sdata->vif.type,
2527 					  data_offset))
2528 		return RX_DROP_UNUSABLE;
2529 
2530 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2531 				 rx->sdata->vif.type,
2532 				 rx->local->hw.extra_tx_headroom,
2533 				 check_da, check_sa);
2534 
2535 	while (!skb_queue_empty(&frame_list)) {
2536 		rx->skb = __skb_dequeue(&frame_list);
2537 
2538 		if (!ieee80211_frame_allowed(rx, fc)) {
2539 			dev_kfree_skb(rx->skb);
2540 			continue;
2541 		}
2542 
2543 		ieee80211_deliver_skb(rx);
2544 	}
2545 
2546 	return RX_QUEUED;
2547 }
2548 
2549 static ieee80211_rx_result debug_noinline
2550 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2551 {
2552 	struct sk_buff *skb = rx->skb;
2553 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2554 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2555 	__le16 fc = hdr->frame_control;
2556 
2557 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2558 		return RX_CONTINUE;
2559 
2560 	if (unlikely(!ieee80211_is_data(fc)))
2561 		return RX_CONTINUE;
2562 
2563 	if (unlikely(!ieee80211_is_data_present(fc)))
2564 		return RX_DROP_MONITOR;
2565 
2566 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2567 		switch (rx->sdata->vif.type) {
2568 		case NL80211_IFTYPE_AP_VLAN:
2569 			if (!rx->sdata->u.vlan.sta)
2570 				return RX_DROP_UNUSABLE;
2571 			break;
2572 		case NL80211_IFTYPE_STATION:
2573 			if (!rx->sdata->u.mgd.use_4addr)
2574 				return RX_DROP_UNUSABLE;
2575 			break;
2576 		default:
2577 			return RX_DROP_UNUSABLE;
2578 		}
2579 	}
2580 
2581 	if (is_multicast_ether_addr(hdr->addr1))
2582 		return RX_DROP_UNUSABLE;
2583 
2584 	return __ieee80211_rx_h_amsdu(rx, 0);
2585 }
2586 
2587 #ifdef CONFIG_MAC80211_MESH
2588 static ieee80211_rx_result
2589 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2590 {
2591 	struct ieee80211_hdr *fwd_hdr, *hdr;
2592 	struct ieee80211_tx_info *info;
2593 	struct ieee80211s_hdr *mesh_hdr;
2594 	struct sk_buff *skb = rx->skb, *fwd_skb;
2595 	struct ieee80211_local *local = rx->local;
2596 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2597 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2598 	u16 ac, q, hdrlen;
2599 
2600 	hdr = (struct ieee80211_hdr *) skb->data;
2601 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2602 
2603 	/* make sure fixed part of mesh header is there, also checks skb len */
2604 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2605 		return RX_DROP_MONITOR;
2606 
2607 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2608 
2609 	/* make sure full mesh header is there, also checks skb len */
2610 	if (!pskb_may_pull(rx->skb,
2611 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2612 		return RX_DROP_MONITOR;
2613 
2614 	/* reload pointers */
2615 	hdr = (struct ieee80211_hdr *) skb->data;
2616 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2617 
2618 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2619 		return RX_DROP_MONITOR;
2620 
2621 	/* frame is in RMC, don't forward */
2622 	if (ieee80211_is_data(hdr->frame_control) &&
2623 	    is_multicast_ether_addr(hdr->addr1) &&
2624 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2625 		return RX_DROP_MONITOR;
2626 
2627 	if (!ieee80211_is_data(hdr->frame_control))
2628 		return RX_CONTINUE;
2629 
2630 	if (!mesh_hdr->ttl)
2631 		return RX_DROP_MONITOR;
2632 
2633 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2634 		struct mesh_path *mppath;
2635 		char *proxied_addr;
2636 		char *mpp_addr;
2637 
2638 		if (is_multicast_ether_addr(hdr->addr1)) {
2639 			mpp_addr = hdr->addr3;
2640 			proxied_addr = mesh_hdr->eaddr1;
2641 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2642 			    MESH_FLAGS_AE_A5_A6) {
2643 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2644 			mpp_addr = hdr->addr4;
2645 			proxied_addr = mesh_hdr->eaddr2;
2646 		} else {
2647 			return RX_DROP_MONITOR;
2648 		}
2649 
2650 		rcu_read_lock();
2651 		mppath = mpp_path_lookup(sdata, proxied_addr);
2652 		if (!mppath) {
2653 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2654 		} else {
2655 			spin_lock_bh(&mppath->state_lock);
2656 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2657 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2658 			mppath->exp_time = jiffies;
2659 			spin_unlock_bh(&mppath->state_lock);
2660 		}
2661 		rcu_read_unlock();
2662 	}
2663 
2664 	/* Frame has reached destination.  Don't forward */
2665 	if (!is_multicast_ether_addr(hdr->addr1) &&
2666 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2667 		return RX_CONTINUE;
2668 
2669 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2670 	q = sdata->vif.hw_queue[ac];
2671 	if (ieee80211_queue_stopped(&local->hw, q)) {
2672 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2673 		return RX_DROP_MONITOR;
2674 	}
2675 	skb_set_queue_mapping(skb, q);
2676 
2677 	if (!--mesh_hdr->ttl) {
2678 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2679 		goto out;
2680 	}
2681 
2682 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2683 		goto out;
2684 
2685 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2686 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2687 	if (!fwd_skb)
2688 		goto out;
2689 
2690 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2691 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2692 	info = IEEE80211_SKB_CB(fwd_skb);
2693 	memset(info, 0, sizeof(*info));
2694 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2695 	info->control.vif = &rx->sdata->vif;
2696 	info->control.jiffies = jiffies;
2697 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2698 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2699 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2700 		/* update power mode indication when forwarding */
2701 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2702 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2703 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2704 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2705 	} else {
2706 		/* unable to resolve next hop */
2707 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2708 				   fwd_hdr->addr3, 0,
2709 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2710 				   fwd_hdr->addr2);
2711 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2712 		kfree_skb(fwd_skb);
2713 		return RX_DROP_MONITOR;
2714 	}
2715 
2716 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2717 	ieee80211_add_pending_skb(local, fwd_skb);
2718  out:
2719 	if (is_multicast_ether_addr(hdr->addr1))
2720 		return RX_CONTINUE;
2721 	return RX_DROP_MONITOR;
2722 }
2723 #endif
2724 
2725 static ieee80211_rx_result debug_noinline
2726 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2727 {
2728 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2729 	struct ieee80211_local *local = rx->local;
2730 	struct net_device *dev = sdata->dev;
2731 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2732 	__le16 fc = hdr->frame_control;
2733 	bool port_control;
2734 	int err;
2735 
2736 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2737 		return RX_CONTINUE;
2738 
2739 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2740 		return RX_DROP_MONITOR;
2741 
2742 	/*
2743 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2744 	 * also drop the frame to cooked monitor interfaces.
2745 	 */
2746 	if (ieee80211_has_a4(hdr->frame_control) &&
2747 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2748 		if (rx->sta &&
2749 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2750 			cfg80211_rx_unexpected_4addr_frame(
2751 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2752 		return RX_DROP_MONITOR;
2753 	}
2754 
2755 	err = __ieee80211_data_to_8023(rx, &port_control);
2756 	if (unlikely(err))
2757 		return RX_DROP_UNUSABLE;
2758 
2759 	if (!ieee80211_frame_allowed(rx, fc))
2760 		return RX_DROP_MONITOR;
2761 
2762 	/* directly handle TDLS channel switch requests/responses */
2763 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2764 						cpu_to_be16(ETH_P_TDLS))) {
2765 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2766 
2767 		if (pskb_may_pull(rx->skb,
2768 				  offsetof(struct ieee80211_tdls_data, u)) &&
2769 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2770 		    tf->category == WLAN_CATEGORY_TDLS &&
2771 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2772 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2773 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2774 			schedule_work(&local->tdls_chsw_work);
2775 			if (rx->sta)
2776 				rx->sta->rx_stats.packets++;
2777 
2778 			return RX_QUEUED;
2779 		}
2780 	}
2781 
2782 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2783 	    unlikely(port_control) && sdata->bss) {
2784 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2785 				     u.ap);
2786 		dev = sdata->dev;
2787 		rx->sdata = sdata;
2788 	}
2789 
2790 	rx->skb->dev = dev;
2791 
2792 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2793 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2794 	    !is_multicast_ether_addr(
2795 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2796 	    (!local->scanning &&
2797 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2798 		mod_timer(&local->dynamic_ps_timer, jiffies +
2799 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2800 
2801 	ieee80211_deliver_skb(rx);
2802 
2803 	return RX_QUEUED;
2804 }
2805 
2806 static ieee80211_rx_result debug_noinline
2807 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2808 {
2809 	struct sk_buff *skb = rx->skb;
2810 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2811 	struct tid_ampdu_rx *tid_agg_rx;
2812 	u16 start_seq_num;
2813 	u16 tid;
2814 
2815 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2816 		return RX_CONTINUE;
2817 
2818 	if (ieee80211_is_back_req(bar->frame_control)) {
2819 		struct {
2820 			__le16 control, start_seq_num;
2821 		} __packed bar_data;
2822 		struct ieee80211_event event = {
2823 			.type = BAR_RX_EVENT,
2824 		};
2825 
2826 		if (!rx->sta)
2827 			return RX_DROP_MONITOR;
2828 
2829 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2830 				  &bar_data, sizeof(bar_data)))
2831 			return RX_DROP_MONITOR;
2832 
2833 		tid = le16_to_cpu(bar_data.control) >> 12;
2834 
2835 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2836 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2837 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2838 					     WLAN_BACK_RECIPIENT,
2839 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2840 
2841 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2842 		if (!tid_agg_rx)
2843 			return RX_DROP_MONITOR;
2844 
2845 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2846 		event.u.ba.tid = tid;
2847 		event.u.ba.ssn = start_seq_num;
2848 		event.u.ba.sta = &rx->sta->sta;
2849 
2850 		/* reset session timer */
2851 		if (tid_agg_rx->timeout)
2852 			mod_timer(&tid_agg_rx->session_timer,
2853 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2854 
2855 		spin_lock(&tid_agg_rx->reorder_lock);
2856 		/* release stored frames up to start of BAR */
2857 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2858 						 start_seq_num, frames);
2859 		spin_unlock(&tid_agg_rx->reorder_lock);
2860 
2861 		drv_event_callback(rx->local, rx->sdata, &event);
2862 
2863 		kfree_skb(skb);
2864 		return RX_QUEUED;
2865 	}
2866 
2867 	/*
2868 	 * After this point, we only want management frames,
2869 	 * so we can drop all remaining control frames to
2870 	 * cooked monitor interfaces.
2871 	 */
2872 	return RX_DROP_MONITOR;
2873 }
2874 
2875 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2876 					   struct ieee80211_mgmt *mgmt,
2877 					   size_t len)
2878 {
2879 	struct ieee80211_local *local = sdata->local;
2880 	struct sk_buff *skb;
2881 	struct ieee80211_mgmt *resp;
2882 
2883 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2884 		/* Not to own unicast address */
2885 		return;
2886 	}
2887 
2888 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2889 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2890 		/* Not from the current AP or not associated yet. */
2891 		return;
2892 	}
2893 
2894 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2895 		/* Too short SA Query request frame */
2896 		return;
2897 	}
2898 
2899 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2900 	if (skb == NULL)
2901 		return;
2902 
2903 	skb_reserve(skb, local->hw.extra_tx_headroom);
2904 	resp = skb_put_zero(skb, 24);
2905 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2906 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2907 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2908 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2909 					  IEEE80211_STYPE_ACTION);
2910 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2911 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2912 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2913 	memcpy(resp->u.action.u.sa_query.trans_id,
2914 	       mgmt->u.action.u.sa_query.trans_id,
2915 	       WLAN_SA_QUERY_TR_ID_LEN);
2916 
2917 	ieee80211_tx_skb(sdata, skb);
2918 }
2919 
2920 static ieee80211_rx_result debug_noinline
2921 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2922 {
2923 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2924 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2925 
2926 	/*
2927 	 * From here on, look only at management frames.
2928 	 * Data and control frames are already handled,
2929 	 * and unknown (reserved) frames are useless.
2930 	 */
2931 	if (rx->skb->len < 24)
2932 		return RX_DROP_MONITOR;
2933 
2934 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2935 		return RX_DROP_MONITOR;
2936 
2937 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2938 	    ieee80211_is_beacon(mgmt->frame_control) &&
2939 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2940 		int sig = 0;
2941 
2942 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
2943 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
2944 			sig = status->signal;
2945 
2946 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2947 					    rx->skb->data, rx->skb->len,
2948 					    status->freq, sig);
2949 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2950 	}
2951 
2952 	if (ieee80211_drop_unencrypted_mgmt(rx))
2953 		return RX_DROP_UNUSABLE;
2954 
2955 	return RX_CONTINUE;
2956 }
2957 
2958 static ieee80211_rx_result debug_noinline
2959 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2960 {
2961 	struct ieee80211_local *local = rx->local;
2962 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2963 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2964 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2965 	int len = rx->skb->len;
2966 
2967 	if (!ieee80211_is_action(mgmt->frame_control))
2968 		return RX_CONTINUE;
2969 
2970 	/* drop too small frames */
2971 	if (len < IEEE80211_MIN_ACTION_SIZE)
2972 		return RX_DROP_UNUSABLE;
2973 
2974 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2975 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2976 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2977 		return RX_DROP_UNUSABLE;
2978 
2979 	switch (mgmt->u.action.category) {
2980 	case WLAN_CATEGORY_HT:
2981 		/* reject HT action frames from stations not supporting HT */
2982 		if (!rx->sta->sta.ht_cap.ht_supported)
2983 			goto invalid;
2984 
2985 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2986 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2987 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2988 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2989 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2990 			break;
2991 
2992 		/* verify action & smps_control/chanwidth are present */
2993 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2994 			goto invalid;
2995 
2996 		switch (mgmt->u.action.u.ht_smps.action) {
2997 		case WLAN_HT_ACTION_SMPS: {
2998 			struct ieee80211_supported_band *sband;
2999 			enum ieee80211_smps_mode smps_mode;
3000 			struct sta_opmode_info sta_opmode = {};
3001 
3002 			/* convert to HT capability */
3003 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3004 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3005 				smps_mode = IEEE80211_SMPS_OFF;
3006 				break;
3007 			case WLAN_HT_SMPS_CONTROL_STATIC:
3008 				smps_mode = IEEE80211_SMPS_STATIC;
3009 				break;
3010 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3011 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3012 				break;
3013 			default:
3014 				goto invalid;
3015 			}
3016 
3017 			/* if no change do nothing */
3018 			if (rx->sta->sta.smps_mode == smps_mode)
3019 				goto handled;
3020 			rx->sta->sta.smps_mode = smps_mode;
3021 			sta_opmode.smps_mode =
3022 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3023 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3024 
3025 			sband = rx->local->hw.wiphy->bands[status->band];
3026 
3027 			rate_control_rate_update(local, sband, rx->sta,
3028 						 IEEE80211_RC_SMPS_CHANGED);
3029 			cfg80211_sta_opmode_change_notify(sdata->dev,
3030 							  rx->sta->addr,
3031 							  &sta_opmode,
3032 							  GFP_KERNEL);
3033 			goto handled;
3034 		}
3035 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3036 			struct ieee80211_supported_band *sband;
3037 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3038 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3039 			struct sta_opmode_info sta_opmode = {};
3040 
3041 			/* If it doesn't support 40 MHz it can't change ... */
3042 			if (!(rx->sta->sta.ht_cap.cap &
3043 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3044 				goto handled;
3045 
3046 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3047 				max_bw = IEEE80211_STA_RX_BW_20;
3048 			else
3049 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3050 
3051 			/* set cur_max_bandwidth and recalc sta bw */
3052 			rx->sta->cur_max_bandwidth = max_bw;
3053 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3054 
3055 			if (rx->sta->sta.bandwidth == new_bw)
3056 				goto handled;
3057 
3058 			rx->sta->sta.bandwidth = new_bw;
3059 			sband = rx->local->hw.wiphy->bands[status->band];
3060 			sta_opmode.bw =
3061 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3062 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3063 
3064 			rate_control_rate_update(local, sband, rx->sta,
3065 						 IEEE80211_RC_BW_CHANGED);
3066 			cfg80211_sta_opmode_change_notify(sdata->dev,
3067 							  rx->sta->addr,
3068 							  &sta_opmode,
3069 							  GFP_KERNEL);
3070 			goto handled;
3071 		}
3072 		default:
3073 			goto invalid;
3074 		}
3075 
3076 		break;
3077 	case WLAN_CATEGORY_PUBLIC:
3078 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3079 			goto invalid;
3080 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3081 			break;
3082 		if (!rx->sta)
3083 			break;
3084 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3085 			break;
3086 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3087 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3088 			break;
3089 		if (len < offsetof(struct ieee80211_mgmt,
3090 				   u.action.u.ext_chan_switch.variable))
3091 			goto invalid;
3092 		goto queue;
3093 	case WLAN_CATEGORY_VHT:
3094 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3095 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3096 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3097 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3098 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3099 			break;
3100 
3101 		/* verify action code is present */
3102 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3103 			goto invalid;
3104 
3105 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3106 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3107 			/* verify opmode is present */
3108 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3109 				goto invalid;
3110 			goto queue;
3111 		}
3112 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3113 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3114 				goto invalid;
3115 			goto queue;
3116 		}
3117 		default:
3118 			break;
3119 		}
3120 		break;
3121 	case WLAN_CATEGORY_BACK:
3122 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3123 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3124 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3125 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3126 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3127 			break;
3128 
3129 		/* verify action_code is present */
3130 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3131 			break;
3132 
3133 		switch (mgmt->u.action.u.addba_req.action_code) {
3134 		case WLAN_ACTION_ADDBA_REQ:
3135 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3136 				   sizeof(mgmt->u.action.u.addba_req)))
3137 				goto invalid;
3138 			break;
3139 		case WLAN_ACTION_ADDBA_RESP:
3140 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3141 				   sizeof(mgmt->u.action.u.addba_resp)))
3142 				goto invalid;
3143 			break;
3144 		case WLAN_ACTION_DELBA:
3145 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3146 				   sizeof(mgmt->u.action.u.delba)))
3147 				goto invalid;
3148 			break;
3149 		default:
3150 			goto invalid;
3151 		}
3152 
3153 		goto queue;
3154 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3155 		/* verify action_code is present */
3156 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3157 			break;
3158 
3159 		switch (mgmt->u.action.u.measurement.action_code) {
3160 		case WLAN_ACTION_SPCT_MSR_REQ:
3161 			if (status->band != NL80211_BAND_5GHZ)
3162 				break;
3163 
3164 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3165 				   sizeof(mgmt->u.action.u.measurement)))
3166 				break;
3167 
3168 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3169 				break;
3170 
3171 			ieee80211_process_measurement_req(sdata, mgmt, len);
3172 			goto handled;
3173 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3174 			u8 *bssid;
3175 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3176 				   sizeof(mgmt->u.action.u.chan_switch)))
3177 				break;
3178 
3179 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3180 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3181 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3182 				break;
3183 
3184 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3185 				bssid = sdata->u.mgd.bssid;
3186 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3187 				bssid = sdata->u.ibss.bssid;
3188 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3189 				bssid = mgmt->sa;
3190 			else
3191 				break;
3192 
3193 			if (!ether_addr_equal(mgmt->bssid, bssid))
3194 				break;
3195 
3196 			goto queue;
3197 			}
3198 		}
3199 		break;
3200 	case WLAN_CATEGORY_SA_QUERY:
3201 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3202 			   sizeof(mgmt->u.action.u.sa_query)))
3203 			break;
3204 
3205 		switch (mgmt->u.action.u.sa_query.action) {
3206 		case WLAN_ACTION_SA_QUERY_REQUEST:
3207 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3208 				break;
3209 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3210 			goto handled;
3211 		}
3212 		break;
3213 	case WLAN_CATEGORY_SELF_PROTECTED:
3214 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3215 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3216 			break;
3217 
3218 		switch (mgmt->u.action.u.self_prot.action_code) {
3219 		case WLAN_SP_MESH_PEERING_OPEN:
3220 		case WLAN_SP_MESH_PEERING_CLOSE:
3221 		case WLAN_SP_MESH_PEERING_CONFIRM:
3222 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3223 				goto invalid;
3224 			if (sdata->u.mesh.user_mpm)
3225 				/* userspace handles this frame */
3226 				break;
3227 			goto queue;
3228 		case WLAN_SP_MGK_INFORM:
3229 		case WLAN_SP_MGK_ACK:
3230 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3231 				goto invalid;
3232 			break;
3233 		}
3234 		break;
3235 	case WLAN_CATEGORY_MESH_ACTION:
3236 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3237 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3238 			break;
3239 
3240 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3241 			break;
3242 		if (mesh_action_is_path_sel(mgmt) &&
3243 		    !mesh_path_sel_is_hwmp(sdata))
3244 			break;
3245 		goto queue;
3246 	}
3247 
3248 	return RX_CONTINUE;
3249 
3250  invalid:
3251 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3252 	/* will return in the next handlers */
3253 	return RX_CONTINUE;
3254 
3255  handled:
3256 	if (rx->sta)
3257 		rx->sta->rx_stats.packets++;
3258 	dev_kfree_skb(rx->skb);
3259 	return RX_QUEUED;
3260 
3261  queue:
3262 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3263 	ieee80211_queue_work(&local->hw, &sdata->work);
3264 	if (rx->sta)
3265 		rx->sta->rx_stats.packets++;
3266 	return RX_QUEUED;
3267 }
3268 
3269 static ieee80211_rx_result debug_noinline
3270 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3271 {
3272 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3273 	int sig = 0;
3274 
3275 	/* skip known-bad action frames and return them in the next handler */
3276 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3277 		return RX_CONTINUE;
3278 
3279 	/*
3280 	 * Getting here means the kernel doesn't know how to handle
3281 	 * it, but maybe userspace does ... include returned frames
3282 	 * so userspace can register for those to know whether ones
3283 	 * it transmitted were processed or returned.
3284 	 */
3285 
3286 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3287 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3288 		sig = status->signal;
3289 
3290 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3291 			     rx->skb->data, rx->skb->len, 0)) {
3292 		if (rx->sta)
3293 			rx->sta->rx_stats.packets++;
3294 		dev_kfree_skb(rx->skb);
3295 		return RX_QUEUED;
3296 	}
3297 
3298 	return RX_CONTINUE;
3299 }
3300 
3301 static ieee80211_rx_result debug_noinline
3302 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3303 {
3304 	struct ieee80211_local *local = rx->local;
3305 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3306 	struct sk_buff *nskb;
3307 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3308 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3309 
3310 	if (!ieee80211_is_action(mgmt->frame_control))
3311 		return RX_CONTINUE;
3312 
3313 	/*
3314 	 * For AP mode, hostapd is responsible for handling any action
3315 	 * frames that we didn't handle, including returning unknown
3316 	 * ones. For all other modes we will return them to the sender,
3317 	 * setting the 0x80 bit in the action category, as required by
3318 	 * 802.11-2012 9.24.4.
3319 	 * Newer versions of hostapd shall also use the management frame
3320 	 * registration mechanisms, but older ones still use cooked
3321 	 * monitor interfaces so push all frames there.
3322 	 */
3323 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3324 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3325 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3326 		return RX_DROP_MONITOR;
3327 
3328 	if (is_multicast_ether_addr(mgmt->da))
3329 		return RX_DROP_MONITOR;
3330 
3331 	/* do not return rejected action frames */
3332 	if (mgmt->u.action.category & 0x80)
3333 		return RX_DROP_UNUSABLE;
3334 
3335 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3336 			       GFP_ATOMIC);
3337 	if (nskb) {
3338 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3339 
3340 		nmgmt->u.action.category |= 0x80;
3341 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3342 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3343 
3344 		memset(nskb->cb, 0, sizeof(nskb->cb));
3345 
3346 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3347 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3348 
3349 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3350 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3351 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3352 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3353 				info->hw_queue =
3354 					local->hw.offchannel_tx_hw_queue;
3355 		}
3356 
3357 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3358 					    status->band, 0);
3359 	}
3360 	dev_kfree_skb(rx->skb);
3361 	return RX_QUEUED;
3362 }
3363 
3364 static ieee80211_rx_result debug_noinline
3365 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3366 {
3367 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3368 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3369 	__le16 stype;
3370 
3371 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3372 
3373 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3374 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3375 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3376 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3377 		return RX_DROP_MONITOR;
3378 
3379 	switch (stype) {
3380 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3381 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3382 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3383 		/* process for all: mesh, mlme, ibss */
3384 		break;
3385 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3386 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3387 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3388 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3389 		if (is_multicast_ether_addr(mgmt->da) &&
3390 		    !is_broadcast_ether_addr(mgmt->da))
3391 			return RX_DROP_MONITOR;
3392 
3393 		/* process only for station */
3394 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3395 			return RX_DROP_MONITOR;
3396 		break;
3397 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3398 		/* process only for ibss and mesh */
3399 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3400 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3401 			return RX_DROP_MONITOR;
3402 		break;
3403 	default:
3404 		return RX_DROP_MONITOR;
3405 	}
3406 
3407 	/* queue up frame and kick off work to process it */
3408 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3409 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3410 	if (rx->sta)
3411 		rx->sta->rx_stats.packets++;
3412 
3413 	return RX_QUEUED;
3414 }
3415 
3416 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3417 					struct ieee80211_rate *rate)
3418 {
3419 	struct ieee80211_sub_if_data *sdata;
3420 	struct ieee80211_local *local = rx->local;
3421 	struct sk_buff *skb = rx->skb, *skb2;
3422 	struct net_device *prev_dev = NULL;
3423 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3424 	int needed_headroom;
3425 
3426 	/*
3427 	 * If cooked monitor has been processed already, then
3428 	 * don't do it again. If not, set the flag.
3429 	 */
3430 	if (rx->flags & IEEE80211_RX_CMNTR)
3431 		goto out_free_skb;
3432 	rx->flags |= IEEE80211_RX_CMNTR;
3433 
3434 	/* If there are no cooked monitor interfaces, just free the SKB */
3435 	if (!local->cooked_mntrs)
3436 		goto out_free_skb;
3437 
3438 	/* vendor data is long removed here */
3439 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3440 	/* room for the radiotap header based on driver features */
3441 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3442 
3443 	if (skb_headroom(skb) < needed_headroom &&
3444 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3445 		goto out_free_skb;
3446 
3447 	/* prepend radiotap information */
3448 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3449 					 false);
3450 
3451 	skb_reset_mac_header(skb);
3452 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3453 	skb->pkt_type = PACKET_OTHERHOST;
3454 	skb->protocol = htons(ETH_P_802_2);
3455 
3456 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3457 		if (!ieee80211_sdata_running(sdata))
3458 			continue;
3459 
3460 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3461 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3462 			continue;
3463 
3464 		if (prev_dev) {
3465 			skb2 = skb_clone(skb, GFP_ATOMIC);
3466 			if (skb2) {
3467 				skb2->dev = prev_dev;
3468 				netif_receive_skb(skb2);
3469 			}
3470 		}
3471 
3472 		prev_dev = sdata->dev;
3473 		ieee80211_rx_stats(sdata->dev, skb->len);
3474 	}
3475 
3476 	if (prev_dev) {
3477 		skb->dev = prev_dev;
3478 		netif_receive_skb(skb);
3479 		return;
3480 	}
3481 
3482  out_free_skb:
3483 	dev_kfree_skb(skb);
3484 }
3485 
3486 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3487 					 ieee80211_rx_result res)
3488 {
3489 	switch (res) {
3490 	case RX_DROP_MONITOR:
3491 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3492 		if (rx->sta)
3493 			rx->sta->rx_stats.dropped++;
3494 		/* fall through */
3495 	case RX_CONTINUE: {
3496 		struct ieee80211_rate *rate = NULL;
3497 		struct ieee80211_supported_band *sband;
3498 		struct ieee80211_rx_status *status;
3499 
3500 		status = IEEE80211_SKB_RXCB((rx->skb));
3501 
3502 		sband = rx->local->hw.wiphy->bands[status->band];
3503 		if (status->encoding == RX_ENC_LEGACY)
3504 			rate = &sband->bitrates[status->rate_idx];
3505 
3506 		ieee80211_rx_cooked_monitor(rx, rate);
3507 		break;
3508 		}
3509 	case RX_DROP_UNUSABLE:
3510 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3511 		if (rx->sta)
3512 			rx->sta->rx_stats.dropped++;
3513 		dev_kfree_skb(rx->skb);
3514 		break;
3515 	case RX_QUEUED:
3516 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3517 		break;
3518 	}
3519 }
3520 
3521 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3522 				  struct sk_buff_head *frames)
3523 {
3524 	ieee80211_rx_result res = RX_DROP_MONITOR;
3525 	struct sk_buff *skb;
3526 
3527 #define CALL_RXH(rxh)			\
3528 	do {				\
3529 		res = rxh(rx);		\
3530 		if (res != RX_CONTINUE)	\
3531 			goto rxh_next;  \
3532 	} while (0)
3533 
3534 	/* Lock here to avoid hitting all of the data used in the RX
3535 	 * path (e.g. key data, station data, ...) concurrently when
3536 	 * a frame is released from the reorder buffer due to timeout
3537 	 * from the timer, potentially concurrently with RX from the
3538 	 * driver.
3539 	 */
3540 	spin_lock_bh(&rx->local->rx_path_lock);
3541 
3542 	while ((skb = __skb_dequeue(frames))) {
3543 		/*
3544 		 * all the other fields are valid across frames
3545 		 * that belong to an aMPDU since they are on the
3546 		 * same TID from the same station
3547 		 */
3548 		rx->skb = skb;
3549 
3550 		CALL_RXH(ieee80211_rx_h_check_more_data);
3551 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3552 		CALL_RXH(ieee80211_rx_h_sta_process);
3553 		CALL_RXH(ieee80211_rx_h_decrypt);
3554 		CALL_RXH(ieee80211_rx_h_defragment);
3555 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3556 		/* must be after MMIC verify so header is counted in MPDU mic */
3557 #ifdef CONFIG_MAC80211_MESH
3558 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3559 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3560 #endif
3561 		CALL_RXH(ieee80211_rx_h_amsdu);
3562 		CALL_RXH(ieee80211_rx_h_data);
3563 
3564 		/* special treatment -- needs the queue */
3565 		res = ieee80211_rx_h_ctrl(rx, frames);
3566 		if (res != RX_CONTINUE)
3567 			goto rxh_next;
3568 
3569 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3570 		CALL_RXH(ieee80211_rx_h_action);
3571 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3572 		CALL_RXH(ieee80211_rx_h_action_return);
3573 		CALL_RXH(ieee80211_rx_h_mgmt);
3574 
3575  rxh_next:
3576 		ieee80211_rx_handlers_result(rx, res);
3577 
3578 #undef CALL_RXH
3579 	}
3580 
3581 	spin_unlock_bh(&rx->local->rx_path_lock);
3582 }
3583 
3584 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3585 {
3586 	struct sk_buff_head reorder_release;
3587 	ieee80211_rx_result res = RX_DROP_MONITOR;
3588 
3589 	__skb_queue_head_init(&reorder_release);
3590 
3591 #define CALL_RXH(rxh)			\
3592 	do {				\
3593 		res = rxh(rx);		\
3594 		if (res != RX_CONTINUE)	\
3595 			goto rxh_next;  \
3596 	} while (0)
3597 
3598 	CALL_RXH(ieee80211_rx_h_check_dup);
3599 	CALL_RXH(ieee80211_rx_h_check);
3600 
3601 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3602 
3603 	ieee80211_rx_handlers(rx, &reorder_release);
3604 	return;
3605 
3606  rxh_next:
3607 	ieee80211_rx_handlers_result(rx, res);
3608 
3609 #undef CALL_RXH
3610 }
3611 
3612 /*
3613  * This function makes calls into the RX path, therefore
3614  * it has to be invoked under RCU read lock.
3615  */
3616 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3617 {
3618 	struct sk_buff_head frames;
3619 	struct ieee80211_rx_data rx = {
3620 		.sta = sta,
3621 		.sdata = sta->sdata,
3622 		.local = sta->local,
3623 		/* This is OK -- must be QoS data frame */
3624 		.security_idx = tid,
3625 		.seqno_idx = tid,
3626 		.napi = NULL, /* must be NULL to not have races */
3627 	};
3628 	struct tid_ampdu_rx *tid_agg_rx;
3629 
3630 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3631 	if (!tid_agg_rx)
3632 		return;
3633 
3634 	__skb_queue_head_init(&frames);
3635 
3636 	spin_lock(&tid_agg_rx->reorder_lock);
3637 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3638 	spin_unlock(&tid_agg_rx->reorder_lock);
3639 
3640 	if (!skb_queue_empty(&frames)) {
3641 		struct ieee80211_event event = {
3642 			.type = BA_FRAME_TIMEOUT,
3643 			.u.ba.tid = tid,
3644 			.u.ba.sta = &sta->sta,
3645 		};
3646 		drv_event_callback(rx.local, rx.sdata, &event);
3647 	}
3648 
3649 	ieee80211_rx_handlers(&rx, &frames);
3650 }
3651 
3652 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3653 					  u16 ssn, u64 filtered,
3654 					  u16 received_mpdus)
3655 {
3656 	struct sta_info *sta;
3657 	struct tid_ampdu_rx *tid_agg_rx;
3658 	struct sk_buff_head frames;
3659 	struct ieee80211_rx_data rx = {
3660 		/* This is OK -- must be QoS data frame */
3661 		.security_idx = tid,
3662 		.seqno_idx = tid,
3663 	};
3664 	int i, diff;
3665 
3666 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3667 		return;
3668 
3669 	__skb_queue_head_init(&frames);
3670 
3671 	sta = container_of(pubsta, struct sta_info, sta);
3672 
3673 	rx.sta = sta;
3674 	rx.sdata = sta->sdata;
3675 	rx.local = sta->local;
3676 
3677 	rcu_read_lock();
3678 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3679 	if (!tid_agg_rx)
3680 		goto out;
3681 
3682 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3683 
3684 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3685 		int release;
3686 
3687 		/* release all frames in the reorder buffer */
3688 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3689 			   IEEE80211_SN_MODULO;
3690 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3691 						 release, &frames);
3692 		/* update ssn to match received ssn */
3693 		tid_agg_rx->head_seq_num = ssn;
3694 	} else {
3695 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3696 						 &frames);
3697 	}
3698 
3699 	/* handle the case that received ssn is behind the mac ssn.
3700 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3701 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3702 	if (diff >= tid_agg_rx->buf_size) {
3703 		tid_agg_rx->reorder_buf_filtered = 0;
3704 		goto release;
3705 	}
3706 	filtered = filtered >> diff;
3707 	ssn += diff;
3708 
3709 	/* update bitmap */
3710 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3711 		int index = (ssn + i) % tid_agg_rx->buf_size;
3712 
3713 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3714 		if (filtered & BIT_ULL(i))
3715 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3716 	}
3717 
3718 	/* now process also frames that the filter marking released */
3719 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3720 
3721 release:
3722 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3723 
3724 	ieee80211_rx_handlers(&rx, &frames);
3725 
3726  out:
3727 	rcu_read_unlock();
3728 }
3729 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3730 
3731 /* main receive path */
3732 
3733 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3734 {
3735 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3736 	struct sk_buff *skb = rx->skb;
3737 	struct ieee80211_hdr *hdr = (void *)skb->data;
3738 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3739 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3740 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3741 
3742 	switch (sdata->vif.type) {
3743 	case NL80211_IFTYPE_STATION:
3744 		if (!bssid && !sdata->u.mgd.use_4addr)
3745 			return false;
3746 		if (multicast)
3747 			return true;
3748 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3749 	case NL80211_IFTYPE_ADHOC:
3750 		if (!bssid)
3751 			return false;
3752 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3753 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3754 			return false;
3755 		if (ieee80211_is_beacon(hdr->frame_control))
3756 			return true;
3757 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3758 			return false;
3759 		if (!multicast &&
3760 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3761 			return false;
3762 		if (!rx->sta) {
3763 			int rate_idx;
3764 			if (status->encoding != RX_ENC_LEGACY)
3765 				rate_idx = 0; /* TODO: HT/VHT rates */
3766 			else
3767 				rate_idx = status->rate_idx;
3768 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3769 						 BIT(rate_idx));
3770 		}
3771 		return true;
3772 	case NL80211_IFTYPE_OCB:
3773 		if (!bssid)
3774 			return false;
3775 		if (!ieee80211_is_data_present(hdr->frame_control))
3776 			return false;
3777 		if (!is_broadcast_ether_addr(bssid))
3778 			return false;
3779 		if (!multicast &&
3780 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3781 			return false;
3782 		if (!rx->sta) {
3783 			int rate_idx;
3784 			if (status->encoding != RX_ENC_LEGACY)
3785 				rate_idx = 0; /* TODO: HT rates */
3786 			else
3787 				rate_idx = status->rate_idx;
3788 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3789 						BIT(rate_idx));
3790 		}
3791 		return true;
3792 	case NL80211_IFTYPE_MESH_POINT:
3793 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3794 			return false;
3795 		if (multicast)
3796 			return true;
3797 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3798 	case NL80211_IFTYPE_AP_VLAN:
3799 	case NL80211_IFTYPE_AP:
3800 		if (!bssid)
3801 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3802 
3803 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3804 			/*
3805 			 * Accept public action frames even when the
3806 			 * BSSID doesn't match, this is used for P2P
3807 			 * and location updates. Note that mac80211
3808 			 * itself never looks at these frames.
3809 			 */
3810 			if (!multicast &&
3811 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3812 				return false;
3813 			if (ieee80211_is_public_action(hdr, skb->len))
3814 				return true;
3815 			return ieee80211_is_beacon(hdr->frame_control);
3816 		}
3817 
3818 		if (!ieee80211_has_tods(hdr->frame_control)) {
3819 			/* ignore data frames to TDLS-peers */
3820 			if (ieee80211_is_data(hdr->frame_control))
3821 				return false;
3822 			/* ignore action frames to TDLS-peers */
3823 			if (ieee80211_is_action(hdr->frame_control) &&
3824 			    !is_broadcast_ether_addr(bssid) &&
3825 			    !ether_addr_equal(bssid, hdr->addr1))
3826 				return false;
3827 		}
3828 
3829 		/*
3830 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3831 		 * the BSSID - we've checked that already but may have accepted
3832 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3833 		 *
3834 		 * It also says:
3835 		 *	The BSSID of the Data frame is determined as follows:
3836 		 *	a) If the STA is contained within an AP or is associated
3837 		 *	   with an AP, the BSSID is the address currently in use
3838 		 *	   by the STA contained in the AP.
3839 		 *
3840 		 * So we should not accept data frames with an address that's
3841 		 * multicast.
3842 		 *
3843 		 * Accepting it also opens a security problem because stations
3844 		 * could encrypt it with the GTK and inject traffic that way.
3845 		 */
3846 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3847 			return false;
3848 
3849 		return true;
3850 	case NL80211_IFTYPE_WDS:
3851 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3852 			return false;
3853 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3854 	case NL80211_IFTYPE_P2P_DEVICE:
3855 		return ieee80211_is_public_action(hdr, skb->len) ||
3856 		       ieee80211_is_probe_req(hdr->frame_control) ||
3857 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3858 		       ieee80211_is_beacon(hdr->frame_control);
3859 	case NL80211_IFTYPE_NAN:
3860 		/* Currently no frames on NAN interface are allowed */
3861 		return false;
3862 	default:
3863 		break;
3864 	}
3865 
3866 	WARN_ON_ONCE(1);
3867 	return false;
3868 }
3869 
3870 void ieee80211_check_fast_rx(struct sta_info *sta)
3871 {
3872 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3873 	struct ieee80211_local *local = sdata->local;
3874 	struct ieee80211_key *key;
3875 	struct ieee80211_fast_rx fastrx = {
3876 		.dev = sdata->dev,
3877 		.vif_type = sdata->vif.type,
3878 		.control_port_protocol = sdata->control_port_protocol,
3879 	}, *old, *new = NULL;
3880 	bool assign = false;
3881 
3882 	/* use sparse to check that we don't return without updating */
3883 	__acquire(check_fast_rx);
3884 
3885 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3886 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3887 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3888 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3889 
3890 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3891 
3892 	/* fast-rx doesn't do reordering */
3893 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3894 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3895 		goto clear;
3896 
3897 	switch (sdata->vif.type) {
3898 	case NL80211_IFTYPE_STATION:
3899 		if (sta->sta.tdls) {
3900 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3901 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3902 			fastrx.expected_ds_bits = 0;
3903 		} else {
3904 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3905 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3906 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3907 			fastrx.expected_ds_bits =
3908 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3909 		}
3910 
3911 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3912 			fastrx.expected_ds_bits |=
3913 				cpu_to_le16(IEEE80211_FCTL_TODS);
3914 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3915 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3916 		}
3917 
3918 		if (!sdata->u.mgd.powersave)
3919 			break;
3920 
3921 		/* software powersave is a huge mess, avoid all of it */
3922 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3923 			goto clear;
3924 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3925 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3926 			goto clear;
3927 		break;
3928 	case NL80211_IFTYPE_AP_VLAN:
3929 	case NL80211_IFTYPE_AP:
3930 		/* parallel-rx requires this, at least with calls to
3931 		 * ieee80211_sta_ps_transition()
3932 		 */
3933 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3934 			goto clear;
3935 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3936 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3937 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3938 
3939 		fastrx.internal_forward =
3940 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3941 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3942 			 !sdata->u.vlan.sta);
3943 
3944 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3945 		    sdata->u.vlan.sta) {
3946 			fastrx.expected_ds_bits |=
3947 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3948 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3949 			fastrx.internal_forward = 0;
3950 		}
3951 
3952 		break;
3953 	default:
3954 		goto clear;
3955 	}
3956 
3957 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3958 		goto clear;
3959 
3960 	rcu_read_lock();
3961 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3962 	if (key) {
3963 		switch (key->conf.cipher) {
3964 		case WLAN_CIPHER_SUITE_TKIP:
3965 			/* we don't want to deal with MMIC in fast-rx */
3966 			goto clear_rcu;
3967 		case WLAN_CIPHER_SUITE_CCMP:
3968 		case WLAN_CIPHER_SUITE_CCMP_256:
3969 		case WLAN_CIPHER_SUITE_GCMP:
3970 		case WLAN_CIPHER_SUITE_GCMP_256:
3971 			break;
3972 		default:
3973 			/* we also don't want to deal with WEP or cipher scheme
3974 			 * since those require looking up the key idx in the
3975 			 * frame, rather than assuming the PTK is used
3976 			 * (we need to revisit this once we implement the real
3977 			 * PTK index, which is now valid in the spec, but we
3978 			 * haven't implemented that part yet)
3979 			 */
3980 			goto clear_rcu;
3981 		}
3982 
3983 		fastrx.key = true;
3984 		fastrx.icv_len = key->conf.icv_len;
3985 	}
3986 
3987 	assign = true;
3988  clear_rcu:
3989 	rcu_read_unlock();
3990  clear:
3991 	__release(check_fast_rx);
3992 
3993 	if (assign)
3994 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3995 
3996 	spin_lock_bh(&sta->lock);
3997 	old = rcu_dereference_protected(sta->fast_rx, true);
3998 	rcu_assign_pointer(sta->fast_rx, new);
3999 	spin_unlock_bh(&sta->lock);
4000 
4001 	if (old)
4002 		kfree_rcu(old, rcu_head);
4003 }
4004 
4005 void ieee80211_clear_fast_rx(struct sta_info *sta)
4006 {
4007 	struct ieee80211_fast_rx *old;
4008 
4009 	spin_lock_bh(&sta->lock);
4010 	old = rcu_dereference_protected(sta->fast_rx, true);
4011 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4012 	spin_unlock_bh(&sta->lock);
4013 
4014 	if (old)
4015 		kfree_rcu(old, rcu_head);
4016 }
4017 
4018 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4019 {
4020 	struct ieee80211_local *local = sdata->local;
4021 	struct sta_info *sta;
4022 
4023 	lockdep_assert_held(&local->sta_mtx);
4024 
4025 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
4026 		if (sdata != sta->sdata &&
4027 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4028 			continue;
4029 		ieee80211_check_fast_rx(sta);
4030 	}
4031 }
4032 
4033 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4034 {
4035 	struct ieee80211_local *local = sdata->local;
4036 
4037 	mutex_lock(&local->sta_mtx);
4038 	__ieee80211_check_fast_rx_iface(sdata);
4039 	mutex_unlock(&local->sta_mtx);
4040 }
4041 
4042 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4043 				     struct ieee80211_fast_rx *fast_rx)
4044 {
4045 	struct sk_buff *skb = rx->skb;
4046 	struct ieee80211_hdr *hdr = (void *)skb->data;
4047 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4048 	struct sta_info *sta = rx->sta;
4049 	int orig_len = skb->len;
4050 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4051 	int snap_offs = hdrlen;
4052 	struct {
4053 		u8 snap[sizeof(rfc1042_header)];
4054 		__be16 proto;
4055 	} *payload __aligned(2);
4056 	struct {
4057 		u8 da[ETH_ALEN];
4058 		u8 sa[ETH_ALEN];
4059 	} addrs __aligned(2);
4060 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4061 
4062 	if (fast_rx->uses_rss)
4063 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4064 
4065 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4066 	 * to a common data structure; drivers can implement that per queue
4067 	 * but we don't have that information in mac80211
4068 	 */
4069 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4070 		return false;
4071 
4072 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4073 
4074 	/* If using encryption, we also need to have:
4075 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4076 	 *  - DECRYPTED: necessary for PN_VALIDATED
4077 	 */
4078 	if (fast_rx->key &&
4079 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4080 		return false;
4081 
4082 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4083 		return false;
4084 
4085 	if (unlikely(ieee80211_is_frag(hdr)))
4086 		return false;
4087 
4088 	/* Since our interface address cannot be multicast, this
4089 	 * implicitly also rejects multicast frames without the
4090 	 * explicit check.
4091 	 *
4092 	 * We shouldn't get any *data* frames not addressed to us
4093 	 * (AP mode will accept multicast *management* frames), but
4094 	 * punting here will make it go through the full checks in
4095 	 * ieee80211_accept_frame().
4096 	 */
4097 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4098 		return false;
4099 
4100 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4101 					      IEEE80211_FCTL_TODS)) !=
4102 	    fast_rx->expected_ds_bits)
4103 		return false;
4104 
4105 	/* assign the key to drop unencrypted frames (later)
4106 	 * and strip the IV/MIC if necessary
4107 	 */
4108 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4109 		/* GCMP header length is the same */
4110 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4111 	}
4112 
4113 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4114 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4115 			goto drop;
4116 
4117 		payload = (void *)(skb->data + snap_offs);
4118 
4119 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4120 			return false;
4121 
4122 		/* Don't handle these here since they require special code.
4123 		 * Accept AARP and IPX even though they should come with a
4124 		 * bridge-tunnel header - but if we get them this way then
4125 		 * there's little point in discarding them.
4126 		 */
4127 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4128 			     payload->proto == fast_rx->control_port_protocol))
4129 			return false;
4130 	}
4131 
4132 	/* after this point, don't punt to the slowpath! */
4133 
4134 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4135 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4136 		goto drop;
4137 
4138 	if (unlikely(fast_rx->sta_notify)) {
4139 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4140 		fast_rx->sta_notify = false;
4141 	}
4142 
4143 	/* statistics part of ieee80211_rx_h_sta_process() */
4144 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4145 		stats->last_signal = status->signal;
4146 		if (!fast_rx->uses_rss)
4147 			ewma_signal_add(&sta->rx_stats_avg.signal,
4148 					-status->signal);
4149 	}
4150 
4151 	if (status->chains) {
4152 		int i;
4153 
4154 		stats->chains = status->chains;
4155 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4156 			int signal = status->chain_signal[i];
4157 
4158 			if (!(status->chains & BIT(i)))
4159 				continue;
4160 
4161 			stats->chain_signal_last[i] = signal;
4162 			if (!fast_rx->uses_rss)
4163 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4164 						-signal);
4165 		}
4166 	}
4167 	/* end of statistics */
4168 
4169 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4170 		goto drop;
4171 
4172 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4173 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4174 		    RX_QUEUED)
4175 			goto drop;
4176 
4177 		return true;
4178 	}
4179 
4180 	stats->last_rx = jiffies;
4181 	stats->last_rate = sta_stats_encode_rate(status);
4182 
4183 	stats->fragments++;
4184 	stats->packets++;
4185 
4186 	/* do the header conversion - first grab the addresses */
4187 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4188 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4189 	/* remove the SNAP but leave the ethertype */
4190 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4191 	/* push the addresses in front */
4192 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4193 
4194 	skb->dev = fast_rx->dev;
4195 
4196 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4197 
4198 	/* The seqno index has the same property as needed
4199 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4200 	 * for non-QoS-data frames. Here we know it's a data
4201 	 * frame, so count MSDUs.
4202 	 */
4203 	u64_stats_update_begin(&stats->syncp);
4204 	stats->msdu[rx->seqno_idx]++;
4205 	stats->bytes += orig_len;
4206 	u64_stats_update_end(&stats->syncp);
4207 
4208 	if (fast_rx->internal_forward) {
4209 		struct sk_buff *xmit_skb = NULL;
4210 		bool multicast = is_multicast_ether_addr(skb->data);
4211 
4212 		if (multicast) {
4213 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4214 		} else if (sta_info_get(rx->sdata, skb->data)) {
4215 			xmit_skb = skb;
4216 			skb = NULL;
4217 		}
4218 
4219 		if (xmit_skb) {
4220 			/*
4221 			 * Send to wireless media and increase priority by 256
4222 			 * to keep the received priority instead of
4223 			 * reclassifying the frame (see cfg80211_classify8021d).
4224 			 */
4225 			xmit_skb->priority += 256;
4226 			xmit_skb->protocol = htons(ETH_P_802_3);
4227 			skb_reset_network_header(xmit_skb);
4228 			skb_reset_mac_header(xmit_skb);
4229 			dev_queue_xmit(xmit_skb);
4230 		}
4231 
4232 		if (!skb)
4233 			return true;
4234 	}
4235 
4236 	/* deliver to local stack */
4237 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4238 	memset(skb->cb, 0, sizeof(skb->cb));
4239 	if (rx->napi)
4240 		napi_gro_receive(rx->napi, skb);
4241 	else
4242 		netif_receive_skb(skb);
4243 
4244 	return true;
4245  drop:
4246 	dev_kfree_skb(skb);
4247 	stats->dropped++;
4248 	return true;
4249 }
4250 
4251 /*
4252  * This function returns whether or not the SKB
4253  * was destined for RX processing or not, which,
4254  * if consume is true, is equivalent to whether
4255  * or not the skb was consumed.
4256  */
4257 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4258 					    struct sk_buff *skb, bool consume)
4259 {
4260 	struct ieee80211_local *local = rx->local;
4261 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4262 
4263 	rx->skb = skb;
4264 
4265 	/* See if we can do fast-rx; if we have to copy we already lost,
4266 	 * so punt in that case. We should never have to deliver a data
4267 	 * frame to multiple interfaces anyway.
4268 	 *
4269 	 * We skip the ieee80211_accept_frame() call and do the necessary
4270 	 * checking inside ieee80211_invoke_fast_rx().
4271 	 */
4272 	if (consume && rx->sta) {
4273 		struct ieee80211_fast_rx *fast_rx;
4274 
4275 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4276 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4277 			return true;
4278 	}
4279 
4280 	if (!ieee80211_accept_frame(rx))
4281 		return false;
4282 
4283 	if (!consume) {
4284 		skb = skb_copy(skb, GFP_ATOMIC);
4285 		if (!skb) {
4286 			if (net_ratelimit())
4287 				wiphy_debug(local->hw.wiphy,
4288 					"failed to copy skb for %s\n",
4289 					sdata->name);
4290 			return true;
4291 		}
4292 
4293 		rx->skb = skb;
4294 	}
4295 
4296 	ieee80211_invoke_rx_handlers(rx);
4297 	return true;
4298 }
4299 
4300 /*
4301  * This is the actual Rx frames handler. as it belongs to Rx path it must
4302  * be called with rcu_read_lock protection.
4303  */
4304 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4305 					 struct ieee80211_sta *pubsta,
4306 					 struct sk_buff *skb,
4307 					 struct napi_struct *napi)
4308 {
4309 	struct ieee80211_local *local = hw_to_local(hw);
4310 	struct ieee80211_sub_if_data *sdata;
4311 	struct ieee80211_hdr *hdr;
4312 	__le16 fc;
4313 	struct ieee80211_rx_data rx;
4314 	struct ieee80211_sub_if_data *prev;
4315 	struct rhlist_head *tmp;
4316 	int err = 0;
4317 
4318 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4319 	memset(&rx, 0, sizeof(rx));
4320 	rx.skb = skb;
4321 	rx.local = local;
4322 	rx.napi = napi;
4323 
4324 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4325 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4326 
4327 	if (ieee80211_is_mgmt(fc)) {
4328 		/* drop frame if too short for header */
4329 		if (skb->len < ieee80211_hdrlen(fc))
4330 			err = -ENOBUFS;
4331 		else
4332 			err = skb_linearize(skb);
4333 	} else {
4334 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4335 	}
4336 
4337 	if (err) {
4338 		dev_kfree_skb(skb);
4339 		return;
4340 	}
4341 
4342 	hdr = (struct ieee80211_hdr *)skb->data;
4343 	ieee80211_parse_qos(&rx);
4344 	ieee80211_verify_alignment(&rx);
4345 
4346 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4347 		     ieee80211_is_beacon(hdr->frame_control)))
4348 		ieee80211_scan_rx(local, skb);
4349 
4350 	if (ieee80211_is_data(fc)) {
4351 		struct sta_info *sta, *prev_sta;
4352 
4353 		if (pubsta) {
4354 			rx.sta = container_of(pubsta, struct sta_info, sta);
4355 			rx.sdata = rx.sta->sdata;
4356 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4357 				return;
4358 			goto out;
4359 		}
4360 
4361 		prev_sta = NULL;
4362 
4363 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4364 			if (!prev_sta) {
4365 				prev_sta = sta;
4366 				continue;
4367 			}
4368 
4369 			rx.sta = prev_sta;
4370 			rx.sdata = prev_sta->sdata;
4371 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4372 
4373 			prev_sta = sta;
4374 		}
4375 
4376 		if (prev_sta) {
4377 			rx.sta = prev_sta;
4378 			rx.sdata = prev_sta->sdata;
4379 
4380 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4381 				return;
4382 			goto out;
4383 		}
4384 	}
4385 
4386 	prev = NULL;
4387 
4388 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4389 		if (!ieee80211_sdata_running(sdata))
4390 			continue;
4391 
4392 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4393 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4394 			continue;
4395 
4396 		/*
4397 		 * frame is destined for this interface, but if it's
4398 		 * not also for the previous one we handle that after
4399 		 * the loop to avoid copying the SKB once too much
4400 		 */
4401 
4402 		if (!prev) {
4403 			prev = sdata;
4404 			continue;
4405 		}
4406 
4407 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4408 		rx.sdata = prev;
4409 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4410 
4411 		prev = sdata;
4412 	}
4413 
4414 	if (prev) {
4415 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4416 		rx.sdata = prev;
4417 
4418 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4419 			return;
4420 	}
4421 
4422  out:
4423 	dev_kfree_skb(skb);
4424 }
4425 
4426 /*
4427  * This is the receive path handler. It is called by a low level driver when an
4428  * 802.11 MPDU is received from the hardware.
4429  */
4430 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4431 		       struct sk_buff *skb, struct napi_struct *napi)
4432 {
4433 	struct ieee80211_local *local = hw_to_local(hw);
4434 	struct ieee80211_rate *rate = NULL;
4435 	struct ieee80211_supported_band *sband;
4436 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4437 
4438 	WARN_ON_ONCE(softirq_count() == 0);
4439 
4440 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4441 		goto drop;
4442 
4443 	sband = local->hw.wiphy->bands[status->band];
4444 	if (WARN_ON(!sband))
4445 		goto drop;
4446 
4447 	/*
4448 	 * If we're suspending, it is possible although not too likely
4449 	 * that we'd be receiving frames after having already partially
4450 	 * quiesced the stack. We can't process such frames then since
4451 	 * that might, for example, cause stations to be added or other
4452 	 * driver callbacks be invoked.
4453 	 */
4454 	if (unlikely(local->quiescing || local->suspended))
4455 		goto drop;
4456 
4457 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4458 	if (unlikely(local->in_reconfig))
4459 		goto drop;
4460 
4461 	/*
4462 	 * The same happens when we're not even started,
4463 	 * but that's worth a warning.
4464 	 */
4465 	if (WARN_ON(!local->started))
4466 		goto drop;
4467 
4468 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4469 		/*
4470 		 * Validate the rate, unless a PLCP error means that
4471 		 * we probably can't have a valid rate here anyway.
4472 		 */
4473 
4474 		switch (status->encoding) {
4475 		case RX_ENC_HT:
4476 			/*
4477 			 * rate_idx is MCS index, which can be [0-76]
4478 			 * as documented on:
4479 			 *
4480 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4481 			 *
4482 			 * Anything else would be some sort of driver or
4483 			 * hardware error. The driver should catch hardware
4484 			 * errors.
4485 			 */
4486 			if (WARN(status->rate_idx > 76,
4487 				 "Rate marked as an HT rate but passed "
4488 				 "status->rate_idx is not "
4489 				 "an MCS index [0-76]: %d (0x%02x)\n",
4490 				 status->rate_idx,
4491 				 status->rate_idx))
4492 				goto drop;
4493 			break;
4494 		case RX_ENC_VHT:
4495 			if (WARN_ONCE(status->rate_idx > 9 ||
4496 				      !status->nss ||
4497 				      status->nss > 8,
4498 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4499 				      status->rate_idx, status->nss))
4500 				goto drop;
4501 			break;
4502 		case RX_ENC_HE:
4503 			if (WARN_ONCE(status->rate_idx > 11 ||
4504 				      !status->nss ||
4505 				      status->nss > 8,
4506 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4507 				      status->rate_idx, status->nss))
4508 				goto drop;
4509 			break;
4510 		default:
4511 			WARN_ON_ONCE(1);
4512 			/* fall through */
4513 		case RX_ENC_LEGACY:
4514 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4515 				goto drop;
4516 			rate = &sband->bitrates[status->rate_idx];
4517 		}
4518 	}
4519 
4520 	status->rx_flags = 0;
4521 
4522 	/*
4523 	 * key references and virtual interfaces are protected using RCU
4524 	 * and this requires that we are in a read-side RCU section during
4525 	 * receive processing
4526 	 */
4527 	rcu_read_lock();
4528 
4529 	/*
4530 	 * Frames with failed FCS/PLCP checksum are not returned,
4531 	 * all other frames are returned without radiotap header
4532 	 * if it was previously present.
4533 	 * Also, frames with less than 16 bytes are dropped.
4534 	 */
4535 	skb = ieee80211_rx_monitor(local, skb, rate);
4536 	if (!skb) {
4537 		rcu_read_unlock();
4538 		return;
4539 	}
4540 
4541 	ieee80211_tpt_led_trig_rx(local,
4542 			((struct ieee80211_hdr *)skb->data)->frame_control,
4543 			skb->len);
4544 
4545 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4546 
4547 	rcu_read_unlock();
4548 
4549 	return;
4550  drop:
4551 	kfree_skb(skb);
4552 }
4553 EXPORT_SYMBOL(ieee80211_rx_napi);
4554 
4555 /* This is a version of the rx handler that can be called from hard irq
4556  * context. Post the skb on the queue and schedule the tasklet */
4557 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4558 {
4559 	struct ieee80211_local *local = hw_to_local(hw);
4560 
4561 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4562 
4563 	skb->pkt_type = IEEE80211_RX_MSG;
4564 	skb_queue_tail(&local->skb_queue, skb);
4565 	tasklet_schedule(&local->tasklet);
4566 }
4567 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4568