xref: /openbmc/linux/net/mac80211/rx.c (revision 4800cd83)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21 
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30 
31 /*
32  * monitor mode reception
33  *
34  * This function cleans up the SKB, i.e. it removes all the stuff
35  * only useful for monitoring.
36  */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 					   struct sk_buff *skb)
39 {
40 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 		if (likely(skb->len > FCS_LEN))
42 			__pskb_trim(skb, skb->len - FCS_LEN);
43 		else {
44 			/* driver bug */
45 			WARN_ON(1);
46 			dev_kfree_skb(skb);
47 			skb = NULL;
48 		}
49 	}
50 
51 	return skb;
52 }
53 
54 static inline int should_drop_frame(struct sk_buff *skb,
55 				    int present_fcs_len)
56 {
57 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59 
60 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 		return 1;
62 	if (unlikely(skb->len < 16 + present_fcs_len))
63 		return 1;
64 	if (ieee80211_is_ctl(hdr->frame_control) &&
65 	    !ieee80211_is_pspoll(hdr->frame_control) &&
66 	    !ieee80211_is_back_req(hdr->frame_control))
67 		return 1;
68 	return 0;
69 }
70 
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 			  struct ieee80211_rx_status *status)
74 {
75 	int len;
76 
77 	/* always present fields */
78 	len = sizeof(struct ieee80211_radiotap_header) + 9;
79 
80 	if (status->flag & RX_FLAG_TSFT)
81 		len += 8;
82 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 		len += 1;
84 
85 	if (len & 1) /* padding for RX_FLAGS if necessary */
86 		len++;
87 
88 	return len;
89 }
90 
91 /*
92  * ieee80211_add_rx_radiotap_header - add radiotap header
93  *
94  * add a radiotap header containing all the fields which the hardware provided.
95  */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 				 struct sk_buff *skb,
99 				 struct ieee80211_rate *rate,
100 				 int rtap_len)
101 {
102 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 	struct ieee80211_radiotap_header *rthdr;
104 	unsigned char *pos;
105 	u16 rx_flags = 0;
106 
107 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 	memset(rthdr, 0, rtap_len);
109 
110 	/* radiotap header, set always present flags */
111 	rthdr->it_present =
112 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 			    (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 			    (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 			    (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 	rthdr->it_len = cpu_to_le16(rtap_len);
117 
118 	pos = (unsigned char *)(rthdr+1);
119 
120 	/* the order of the following fields is important */
121 
122 	/* IEEE80211_RADIOTAP_TSFT */
123 	if (status->flag & RX_FLAG_TSFT) {
124 		put_unaligned_le64(status->mactime, pos);
125 		rthdr->it_present |=
126 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 		pos += 8;
128 	}
129 
130 	/* IEEE80211_RADIOTAP_FLAGS */
131 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 		*pos |= IEEE80211_RADIOTAP_F_FCS;
133 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 	if (status->flag & RX_FLAG_SHORTPRE)
136 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 	pos++;
138 
139 	/* IEEE80211_RADIOTAP_RATE */
140 	if (status->flag & RX_FLAG_HT) {
141 		/*
142 		 * TODO: add following information into radiotap header once
143 		 * suitable fields are defined for it:
144 		 * - MCS index (status->rate_idx)
145 		 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 		 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 		 */
148 		*pos = 0;
149 	} else {
150 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 		*pos = rate->bitrate / 5;
152 	}
153 	pos++;
154 
155 	/* IEEE80211_RADIOTAP_CHANNEL */
156 	put_unaligned_le16(status->freq, pos);
157 	pos += 2;
158 	if (status->band == IEEE80211_BAND_5GHZ)
159 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 				   pos);
161 	else if (status->flag & RX_FLAG_HT)
162 		put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 				   pos);
164 	else if (rate->flags & IEEE80211_RATE_ERP_G)
165 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 				   pos);
167 	else
168 		put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 				   pos);
170 	pos += 2;
171 
172 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 		*pos = status->signal;
175 		rthdr->it_present |=
176 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 		pos++;
178 	}
179 
180 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181 
182 	/* IEEE80211_RADIOTAP_ANTENNA */
183 	*pos = status->antenna;
184 	pos++;
185 
186 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187 
188 	/* IEEE80211_RADIOTAP_RX_FLAGS */
189 	/* ensure 2 byte alignment for the 2 byte field as required */
190 	if ((pos - (u8 *)rthdr) & 1)
191 		pos++;
192 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 	put_unaligned_le16(rx_flags, pos);
195 	pos += 2;
196 }
197 
198 /*
199  * This function copies a received frame to all monitor interfaces and
200  * returns a cleaned-up SKB that no longer includes the FCS nor the
201  * radiotap header the driver might have added.
202  */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 		     struct ieee80211_rate *rate)
206 {
207 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 	struct ieee80211_sub_if_data *sdata;
209 	int needed_headroom = 0;
210 	struct sk_buff *skb, *skb2;
211 	struct net_device *prev_dev = NULL;
212 	int present_fcs_len = 0;
213 
214 	/*
215 	 * First, we may need to make a copy of the skb because
216 	 *  (1) we need to modify it for radiotap (if not present), and
217 	 *  (2) the other RX handlers will modify the skb we got.
218 	 *
219 	 * We don't need to, of course, if we aren't going to return
220 	 * the SKB because it has a bad FCS/PLCP checksum.
221 	 */
222 
223 	/* room for the radiotap header based on driver features */
224 	needed_headroom = ieee80211_rx_radiotap_len(local, status);
225 
226 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 		present_fcs_len = FCS_LEN;
228 
229 	/* make sure hdr->frame_control is on the linear part */
230 	if (!pskb_may_pull(origskb, 2)) {
231 		dev_kfree_skb(origskb);
232 		return NULL;
233 	}
234 
235 	if (!local->monitors) {
236 		if (should_drop_frame(origskb, present_fcs_len)) {
237 			dev_kfree_skb(origskb);
238 			return NULL;
239 		}
240 
241 		return remove_monitor_info(local, origskb);
242 	}
243 
244 	if (should_drop_frame(origskb, present_fcs_len)) {
245 		/* only need to expand headroom if necessary */
246 		skb = origskb;
247 		origskb = NULL;
248 
249 		/*
250 		 * This shouldn't trigger often because most devices have an
251 		 * RX header they pull before we get here, and that should
252 		 * be big enough for our radiotap information. We should
253 		 * probably export the length to drivers so that we can have
254 		 * them allocate enough headroom to start with.
255 		 */
256 		if (skb_headroom(skb) < needed_headroom &&
257 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 			dev_kfree_skb(skb);
259 			return NULL;
260 		}
261 	} else {
262 		/*
263 		 * Need to make a copy and possibly remove radiotap header
264 		 * and FCS from the original.
265 		 */
266 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267 
268 		origskb = remove_monitor_info(local, origskb);
269 
270 		if (!skb)
271 			return origskb;
272 	}
273 
274 	/* prepend radiotap information */
275 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276 
277 	skb_reset_mac_header(skb);
278 	skb->ip_summed = CHECKSUM_UNNECESSARY;
279 	skb->pkt_type = PACKET_OTHERHOST;
280 	skb->protocol = htons(ETH_P_802_2);
281 
282 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 			continue;
285 
286 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 			continue;
288 
289 		if (!ieee80211_sdata_running(sdata))
290 			continue;
291 
292 		if (prev_dev) {
293 			skb2 = skb_clone(skb, GFP_ATOMIC);
294 			if (skb2) {
295 				skb2->dev = prev_dev;
296 				netif_receive_skb(skb2);
297 			}
298 		}
299 
300 		prev_dev = sdata->dev;
301 		sdata->dev->stats.rx_packets++;
302 		sdata->dev->stats.rx_bytes += skb->len;
303 	}
304 
305 	if (prev_dev) {
306 		skb->dev = prev_dev;
307 		netif_receive_skb(skb);
308 	} else
309 		dev_kfree_skb(skb);
310 
311 	return origskb;
312 }
313 
314 
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
319 	int tid;
320 
321 	/* does the frame have a qos control field? */
322 	if (ieee80211_is_data_qos(hdr->frame_control)) {
323 		u8 *qc = ieee80211_get_qos_ctl(hdr);
324 		/* frame has qos control */
325 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 		if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 			status->rx_flags |= IEEE80211_RX_AMSDU;
328 	} else {
329 		/*
330 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
331 		 *
332 		 *	Sequence numbers for management frames, QoS data
333 		 *	frames with a broadcast/multicast address in the
334 		 *	Address 1 field, and all non-QoS data frames sent
335 		 *	by QoS STAs are assigned using an additional single
336 		 *	modulo-4096 counter, [...]
337 		 *
338 		 * We also use that counter for non-QoS STAs.
339 		 */
340 		tid = NUM_RX_DATA_QUEUES - 1;
341 	}
342 
343 	rx->queue = tid;
344 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
345 	 * For now, set skb->priority to 0 for other cases. */
346 	rx->skb->priority = (tid > 7) ? 0 : tid;
347 }
348 
349 /**
350  * DOC: Packet alignment
351  *
352  * Drivers always need to pass packets that are aligned to two-byte boundaries
353  * to the stack.
354  *
355  * Additionally, should, if possible, align the payload data in a way that
356  * guarantees that the contained IP header is aligned to a four-byte
357  * boundary. In the case of regular frames, this simply means aligning the
358  * payload to a four-byte boundary (because either the IP header is directly
359  * contained, or IV/RFC1042 headers that have a length divisible by four are
360  * in front of it).  If the payload data is not properly aligned and the
361  * architecture doesn't support efficient unaligned operations, mac80211
362  * will align the data.
363  *
364  * With A-MSDU frames, however, the payload data address must yield two modulo
365  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366  * push the IP header further back to a multiple of four again. Thankfully, the
367  * specs were sane enough this time around to require padding each A-MSDU
368  * subframe to a length that is a multiple of four.
369  *
370  * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371  * the payload is not supported, the driver is required to move the 802.11
372  * header to be directly in front of the payload in that case.
373  */
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
375 {
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 	WARN_ONCE((unsigned long)rx->skb->data & 1,
378 		  "unaligned packet at 0x%p\n", rx->skb->data);
379 #endif
380 }
381 
382 
383 /* rx handlers */
384 
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
387 {
388 	struct ieee80211_local *local = rx->local;
389 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
390 	struct sk_buff *skb = rx->skb;
391 
392 	if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
393 		return RX_CONTINUE;
394 
395 	if (test_bit(SCAN_HW_SCANNING, &local->scanning))
396 		return ieee80211_scan_rx(rx->sdata, skb);
397 
398 	if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
399 		/* drop all the other packets during a software scan anyway */
400 		if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
401 			dev_kfree_skb(skb);
402 		return RX_QUEUED;
403 	}
404 
405 	/* scanning finished during invoking of handlers */
406 	I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 	return RX_DROP_UNUSABLE;
408 }
409 
410 
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
412 {
413 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
414 
415 	if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
416 		return 0;
417 
418 	return ieee80211_is_robust_mgmt_frame(hdr);
419 }
420 
421 
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425 
426 	if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
427 		return 0;
428 
429 	return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431 
432 
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
435 {
436 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
437 	struct ieee80211_mmie *mmie;
438 
439 	if (skb->len < 24 + sizeof(*mmie) ||
440 	    !is_multicast_ether_addr(hdr->da))
441 		return -1;
442 
443 	if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
444 		return -1; /* not a robust management frame */
445 
446 	mmie = (struct ieee80211_mmie *)
447 		(skb->data + skb->len - sizeof(*mmie));
448 	if (mmie->element_id != WLAN_EID_MMIE ||
449 	    mmie->length != sizeof(*mmie) - 2)
450 		return -1;
451 
452 	return le16_to_cpu(mmie->key_id);
453 }
454 
455 
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
458 {
459 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
460 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
461 	char *dev_addr = rx->sdata->vif.addr;
462 
463 	if (ieee80211_is_data(hdr->frame_control)) {
464 		if (is_multicast_ether_addr(hdr->addr1)) {
465 			if (ieee80211_has_tods(hdr->frame_control) ||
466 				!ieee80211_has_fromds(hdr->frame_control))
467 				return RX_DROP_MONITOR;
468 			if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
469 				return RX_DROP_MONITOR;
470 		} else {
471 			if (!ieee80211_has_a4(hdr->frame_control))
472 				return RX_DROP_MONITOR;
473 			if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
474 				return RX_DROP_MONITOR;
475 		}
476 	}
477 
478 	/* If there is not an established peer link and this is not a peer link
479 	 * establisment frame, beacon or probe, drop the frame.
480 	 */
481 
482 	if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
483 		struct ieee80211_mgmt *mgmt;
484 
485 		if (!ieee80211_is_mgmt(hdr->frame_control))
486 			return RX_DROP_MONITOR;
487 
488 		if (ieee80211_is_action(hdr->frame_control)) {
489 			mgmt = (struct ieee80211_mgmt *)hdr;
490 			if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
491 				return RX_DROP_MONITOR;
492 			return RX_CONTINUE;
493 		}
494 
495 		if (ieee80211_is_probe_req(hdr->frame_control) ||
496 		    ieee80211_is_probe_resp(hdr->frame_control) ||
497 		    ieee80211_is_beacon(hdr->frame_control))
498 			return RX_CONTINUE;
499 
500 		return RX_DROP_MONITOR;
501 
502 	}
503 
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
505 
506 	if (ieee80211_is_data(hdr->frame_control) &&
507 	    is_multicast_ether_addr(hdr->addr1) &&
508 	    mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
509 		return RX_DROP_MONITOR;
510 #undef msh_h_get
511 
512 	return RX_CONTINUE;
513 }
514 
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK   0xfff
517 
518 static inline int seq_less(u16 sq1, u16 sq2)
519 {
520 	return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
521 }
522 
523 static inline u16 seq_inc(u16 sq)
524 {
525 	return (sq + 1) & SEQ_MASK;
526 }
527 
528 static inline u16 seq_sub(u16 sq1, u16 sq2)
529 {
530 	return (sq1 - sq2) & SEQ_MASK;
531 }
532 
533 
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
535 					    struct tid_ampdu_rx *tid_agg_rx,
536 					    int index)
537 {
538 	struct ieee80211_local *local = hw_to_local(hw);
539 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
540 	struct ieee80211_rx_status *status;
541 
542 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
543 
544 	if (!skb)
545 		goto no_frame;
546 
547 	/* release the frame from the reorder ring buffer */
548 	tid_agg_rx->stored_mpdu_num--;
549 	tid_agg_rx->reorder_buf[index] = NULL;
550 	status = IEEE80211_SKB_RXCB(skb);
551 	status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
552 	skb_queue_tail(&local->rx_skb_queue, skb);
553 
554 no_frame:
555 	tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
556 }
557 
558 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
559 					     struct tid_ampdu_rx *tid_agg_rx,
560 					     u16 head_seq_num)
561 {
562 	int index;
563 
564 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
565 
566 	while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
567 		index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
568 							tid_agg_rx->buf_size;
569 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
570 	}
571 }
572 
573 /*
574  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
575  * the skb was added to the buffer longer than this time ago, the earlier
576  * frames that have not yet been received are assumed to be lost and the skb
577  * can be released for processing. This may also release other skb's from the
578  * reorder buffer if there are no additional gaps between the frames.
579  *
580  * Callers must hold tid_agg_rx->reorder_lock.
581  */
582 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
583 
584 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
585 					  struct tid_ampdu_rx *tid_agg_rx)
586 {
587 	int index, j;
588 
589 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
590 
591 	/* release the buffer until next missing frame */
592 	index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
593 						tid_agg_rx->buf_size;
594 	if (!tid_agg_rx->reorder_buf[index] &&
595 	    tid_agg_rx->stored_mpdu_num > 1) {
596 		/*
597 		 * No buffers ready to be released, but check whether any
598 		 * frames in the reorder buffer have timed out.
599 		 */
600 		int skipped = 1;
601 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
602 		     j = (j + 1) % tid_agg_rx->buf_size) {
603 			if (!tid_agg_rx->reorder_buf[j]) {
604 				skipped++;
605 				continue;
606 			}
607 			if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
608 					HT_RX_REORDER_BUF_TIMEOUT))
609 				goto set_release_timer;
610 
611 #ifdef CONFIG_MAC80211_HT_DEBUG
612 			if (net_ratelimit())
613 				wiphy_debug(hw->wiphy,
614 					    "release an RX reorder frame due to timeout on earlier frames\n");
615 #endif
616 			ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
617 
618 			/*
619 			 * Increment the head seq# also for the skipped slots.
620 			 */
621 			tid_agg_rx->head_seq_num =
622 				(tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
623 			skipped = 0;
624 		}
625 	} else while (tid_agg_rx->reorder_buf[index]) {
626 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
627 		index =	seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
628 							tid_agg_rx->buf_size;
629 	}
630 
631 	if (tid_agg_rx->stored_mpdu_num) {
632 		j = index = seq_sub(tid_agg_rx->head_seq_num,
633 				    tid_agg_rx->ssn) % tid_agg_rx->buf_size;
634 
635 		for (; j != (index - 1) % tid_agg_rx->buf_size;
636 		     j = (j + 1) % tid_agg_rx->buf_size) {
637 			if (tid_agg_rx->reorder_buf[j])
638 				break;
639 		}
640 
641  set_release_timer:
642 
643 		mod_timer(&tid_agg_rx->reorder_timer,
644 			  tid_agg_rx->reorder_time[j] +
645 			  HT_RX_REORDER_BUF_TIMEOUT);
646 	} else {
647 		del_timer(&tid_agg_rx->reorder_timer);
648 	}
649 }
650 
651 /*
652  * As this function belongs to the RX path it must be under
653  * rcu_read_lock protection. It returns false if the frame
654  * can be processed immediately, true if it was consumed.
655  */
656 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
657 					     struct tid_ampdu_rx *tid_agg_rx,
658 					     struct sk_buff *skb)
659 {
660 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
661 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
662 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
663 	u16 head_seq_num, buf_size;
664 	int index;
665 	bool ret = true;
666 
667 	spin_lock(&tid_agg_rx->reorder_lock);
668 
669 	buf_size = tid_agg_rx->buf_size;
670 	head_seq_num = tid_agg_rx->head_seq_num;
671 
672 	/* frame with out of date sequence number */
673 	if (seq_less(mpdu_seq_num, head_seq_num)) {
674 		dev_kfree_skb(skb);
675 		goto out;
676 	}
677 
678 	/*
679 	 * If frame the sequence number exceeds our buffering window
680 	 * size release some previous frames to make room for this one.
681 	 */
682 	if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
683 		head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
684 		/* release stored frames up to new head to stack */
685 		ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
686 	}
687 
688 	/* Now the new frame is always in the range of the reordering buffer */
689 
690 	index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
691 
692 	/* check if we already stored this frame */
693 	if (tid_agg_rx->reorder_buf[index]) {
694 		dev_kfree_skb(skb);
695 		goto out;
696 	}
697 
698 	/*
699 	 * If the current MPDU is in the right order and nothing else
700 	 * is stored we can process it directly, no need to buffer it.
701 	 */
702 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
703 	    tid_agg_rx->stored_mpdu_num == 0) {
704 		tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
705 		ret = false;
706 		goto out;
707 	}
708 
709 	/* put the frame in the reordering buffer */
710 	tid_agg_rx->reorder_buf[index] = skb;
711 	tid_agg_rx->reorder_time[index] = jiffies;
712 	tid_agg_rx->stored_mpdu_num++;
713 	ieee80211_sta_reorder_release(hw, tid_agg_rx);
714 
715  out:
716 	spin_unlock(&tid_agg_rx->reorder_lock);
717 	return ret;
718 }
719 
720 /*
721  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
722  * true if the MPDU was buffered, false if it should be processed.
723  */
724 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
725 {
726 	struct sk_buff *skb = rx->skb;
727 	struct ieee80211_local *local = rx->local;
728 	struct ieee80211_hw *hw = &local->hw;
729 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
730 	struct sta_info *sta = rx->sta;
731 	struct tid_ampdu_rx *tid_agg_rx;
732 	u16 sc;
733 	int tid;
734 
735 	if (!ieee80211_is_data_qos(hdr->frame_control))
736 		goto dont_reorder;
737 
738 	/*
739 	 * filter the QoS data rx stream according to
740 	 * STA/TID and check if this STA/TID is on aggregation
741 	 */
742 
743 	if (!sta)
744 		goto dont_reorder;
745 
746 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
747 
748 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
749 	if (!tid_agg_rx)
750 		goto dont_reorder;
751 
752 	/* qos null data frames are excluded */
753 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
754 		goto dont_reorder;
755 
756 	/* new, potentially un-ordered, ampdu frame - process it */
757 
758 	/* reset session timer */
759 	if (tid_agg_rx->timeout)
760 		mod_timer(&tid_agg_rx->session_timer,
761 			  TU_TO_EXP_TIME(tid_agg_rx->timeout));
762 
763 	/* if this mpdu is fragmented - terminate rx aggregation session */
764 	sc = le16_to_cpu(hdr->seq_ctrl);
765 	if (sc & IEEE80211_SCTL_FRAG) {
766 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
767 		skb_queue_tail(&rx->sdata->skb_queue, skb);
768 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
769 		return;
770 	}
771 
772 	/*
773 	 * No locking needed -- we will only ever process one
774 	 * RX packet at a time, and thus own tid_agg_rx. All
775 	 * other code manipulating it needs to (and does) make
776 	 * sure that we cannot get to it any more before doing
777 	 * anything with it.
778 	 */
779 	if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
780 		return;
781 
782  dont_reorder:
783 	skb_queue_tail(&local->rx_skb_queue, skb);
784 }
785 
786 static ieee80211_rx_result debug_noinline
787 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
788 {
789 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
790 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
791 
792 	/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
793 	if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
794 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
795 			     rx->sta->last_seq_ctrl[rx->queue] ==
796 			     hdr->seq_ctrl)) {
797 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
798 				rx->local->dot11FrameDuplicateCount++;
799 				rx->sta->num_duplicates++;
800 			}
801 			return RX_DROP_MONITOR;
802 		} else
803 			rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
804 	}
805 
806 	if (unlikely(rx->skb->len < 16)) {
807 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
808 		return RX_DROP_MONITOR;
809 	}
810 
811 	/* Drop disallowed frame classes based on STA auth/assoc state;
812 	 * IEEE 802.11, Chap 5.5.
813 	 *
814 	 * mac80211 filters only based on association state, i.e. it drops
815 	 * Class 3 frames from not associated stations. hostapd sends
816 	 * deauth/disassoc frames when needed. In addition, hostapd is
817 	 * responsible for filtering on both auth and assoc states.
818 	 */
819 
820 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
821 		return ieee80211_rx_mesh_check(rx);
822 
823 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
824 		      ieee80211_is_pspoll(hdr->frame_control)) &&
825 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
826 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
827 		     (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
828 		if ((!ieee80211_has_fromds(hdr->frame_control) &&
829 		     !ieee80211_has_tods(hdr->frame_control) &&
830 		     ieee80211_is_data(hdr->frame_control)) ||
831 		    !(status->rx_flags & IEEE80211_RX_RA_MATCH)) {
832 			/* Drop IBSS frames and frames for other hosts
833 			 * silently. */
834 			return RX_DROP_MONITOR;
835 		}
836 
837 		return RX_DROP_MONITOR;
838 	}
839 
840 	return RX_CONTINUE;
841 }
842 
843 
844 static ieee80211_rx_result debug_noinline
845 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
846 {
847 	struct sk_buff *skb = rx->skb;
848 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
849 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
850 	int keyidx;
851 	int hdrlen;
852 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
853 	struct ieee80211_key *sta_ptk = NULL;
854 	int mmie_keyidx = -1;
855 	__le16 fc;
856 
857 	/*
858 	 * Key selection 101
859 	 *
860 	 * There are four types of keys:
861 	 *  - GTK (group keys)
862 	 *  - IGTK (group keys for management frames)
863 	 *  - PTK (pairwise keys)
864 	 *  - STK (station-to-station pairwise keys)
865 	 *
866 	 * When selecting a key, we have to distinguish between multicast
867 	 * (including broadcast) and unicast frames, the latter can only
868 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
869 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
870 	 * unicast frames can also use key indices like GTKs. Hence, if we
871 	 * don't have a PTK/STK we check the key index for a WEP key.
872 	 *
873 	 * Note that in a regular BSS, multicast frames are sent by the
874 	 * AP only, associated stations unicast the frame to the AP first
875 	 * which then multicasts it on their behalf.
876 	 *
877 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
878 	 * with each station, that is something we don't currently handle.
879 	 * The spec seems to expect that one negotiates the same key with
880 	 * every station but there's no such requirement; VLANs could be
881 	 * possible.
882 	 */
883 
884 	/*
885 	 * No point in finding a key and decrypting if the frame is neither
886 	 * addressed to us nor a multicast frame.
887 	 */
888 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
889 		return RX_CONTINUE;
890 
891 	/* start without a key */
892 	rx->key = NULL;
893 
894 	if (rx->sta)
895 		sta_ptk = rcu_dereference(rx->sta->ptk);
896 
897 	fc = hdr->frame_control;
898 
899 	if (!ieee80211_has_protected(fc))
900 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
901 
902 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
903 		rx->key = sta_ptk;
904 		if ((status->flag & RX_FLAG_DECRYPTED) &&
905 		    (status->flag & RX_FLAG_IV_STRIPPED))
906 			return RX_CONTINUE;
907 		/* Skip decryption if the frame is not protected. */
908 		if (!ieee80211_has_protected(fc))
909 			return RX_CONTINUE;
910 	} else if (mmie_keyidx >= 0) {
911 		/* Broadcast/multicast robust management frame / BIP */
912 		if ((status->flag & RX_FLAG_DECRYPTED) &&
913 		    (status->flag & RX_FLAG_IV_STRIPPED))
914 			return RX_CONTINUE;
915 
916 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
917 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
918 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
919 		if (rx->sta)
920 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
921 		if (!rx->key)
922 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
923 	} else if (!ieee80211_has_protected(fc)) {
924 		/*
925 		 * The frame was not protected, so skip decryption. However, we
926 		 * need to set rx->key if there is a key that could have been
927 		 * used so that the frame may be dropped if encryption would
928 		 * have been expected.
929 		 */
930 		struct ieee80211_key *key = NULL;
931 		struct ieee80211_sub_if_data *sdata = rx->sdata;
932 		int i;
933 
934 		if (ieee80211_is_mgmt(fc) &&
935 		    is_multicast_ether_addr(hdr->addr1) &&
936 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
937 			rx->key = key;
938 		else {
939 			if (rx->sta) {
940 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
941 					key = rcu_dereference(rx->sta->gtk[i]);
942 					if (key)
943 						break;
944 				}
945 			}
946 			if (!key) {
947 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
948 					key = rcu_dereference(sdata->keys[i]);
949 					if (key)
950 						break;
951 				}
952 			}
953 			if (key)
954 				rx->key = key;
955 		}
956 		return RX_CONTINUE;
957 	} else {
958 		u8 keyid;
959 		/*
960 		 * The device doesn't give us the IV so we won't be
961 		 * able to look up the key. That's ok though, we
962 		 * don't need to decrypt the frame, we just won't
963 		 * be able to keep statistics accurate.
964 		 * Except for key threshold notifications, should
965 		 * we somehow allow the driver to tell us which key
966 		 * the hardware used if this flag is set?
967 		 */
968 		if ((status->flag & RX_FLAG_DECRYPTED) &&
969 		    (status->flag & RX_FLAG_IV_STRIPPED))
970 			return RX_CONTINUE;
971 
972 		hdrlen = ieee80211_hdrlen(fc);
973 
974 		if (rx->skb->len < 8 + hdrlen)
975 			return RX_DROP_UNUSABLE; /* TODO: count this? */
976 
977 		/*
978 		 * no need to call ieee80211_wep_get_keyidx,
979 		 * it verifies a bunch of things we've done already
980 		 */
981 		skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
982 		keyidx = keyid >> 6;
983 
984 		/* check per-station GTK first, if multicast packet */
985 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
986 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
987 
988 		/* if not found, try default key */
989 		if (!rx->key) {
990 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
991 
992 			/*
993 			 * RSNA-protected unicast frames should always be
994 			 * sent with pairwise or station-to-station keys,
995 			 * but for WEP we allow using a key index as well.
996 			 */
997 			if (rx->key &&
998 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
999 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1000 			    !is_multicast_ether_addr(hdr->addr1))
1001 				rx->key = NULL;
1002 		}
1003 	}
1004 
1005 	if (rx->key) {
1006 		rx->key->tx_rx_count++;
1007 		/* TODO: add threshold stuff again */
1008 	} else {
1009 		return RX_DROP_MONITOR;
1010 	}
1011 
1012 	if (skb_linearize(rx->skb))
1013 		return RX_DROP_UNUSABLE;
1014 	/* the hdr variable is invalid now! */
1015 
1016 	switch (rx->key->conf.cipher) {
1017 	case WLAN_CIPHER_SUITE_WEP40:
1018 	case WLAN_CIPHER_SUITE_WEP104:
1019 		/* Check for weak IVs if possible */
1020 		if (rx->sta && ieee80211_is_data(fc) &&
1021 		    (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1022 		     !(status->flag & RX_FLAG_DECRYPTED)) &&
1023 		    ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1024 			rx->sta->wep_weak_iv_count++;
1025 
1026 		result = ieee80211_crypto_wep_decrypt(rx);
1027 		break;
1028 	case WLAN_CIPHER_SUITE_TKIP:
1029 		result = ieee80211_crypto_tkip_decrypt(rx);
1030 		break;
1031 	case WLAN_CIPHER_SUITE_CCMP:
1032 		result = ieee80211_crypto_ccmp_decrypt(rx);
1033 		break;
1034 	case WLAN_CIPHER_SUITE_AES_CMAC:
1035 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1036 		break;
1037 	default:
1038 		/*
1039 		 * We can reach here only with HW-only algorithms
1040 		 * but why didn't it decrypt the frame?!
1041 		 */
1042 		return RX_DROP_UNUSABLE;
1043 	}
1044 
1045 	/* either the frame has been decrypted or will be dropped */
1046 	status->flag |= RX_FLAG_DECRYPTED;
1047 
1048 	return result;
1049 }
1050 
1051 static ieee80211_rx_result debug_noinline
1052 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1053 {
1054 	struct ieee80211_local *local;
1055 	struct ieee80211_hdr *hdr;
1056 	struct sk_buff *skb;
1057 
1058 	local = rx->local;
1059 	skb = rx->skb;
1060 	hdr = (struct ieee80211_hdr *) skb->data;
1061 
1062 	if (!local->pspolling)
1063 		return RX_CONTINUE;
1064 
1065 	if (!ieee80211_has_fromds(hdr->frame_control))
1066 		/* this is not from AP */
1067 		return RX_CONTINUE;
1068 
1069 	if (!ieee80211_is_data(hdr->frame_control))
1070 		return RX_CONTINUE;
1071 
1072 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1073 		/* AP has no more frames buffered for us */
1074 		local->pspolling = false;
1075 		return RX_CONTINUE;
1076 	}
1077 
1078 	/* more data bit is set, let's request a new frame from the AP */
1079 	ieee80211_send_pspoll(local, rx->sdata);
1080 
1081 	return RX_CONTINUE;
1082 }
1083 
1084 static void ap_sta_ps_start(struct sta_info *sta)
1085 {
1086 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1087 	struct ieee80211_local *local = sdata->local;
1088 
1089 	atomic_inc(&sdata->bss->num_sta_ps);
1090 	set_sta_flags(sta, WLAN_STA_PS_STA);
1091 	drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1092 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1093 	printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1094 	       sdata->name, sta->sta.addr, sta->sta.aid);
1095 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1096 }
1097 
1098 static void ap_sta_ps_end(struct sta_info *sta)
1099 {
1100 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1101 
1102 	atomic_dec(&sdata->bss->num_sta_ps);
1103 
1104 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1105 	printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1106 	       sdata->name, sta->sta.addr, sta->sta.aid);
1107 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1108 
1109 	if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1110 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1111 		printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1112 		       sdata->name, sta->sta.addr, sta->sta.aid);
1113 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1114 		return;
1115 	}
1116 
1117 	ieee80211_sta_ps_deliver_wakeup(sta);
1118 }
1119 
1120 static ieee80211_rx_result debug_noinline
1121 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1122 {
1123 	struct sta_info *sta = rx->sta;
1124 	struct sk_buff *skb = rx->skb;
1125 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1126 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1127 
1128 	if (!sta)
1129 		return RX_CONTINUE;
1130 
1131 	/*
1132 	 * Update last_rx only for IBSS packets which are for the current
1133 	 * BSSID to avoid keeping the current IBSS network alive in cases
1134 	 * where other STAs start using different BSSID.
1135 	 */
1136 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1137 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1138 						NL80211_IFTYPE_ADHOC);
1139 		if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1140 			sta->last_rx = jiffies;
1141 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1142 		/*
1143 		 * Mesh beacons will update last_rx when if they are found to
1144 		 * match the current local configuration when processed.
1145 		 */
1146 		sta->last_rx = jiffies;
1147 	}
1148 
1149 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1150 		return RX_CONTINUE;
1151 
1152 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1153 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1154 
1155 	sta->rx_fragments++;
1156 	sta->rx_bytes += rx->skb->len;
1157 	sta->last_signal = status->signal;
1158 	ewma_add(&sta->avg_signal, -status->signal);
1159 
1160 	/*
1161 	 * Change STA power saving mode only at the end of a frame
1162 	 * exchange sequence.
1163 	 */
1164 	if (!ieee80211_has_morefrags(hdr->frame_control) &&
1165 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1166 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1167 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1168 		if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1169 			/*
1170 			 * Ignore doze->wake transitions that are
1171 			 * indicated by non-data frames, the standard
1172 			 * is unclear here, but for example going to
1173 			 * PS mode and then scanning would cause a
1174 			 * doze->wake transition for the probe request,
1175 			 * and that is clearly undesirable.
1176 			 */
1177 			if (ieee80211_is_data(hdr->frame_control) &&
1178 			    !ieee80211_has_pm(hdr->frame_control))
1179 				ap_sta_ps_end(sta);
1180 		} else {
1181 			if (ieee80211_has_pm(hdr->frame_control))
1182 				ap_sta_ps_start(sta);
1183 		}
1184 	}
1185 
1186 	/*
1187 	 * Drop (qos-)data::nullfunc frames silently, since they
1188 	 * are used only to control station power saving mode.
1189 	 */
1190 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1191 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1192 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1193 
1194 		/*
1195 		 * If we receive a 4-addr nullfunc frame from a STA
1196 		 * that was not moved to a 4-addr STA vlan yet, drop
1197 		 * the frame to the monitor interface, to make sure
1198 		 * that hostapd sees it
1199 		 */
1200 		if (ieee80211_has_a4(hdr->frame_control) &&
1201 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1202 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1203 		      !rx->sdata->u.vlan.sta)))
1204 			return RX_DROP_MONITOR;
1205 		/*
1206 		 * Update counter and free packet here to avoid
1207 		 * counting this as a dropped packed.
1208 		 */
1209 		sta->rx_packets++;
1210 		dev_kfree_skb(rx->skb);
1211 		return RX_QUEUED;
1212 	}
1213 
1214 	return RX_CONTINUE;
1215 } /* ieee80211_rx_h_sta_process */
1216 
1217 static inline struct ieee80211_fragment_entry *
1218 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1219 			 unsigned int frag, unsigned int seq, int rx_queue,
1220 			 struct sk_buff **skb)
1221 {
1222 	struct ieee80211_fragment_entry *entry;
1223 	int idx;
1224 
1225 	idx = sdata->fragment_next;
1226 	entry = &sdata->fragments[sdata->fragment_next++];
1227 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1228 		sdata->fragment_next = 0;
1229 
1230 	if (!skb_queue_empty(&entry->skb_list)) {
1231 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1232 		struct ieee80211_hdr *hdr =
1233 			(struct ieee80211_hdr *) entry->skb_list.next->data;
1234 		printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1235 		       "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1236 		       "addr1=%pM addr2=%pM\n",
1237 		       sdata->name, idx,
1238 		       jiffies - entry->first_frag_time, entry->seq,
1239 		       entry->last_frag, hdr->addr1, hdr->addr2);
1240 #endif
1241 		__skb_queue_purge(&entry->skb_list);
1242 	}
1243 
1244 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1245 	*skb = NULL;
1246 	entry->first_frag_time = jiffies;
1247 	entry->seq = seq;
1248 	entry->rx_queue = rx_queue;
1249 	entry->last_frag = frag;
1250 	entry->ccmp = 0;
1251 	entry->extra_len = 0;
1252 
1253 	return entry;
1254 }
1255 
1256 static inline struct ieee80211_fragment_entry *
1257 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1258 			  unsigned int frag, unsigned int seq,
1259 			  int rx_queue, struct ieee80211_hdr *hdr)
1260 {
1261 	struct ieee80211_fragment_entry *entry;
1262 	int i, idx;
1263 
1264 	idx = sdata->fragment_next;
1265 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1266 		struct ieee80211_hdr *f_hdr;
1267 
1268 		idx--;
1269 		if (idx < 0)
1270 			idx = IEEE80211_FRAGMENT_MAX - 1;
1271 
1272 		entry = &sdata->fragments[idx];
1273 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1274 		    entry->rx_queue != rx_queue ||
1275 		    entry->last_frag + 1 != frag)
1276 			continue;
1277 
1278 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1279 
1280 		/*
1281 		 * Check ftype and addresses are equal, else check next fragment
1282 		 */
1283 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1284 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1285 		    compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1286 		    compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1287 			continue;
1288 
1289 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1290 			__skb_queue_purge(&entry->skb_list);
1291 			continue;
1292 		}
1293 		return entry;
1294 	}
1295 
1296 	return NULL;
1297 }
1298 
1299 static ieee80211_rx_result debug_noinline
1300 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1301 {
1302 	struct ieee80211_hdr *hdr;
1303 	u16 sc;
1304 	__le16 fc;
1305 	unsigned int frag, seq;
1306 	struct ieee80211_fragment_entry *entry;
1307 	struct sk_buff *skb;
1308 	struct ieee80211_rx_status *status;
1309 
1310 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1311 	fc = hdr->frame_control;
1312 	sc = le16_to_cpu(hdr->seq_ctrl);
1313 	frag = sc & IEEE80211_SCTL_FRAG;
1314 
1315 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1316 		   (rx->skb)->len < 24 ||
1317 		   is_multicast_ether_addr(hdr->addr1))) {
1318 		/* not fragmented */
1319 		goto out;
1320 	}
1321 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1322 
1323 	if (skb_linearize(rx->skb))
1324 		return RX_DROP_UNUSABLE;
1325 
1326 	/*
1327 	 *  skb_linearize() might change the skb->data and
1328 	 *  previously cached variables (in this case, hdr) need to
1329 	 *  be refreshed with the new data.
1330 	 */
1331 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1332 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1333 
1334 	if (frag == 0) {
1335 		/* This is the first fragment of a new frame. */
1336 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1337 						 rx->queue, &(rx->skb));
1338 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1339 		    ieee80211_has_protected(fc)) {
1340 			int queue = ieee80211_is_mgmt(fc) ?
1341 				NUM_RX_DATA_QUEUES : rx->queue;
1342 			/* Store CCMP PN so that we can verify that the next
1343 			 * fragment has a sequential PN value. */
1344 			entry->ccmp = 1;
1345 			memcpy(entry->last_pn,
1346 			       rx->key->u.ccmp.rx_pn[queue],
1347 			       CCMP_PN_LEN);
1348 		}
1349 		return RX_QUEUED;
1350 	}
1351 
1352 	/* This is a fragment for a frame that should already be pending in
1353 	 * fragment cache. Add this fragment to the end of the pending entry.
1354 	 */
1355 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1356 	if (!entry) {
1357 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1358 		return RX_DROP_MONITOR;
1359 	}
1360 
1361 	/* Verify that MPDUs within one MSDU have sequential PN values.
1362 	 * (IEEE 802.11i, 8.3.3.4.5) */
1363 	if (entry->ccmp) {
1364 		int i;
1365 		u8 pn[CCMP_PN_LEN], *rpn;
1366 		int queue;
1367 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1368 			return RX_DROP_UNUSABLE;
1369 		memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1370 		for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1371 			pn[i]++;
1372 			if (pn[i])
1373 				break;
1374 		}
1375 		queue = ieee80211_is_mgmt(fc) ?
1376 			NUM_RX_DATA_QUEUES : rx->queue;
1377 		rpn = rx->key->u.ccmp.rx_pn[queue];
1378 		if (memcmp(pn, rpn, CCMP_PN_LEN))
1379 			return RX_DROP_UNUSABLE;
1380 		memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1381 	}
1382 
1383 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1384 	__skb_queue_tail(&entry->skb_list, rx->skb);
1385 	entry->last_frag = frag;
1386 	entry->extra_len += rx->skb->len;
1387 	if (ieee80211_has_morefrags(fc)) {
1388 		rx->skb = NULL;
1389 		return RX_QUEUED;
1390 	}
1391 
1392 	rx->skb = __skb_dequeue(&entry->skb_list);
1393 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1394 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1395 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1396 					      GFP_ATOMIC))) {
1397 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1398 			__skb_queue_purge(&entry->skb_list);
1399 			return RX_DROP_UNUSABLE;
1400 		}
1401 	}
1402 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1403 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1404 		dev_kfree_skb(skb);
1405 	}
1406 
1407 	/* Complete frame has been reassembled - process it now */
1408 	status = IEEE80211_SKB_RXCB(rx->skb);
1409 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1410 
1411  out:
1412 	if (rx->sta)
1413 		rx->sta->rx_packets++;
1414 	if (is_multicast_ether_addr(hdr->addr1))
1415 		rx->local->dot11MulticastReceivedFrameCount++;
1416 	else
1417 		ieee80211_led_rx(rx->local);
1418 	return RX_CONTINUE;
1419 }
1420 
1421 static ieee80211_rx_result debug_noinline
1422 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1423 {
1424 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1425 	__le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1426 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1427 
1428 	if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1429 		   !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1430 		return RX_CONTINUE;
1431 
1432 	if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1433 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1434 		return RX_DROP_UNUSABLE;
1435 
1436 	if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1437 		ieee80211_sta_ps_deliver_poll_response(rx->sta);
1438 	else
1439 		set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1440 
1441 	/* Free PS Poll skb here instead of returning RX_DROP that would
1442 	 * count as an dropped frame. */
1443 	dev_kfree_skb(rx->skb);
1444 
1445 	return RX_QUEUED;
1446 }
1447 
1448 static ieee80211_rx_result debug_noinline
1449 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1450 {
1451 	u8 *data = rx->skb->data;
1452 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1453 
1454 	if (!ieee80211_is_data_qos(hdr->frame_control))
1455 		return RX_CONTINUE;
1456 
1457 	/* remove the qos control field, update frame type and meta-data */
1458 	memmove(data + IEEE80211_QOS_CTL_LEN, data,
1459 		ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1460 	hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1461 	/* change frame type to non QOS */
1462 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1463 
1464 	return RX_CONTINUE;
1465 }
1466 
1467 static int
1468 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1469 {
1470 	if (unlikely(!rx->sta ||
1471 	    !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1472 		return -EACCES;
1473 
1474 	return 0;
1475 }
1476 
1477 static int
1478 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1479 {
1480 	struct sk_buff *skb = rx->skb;
1481 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1482 
1483 	/*
1484 	 * Pass through unencrypted frames if the hardware has
1485 	 * decrypted them already.
1486 	 */
1487 	if (status->flag & RX_FLAG_DECRYPTED)
1488 		return 0;
1489 
1490 	/* Drop unencrypted frames if key is set. */
1491 	if (unlikely(!ieee80211_has_protected(fc) &&
1492 		     !ieee80211_is_nullfunc(fc) &&
1493 		     ieee80211_is_data(fc) &&
1494 		     (rx->key || rx->sdata->drop_unencrypted)))
1495 		return -EACCES;
1496 
1497 	return 0;
1498 }
1499 
1500 static int
1501 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1502 {
1503 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1504 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1505 	__le16 fc = hdr->frame_control;
1506 
1507 	/*
1508 	 * Pass through unencrypted frames if the hardware has
1509 	 * decrypted them already.
1510 	 */
1511 	if (status->flag & RX_FLAG_DECRYPTED)
1512 		return 0;
1513 
1514 	if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1515 		if (unlikely(!ieee80211_has_protected(fc) &&
1516 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1517 			     rx->key)) {
1518 			if (ieee80211_is_deauth(fc))
1519 				cfg80211_send_unprot_deauth(rx->sdata->dev,
1520 							    rx->skb->data,
1521 							    rx->skb->len);
1522 			else if (ieee80211_is_disassoc(fc))
1523 				cfg80211_send_unprot_disassoc(rx->sdata->dev,
1524 							      rx->skb->data,
1525 							      rx->skb->len);
1526 			return -EACCES;
1527 		}
1528 		/* BIP does not use Protected field, so need to check MMIE */
1529 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1530 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1531 			if (ieee80211_is_deauth(fc))
1532 				cfg80211_send_unprot_deauth(rx->sdata->dev,
1533 							    rx->skb->data,
1534 							    rx->skb->len);
1535 			else if (ieee80211_is_disassoc(fc))
1536 				cfg80211_send_unprot_disassoc(rx->sdata->dev,
1537 							      rx->skb->data,
1538 							      rx->skb->len);
1539 			return -EACCES;
1540 		}
1541 		/*
1542 		 * When using MFP, Action frames are not allowed prior to
1543 		 * having configured keys.
1544 		 */
1545 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1546 			     ieee80211_is_robust_mgmt_frame(
1547 				     (struct ieee80211_hdr *) rx->skb->data)))
1548 			return -EACCES;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int
1555 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1556 {
1557 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1558 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1559 
1560 	if (ieee80211_has_a4(hdr->frame_control) &&
1561 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1562 		return -1;
1563 
1564 	if (is_multicast_ether_addr(hdr->addr1) &&
1565 	    ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1566 	     (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1567 		return -1;
1568 
1569 	return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1570 }
1571 
1572 /*
1573  * requires that rx->skb is a frame with ethernet header
1574  */
1575 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1576 {
1577 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1578 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1579 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1580 
1581 	/*
1582 	 * Allow EAPOL frames to us/the PAE group address regardless
1583 	 * of whether the frame was encrypted or not.
1584 	 */
1585 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1586 	    (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1587 	     compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1588 		return true;
1589 
1590 	if (ieee80211_802_1x_port_control(rx) ||
1591 	    ieee80211_drop_unencrypted(rx, fc))
1592 		return false;
1593 
1594 	return true;
1595 }
1596 
1597 /*
1598  * requires that rx->skb is a frame with ethernet header
1599  */
1600 static void
1601 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1602 {
1603 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1604 	struct net_device *dev = sdata->dev;
1605 	struct sk_buff *skb, *xmit_skb;
1606 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1607 	struct sta_info *dsta;
1608 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1609 
1610 	skb = rx->skb;
1611 	xmit_skb = NULL;
1612 
1613 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1614 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1615 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1616 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1617 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1618 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1619 			/*
1620 			 * send multicast frames both to higher layers in
1621 			 * local net stack and back to the wireless medium
1622 			 */
1623 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1624 			if (!xmit_skb && net_ratelimit())
1625 				printk(KERN_DEBUG "%s: failed to clone "
1626 				       "multicast frame\n", dev->name);
1627 		} else {
1628 			dsta = sta_info_get(sdata, skb->data);
1629 			if (dsta) {
1630 				/*
1631 				 * The destination station is associated to
1632 				 * this AP (in this VLAN), so send the frame
1633 				 * directly to it and do not pass it to local
1634 				 * net stack.
1635 				 */
1636 				xmit_skb = skb;
1637 				skb = NULL;
1638 			}
1639 		}
1640 	}
1641 
1642 	if (skb) {
1643 		int align __maybe_unused;
1644 
1645 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1646 		/*
1647 		 * 'align' will only take the values 0 or 2 here
1648 		 * since all frames are required to be aligned
1649 		 * to 2-byte boundaries when being passed to
1650 		 * mac80211. That also explains the __skb_push()
1651 		 * below.
1652 		 */
1653 		align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1654 		if (align) {
1655 			if (WARN_ON(skb_headroom(skb) < 3)) {
1656 				dev_kfree_skb(skb);
1657 				skb = NULL;
1658 			} else {
1659 				u8 *data = skb->data;
1660 				size_t len = skb_headlen(skb);
1661 				skb->data -= align;
1662 				memmove(skb->data, data, len);
1663 				skb_set_tail_pointer(skb, len);
1664 			}
1665 		}
1666 #endif
1667 
1668 		if (skb) {
1669 			/* deliver to local stack */
1670 			skb->protocol = eth_type_trans(skb, dev);
1671 			memset(skb->cb, 0, sizeof(skb->cb));
1672 			netif_receive_skb(skb);
1673 		}
1674 	}
1675 
1676 	if (xmit_skb) {
1677 		/* send to wireless media */
1678 		xmit_skb->protocol = htons(ETH_P_802_3);
1679 		skb_reset_network_header(xmit_skb);
1680 		skb_reset_mac_header(xmit_skb);
1681 		dev_queue_xmit(xmit_skb);
1682 	}
1683 }
1684 
1685 static ieee80211_rx_result debug_noinline
1686 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1687 {
1688 	struct net_device *dev = rx->sdata->dev;
1689 	struct sk_buff *skb = rx->skb;
1690 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1691 	__le16 fc = hdr->frame_control;
1692 	struct sk_buff_head frame_list;
1693 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1694 
1695 	if (unlikely(!ieee80211_is_data(fc)))
1696 		return RX_CONTINUE;
1697 
1698 	if (unlikely(!ieee80211_is_data_present(fc)))
1699 		return RX_DROP_MONITOR;
1700 
1701 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1702 		return RX_CONTINUE;
1703 
1704 	if (ieee80211_has_a4(hdr->frame_control) &&
1705 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1706 	    !rx->sdata->u.vlan.sta)
1707 		return RX_DROP_UNUSABLE;
1708 
1709 	if (is_multicast_ether_addr(hdr->addr1) &&
1710 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1711 	      rx->sdata->u.vlan.sta) ||
1712 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1713 	      rx->sdata->u.mgd.use_4addr)))
1714 		return RX_DROP_UNUSABLE;
1715 
1716 	skb->dev = dev;
1717 	__skb_queue_head_init(&frame_list);
1718 
1719 	if (skb_linearize(skb))
1720 		return RX_DROP_UNUSABLE;
1721 
1722 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1723 				 rx->sdata->vif.type,
1724 				 rx->local->hw.extra_tx_headroom);
1725 
1726 	while (!skb_queue_empty(&frame_list)) {
1727 		rx->skb = __skb_dequeue(&frame_list);
1728 
1729 		if (!ieee80211_frame_allowed(rx, fc)) {
1730 			dev_kfree_skb(rx->skb);
1731 			continue;
1732 		}
1733 		dev->stats.rx_packets++;
1734 		dev->stats.rx_bytes += rx->skb->len;
1735 
1736 		ieee80211_deliver_skb(rx);
1737 	}
1738 
1739 	return RX_QUEUED;
1740 }
1741 
1742 #ifdef CONFIG_MAC80211_MESH
1743 static ieee80211_rx_result
1744 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1745 {
1746 	struct ieee80211_hdr *hdr;
1747 	struct ieee80211s_hdr *mesh_hdr;
1748 	unsigned int hdrlen;
1749 	struct sk_buff *skb = rx->skb, *fwd_skb;
1750 	struct ieee80211_local *local = rx->local;
1751 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1752 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1753 
1754 	hdr = (struct ieee80211_hdr *) skb->data;
1755 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
1756 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1757 
1758 	if (!ieee80211_is_data(hdr->frame_control))
1759 		return RX_CONTINUE;
1760 
1761 	if (!mesh_hdr->ttl)
1762 		/* illegal frame */
1763 		return RX_DROP_MONITOR;
1764 
1765 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
1766 		struct mesh_path *mppath;
1767 		char *proxied_addr;
1768 		char *mpp_addr;
1769 
1770 		if (is_multicast_ether_addr(hdr->addr1)) {
1771 			mpp_addr = hdr->addr3;
1772 			proxied_addr = mesh_hdr->eaddr1;
1773 		} else {
1774 			mpp_addr = hdr->addr4;
1775 			proxied_addr = mesh_hdr->eaddr2;
1776 		}
1777 
1778 		rcu_read_lock();
1779 		mppath = mpp_path_lookup(proxied_addr, sdata);
1780 		if (!mppath) {
1781 			mpp_path_add(proxied_addr, mpp_addr, sdata);
1782 		} else {
1783 			spin_lock_bh(&mppath->state_lock);
1784 			if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1785 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1786 			spin_unlock_bh(&mppath->state_lock);
1787 		}
1788 		rcu_read_unlock();
1789 	}
1790 
1791 	/* Frame has reached destination.  Don't forward */
1792 	if (!is_multicast_ether_addr(hdr->addr1) &&
1793 	    compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1794 		return RX_CONTINUE;
1795 
1796 	mesh_hdr->ttl--;
1797 
1798 	if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1799 		if (!mesh_hdr->ttl)
1800 			IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1801 						     dropped_frames_ttl);
1802 		else {
1803 			struct ieee80211_hdr *fwd_hdr;
1804 			struct ieee80211_tx_info *info;
1805 
1806 			fwd_skb = skb_copy(skb, GFP_ATOMIC);
1807 
1808 			if (!fwd_skb && net_ratelimit())
1809 				printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1810 						   sdata->name);
1811 			if (!fwd_skb)
1812 				goto out;
1813 
1814 			fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1815 			memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1816 			info = IEEE80211_SKB_CB(fwd_skb);
1817 			memset(info, 0, sizeof(*info));
1818 			info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1819 			info->control.vif = &rx->sdata->vif;
1820 			skb_set_queue_mapping(skb,
1821 				ieee80211_select_queue(rx->sdata, fwd_skb));
1822 			ieee80211_set_qos_hdr(local, skb);
1823 			if (is_multicast_ether_addr(fwd_hdr->addr1))
1824 				IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1825 								fwded_mcast);
1826 			else {
1827 				int err;
1828 				/*
1829 				 * Save TA to addr1 to send TA a path error if a
1830 				 * suitable next hop is not found
1831 				 */
1832 				memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1833 						ETH_ALEN);
1834 				err = mesh_nexthop_lookup(fwd_skb, sdata);
1835 				/* Failed to immediately resolve next hop:
1836 				 * fwded frame was dropped or will be added
1837 				 * later to the pending skb queue.  */
1838 				if (err)
1839 					return RX_DROP_MONITOR;
1840 
1841 				IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1842 								fwded_unicast);
1843 			}
1844 			IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1845 						     fwded_frames);
1846 			ieee80211_add_pending_skb(local, fwd_skb);
1847 		}
1848 	}
1849 
1850  out:
1851 	if (is_multicast_ether_addr(hdr->addr1) ||
1852 	    sdata->dev->flags & IFF_PROMISC)
1853 		return RX_CONTINUE;
1854 	else
1855 		return RX_DROP_MONITOR;
1856 }
1857 #endif
1858 
1859 static ieee80211_rx_result debug_noinline
1860 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1861 {
1862 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1863 	struct ieee80211_local *local = rx->local;
1864 	struct net_device *dev = sdata->dev;
1865 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1866 	__le16 fc = hdr->frame_control;
1867 	int err;
1868 
1869 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1870 		return RX_CONTINUE;
1871 
1872 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1873 		return RX_DROP_MONITOR;
1874 
1875 	/*
1876 	 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1877 	 * that a 4-addr station can be detected and moved into a separate VLAN
1878 	 */
1879 	if (ieee80211_has_a4(hdr->frame_control) &&
1880 	    sdata->vif.type == NL80211_IFTYPE_AP)
1881 		return RX_DROP_MONITOR;
1882 
1883 	err = __ieee80211_data_to_8023(rx);
1884 	if (unlikely(err))
1885 		return RX_DROP_UNUSABLE;
1886 
1887 	if (!ieee80211_frame_allowed(rx, fc))
1888 		return RX_DROP_MONITOR;
1889 
1890 	rx->skb->dev = dev;
1891 
1892 	dev->stats.rx_packets++;
1893 	dev->stats.rx_bytes += rx->skb->len;
1894 
1895 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1896 	    !is_multicast_ether_addr(((struct ethhdr *)rx->skb->data)->h_dest)) {
1897 			mod_timer(&local->dynamic_ps_timer, jiffies +
1898 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1899 	}
1900 
1901 	ieee80211_deliver_skb(rx);
1902 
1903 	return RX_QUEUED;
1904 }
1905 
1906 static ieee80211_rx_result debug_noinline
1907 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1908 {
1909 	struct ieee80211_local *local = rx->local;
1910 	struct ieee80211_hw *hw = &local->hw;
1911 	struct sk_buff *skb = rx->skb;
1912 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1913 	struct tid_ampdu_rx *tid_agg_rx;
1914 	u16 start_seq_num;
1915 	u16 tid;
1916 
1917 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
1918 		return RX_CONTINUE;
1919 
1920 	if (ieee80211_is_back_req(bar->frame_control)) {
1921 		struct {
1922 			__le16 control, start_seq_num;
1923 		} __packed bar_data;
1924 
1925 		if (!rx->sta)
1926 			return RX_DROP_MONITOR;
1927 
1928 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1929 				  &bar_data, sizeof(bar_data)))
1930 			return RX_DROP_MONITOR;
1931 
1932 		tid = le16_to_cpu(bar_data.control) >> 12;
1933 
1934 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1935 		if (!tid_agg_rx)
1936 			return RX_DROP_MONITOR;
1937 
1938 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1939 
1940 		/* reset session timer */
1941 		if (tid_agg_rx->timeout)
1942 			mod_timer(&tid_agg_rx->session_timer,
1943 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
1944 
1945 		spin_lock(&tid_agg_rx->reorder_lock);
1946 		/* release stored frames up to start of BAR */
1947 		ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
1948 		spin_unlock(&tid_agg_rx->reorder_lock);
1949 
1950 		kfree_skb(skb);
1951 		return RX_QUEUED;
1952 	}
1953 
1954 	/*
1955 	 * After this point, we only want management frames,
1956 	 * so we can drop all remaining control frames to
1957 	 * cooked monitor interfaces.
1958 	 */
1959 	return RX_DROP_MONITOR;
1960 }
1961 
1962 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1963 					   struct ieee80211_mgmt *mgmt,
1964 					   size_t len)
1965 {
1966 	struct ieee80211_local *local = sdata->local;
1967 	struct sk_buff *skb;
1968 	struct ieee80211_mgmt *resp;
1969 
1970 	if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1971 		/* Not to own unicast address */
1972 		return;
1973 	}
1974 
1975 	if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1976 	    compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1977 		/* Not from the current AP or not associated yet. */
1978 		return;
1979 	}
1980 
1981 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1982 		/* Too short SA Query request frame */
1983 		return;
1984 	}
1985 
1986 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1987 	if (skb == NULL)
1988 		return;
1989 
1990 	skb_reserve(skb, local->hw.extra_tx_headroom);
1991 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1992 	memset(resp, 0, 24);
1993 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
1994 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1995 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1996 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1997 					  IEEE80211_STYPE_ACTION);
1998 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1999 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2000 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2001 	memcpy(resp->u.action.u.sa_query.trans_id,
2002 	       mgmt->u.action.u.sa_query.trans_id,
2003 	       WLAN_SA_QUERY_TR_ID_LEN);
2004 
2005 	ieee80211_tx_skb(sdata, skb);
2006 }
2007 
2008 static ieee80211_rx_result debug_noinline
2009 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2010 {
2011 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2012 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2013 
2014 	/*
2015 	 * From here on, look only at management frames.
2016 	 * Data and control frames are already handled,
2017 	 * and unknown (reserved) frames are useless.
2018 	 */
2019 	if (rx->skb->len < 24)
2020 		return RX_DROP_MONITOR;
2021 
2022 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2023 		return RX_DROP_MONITOR;
2024 
2025 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2026 		return RX_DROP_MONITOR;
2027 
2028 	if (ieee80211_drop_unencrypted_mgmt(rx))
2029 		return RX_DROP_UNUSABLE;
2030 
2031 	return RX_CONTINUE;
2032 }
2033 
2034 static ieee80211_rx_result debug_noinline
2035 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2036 {
2037 	struct ieee80211_local *local = rx->local;
2038 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2039 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2040 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2041 	int len = rx->skb->len;
2042 
2043 	if (!ieee80211_is_action(mgmt->frame_control))
2044 		return RX_CONTINUE;
2045 
2046 	/* drop too small frames */
2047 	if (len < IEEE80211_MIN_ACTION_SIZE)
2048 		return RX_DROP_UNUSABLE;
2049 
2050 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2051 		return RX_DROP_UNUSABLE;
2052 
2053 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2054 		return RX_DROP_UNUSABLE;
2055 
2056 	switch (mgmt->u.action.category) {
2057 	case WLAN_CATEGORY_BACK:
2058 		/*
2059 		 * The aggregation code is not prepared to handle
2060 		 * anything but STA/AP due to the BSSID handling;
2061 		 * IBSS could work in the code but isn't supported
2062 		 * by drivers or the standard.
2063 		 */
2064 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2065 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2066 		    sdata->vif.type != NL80211_IFTYPE_AP)
2067 			break;
2068 
2069 		/* verify action_code is present */
2070 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2071 			break;
2072 
2073 		switch (mgmt->u.action.u.addba_req.action_code) {
2074 		case WLAN_ACTION_ADDBA_REQ:
2075 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2076 				   sizeof(mgmt->u.action.u.addba_req)))
2077 				goto invalid;
2078 			break;
2079 		case WLAN_ACTION_ADDBA_RESP:
2080 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2081 				   sizeof(mgmt->u.action.u.addba_resp)))
2082 				goto invalid;
2083 			break;
2084 		case WLAN_ACTION_DELBA:
2085 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2086 				   sizeof(mgmt->u.action.u.delba)))
2087 				goto invalid;
2088 			break;
2089 		default:
2090 			goto invalid;
2091 		}
2092 
2093 		goto queue;
2094 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2095 		if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2096 			break;
2097 
2098 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2099 			break;
2100 
2101 		/* verify action_code is present */
2102 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2103 			break;
2104 
2105 		switch (mgmt->u.action.u.measurement.action_code) {
2106 		case WLAN_ACTION_SPCT_MSR_REQ:
2107 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2108 				   sizeof(mgmt->u.action.u.measurement)))
2109 				break;
2110 			ieee80211_process_measurement_req(sdata, mgmt, len);
2111 			goto handled;
2112 		case WLAN_ACTION_SPCT_CHL_SWITCH:
2113 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2114 				   sizeof(mgmt->u.action.u.chan_switch)))
2115 				break;
2116 
2117 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2118 				break;
2119 
2120 			if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2121 				break;
2122 
2123 			goto queue;
2124 		}
2125 		break;
2126 	case WLAN_CATEGORY_SA_QUERY:
2127 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2128 			   sizeof(mgmt->u.action.u.sa_query)))
2129 			break;
2130 
2131 		switch (mgmt->u.action.u.sa_query.action) {
2132 		case WLAN_ACTION_SA_QUERY_REQUEST:
2133 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2134 				break;
2135 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2136 			goto handled;
2137 		}
2138 		break;
2139 	case WLAN_CATEGORY_MESH_PLINK:
2140 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2141 			break;
2142 		goto queue;
2143 	case WLAN_CATEGORY_MESH_PATH_SEL:
2144 		if (!mesh_path_sel_is_hwmp(sdata))
2145 			break;
2146 		goto queue;
2147 	}
2148 
2149 	return RX_CONTINUE;
2150 
2151  invalid:
2152 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2153 	/* will return in the next handlers */
2154 	return RX_CONTINUE;
2155 
2156  handled:
2157 	if (rx->sta)
2158 		rx->sta->rx_packets++;
2159 	dev_kfree_skb(rx->skb);
2160 	return RX_QUEUED;
2161 
2162  queue:
2163 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2164 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2165 	ieee80211_queue_work(&local->hw, &sdata->work);
2166 	if (rx->sta)
2167 		rx->sta->rx_packets++;
2168 	return RX_QUEUED;
2169 }
2170 
2171 static ieee80211_rx_result debug_noinline
2172 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2173 {
2174 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2175 
2176 	/* skip known-bad action frames and return them in the next handler */
2177 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2178 		return RX_CONTINUE;
2179 
2180 	/*
2181 	 * Getting here means the kernel doesn't know how to handle
2182 	 * it, but maybe userspace does ... include returned frames
2183 	 * so userspace can register for those to know whether ones
2184 	 * it transmitted were processed or returned.
2185 	 */
2186 
2187 	if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2188 			     rx->skb->data, rx->skb->len,
2189 			     GFP_ATOMIC)) {
2190 		if (rx->sta)
2191 			rx->sta->rx_packets++;
2192 		dev_kfree_skb(rx->skb);
2193 		return RX_QUEUED;
2194 	}
2195 
2196 
2197 	return RX_CONTINUE;
2198 }
2199 
2200 static ieee80211_rx_result debug_noinline
2201 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2202 {
2203 	struct ieee80211_local *local = rx->local;
2204 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2205 	struct sk_buff *nskb;
2206 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2207 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2208 
2209 	if (!ieee80211_is_action(mgmt->frame_control))
2210 		return RX_CONTINUE;
2211 
2212 	/*
2213 	 * For AP mode, hostapd is responsible for handling any action
2214 	 * frames that we didn't handle, including returning unknown
2215 	 * ones. For all other modes we will return them to the sender,
2216 	 * setting the 0x80 bit in the action category, as required by
2217 	 * 802.11-2007 7.3.1.11.
2218 	 * Newer versions of hostapd shall also use the management frame
2219 	 * registration mechanisms, but older ones still use cooked
2220 	 * monitor interfaces so push all frames there.
2221 	 */
2222 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2223 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2224 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2225 		return RX_DROP_MONITOR;
2226 
2227 	/* do not return rejected action frames */
2228 	if (mgmt->u.action.category & 0x80)
2229 		return RX_DROP_UNUSABLE;
2230 
2231 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2232 			       GFP_ATOMIC);
2233 	if (nskb) {
2234 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2235 
2236 		nmgmt->u.action.category |= 0x80;
2237 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2238 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2239 
2240 		memset(nskb->cb, 0, sizeof(nskb->cb));
2241 
2242 		ieee80211_tx_skb(rx->sdata, nskb);
2243 	}
2244 	dev_kfree_skb(rx->skb);
2245 	return RX_QUEUED;
2246 }
2247 
2248 static ieee80211_rx_result debug_noinline
2249 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2250 {
2251 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2252 	ieee80211_rx_result rxs;
2253 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2254 	__le16 stype;
2255 
2256 	rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2257 	if (rxs != RX_CONTINUE)
2258 		return rxs;
2259 
2260 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2261 
2262 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2263 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2264 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2265 		return RX_DROP_MONITOR;
2266 
2267 	switch (stype) {
2268 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2269 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2270 		/* process for all: mesh, mlme, ibss */
2271 		break;
2272 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2273 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2274 		if (is_multicast_ether_addr(mgmt->da) &&
2275 		    !is_broadcast_ether_addr(mgmt->da))
2276 			return RX_DROP_MONITOR;
2277 
2278 		/* process only for station */
2279 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2280 			return RX_DROP_MONITOR;
2281 		break;
2282 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2283 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2284 		/* process only for ibss */
2285 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2286 			return RX_DROP_MONITOR;
2287 		break;
2288 	default:
2289 		return RX_DROP_MONITOR;
2290 	}
2291 
2292 	/* queue up frame and kick off work to process it */
2293 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2294 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2295 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2296 	if (rx->sta)
2297 		rx->sta->rx_packets++;
2298 
2299 	return RX_QUEUED;
2300 }
2301 
2302 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2303 					    struct ieee80211_rx_data *rx)
2304 {
2305 	int keyidx;
2306 	unsigned int hdrlen;
2307 
2308 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2309 	if (rx->skb->len >= hdrlen + 4)
2310 		keyidx = rx->skb->data[hdrlen + 3] >> 6;
2311 	else
2312 		keyidx = -1;
2313 
2314 	if (!rx->sta) {
2315 		/*
2316 		 * Some hardware seem to generate incorrect Michael MIC
2317 		 * reports; ignore them to avoid triggering countermeasures.
2318 		 */
2319 		return;
2320 	}
2321 
2322 	if (!ieee80211_has_protected(hdr->frame_control))
2323 		return;
2324 
2325 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2326 		/*
2327 		 * APs with pairwise keys should never receive Michael MIC
2328 		 * errors for non-zero keyidx because these are reserved for
2329 		 * group keys and only the AP is sending real multicast
2330 		 * frames in the BSS.
2331 		 */
2332 		return;
2333 	}
2334 
2335 	if (!ieee80211_is_data(hdr->frame_control) &&
2336 	    !ieee80211_is_auth(hdr->frame_control))
2337 		return;
2338 
2339 	mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2340 					GFP_ATOMIC);
2341 }
2342 
2343 /* TODO: use IEEE80211_RX_FRAGMENTED */
2344 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2345 					struct ieee80211_rate *rate)
2346 {
2347 	struct ieee80211_sub_if_data *sdata;
2348 	struct ieee80211_local *local = rx->local;
2349 	struct ieee80211_rtap_hdr {
2350 		struct ieee80211_radiotap_header hdr;
2351 		u8 flags;
2352 		u8 rate_or_pad;
2353 		__le16 chan_freq;
2354 		__le16 chan_flags;
2355 	} __packed *rthdr;
2356 	struct sk_buff *skb = rx->skb, *skb2;
2357 	struct net_device *prev_dev = NULL;
2358 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2359 
2360 	/*
2361 	 * If cooked monitor has been processed already, then
2362 	 * don't do it again. If not, set the flag.
2363 	 */
2364 	if (rx->flags & IEEE80211_RX_CMNTR)
2365 		goto out_free_skb;
2366 	rx->flags |= IEEE80211_RX_CMNTR;
2367 
2368 	if (skb_headroom(skb) < sizeof(*rthdr) &&
2369 	    pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2370 		goto out_free_skb;
2371 
2372 	rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2373 	memset(rthdr, 0, sizeof(*rthdr));
2374 	rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2375 	rthdr->hdr.it_present =
2376 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2377 			    (1 << IEEE80211_RADIOTAP_CHANNEL));
2378 
2379 	if (rate) {
2380 		rthdr->rate_or_pad = rate->bitrate / 5;
2381 		rthdr->hdr.it_present |=
2382 			cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2383 	}
2384 	rthdr->chan_freq = cpu_to_le16(status->freq);
2385 
2386 	if (status->band == IEEE80211_BAND_5GHZ)
2387 		rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2388 						IEEE80211_CHAN_5GHZ);
2389 	else
2390 		rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2391 						IEEE80211_CHAN_2GHZ);
2392 
2393 	skb_set_mac_header(skb, 0);
2394 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2395 	skb->pkt_type = PACKET_OTHERHOST;
2396 	skb->protocol = htons(ETH_P_802_2);
2397 
2398 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2399 		if (!ieee80211_sdata_running(sdata))
2400 			continue;
2401 
2402 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2403 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2404 			continue;
2405 
2406 		if (prev_dev) {
2407 			skb2 = skb_clone(skb, GFP_ATOMIC);
2408 			if (skb2) {
2409 				skb2->dev = prev_dev;
2410 				netif_receive_skb(skb2);
2411 			}
2412 		}
2413 
2414 		prev_dev = sdata->dev;
2415 		sdata->dev->stats.rx_packets++;
2416 		sdata->dev->stats.rx_bytes += skb->len;
2417 	}
2418 
2419 	if (prev_dev) {
2420 		skb->dev = prev_dev;
2421 		netif_receive_skb(skb);
2422 		return;
2423 	}
2424 
2425  out_free_skb:
2426 	dev_kfree_skb(skb);
2427 }
2428 
2429 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2430 					 ieee80211_rx_result res)
2431 {
2432 	switch (res) {
2433 	case RX_DROP_MONITOR:
2434 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2435 		if (rx->sta)
2436 			rx->sta->rx_dropped++;
2437 		/* fall through */
2438 	case RX_CONTINUE: {
2439 		struct ieee80211_rate *rate = NULL;
2440 		struct ieee80211_supported_band *sband;
2441 		struct ieee80211_rx_status *status;
2442 
2443 		status = IEEE80211_SKB_RXCB((rx->skb));
2444 
2445 		sband = rx->local->hw.wiphy->bands[status->band];
2446 		if (!(status->flag & RX_FLAG_HT))
2447 			rate = &sband->bitrates[status->rate_idx];
2448 
2449 		ieee80211_rx_cooked_monitor(rx, rate);
2450 		break;
2451 		}
2452 	case RX_DROP_UNUSABLE:
2453 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2454 		if (rx->sta)
2455 			rx->sta->rx_dropped++;
2456 		dev_kfree_skb(rx->skb);
2457 		break;
2458 	case RX_QUEUED:
2459 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2460 		break;
2461 	}
2462 }
2463 
2464 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2465 {
2466 	ieee80211_rx_result res = RX_DROP_MONITOR;
2467 	struct sk_buff *skb;
2468 
2469 #define CALL_RXH(rxh)			\
2470 	do {				\
2471 		res = rxh(rx);		\
2472 		if (res != RX_CONTINUE)	\
2473 			goto rxh_next;  \
2474 	} while (0);
2475 
2476 	spin_lock(&rx->local->rx_skb_queue.lock);
2477 	if (rx->local->running_rx_handler)
2478 		goto unlock;
2479 
2480 	rx->local->running_rx_handler = true;
2481 
2482 	while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2483 		spin_unlock(&rx->local->rx_skb_queue.lock);
2484 
2485 		/*
2486 		 * all the other fields are valid across frames
2487 		 * that belong to an aMPDU since they are on the
2488 		 * same TID from the same station
2489 		 */
2490 		rx->skb = skb;
2491 		rx->flags = 0;
2492 
2493 		CALL_RXH(ieee80211_rx_h_decrypt)
2494 		CALL_RXH(ieee80211_rx_h_check_more_data)
2495 		CALL_RXH(ieee80211_rx_h_sta_process)
2496 		CALL_RXH(ieee80211_rx_h_defragment)
2497 		CALL_RXH(ieee80211_rx_h_ps_poll)
2498 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2499 		/* must be after MMIC verify so header is counted in MPDU mic */
2500 		CALL_RXH(ieee80211_rx_h_remove_qos_control)
2501 		CALL_RXH(ieee80211_rx_h_amsdu)
2502 #ifdef CONFIG_MAC80211_MESH
2503 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2504 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2505 #endif
2506 		CALL_RXH(ieee80211_rx_h_data)
2507 		CALL_RXH(ieee80211_rx_h_ctrl);
2508 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2509 		CALL_RXH(ieee80211_rx_h_action)
2510 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2511 		CALL_RXH(ieee80211_rx_h_action_return)
2512 		CALL_RXH(ieee80211_rx_h_mgmt)
2513 
2514  rxh_next:
2515 		ieee80211_rx_handlers_result(rx, res);
2516 		spin_lock(&rx->local->rx_skb_queue.lock);
2517 #undef CALL_RXH
2518 	}
2519 
2520 	rx->local->running_rx_handler = false;
2521 
2522  unlock:
2523 	spin_unlock(&rx->local->rx_skb_queue.lock);
2524 }
2525 
2526 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2527 {
2528 	ieee80211_rx_result res = RX_DROP_MONITOR;
2529 
2530 #define CALL_RXH(rxh)			\
2531 	do {				\
2532 		res = rxh(rx);		\
2533 		if (res != RX_CONTINUE)	\
2534 			goto rxh_next;  \
2535 	} while (0);
2536 
2537 	CALL_RXH(ieee80211_rx_h_passive_scan)
2538 	CALL_RXH(ieee80211_rx_h_check)
2539 
2540 	ieee80211_rx_reorder_ampdu(rx);
2541 
2542 	ieee80211_rx_handlers(rx);
2543 	return;
2544 
2545  rxh_next:
2546 	ieee80211_rx_handlers_result(rx, res);
2547 
2548 #undef CALL_RXH
2549 }
2550 
2551 /*
2552  * This function makes calls into the RX path, therefore
2553  * it has to be invoked under RCU read lock.
2554  */
2555 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2556 {
2557 	struct ieee80211_rx_data rx = {
2558 		.sta = sta,
2559 		.sdata = sta->sdata,
2560 		.local = sta->local,
2561 		.queue = tid,
2562 	};
2563 	struct tid_ampdu_rx *tid_agg_rx;
2564 
2565 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2566 	if (!tid_agg_rx)
2567 		return;
2568 
2569 	spin_lock(&tid_agg_rx->reorder_lock);
2570 	ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2571 	spin_unlock(&tid_agg_rx->reorder_lock);
2572 
2573 	ieee80211_rx_handlers(&rx);
2574 }
2575 
2576 /* main receive path */
2577 
2578 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2579 				struct ieee80211_hdr *hdr)
2580 {
2581 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2582 	struct sk_buff *skb = rx->skb;
2583 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2584 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2585 	int multicast = is_multicast_ether_addr(hdr->addr1);
2586 
2587 	switch (sdata->vif.type) {
2588 	case NL80211_IFTYPE_STATION:
2589 		if (!bssid && !sdata->u.mgd.use_4addr)
2590 			return 0;
2591 		if (!multicast &&
2592 		    compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2593 			if (!(sdata->dev->flags & IFF_PROMISC))
2594 				return 0;
2595 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2596 		}
2597 		break;
2598 	case NL80211_IFTYPE_ADHOC:
2599 		if (!bssid)
2600 			return 0;
2601 		if (ieee80211_is_beacon(hdr->frame_control)) {
2602 			return 1;
2603 		}
2604 		else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2605 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2606 				return 0;
2607 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2608 		} else if (!multicast &&
2609 			   compare_ether_addr(sdata->vif.addr,
2610 					      hdr->addr1) != 0) {
2611 			if (!(sdata->dev->flags & IFF_PROMISC))
2612 				return 0;
2613 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2614 		} else if (!rx->sta) {
2615 			int rate_idx;
2616 			if (status->flag & RX_FLAG_HT)
2617 				rate_idx = 0; /* TODO: HT rates */
2618 			else
2619 				rate_idx = status->rate_idx;
2620 			rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2621 					hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2622 		}
2623 		break;
2624 	case NL80211_IFTYPE_MESH_POINT:
2625 		if (!multicast &&
2626 		    compare_ether_addr(sdata->vif.addr,
2627 				       hdr->addr1) != 0) {
2628 			if (!(sdata->dev->flags & IFF_PROMISC))
2629 				return 0;
2630 
2631 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2632 		}
2633 		break;
2634 	case NL80211_IFTYPE_AP_VLAN:
2635 	case NL80211_IFTYPE_AP:
2636 		if (!bssid) {
2637 			if (compare_ether_addr(sdata->vif.addr,
2638 					       hdr->addr1))
2639 				return 0;
2640 		} else if (!ieee80211_bssid_match(bssid,
2641 					sdata->vif.addr)) {
2642 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2643 				return 0;
2644 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2645 		}
2646 		break;
2647 	case NL80211_IFTYPE_WDS:
2648 		if (bssid || !ieee80211_is_data(hdr->frame_control))
2649 			return 0;
2650 		if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2651 			return 0;
2652 		break;
2653 	default:
2654 		/* should never get here */
2655 		WARN_ON(1);
2656 		break;
2657 	}
2658 
2659 	return 1;
2660 }
2661 
2662 /*
2663  * This function returns whether or not the SKB
2664  * was destined for RX processing or not, which,
2665  * if consume is true, is equivalent to whether
2666  * or not the skb was consumed.
2667  */
2668 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2669 					    struct sk_buff *skb, bool consume)
2670 {
2671 	struct ieee80211_local *local = rx->local;
2672 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2673 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2674 	struct ieee80211_hdr *hdr = (void *)skb->data;
2675 	int prepares;
2676 
2677 	rx->skb = skb;
2678 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
2679 	prepares = prepare_for_handlers(rx, hdr);
2680 
2681 	if (!prepares)
2682 		return false;
2683 
2684 	if (status->flag & RX_FLAG_MMIC_ERROR) {
2685 		if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2686 			ieee80211_rx_michael_mic_report(hdr, rx);
2687 		return false;
2688 	}
2689 
2690 	if (!consume) {
2691 		skb = skb_copy(skb, GFP_ATOMIC);
2692 		if (!skb) {
2693 			if (net_ratelimit())
2694 				wiphy_debug(local->hw.wiphy,
2695 					"failed to copy multicast frame for %s\n",
2696 					sdata->name);
2697 			return true;
2698 		}
2699 
2700 		rx->skb = skb;
2701 	}
2702 
2703 	ieee80211_invoke_rx_handlers(rx);
2704 	return true;
2705 }
2706 
2707 /*
2708  * This is the actual Rx frames handler. as it blongs to Rx path it must
2709  * be called with rcu_read_lock protection.
2710  */
2711 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2712 					 struct sk_buff *skb)
2713 {
2714 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2715 	struct ieee80211_local *local = hw_to_local(hw);
2716 	struct ieee80211_sub_if_data *sdata;
2717 	struct ieee80211_hdr *hdr;
2718 	__le16 fc;
2719 	struct ieee80211_rx_data rx;
2720 	struct ieee80211_sub_if_data *prev;
2721 	struct sta_info *sta, *tmp, *prev_sta;
2722 	int err = 0;
2723 
2724 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2725 	memset(&rx, 0, sizeof(rx));
2726 	rx.skb = skb;
2727 	rx.local = local;
2728 
2729 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2730 		local->dot11ReceivedFragmentCount++;
2731 
2732 	if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2733 		     test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2734 		status->rx_flags |= IEEE80211_RX_IN_SCAN;
2735 
2736 	if (ieee80211_is_mgmt(fc))
2737 		err = skb_linearize(skb);
2738 	else
2739 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2740 
2741 	if (err) {
2742 		dev_kfree_skb(skb);
2743 		return;
2744 	}
2745 
2746 	hdr = (struct ieee80211_hdr *)skb->data;
2747 	ieee80211_parse_qos(&rx);
2748 	ieee80211_verify_alignment(&rx);
2749 
2750 	if (ieee80211_is_data(fc)) {
2751 		prev_sta = NULL;
2752 
2753 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
2754 			if (!prev_sta) {
2755 				prev_sta = sta;
2756 				continue;
2757 			}
2758 
2759 			rx.sta = prev_sta;
2760 			rx.sdata = prev_sta->sdata;
2761 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
2762 
2763 			prev_sta = sta;
2764 		}
2765 
2766 		if (prev_sta) {
2767 			rx.sta = prev_sta;
2768 			rx.sdata = prev_sta->sdata;
2769 
2770 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2771 				return;
2772 			goto out;
2773 		}
2774 	}
2775 
2776 	prev = NULL;
2777 
2778 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2779 		if (!ieee80211_sdata_running(sdata))
2780 			continue;
2781 
2782 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2783 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2784 			continue;
2785 
2786 		/*
2787 		 * frame is destined for this interface, but if it's
2788 		 * not also for the previous one we handle that after
2789 		 * the loop to avoid copying the SKB once too much
2790 		 */
2791 
2792 		if (!prev) {
2793 			prev = sdata;
2794 			continue;
2795 		}
2796 
2797 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
2798 		rx.sdata = prev;
2799 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
2800 
2801 		prev = sdata;
2802 	}
2803 
2804 	if (prev) {
2805 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
2806 		rx.sdata = prev;
2807 
2808 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2809 			return;
2810 	}
2811 
2812  out:
2813 	dev_kfree_skb(skb);
2814 }
2815 
2816 /*
2817  * This is the receive path handler. It is called by a low level driver when an
2818  * 802.11 MPDU is received from the hardware.
2819  */
2820 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2821 {
2822 	struct ieee80211_local *local = hw_to_local(hw);
2823 	struct ieee80211_rate *rate = NULL;
2824 	struct ieee80211_supported_band *sband;
2825 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2826 
2827 	WARN_ON_ONCE(softirq_count() == 0);
2828 
2829 	if (WARN_ON(status->band < 0 ||
2830 		    status->band >= IEEE80211_NUM_BANDS))
2831 		goto drop;
2832 
2833 	sband = local->hw.wiphy->bands[status->band];
2834 	if (WARN_ON(!sband))
2835 		goto drop;
2836 
2837 	/*
2838 	 * If we're suspending, it is possible although not too likely
2839 	 * that we'd be receiving frames after having already partially
2840 	 * quiesced the stack. We can't process such frames then since
2841 	 * that might, for example, cause stations to be added or other
2842 	 * driver callbacks be invoked.
2843 	 */
2844 	if (unlikely(local->quiescing || local->suspended))
2845 		goto drop;
2846 
2847 	/*
2848 	 * The same happens when we're not even started,
2849 	 * but that's worth a warning.
2850 	 */
2851 	if (WARN_ON(!local->started))
2852 		goto drop;
2853 
2854 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2855 		/*
2856 		 * Validate the rate, unless a PLCP error means that
2857 		 * we probably can't have a valid rate here anyway.
2858 		 */
2859 
2860 		if (status->flag & RX_FLAG_HT) {
2861 			/*
2862 			 * rate_idx is MCS index, which can be [0-76]
2863 			 * as documented on:
2864 			 *
2865 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2866 			 *
2867 			 * Anything else would be some sort of driver or
2868 			 * hardware error. The driver should catch hardware
2869 			 * errors.
2870 			 */
2871 			if (WARN((status->rate_idx < 0 ||
2872 				 status->rate_idx > 76),
2873 				 "Rate marked as an HT rate but passed "
2874 				 "status->rate_idx is not "
2875 				 "an MCS index [0-76]: %d (0x%02x)\n",
2876 				 status->rate_idx,
2877 				 status->rate_idx))
2878 				goto drop;
2879 		} else {
2880 			if (WARN_ON(status->rate_idx < 0 ||
2881 				    status->rate_idx >= sband->n_bitrates))
2882 				goto drop;
2883 			rate = &sband->bitrates[status->rate_idx];
2884 		}
2885 	}
2886 
2887 	status->rx_flags = 0;
2888 
2889 	/*
2890 	 * key references and virtual interfaces are protected using RCU
2891 	 * and this requires that we are in a read-side RCU section during
2892 	 * receive processing
2893 	 */
2894 	rcu_read_lock();
2895 
2896 	/*
2897 	 * Frames with failed FCS/PLCP checksum are not returned,
2898 	 * all other frames are returned without radiotap header
2899 	 * if it was previously present.
2900 	 * Also, frames with less than 16 bytes are dropped.
2901 	 */
2902 	skb = ieee80211_rx_monitor(local, skb, rate);
2903 	if (!skb) {
2904 		rcu_read_unlock();
2905 		return;
2906 	}
2907 
2908 	ieee80211_tpt_led_trig_rx(local,
2909 			((struct ieee80211_hdr *)skb->data)->frame_control,
2910 			skb->len);
2911 	__ieee80211_rx_handle_packet(hw, skb);
2912 
2913 	rcu_read_unlock();
2914 
2915 	return;
2916  drop:
2917 	kfree_skb(skb);
2918 }
2919 EXPORT_SYMBOL(ieee80211_rx);
2920 
2921 /* This is a version of the rx handler that can be called from hard irq
2922  * context. Post the skb on the queue and schedule the tasklet */
2923 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2924 {
2925 	struct ieee80211_local *local = hw_to_local(hw);
2926 
2927 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2928 
2929 	skb->pkt_type = IEEE80211_RX_MSG;
2930 	skb_queue_tail(&local->skb_queue, skb);
2931 	tasklet_schedule(&local->tasklet);
2932 }
2933 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
2934