xref: /openbmc/linux/net/mac80211/rx.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static void remove_monitor_info(struct sk_buff *skb,
99 				unsigned int present_fcs_len,
100 				unsigned int rtap_vendor_space)
101 {
102 	if (present_fcs_len)
103 		__pskb_trim(skb, skb->len - present_fcs_len);
104 	__pskb_pull(skb, rtap_vendor_space);
105 }
106 
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 				     unsigned int rtap_vendor_space)
109 {
110 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 	struct ieee80211_hdr *hdr;
112 
113 	hdr = (void *)(skb->data + rtap_vendor_space);
114 
115 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 			    RX_FLAG_FAILED_PLCP_CRC |
117 			    RX_FLAG_ONLY_MONITOR))
118 		return true;
119 
120 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 		return true;
122 
123 	if (ieee80211_is_ctl(hdr->frame_control) &&
124 	    !ieee80211_is_pspoll(hdr->frame_control) &&
125 	    !ieee80211_is_back_req(hdr->frame_control))
126 		return true;
127 
128 	return false;
129 }
130 
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 			     struct ieee80211_rx_status *status,
134 			     struct sk_buff *skb)
135 {
136 	int len;
137 
138 	/* always present fields */
139 	len = sizeof(struct ieee80211_radiotap_header) + 8;
140 
141 	/* allocate extra bitmaps */
142 	if (status->chains)
143 		len += 4 * hweight8(status->chains);
144 
145 	if (ieee80211_have_rx_timestamp(status)) {
146 		len = ALIGN(len, 8);
147 		len += 8;
148 	}
149 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 		len += 1;
151 
152 	/* antenna field, if we don't have per-chain info */
153 	if (!status->chains)
154 		len += 1;
155 
156 	/* padding for RX_FLAGS if necessary */
157 	len = ALIGN(len, 2);
158 
159 	if (status->encoding == RX_ENC_HT) /* HT info */
160 		len += 3;
161 
162 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 		len = ALIGN(len, 4);
164 		len += 8;
165 	}
166 
167 	if (status->encoding == RX_ENC_VHT) {
168 		len = ALIGN(len, 2);
169 		len += 12;
170 	}
171 
172 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 		len = ALIGN(len, 8);
174 		len += 12;
175 	}
176 
177 	if (status->chains) {
178 		/* antenna and antenna signal fields */
179 		len += 2 * hweight8(status->chains);
180 	}
181 
182 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
184 
185 		/* vendor presence bitmap */
186 		len += 4;
187 		/* alignment for fixed 6-byte vendor data header */
188 		len = ALIGN(len, 2);
189 		/* vendor data header */
190 		len += 6;
191 		if (WARN_ON(rtap->align == 0))
192 			rtap->align = 1;
193 		len = ALIGN(len, rtap->align);
194 		len += rtap->len + rtap->pad;
195 	}
196 
197 	return len;
198 }
199 
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 					 struct sk_buff *skb,
202 					 int rtap_vendor_space)
203 {
204 	struct {
205 		struct ieee80211_hdr_3addr hdr;
206 		u8 category;
207 		u8 action_code;
208 	} __packed action;
209 
210 	if (!sdata)
211 		return;
212 
213 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
214 
215 	if (skb->len < rtap_vendor_space + sizeof(action) +
216 		       VHT_MUMIMO_GROUPS_DATA_LEN)
217 		return;
218 
219 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 		return;
221 
222 	skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
223 
224 	if (!ieee80211_is_action(action.hdr.frame_control))
225 		return;
226 
227 	if (action.category != WLAN_CATEGORY_VHT)
228 		return;
229 
230 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 		return;
232 
233 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 		return;
235 
236 	skb = skb_copy(skb, GFP_ATOMIC);
237 	if (!skb)
238 		return;
239 
240 	skb_queue_tail(&sdata->skb_queue, skb);
241 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
242 }
243 
244 /*
245  * ieee80211_add_rx_radiotap_header - add radiotap header
246  *
247  * add a radiotap header containing all the fields which the hardware provided.
248  */
249 static void
250 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
251 				 struct sk_buff *skb,
252 				 struct ieee80211_rate *rate,
253 				 int rtap_len, bool has_fcs)
254 {
255 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
256 	struct ieee80211_radiotap_header *rthdr;
257 	unsigned char *pos;
258 	__le32 *it_present;
259 	u32 it_present_val;
260 	u16 rx_flags = 0;
261 	u16 channel_flags = 0;
262 	int mpdulen, chain;
263 	unsigned long chains = status->chains;
264 	struct ieee80211_vendor_radiotap rtap = {};
265 
266 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
268 		/* rtap.len and rtap.pad are undone immediately */
269 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
270 	}
271 
272 	mpdulen = skb->len;
273 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
274 		mpdulen += FCS_LEN;
275 
276 	rthdr = skb_push(skb, rtap_len);
277 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
278 	it_present = &rthdr->it_present;
279 
280 	/* radiotap header, set always present flags */
281 	rthdr->it_len = cpu_to_le16(rtap_len);
282 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
283 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
284 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
285 
286 	if (!status->chains)
287 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
288 
289 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
290 		it_present_val |=
291 			BIT(IEEE80211_RADIOTAP_EXT) |
292 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
293 		put_unaligned_le32(it_present_val, it_present);
294 		it_present++;
295 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
296 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
297 	}
298 
299 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
300 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
301 				  BIT(IEEE80211_RADIOTAP_EXT);
302 		put_unaligned_le32(it_present_val, it_present);
303 		it_present++;
304 		it_present_val = rtap.present;
305 	}
306 
307 	put_unaligned_le32(it_present_val, it_present);
308 
309 	pos = (void *)(it_present + 1);
310 
311 	/* the order of the following fields is important */
312 
313 	/* IEEE80211_RADIOTAP_TSFT */
314 	if (ieee80211_have_rx_timestamp(status)) {
315 		/* padding */
316 		while ((pos - (u8 *)rthdr) & 7)
317 			*pos++ = 0;
318 		put_unaligned_le64(
319 			ieee80211_calculate_rx_timestamp(local, status,
320 							 mpdulen, 0),
321 			pos);
322 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
323 		pos += 8;
324 	}
325 
326 	/* IEEE80211_RADIOTAP_FLAGS */
327 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
328 		*pos |= IEEE80211_RADIOTAP_F_FCS;
329 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
330 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
331 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
332 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
333 	pos++;
334 
335 	/* IEEE80211_RADIOTAP_RATE */
336 	if (!rate || status->encoding != RX_ENC_LEGACY) {
337 		/*
338 		 * Without rate information don't add it. If we have,
339 		 * MCS information is a separate field in radiotap,
340 		 * added below. The byte here is needed as padding
341 		 * for the channel though, so initialise it to 0.
342 		 */
343 		*pos = 0;
344 	} else {
345 		int shift = 0;
346 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
347 		if (status->bw == RATE_INFO_BW_10)
348 			shift = 1;
349 		else if (status->bw == RATE_INFO_BW_5)
350 			shift = 2;
351 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
352 	}
353 	pos++;
354 
355 	/* IEEE80211_RADIOTAP_CHANNEL */
356 	put_unaligned_le16(status->freq, pos);
357 	pos += 2;
358 	if (status->bw == RATE_INFO_BW_10)
359 		channel_flags |= IEEE80211_CHAN_HALF;
360 	else if (status->bw == RATE_INFO_BW_5)
361 		channel_flags |= IEEE80211_CHAN_QUARTER;
362 
363 	if (status->band == NL80211_BAND_5GHZ)
364 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
365 	else if (status->encoding != RX_ENC_LEGACY)
366 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
367 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
368 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
369 	else if (rate)
370 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
371 	else
372 		channel_flags |= IEEE80211_CHAN_2GHZ;
373 	put_unaligned_le16(channel_flags, pos);
374 	pos += 2;
375 
376 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
377 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
378 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
379 		*pos = status->signal;
380 		rthdr->it_present |=
381 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
382 		pos++;
383 	}
384 
385 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
386 
387 	if (!status->chains) {
388 		/* IEEE80211_RADIOTAP_ANTENNA */
389 		*pos = status->antenna;
390 		pos++;
391 	}
392 
393 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
394 
395 	/* IEEE80211_RADIOTAP_RX_FLAGS */
396 	/* ensure 2 byte alignment for the 2 byte field as required */
397 	if ((pos - (u8 *)rthdr) & 1)
398 		*pos++ = 0;
399 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
400 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
401 	put_unaligned_le16(rx_flags, pos);
402 	pos += 2;
403 
404 	if (status->encoding == RX_ENC_HT) {
405 		unsigned int stbc;
406 
407 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
408 		*pos++ = local->hw.radiotap_mcs_details;
409 		*pos = 0;
410 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
411 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
412 		if (status->bw == RATE_INFO_BW_40)
413 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
414 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
415 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
416 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
417 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
418 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
419 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
420 		pos++;
421 		*pos++ = status->rate_idx;
422 	}
423 
424 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
425 		u16 flags = 0;
426 
427 		/* ensure 4 byte alignment */
428 		while ((pos - (u8 *)rthdr) & 3)
429 			pos++;
430 		rthdr->it_present |=
431 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
432 		put_unaligned_le32(status->ampdu_reference, pos);
433 		pos += 4;
434 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
435 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
436 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
437 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
438 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
439 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
440 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
441 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
442 		put_unaligned_le16(flags, pos);
443 		pos += 2;
444 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
445 			*pos++ = status->ampdu_delimiter_crc;
446 		else
447 			*pos++ = 0;
448 		*pos++ = 0;
449 	}
450 
451 	if (status->encoding == RX_ENC_VHT) {
452 		u16 known = local->hw.radiotap_vht_details;
453 
454 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
455 		put_unaligned_le16(known, pos);
456 		pos += 2;
457 		/* flags */
458 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
459 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
460 		/* in VHT, STBC is binary */
461 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
462 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
463 		if (status->enc_flags & RX_ENC_FLAG_BF)
464 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
465 		pos++;
466 		/* bandwidth */
467 		switch (status->bw) {
468 		case RATE_INFO_BW_80:
469 			*pos++ = 4;
470 			break;
471 		case RATE_INFO_BW_160:
472 			*pos++ = 11;
473 			break;
474 		case RATE_INFO_BW_40:
475 			*pos++ = 1;
476 			break;
477 		default:
478 			*pos++ = 0;
479 		}
480 		/* MCS/NSS */
481 		*pos = (status->rate_idx << 4) | status->nss;
482 		pos += 4;
483 		/* coding field */
484 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
485 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
486 		pos++;
487 		/* group ID */
488 		pos++;
489 		/* partial_aid */
490 		pos += 2;
491 	}
492 
493 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
494 		u16 accuracy = 0;
495 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
496 
497 		rthdr->it_present |=
498 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
499 
500 		/* ensure 8 byte alignment */
501 		while ((pos - (u8 *)rthdr) & 7)
502 			pos++;
503 
504 		put_unaligned_le64(status->device_timestamp, pos);
505 		pos += sizeof(u64);
506 
507 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
508 			accuracy = local->hw.radiotap_timestamp.accuracy;
509 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
510 		}
511 		put_unaligned_le16(accuracy, pos);
512 		pos += sizeof(u16);
513 
514 		*pos++ = local->hw.radiotap_timestamp.units_pos;
515 		*pos++ = flags;
516 	}
517 
518 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
519 		*pos++ = status->chain_signal[chain];
520 		*pos++ = chain;
521 	}
522 
523 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
524 		/* ensure 2 byte alignment for the vendor field as required */
525 		if ((pos - (u8 *)rthdr) & 1)
526 			*pos++ = 0;
527 		*pos++ = rtap.oui[0];
528 		*pos++ = rtap.oui[1];
529 		*pos++ = rtap.oui[2];
530 		*pos++ = rtap.subns;
531 		put_unaligned_le16(rtap.len, pos);
532 		pos += 2;
533 		/* align the actual payload as requested */
534 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
535 			*pos++ = 0;
536 		/* data (and possible padding) already follows */
537 	}
538 }
539 
540 static struct sk_buff *
541 ieee80211_make_monitor_skb(struct ieee80211_local *local,
542 			   struct sk_buff **origskb,
543 			   struct ieee80211_rate *rate,
544 			   int rtap_vendor_space, bool use_origskb)
545 {
546 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
547 	int rt_hdrlen, needed_headroom;
548 	struct sk_buff *skb;
549 
550 	/* room for the radiotap header based on driver features */
551 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
552 	needed_headroom = rt_hdrlen - rtap_vendor_space;
553 
554 	if (use_origskb) {
555 		/* only need to expand headroom if necessary */
556 		skb = *origskb;
557 		*origskb = NULL;
558 
559 		/*
560 		 * This shouldn't trigger often because most devices have an
561 		 * RX header they pull before we get here, and that should
562 		 * be big enough for our radiotap information. We should
563 		 * probably export the length to drivers so that we can have
564 		 * them allocate enough headroom to start with.
565 		 */
566 		if (skb_headroom(skb) < needed_headroom &&
567 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
568 			dev_kfree_skb(skb);
569 			return NULL;
570 		}
571 	} else {
572 		/*
573 		 * Need to make a copy and possibly remove radiotap header
574 		 * and FCS from the original.
575 		 */
576 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
577 
578 		if (!skb)
579 			return NULL;
580 	}
581 
582 	/* prepend radiotap information */
583 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
584 
585 	skb_reset_mac_header(skb);
586 	skb->ip_summed = CHECKSUM_UNNECESSARY;
587 	skb->pkt_type = PACKET_OTHERHOST;
588 	skb->protocol = htons(ETH_P_802_2);
589 
590 	return skb;
591 }
592 
593 /*
594  * This function copies a received frame to all monitor interfaces and
595  * returns a cleaned-up SKB that no longer includes the FCS nor the
596  * radiotap header the driver might have added.
597  */
598 static struct sk_buff *
599 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
600 		     struct ieee80211_rate *rate)
601 {
602 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
603 	struct ieee80211_sub_if_data *sdata;
604 	struct sk_buff *monskb = NULL;
605 	int present_fcs_len = 0;
606 	unsigned int rtap_vendor_space = 0;
607 	struct ieee80211_sub_if_data *monitor_sdata =
608 		rcu_dereference(local->monitor_sdata);
609 	bool only_monitor = false;
610 
611 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
612 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
613 
614 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
615 	}
616 
617 	/*
618 	 * First, we may need to make a copy of the skb because
619 	 *  (1) we need to modify it for radiotap (if not present), and
620 	 *  (2) the other RX handlers will modify the skb we got.
621 	 *
622 	 * We don't need to, of course, if we aren't going to return
623 	 * the SKB because it has a bad FCS/PLCP checksum.
624 	 */
625 
626 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
627 		if (unlikely(origskb->len <= FCS_LEN)) {
628 			/* driver bug */
629 			WARN_ON(1);
630 			dev_kfree_skb(origskb);
631 			return NULL;
632 		}
633 		present_fcs_len = FCS_LEN;
634 	}
635 
636 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
637 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
638 		dev_kfree_skb(origskb);
639 		return NULL;
640 	}
641 
642 	only_monitor = should_drop_frame(origskb, present_fcs_len,
643 					 rtap_vendor_space);
644 
645 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
646 		if (only_monitor) {
647 			dev_kfree_skb(origskb);
648 			return NULL;
649 		}
650 
651 		remove_monitor_info(origskb, present_fcs_len,
652 				    rtap_vendor_space);
653 		return origskb;
654 	}
655 
656 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
657 
658 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
659 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
660 						 &local->mon_list);
661 
662 		if (!monskb)
663 			monskb = ieee80211_make_monitor_skb(local, &origskb,
664 							    rate,
665 							    rtap_vendor_space,
666 							    only_monitor &&
667 							    last_monitor);
668 
669 		if (monskb) {
670 			struct sk_buff *skb;
671 
672 			if (last_monitor) {
673 				skb = monskb;
674 				monskb = NULL;
675 			} else {
676 				skb = skb_clone(monskb, GFP_ATOMIC);
677 			}
678 
679 			if (skb) {
680 				skb->dev = sdata->dev;
681 				ieee80211_rx_stats(skb->dev, skb->len);
682 				netif_receive_skb(skb);
683 			}
684 		}
685 
686 		if (last_monitor)
687 			break;
688 	}
689 
690 	/* this happens if last_monitor was erroneously false */
691 	dev_kfree_skb(monskb);
692 
693 	/* ditto */
694 	if (!origskb)
695 		return NULL;
696 
697 	remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
698 	return origskb;
699 }
700 
701 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
702 {
703 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
704 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
705 	int tid, seqno_idx, security_idx;
706 
707 	/* does the frame have a qos control field? */
708 	if (ieee80211_is_data_qos(hdr->frame_control)) {
709 		u8 *qc = ieee80211_get_qos_ctl(hdr);
710 		/* frame has qos control */
711 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
712 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
713 			status->rx_flags |= IEEE80211_RX_AMSDU;
714 
715 		seqno_idx = tid;
716 		security_idx = tid;
717 	} else {
718 		/*
719 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
720 		 *
721 		 *	Sequence numbers for management frames, QoS data
722 		 *	frames with a broadcast/multicast address in the
723 		 *	Address 1 field, and all non-QoS data frames sent
724 		 *	by QoS STAs are assigned using an additional single
725 		 *	modulo-4096 counter, [...]
726 		 *
727 		 * We also use that counter for non-QoS STAs.
728 		 */
729 		seqno_idx = IEEE80211_NUM_TIDS;
730 		security_idx = 0;
731 		if (ieee80211_is_mgmt(hdr->frame_control))
732 			security_idx = IEEE80211_NUM_TIDS;
733 		tid = 0;
734 	}
735 
736 	rx->seqno_idx = seqno_idx;
737 	rx->security_idx = security_idx;
738 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
739 	 * For now, set skb->priority to 0 for other cases. */
740 	rx->skb->priority = (tid > 7) ? 0 : tid;
741 }
742 
743 /**
744  * DOC: Packet alignment
745  *
746  * Drivers always need to pass packets that are aligned to two-byte boundaries
747  * to the stack.
748  *
749  * Additionally, should, if possible, align the payload data in a way that
750  * guarantees that the contained IP header is aligned to a four-byte
751  * boundary. In the case of regular frames, this simply means aligning the
752  * payload to a four-byte boundary (because either the IP header is directly
753  * contained, or IV/RFC1042 headers that have a length divisible by four are
754  * in front of it).  If the payload data is not properly aligned and the
755  * architecture doesn't support efficient unaligned operations, mac80211
756  * will align the data.
757  *
758  * With A-MSDU frames, however, the payload data address must yield two modulo
759  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
760  * push the IP header further back to a multiple of four again. Thankfully, the
761  * specs were sane enough this time around to require padding each A-MSDU
762  * subframe to a length that is a multiple of four.
763  *
764  * Padding like Atheros hardware adds which is between the 802.11 header and
765  * the payload is not supported, the driver is required to move the 802.11
766  * header to be directly in front of the payload in that case.
767  */
768 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
769 {
770 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
771 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
772 #endif
773 }
774 
775 
776 /* rx handlers */
777 
778 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
779 {
780 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
781 
782 	if (is_multicast_ether_addr(hdr->addr1))
783 		return 0;
784 
785 	return ieee80211_is_robust_mgmt_frame(skb);
786 }
787 
788 
789 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
790 {
791 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
792 
793 	if (!is_multicast_ether_addr(hdr->addr1))
794 		return 0;
795 
796 	return ieee80211_is_robust_mgmt_frame(skb);
797 }
798 
799 
800 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
801 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
802 {
803 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
804 	struct ieee80211_mmie *mmie;
805 	struct ieee80211_mmie_16 *mmie16;
806 
807 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
808 		return -1;
809 
810 	if (!ieee80211_is_robust_mgmt_frame(skb))
811 		return -1; /* not a robust management frame */
812 
813 	mmie = (struct ieee80211_mmie *)
814 		(skb->data + skb->len - sizeof(*mmie));
815 	if (mmie->element_id == WLAN_EID_MMIE &&
816 	    mmie->length == sizeof(*mmie) - 2)
817 		return le16_to_cpu(mmie->key_id);
818 
819 	mmie16 = (struct ieee80211_mmie_16 *)
820 		(skb->data + skb->len - sizeof(*mmie16));
821 	if (skb->len >= 24 + sizeof(*mmie16) &&
822 	    mmie16->element_id == WLAN_EID_MMIE &&
823 	    mmie16->length == sizeof(*mmie16) - 2)
824 		return le16_to_cpu(mmie16->key_id);
825 
826 	return -1;
827 }
828 
829 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
830 				  struct sk_buff *skb)
831 {
832 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
833 	__le16 fc;
834 	int hdrlen;
835 	u8 keyid;
836 
837 	fc = hdr->frame_control;
838 	hdrlen = ieee80211_hdrlen(fc);
839 
840 	if (skb->len < hdrlen + cs->hdr_len)
841 		return -EINVAL;
842 
843 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
844 	keyid &= cs->key_idx_mask;
845 	keyid >>= cs->key_idx_shift;
846 
847 	return keyid;
848 }
849 
850 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
851 {
852 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
853 	char *dev_addr = rx->sdata->vif.addr;
854 
855 	if (ieee80211_is_data(hdr->frame_control)) {
856 		if (is_multicast_ether_addr(hdr->addr1)) {
857 			if (ieee80211_has_tods(hdr->frame_control) ||
858 			    !ieee80211_has_fromds(hdr->frame_control))
859 				return RX_DROP_MONITOR;
860 			if (ether_addr_equal(hdr->addr3, dev_addr))
861 				return RX_DROP_MONITOR;
862 		} else {
863 			if (!ieee80211_has_a4(hdr->frame_control))
864 				return RX_DROP_MONITOR;
865 			if (ether_addr_equal(hdr->addr4, dev_addr))
866 				return RX_DROP_MONITOR;
867 		}
868 	}
869 
870 	/* If there is not an established peer link and this is not a peer link
871 	 * establisment frame, beacon or probe, drop the frame.
872 	 */
873 
874 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
875 		struct ieee80211_mgmt *mgmt;
876 
877 		if (!ieee80211_is_mgmt(hdr->frame_control))
878 			return RX_DROP_MONITOR;
879 
880 		if (ieee80211_is_action(hdr->frame_control)) {
881 			u8 category;
882 
883 			/* make sure category field is present */
884 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
885 				return RX_DROP_MONITOR;
886 
887 			mgmt = (struct ieee80211_mgmt *)hdr;
888 			category = mgmt->u.action.category;
889 			if (category != WLAN_CATEGORY_MESH_ACTION &&
890 			    category != WLAN_CATEGORY_SELF_PROTECTED)
891 				return RX_DROP_MONITOR;
892 			return RX_CONTINUE;
893 		}
894 
895 		if (ieee80211_is_probe_req(hdr->frame_control) ||
896 		    ieee80211_is_probe_resp(hdr->frame_control) ||
897 		    ieee80211_is_beacon(hdr->frame_control) ||
898 		    ieee80211_is_auth(hdr->frame_control))
899 			return RX_CONTINUE;
900 
901 		return RX_DROP_MONITOR;
902 	}
903 
904 	return RX_CONTINUE;
905 }
906 
907 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
908 					      int index)
909 {
910 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
911 	struct sk_buff *tail = skb_peek_tail(frames);
912 	struct ieee80211_rx_status *status;
913 
914 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
915 		return true;
916 
917 	if (!tail)
918 		return false;
919 
920 	status = IEEE80211_SKB_RXCB(tail);
921 	if (status->flag & RX_FLAG_AMSDU_MORE)
922 		return false;
923 
924 	return true;
925 }
926 
927 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
928 					    struct tid_ampdu_rx *tid_agg_rx,
929 					    int index,
930 					    struct sk_buff_head *frames)
931 {
932 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
933 	struct sk_buff *skb;
934 	struct ieee80211_rx_status *status;
935 
936 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
937 
938 	if (skb_queue_empty(skb_list))
939 		goto no_frame;
940 
941 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
942 		__skb_queue_purge(skb_list);
943 		goto no_frame;
944 	}
945 
946 	/* release frames from the reorder ring buffer */
947 	tid_agg_rx->stored_mpdu_num--;
948 	while ((skb = __skb_dequeue(skb_list))) {
949 		status = IEEE80211_SKB_RXCB(skb);
950 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
951 		__skb_queue_tail(frames, skb);
952 	}
953 
954 no_frame:
955 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
956 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
957 }
958 
959 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
960 					     struct tid_ampdu_rx *tid_agg_rx,
961 					     u16 head_seq_num,
962 					     struct sk_buff_head *frames)
963 {
964 	int index;
965 
966 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
967 
968 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
969 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
970 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
971 						frames);
972 	}
973 }
974 
975 /*
976  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
977  * the skb was added to the buffer longer than this time ago, the earlier
978  * frames that have not yet been received are assumed to be lost and the skb
979  * can be released for processing. This may also release other skb's from the
980  * reorder buffer if there are no additional gaps between the frames.
981  *
982  * Callers must hold tid_agg_rx->reorder_lock.
983  */
984 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
985 
986 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
987 					  struct tid_ampdu_rx *tid_agg_rx,
988 					  struct sk_buff_head *frames)
989 {
990 	int index, i, j;
991 
992 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
993 
994 	/* release the buffer until next missing frame */
995 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
996 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
997 	    tid_agg_rx->stored_mpdu_num) {
998 		/*
999 		 * No buffers ready to be released, but check whether any
1000 		 * frames in the reorder buffer have timed out.
1001 		 */
1002 		int skipped = 1;
1003 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1004 		     j = (j + 1) % tid_agg_rx->buf_size) {
1005 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1006 				skipped++;
1007 				continue;
1008 			}
1009 			if (skipped &&
1010 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1011 					HT_RX_REORDER_BUF_TIMEOUT))
1012 				goto set_release_timer;
1013 
1014 			/* don't leave incomplete A-MSDUs around */
1015 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1016 			     i = (i + 1) % tid_agg_rx->buf_size)
1017 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1018 
1019 			ht_dbg_ratelimited(sdata,
1020 					   "release an RX reorder frame due to timeout on earlier frames\n");
1021 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1022 							frames);
1023 
1024 			/*
1025 			 * Increment the head seq# also for the skipped slots.
1026 			 */
1027 			tid_agg_rx->head_seq_num =
1028 				(tid_agg_rx->head_seq_num +
1029 				 skipped) & IEEE80211_SN_MASK;
1030 			skipped = 0;
1031 		}
1032 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1033 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1034 						frames);
1035 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1036 	}
1037 
1038 	if (tid_agg_rx->stored_mpdu_num) {
1039 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1040 
1041 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1042 		     j = (j + 1) % tid_agg_rx->buf_size) {
1043 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1044 				break;
1045 		}
1046 
1047  set_release_timer:
1048 
1049 		if (!tid_agg_rx->removed)
1050 			mod_timer(&tid_agg_rx->reorder_timer,
1051 				  tid_agg_rx->reorder_time[j] + 1 +
1052 				  HT_RX_REORDER_BUF_TIMEOUT);
1053 	} else {
1054 		del_timer(&tid_agg_rx->reorder_timer);
1055 	}
1056 }
1057 
1058 /*
1059  * As this function belongs to the RX path it must be under
1060  * rcu_read_lock protection. It returns false if the frame
1061  * can be processed immediately, true if it was consumed.
1062  */
1063 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1064 					     struct tid_ampdu_rx *tid_agg_rx,
1065 					     struct sk_buff *skb,
1066 					     struct sk_buff_head *frames)
1067 {
1068 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1069 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1070 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1071 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1072 	u16 head_seq_num, buf_size;
1073 	int index;
1074 	bool ret = true;
1075 
1076 	spin_lock(&tid_agg_rx->reorder_lock);
1077 
1078 	/*
1079 	 * Offloaded BA sessions have no known starting sequence number so pick
1080 	 * one from first Rxed frame for this tid after BA was started.
1081 	 */
1082 	if (unlikely(tid_agg_rx->auto_seq)) {
1083 		tid_agg_rx->auto_seq = false;
1084 		tid_agg_rx->ssn = mpdu_seq_num;
1085 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1086 	}
1087 
1088 	buf_size = tid_agg_rx->buf_size;
1089 	head_seq_num = tid_agg_rx->head_seq_num;
1090 
1091 	/*
1092 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1093 	 * be reordered.
1094 	 */
1095 	if (unlikely(!tid_agg_rx->started)) {
1096 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1097 			ret = false;
1098 			goto out;
1099 		}
1100 		tid_agg_rx->started = true;
1101 	}
1102 
1103 	/* frame with out of date sequence number */
1104 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1105 		dev_kfree_skb(skb);
1106 		goto out;
1107 	}
1108 
1109 	/*
1110 	 * If frame the sequence number exceeds our buffering window
1111 	 * size release some previous frames to make room for this one.
1112 	 */
1113 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1114 		head_seq_num = ieee80211_sn_inc(
1115 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1116 		/* release stored frames up to new head to stack */
1117 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1118 						 head_seq_num, frames);
1119 	}
1120 
1121 	/* Now the new frame is always in the range of the reordering buffer */
1122 
1123 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1124 
1125 	/* check if we already stored this frame */
1126 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1127 		dev_kfree_skb(skb);
1128 		goto out;
1129 	}
1130 
1131 	/*
1132 	 * If the current MPDU is in the right order and nothing else
1133 	 * is stored we can process it directly, no need to buffer it.
1134 	 * If it is first but there's something stored, we may be able
1135 	 * to release frames after this one.
1136 	 */
1137 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1138 	    tid_agg_rx->stored_mpdu_num == 0) {
1139 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1140 			tid_agg_rx->head_seq_num =
1141 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1142 		ret = false;
1143 		goto out;
1144 	}
1145 
1146 	/* put the frame in the reordering buffer */
1147 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1148 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1149 		tid_agg_rx->reorder_time[index] = jiffies;
1150 		tid_agg_rx->stored_mpdu_num++;
1151 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1152 	}
1153 
1154  out:
1155 	spin_unlock(&tid_agg_rx->reorder_lock);
1156 	return ret;
1157 }
1158 
1159 /*
1160  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1161  * true if the MPDU was buffered, false if it should be processed.
1162  */
1163 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1164 				       struct sk_buff_head *frames)
1165 {
1166 	struct sk_buff *skb = rx->skb;
1167 	struct ieee80211_local *local = rx->local;
1168 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1169 	struct sta_info *sta = rx->sta;
1170 	struct tid_ampdu_rx *tid_agg_rx;
1171 	u16 sc;
1172 	u8 tid, ack_policy;
1173 
1174 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1175 	    is_multicast_ether_addr(hdr->addr1))
1176 		goto dont_reorder;
1177 
1178 	/*
1179 	 * filter the QoS data rx stream according to
1180 	 * STA/TID and check if this STA/TID is on aggregation
1181 	 */
1182 
1183 	if (!sta)
1184 		goto dont_reorder;
1185 
1186 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1187 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1188 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1189 
1190 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1191 	if (!tid_agg_rx) {
1192 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1193 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1194 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1195 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1196 					     WLAN_BACK_RECIPIENT,
1197 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1198 		goto dont_reorder;
1199 	}
1200 
1201 	/* qos null data frames are excluded */
1202 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1203 		goto dont_reorder;
1204 
1205 	/* not part of a BA session */
1206 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1207 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1208 		goto dont_reorder;
1209 
1210 	/* new, potentially un-ordered, ampdu frame - process it */
1211 
1212 	/* reset session timer */
1213 	if (tid_agg_rx->timeout)
1214 		tid_agg_rx->last_rx = jiffies;
1215 
1216 	/* if this mpdu is fragmented - terminate rx aggregation session */
1217 	sc = le16_to_cpu(hdr->seq_ctrl);
1218 	if (sc & IEEE80211_SCTL_FRAG) {
1219 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1220 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1221 		return;
1222 	}
1223 
1224 	/*
1225 	 * No locking needed -- we will only ever process one
1226 	 * RX packet at a time, and thus own tid_agg_rx. All
1227 	 * other code manipulating it needs to (and does) make
1228 	 * sure that we cannot get to it any more before doing
1229 	 * anything with it.
1230 	 */
1231 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1232 					     frames))
1233 		return;
1234 
1235  dont_reorder:
1236 	__skb_queue_tail(frames, skb);
1237 }
1238 
1239 static ieee80211_rx_result debug_noinline
1240 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1241 {
1242 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1243 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1244 
1245 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1246 		return RX_CONTINUE;
1247 
1248 	/*
1249 	 * Drop duplicate 802.11 retransmissions
1250 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1251 	 */
1252 
1253 	if (rx->skb->len < 24)
1254 		return RX_CONTINUE;
1255 
1256 	if (ieee80211_is_ctl(hdr->frame_control) ||
1257 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1258 	    is_multicast_ether_addr(hdr->addr1))
1259 		return RX_CONTINUE;
1260 
1261 	if (!rx->sta)
1262 		return RX_CONTINUE;
1263 
1264 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1265 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1266 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1267 		rx->sta->rx_stats.num_duplicates++;
1268 		return RX_DROP_UNUSABLE;
1269 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1270 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1271 	}
1272 
1273 	return RX_CONTINUE;
1274 }
1275 
1276 static ieee80211_rx_result debug_noinline
1277 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1278 {
1279 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1280 
1281 	/* Drop disallowed frame classes based on STA auth/assoc state;
1282 	 * IEEE 802.11, Chap 5.5.
1283 	 *
1284 	 * mac80211 filters only based on association state, i.e. it drops
1285 	 * Class 3 frames from not associated stations. hostapd sends
1286 	 * deauth/disassoc frames when needed. In addition, hostapd is
1287 	 * responsible for filtering on both auth and assoc states.
1288 	 */
1289 
1290 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1291 		return ieee80211_rx_mesh_check(rx);
1292 
1293 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1294 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1295 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1296 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1297 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1298 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1299 		/*
1300 		 * accept port control frames from the AP even when it's not
1301 		 * yet marked ASSOC to prevent a race where we don't set the
1302 		 * assoc bit quickly enough before it sends the first frame
1303 		 */
1304 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1305 		    ieee80211_is_data_present(hdr->frame_control)) {
1306 			unsigned int hdrlen;
1307 			__be16 ethertype;
1308 
1309 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1310 
1311 			if (rx->skb->len < hdrlen + 8)
1312 				return RX_DROP_MONITOR;
1313 
1314 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1315 			if (ethertype == rx->sdata->control_port_protocol)
1316 				return RX_CONTINUE;
1317 		}
1318 
1319 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1320 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1321 					       hdr->addr2,
1322 					       GFP_ATOMIC))
1323 			return RX_DROP_UNUSABLE;
1324 
1325 		return RX_DROP_MONITOR;
1326 	}
1327 
1328 	return RX_CONTINUE;
1329 }
1330 
1331 
1332 static ieee80211_rx_result debug_noinline
1333 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1334 {
1335 	struct ieee80211_local *local;
1336 	struct ieee80211_hdr *hdr;
1337 	struct sk_buff *skb;
1338 
1339 	local = rx->local;
1340 	skb = rx->skb;
1341 	hdr = (struct ieee80211_hdr *) skb->data;
1342 
1343 	if (!local->pspolling)
1344 		return RX_CONTINUE;
1345 
1346 	if (!ieee80211_has_fromds(hdr->frame_control))
1347 		/* this is not from AP */
1348 		return RX_CONTINUE;
1349 
1350 	if (!ieee80211_is_data(hdr->frame_control))
1351 		return RX_CONTINUE;
1352 
1353 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1354 		/* AP has no more frames buffered for us */
1355 		local->pspolling = false;
1356 		return RX_CONTINUE;
1357 	}
1358 
1359 	/* more data bit is set, let's request a new frame from the AP */
1360 	ieee80211_send_pspoll(local, rx->sdata);
1361 
1362 	return RX_CONTINUE;
1363 }
1364 
1365 static void sta_ps_start(struct sta_info *sta)
1366 {
1367 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1368 	struct ieee80211_local *local = sdata->local;
1369 	struct ps_data *ps;
1370 	int tid;
1371 
1372 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1373 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1374 		ps = &sdata->bss->ps;
1375 	else
1376 		return;
1377 
1378 	atomic_inc(&ps->num_sta_ps);
1379 	set_sta_flag(sta, WLAN_STA_PS_STA);
1380 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1381 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1382 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1383 	       sta->sta.addr, sta->sta.aid);
1384 
1385 	ieee80211_clear_fast_xmit(sta);
1386 
1387 	if (!sta->sta.txq[0])
1388 		return;
1389 
1390 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1391 		if (txq_has_queue(sta->sta.txq[tid]))
1392 			set_bit(tid, &sta->txq_buffered_tids);
1393 		else
1394 			clear_bit(tid, &sta->txq_buffered_tids);
1395 	}
1396 }
1397 
1398 static void sta_ps_end(struct sta_info *sta)
1399 {
1400 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1401 	       sta->sta.addr, sta->sta.aid);
1402 
1403 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1404 		/*
1405 		 * Clear the flag only if the other one is still set
1406 		 * so that the TX path won't start TX'ing new frames
1407 		 * directly ... In the case that the driver flag isn't
1408 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1409 		 */
1410 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1411 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1412 		       sta->sta.addr, sta->sta.aid);
1413 		return;
1414 	}
1415 
1416 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1417 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1418 	ieee80211_sta_ps_deliver_wakeup(sta);
1419 }
1420 
1421 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1422 {
1423 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1424 	bool in_ps;
1425 
1426 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1427 
1428 	/* Don't let the same PS state be set twice */
1429 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1430 	if ((start && in_ps) || (!start && !in_ps))
1431 		return -EINVAL;
1432 
1433 	if (start)
1434 		sta_ps_start(sta);
1435 	else
1436 		sta_ps_end(sta);
1437 
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1441 
1442 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1443 {
1444 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1445 
1446 	if (test_sta_flag(sta, WLAN_STA_SP))
1447 		return;
1448 
1449 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1450 		ieee80211_sta_ps_deliver_poll_response(sta);
1451 	else
1452 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1453 }
1454 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1455 
1456 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1457 {
1458 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1459 	int ac = ieee80211_ac_from_tid(tid);
1460 
1461 	/*
1462 	 * If this AC is not trigger-enabled do nothing unless the
1463 	 * driver is calling us after it already checked.
1464 	 *
1465 	 * NB: This could/should check a separate bitmap of trigger-
1466 	 * enabled queues, but for now we only implement uAPSD w/o
1467 	 * TSPEC changes to the ACs, so they're always the same.
1468 	 */
1469 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1470 	    tid != IEEE80211_NUM_TIDS)
1471 		return;
1472 
1473 	/* if we are in a service period, do nothing */
1474 	if (test_sta_flag(sta, WLAN_STA_SP))
1475 		return;
1476 
1477 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1478 		ieee80211_sta_ps_deliver_uapsd(sta);
1479 	else
1480 		set_sta_flag(sta, WLAN_STA_UAPSD);
1481 }
1482 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1483 
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1486 {
1487 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1488 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1489 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1490 
1491 	if (!rx->sta)
1492 		return RX_CONTINUE;
1493 
1494 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1495 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1496 		return RX_CONTINUE;
1497 
1498 	/*
1499 	 * The device handles station powersave, so don't do anything about
1500 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1501 	 * it to mac80211 since they're handled.)
1502 	 */
1503 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1504 		return RX_CONTINUE;
1505 
1506 	/*
1507 	 * Don't do anything if the station isn't already asleep. In
1508 	 * the uAPSD case, the station will probably be marked asleep,
1509 	 * in the PS-Poll case the station must be confused ...
1510 	 */
1511 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1512 		return RX_CONTINUE;
1513 
1514 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1515 		ieee80211_sta_pspoll(&rx->sta->sta);
1516 
1517 		/* Free PS Poll skb here instead of returning RX_DROP that would
1518 		 * count as an dropped frame. */
1519 		dev_kfree_skb(rx->skb);
1520 
1521 		return RX_QUEUED;
1522 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1523 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1524 		   ieee80211_has_pm(hdr->frame_control) &&
1525 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1526 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1527 		u8 tid;
1528 
1529 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1530 
1531 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1532 	}
1533 
1534 	return RX_CONTINUE;
1535 }
1536 
1537 static ieee80211_rx_result debug_noinline
1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1539 {
1540 	struct sta_info *sta = rx->sta;
1541 	struct sk_buff *skb = rx->skb;
1542 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1543 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1544 	int i;
1545 
1546 	if (!sta)
1547 		return RX_CONTINUE;
1548 
1549 	/*
1550 	 * Update last_rx only for IBSS packets which are for the current
1551 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1552 	 * current IBSS network alive in cases where other STAs start
1553 	 * using different BSSID. This will also give the station another
1554 	 * chance to restart the authentication/authorization in case
1555 	 * something went wrong the first time.
1556 	 */
1557 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1558 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1559 						NL80211_IFTYPE_ADHOC);
1560 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1561 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1562 			sta->rx_stats.last_rx = jiffies;
1563 			if (ieee80211_is_data(hdr->frame_control) &&
1564 			    !is_multicast_ether_addr(hdr->addr1))
1565 				sta->rx_stats.last_rate =
1566 					sta_stats_encode_rate(status);
1567 		}
1568 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1569 		sta->rx_stats.last_rx = jiffies;
1570 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1571 		/*
1572 		 * Mesh beacons will update last_rx when if they are found to
1573 		 * match the current local configuration when processed.
1574 		 */
1575 		sta->rx_stats.last_rx = jiffies;
1576 		if (ieee80211_is_data(hdr->frame_control))
1577 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1578 	}
1579 
1580 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1581 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1582 
1583 	sta->rx_stats.fragments++;
1584 
1585 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1586 	sta->rx_stats.bytes += rx->skb->len;
1587 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1588 
1589 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1590 		sta->rx_stats.last_signal = status->signal;
1591 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1592 	}
1593 
1594 	if (status->chains) {
1595 		sta->rx_stats.chains = status->chains;
1596 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1597 			int signal = status->chain_signal[i];
1598 
1599 			if (!(status->chains & BIT(i)))
1600 				continue;
1601 
1602 			sta->rx_stats.chain_signal_last[i] = signal;
1603 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1604 					-signal);
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * Change STA power saving mode only at the end of a frame
1610 	 * exchange sequence, and only for a data or management
1611 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1612 	 */
1613 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1614 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1615 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1616 	     ieee80211_is_data(hdr->frame_control)) &&
1617 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1618 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1619 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1620 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1621 			if (!ieee80211_has_pm(hdr->frame_control))
1622 				sta_ps_end(sta);
1623 		} else {
1624 			if (ieee80211_has_pm(hdr->frame_control))
1625 				sta_ps_start(sta);
1626 		}
1627 	}
1628 
1629 	/* mesh power save support */
1630 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1631 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1632 
1633 	/*
1634 	 * Drop (qos-)data::nullfunc frames silently, since they
1635 	 * are used only to control station power saving mode.
1636 	 */
1637 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1638 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1639 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1640 
1641 		/*
1642 		 * If we receive a 4-addr nullfunc frame from a STA
1643 		 * that was not moved to a 4-addr STA vlan yet send
1644 		 * the event to userspace and for older hostapd drop
1645 		 * the frame to the monitor interface.
1646 		 */
1647 		if (ieee80211_has_a4(hdr->frame_control) &&
1648 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1649 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1650 		      !rx->sdata->u.vlan.sta))) {
1651 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1652 				cfg80211_rx_unexpected_4addr_frame(
1653 					rx->sdata->dev, sta->sta.addr,
1654 					GFP_ATOMIC);
1655 			return RX_DROP_MONITOR;
1656 		}
1657 		/*
1658 		 * Update counter and free packet here to avoid
1659 		 * counting this as a dropped packed.
1660 		 */
1661 		sta->rx_stats.packets++;
1662 		dev_kfree_skb(rx->skb);
1663 		return RX_QUEUED;
1664 	}
1665 
1666 	return RX_CONTINUE;
1667 } /* ieee80211_rx_h_sta_process */
1668 
1669 static ieee80211_rx_result debug_noinline
1670 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1671 {
1672 	struct sk_buff *skb = rx->skb;
1673 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1674 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1675 	int keyidx;
1676 	int hdrlen;
1677 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1678 	struct ieee80211_key *sta_ptk = NULL;
1679 	int mmie_keyidx = -1;
1680 	__le16 fc;
1681 	const struct ieee80211_cipher_scheme *cs = NULL;
1682 
1683 	/*
1684 	 * Key selection 101
1685 	 *
1686 	 * There are four types of keys:
1687 	 *  - GTK (group keys)
1688 	 *  - IGTK (group keys for management frames)
1689 	 *  - PTK (pairwise keys)
1690 	 *  - STK (station-to-station pairwise keys)
1691 	 *
1692 	 * When selecting a key, we have to distinguish between multicast
1693 	 * (including broadcast) and unicast frames, the latter can only
1694 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1695 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1696 	 * unicast frames can also use key indices like GTKs. Hence, if we
1697 	 * don't have a PTK/STK we check the key index for a WEP key.
1698 	 *
1699 	 * Note that in a regular BSS, multicast frames are sent by the
1700 	 * AP only, associated stations unicast the frame to the AP first
1701 	 * which then multicasts it on their behalf.
1702 	 *
1703 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1704 	 * with each station, that is something we don't currently handle.
1705 	 * The spec seems to expect that one negotiates the same key with
1706 	 * every station but there's no such requirement; VLANs could be
1707 	 * possible.
1708 	 */
1709 
1710 	/* start without a key */
1711 	rx->key = NULL;
1712 	fc = hdr->frame_control;
1713 
1714 	if (rx->sta) {
1715 		int keyid = rx->sta->ptk_idx;
1716 
1717 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1718 			cs = rx->sta->cipher_scheme;
1719 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1720 			if (unlikely(keyid < 0))
1721 				return RX_DROP_UNUSABLE;
1722 		}
1723 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1724 	}
1725 
1726 	if (!ieee80211_has_protected(fc))
1727 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1728 
1729 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1730 		rx->key = sta_ptk;
1731 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1732 		    (status->flag & RX_FLAG_IV_STRIPPED))
1733 			return RX_CONTINUE;
1734 		/* Skip decryption if the frame is not protected. */
1735 		if (!ieee80211_has_protected(fc))
1736 			return RX_CONTINUE;
1737 	} else if (mmie_keyidx >= 0) {
1738 		/* Broadcast/multicast robust management frame / BIP */
1739 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1740 		    (status->flag & RX_FLAG_IV_STRIPPED))
1741 			return RX_CONTINUE;
1742 
1743 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1744 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1745 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1746 		if (rx->sta) {
1747 			if (ieee80211_is_group_privacy_action(skb) &&
1748 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1749 				return RX_DROP_MONITOR;
1750 
1751 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1752 		}
1753 		if (!rx->key)
1754 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1755 	} else if (!ieee80211_has_protected(fc)) {
1756 		/*
1757 		 * The frame was not protected, so skip decryption. However, we
1758 		 * need to set rx->key if there is a key that could have been
1759 		 * used so that the frame may be dropped if encryption would
1760 		 * have been expected.
1761 		 */
1762 		struct ieee80211_key *key = NULL;
1763 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1764 		int i;
1765 
1766 		if (ieee80211_is_mgmt(fc) &&
1767 		    is_multicast_ether_addr(hdr->addr1) &&
1768 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1769 			rx->key = key;
1770 		else {
1771 			if (rx->sta) {
1772 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1773 					key = rcu_dereference(rx->sta->gtk[i]);
1774 					if (key)
1775 						break;
1776 				}
1777 			}
1778 			if (!key) {
1779 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1780 					key = rcu_dereference(sdata->keys[i]);
1781 					if (key)
1782 						break;
1783 				}
1784 			}
1785 			if (key)
1786 				rx->key = key;
1787 		}
1788 		return RX_CONTINUE;
1789 	} else {
1790 		u8 keyid;
1791 
1792 		/*
1793 		 * The device doesn't give us the IV so we won't be
1794 		 * able to look up the key. That's ok though, we
1795 		 * don't need to decrypt the frame, we just won't
1796 		 * be able to keep statistics accurate.
1797 		 * Except for key threshold notifications, should
1798 		 * we somehow allow the driver to tell us which key
1799 		 * the hardware used if this flag is set?
1800 		 */
1801 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1802 		    (status->flag & RX_FLAG_IV_STRIPPED))
1803 			return RX_CONTINUE;
1804 
1805 		hdrlen = ieee80211_hdrlen(fc);
1806 
1807 		if (cs) {
1808 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1809 
1810 			if (unlikely(keyidx < 0))
1811 				return RX_DROP_UNUSABLE;
1812 		} else {
1813 			if (rx->skb->len < 8 + hdrlen)
1814 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1815 			/*
1816 			 * no need to call ieee80211_wep_get_keyidx,
1817 			 * it verifies a bunch of things we've done already
1818 			 */
1819 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1820 			keyidx = keyid >> 6;
1821 		}
1822 
1823 		/* check per-station GTK first, if multicast packet */
1824 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1825 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1826 
1827 		/* if not found, try default key */
1828 		if (!rx->key) {
1829 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1830 
1831 			/*
1832 			 * RSNA-protected unicast frames should always be
1833 			 * sent with pairwise or station-to-station keys,
1834 			 * but for WEP we allow using a key index as well.
1835 			 */
1836 			if (rx->key &&
1837 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1838 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1839 			    !is_multicast_ether_addr(hdr->addr1))
1840 				rx->key = NULL;
1841 		}
1842 	}
1843 
1844 	if (rx->key) {
1845 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1846 			return RX_DROP_MONITOR;
1847 
1848 		/* TODO: add threshold stuff again */
1849 	} else {
1850 		return RX_DROP_MONITOR;
1851 	}
1852 
1853 	switch (rx->key->conf.cipher) {
1854 	case WLAN_CIPHER_SUITE_WEP40:
1855 	case WLAN_CIPHER_SUITE_WEP104:
1856 		result = ieee80211_crypto_wep_decrypt(rx);
1857 		break;
1858 	case WLAN_CIPHER_SUITE_TKIP:
1859 		result = ieee80211_crypto_tkip_decrypt(rx);
1860 		break;
1861 	case WLAN_CIPHER_SUITE_CCMP:
1862 		result = ieee80211_crypto_ccmp_decrypt(
1863 			rx, IEEE80211_CCMP_MIC_LEN);
1864 		break;
1865 	case WLAN_CIPHER_SUITE_CCMP_256:
1866 		result = ieee80211_crypto_ccmp_decrypt(
1867 			rx, IEEE80211_CCMP_256_MIC_LEN);
1868 		break;
1869 	case WLAN_CIPHER_SUITE_AES_CMAC:
1870 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1871 		break;
1872 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1873 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1874 		break;
1875 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1876 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1877 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1878 		break;
1879 	case WLAN_CIPHER_SUITE_GCMP:
1880 	case WLAN_CIPHER_SUITE_GCMP_256:
1881 		result = ieee80211_crypto_gcmp_decrypt(rx);
1882 		break;
1883 	default:
1884 		result = ieee80211_crypto_hw_decrypt(rx);
1885 	}
1886 
1887 	/* the hdr variable is invalid after the decrypt handlers */
1888 
1889 	/* either the frame has been decrypted or will be dropped */
1890 	status->flag |= RX_FLAG_DECRYPTED;
1891 
1892 	return result;
1893 }
1894 
1895 static inline struct ieee80211_fragment_entry *
1896 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1897 			 unsigned int frag, unsigned int seq, int rx_queue,
1898 			 struct sk_buff **skb)
1899 {
1900 	struct ieee80211_fragment_entry *entry;
1901 
1902 	entry = &sdata->fragments[sdata->fragment_next++];
1903 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1904 		sdata->fragment_next = 0;
1905 
1906 	if (!skb_queue_empty(&entry->skb_list))
1907 		__skb_queue_purge(&entry->skb_list);
1908 
1909 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1910 	*skb = NULL;
1911 	entry->first_frag_time = jiffies;
1912 	entry->seq = seq;
1913 	entry->rx_queue = rx_queue;
1914 	entry->last_frag = frag;
1915 	entry->check_sequential_pn = false;
1916 	entry->extra_len = 0;
1917 
1918 	return entry;
1919 }
1920 
1921 static inline struct ieee80211_fragment_entry *
1922 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1923 			  unsigned int frag, unsigned int seq,
1924 			  int rx_queue, struct ieee80211_hdr *hdr)
1925 {
1926 	struct ieee80211_fragment_entry *entry;
1927 	int i, idx;
1928 
1929 	idx = sdata->fragment_next;
1930 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1931 		struct ieee80211_hdr *f_hdr;
1932 
1933 		idx--;
1934 		if (idx < 0)
1935 			idx = IEEE80211_FRAGMENT_MAX - 1;
1936 
1937 		entry = &sdata->fragments[idx];
1938 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1939 		    entry->rx_queue != rx_queue ||
1940 		    entry->last_frag + 1 != frag)
1941 			continue;
1942 
1943 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1944 
1945 		/*
1946 		 * Check ftype and addresses are equal, else check next fragment
1947 		 */
1948 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1949 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1950 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1951 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1952 			continue;
1953 
1954 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1955 			__skb_queue_purge(&entry->skb_list);
1956 			continue;
1957 		}
1958 		return entry;
1959 	}
1960 
1961 	return NULL;
1962 }
1963 
1964 static ieee80211_rx_result debug_noinline
1965 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1966 {
1967 	struct ieee80211_hdr *hdr;
1968 	u16 sc;
1969 	__le16 fc;
1970 	unsigned int frag, seq;
1971 	struct ieee80211_fragment_entry *entry;
1972 	struct sk_buff *skb;
1973 
1974 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1975 	fc = hdr->frame_control;
1976 
1977 	if (ieee80211_is_ctl(fc))
1978 		return RX_CONTINUE;
1979 
1980 	sc = le16_to_cpu(hdr->seq_ctrl);
1981 	frag = sc & IEEE80211_SCTL_FRAG;
1982 
1983 	if (is_multicast_ether_addr(hdr->addr1)) {
1984 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1985 		goto out_no_led;
1986 	}
1987 
1988 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1989 		goto out;
1990 
1991 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1992 
1993 	if (skb_linearize(rx->skb))
1994 		return RX_DROP_UNUSABLE;
1995 
1996 	/*
1997 	 *  skb_linearize() might change the skb->data and
1998 	 *  previously cached variables (in this case, hdr) need to
1999 	 *  be refreshed with the new data.
2000 	 */
2001 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2002 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2003 
2004 	if (frag == 0) {
2005 		/* This is the first fragment of a new frame. */
2006 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2007 						 rx->seqno_idx, &(rx->skb));
2008 		if (rx->key &&
2009 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2010 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2011 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2012 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2013 		    ieee80211_has_protected(fc)) {
2014 			int queue = rx->security_idx;
2015 
2016 			/* Store CCMP/GCMP PN so that we can verify that the
2017 			 * next fragment has a sequential PN value.
2018 			 */
2019 			entry->check_sequential_pn = true;
2020 			memcpy(entry->last_pn,
2021 			       rx->key->u.ccmp.rx_pn[queue],
2022 			       IEEE80211_CCMP_PN_LEN);
2023 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2024 					      u.ccmp.rx_pn) !=
2025 				     offsetof(struct ieee80211_key,
2026 					      u.gcmp.rx_pn));
2027 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2028 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2029 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2030 				     IEEE80211_GCMP_PN_LEN);
2031 		}
2032 		return RX_QUEUED;
2033 	}
2034 
2035 	/* This is a fragment for a frame that should already be pending in
2036 	 * fragment cache. Add this fragment to the end of the pending entry.
2037 	 */
2038 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2039 					  rx->seqno_idx, hdr);
2040 	if (!entry) {
2041 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2042 		return RX_DROP_MONITOR;
2043 	}
2044 
2045 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2046 	 *  MPDU PN values are not incrementing in steps of 1."
2047 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2048 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2049 	 */
2050 	if (entry->check_sequential_pn) {
2051 		int i;
2052 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2053 		int queue;
2054 
2055 		if (!rx->key ||
2056 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2057 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2058 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2059 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2060 			return RX_DROP_UNUSABLE;
2061 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2062 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2063 			pn[i]++;
2064 			if (pn[i])
2065 				break;
2066 		}
2067 		queue = rx->security_idx;
2068 		rpn = rx->key->u.ccmp.rx_pn[queue];
2069 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2070 			return RX_DROP_UNUSABLE;
2071 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2072 	}
2073 
2074 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2075 	__skb_queue_tail(&entry->skb_list, rx->skb);
2076 	entry->last_frag = frag;
2077 	entry->extra_len += rx->skb->len;
2078 	if (ieee80211_has_morefrags(fc)) {
2079 		rx->skb = NULL;
2080 		return RX_QUEUED;
2081 	}
2082 
2083 	rx->skb = __skb_dequeue(&entry->skb_list);
2084 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2085 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2086 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2087 					      GFP_ATOMIC))) {
2088 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2089 			__skb_queue_purge(&entry->skb_list);
2090 			return RX_DROP_UNUSABLE;
2091 		}
2092 	}
2093 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2094 		skb_put_data(rx->skb, skb->data, skb->len);
2095 		dev_kfree_skb(skb);
2096 	}
2097 
2098  out:
2099 	ieee80211_led_rx(rx->local);
2100  out_no_led:
2101 	if (rx->sta)
2102 		rx->sta->rx_stats.packets++;
2103 	return RX_CONTINUE;
2104 }
2105 
2106 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2107 {
2108 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2109 		return -EACCES;
2110 
2111 	return 0;
2112 }
2113 
2114 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2115 {
2116 	struct sk_buff *skb = rx->skb;
2117 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2118 
2119 	/*
2120 	 * Pass through unencrypted frames if the hardware has
2121 	 * decrypted them already.
2122 	 */
2123 	if (status->flag & RX_FLAG_DECRYPTED)
2124 		return 0;
2125 
2126 	/* Drop unencrypted frames if key is set. */
2127 	if (unlikely(!ieee80211_has_protected(fc) &&
2128 		     !ieee80211_is_nullfunc(fc) &&
2129 		     ieee80211_is_data(fc) && rx->key))
2130 		return -EACCES;
2131 
2132 	return 0;
2133 }
2134 
2135 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2136 {
2137 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2138 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2139 	__le16 fc = hdr->frame_control;
2140 
2141 	/*
2142 	 * Pass through unencrypted frames if the hardware has
2143 	 * decrypted them already.
2144 	 */
2145 	if (status->flag & RX_FLAG_DECRYPTED)
2146 		return 0;
2147 
2148 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2149 		if (unlikely(!ieee80211_has_protected(fc) &&
2150 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2151 			     rx->key)) {
2152 			if (ieee80211_is_deauth(fc) ||
2153 			    ieee80211_is_disassoc(fc))
2154 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2155 							     rx->skb->data,
2156 							     rx->skb->len);
2157 			return -EACCES;
2158 		}
2159 		/* BIP does not use Protected field, so need to check MMIE */
2160 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2161 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2162 			if (ieee80211_is_deauth(fc) ||
2163 			    ieee80211_is_disassoc(fc))
2164 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2165 							     rx->skb->data,
2166 							     rx->skb->len);
2167 			return -EACCES;
2168 		}
2169 		/*
2170 		 * When using MFP, Action frames are not allowed prior to
2171 		 * having configured keys.
2172 		 */
2173 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2174 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2175 			return -EACCES;
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 static int
2182 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2183 {
2184 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2185 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2186 	bool check_port_control = false;
2187 	struct ethhdr *ehdr;
2188 	int ret;
2189 
2190 	*port_control = false;
2191 	if (ieee80211_has_a4(hdr->frame_control) &&
2192 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2193 		return -1;
2194 
2195 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2196 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2197 
2198 		if (!sdata->u.mgd.use_4addr)
2199 			return -1;
2200 		else
2201 			check_port_control = true;
2202 	}
2203 
2204 	if (is_multicast_ether_addr(hdr->addr1) &&
2205 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2206 		return -1;
2207 
2208 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2209 	if (ret < 0)
2210 		return ret;
2211 
2212 	ehdr = (struct ethhdr *) rx->skb->data;
2213 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2214 		*port_control = true;
2215 	else if (check_port_control)
2216 		return -1;
2217 
2218 	return 0;
2219 }
2220 
2221 /*
2222  * requires that rx->skb is a frame with ethernet header
2223  */
2224 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2225 {
2226 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2227 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2228 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2229 
2230 	/*
2231 	 * Allow EAPOL frames to us/the PAE group address regardless
2232 	 * of whether the frame was encrypted or not.
2233 	 */
2234 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2235 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2236 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2237 		return true;
2238 
2239 	if (ieee80211_802_1x_port_control(rx) ||
2240 	    ieee80211_drop_unencrypted(rx, fc))
2241 		return false;
2242 
2243 	return true;
2244 }
2245 
2246 /*
2247  * requires that rx->skb is a frame with ethernet header
2248  */
2249 static void
2250 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2251 {
2252 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2253 	struct net_device *dev = sdata->dev;
2254 	struct sk_buff *skb, *xmit_skb;
2255 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2256 	struct sta_info *dsta;
2257 
2258 	skb = rx->skb;
2259 	xmit_skb = NULL;
2260 
2261 	ieee80211_rx_stats(dev, skb->len);
2262 
2263 	if (rx->sta) {
2264 		/* The seqno index has the same property as needed
2265 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2266 		 * for non-QoS-data frames. Here we know it's a data
2267 		 * frame, so count MSDUs.
2268 		 */
2269 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2270 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2271 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2272 	}
2273 
2274 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2275 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2276 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2277 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2278 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2279 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2280 			/*
2281 			 * send multicast frames both to higher layers in
2282 			 * local net stack and back to the wireless medium
2283 			 */
2284 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2285 			if (!xmit_skb)
2286 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2287 						    dev->name);
2288 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2289 			dsta = sta_info_get(sdata, skb->data);
2290 			if (dsta) {
2291 				/*
2292 				 * The destination station is associated to
2293 				 * this AP (in this VLAN), so send the frame
2294 				 * directly to it and do not pass it to local
2295 				 * net stack.
2296 				 */
2297 				xmit_skb = skb;
2298 				skb = NULL;
2299 			}
2300 		}
2301 	}
2302 
2303 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2304 	if (skb) {
2305 		/* 'align' will only take the values 0 or 2 here since all
2306 		 * frames are required to be aligned to 2-byte boundaries
2307 		 * when being passed to mac80211; the code here works just
2308 		 * as well if that isn't true, but mac80211 assumes it can
2309 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2310 		 */
2311 		int align;
2312 
2313 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2314 		if (align) {
2315 			if (WARN_ON(skb_headroom(skb) < 3)) {
2316 				dev_kfree_skb(skb);
2317 				skb = NULL;
2318 			} else {
2319 				u8 *data = skb->data;
2320 				size_t len = skb_headlen(skb);
2321 				skb->data -= align;
2322 				memmove(skb->data, data, len);
2323 				skb_set_tail_pointer(skb, len);
2324 			}
2325 		}
2326 	}
2327 #endif
2328 
2329 	if (skb) {
2330 		/* deliver to local stack */
2331 		skb->protocol = eth_type_trans(skb, dev);
2332 		memset(skb->cb, 0, sizeof(skb->cb));
2333 		if (rx->napi)
2334 			napi_gro_receive(rx->napi, skb);
2335 		else
2336 			netif_receive_skb(skb);
2337 	}
2338 
2339 	if (xmit_skb) {
2340 		/*
2341 		 * Send to wireless media and increase priority by 256 to
2342 		 * keep the received priority instead of reclassifying
2343 		 * the frame (see cfg80211_classify8021d).
2344 		 */
2345 		xmit_skb->priority += 256;
2346 		xmit_skb->protocol = htons(ETH_P_802_3);
2347 		skb_reset_network_header(xmit_skb);
2348 		skb_reset_mac_header(xmit_skb);
2349 		dev_queue_xmit(xmit_skb);
2350 	}
2351 }
2352 
2353 static ieee80211_rx_result debug_noinline
2354 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2355 {
2356 	struct net_device *dev = rx->sdata->dev;
2357 	struct sk_buff *skb = rx->skb;
2358 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2359 	__le16 fc = hdr->frame_control;
2360 	struct sk_buff_head frame_list;
2361 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2362 	struct ethhdr ethhdr;
2363 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2364 
2365 	if (unlikely(!ieee80211_is_data(fc)))
2366 		return RX_CONTINUE;
2367 
2368 	if (unlikely(!ieee80211_is_data_present(fc)))
2369 		return RX_DROP_MONITOR;
2370 
2371 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2372 		return RX_CONTINUE;
2373 
2374 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2375 		switch (rx->sdata->vif.type) {
2376 		case NL80211_IFTYPE_AP_VLAN:
2377 			if (!rx->sdata->u.vlan.sta)
2378 				return RX_DROP_UNUSABLE;
2379 			break;
2380 		case NL80211_IFTYPE_STATION:
2381 			if (!rx->sdata->u.mgd.use_4addr)
2382 				return RX_DROP_UNUSABLE;
2383 			break;
2384 		default:
2385 			return RX_DROP_UNUSABLE;
2386 		}
2387 		check_da = NULL;
2388 		check_sa = NULL;
2389 	} else switch (rx->sdata->vif.type) {
2390 		case NL80211_IFTYPE_AP:
2391 		case NL80211_IFTYPE_AP_VLAN:
2392 			check_da = NULL;
2393 			break;
2394 		case NL80211_IFTYPE_STATION:
2395 			if (!rx->sta ||
2396 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2397 				check_sa = NULL;
2398 			break;
2399 		case NL80211_IFTYPE_MESH_POINT:
2400 			check_sa = NULL;
2401 			break;
2402 		default:
2403 			break;
2404 	}
2405 
2406 	if (is_multicast_ether_addr(hdr->addr1))
2407 		return RX_DROP_UNUSABLE;
2408 
2409 	skb->dev = dev;
2410 	__skb_queue_head_init(&frame_list);
2411 
2412 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2413 					  rx->sdata->vif.addr,
2414 					  rx->sdata->vif.type))
2415 		return RX_DROP_UNUSABLE;
2416 
2417 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2418 				 rx->sdata->vif.type,
2419 				 rx->local->hw.extra_tx_headroom,
2420 				 check_da, check_sa);
2421 
2422 	while (!skb_queue_empty(&frame_list)) {
2423 		rx->skb = __skb_dequeue(&frame_list);
2424 
2425 		if (!ieee80211_frame_allowed(rx, fc)) {
2426 			dev_kfree_skb(rx->skb);
2427 			continue;
2428 		}
2429 
2430 		ieee80211_deliver_skb(rx);
2431 	}
2432 
2433 	return RX_QUEUED;
2434 }
2435 
2436 #ifdef CONFIG_MAC80211_MESH
2437 static ieee80211_rx_result
2438 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2439 {
2440 	struct ieee80211_hdr *fwd_hdr, *hdr;
2441 	struct ieee80211_tx_info *info;
2442 	struct ieee80211s_hdr *mesh_hdr;
2443 	struct sk_buff *skb = rx->skb, *fwd_skb;
2444 	struct ieee80211_local *local = rx->local;
2445 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2446 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2447 	u16 ac, q, hdrlen;
2448 
2449 	hdr = (struct ieee80211_hdr *) skb->data;
2450 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2451 
2452 	/* make sure fixed part of mesh header is there, also checks skb len */
2453 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2454 		return RX_DROP_MONITOR;
2455 
2456 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2457 
2458 	/* make sure full mesh header is there, also checks skb len */
2459 	if (!pskb_may_pull(rx->skb,
2460 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2461 		return RX_DROP_MONITOR;
2462 
2463 	/* reload pointers */
2464 	hdr = (struct ieee80211_hdr *) skb->data;
2465 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2466 
2467 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2468 		return RX_DROP_MONITOR;
2469 
2470 	/* frame is in RMC, don't forward */
2471 	if (ieee80211_is_data(hdr->frame_control) &&
2472 	    is_multicast_ether_addr(hdr->addr1) &&
2473 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2474 		return RX_DROP_MONITOR;
2475 
2476 	if (!ieee80211_is_data(hdr->frame_control))
2477 		return RX_CONTINUE;
2478 
2479 	if (!mesh_hdr->ttl)
2480 		return RX_DROP_MONITOR;
2481 
2482 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2483 		struct mesh_path *mppath;
2484 		char *proxied_addr;
2485 		char *mpp_addr;
2486 
2487 		if (is_multicast_ether_addr(hdr->addr1)) {
2488 			mpp_addr = hdr->addr3;
2489 			proxied_addr = mesh_hdr->eaddr1;
2490 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2491 			    MESH_FLAGS_AE_A5_A6) {
2492 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2493 			mpp_addr = hdr->addr4;
2494 			proxied_addr = mesh_hdr->eaddr2;
2495 		} else {
2496 			return RX_DROP_MONITOR;
2497 		}
2498 
2499 		rcu_read_lock();
2500 		mppath = mpp_path_lookup(sdata, proxied_addr);
2501 		if (!mppath) {
2502 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2503 		} else {
2504 			spin_lock_bh(&mppath->state_lock);
2505 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2506 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2507 			mppath->exp_time = jiffies;
2508 			spin_unlock_bh(&mppath->state_lock);
2509 		}
2510 		rcu_read_unlock();
2511 	}
2512 
2513 	/* Frame has reached destination.  Don't forward */
2514 	if (!is_multicast_ether_addr(hdr->addr1) &&
2515 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2516 		return RX_CONTINUE;
2517 
2518 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2519 	q = sdata->vif.hw_queue[ac];
2520 	if (ieee80211_queue_stopped(&local->hw, q)) {
2521 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2522 		return RX_DROP_MONITOR;
2523 	}
2524 	skb_set_queue_mapping(skb, q);
2525 
2526 	if (!--mesh_hdr->ttl) {
2527 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2528 		goto out;
2529 	}
2530 
2531 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2532 		goto out;
2533 
2534 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2535 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2536 	if (!fwd_skb) {
2537 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2538 				    sdata->name);
2539 		goto out;
2540 	}
2541 
2542 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2543 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2544 	info = IEEE80211_SKB_CB(fwd_skb);
2545 	memset(info, 0, sizeof(*info));
2546 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2547 	info->control.vif = &rx->sdata->vif;
2548 	info->control.jiffies = jiffies;
2549 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2550 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2551 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2552 		/* update power mode indication when forwarding */
2553 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2554 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2555 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2556 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2557 	} else {
2558 		/* unable to resolve next hop */
2559 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2560 				   fwd_hdr->addr3, 0,
2561 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2562 				   fwd_hdr->addr2);
2563 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2564 		kfree_skb(fwd_skb);
2565 		return RX_DROP_MONITOR;
2566 	}
2567 
2568 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2569 	ieee80211_add_pending_skb(local, fwd_skb);
2570  out:
2571 	if (is_multicast_ether_addr(hdr->addr1))
2572 		return RX_CONTINUE;
2573 	return RX_DROP_MONITOR;
2574 }
2575 #endif
2576 
2577 static ieee80211_rx_result debug_noinline
2578 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2579 {
2580 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2581 	struct ieee80211_local *local = rx->local;
2582 	struct net_device *dev = sdata->dev;
2583 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2584 	__le16 fc = hdr->frame_control;
2585 	bool port_control;
2586 	int err;
2587 
2588 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2589 		return RX_CONTINUE;
2590 
2591 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2592 		return RX_DROP_MONITOR;
2593 
2594 	/*
2595 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2596 	 * also drop the frame to cooked monitor interfaces.
2597 	 */
2598 	if (ieee80211_has_a4(hdr->frame_control) &&
2599 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2600 		if (rx->sta &&
2601 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2602 			cfg80211_rx_unexpected_4addr_frame(
2603 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2604 		return RX_DROP_MONITOR;
2605 	}
2606 
2607 	err = __ieee80211_data_to_8023(rx, &port_control);
2608 	if (unlikely(err))
2609 		return RX_DROP_UNUSABLE;
2610 
2611 	if (!ieee80211_frame_allowed(rx, fc))
2612 		return RX_DROP_MONITOR;
2613 
2614 	/* directly handle TDLS channel switch requests/responses */
2615 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2616 						cpu_to_be16(ETH_P_TDLS))) {
2617 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2618 
2619 		if (pskb_may_pull(rx->skb,
2620 				  offsetof(struct ieee80211_tdls_data, u)) &&
2621 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2622 		    tf->category == WLAN_CATEGORY_TDLS &&
2623 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2624 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2625 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2626 			schedule_work(&local->tdls_chsw_work);
2627 			if (rx->sta)
2628 				rx->sta->rx_stats.packets++;
2629 
2630 			return RX_QUEUED;
2631 		}
2632 	}
2633 
2634 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2635 	    unlikely(port_control) && sdata->bss) {
2636 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2637 				     u.ap);
2638 		dev = sdata->dev;
2639 		rx->sdata = sdata;
2640 	}
2641 
2642 	rx->skb->dev = dev;
2643 
2644 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2645 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2646 	    !is_multicast_ether_addr(
2647 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2648 	    (!local->scanning &&
2649 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2650 		mod_timer(&local->dynamic_ps_timer, jiffies +
2651 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2652 
2653 	ieee80211_deliver_skb(rx);
2654 
2655 	return RX_QUEUED;
2656 }
2657 
2658 static ieee80211_rx_result debug_noinline
2659 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2660 {
2661 	struct sk_buff *skb = rx->skb;
2662 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2663 	struct tid_ampdu_rx *tid_agg_rx;
2664 	u16 start_seq_num;
2665 	u16 tid;
2666 
2667 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2668 		return RX_CONTINUE;
2669 
2670 	if (ieee80211_is_back_req(bar->frame_control)) {
2671 		struct {
2672 			__le16 control, start_seq_num;
2673 		} __packed bar_data;
2674 		struct ieee80211_event event = {
2675 			.type = BAR_RX_EVENT,
2676 		};
2677 
2678 		if (!rx->sta)
2679 			return RX_DROP_MONITOR;
2680 
2681 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2682 				  &bar_data, sizeof(bar_data)))
2683 			return RX_DROP_MONITOR;
2684 
2685 		tid = le16_to_cpu(bar_data.control) >> 12;
2686 
2687 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2688 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2689 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2690 					     WLAN_BACK_RECIPIENT,
2691 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2692 
2693 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2694 		if (!tid_agg_rx)
2695 			return RX_DROP_MONITOR;
2696 
2697 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2698 		event.u.ba.tid = tid;
2699 		event.u.ba.ssn = start_seq_num;
2700 		event.u.ba.sta = &rx->sta->sta;
2701 
2702 		/* reset session timer */
2703 		if (tid_agg_rx->timeout)
2704 			mod_timer(&tid_agg_rx->session_timer,
2705 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2706 
2707 		spin_lock(&tid_agg_rx->reorder_lock);
2708 		/* release stored frames up to start of BAR */
2709 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2710 						 start_seq_num, frames);
2711 		spin_unlock(&tid_agg_rx->reorder_lock);
2712 
2713 		drv_event_callback(rx->local, rx->sdata, &event);
2714 
2715 		kfree_skb(skb);
2716 		return RX_QUEUED;
2717 	}
2718 
2719 	/*
2720 	 * After this point, we only want management frames,
2721 	 * so we can drop all remaining control frames to
2722 	 * cooked monitor interfaces.
2723 	 */
2724 	return RX_DROP_MONITOR;
2725 }
2726 
2727 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2728 					   struct ieee80211_mgmt *mgmt,
2729 					   size_t len)
2730 {
2731 	struct ieee80211_local *local = sdata->local;
2732 	struct sk_buff *skb;
2733 	struct ieee80211_mgmt *resp;
2734 
2735 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2736 		/* Not to own unicast address */
2737 		return;
2738 	}
2739 
2740 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2741 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2742 		/* Not from the current AP or not associated yet. */
2743 		return;
2744 	}
2745 
2746 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2747 		/* Too short SA Query request frame */
2748 		return;
2749 	}
2750 
2751 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2752 	if (skb == NULL)
2753 		return;
2754 
2755 	skb_reserve(skb, local->hw.extra_tx_headroom);
2756 	resp = skb_put_zero(skb, 24);
2757 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2758 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2759 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2760 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2761 					  IEEE80211_STYPE_ACTION);
2762 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2763 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2764 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2765 	memcpy(resp->u.action.u.sa_query.trans_id,
2766 	       mgmt->u.action.u.sa_query.trans_id,
2767 	       WLAN_SA_QUERY_TR_ID_LEN);
2768 
2769 	ieee80211_tx_skb(sdata, skb);
2770 }
2771 
2772 static ieee80211_rx_result debug_noinline
2773 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2774 {
2775 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2776 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2777 
2778 	/*
2779 	 * From here on, look only at management frames.
2780 	 * Data and control frames are already handled,
2781 	 * and unknown (reserved) frames are useless.
2782 	 */
2783 	if (rx->skb->len < 24)
2784 		return RX_DROP_MONITOR;
2785 
2786 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2787 		return RX_DROP_MONITOR;
2788 
2789 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2790 	    ieee80211_is_beacon(mgmt->frame_control) &&
2791 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2792 		int sig = 0;
2793 
2794 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2795 			sig = status->signal;
2796 
2797 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2798 					    rx->skb->data, rx->skb->len,
2799 					    status->freq, sig);
2800 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2801 	}
2802 
2803 	if (ieee80211_drop_unencrypted_mgmt(rx))
2804 		return RX_DROP_UNUSABLE;
2805 
2806 	return RX_CONTINUE;
2807 }
2808 
2809 static ieee80211_rx_result debug_noinline
2810 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2811 {
2812 	struct ieee80211_local *local = rx->local;
2813 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2814 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2815 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2816 	int len = rx->skb->len;
2817 
2818 	if (!ieee80211_is_action(mgmt->frame_control))
2819 		return RX_CONTINUE;
2820 
2821 	/* drop too small frames */
2822 	if (len < IEEE80211_MIN_ACTION_SIZE)
2823 		return RX_DROP_UNUSABLE;
2824 
2825 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2826 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2827 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2828 		return RX_DROP_UNUSABLE;
2829 
2830 	switch (mgmt->u.action.category) {
2831 	case WLAN_CATEGORY_HT:
2832 		/* reject HT action frames from stations not supporting HT */
2833 		if (!rx->sta->sta.ht_cap.ht_supported)
2834 			goto invalid;
2835 
2836 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2837 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2838 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2839 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2840 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2841 			break;
2842 
2843 		/* verify action & smps_control/chanwidth are present */
2844 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2845 			goto invalid;
2846 
2847 		switch (mgmt->u.action.u.ht_smps.action) {
2848 		case WLAN_HT_ACTION_SMPS: {
2849 			struct ieee80211_supported_band *sband;
2850 			enum ieee80211_smps_mode smps_mode;
2851 
2852 			/* convert to HT capability */
2853 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2854 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2855 				smps_mode = IEEE80211_SMPS_OFF;
2856 				break;
2857 			case WLAN_HT_SMPS_CONTROL_STATIC:
2858 				smps_mode = IEEE80211_SMPS_STATIC;
2859 				break;
2860 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2861 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2862 				break;
2863 			default:
2864 				goto invalid;
2865 			}
2866 
2867 			/* if no change do nothing */
2868 			if (rx->sta->sta.smps_mode == smps_mode)
2869 				goto handled;
2870 			rx->sta->sta.smps_mode = smps_mode;
2871 
2872 			sband = rx->local->hw.wiphy->bands[status->band];
2873 
2874 			rate_control_rate_update(local, sband, rx->sta,
2875 						 IEEE80211_RC_SMPS_CHANGED);
2876 			goto handled;
2877 		}
2878 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2879 			struct ieee80211_supported_band *sband;
2880 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2881 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2882 
2883 			/* If it doesn't support 40 MHz it can't change ... */
2884 			if (!(rx->sta->sta.ht_cap.cap &
2885 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2886 				goto handled;
2887 
2888 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2889 				max_bw = IEEE80211_STA_RX_BW_20;
2890 			else
2891 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2892 
2893 			/* set cur_max_bandwidth and recalc sta bw */
2894 			rx->sta->cur_max_bandwidth = max_bw;
2895 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2896 
2897 			if (rx->sta->sta.bandwidth == new_bw)
2898 				goto handled;
2899 
2900 			rx->sta->sta.bandwidth = new_bw;
2901 			sband = rx->local->hw.wiphy->bands[status->band];
2902 
2903 			rate_control_rate_update(local, sband, rx->sta,
2904 						 IEEE80211_RC_BW_CHANGED);
2905 			goto handled;
2906 		}
2907 		default:
2908 			goto invalid;
2909 		}
2910 
2911 		break;
2912 	case WLAN_CATEGORY_PUBLIC:
2913 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2914 			goto invalid;
2915 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2916 			break;
2917 		if (!rx->sta)
2918 			break;
2919 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2920 			break;
2921 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2922 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2923 			break;
2924 		if (len < offsetof(struct ieee80211_mgmt,
2925 				   u.action.u.ext_chan_switch.variable))
2926 			goto invalid;
2927 		goto queue;
2928 	case WLAN_CATEGORY_VHT:
2929 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2930 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2931 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2932 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2933 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2934 			break;
2935 
2936 		/* verify action code is present */
2937 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2938 			goto invalid;
2939 
2940 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2941 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2942 			/* verify opmode is present */
2943 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2944 				goto invalid;
2945 			goto queue;
2946 		}
2947 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2948 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2949 				goto invalid;
2950 			goto queue;
2951 		}
2952 		default:
2953 			break;
2954 		}
2955 		break;
2956 	case WLAN_CATEGORY_BACK:
2957 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2958 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2959 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2960 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2961 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2962 			break;
2963 
2964 		/* verify action_code is present */
2965 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2966 			break;
2967 
2968 		switch (mgmt->u.action.u.addba_req.action_code) {
2969 		case WLAN_ACTION_ADDBA_REQ:
2970 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2971 				   sizeof(mgmt->u.action.u.addba_req)))
2972 				goto invalid;
2973 			break;
2974 		case WLAN_ACTION_ADDBA_RESP:
2975 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2976 				   sizeof(mgmt->u.action.u.addba_resp)))
2977 				goto invalid;
2978 			break;
2979 		case WLAN_ACTION_DELBA:
2980 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2981 				   sizeof(mgmt->u.action.u.delba)))
2982 				goto invalid;
2983 			break;
2984 		default:
2985 			goto invalid;
2986 		}
2987 
2988 		goto queue;
2989 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2990 		/* verify action_code is present */
2991 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2992 			break;
2993 
2994 		switch (mgmt->u.action.u.measurement.action_code) {
2995 		case WLAN_ACTION_SPCT_MSR_REQ:
2996 			if (status->band != NL80211_BAND_5GHZ)
2997 				break;
2998 
2999 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3000 				   sizeof(mgmt->u.action.u.measurement)))
3001 				break;
3002 
3003 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3004 				break;
3005 
3006 			ieee80211_process_measurement_req(sdata, mgmt, len);
3007 			goto handled;
3008 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3009 			u8 *bssid;
3010 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3011 				   sizeof(mgmt->u.action.u.chan_switch)))
3012 				break;
3013 
3014 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3015 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3016 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3017 				break;
3018 
3019 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3020 				bssid = sdata->u.mgd.bssid;
3021 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3022 				bssid = sdata->u.ibss.bssid;
3023 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3024 				bssid = mgmt->sa;
3025 			else
3026 				break;
3027 
3028 			if (!ether_addr_equal(mgmt->bssid, bssid))
3029 				break;
3030 
3031 			goto queue;
3032 			}
3033 		}
3034 		break;
3035 	case WLAN_CATEGORY_SA_QUERY:
3036 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3037 			   sizeof(mgmt->u.action.u.sa_query)))
3038 			break;
3039 
3040 		switch (mgmt->u.action.u.sa_query.action) {
3041 		case WLAN_ACTION_SA_QUERY_REQUEST:
3042 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3043 				break;
3044 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3045 			goto handled;
3046 		}
3047 		break;
3048 	case WLAN_CATEGORY_SELF_PROTECTED:
3049 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3050 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3051 			break;
3052 
3053 		switch (mgmt->u.action.u.self_prot.action_code) {
3054 		case WLAN_SP_MESH_PEERING_OPEN:
3055 		case WLAN_SP_MESH_PEERING_CLOSE:
3056 		case WLAN_SP_MESH_PEERING_CONFIRM:
3057 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3058 				goto invalid;
3059 			if (sdata->u.mesh.user_mpm)
3060 				/* userspace handles this frame */
3061 				break;
3062 			goto queue;
3063 		case WLAN_SP_MGK_INFORM:
3064 		case WLAN_SP_MGK_ACK:
3065 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3066 				goto invalid;
3067 			break;
3068 		}
3069 		break;
3070 	case WLAN_CATEGORY_MESH_ACTION:
3071 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3072 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3073 			break;
3074 
3075 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3076 			break;
3077 		if (mesh_action_is_path_sel(mgmt) &&
3078 		    !mesh_path_sel_is_hwmp(sdata))
3079 			break;
3080 		goto queue;
3081 	}
3082 
3083 	return RX_CONTINUE;
3084 
3085  invalid:
3086 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3087 	/* will return in the next handlers */
3088 	return RX_CONTINUE;
3089 
3090  handled:
3091 	if (rx->sta)
3092 		rx->sta->rx_stats.packets++;
3093 	dev_kfree_skb(rx->skb);
3094 	return RX_QUEUED;
3095 
3096  queue:
3097 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3098 	ieee80211_queue_work(&local->hw, &sdata->work);
3099 	if (rx->sta)
3100 		rx->sta->rx_stats.packets++;
3101 	return RX_QUEUED;
3102 }
3103 
3104 static ieee80211_rx_result debug_noinline
3105 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3106 {
3107 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3108 	int sig = 0;
3109 
3110 	/* skip known-bad action frames and return them in the next handler */
3111 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3112 		return RX_CONTINUE;
3113 
3114 	/*
3115 	 * Getting here means the kernel doesn't know how to handle
3116 	 * it, but maybe userspace does ... include returned frames
3117 	 * so userspace can register for those to know whether ones
3118 	 * it transmitted were processed or returned.
3119 	 */
3120 
3121 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3122 		sig = status->signal;
3123 
3124 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3125 			     rx->skb->data, rx->skb->len, 0)) {
3126 		if (rx->sta)
3127 			rx->sta->rx_stats.packets++;
3128 		dev_kfree_skb(rx->skb);
3129 		return RX_QUEUED;
3130 	}
3131 
3132 	return RX_CONTINUE;
3133 }
3134 
3135 static ieee80211_rx_result debug_noinline
3136 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3137 {
3138 	struct ieee80211_local *local = rx->local;
3139 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3140 	struct sk_buff *nskb;
3141 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3142 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3143 
3144 	if (!ieee80211_is_action(mgmt->frame_control))
3145 		return RX_CONTINUE;
3146 
3147 	/*
3148 	 * For AP mode, hostapd is responsible for handling any action
3149 	 * frames that we didn't handle, including returning unknown
3150 	 * ones. For all other modes we will return them to the sender,
3151 	 * setting the 0x80 bit in the action category, as required by
3152 	 * 802.11-2012 9.24.4.
3153 	 * Newer versions of hostapd shall also use the management frame
3154 	 * registration mechanisms, but older ones still use cooked
3155 	 * monitor interfaces so push all frames there.
3156 	 */
3157 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3158 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3159 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3160 		return RX_DROP_MONITOR;
3161 
3162 	if (is_multicast_ether_addr(mgmt->da))
3163 		return RX_DROP_MONITOR;
3164 
3165 	/* do not return rejected action frames */
3166 	if (mgmt->u.action.category & 0x80)
3167 		return RX_DROP_UNUSABLE;
3168 
3169 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3170 			       GFP_ATOMIC);
3171 	if (nskb) {
3172 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3173 
3174 		nmgmt->u.action.category |= 0x80;
3175 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3176 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3177 
3178 		memset(nskb->cb, 0, sizeof(nskb->cb));
3179 
3180 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3181 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3182 
3183 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3184 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3185 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3186 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3187 				info->hw_queue =
3188 					local->hw.offchannel_tx_hw_queue;
3189 		}
3190 
3191 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3192 					    status->band);
3193 	}
3194 	dev_kfree_skb(rx->skb);
3195 	return RX_QUEUED;
3196 }
3197 
3198 static ieee80211_rx_result debug_noinline
3199 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3200 {
3201 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3202 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3203 	__le16 stype;
3204 
3205 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3206 
3207 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3208 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3209 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3210 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3211 		return RX_DROP_MONITOR;
3212 
3213 	switch (stype) {
3214 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3215 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3216 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3217 		/* process for all: mesh, mlme, ibss */
3218 		break;
3219 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3220 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3221 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3222 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3223 		if (is_multicast_ether_addr(mgmt->da) &&
3224 		    !is_broadcast_ether_addr(mgmt->da))
3225 			return RX_DROP_MONITOR;
3226 
3227 		/* process only for station */
3228 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3229 			return RX_DROP_MONITOR;
3230 		break;
3231 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3232 		/* process only for ibss and mesh */
3233 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3234 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3235 			return RX_DROP_MONITOR;
3236 		break;
3237 	default:
3238 		return RX_DROP_MONITOR;
3239 	}
3240 
3241 	/* queue up frame and kick off work to process it */
3242 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3243 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3244 	if (rx->sta)
3245 		rx->sta->rx_stats.packets++;
3246 
3247 	return RX_QUEUED;
3248 }
3249 
3250 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3251 					struct ieee80211_rate *rate)
3252 {
3253 	struct ieee80211_sub_if_data *sdata;
3254 	struct ieee80211_local *local = rx->local;
3255 	struct sk_buff *skb = rx->skb, *skb2;
3256 	struct net_device *prev_dev = NULL;
3257 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3258 	int needed_headroom;
3259 
3260 	/*
3261 	 * If cooked monitor has been processed already, then
3262 	 * don't do it again. If not, set the flag.
3263 	 */
3264 	if (rx->flags & IEEE80211_RX_CMNTR)
3265 		goto out_free_skb;
3266 	rx->flags |= IEEE80211_RX_CMNTR;
3267 
3268 	/* If there are no cooked monitor interfaces, just free the SKB */
3269 	if (!local->cooked_mntrs)
3270 		goto out_free_skb;
3271 
3272 	/* vendor data is long removed here */
3273 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3274 	/* room for the radiotap header based on driver features */
3275 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3276 
3277 	if (skb_headroom(skb) < needed_headroom &&
3278 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3279 		goto out_free_skb;
3280 
3281 	/* prepend radiotap information */
3282 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3283 					 false);
3284 
3285 	skb_reset_mac_header(skb);
3286 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3287 	skb->pkt_type = PACKET_OTHERHOST;
3288 	skb->protocol = htons(ETH_P_802_2);
3289 
3290 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3291 		if (!ieee80211_sdata_running(sdata))
3292 			continue;
3293 
3294 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3295 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3296 			continue;
3297 
3298 		if (prev_dev) {
3299 			skb2 = skb_clone(skb, GFP_ATOMIC);
3300 			if (skb2) {
3301 				skb2->dev = prev_dev;
3302 				netif_receive_skb(skb2);
3303 			}
3304 		}
3305 
3306 		prev_dev = sdata->dev;
3307 		ieee80211_rx_stats(sdata->dev, skb->len);
3308 	}
3309 
3310 	if (prev_dev) {
3311 		skb->dev = prev_dev;
3312 		netif_receive_skb(skb);
3313 		return;
3314 	}
3315 
3316  out_free_skb:
3317 	dev_kfree_skb(skb);
3318 }
3319 
3320 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3321 					 ieee80211_rx_result res)
3322 {
3323 	switch (res) {
3324 	case RX_DROP_MONITOR:
3325 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3326 		if (rx->sta)
3327 			rx->sta->rx_stats.dropped++;
3328 		/* fall through */
3329 	case RX_CONTINUE: {
3330 		struct ieee80211_rate *rate = NULL;
3331 		struct ieee80211_supported_band *sband;
3332 		struct ieee80211_rx_status *status;
3333 
3334 		status = IEEE80211_SKB_RXCB((rx->skb));
3335 
3336 		sband = rx->local->hw.wiphy->bands[status->band];
3337 		if (!(status->encoding == RX_ENC_HT) &&
3338 		    !(status->encoding == RX_ENC_VHT))
3339 			rate = &sband->bitrates[status->rate_idx];
3340 
3341 		ieee80211_rx_cooked_monitor(rx, rate);
3342 		break;
3343 		}
3344 	case RX_DROP_UNUSABLE:
3345 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3346 		if (rx->sta)
3347 			rx->sta->rx_stats.dropped++;
3348 		dev_kfree_skb(rx->skb);
3349 		break;
3350 	case RX_QUEUED:
3351 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3352 		break;
3353 	}
3354 }
3355 
3356 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3357 				  struct sk_buff_head *frames)
3358 {
3359 	ieee80211_rx_result res = RX_DROP_MONITOR;
3360 	struct sk_buff *skb;
3361 
3362 #define CALL_RXH(rxh)			\
3363 	do {				\
3364 		res = rxh(rx);		\
3365 		if (res != RX_CONTINUE)	\
3366 			goto rxh_next;  \
3367 	} while (0)
3368 
3369 	/* Lock here to avoid hitting all of the data used in the RX
3370 	 * path (e.g. key data, station data, ...) concurrently when
3371 	 * a frame is released from the reorder buffer due to timeout
3372 	 * from the timer, potentially concurrently with RX from the
3373 	 * driver.
3374 	 */
3375 	spin_lock_bh(&rx->local->rx_path_lock);
3376 
3377 	while ((skb = __skb_dequeue(frames))) {
3378 		/*
3379 		 * all the other fields are valid across frames
3380 		 * that belong to an aMPDU since they are on the
3381 		 * same TID from the same station
3382 		 */
3383 		rx->skb = skb;
3384 
3385 		CALL_RXH(ieee80211_rx_h_check_more_data);
3386 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3387 		CALL_RXH(ieee80211_rx_h_sta_process);
3388 		CALL_RXH(ieee80211_rx_h_decrypt);
3389 		CALL_RXH(ieee80211_rx_h_defragment);
3390 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3391 		/* must be after MMIC verify so header is counted in MPDU mic */
3392 #ifdef CONFIG_MAC80211_MESH
3393 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3394 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3395 #endif
3396 		CALL_RXH(ieee80211_rx_h_amsdu);
3397 		CALL_RXH(ieee80211_rx_h_data);
3398 
3399 		/* special treatment -- needs the queue */
3400 		res = ieee80211_rx_h_ctrl(rx, frames);
3401 		if (res != RX_CONTINUE)
3402 			goto rxh_next;
3403 
3404 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3405 		CALL_RXH(ieee80211_rx_h_action);
3406 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3407 		CALL_RXH(ieee80211_rx_h_action_return);
3408 		CALL_RXH(ieee80211_rx_h_mgmt);
3409 
3410  rxh_next:
3411 		ieee80211_rx_handlers_result(rx, res);
3412 
3413 #undef CALL_RXH
3414 	}
3415 
3416 	spin_unlock_bh(&rx->local->rx_path_lock);
3417 }
3418 
3419 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3420 {
3421 	struct sk_buff_head reorder_release;
3422 	ieee80211_rx_result res = RX_DROP_MONITOR;
3423 
3424 	__skb_queue_head_init(&reorder_release);
3425 
3426 #define CALL_RXH(rxh)			\
3427 	do {				\
3428 		res = rxh(rx);		\
3429 		if (res != RX_CONTINUE)	\
3430 			goto rxh_next;  \
3431 	} while (0)
3432 
3433 	CALL_RXH(ieee80211_rx_h_check_dup);
3434 	CALL_RXH(ieee80211_rx_h_check);
3435 
3436 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3437 
3438 	ieee80211_rx_handlers(rx, &reorder_release);
3439 	return;
3440 
3441  rxh_next:
3442 	ieee80211_rx_handlers_result(rx, res);
3443 
3444 #undef CALL_RXH
3445 }
3446 
3447 /*
3448  * This function makes calls into the RX path, therefore
3449  * it has to be invoked under RCU read lock.
3450  */
3451 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3452 {
3453 	struct sk_buff_head frames;
3454 	struct ieee80211_rx_data rx = {
3455 		.sta = sta,
3456 		.sdata = sta->sdata,
3457 		.local = sta->local,
3458 		/* This is OK -- must be QoS data frame */
3459 		.security_idx = tid,
3460 		.seqno_idx = tid,
3461 		.napi = NULL, /* must be NULL to not have races */
3462 	};
3463 	struct tid_ampdu_rx *tid_agg_rx;
3464 
3465 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3466 	if (!tid_agg_rx)
3467 		return;
3468 
3469 	__skb_queue_head_init(&frames);
3470 
3471 	spin_lock(&tid_agg_rx->reorder_lock);
3472 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3473 	spin_unlock(&tid_agg_rx->reorder_lock);
3474 
3475 	if (!skb_queue_empty(&frames)) {
3476 		struct ieee80211_event event = {
3477 			.type = BA_FRAME_TIMEOUT,
3478 			.u.ba.tid = tid,
3479 			.u.ba.sta = &sta->sta,
3480 		};
3481 		drv_event_callback(rx.local, rx.sdata, &event);
3482 	}
3483 
3484 	ieee80211_rx_handlers(&rx, &frames);
3485 }
3486 
3487 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3488 					  u16 ssn, u64 filtered,
3489 					  u16 received_mpdus)
3490 {
3491 	struct sta_info *sta;
3492 	struct tid_ampdu_rx *tid_agg_rx;
3493 	struct sk_buff_head frames;
3494 	struct ieee80211_rx_data rx = {
3495 		/* This is OK -- must be QoS data frame */
3496 		.security_idx = tid,
3497 		.seqno_idx = tid,
3498 	};
3499 	int i, diff;
3500 
3501 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3502 		return;
3503 
3504 	__skb_queue_head_init(&frames);
3505 
3506 	sta = container_of(pubsta, struct sta_info, sta);
3507 
3508 	rx.sta = sta;
3509 	rx.sdata = sta->sdata;
3510 	rx.local = sta->local;
3511 
3512 	rcu_read_lock();
3513 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3514 	if (!tid_agg_rx)
3515 		goto out;
3516 
3517 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3518 
3519 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3520 		int release;
3521 
3522 		/* release all frames in the reorder buffer */
3523 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3524 			   IEEE80211_SN_MODULO;
3525 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3526 						 release, &frames);
3527 		/* update ssn to match received ssn */
3528 		tid_agg_rx->head_seq_num = ssn;
3529 	} else {
3530 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3531 						 &frames);
3532 	}
3533 
3534 	/* handle the case that received ssn is behind the mac ssn.
3535 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3536 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3537 	if (diff >= tid_agg_rx->buf_size) {
3538 		tid_agg_rx->reorder_buf_filtered = 0;
3539 		goto release;
3540 	}
3541 	filtered = filtered >> diff;
3542 	ssn += diff;
3543 
3544 	/* update bitmap */
3545 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3546 		int index = (ssn + i) % tid_agg_rx->buf_size;
3547 
3548 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3549 		if (filtered & BIT_ULL(i))
3550 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3551 	}
3552 
3553 	/* now process also frames that the filter marking released */
3554 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3555 
3556 release:
3557 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3558 
3559 	ieee80211_rx_handlers(&rx, &frames);
3560 
3561  out:
3562 	rcu_read_unlock();
3563 }
3564 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3565 
3566 /* main receive path */
3567 
3568 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3569 {
3570 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3571 	struct sk_buff *skb = rx->skb;
3572 	struct ieee80211_hdr *hdr = (void *)skb->data;
3573 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3574 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3575 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3576 
3577 	switch (sdata->vif.type) {
3578 	case NL80211_IFTYPE_STATION:
3579 		if (!bssid && !sdata->u.mgd.use_4addr)
3580 			return false;
3581 		if (multicast)
3582 			return true;
3583 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3584 	case NL80211_IFTYPE_ADHOC:
3585 		if (!bssid)
3586 			return false;
3587 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3588 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3589 			return false;
3590 		if (ieee80211_is_beacon(hdr->frame_control))
3591 			return true;
3592 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3593 			return false;
3594 		if (!multicast &&
3595 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3596 			return false;
3597 		if (!rx->sta) {
3598 			int rate_idx;
3599 			if (status->encoding != RX_ENC_LEGACY)
3600 				rate_idx = 0; /* TODO: HT/VHT rates */
3601 			else
3602 				rate_idx = status->rate_idx;
3603 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3604 						 BIT(rate_idx));
3605 		}
3606 		return true;
3607 	case NL80211_IFTYPE_OCB:
3608 		if (!bssid)
3609 			return false;
3610 		if (!ieee80211_is_data_present(hdr->frame_control))
3611 			return false;
3612 		if (!is_broadcast_ether_addr(bssid))
3613 			return false;
3614 		if (!multicast &&
3615 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3616 			return false;
3617 		if (!rx->sta) {
3618 			int rate_idx;
3619 			if (status->encoding != RX_ENC_LEGACY)
3620 				rate_idx = 0; /* TODO: HT rates */
3621 			else
3622 				rate_idx = status->rate_idx;
3623 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3624 						BIT(rate_idx));
3625 		}
3626 		return true;
3627 	case NL80211_IFTYPE_MESH_POINT:
3628 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3629 			return false;
3630 		if (multicast)
3631 			return true;
3632 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3633 	case NL80211_IFTYPE_AP_VLAN:
3634 	case NL80211_IFTYPE_AP:
3635 		if (!bssid)
3636 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3637 
3638 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3639 			/*
3640 			 * Accept public action frames even when the
3641 			 * BSSID doesn't match, this is used for P2P
3642 			 * and location updates. Note that mac80211
3643 			 * itself never looks at these frames.
3644 			 */
3645 			if (!multicast &&
3646 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3647 				return false;
3648 			if (ieee80211_is_public_action(hdr, skb->len))
3649 				return true;
3650 			return ieee80211_is_beacon(hdr->frame_control);
3651 		}
3652 
3653 		if (!ieee80211_has_tods(hdr->frame_control)) {
3654 			/* ignore data frames to TDLS-peers */
3655 			if (ieee80211_is_data(hdr->frame_control))
3656 				return false;
3657 			/* ignore action frames to TDLS-peers */
3658 			if (ieee80211_is_action(hdr->frame_control) &&
3659 			    !is_broadcast_ether_addr(bssid) &&
3660 			    !ether_addr_equal(bssid, hdr->addr1))
3661 				return false;
3662 		}
3663 
3664 		/*
3665 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3666 		 * the BSSID - we've checked that already but may have accepted
3667 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3668 		 *
3669 		 * It also says:
3670 		 *	The BSSID of the Data frame is determined as follows:
3671 		 *	a) If the STA is contained within an AP or is associated
3672 		 *	   with an AP, the BSSID is the address currently in use
3673 		 *	   by the STA contained in the AP.
3674 		 *
3675 		 * So we should not accept data frames with an address that's
3676 		 * multicast.
3677 		 *
3678 		 * Accepting it also opens a security problem because stations
3679 		 * could encrypt it with the GTK and inject traffic that way.
3680 		 */
3681 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3682 			return false;
3683 
3684 		return true;
3685 	case NL80211_IFTYPE_WDS:
3686 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3687 			return false;
3688 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3689 	case NL80211_IFTYPE_P2P_DEVICE:
3690 		return ieee80211_is_public_action(hdr, skb->len) ||
3691 		       ieee80211_is_probe_req(hdr->frame_control) ||
3692 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3693 		       ieee80211_is_beacon(hdr->frame_control);
3694 	case NL80211_IFTYPE_NAN:
3695 		/* Currently no frames on NAN interface are allowed */
3696 		return false;
3697 	default:
3698 		break;
3699 	}
3700 
3701 	WARN_ON_ONCE(1);
3702 	return false;
3703 }
3704 
3705 void ieee80211_check_fast_rx(struct sta_info *sta)
3706 {
3707 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3708 	struct ieee80211_local *local = sdata->local;
3709 	struct ieee80211_key *key;
3710 	struct ieee80211_fast_rx fastrx = {
3711 		.dev = sdata->dev,
3712 		.vif_type = sdata->vif.type,
3713 		.control_port_protocol = sdata->control_port_protocol,
3714 	}, *old, *new = NULL;
3715 	bool assign = false;
3716 
3717 	/* use sparse to check that we don't return without updating */
3718 	__acquire(check_fast_rx);
3719 
3720 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3721 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3722 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3723 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3724 
3725 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3726 
3727 	/* fast-rx doesn't do reordering */
3728 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3729 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3730 		goto clear;
3731 
3732 	switch (sdata->vif.type) {
3733 	case NL80211_IFTYPE_STATION:
3734 		/* 4-addr is harder to deal with, later maybe */
3735 		if (sdata->u.mgd.use_4addr)
3736 			goto clear;
3737 		/* software powersave is a huge mess, avoid all of it */
3738 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3739 			goto clear;
3740 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3741 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3742 			goto clear;
3743 		if (sta->sta.tdls) {
3744 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3745 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3746 			fastrx.expected_ds_bits = 0;
3747 		} else {
3748 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3749 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3750 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3751 			fastrx.expected_ds_bits =
3752 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3753 		}
3754 		break;
3755 	case NL80211_IFTYPE_AP_VLAN:
3756 	case NL80211_IFTYPE_AP:
3757 		/* parallel-rx requires this, at least with calls to
3758 		 * ieee80211_sta_ps_transition()
3759 		 */
3760 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3761 			goto clear;
3762 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3763 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3764 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3765 
3766 		fastrx.internal_forward =
3767 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3768 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3769 			 !sdata->u.vlan.sta);
3770 		break;
3771 	default:
3772 		goto clear;
3773 	}
3774 
3775 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3776 		goto clear;
3777 
3778 	rcu_read_lock();
3779 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3780 	if (key) {
3781 		switch (key->conf.cipher) {
3782 		case WLAN_CIPHER_SUITE_TKIP:
3783 			/* we don't want to deal with MMIC in fast-rx */
3784 			goto clear_rcu;
3785 		case WLAN_CIPHER_SUITE_CCMP:
3786 		case WLAN_CIPHER_SUITE_CCMP_256:
3787 		case WLAN_CIPHER_SUITE_GCMP:
3788 		case WLAN_CIPHER_SUITE_GCMP_256:
3789 			break;
3790 		default:
3791 			/* we also don't want to deal with WEP or cipher scheme
3792 			 * since those require looking up the key idx in the
3793 			 * frame, rather than assuming the PTK is used
3794 			 * (we need to revisit this once we implement the real
3795 			 * PTK index, which is now valid in the spec, but we
3796 			 * haven't implemented that part yet)
3797 			 */
3798 			goto clear_rcu;
3799 		}
3800 
3801 		fastrx.key = true;
3802 		fastrx.icv_len = key->conf.icv_len;
3803 	}
3804 
3805 	assign = true;
3806  clear_rcu:
3807 	rcu_read_unlock();
3808  clear:
3809 	__release(check_fast_rx);
3810 
3811 	if (assign)
3812 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3813 
3814 	spin_lock_bh(&sta->lock);
3815 	old = rcu_dereference_protected(sta->fast_rx, true);
3816 	rcu_assign_pointer(sta->fast_rx, new);
3817 	spin_unlock_bh(&sta->lock);
3818 
3819 	if (old)
3820 		kfree_rcu(old, rcu_head);
3821 }
3822 
3823 void ieee80211_clear_fast_rx(struct sta_info *sta)
3824 {
3825 	struct ieee80211_fast_rx *old;
3826 
3827 	spin_lock_bh(&sta->lock);
3828 	old = rcu_dereference_protected(sta->fast_rx, true);
3829 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3830 	spin_unlock_bh(&sta->lock);
3831 
3832 	if (old)
3833 		kfree_rcu(old, rcu_head);
3834 }
3835 
3836 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3837 {
3838 	struct ieee80211_local *local = sdata->local;
3839 	struct sta_info *sta;
3840 
3841 	lockdep_assert_held(&local->sta_mtx);
3842 
3843 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3844 		if (sdata != sta->sdata &&
3845 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3846 			continue;
3847 		ieee80211_check_fast_rx(sta);
3848 	}
3849 }
3850 
3851 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3852 {
3853 	struct ieee80211_local *local = sdata->local;
3854 
3855 	mutex_lock(&local->sta_mtx);
3856 	__ieee80211_check_fast_rx_iface(sdata);
3857 	mutex_unlock(&local->sta_mtx);
3858 }
3859 
3860 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3861 				     struct ieee80211_fast_rx *fast_rx)
3862 {
3863 	struct sk_buff *skb = rx->skb;
3864 	struct ieee80211_hdr *hdr = (void *)skb->data;
3865 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3866 	struct sta_info *sta = rx->sta;
3867 	int orig_len = skb->len;
3868 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3869 	struct {
3870 		u8 snap[sizeof(rfc1042_header)];
3871 		__be16 proto;
3872 	} *payload __aligned(2);
3873 	struct {
3874 		u8 da[ETH_ALEN];
3875 		u8 sa[ETH_ALEN];
3876 	} addrs __aligned(2);
3877 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3878 
3879 	if (fast_rx->uses_rss)
3880 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3881 
3882 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3883 	 * to a common data structure; drivers can implement that per queue
3884 	 * but we don't have that information in mac80211
3885 	 */
3886 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3887 		return false;
3888 
3889 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3890 
3891 	/* If using encryption, we also need to have:
3892 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3893 	 *  - DECRYPTED: necessary for PN_VALIDATED
3894 	 */
3895 	if (fast_rx->key &&
3896 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3897 		return false;
3898 
3899 	/* we don't deal with A-MSDU deaggregation here */
3900 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3901 		return false;
3902 
3903 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3904 		return false;
3905 
3906 	if (unlikely(ieee80211_is_frag(hdr)))
3907 		return false;
3908 
3909 	/* Since our interface address cannot be multicast, this
3910 	 * implicitly also rejects multicast frames without the
3911 	 * explicit check.
3912 	 *
3913 	 * We shouldn't get any *data* frames not addressed to us
3914 	 * (AP mode will accept multicast *management* frames), but
3915 	 * punting here will make it go through the full checks in
3916 	 * ieee80211_accept_frame().
3917 	 */
3918 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3919 		return false;
3920 
3921 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3922 					      IEEE80211_FCTL_TODS)) !=
3923 	    fast_rx->expected_ds_bits)
3924 		goto drop;
3925 
3926 	/* assign the key to drop unencrypted frames (later)
3927 	 * and strip the IV/MIC if necessary
3928 	 */
3929 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3930 		/* GCMP header length is the same */
3931 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3932 	}
3933 
3934 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3935 		goto drop;
3936 	payload = (void *)(skb->data + snap_offs);
3937 
3938 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3939 		return false;
3940 
3941 	/* Don't handle these here since they require special code.
3942 	 * Accept AARP and IPX even though they should come with a
3943 	 * bridge-tunnel header - but if we get them this way then
3944 	 * there's little point in discarding them.
3945 	 */
3946 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3947 		     payload->proto == fast_rx->control_port_protocol))
3948 		return false;
3949 
3950 	/* after this point, don't punt to the slowpath! */
3951 
3952 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3953 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3954 		goto drop;
3955 
3956 	if (unlikely(fast_rx->sta_notify)) {
3957 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3958 		fast_rx->sta_notify = false;
3959 	}
3960 
3961 	/* statistics part of ieee80211_rx_h_sta_process() */
3962 	stats->last_rx = jiffies;
3963 	stats->last_rate = sta_stats_encode_rate(status);
3964 
3965 	stats->fragments++;
3966 	stats->packets++;
3967 
3968 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3969 		stats->last_signal = status->signal;
3970 		if (!fast_rx->uses_rss)
3971 			ewma_signal_add(&sta->rx_stats_avg.signal,
3972 					-status->signal);
3973 	}
3974 
3975 	if (status->chains) {
3976 		int i;
3977 
3978 		stats->chains = status->chains;
3979 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3980 			int signal = status->chain_signal[i];
3981 
3982 			if (!(status->chains & BIT(i)))
3983 				continue;
3984 
3985 			stats->chain_signal_last[i] = signal;
3986 			if (!fast_rx->uses_rss)
3987 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3988 						-signal);
3989 		}
3990 	}
3991 	/* end of statistics */
3992 
3993 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3994 		goto drop;
3995 
3996 	/* do the header conversion - first grab the addresses */
3997 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3998 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3999 	/* remove the SNAP but leave the ethertype */
4000 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4001 	/* push the addresses in front */
4002 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4003 
4004 	skb->dev = fast_rx->dev;
4005 
4006 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4007 
4008 	/* The seqno index has the same property as needed
4009 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4010 	 * for non-QoS-data frames. Here we know it's a data
4011 	 * frame, so count MSDUs.
4012 	 */
4013 	u64_stats_update_begin(&stats->syncp);
4014 	stats->msdu[rx->seqno_idx]++;
4015 	stats->bytes += orig_len;
4016 	u64_stats_update_end(&stats->syncp);
4017 
4018 	if (fast_rx->internal_forward) {
4019 		struct sk_buff *xmit_skb = NULL;
4020 		bool multicast = is_multicast_ether_addr(skb->data);
4021 
4022 		if (multicast) {
4023 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4024 		} else if (sta_info_get(rx->sdata, skb->data)) {
4025 			xmit_skb = skb;
4026 			skb = NULL;
4027 		}
4028 
4029 		if (xmit_skb) {
4030 			/*
4031 			 * Send to wireless media and increase priority by 256
4032 			 * to keep the received priority instead of
4033 			 * reclassifying the frame (see cfg80211_classify8021d).
4034 			 */
4035 			xmit_skb->priority += 256;
4036 			xmit_skb->protocol = htons(ETH_P_802_3);
4037 			skb_reset_network_header(xmit_skb);
4038 			skb_reset_mac_header(xmit_skb);
4039 			dev_queue_xmit(xmit_skb);
4040 		}
4041 
4042 		if (!skb)
4043 			return true;
4044 	}
4045 
4046 	/* deliver to local stack */
4047 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4048 	memset(skb->cb, 0, sizeof(skb->cb));
4049 	if (rx->napi)
4050 		napi_gro_receive(rx->napi, skb);
4051 	else
4052 		netif_receive_skb(skb);
4053 
4054 	return true;
4055  drop:
4056 	dev_kfree_skb(skb);
4057 	stats->dropped++;
4058 	return true;
4059 }
4060 
4061 /*
4062  * This function returns whether or not the SKB
4063  * was destined for RX processing or not, which,
4064  * if consume is true, is equivalent to whether
4065  * or not the skb was consumed.
4066  */
4067 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4068 					    struct sk_buff *skb, bool consume)
4069 {
4070 	struct ieee80211_local *local = rx->local;
4071 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4072 
4073 	rx->skb = skb;
4074 
4075 	/* See if we can do fast-rx; if we have to copy we already lost,
4076 	 * so punt in that case. We should never have to deliver a data
4077 	 * frame to multiple interfaces anyway.
4078 	 *
4079 	 * We skip the ieee80211_accept_frame() call and do the necessary
4080 	 * checking inside ieee80211_invoke_fast_rx().
4081 	 */
4082 	if (consume && rx->sta) {
4083 		struct ieee80211_fast_rx *fast_rx;
4084 
4085 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4086 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4087 			return true;
4088 	}
4089 
4090 	if (!ieee80211_accept_frame(rx))
4091 		return false;
4092 
4093 	if (!consume) {
4094 		skb = skb_copy(skb, GFP_ATOMIC);
4095 		if (!skb) {
4096 			if (net_ratelimit())
4097 				wiphy_debug(local->hw.wiphy,
4098 					"failed to copy skb for %s\n",
4099 					sdata->name);
4100 			return true;
4101 		}
4102 
4103 		rx->skb = skb;
4104 	}
4105 
4106 	ieee80211_invoke_rx_handlers(rx);
4107 	return true;
4108 }
4109 
4110 /*
4111  * This is the actual Rx frames handler. as it belongs to Rx path it must
4112  * be called with rcu_read_lock protection.
4113  */
4114 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4115 					 struct ieee80211_sta *pubsta,
4116 					 struct sk_buff *skb,
4117 					 struct napi_struct *napi)
4118 {
4119 	struct ieee80211_local *local = hw_to_local(hw);
4120 	struct ieee80211_sub_if_data *sdata;
4121 	struct ieee80211_hdr *hdr;
4122 	__le16 fc;
4123 	struct ieee80211_rx_data rx;
4124 	struct ieee80211_sub_if_data *prev;
4125 	struct rhlist_head *tmp;
4126 	int err = 0;
4127 
4128 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4129 	memset(&rx, 0, sizeof(rx));
4130 	rx.skb = skb;
4131 	rx.local = local;
4132 	rx.napi = napi;
4133 
4134 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4135 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4136 
4137 	if (ieee80211_is_mgmt(fc)) {
4138 		/* drop frame if too short for header */
4139 		if (skb->len < ieee80211_hdrlen(fc))
4140 			err = -ENOBUFS;
4141 		else
4142 			err = skb_linearize(skb);
4143 	} else {
4144 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4145 	}
4146 
4147 	if (err) {
4148 		dev_kfree_skb(skb);
4149 		return;
4150 	}
4151 
4152 	hdr = (struct ieee80211_hdr *)skb->data;
4153 	ieee80211_parse_qos(&rx);
4154 	ieee80211_verify_alignment(&rx);
4155 
4156 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4157 		     ieee80211_is_beacon(hdr->frame_control)))
4158 		ieee80211_scan_rx(local, skb);
4159 
4160 	if (ieee80211_is_data(fc)) {
4161 		struct sta_info *sta, *prev_sta;
4162 
4163 		if (pubsta) {
4164 			rx.sta = container_of(pubsta, struct sta_info, sta);
4165 			rx.sdata = rx.sta->sdata;
4166 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4167 				return;
4168 			goto out;
4169 		}
4170 
4171 		prev_sta = NULL;
4172 
4173 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4174 			if (!prev_sta) {
4175 				prev_sta = sta;
4176 				continue;
4177 			}
4178 
4179 			rx.sta = prev_sta;
4180 			rx.sdata = prev_sta->sdata;
4181 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4182 
4183 			prev_sta = sta;
4184 		}
4185 
4186 		if (prev_sta) {
4187 			rx.sta = prev_sta;
4188 			rx.sdata = prev_sta->sdata;
4189 
4190 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4191 				return;
4192 			goto out;
4193 		}
4194 	}
4195 
4196 	prev = NULL;
4197 
4198 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4199 		if (!ieee80211_sdata_running(sdata))
4200 			continue;
4201 
4202 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4203 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4204 			continue;
4205 
4206 		/*
4207 		 * frame is destined for this interface, but if it's
4208 		 * not also for the previous one we handle that after
4209 		 * the loop to avoid copying the SKB once too much
4210 		 */
4211 
4212 		if (!prev) {
4213 			prev = sdata;
4214 			continue;
4215 		}
4216 
4217 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4218 		rx.sdata = prev;
4219 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4220 
4221 		prev = sdata;
4222 	}
4223 
4224 	if (prev) {
4225 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4226 		rx.sdata = prev;
4227 
4228 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4229 			return;
4230 	}
4231 
4232  out:
4233 	dev_kfree_skb(skb);
4234 }
4235 
4236 /*
4237  * This is the receive path handler. It is called by a low level driver when an
4238  * 802.11 MPDU is received from the hardware.
4239  */
4240 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4241 		       struct sk_buff *skb, struct napi_struct *napi)
4242 {
4243 	struct ieee80211_local *local = hw_to_local(hw);
4244 	struct ieee80211_rate *rate = NULL;
4245 	struct ieee80211_supported_band *sband;
4246 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4247 
4248 	WARN_ON_ONCE(softirq_count() == 0);
4249 
4250 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4251 		goto drop;
4252 
4253 	sband = local->hw.wiphy->bands[status->band];
4254 	if (WARN_ON(!sband))
4255 		goto drop;
4256 
4257 	/*
4258 	 * If we're suspending, it is possible although not too likely
4259 	 * that we'd be receiving frames after having already partially
4260 	 * quiesced the stack. We can't process such frames then since
4261 	 * that might, for example, cause stations to be added or other
4262 	 * driver callbacks be invoked.
4263 	 */
4264 	if (unlikely(local->quiescing || local->suspended))
4265 		goto drop;
4266 
4267 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4268 	if (unlikely(local->in_reconfig))
4269 		goto drop;
4270 
4271 	/*
4272 	 * The same happens when we're not even started,
4273 	 * but that's worth a warning.
4274 	 */
4275 	if (WARN_ON(!local->started))
4276 		goto drop;
4277 
4278 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4279 		/*
4280 		 * Validate the rate, unless a PLCP error means that
4281 		 * we probably can't have a valid rate here anyway.
4282 		 */
4283 
4284 		switch (status->encoding) {
4285 		case RX_ENC_HT:
4286 			/*
4287 			 * rate_idx is MCS index, which can be [0-76]
4288 			 * as documented on:
4289 			 *
4290 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4291 			 *
4292 			 * Anything else would be some sort of driver or
4293 			 * hardware error. The driver should catch hardware
4294 			 * errors.
4295 			 */
4296 			if (WARN(status->rate_idx > 76,
4297 				 "Rate marked as an HT rate but passed "
4298 				 "status->rate_idx is not "
4299 				 "an MCS index [0-76]: %d (0x%02x)\n",
4300 				 status->rate_idx,
4301 				 status->rate_idx))
4302 				goto drop;
4303 			break;
4304 		case RX_ENC_VHT:
4305 			if (WARN_ONCE(status->rate_idx > 9 ||
4306 				      !status->nss ||
4307 				      status->nss > 8,
4308 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4309 				      status->rate_idx, status->nss))
4310 				goto drop;
4311 			break;
4312 		default:
4313 			WARN_ON_ONCE(1);
4314 			/* fall through */
4315 		case RX_ENC_LEGACY:
4316 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4317 				goto drop;
4318 			rate = &sband->bitrates[status->rate_idx];
4319 		}
4320 	}
4321 
4322 	status->rx_flags = 0;
4323 
4324 	/*
4325 	 * key references and virtual interfaces are protected using RCU
4326 	 * and this requires that we are in a read-side RCU section during
4327 	 * receive processing
4328 	 */
4329 	rcu_read_lock();
4330 
4331 	/*
4332 	 * Frames with failed FCS/PLCP checksum are not returned,
4333 	 * all other frames are returned without radiotap header
4334 	 * if it was previously present.
4335 	 * Also, frames with less than 16 bytes are dropped.
4336 	 */
4337 	skb = ieee80211_rx_monitor(local, skb, rate);
4338 	if (!skb) {
4339 		rcu_read_unlock();
4340 		return;
4341 	}
4342 
4343 	ieee80211_tpt_led_trig_rx(local,
4344 			((struct ieee80211_hdr *)skb->data)->frame_control,
4345 			skb->len);
4346 
4347 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4348 
4349 	rcu_read_unlock();
4350 
4351 	return;
4352  drop:
4353 	kfree_skb(skb);
4354 }
4355 EXPORT_SYMBOL(ieee80211_rx_napi);
4356 
4357 /* This is a version of the rx handler that can be called from hard irq
4358  * context. Post the skb on the queue and schedule the tasklet */
4359 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4360 {
4361 	struct ieee80211_local *local = hw_to_local(hw);
4362 
4363 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4364 
4365 	skb->pkt_type = IEEE80211_RX_MSG;
4366 	skb_queue_tail(&local->skb_queue, skb);
4367 	tasklet_schedule(&local->tasklet);
4368 }
4369 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4370