1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 44 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 if (status->vendor_radiotap_len) 57 __pskb_pull(skb, status->vendor_radiotap_len); 58 59 return skb; 60 } 61 62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + status->vendor_radiotap_len); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return 1; 73 if (unlikely(skb->len < 16 + present_fcs_len + 74 status->vendor_radiotap_len)) 75 return 1; 76 if (ieee80211_is_ctl(hdr->frame_control) && 77 !ieee80211_is_pspoll(hdr->frame_control) && 78 !ieee80211_is_back_req(hdr->frame_control)) 79 return 1; 80 return 0; 81 } 82 83 static int 84 ieee80211_rx_radiotap_space(struct ieee80211_local *local, 85 struct ieee80211_rx_status *status) 86 { 87 int len; 88 89 /* always present fields */ 90 len = sizeof(struct ieee80211_radiotap_header) + 8; 91 92 /* allocate extra bitmaps */ 93 if (status->vendor_radiotap_len) 94 len += 4; 95 if (status->chains) 96 len += 4 * hweight8(status->chains); 97 98 if (ieee80211_have_rx_timestamp(status)) { 99 len = ALIGN(len, 8); 100 len += 8; 101 } 102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 103 len += 1; 104 105 /* antenna field, if we don't have per-chain info */ 106 if (!status->chains) 107 len += 1; 108 109 /* padding for RX_FLAGS if necessary */ 110 len = ALIGN(len, 2); 111 112 if (status->flag & RX_FLAG_HT) /* HT info */ 113 len += 3; 114 115 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 116 len = ALIGN(len, 4); 117 len += 8; 118 } 119 120 if (status->flag & RX_FLAG_VHT) { 121 len = ALIGN(len, 2); 122 len += 12; 123 } 124 125 if (status->chains) { 126 /* antenna and antenna signal fields */ 127 len += 2 * hweight8(status->chains); 128 } 129 130 if (status->vendor_radiotap_len) { 131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0)) 132 status->vendor_radiotap_align = 1; 133 /* align standard part of vendor namespace */ 134 len = ALIGN(len, 2); 135 /* allocate standard part of vendor namespace */ 136 len += 6; 137 /* align vendor-defined part */ 138 len = ALIGN(len, status->vendor_radiotap_align); 139 /* vendor-defined part is already in skb */ 140 } 141 142 return len; 143 } 144 145 /* 146 * ieee80211_add_rx_radiotap_header - add radiotap header 147 * 148 * add a radiotap header containing all the fields which the hardware provided. 149 */ 150 static void 151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 152 struct sk_buff *skb, 153 struct ieee80211_rate *rate, 154 int rtap_len, bool has_fcs) 155 { 156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 157 struct ieee80211_radiotap_header *rthdr; 158 unsigned char *pos; 159 __le32 *it_present; 160 u32 it_present_val; 161 u16 rx_flags = 0; 162 u16 channel_flags = 0; 163 int mpdulen, chain; 164 unsigned long chains = status->chains; 165 166 mpdulen = skb->len; 167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 168 mpdulen += FCS_LEN; 169 170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 171 memset(rthdr, 0, rtap_len); 172 it_present = &rthdr->it_present; 173 174 /* radiotap header, set always present flags */ 175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len); 176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 177 BIT(IEEE80211_RADIOTAP_CHANNEL) | 178 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 179 180 if (!status->chains) 181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 182 183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 184 it_present_val |= 185 BIT(IEEE80211_RADIOTAP_EXT) | 186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 187 put_unaligned_le32(it_present_val, it_present); 188 it_present++; 189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 191 } 192 193 if (status->vendor_radiotap_len) { 194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 195 BIT(IEEE80211_RADIOTAP_EXT); 196 put_unaligned_le32(it_present_val, it_present); 197 it_present++; 198 it_present_val = status->vendor_radiotap_bitmap; 199 } 200 201 put_unaligned_le32(it_present_val, it_present); 202 203 pos = (void *)(it_present + 1); 204 205 /* the order of the following fields is important */ 206 207 /* IEEE80211_RADIOTAP_TSFT */ 208 if (ieee80211_have_rx_timestamp(status)) { 209 /* padding */ 210 while ((pos - (u8 *)rthdr) & 7) 211 *pos++ = 0; 212 put_unaligned_le64( 213 ieee80211_calculate_rx_timestamp(local, status, 214 mpdulen, 0), 215 pos); 216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 217 pos += 8; 218 } 219 220 /* IEEE80211_RADIOTAP_FLAGS */ 221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 222 *pos |= IEEE80211_RADIOTAP_F_FCS; 223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 224 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 225 if (status->flag & RX_FLAG_SHORTPRE) 226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 227 pos++; 228 229 /* IEEE80211_RADIOTAP_RATE */ 230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 231 /* 232 * Without rate information don't add it. If we have, 233 * MCS information is a separate field in radiotap, 234 * added below. The byte here is needed as padding 235 * for the channel though, so initialise it to 0. 236 */ 237 *pos = 0; 238 } else { 239 int shift = 0; 240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 241 if (status->flag & RX_FLAG_10MHZ) 242 shift = 1; 243 else if (status->flag & RX_FLAG_5MHZ) 244 shift = 2; 245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 246 } 247 pos++; 248 249 /* IEEE80211_RADIOTAP_CHANNEL */ 250 put_unaligned_le16(status->freq, pos); 251 pos += 2; 252 if (status->flag & RX_FLAG_10MHZ) 253 channel_flags |= IEEE80211_CHAN_HALF; 254 else if (status->flag & RX_FLAG_5MHZ) 255 channel_flags |= IEEE80211_CHAN_QUARTER; 256 257 if (status->band == IEEE80211_BAND_5GHZ) 258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 263 else if (rate) 264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 265 else 266 channel_flags |= IEEE80211_CHAN_2GHZ; 267 put_unaligned_le16(channel_flags, pos); 268 pos += 2; 269 270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 273 *pos = status->signal; 274 rthdr->it_present |= 275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 276 pos++; 277 } 278 279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 280 281 if (!status->chains) { 282 /* IEEE80211_RADIOTAP_ANTENNA */ 283 *pos = status->antenna; 284 pos++; 285 } 286 287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 288 289 /* IEEE80211_RADIOTAP_RX_FLAGS */ 290 /* ensure 2 byte alignment for the 2 byte field as required */ 291 if ((pos - (u8 *)rthdr) & 1) 292 *pos++ = 0; 293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 295 put_unaligned_le16(rx_flags, pos); 296 pos += 2; 297 298 if (status->flag & RX_FLAG_HT) { 299 unsigned int stbc; 300 301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 302 *pos++ = local->hw.radiotap_mcs_details; 303 *pos = 0; 304 if (status->flag & RX_FLAG_SHORT_GI) 305 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 306 if (status->flag & RX_FLAG_40MHZ) 307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 308 if (status->flag & RX_FLAG_HT_GF) 309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 312 pos++; 313 *pos++ = status->rate_idx; 314 } 315 316 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 317 u16 flags = 0; 318 319 /* ensure 4 byte alignment */ 320 while ((pos - (u8 *)rthdr) & 3) 321 pos++; 322 rthdr->it_present |= 323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 324 put_unaligned_le32(status->ampdu_reference, pos); 325 pos += 4; 326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 332 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 338 put_unaligned_le16(flags, pos); 339 pos += 2; 340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 341 *pos++ = status->ampdu_delimiter_crc; 342 else 343 *pos++ = 0; 344 *pos++ = 0; 345 } 346 347 if (status->flag & RX_FLAG_VHT) { 348 u16 known = local->hw.radiotap_vht_details; 349 350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 351 /* known field - how to handle 80+80? */ 352 if (status->flag & RX_FLAG_80P80MHZ) 353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 354 put_unaligned_le16(known, pos); 355 pos += 2; 356 /* flags */ 357 if (status->flag & RX_FLAG_SHORT_GI) 358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 359 pos++; 360 /* bandwidth */ 361 if (status->flag & RX_FLAG_80MHZ) 362 *pos++ = 4; 363 else if (status->flag & RX_FLAG_80P80MHZ) 364 *pos++ = 0; /* marked not known above */ 365 else if (status->flag & RX_FLAG_160MHZ) 366 *pos++ = 11; 367 else if (status->flag & RX_FLAG_40MHZ) 368 *pos++ = 1; 369 else /* 20 MHz */ 370 *pos++ = 0; 371 /* MCS/NSS */ 372 *pos = (status->rate_idx << 4) | status->vht_nss; 373 pos += 4; 374 /* coding field */ 375 pos++; 376 /* group ID */ 377 pos++; 378 /* partial_aid */ 379 pos += 2; 380 } 381 382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 383 *pos++ = status->chain_signal[chain]; 384 *pos++ = chain; 385 } 386 387 if (status->vendor_radiotap_len) { 388 /* ensure 2 byte alignment for the vendor field as required */ 389 if ((pos - (u8 *)rthdr) & 1) 390 *pos++ = 0; 391 *pos++ = status->vendor_radiotap_oui[0]; 392 *pos++ = status->vendor_radiotap_oui[1]; 393 *pos++ = status->vendor_radiotap_oui[2]; 394 *pos++ = status->vendor_radiotap_subns; 395 put_unaligned_le16(status->vendor_radiotap_len, pos); 396 pos += 2; 397 /* align the actual payload as requested */ 398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1)) 399 *pos++ = 0; 400 } 401 } 402 403 /* 404 * This function copies a received frame to all monitor interfaces and 405 * returns a cleaned-up SKB that no longer includes the FCS nor the 406 * radiotap header the driver might have added. 407 */ 408 static struct sk_buff * 409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 410 struct ieee80211_rate *rate) 411 { 412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 413 struct ieee80211_sub_if_data *sdata; 414 int needed_headroom; 415 struct sk_buff *skb, *skb2; 416 struct net_device *prev_dev = NULL; 417 int present_fcs_len = 0; 418 419 /* 420 * First, we may need to make a copy of the skb because 421 * (1) we need to modify it for radiotap (if not present), and 422 * (2) the other RX handlers will modify the skb we got. 423 * 424 * We don't need to, of course, if we aren't going to return 425 * the SKB because it has a bad FCS/PLCP checksum. 426 */ 427 428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 429 present_fcs_len = FCS_LEN; 430 431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) { 433 dev_kfree_skb(origskb); 434 return NULL; 435 } 436 437 if (!local->monitors) { 438 if (should_drop_frame(origskb, present_fcs_len)) { 439 dev_kfree_skb(origskb); 440 return NULL; 441 } 442 443 return remove_monitor_info(local, origskb); 444 } 445 446 /* room for the radiotap header based on driver features */ 447 needed_headroom = ieee80211_rx_radiotap_space(local, status); 448 449 if (should_drop_frame(origskb, present_fcs_len)) { 450 /* only need to expand headroom if necessary */ 451 skb = origskb; 452 origskb = NULL; 453 454 /* 455 * This shouldn't trigger often because most devices have an 456 * RX header they pull before we get here, and that should 457 * be big enough for our radiotap information. We should 458 * probably export the length to drivers so that we can have 459 * them allocate enough headroom to start with. 460 */ 461 if (skb_headroom(skb) < needed_headroom && 462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 463 dev_kfree_skb(skb); 464 return NULL; 465 } 466 } else { 467 /* 468 * Need to make a copy and possibly remove radiotap header 469 * and FCS from the original. 470 */ 471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 472 473 origskb = remove_monitor_info(local, origskb); 474 475 if (!skb) 476 return origskb; 477 } 478 479 /* prepend radiotap information */ 480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 481 true); 482 483 skb_reset_mac_header(skb); 484 skb->ip_summed = CHECKSUM_UNNECESSARY; 485 skb->pkt_type = PACKET_OTHERHOST; 486 skb->protocol = htons(ETH_P_802_2); 487 488 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 490 continue; 491 492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 493 continue; 494 495 if (!ieee80211_sdata_running(sdata)) 496 continue; 497 498 if (prev_dev) { 499 skb2 = skb_clone(skb, GFP_ATOMIC); 500 if (skb2) { 501 skb2->dev = prev_dev; 502 netif_receive_skb(skb2); 503 } 504 } 505 506 prev_dev = sdata->dev; 507 sdata->dev->stats.rx_packets++; 508 sdata->dev->stats.rx_bytes += skb->len; 509 } 510 511 if (prev_dev) { 512 skb->dev = prev_dev; 513 netif_receive_skb(skb); 514 } else 515 dev_kfree_skb(skb); 516 517 return origskb; 518 } 519 520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 521 { 522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 524 int tid, seqno_idx, security_idx; 525 526 /* does the frame have a qos control field? */ 527 if (ieee80211_is_data_qos(hdr->frame_control)) { 528 u8 *qc = ieee80211_get_qos_ctl(hdr); 529 /* frame has qos control */ 530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 532 status->rx_flags |= IEEE80211_RX_AMSDU; 533 534 seqno_idx = tid; 535 security_idx = tid; 536 } else { 537 /* 538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 539 * 540 * Sequence numbers for management frames, QoS data 541 * frames with a broadcast/multicast address in the 542 * Address 1 field, and all non-QoS data frames sent 543 * by QoS STAs are assigned using an additional single 544 * modulo-4096 counter, [...] 545 * 546 * We also use that counter for non-QoS STAs. 547 */ 548 seqno_idx = IEEE80211_NUM_TIDS; 549 security_idx = 0; 550 if (ieee80211_is_mgmt(hdr->frame_control)) 551 security_idx = IEEE80211_NUM_TIDS; 552 tid = 0; 553 } 554 555 rx->seqno_idx = seqno_idx; 556 rx->security_idx = security_idx; 557 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 558 * For now, set skb->priority to 0 for other cases. */ 559 rx->skb->priority = (tid > 7) ? 0 : tid; 560 } 561 562 /** 563 * DOC: Packet alignment 564 * 565 * Drivers always need to pass packets that are aligned to two-byte boundaries 566 * to the stack. 567 * 568 * Additionally, should, if possible, align the payload data in a way that 569 * guarantees that the contained IP header is aligned to a four-byte 570 * boundary. In the case of regular frames, this simply means aligning the 571 * payload to a four-byte boundary (because either the IP header is directly 572 * contained, or IV/RFC1042 headers that have a length divisible by four are 573 * in front of it). If the payload data is not properly aligned and the 574 * architecture doesn't support efficient unaligned operations, mac80211 575 * will align the data. 576 * 577 * With A-MSDU frames, however, the payload data address must yield two modulo 578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 579 * push the IP header further back to a multiple of four again. Thankfully, the 580 * specs were sane enough this time around to require padding each A-MSDU 581 * subframe to a length that is a multiple of four. 582 * 583 * Padding like Atheros hardware adds which is between the 802.11 header and 584 * the payload is not supported, the driver is required to move the 802.11 585 * header to be directly in front of the payload in that case. 586 */ 587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 588 { 589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 590 WARN_ONCE((unsigned long)rx->skb->data & 1, 591 "unaligned packet at 0x%p\n", rx->skb->data); 592 #endif 593 } 594 595 596 /* rx handlers */ 597 598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 599 { 600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 601 602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 603 return 0; 604 605 return ieee80211_is_robust_mgmt_frame(hdr); 606 } 607 608 609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 610 { 611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 612 613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 614 return 0; 615 616 return ieee80211_is_robust_mgmt_frame(hdr); 617 } 618 619 620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 622 { 623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 624 struct ieee80211_mmie *mmie; 625 626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 627 return -1; 628 629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 630 return -1; /* not a robust management frame */ 631 632 mmie = (struct ieee80211_mmie *) 633 (skb->data + skb->len - sizeof(*mmie)); 634 if (mmie->element_id != WLAN_EID_MMIE || 635 mmie->length != sizeof(*mmie) - 2) 636 return -1; 637 638 return le16_to_cpu(mmie->key_id); 639 } 640 641 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 642 struct sk_buff *skb) 643 { 644 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 645 __le16 fc; 646 int hdrlen; 647 u8 keyid; 648 649 fc = hdr->frame_control; 650 hdrlen = ieee80211_hdrlen(fc); 651 652 if (skb->len < hdrlen + cs->hdr_len) 653 return -EINVAL; 654 655 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 656 keyid &= cs->key_idx_mask; 657 keyid >>= cs->key_idx_shift; 658 659 return keyid; 660 } 661 662 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 663 { 664 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 665 char *dev_addr = rx->sdata->vif.addr; 666 667 if (ieee80211_is_data(hdr->frame_control)) { 668 if (is_multicast_ether_addr(hdr->addr1)) { 669 if (ieee80211_has_tods(hdr->frame_control) || 670 !ieee80211_has_fromds(hdr->frame_control)) 671 return RX_DROP_MONITOR; 672 if (ether_addr_equal(hdr->addr3, dev_addr)) 673 return RX_DROP_MONITOR; 674 } else { 675 if (!ieee80211_has_a4(hdr->frame_control)) 676 return RX_DROP_MONITOR; 677 if (ether_addr_equal(hdr->addr4, dev_addr)) 678 return RX_DROP_MONITOR; 679 } 680 } 681 682 /* If there is not an established peer link and this is not a peer link 683 * establisment frame, beacon or probe, drop the frame. 684 */ 685 686 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 687 struct ieee80211_mgmt *mgmt; 688 689 if (!ieee80211_is_mgmt(hdr->frame_control)) 690 return RX_DROP_MONITOR; 691 692 if (ieee80211_is_action(hdr->frame_control)) { 693 u8 category; 694 695 /* make sure category field is present */ 696 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 697 return RX_DROP_MONITOR; 698 699 mgmt = (struct ieee80211_mgmt *)hdr; 700 category = mgmt->u.action.category; 701 if (category != WLAN_CATEGORY_MESH_ACTION && 702 category != WLAN_CATEGORY_SELF_PROTECTED) 703 return RX_DROP_MONITOR; 704 return RX_CONTINUE; 705 } 706 707 if (ieee80211_is_probe_req(hdr->frame_control) || 708 ieee80211_is_probe_resp(hdr->frame_control) || 709 ieee80211_is_beacon(hdr->frame_control) || 710 ieee80211_is_auth(hdr->frame_control)) 711 return RX_CONTINUE; 712 713 return RX_DROP_MONITOR; 714 } 715 716 return RX_CONTINUE; 717 } 718 719 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 720 struct tid_ampdu_rx *tid_agg_rx, 721 int index, 722 struct sk_buff_head *frames) 723 { 724 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 725 struct ieee80211_rx_status *status; 726 727 lockdep_assert_held(&tid_agg_rx->reorder_lock); 728 729 if (!skb) 730 goto no_frame; 731 732 /* release the frame from the reorder ring buffer */ 733 tid_agg_rx->stored_mpdu_num--; 734 tid_agg_rx->reorder_buf[index] = NULL; 735 status = IEEE80211_SKB_RXCB(skb); 736 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 737 __skb_queue_tail(frames, skb); 738 739 no_frame: 740 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 741 } 742 743 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 744 struct tid_ampdu_rx *tid_agg_rx, 745 u16 head_seq_num, 746 struct sk_buff_head *frames) 747 { 748 int index; 749 750 lockdep_assert_held(&tid_agg_rx->reorder_lock); 751 752 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 753 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 754 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 755 frames); 756 } 757 } 758 759 /* 760 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 761 * the skb was added to the buffer longer than this time ago, the earlier 762 * frames that have not yet been received are assumed to be lost and the skb 763 * can be released for processing. This may also release other skb's from the 764 * reorder buffer if there are no additional gaps between the frames. 765 * 766 * Callers must hold tid_agg_rx->reorder_lock. 767 */ 768 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 769 770 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 771 struct tid_ampdu_rx *tid_agg_rx, 772 struct sk_buff_head *frames) 773 { 774 int index, j; 775 776 lockdep_assert_held(&tid_agg_rx->reorder_lock); 777 778 /* release the buffer until next missing frame */ 779 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 780 if (!tid_agg_rx->reorder_buf[index] && 781 tid_agg_rx->stored_mpdu_num) { 782 /* 783 * No buffers ready to be released, but check whether any 784 * frames in the reorder buffer have timed out. 785 */ 786 int skipped = 1; 787 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 788 j = (j + 1) % tid_agg_rx->buf_size) { 789 if (!tid_agg_rx->reorder_buf[j]) { 790 skipped++; 791 continue; 792 } 793 if (skipped && 794 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 795 HT_RX_REORDER_BUF_TIMEOUT)) 796 goto set_release_timer; 797 798 ht_dbg_ratelimited(sdata, 799 "release an RX reorder frame due to timeout on earlier frames\n"); 800 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 801 frames); 802 803 /* 804 * Increment the head seq# also for the skipped slots. 805 */ 806 tid_agg_rx->head_seq_num = 807 (tid_agg_rx->head_seq_num + 808 skipped) & IEEE80211_SN_MASK; 809 skipped = 0; 810 } 811 } else while (tid_agg_rx->reorder_buf[index]) { 812 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 813 frames); 814 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 815 } 816 817 if (tid_agg_rx->stored_mpdu_num) { 818 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 819 820 for (; j != (index - 1) % tid_agg_rx->buf_size; 821 j = (j + 1) % tid_agg_rx->buf_size) { 822 if (tid_agg_rx->reorder_buf[j]) 823 break; 824 } 825 826 set_release_timer: 827 828 mod_timer(&tid_agg_rx->reorder_timer, 829 tid_agg_rx->reorder_time[j] + 1 + 830 HT_RX_REORDER_BUF_TIMEOUT); 831 } else { 832 del_timer(&tid_agg_rx->reorder_timer); 833 } 834 } 835 836 /* 837 * As this function belongs to the RX path it must be under 838 * rcu_read_lock protection. It returns false if the frame 839 * can be processed immediately, true if it was consumed. 840 */ 841 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 842 struct tid_ampdu_rx *tid_agg_rx, 843 struct sk_buff *skb, 844 struct sk_buff_head *frames) 845 { 846 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 847 u16 sc = le16_to_cpu(hdr->seq_ctrl); 848 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 849 u16 head_seq_num, buf_size; 850 int index; 851 bool ret = true; 852 853 spin_lock(&tid_agg_rx->reorder_lock); 854 855 buf_size = tid_agg_rx->buf_size; 856 head_seq_num = tid_agg_rx->head_seq_num; 857 858 /* frame with out of date sequence number */ 859 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 860 dev_kfree_skb(skb); 861 goto out; 862 } 863 864 /* 865 * If frame the sequence number exceeds our buffering window 866 * size release some previous frames to make room for this one. 867 */ 868 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 869 head_seq_num = ieee80211_sn_inc( 870 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 871 /* release stored frames up to new head to stack */ 872 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 873 head_seq_num, frames); 874 } 875 876 /* Now the new frame is always in the range of the reordering buffer */ 877 878 index = mpdu_seq_num % tid_agg_rx->buf_size; 879 880 /* check if we already stored this frame */ 881 if (tid_agg_rx->reorder_buf[index]) { 882 dev_kfree_skb(skb); 883 goto out; 884 } 885 886 /* 887 * If the current MPDU is in the right order and nothing else 888 * is stored we can process it directly, no need to buffer it. 889 * If it is first but there's something stored, we may be able 890 * to release frames after this one. 891 */ 892 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 893 tid_agg_rx->stored_mpdu_num == 0) { 894 tid_agg_rx->head_seq_num = 895 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 896 ret = false; 897 goto out; 898 } 899 900 /* put the frame in the reordering buffer */ 901 tid_agg_rx->reorder_buf[index] = skb; 902 tid_agg_rx->reorder_time[index] = jiffies; 903 tid_agg_rx->stored_mpdu_num++; 904 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 905 906 out: 907 spin_unlock(&tid_agg_rx->reorder_lock); 908 return ret; 909 } 910 911 /* 912 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 913 * true if the MPDU was buffered, false if it should be processed. 914 */ 915 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 916 struct sk_buff_head *frames) 917 { 918 struct sk_buff *skb = rx->skb; 919 struct ieee80211_local *local = rx->local; 920 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 921 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 922 struct sta_info *sta = rx->sta; 923 struct tid_ampdu_rx *tid_agg_rx; 924 u16 sc; 925 u8 tid, ack_policy; 926 927 if (!ieee80211_is_data_qos(hdr->frame_control) || 928 is_multicast_ether_addr(hdr->addr1)) 929 goto dont_reorder; 930 931 /* 932 * filter the QoS data rx stream according to 933 * STA/TID and check if this STA/TID is on aggregation 934 */ 935 936 if (!sta) 937 goto dont_reorder; 938 939 ack_policy = *ieee80211_get_qos_ctl(hdr) & 940 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 941 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 942 943 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 944 if (!tid_agg_rx) 945 goto dont_reorder; 946 947 /* qos null data frames are excluded */ 948 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 949 goto dont_reorder; 950 951 /* not part of a BA session */ 952 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 953 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 954 goto dont_reorder; 955 956 /* not actually part of this BA session */ 957 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 958 goto dont_reorder; 959 960 /* new, potentially un-ordered, ampdu frame - process it */ 961 962 /* reset session timer */ 963 if (tid_agg_rx->timeout) 964 tid_agg_rx->last_rx = jiffies; 965 966 /* if this mpdu is fragmented - terminate rx aggregation session */ 967 sc = le16_to_cpu(hdr->seq_ctrl); 968 if (sc & IEEE80211_SCTL_FRAG) { 969 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 970 skb_queue_tail(&rx->sdata->skb_queue, skb); 971 ieee80211_queue_work(&local->hw, &rx->sdata->work); 972 return; 973 } 974 975 /* 976 * No locking needed -- we will only ever process one 977 * RX packet at a time, and thus own tid_agg_rx. All 978 * other code manipulating it needs to (and does) make 979 * sure that we cannot get to it any more before doing 980 * anything with it. 981 */ 982 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 983 frames)) 984 return; 985 986 dont_reorder: 987 __skb_queue_tail(frames, skb); 988 } 989 990 static ieee80211_rx_result debug_noinline 991 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 992 { 993 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 994 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 995 996 /* 997 * Drop duplicate 802.11 retransmissions 998 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 999 */ 1000 if (rx->skb->len >= 24 && rx->sta && 1001 !ieee80211_is_ctl(hdr->frame_control) && 1002 !ieee80211_is_qos_nullfunc(hdr->frame_control) && 1003 !is_multicast_ether_addr(hdr->addr1)) { 1004 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1005 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1006 hdr->seq_ctrl)) { 1007 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1008 rx->local->dot11FrameDuplicateCount++; 1009 rx->sta->num_duplicates++; 1010 } 1011 return RX_DROP_UNUSABLE; 1012 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1013 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1014 } 1015 } 1016 1017 if (unlikely(rx->skb->len < 16)) { 1018 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1019 return RX_DROP_MONITOR; 1020 } 1021 1022 /* Drop disallowed frame classes based on STA auth/assoc state; 1023 * IEEE 802.11, Chap 5.5. 1024 * 1025 * mac80211 filters only based on association state, i.e. it drops 1026 * Class 3 frames from not associated stations. hostapd sends 1027 * deauth/disassoc frames when needed. In addition, hostapd is 1028 * responsible for filtering on both auth and assoc states. 1029 */ 1030 1031 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1032 return ieee80211_rx_mesh_check(rx); 1033 1034 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1035 ieee80211_is_pspoll(hdr->frame_control)) && 1036 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1037 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1038 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1039 /* 1040 * accept port control frames from the AP even when it's not 1041 * yet marked ASSOC to prevent a race where we don't set the 1042 * assoc bit quickly enough before it sends the first frame 1043 */ 1044 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1045 ieee80211_is_data_present(hdr->frame_control)) { 1046 unsigned int hdrlen; 1047 __be16 ethertype; 1048 1049 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1050 1051 if (rx->skb->len < hdrlen + 8) 1052 return RX_DROP_MONITOR; 1053 1054 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1055 if (ethertype == rx->sdata->control_port_protocol) 1056 return RX_CONTINUE; 1057 } 1058 1059 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1060 cfg80211_rx_spurious_frame(rx->sdata->dev, 1061 hdr->addr2, 1062 GFP_ATOMIC)) 1063 return RX_DROP_UNUSABLE; 1064 1065 return RX_DROP_MONITOR; 1066 } 1067 1068 return RX_CONTINUE; 1069 } 1070 1071 1072 static ieee80211_rx_result debug_noinline 1073 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1074 { 1075 struct ieee80211_local *local; 1076 struct ieee80211_hdr *hdr; 1077 struct sk_buff *skb; 1078 1079 local = rx->local; 1080 skb = rx->skb; 1081 hdr = (struct ieee80211_hdr *) skb->data; 1082 1083 if (!local->pspolling) 1084 return RX_CONTINUE; 1085 1086 if (!ieee80211_has_fromds(hdr->frame_control)) 1087 /* this is not from AP */ 1088 return RX_CONTINUE; 1089 1090 if (!ieee80211_is_data(hdr->frame_control)) 1091 return RX_CONTINUE; 1092 1093 if (!ieee80211_has_moredata(hdr->frame_control)) { 1094 /* AP has no more frames buffered for us */ 1095 local->pspolling = false; 1096 return RX_CONTINUE; 1097 } 1098 1099 /* more data bit is set, let's request a new frame from the AP */ 1100 ieee80211_send_pspoll(local, rx->sdata); 1101 1102 return RX_CONTINUE; 1103 } 1104 1105 static void sta_ps_start(struct sta_info *sta) 1106 { 1107 struct ieee80211_sub_if_data *sdata = sta->sdata; 1108 struct ieee80211_local *local = sdata->local; 1109 struct ps_data *ps; 1110 1111 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1112 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1113 ps = &sdata->bss->ps; 1114 else 1115 return; 1116 1117 atomic_inc(&ps->num_sta_ps); 1118 set_sta_flag(sta, WLAN_STA_PS_STA); 1119 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1120 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1121 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1122 sta->sta.addr, sta->sta.aid); 1123 } 1124 1125 static void sta_ps_end(struct sta_info *sta) 1126 { 1127 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1128 sta->sta.addr, sta->sta.aid); 1129 1130 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1131 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1132 sta->sta.addr, sta->sta.aid); 1133 return; 1134 } 1135 1136 ieee80211_sta_ps_deliver_wakeup(sta); 1137 } 1138 1139 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1140 { 1141 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1142 bool in_ps; 1143 1144 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1145 1146 /* Don't let the same PS state be set twice */ 1147 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1148 if ((start && in_ps) || (!start && !in_ps)) 1149 return -EINVAL; 1150 1151 if (start) 1152 sta_ps_start(sta_inf); 1153 else 1154 sta_ps_end(sta_inf); 1155 1156 return 0; 1157 } 1158 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1159 1160 static ieee80211_rx_result debug_noinline 1161 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1162 { 1163 struct ieee80211_sub_if_data *sdata = rx->sdata; 1164 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1165 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1166 int tid, ac; 1167 1168 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1169 return RX_CONTINUE; 1170 1171 if (sdata->vif.type != NL80211_IFTYPE_AP && 1172 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1173 return RX_CONTINUE; 1174 1175 /* 1176 * The device handles station powersave, so don't do anything about 1177 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1178 * it to mac80211 since they're handled.) 1179 */ 1180 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1181 return RX_CONTINUE; 1182 1183 /* 1184 * Don't do anything if the station isn't already asleep. In 1185 * the uAPSD case, the station will probably be marked asleep, 1186 * in the PS-Poll case the station must be confused ... 1187 */ 1188 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1189 return RX_CONTINUE; 1190 1191 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1192 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1193 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1194 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1195 else 1196 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1197 } 1198 1199 /* Free PS Poll skb here instead of returning RX_DROP that would 1200 * count as an dropped frame. */ 1201 dev_kfree_skb(rx->skb); 1202 1203 return RX_QUEUED; 1204 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1205 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1206 ieee80211_has_pm(hdr->frame_control) && 1207 (ieee80211_is_data_qos(hdr->frame_control) || 1208 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1209 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1210 ac = ieee802_1d_to_ac[tid & 7]; 1211 1212 /* 1213 * If this AC is not trigger-enabled do nothing. 1214 * 1215 * NB: This could/should check a separate bitmap of trigger- 1216 * enabled queues, but for now we only implement uAPSD w/o 1217 * TSPEC changes to the ACs, so they're always the same. 1218 */ 1219 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1220 return RX_CONTINUE; 1221 1222 /* if we are in a service period, do nothing */ 1223 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1224 return RX_CONTINUE; 1225 1226 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1227 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1228 else 1229 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1230 } 1231 1232 return RX_CONTINUE; 1233 } 1234 1235 static ieee80211_rx_result debug_noinline 1236 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1237 { 1238 struct sta_info *sta = rx->sta; 1239 struct sk_buff *skb = rx->skb; 1240 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1241 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1242 int i; 1243 1244 if (!sta) 1245 return RX_CONTINUE; 1246 1247 /* 1248 * Update last_rx only for IBSS packets which are for the current 1249 * BSSID and for station already AUTHORIZED to avoid keeping the 1250 * current IBSS network alive in cases where other STAs start 1251 * using different BSSID. This will also give the station another 1252 * chance to restart the authentication/authorization in case 1253 * something went wrong the first time. 1254 */ 1255 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1256 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1257 NL80211_IFTYPE_ADHOC); 1258 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1259 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1260 sta->last_rx = jiffies; 1261 if (ieee80211_is_data(hdr->frame_control)) { 1262 sta->last_rx_rate_idx = status->rate_idx; 1263 sta->last_rx_rate_flag = status->flag; 1264 sta->last_rx_rate_vht_nss = status->vht_nss; 1265 } 1266 } 1267 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1268 /* 1269 * Mesh beacons will update last_rx when if they are found to 1270 * match the current local configuration when processed. 1271 */ 1272 sta->last_rx = jiffies; 1273 if (ieee80211_is_data(hdr->frame_control)) { 1274 sta->last_rx_rate_idx = status->rate_idx; 1275 sta->last_rx_rate_flag = status->flag; 1276 sta->last_rx_rate_vht_nss = status->vht_nss; 1277 } 1278 } 1279 1280 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1281 return RX_CONTINUE; 1282 1283 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1284 ieee80211_sta_rx_notify(rx->sdata, hdr); 1285 1286 sta->rx_fragments++; 1287 sta->rx_bytes += rx->skb->len; 1288 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1289 sta->last_signal = status->signal; 1290 ewma_add(&sta->avg_signal, -status->signal); 1291 } 1292 1293 if (status->chains) { 1294 sta->chains = status->chains; 1295 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1296 int signal = status->chain_signal[i]; 1297 1298 if (!(status->chains & BIT(i))) 1299 continue; 1300 1301 sta->chain_signal_last[i] = signal; 1302 ewma_add(&sta->chain_signal_avg[i], -signal); 1303 } 1304 } 1305 1306 /* 1307 * Change STA power saving mode only at the end of a frame 1308 * exchange sequence. 1309 */ 1310 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1311 !ieee80211_has_morefrags(hdr->frame_control) && 1312 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1313 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1314 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1315 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1316 /* 1317 * Ignore doze->wake transitions that are 1318 * indicated by non-data frames, the standard 1319 * is unclear here, but for example going to 1320 * PS mode and then scanning would cause a 1321 * doze->wake transition for the probe request, 1322 * and that is clearly undesirable. 1323 */ 1324 if (ieee80211_is_data(hdr->frame_control) && 1325 !ieee80211_has_pm(hdr->frame_control)) 1326 sta_ps_end(sta); 1327 } else { 1328 if (ieee80211_has_pm(hdr->frame_control)) 1329 sta_ps_start(sta); 1330 } 1331 } 1332 1333 /* mesh power save support */ 1334 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1335 ieee80211_mps_rx_h_sta_process(sta, hdr); 1336 1337 /* 1338 * Drop (qos-)data::nullfunc frames silently, since they 1339 * are used only to control station power saving mode. 1340 */ 1341 if (ieee80211_is_nullfunc(hdr->frame_control) || 1342 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1343 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1344 1345 /* 1346 * If we receive a 4-addr nullfunc frame from a STA 1347 * that was not moved to a 4-addr STA vlan yet send 1348 * the event to userspace and for older hostapd drop 1349 * the frame to the monitor interface. 1350 */ 1351 if (ieee80211_has_a4(hdr->frame_control) && 1352 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1353 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1354 !rx->sdata->u.vlan.sta))) { 1355 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1356 cfg80211_rx_unexpected_4addr_frame( 1357 rx->sdata->dev, sta->sta.addr, 1358 GFP_ATOMIC); 1359 return RX_DROP_MONITOR; 1360 } 1361 /* 1362 * Update counter and free packet here to avoid 1363 * counting this as a dropped packed. 1364 */ 1365 sta->rx_packets++; 1366 dev_kfree_skb(rx->skb); 1367 return RX_QUEUED; 1368 } 1369 1370 return RX_CONTINUE; 1371 } /* ieee80211_rx_h_sta_process */ 1372 1373 static ieee80211_rx_result debug_noinline 1374 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1375 { 1376 struct sk_buff *skb = rx->skb; 1377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1379 int keyidx; 1380 int hdrlen; 1381 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1382 struct ieee80211_key *sta_ptk = NULL; 1383 int mmie_keyidx = -1; 1384 __le16 fc; 1385 const struct ieee80211_cipher_scheme *cs = NULL; 1386 1387 /* 1388 * Key selection 101 1389 * 1390 * There are four types of keys: 1391 * - GTK (group keys) 1392 * - IGTK (group keys for management frames) 1393 * - PTK (pairwise keys) 1394 * - STK (station-to-station pairwise keys) 1395 * 1396 * When selecting a key, we have to distinguish between multicast 1397 * (including broadcast) and unicast frames, the latter can only 1398 * use PTKs and STKs while the former always use GTKs and IGTKs. 1399 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1400 * unicast frames can also use key indices like GTKs. Hence, if we 1401 * don't have a PTK/STK we check the key index for a WEP key. 1402 * 1403 * Note that in a regular BSS, multicast frames are sent by the 1404 * AP only, associated stations unicast the frame to the AP first 1405 * which then multicasts it on their behalf. 1406 * 1407 * There is also a slight problem in IBSS mode: GTKs are negotiated 1408 * with each station, that is something we don't currently handle. 1409 * The spec seems to expect that one negotiates the same key with 1410 * every station but there's no such requirement; VLANs could be 1411 * possible. 1412 */ 1413 1414 /* 1415 * No point in finding a key and decrypting if the frame is neither 1416 * addressed to us nor a multicast frame. 1417 */ 1418 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1419 return RX_CONTINUE; 1420 1421 /* start without a key */ 1422 rx->key = NULL; 1423 fc = hdr->frame_control; 1424 1425 if (rx->sta) { 1426 int keyid = rx->sta->ptk_idx; 1427 1428 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1429 cs = rx->sta->cipher_scheme; 1430 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1431 if (unlikely(keyid < 0)) 1432 return RX_DROP_UNUSABLE; 1433 } 1434 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1435 } 1436 1437 if (!ieee80211_has_protected(fc)) 1438 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1439 1440 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1441 rx->key = sta_ptk; 1442 if ((status->flag & RX_FLAG_DECRYPTED) && 1443 (status->flag & RX_FLAG_IV_STRIPPED)) 1444 return RX_CONTINUE; 1445 /* Skip decryption if the frame is not protected. */ 1446 if (!ieee80211_has_protected(fc)) 1447 return RX_CONTINUE; 1448 } else if (mmie_keyidx >= 0) { 1449 /* Broadcast/multicast robust management frame / BIP */ 1450 if ((status->flag & RX_FLAG_DECRYPTED) && 1451 (status->flag & RX_FLAG_IV_STRIPPED)) 1452 return RX_CONTINUE; 1453 1454 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1455 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1456 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1457 if (rx->sta) 1458 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1459 if (!rx->key) 1460 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1461 } else if (!ieee80211_has_protected(fc)) { 1462 /* 1463 * The frame was not protected, so skip decryption. However, we 1464 * need to set rx->key if there is a key that could have been 1465 * used so that the frame may be dropped if encryption would 1466 * have been expected. 1467 */ 1468 struct ieee80211_key *key = NULL; 1469 struct ieee80211_sub_if_data *sdata = rx->sdata; 1470 int i; 1471 1472 if (ieee80211_is_mgmt(fc) && 1473 is_multicast_ether_addr(hdr->addr1) && 1474 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1475 rx->key = key; 1476 else { 1477 if (rx->sta) { 1478 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1479 key = rcu_dereference(rx->sta->gtk[i]); 1480 if (key) 1481 break; 1482 } 1483 } 1484 if (!key) { 1485 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1486 key = rcu_dereference(sdata->keys[i]); 1487 if (key) 1488 break; 1489 } 1490 } 1491 if (key) 1492 rx->key = key; 1493 } 1494 return RX_CONTINUE; 1495 } else { 1496 u8 keyid; 1497 1498 /* 1499 * The device doesn't give us the IV so we won't be 1500 * able to look up the key. That's ok though, we 1501 * don't need to decrypt the frame, we just won't 1502 * be able to keep statistics accurate. 1503 * Except for key threshold notifications, should 1504 * we somehow allow the driver to tell us which key 1505 * the hardware used if this flag is set? 1506 */ 1507 if ((status->flag & RX_FLAG_DECRYPTED) && 1508 (status->flag & RX_FLAG_IV_STRIPPED)) 1509 return RX_CONTINUE; 1510 1511 hdrlen = ieee80211_hdrlen(fc); 1512 1513 if (cs) { 1514 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1515 1516 if (unlikely(keyidx < 0)) 1517 return RX_DROP_UNUSABLE; 1518 } else { 1519 if (rx->skb->len < 8 + hdrlen) 1520 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1521 /* 1522 * no need to call ieee80211_wep_get_keyidx, 1523 * it verifies a bunch of things we've done already 1524 */ 1525 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1526 keyidx = keyid >> 6; 1527 } 1528 1529 /* check per-station GTK first, if multicast packet */ 1530 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1531 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1532 1533 /* if not found, try default key */ 1534 if (!rx->key) { 1535 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1536 1537 /* 1538 * RSNA-protected unicast frames should always be 1539 * sent with pairwise or station-to-station keys, 1540 * but for WEP we allow using a key index as well. 1541 */ 1542 if (rx->key && 1543 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1544 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1545 !is_multicast_ether_addr(hdr->addr1)) 1546 rx->key = NULL; 1547 } 1548 } 1549 1550 if (rx->key) { 1551 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1552 return RX_DROP_MONITOR; 1553 1554 rx->key->tx_rx_count++; 1555 /* TODO: add threshold stuff again */ 1556 } else { 1557 return RX_DROP_MONITOR; 1558 } 1559 1560 switch (rx->key->conf.cipher) { 1561 case WLAN_CIPHER_SUITE_WEP40: 1562 case WLAN_CIPHER_SUITE_WEP104: 1563 result = ieee80211_crypto_wep_decrypt(rx); 1564 break; 1565 case WLAN_CIPHER_SUITE_TKIP: 1566 result = ieee80211_crypto_tkip_decrypt(rx); 1567 break; 1568 case WLAN_CIPHER_SUITE_CCMP: 1569 result = ieee80211_crypto_ccmp_decrypt(rx); 1570 break; 1571 case WLAN_CIPHER_SUITE_AES_CMAC: 1572 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1573 break; 1574 default: 1575 result = ieee80211_crypto_hw_decrypt(rx); 1576 } 1577 1578 /* the hdr variable is invalid after the decrypt handlers */ 1579 1580 /* either the frame has been decrypted or will be dropped */ 1581 status->flag |= RX_FLAG_DECRYPTED; 1582 1583 return result; 1584 } 1585 1586 static inline struct ieee80211_fragment_entry * 1587 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1588 unsigned int frag, unsigned int seq, int rx_queue, 1589 struct sk_buff **skb) 1590 { 1591 struct ieee80211_fragment_entry *entry; 1592 1593 entry = &sdata->fragments[sdata->fragment_next++]; 1594 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1595 sdata->fragment_next = 0; 1596 1597 if (!skb_queue_empty(&entry->skb_list)) 1598 __skb_queue_purge(&entry->skb_list); 1599 1600 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1601 *skb = NULL; 1602 entry->first_frag_time = jiffies; 1603 entry->seq = seq; 1604 entry->rx_queue = rx_queue; 1605 entry->last_frag = frag; 1606 entry->ccmp = 0; 1607 entry->extra_len = 0; 1608 1609 return entry; 1610 } 1611 1612 static inline struct ieee80211_fragment_entry * 1613 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1614 unsigned int frag, unsigned int seq, 1615 int rx_queue, struct ieee80211_hdr *hdr) 1616 { 1617 struct ieee80211_fragment_entry *entry; 1618 int i, idx; 1619 1620 idx = sdata->fragment_next; 1621 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1622 struct ieee80211_hdr *f_hdr; 1623 1624 idx--; 1625 if (idx < 0) 1626 idx = IEEE80211_FRAGMENT_MAX - 1; 1627 1628 entry = &sdata->fragments[idx]; 1629 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1630 entry->rx_queue != rx_queue || 1631 entry->last_frag + 1 != frag) 1632 continue; 1633 1634 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1635 1636 /* 1637 * Check ftype and addresses are equal, else check next fragment 1638 */ 1639 if (((hdr->frame_control ^ f_hdr->frame_control) & 1640 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1641 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1642 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1643 continue; 1644 1645 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1646 __skb_queue_purge(&entry->skb_list); 1647 continue; 1648 } 1649 return entry; 1650 } 1651 1652 return NULL; 1653 } 1654 1655 static ieee80211_rx_result debug_noinline 1656 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1657 { 1658 struct ieee80211_hdr *hdr; 1659 u16 sc; 1660 __le16 fc; 1661 unsigned int frag, seq; 1662 struct ieee80211_fragment_entry *entry; 1663 struct sk_buff *skb; 1664 struct ieee80211_rx_status *status; 1665 1666 hdr = (struct ieee80211_hdr *)rx->skb->data; 1667 fc = hdr->frame_control; 1668 1669 if (ieee80211_is_ctl(fc)) 1670 return RX_CONTINUE; 1671 1672 sc = le16_to_cpu(hdr->seq_ctrl); 1673 frag = sc & IEEE80211_SCTL_FRAG; 1674 1675 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1676 is_multicast_ether_addr(hdr->addr1))) { 1677 /* not fragmented */ 1678 goto out; 1679 } 1680 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1681 1682 if (skb_linearize(rx->skb)) 1683 return RX_DROP_UNUSABLE; 1684 1685 /* 1686 * skb_linearize() might change the skb->data and 1687 * previously cached variables (in this case, hdr) need to 1688 * be refreshed with the new data. 1689 */ 1690 hdr = (struct ieee80211_hdr *)rx->skb->data; 1691 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1692 1693 if (frag == 0) { 1694 /* This is the first fragment of a new frame. */ 1695 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1696 rx->seqno_idx, &(rx->skb)); 1697 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1698 ieee80211_has_protected(fc)) { 1699 int queue = rx->security_idx; 1700 /* Store CCMP PN so that we can verify that the next 1701 * fragment has a sequential PN value. */ 1702 entry->ccmp = 1; 1703 memcpy(entry->last_pn, 1704 rx->key->u.ccmp.rx_pn[queue], 1705 IEEE80211_CCMP_PN_LEN); 1706 } 1707 return RX_QUEUED; 1708 } 1709 1710 /* This is a fragment for a frame that should already be pending in 1711 * fragment cache. Add this fragment to the end of the pending entry. 1712 */ 1713 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1714 rx->seqno_idx, hdr); 1715 if (!entry) { 1716 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1717 return RX_DROP_MONITOR; 1718 } 1719 1720 /* Verify that MPDUs within one MSDU have sequential PN values. 1721 * (IEEE 802.11i, 8.3.3.4.5) */ 1722 if (entry->ccmp) { 1723 int i; 1724 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1725 int queue; 1726 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1727 return RX_DROP_UNUSABLE; 1728 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1729 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1730 pn[i]++; 1731 if (pn[i]) 1732 break; 1733 } 1734 queue = rx->security_idx; 1735 rpn = rx->key->u.ccmp.rx_pn[queue]; 1736 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1737 return RX_DROP_UNUSABLE; 1738 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1739 } 1740 1741 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1742 __skb_queue_tail(&entry->skb_list, rx->skb); 1743 entry->last_frag = frag; 1744 entry->extra_len += rx->skb->len; 1745 if (ieee80211_has_morefrags(fc)) { 1746 rx->skb = NULL; 1747 return RX_QUEUED; 1748 } 1749 1750 rx->skb = __skb_dequeue(&entry->skb_list); 1751 if (skb_tailroom(rx->skb) < entry->extra_len) { 1752 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1753 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1754 GFP_ATOMIC))) { 1755 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1756 __skb_queue_purge(&entry->skb_list); 1757 return RX_DROP_UNUSABLE; 1758 } 1759 } 1760 while ((skb = __skb_dequeue(&entry->skb_list))) { 1761 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1762 dev_kfree_skb(skb); 1763 } 1764 1765 /* Complete frame has been reassembled - process it now */ 1766 status = IEEE80211_SKB_RXCB(rx->skb); 1767 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1768 1769 out: 1770 if (rx->sta) 1771 rx->sta->rx_packets++; 1772 if (is_multicast_ether_addr(hdr->addr1)) 1773 rx->local->dot11MulticastReceivedFrameCount++; 1774 else 1775 ieee80211_led_rx(rx->local); 1776 return RX_CONTINUE; 1777 } 1778 1779 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1780 { 1781 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1782 return -EACCES; 1783 1784 return 0; 1785 } 1786 1787 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1788 { 1789 struct sk_buff *skb = rx->skb; 1790 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1791 1792 /* 1793 * Pass through unencrypted frames if the hardware has 1794 * decrypted them already. 1795 */ 1796 if (status->flag & RX_FLAG_DECRYPTED) 1797 return 0; 1798 1799 /* Drop unencrypted frames if key is set. */ 1800 if (unlikely(!ieee80211_has_protected(fc) && 1801 !ieee80211_is_nullfunc(fc) && 1802 ieee80211_is_data(fc) && 1803 (rx->key || rx->sdata->drop_unencrypted))) 1804 return -EACCES; 1805 1806 return 0; 1807 } 1808 1809 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1810 { 1811 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1812 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1813 __le16 fc = hdr->frame_control; 1814 1815 /* 1816 * Pass through unencrypted frames if the hardware has 1817 * decrypted them already. 1818 */ 1819 if (status->flag & RX_FLAG_DECRYPTED) 1820 return 0; 1821 1822 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1823 if (unlikely(!ieee80211_has_protected(fc) && 1824 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1825 rx->key)) { 1826 if (ieee80211_is_deauth(fc) || 1827 ieee80211_is_disassoc(fc)) 1828 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1829 rx->skb->data, 1830 rx->skb->len); 1831 return -EACCES; 1832 } 1833 /* BIP does not use Protected field, so need to check MMIE */ 1834 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1835 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1836 if (ieee80211_is_deauth(fc) || 1837 ieee80211_is_disassoc(fc)) 1838 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1839 rx->skb->data, 1840 rx->skb->len); 1841 return -EACCES; 1842 } 1843 /* 1844 * When using MFP, Action frames are not allowed prior to 1845 * having configured keys. 1846 */ 1847 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1848 ieee80211_is_robust_mgmt_frame( 1849 (struct ieee80211_hdr *) rx->skb->data))) 1850 return -EACCES; 1851 } 1852 1853 return 0; 1854 } 1855 1856 static int 1857 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1858 { 1859 struct ieee80211_sub_if_data *sdata = rx->sdata; 1860 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1861 bool check_port_control = false; 1862 struct ethhdr *ehdr; 1863 int ret; 1864 1865 *port_control = false; 1866 if (ieee80211_has_a4(hdr->frame_control) && 1867 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1868 return -1; 1869 1870 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1871 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1872 1873 if (!sdata->u.mgd.use_4addr) 1874 return -1; 1875 else 1876 check_port_control = true; 1877 } 1878 1879 if (is_multicast_ether_addr(hdr->addr1) && 1880 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1881 return -1; 1882 1883 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1884 if (ret < 0) 1885 return ret; 1886 1887 ehdr = (struct ethhdr *) rx->skb->data; 1888 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1889 *port_control = true; 1890 else if (check_port_control) 1891 return -1; 1892 1893 return 0; 1894 } 1895 1896 /* 1897 * requires that rx->skb is a frame with ethernet header 1898 */ 1899 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1900 { 1901 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1902 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1903 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1904 1905 /* 1906 * Allow EAPOL frames to us/the PAE group address regardless 1907 * of whether the frame was encrypted or not. 1908 */ 1909 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1910 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1911 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1912 return true; 1913 1914 if (ieee80211_802_1x_port_control(rx) || 1915 ieee80211_drop_unencrypted(rx, fc)) 1916 return false; 1917 1918 return true; 1919 } 1920 1921 /* 1922 * requires that rx->skb is a frame with ethernet header 1923 */ 1924 static void 1925 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1926 { 1927 struct ieee80211_sub_if_data *sdata = rx->sdata; 1928 struct net_device *dev = sdata->dev; 1929 struct sk_buff *skb, *xmit_skb; 1930 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1931 struct sta_info *dsta; 1932 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1933 1934 skb = rx->skb; 1935 xmit_skb = NULL; 1936 1937 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1938 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1939 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1940 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1941 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1942 if (is_multicast_ether_addr(ehdr->h_dest)) { 1943 /* 1944 * send multicast frames both to higher layers in 1945 * local net stack and back to the wireless medium 1946 */ 1947 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1948 if (!xmit_skb) 1949 net_info_ratelimited("%s: failed to clone multicast frame\n", 1950 dev->name); 1951 } else { 1952 dsta = sta_info_get(sdata, skb->data); 1953 if (dsta) { 1954 /* 1955 * The destination station is associated to 1956 * this AP (in this VLAN), so send the frame 1957 * directly to it and do not pass it to local 1958 * net stack. 1959 */ 1960 xmit_skb = skb; 1961 skb = NULL; 1962 } 1963 } 1964 } 1965 1966 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1967 if (skb) { 1968 /* 'align' will only take the values 0 or 2 here since all 1969 * frames are required to be aligned to 2-byte boundaries 1970 * when being passed to mac80211; the code here works just 1971 * as well if that isn't true, but mac80211 assumes it can 1972 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 1973 */ 1974 int align; 1975 1976 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 1977 if (align) { 1978 if (WARN_ON(skb_headroom(skb) < 3)) { 1979 dev_kfree_skb(skb); 1980 skb = NULL; 1981 } else { 1982 u8 *data = skb->data; 1983 size_t len = skb_headlen(skb); 1984 skb->data -= align; 1985 memmove(skb->data, data, len); 1986 skb_set_tail_pointer(skb, len); 1987 } 1988 } 1989 } 1990 #endif 1991 1992 if (skb) { 1993 /* deliver to local stack */ 1994 skb->protocol = eth_type_trans(skb, dev); 1995 memset(skb->cb, 0, sizeof(skb->cb)); 1996 netif_receive_skb(skb); 1997 } 1998 1999 if (xmit_skb) { 2000 /* 2001 * Send to wireless media and increase priority by 256 to 2002 * keep the received priority instead of reclassifying 2003 * the frame (see cfg80211_classify8021d). 2004 */ 2005 xmit_skb->priority += 256; 2006 xmit_skb->protocol = htons(ETH_P_802_3); 2007 skb_reset_network_header(xmit_skb); 2008 skb_reset_mac_header(xmit_skb); 2009 dev_queue_xmit(xmit_skb); 2010 } 2011 } 2012 2013 static ieee80211_rx_result debug_noinline 2014 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2015 { 2016 struct net_device *dev = rx->sdata->dev; 2017 struct sk_buff *skb = rx->skb; 2018 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2019 __le16 fc = hdr->frame_control; 2020 struct sk_buff_head frame_list; 2021 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2022 2023 if (unlikely(!ieee80211_is_data(fc))) 2024 return RX_CONTINUE; 2025 2026 if (unlikely(!ieee80211_is_data_present(fc))) 2027 return RX_DROP_MONITOR; 2028 2029 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2030 return RX_CONTINUE; 2031 2032 if (ieee80211_has_a4(hdr->frame_control) && 2033 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2034 !rx->sdata->u.vlan.sta) 2035 return RX_DROP_UNUSABLE; 2036 2037 if (is_multicast_ether_addr(hdr->addr1) && 2038 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2039 rx->sdata->u.vlan.sta) || 2040 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2041 rx->sdata->u.mgd.use_4addr))) 2042 return RX_DROP_UNUSABLE; 2043 2044 skb->dev = dev; 2045 __skb_queue_head_init(&frame_list); 2046 2047 if (skb_linearize(skb)) 2048 return RX_DROP_UNUSABLE; 2049 2050 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2051 rx->sdata->vif.type, 2052 rx->local->hw.extra_tx_headroom, true); 2053 2054 while (!skb_queue_empty(&frame_list)) { 2055 rx->skb = __skb_dequeue(&frame_list); 2056 2057 if (!ieee80211_frame_allowed(rx, fc)) { 2058 dev_kfree_skb(rx->skb); 2059 continue; 2060 } 2061 dev->stats.rx_packets++; 2062 dev->stats.rx_bytes += rx->skb->len; 2063 2064 ieee80211_deliver_skb(rx); 2065 } 2066 2067 return RX_QUEUED; 2068 } 2069 2070 #ifdef CONFIG_MAC80211_MESH 2071 static ieee80211_rx_result 2072 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2073 { 2074 struct ieee80211_hdr *fwd_hdr, *hdr; 2075 struct ieee80211_tx_info *info; 2076 struct ieee80211s_hdr *mesh_hdr; 2077 struct sk_buff *skb = rx->skb, *fwd_skb; 2078 struct ieee80211_local *local = rx->local; 2079 struct ieee80211_sub_if_data *sdata = rx->sdata; 2080 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2081 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2082 u16 q, hdrlen; 2083 2084 hdr = (struct ieee80211_hdr *) skb->data; 2085 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2086 2087 /* make sure fixed part of mesh header is there, also checks skb len */ 2088 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2089 return RX_DROP_MONITOR; 2090 2091 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2092 2093 /* make sure full mesh header is there, also checks skb len */ 2094 if (!pskb_may_pull(rx->skb, 2095 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2096 return RX_DROP_MONITOR; 2097 2098 /* reload pointers */ 2099 hdr = (struct ieee80211_hdr *) skb->data; 2100 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2101 2102 /* frame is in RMC, don't forward */ 2103 if (ieee80211_is_data(hdr->frame_control) && 2104 is_multicast_ether_addr(hdr->addr1) && 2105 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2106 return RX_DROP_MONITOR; 2107 2108 if (!ieee80211_is_data(hdr->frame_control) || 2109 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2110 return RX_CONTINUE; 2111 2112 if (!mesh_hdr->ttl) 2113 return RX_DROP_MONITOR; 2114 2115 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2116 struct mesh_path *mppath; 2117 char *proxied_addr; 2118 char *mpp_addr; 2119 2120 if (is_multicast_ether_addr(hdr->addr1)) { 2121 mpp_addr = hdr->addr3; 2122 proxied_addr = mesh_hdr->eaddr1; 2123 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2124 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2125 mpp_addr = hdr->addr4; 2126 proxied_addr = mesh_hdr->eaddr2; 2127 } else { 2128 return RX_DROP_MONITOR; 2129 } 2130 2131 rcu_read_lock(); 2132 mppath = mpp_path_lookup(sdata, proxied_addr); 2133 if (!mppath) { 2134 mpp_path_add(sdata, proxied_addr, mpp_addr); 2135 } else { 2136 spin_lock_bh(&mppath->state_lock); 2137 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2138 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2139 spin_unlock_bh(&mppath->state_lock); 2140 } 2141 rcu_read_unlock(); 2142 } 2143 2144 /* Frame has reached destination. Don't forward */ 2145 if (!is_multicast_ether_addr(hdr->addr1) && 2146 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2147 return RX_CONTINUE; 2148 2149 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2150 if (ieee80211_queue_stopped(&local->hw, q)) { 2151 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2152 return RX_DROP_MONITOR; 2153 } 2154 skb_set_queue_mapping(skb, q); 2155 2156 if (!--mesh_hdr->ttl) { 2157 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2158 goto out; 2159 } 2160 2161 if (!ifmsh->mshcfg.dot11MeshForwarding) 2162 goto out; 2163 2164 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2165 if (!fwd_skb) { 2166 net_info_ratelimited("%s: failed to clone mesh frame\n", 2167 sdata->name); 2168 goto out; 2169 } 2170 2171 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2172 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2173 info = IEEE80211_SKB_CB(fwd_skb); 2174 memset(info, 0, sizeof(*info)); 2175 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2176 info->control.vif = &rx->sdata->vif; 2177 info->control.jiffies = jiffies; 2178 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2179 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2180 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2181 /* update power mode indication when forwarding */ 2182 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2183 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2184 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2185 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2186 } else { 2187 /* unable to resolve next hop */ 2188 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2189 fwd_hdr->addr3, 0, 2190 WLAN_REASON_MESH_PATH_NOFORWARD, 2191 fwd_hdr->addr2); 2192 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2193 kfree_skb(fwd_skb); 2194 return RX_DROP_MONITOR; 2195 } 2196 2197 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2198 ieee80211_add_pending_skb(local, fwd_skb); 2199 out: 2200 if (is_multicast_ether_addr(hdr->addr1) || 2201 sdata->dev->flags & IFF_PROMISC) 2202 return RX_CONTINUE; 2203 else 2204 return RX_DROP_MONITOR; 2205 } 2206 #endif 2207 2208 static ieee80211_rx_result debug_noinline 2209 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2210 { 2211 struct ieee80211_sub_if_data *sdata = rx->sdata; 2212 struct ieee80211_local *local = rx->local; 2213 struct net_device *dev = sdata->dev; 2214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2215 __le16 fc = hdr->frame_control; 2216 bool port_control; 2217 int err; 2218 2219 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2220 return RX_CONTINUE; 2221 2222 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2223 return RX_DROP_MONITOR; 2224 2225 /* 2226 * Send unexpected-4addr-frame event to hostapd. For older versions, 2227 * also drop the frame to cooked monitor interfaces. 2228 */ 2229 if (ieee80211_has_a4(hdr->frame_control) && 2230 sdata->vif.type == NL80211_IFTYPE_AP) { 2231 if (rx->sta && 2232 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2233 cfg80211_rx_unexpected_4addr_frame( 2234 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2235 return RX_DROP_MONITOR; 2236 } 2237 2238 err = __ieee80211_data_to_8023(rx, &port_control); 2239 if (unlikely(err)) 2240 return RX_DROP_UNUSABLE; 2241 2242 if (!ieee80211_frame_allowed(rx, fc)) 2243 return RX_DROP_MONITOR; 2244 2245 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2246 unlikely(port_control) && sdata->bss) { 2247 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2248 u.ap); 2249 dev = sdata->dev; 2250 rx->sdata = sdata; 2251 } 2252 2253 rx->skb->dev = dev; 2254 2255 dev->stats.rx_packets++; 2256 dev->stats.rx_bytes += rx->skb->len; 2257 2258 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2259 !is_multicast_ether_addr( 2260 ((struct ethhdr *)rx->skb->data)->h_dest) && 2261 (!local->scanning && 2262 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2263 mod_timer(&local->dynamic_ps_timer, jiffies + 2264 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2265 } 2266 2267 ieee80211_deliver_skb(rx); 2268 2269 return RX_QUEUED; 2270 } 2271 2272 static ieee80211_rx_result debug_noinline 2273 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2274 { 2275 struct sk_buff *skb = rx->skb; 2276 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2277 struct tid_ampdu_rx *tid_agg_rx; 2278 u16 start_seq_num; 2279 u16 tid; 2280 2281 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2282 return RX_CONTINUE; 2283 2284 if (ieee80211_is_back_req(bar->frame_control)) { 2285 struct { 2286 __le16 control, start_seq_num; 2287 } __packed bar_data; 2288 2289 if (!rx->sta) 2290 return RX_DROP_MONITOR; 2291 2292 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2293 &bar_data, sizeof(bar_data))) 2294 return RX_DROP_MONITOR; 2295 2296 tid = le16_to_cpu(bar_data.control) >> 12; 2297 2298 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2299 if (!tid_agg_rx) 2300 return RX_DROP_MONITOR; 2301 2302 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2303 2304 /* reset session timer */ 2305 if (tid_agg_rx->timeout) 2306 mod_timer(&tid_agg_rx->session_timer, 2307 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2308 2309 spin_lock(&tid_agg_rx->reorder_lock); 2310 /* release stored frames up to start of BAR */ 2311 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2312 start_seq_num, frames); 2313 spin_unlock(&tid_agg_rx->reorder_lock); 2314 2315 kfree_skb(skb); 2316 return RX_QUEUED; 2317 } 2318 2319 /* 2320 * After this point, we only want management frames, 2321 * so we can drop all remaining control frames to 2322 * cooked monitor interfaces. 2323 */ 2324 return RX_DROP_MONITOR; 2325 } 2326 2327 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2328 struct ieee80211_mgmt *mgmt, 2329 size_t len) 2330 { 2331 struct ieee80211_local *local = sdata->local; 2332 struct sk_buff *skb; 2333 struct ieee80211_mgmt *resp; 2334 2335 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2336 /* Not to own unicast address */ 2337 return; 2338 } 2339 2340 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2341 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2342 /* Not from the current AP or not associated yet. */ 2343 return; 2344 } 2345 2346 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2347 /* Too short SA Query request frame */ 2348 return; 2349 } 2350 2351 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2352 if (skb == NULL) 2353 return; 2354 2355 skb_reserve(skb, local->hw.extra_tx_headroom); 2356 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2357 memset(resp, 0, 24); 2358 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2359 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2360 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2361 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2362 IEEE80211_STYPE_ACTION); 2363 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2364 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2365 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2366 memcpy(resp->u.action.u.sa_query.trans_id, 2367 mgmt->u.action.u.sa_query.trans_id, 2368 WLAN_SA_QUERY_TR_ID_LEN); 2369 2370 ieee80211_tx_skb(sdata, skb); 2371 } 2372 2373 static ieee80211_rx_result debug_noinline 2374 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2375 { 2376 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2378 2379 /* 2380 * From here on, look only at management frames. 2381 * Data and control frames are already handled, 2382 * and unknown (reserved) frames are useless. 2383 */ 2384 if (rx->skb->len < 24) 2385 return RX_DROP_MONITOR; 2386 2387 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2388 return RX_DROP_MONITOR; 2389 2390 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2391 ieee80211_is_beacon(mgmt->frame_control) && 2392 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2393 int sig = 0; 2394 2395 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2396 sig = status->signal; 2397 2398 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2399 rx->skb->data, rx->skb->len, 2400 status->freq, sig); 2401 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2402 } 2403 2404 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2405 return RX_DROP_MONITOR; 2406 2407 if (ieee80211_drop_unencrypted_mgmt(rx)) 2408 return RX_DROP_UNUSABLE; 2409 2410 return RX_CONTINUE; 2411 } 2412 2413 static ieee80211_rx_result debug_noinline 2414 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2415 { 2416 struct ieee80211_local *local = rx->local; 2417 struct ieee80211_sub_if_data *sdata = rx->sdata; 2418 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2419 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2420 int len = rx->skb->len; 2421 2422 if (!ieee80211_is_action(mgmt->frame_control)) 2423 return RX_CONTINUE; 2424 2425 /* drop too small frames */ 2426 if (len < IEEE80211_MIN_ACTION_SIZE) 2427 return RX_DROP_UNUSABLE; 2428 2429 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2430 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2431 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2432 return RX_DROP_UNUSABLE; 2433 2434 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2435 return RX_DROP_UNUSABLE; 2436 2437 switch (mgmt->u.action.category) { 2438 case WLAN_CATEGORY_HT: 2439 /* reject HT action frames from stations not supporting HT */ 2440 if (!rx->sta->sta.ht_cap.ht_supported) 2441 goto invalid; 2442 2443 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2444 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2445 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2446 sdata->vif.type != NL80211_IFTYPE_AP && 2447 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2448 break; 2449 2450 /* verify action & smps_control/chanwidth are present */ 2451 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2452 goto invalid; 2453 2454 switch (mgmt->u.action.u.ht_smps.action) { 2455 case WLAN_HT_ACTION_SMPS: { 2456 struct ieee80211_supported_band *sband; 2457 enum ieee80211_smps_mode smps_mode; 2458 2459 /* convert to HT capability */ 2460 switch (mgmt->u.action.u.ht_smps.smps_control) { 2461 case WLAN_HT_SMPS_CONTROL_DISABLED: 2462 smps_mode = IEEE80211_SMPS_OFF; 2463 break; 2464 case WLAN_HT_SMPS_CONTROL_STATIC: 2465 smps_mode = IEEE80211_SMPS_STATIC; 2466 break; 2467 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2468 smps_mode = IEEE80211_SMPS_DYNAMIC; 2469 break; 2470 default: 2471 goto invalid; 2472 } 2473 2474 /* if no change do nothing */ 2475 if (rx->sta->sta.smps_mode == smps_mode) 2476 goto handled; 2477 rx->sta->sta.smps_mode = smps_mode; 2478 2479 sband = rx->local->hw.wiphy->bands[status->band]; 2480 2481 rate_control_rate_update(local, sband, rx->sta, 2482 IEEE80211_RC_SMPS_CHANGED); 2483 goto handled; 2484 } 2485 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2486 struct ieee80211_supported_band *sband; 2487 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2488 enum ieee80211_sta_rx_bandwidth new_bw; 2489 2490 /* If it doesn't support 40 MHz it can't change ... */ 2491 if (!(rx->sta->sta.ht_cap.cap & 2492 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2493 goto handled; 2494 2495 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2496 new_bw = IEEE80211_STA_RX_BW_20; 2497 else 2498 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2499 2500 if (rx->sta->sta.bandwidth == new_bw) 2501 goto handled; 2502 2503 sband = rx->local->hw.wiphy->bands[status->band]; 2504 2505 rate_control_rate_update(local, sband, rx->sta, 2506 IEEE80211_RC_BW_CHANGED); 2507 goto handled; 2508 } 2509 default: 2510 goto invalid; 2511 } 2512 2513 break; 2514 case WLAN_CATEGORY_PUBLIC: 2515 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2516 goto invalid; 2517 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2518 break; 2519 if (!rx->sta) 2520 break; 2521 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2522 break; 2523 if (mgmt->u.action.u.ext_chan_switch.action_code != 2524 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2525 break; 2526 if (len < offsetof(struct ieee80211_mgmt, 2527 u.action.u.ext_chan_switch.variable)) 2528 goto invalid; 2529 goto queue; 2530 case WLAN_CATEGORY_VHT: 2531 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2532 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2533 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2534 sdata->vif.type != NL80211_IFTYPE_AP && 2535 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2536 break; 2537 2538 /* verify action code is present */ 2539 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2540 goto invalid; 2541 2542 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2543 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2544 u8 opmode; 2545 2546 /* verify opmode is present */ 2547 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2548 goto invalid; 2549 2550 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2551 2552 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2553 opmode, status->band, 2554 false); 2555 goto handled; 2556 } 2557 default: 2558 break; 2559 } 2560 break; 2561 case WLAN_CATEGORY_BACK: 2562 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2563 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2564 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2565 sdata->vif.type != NL80211_IFTYPE_AP && 2566 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2567 break; 2568 2569 /* verify action_code is present */ 2570 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2571 break; 2572 2573 switch (mgmt->u.action.u.addba_req.action_code) { 2574 case WLAN_ACTION_ADDBA_REQ: 2575 if (len < (IEEE80211_MIN_ACTION_SIZE + 2576 sizeof(mgmt->u.action.u.addba_req))) 2577 goto invalid; 2578 break; 2579 case WLAN_ACTION_ADDBA_RESP: 2580 if (len < (IEEE80211_MIN_ACTION_SIZE + 2581 sizeof(mgmt->u.action.u.addba_resp))) 2582 goto invalid; 2583 break; 2584 case WLAN_ACTION_DELBA: 2585 if (len < (IEEE80211_MIN_ACTION_SIZE + 2586 sizeof(mgmt->u.action.u.delba))) 2587 goto invalid; 2588 break; 2589 default: 2590 goto invalid; 2591 } 2592 2593 goto queue; 2594 case WLAN_CATEGORY_SPECTRUM_MGMT: 2595 /* verify action_code is present */ 2596 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2597 break; 2598 2599 switch (mgmt->u.action.u.measurement.action_code) { 2600 case WLAN_ACTION_SPCT_MSR_REQ: 2601 if (status->band != IEEE80211_BAND_5GHZ) 2602 break; 2603 2604 if (len < (IEEE80211_MIN_ACTION_SIZE + 2605 sizeof(mgmt->u.action.u.measurement))) 2606 break; 2607 2608 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2609 break; 2610 2611 ieee80211_process_measurement_req(sdata, mgmt, len); 2612 goto handled; 2613 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2614 u8 *bssid; 2615 if (len < (IEEE80211_MIN_ACTION_SIZE + 2616 sizeof(mgmt->u.action.u.chan_switch))) 2617 break; 2618 2619 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2620 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2621 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2622 break; 2623 2624 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2625 bssid = sdata->u.mgd.bssid; 2626 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2627 bssid = sdata->u.ibss.bssid; 2628 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2629 bssid = mgmt->sa; 2630 else 2631 break; 2632 2633 if (!ether_addr_equal(mgmt->bssid, bssid)) 2634 break; 2635 2636 goto queue; 2637 } 2638 } 2639 break; 2640 case WLAN_CATEGORY_SA_QUERY: 2641 if (len < (IEEE80211_MIN_ACTION_SIZE + 2642 sizeof(mgmt->u.action.u.sa_query))) 2643 break; 2644 2645 switch (mgmt->u.action.u.sa_query.action) { 2646 case WLAN_ACTION_SA_QUERY_REQUEST: 2647 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2648 break; 2649 ieee80211_process_sa_query_req(sdata, mgmt, len); 2650 goto handled; 2651 } 2652 break; 2653 case WLAN_CATEGORY_SELF_PROTECTED: 2654 if (len < (IEEE80211_MIN_ACTION_SIZE + 2655 sizeof(mgmt->u.action.u.self_prot.action_code))) 2656 break; 2657 2658 switch (mgmt->u.action.u.self_prot.action_code) { 2659 case WLAN_SP_MESH_PEERING_OPEN: 2660 case WLAN_SP_MESH_PEERING_CLOSE: 2661 case WLAN_SP_MESH_PEERING_CONFIRM: 2662 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2663 goto invalid; 2664 if (sdata->u.mesh.user_mpm) 2665 /* userspace handles this frame */ 2666 break; 2667 goto queue; 2668 case WLAN_SP_MGK_INFORM: 2669 case WLAN_SP_MGK_ACK: 2670 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2671 goto invalid; 2672 break; 2673 } 2674 break; 2675 case WLAN_CATEGORY_MESH_ACTION: 2676 if (len < (IEEE80211_MIN_ACTION_SIZE + 2677 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2678 break; 2679 2680 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2681 break; 2682 if (mesh_action_is_path_sel(mgmt) && 2683 !mesh_path_sel_is_hwmp(sdata)) 2684 break; 2685 goto queue; 2686 } 2687 2688 return RX_CONTINUE; 2689 2690 invalid: 2691 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2692 /* will return in the next handlers */ 2693 return RX_CONTINUE; 2694 2695 handled: 2696 if (rx->sta) 2697 rx->sta->rx_packets++; 2698 dev_kfree_skb(rx->skb); 2699 return RX_QUEUED; 2700 2701 queue: 2702 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2703 skb_queue_tail(&sdata->skb_queue, rx->skb); 2704 ieee80211_queue_work(&local->hw, &sdata->work); 2705 if (rx->sta) 2706 rx->sta->rx_packets++; 2707 return RX_QUEUED; 2708 } 2709 2710 static ieee80211_rx_result debug_noinline 2711 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2712 { 2713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2714 int sig = 0; 2715 2716 /* skip known-bad action frames and return them in the next handler */ 2717 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2718 return RX_CONTINUE; 2719 2720 /* 2721 * Getting here means the kernel doesn't know how to handle 2722 * it, but maybe userspace does ... include returned frames 2723 * so userspace can register for those to know whether ones 2724 * it transmitted were processed or returned. 2725 */ 2726 2727 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2728 sig = status->signal; 2729 2730 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2731 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) { 2732 if (rx->sta) 2733 rx->sta->rx_packets++; 2734 dev_kfree_skb(rx->skb); 2735 return RX_QUEUED; 2736 } 2737 2738 return RX_CONTINUE; 2739 } 2740 2741 static ieee80211_rx_result debug_noinline 2742 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2743 { 2744 struct ieee80211_local *local = rx->local; 2745 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2746 struct sk_buff *nskb; 2747 struct ieee80211_sub_if_data *sdata = rx->sdata; 2748 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2749 2750 if (!ieee80211_is_action(mgmt->frame_control)) 2751 return RX_CONTINUE; 2752 2753 /* 2754 * For AP mode, hostapd is responsible for handling any action 2755 * frames that we didn't handle, including returning unknown 2756 * ones. For all other modes we will return them to the sender, 2757 * setting the 0x80 bit in the action category, as required by 2758 * 802.11-2012 9.24.4. 2759 * Newer versions of hostapd shall also use the management frame 2760 * registration mechanisms, but older ones still use cooked 2761 * monitor interfaces so push all frames there. 2762 */ 2763 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2764 (sdata->vif.type == NL80211_IFTYPE_AP || 2765 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2766 return RX_DROP_MONITOR; 2767 2768 if (is_multicast_ether_addr(mgmt->da)) 2769 return RX_DROP_MONITOR; 2770 2771 /* do not return rejected action frames */ 2772 if (mgmt->u.action.category & 0x80) 2773 return RX_DROP_UNUSABLE; 2774 2775 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2776 GFP_ATOMIC); 2777 if (nskb) { 2778 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2779 2780 nmgmt->u.action.category |= 0x80; 2781 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2782 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2783 2784 memset(nskb->cb, 0, sizeof(nskb->cb)); 2785 2786 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2787 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2788 2789 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2790 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2791 IEEE80211_TX_CTL_NO_CCK_RATE; 2792 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2793 info->hw_queue = 2794 local->hw.offchannel_tx_hw_queue; 2795 } 2796 2797 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2798 status->band); 2799 } 2800 dev_kfree_skb(rx->skb); 2801 return RX_QUEUED; 2802 } 2803 2804 static ieee80211_rx_result debug_noinline 2805 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2806 { 2807 struct ieee80211_sub_if_data *sdata = rx->sdata; 2808 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2809 __le16 stype; 2810 2811 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2812 2813 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2814 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2815 sdata->vif.type != NL80211_IFTYPE_STATION) 2816 return RX_DROP_MONITOR; 2817 2818 switch (stype) { 2819 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2820 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2821 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2822 /* process for all: mesh, mlme, ibss */ 2823 break; 2824 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2825 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2826 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2827 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2828 if (is_multicast_ether_addr(mgmt->da) && 2829 !is_broadcast_ether_addr(mgmt->da)) 2830 return RX_DROP_MONITOR; 2831 2832 /* process only for station */ 2833 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2834 return RX_DROP_MONITOR; 2835 break; 2836 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2837 /* process only for ibss and mesh */ 2838 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2839 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2840 return RX_DROP_MONITOR; 2841 break; 2842 default: 2843 return RX_DROP_MONITOR; 2844 } 2845 2846 /* queue up frame and kick off work to process it */ 2847 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2848 skb_queue_tail(&sdata->skb_queue, rx->skb); 2849 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2850 if (rx->sta) 2851 rx->sta->rx_packets++; 2852 2853 return RX_QUEUED; 2854 } 2855 2856 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2857 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2858 struct ieee80211_rate *rate) 2859 { 2860 struct ieee80211_sub_if_data *sdata; 2861 struct ieee80211_local *local = rx->local; 2862 struct sk_buff *skb = rx->skb, *skb2; 2863 struct net_device *prev_dev = NULL; 2864 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2865 int needed_headroom; 2866 2867 /* 2868 * If cooked monitor has been processed already, then 2869 * don't do it again. If not, set the flag. 2870 */ 2871 if (rx->flags & IEEE80211_RX_CMNTR) 2872 goto out_free_skb; 2873 rx->flags |= IEEE80211_RX_CMNTR; 2874 2875 /* If there are no cooked monitor interfaces, just free the SKB */ 2876 if (!local->cooked_mntrs) 2877 goto out_free_skb; 2878 2879 /* room for the radiotap header based on driver features */ 2880 needed_headroom = ieee80211_rx_radiotap_space(local, status); 2881 2882 if (skb_headroom(skb) < needed_headroom && 2883 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2884 goto out_free_skb; 2885 2886 /* prepend radiotap information */ 2887 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2888 false); 2889 2890 skb_set_mac_header(skb, 0); 2891 skb->ip_summed = CHECKSUM_UNNECESSARY; 2892 skb->pkt_type = PACKET_OTHERHOST; 2893 skb->protocol = htons(ETH_P_802_2); 2894 2895 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2896 if (!ieee80211_sdata_running(sdata)) 2897 continue; 2898 2899 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2900 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2901 continue; 2902 2903 if (prev_dev) { 2904 skb2 = skb_clone(skb, GFP_ATOMIC); 2905 if (skb2) { 2906 skb2->dev = prev_dev; 2907 netif_receive_skb(skb2); 2908 } 2909 } 2910 2911 prev_dev = sdata->dev; 2912 sdata->dev->stats.rx_packets++; 2913 sdata->dev->stats.rx_bytes += skb->len; 2914 } 2915 2916 if (prev_dev) { 2917 skb->dev = prev_dev; 2918 netif_receive_skb(skb); 2919 return; 2920 } 2921 2922 out_free_skb: 2923 dev_kfree_skb(skb); 2924 } 2925 2926 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2927 ieee80211_rx_result res) 2928 { 2929 switch (res) { 2930 case RX_DROP_MONITOR: 2931 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2932 if (rx->sta) 2933 rx->sta->rx_dropped++; 2934 /* fall through */ 2935 case RX_CONTINUE: { 2936 struct ieee80211_rate *rate = NULL; 2937 struct ieee80211_supported_band *sband; 2938 struct ieee80211_rx_status *status; 2939 2940 status = IEEE80211_SKB_RXCB((rx->skb)); 2941 2942 sband = rx->local->hw.wiphy->bands[status->band]; 2943 if (!(status->flag & RX_FLAG_HT) && 2944 !(status->flag & RX_FLAG_VHT)) 2945 rate = &sband->bitrates[status->rate_idx]; 2946 2947 ieee80211_rx_cooked_monitor(rx, rate); 2948 break; 2949 } 2950 case RX_DROP_UNUSABLE: 2951 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2952 if (rx->sta) 2953 rx->sta->rx_dropped++; 2954 dev_kfree_skb(rx->skb); 2955 break; 2956 case RX_QUEUED: 2957 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2958 break; 2959 } 2960 } 2961 2962 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 2963 struct sk_buff_head *frames) 2964 { 2965 ieee80211_rx_result res = RX_DROP_MONITOR; 2966 struct sk_buff *skb; 2967 2968 #define CALL_RXH(rxh) \ 2969 do { \ 2970 res = rxh(rx); \ 2971 if (res != RX_CONTINUE) \ 2972 goto rxh_next; \ 2973 } while (0); 2974 2975 spin_lock_bh(&rx->local->rx_path_lock); 2976 2977 while ((skb = __skb_dequeue(frames))) { 2978 /* 2979 * all the other fields are valid across frames 2980 * that belong to an aMPDU since they are on the 2981 * same TID from the same station 2982 */ 2983 rx->skb = skb; 2984 2985 CALL_RXH(ieee80211_rx_h_check_more_data) 2986 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2987 CALL_RXH(ieee80211_rx_h_sta_process) 2988 CALL_RXH(ieee80211_rx_h_decrypt) 2989 CALL_RXH(ieee80211_rx_h_defragment) 2990 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2991 /* must be after MMIC verify so header is counted in MPDU mic */ 2992 #ifdef CONFIG_MAC80211_MESH 2993 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2994 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2995 #endif 2996 CALL_RXH(ieee80211_rx_h_amsdu) 2997 CALL_RXH(ieee80211_rx_h_data) 2998 2999 /* special treatment -- needs the queue */ 3000 res = ieee80211_rx_h_ctrl(rx, frames); 3001 if (res != RX_CONTINUE) 3002 goto rxh_next; 3003 3004 CALL_RXH(ieee80211_rx_h_mgmt_check) 3005 CALL_RXH(ieee80211_rx_h_action) 3006 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3007 CALL_RXH(ieee80211_rx_h_action_return) 3008 CALL_RXH(ieee80211_rx_h_mgmt) 3009 3010 rxh_next: 3011 ieee80211_rx_handlers_result(rx, res); 3012 3013 #undef CALL_RXH 3014 } 3015 3016 spin_unlock_bh(&rx->local->rx_path_lock); 3017 } 3018 3019 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3020 { 3021 struct sk_buff_head reorder_release; 3022 ieee80211_rx_result res = RX_DROP_MONITOR; 3023 3024 __skb_queue_head_init(&reorder_release); 3025 3026 #define CALL_RXH(rxh) \ 3027 do { \ 3028 res = rxh(rx); \ 3029 if (res != RX_CONTINUE) \ 3030 goto rxh_next; \ 3031 } while (0); 3032 3033 CALL_RXH(ieee80211_rx_h_check) 3034 3035 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3036 3037 ieee80211_rx_handlers(rx, &reorder_release); 3038 return; 3039 3040 rxh_next: 3041 ieee80211_rx_handlers_result(rx, res); 3042 3043 #undef CALL_RXH 3044 } 3045 3046 /* 3047 * This function makes calls into the RX path, therefore 3048 * it has to be invoked under RCU read lock. 3049 */ 3050 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3051 { 3052 struct sk_buff_head frames; 3053 struct ieee80211_rx_data rx = { 3054 .sta = sta, 3055 .sdata = sta->sdata, 3056 .local = sta->local, 3057 /* This is OK -- must be QoS data frame */ 3058 .security_idx = tid, 3059 .seqno_idx = tid, 3060 .flags = 0, 3061 }; 3062 struct tid_ampdu_rx *tid_agg_rx; 3063 3064 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3065 if (!tid_agg_rx) 3066 return; 3067 3068 __skb_queue_head_init(&frames); 3069 3070 spin_lock(&tid_agg_rx->reorder_lock); 3071 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3072 spin_unlock(&tid_agg_rx->reorder_lock); 3073 3074 ieee80211_rx_handlers(&rx, &frames); 3075 } 3076 3077 /* main receive path */ 3078 3079 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3080 struct ieee80211_hdr *hdr) 3081 { 3082 struct ieee80211_sub_if_data *sdata = rx->sdata; 3083 struct sk_buff *skb = rx->skb; 3084 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3085 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3086 int multicast = is_multicast_ether_addr(hdr->addr1); 3087 3088 switch (sdata->vif.type) { 3089 case NL80211_IFTYPE_STATION: 3090 if (!bssid && !sdata->u.mgd.use_4addr) 3091 return false; 3092 if (!multicast && 3093 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3094 if (!(sdata->dev->flags & IFF_PROMISC) || 3095 sdata->u.mgd.use_4addr) 3096 return false; 3097 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3098 } 3099 break; 3100 case NL80211_IFTYPE_ADHOC: 3101 if (!bssid) 3102 return false; 3103 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3104 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3105 return false; 3106 if (ieee80211_is_beacon(hdr->frame_control)) { 3107 return true; 3108 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3109 return false; 3110 } else if (!multicast && 3111 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3112 if (!(sdata->dev->flags & IFF_PROMISC)) 3113 return false; 3114 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3115 } else if (!rx->sta) { 3116 int rate_idx; 3117 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3118 rate_idx = 0; /* TODO: HT/VHT rates */ 3119 else 3120 rate_idx = status->rate_idx; 3121 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3122 BIT(rate_idx)); 3123 } 3124 break; 3125 case NL80211_IFTYPE_MESH_POINT: 3126 if (!multicast && 3127 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3128 if (!(sdata->dev->flags & IFF_PROMISC)) 3129 return false; 3130 3131 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3132 } 3133 break; 3134 case NL80211_IFTYPE_AP_VLAN: 3135 case NL80211_IFTYPE_AP: 3136 if (!bssid) { 3137 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3138 return false; 3139 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3140 /* 3141 * Accept public action frames even when the 3142 * BSSID doesn't match, this is used for P2P 3143 * and location updates. Note that mac80211 3144 * itself never looks at these frames. 3145 */ 3146 if (!multicast && 3147 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3148 return false; 3149 if (ieee80211_is_public_action(hdr, skb->len)) 3150 return true; 3151 if (!ieee80211_is_beacon(hdr->frame_control)) 3152 return false; 3153 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3154 } 3155 break; 3156 case NL80211_IFTYPE_WDS: 3157 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3158 return false; 3159 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3160 return false; 3161 break; 3162 case NL80211_IFTYPE_P2P_DEVICE: 3163 if (!ieee80211_is_public_action(hdr, skb->len) && 3164 !ieee80211_is_probe_req(hdr->frame_control) && 3165 !ieee80211_is_probe_resp(hdr->frame_control) && 3166 !ieee80211_is_beacon(hdr->frame_control)) 3167 return false; 3168 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3169 !multicast) 3170 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3171 break; 3172 default: 3173 /* should never get here */ 3174 WARN_ON_ONCE(1); 3175 break; 3176 } 3177 3178 return true; 3179 } 3180 3181 /* 3182 * This function returns whether or not the SKB 3183 * was destined for RX processing or not, which, 3184 * if consume is true, is equivalent to whether 3185 * or not the skb was consumed. 3186 */ 3187 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3188 struct sk_buff *skb, bool consume) 3189 { 3190 struct ieee80211_local *local = rx->local; 3191 struct ieee80211_sub_if_data *sdata = rx->sdata; 3192 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3193 struct ieee80211_hdr *hdr = (void *)skb->data; 3194 3195 rx->skb = skb; 3196 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3197 3198 if (!prepare_for_handlers(rx, hdr)) 3199 return false; 3200 3201 if (!consume) { 3202 skb = skb_copy(skb, GFP_ATOMIC); 3203 if (!skb) { 3204 if (net_ratelimit()) 3205 wiphy_debug(local->hw.wiphy, 3206 "failed to copy skb for %s\n", 3207 sdata->name); 3208 return true; 3209 } 3210 3211 rx->skb = skb; 3212 } 3213 3214 ieee80211_invoke_rx_handlers(rx); 3215 return true; 3216 } 3217 3218 /* 3219 * This is the actual Rx frames handler. as it blongs to Rx path it must 3220 * be called with rcu_read_lock protection. 3221 */ 3222 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3223 struct sk_buff *skb) 3224 { 3225 struct ieee80211_local *local = hw_to_local(hw); 3226 struct ieee80211_sub_if_data *sdata; 3227 struct ieee80211_hdr *hdr; 3228 __le16 fc; 3229 struct ieee80211_rx_data rx; 3230 struct ieee80211_sub_if_data *prev; 3231 struct sta_info *sta, *tmp, *prev_sta; 3232 int err = 0; 3233 3234 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3235 memset(&rx, 0, sizeof(rx)); 3236 rx.skb = skb; 3237 rx.local = local; 3238 3239 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3240 local->dot11ReceivedFragmentCount++; 3241 3242 if (ieee80211_is_mgmt(fc)) { 3243 /* drop frame if too short for header */ 3244 if (skb->len < ieee80211_hdrlen(fc)) 3245 err = -ENOBUFS; 3246 else 3247 err = skb_linearize(skb); 3248 } else { 3249 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3250 } 3251 3252 if (err) { 3253 dev_kfree_skb(skb); 3254 return; 3255 } 3256 3257 hdr = (struct ieee80211_hdr *)skb->data; 3258 ieee80211_parse_qos(&rx); 3259 ieee80211_verify_alignment(&rx); 3260 3261 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3262 ieee80211_is_beacon(hdr->frame_control))) 3263 ieee80211_scan_rx(local, skb); 3264 3265 if (ieee80211_is_data(fc)) { 3266 prev_sta = NULL; 3267 3268 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3269 if (!prev_sta) { 3270 prev_sta = sta; 3271 continue; 3272 } 3273 3274 rx.sta = prev_sta; 3275 rx.sdata = prev_sta->sdata; 3276 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3277 3278 prev_sta = sta; 3279 } 3280 3281 if (prev_sta) { 3282 rx.sta = prev_sta; 3283 rx.sdata = prev_sta->sdata; 3284 3285 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3286 return; 3287 goto out; 3288 } 3289 } 3290 3291 prev = NULL; 3292 3293 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3294 if (!ieee80211_sdata_running(sdata)) 3295 continue; 3296 3297 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3298 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3299 continue; 3300 3301 /* 3302 * frame is destined for this interface, but if it's 3303 * not also for the previous one we handle that after 3304 * the loop to avoid copying the SKB once too much 3305 */ 3306 3307 if (!prev) { 3308 prev = sdata; 3309 continue; 3310 } 3311 3312 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3313 rx.sdata = prev; 3314 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3315 3316 prev = sdata; 3317 } 3318 3319 if (prev) { 3320 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3321 rx.sdata = prev; 3322 3323 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3324 return; 3325 } 3326 3327 out: 3328 dev_kfree_skb(skb); 3329 } 3330 3331 /* 3332 * This is the receive path handler. It is called by a low level driver when an 3333 * 802.11 MPDU is received from the hardware. 3334 */ 3335 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3336 { 3337 struct ieee80211_local *local = hw_to_local(hw); 3338 struct ieee80211_rate *rate = NULL; 3339 struct ieee80211_supported_band *sband; 3340 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3341 3342 WARN_ON_ONCE(softirq_count() == 0); 3343 3344 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3345 goto drop; 3346 3347 sband = local->hw.wiphy->bands[status->band]; 3348 if (WARN_ON(!sband)) 3349 goto drop; 3350 3351 /* 3352 * If we're suspending, it is possible although not too likely 3353 * that we'd be receiving frames after having already partially 3354 * quiesced the stack. We can't process such frames then since 3355 * that might, for example, cause stations to be added or other 3356 * driver callbacks be invoked. 3357 */ 3358 if (unlikely(local->quiescing || local->suspended)) 3359 goto drop; 3360 3361 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3362 if (unlikely(local->in_reconfig)) 3363 goto drop; 3364 3365 /* 3366 * The same happens when we're not even started, 3367 * but that's worth a warning. 3368 */ 3369 if (WARN_ON(!local->started)) 3370 goto drop; 3371 3372 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3373 /* 3374 * Validate the rate, unless a PLCP error means that 3375 * we probably can't have a valid rate here anyway. 3376 */ 3377 3378 if (status->flag & RX_FLAG_HT) { 3379 /* 3380 * rate_idx is MCS index, which can be [0-76] 3381 * as documented on: 3382 * 3383 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3384 * 3385 * Anything else would be some sort of driver or 3386 * hardware error. The driver should catch hardware 3387 * errors. 3388 */ 3389 if (WARN(status->rate_idx > 76, 3390 "Rate marked as an HT rate but passed " 3391 "status->rate_idx is not " 3392 "an MCS index [0-76]: %d (0x%02x)\n", 3393 status->rate_idx, 3394 status->rate_idx)) 3395 goto drop; 3396 } else if (status->flag & RX_FLAG_VHT) { 3397 if (WARN_ONCE(status->rate_idx > 9 || 3398 !status->vht_nss || 3399 status->vht_nss > 8, 3400 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3401 status->rate_idx, status->vht_nss)) 3402 goto drop; 3403 } else { 3404 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3405 goto drop; 3406 rate = &sband->bitrates[status->rate_idx]; 3407 } 3408 } 3409 3410 status->rx_flags = 0; 3411 3412 /* 3413 * key references and virtual interfaces are protected using RCU 3414 * and this requires that we are in a read-side RCU section during 3415 * receive processing 3416 */ 3417 rcu_read_lock(); 3418 3419 /* 3420 * Frames with failed FCS/PLCP checksum are not returned, 3421 * all other frames are returned without radiotap header 3422 * if it was previously present. 3423 * Also, frames with less than 16 bytes are dropped. 3424 */ 3425 skb = ieee80211_rx_monitor(local, skb, rate); 3426 if (!skb) { 3427 rcu_read_unlock(); 3428 return; 3429 } 3430 3431 ieee80211_tpt_led_trig_rx(local, 3432 ((struct ieee80211_hdr *)skb->data)->frame_control, 3433 skb->len); 3434 __ieee80211_rx_handle_packet(hw, skb); 3435 3436 rcu_read_unlock(); 3437 3438 return; 3439 drop: 3440 kfree_skb(skb); 3441 } 3442 EXPORT_SYMBOL(ieee80211_rx); 3443 3444 /* This is a version of the rx handler that can be called from hard irq 3445 * context. Post the skb on the queue and schedule the tasklet */ 3446 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3447 { 3448 struct ieee80211_local *local = hw_to_local(hw); 3449 3450 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3451 3452 skb->pkt_type = IEEE80211_RX_MSG; 3453 skb_queue_tail(&local->skb_queue, skb); 3454 tasklet_schedule(&local->tasklet); 3455 } 3456 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3457