xref: /openbmc/linux/net/mac80211/rx.c (revision 36de991e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25 
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35 
36 /*
37  * monitor mode reception
38  *
39  * This function cleans up the SKB, i.e. it removes all the stuff
40  * only useful for monitoring.
41  */
42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 					   unsigned int present_fcs_len,
44 					   unsigned int rtap_space)
45 {
46 	struct ieee80211_hdr *hdr;
47 	unsigned int hdrlen;
48 	__le16 fc;
49 
50 	if (present_fcs_len)
51 		__pskb_trim(skb, skb->len - present_fcs_len);
52 	__pskb_pull(skb, rtap_space);
53 
54 	hdr = (void *)skb->data;
55 	fc = hdr->frame_control;
56 
57 	/*
58 	 * Remove the HT-Control field (if present) on management
59 	 * frames after we've sent the frame to monitoring. We
60 	 * (currently) don't need it, and don't properly parse
61 	 * frames with it present, due to the assumption of a
62 	 * fixed management header length.
63 	 */
64 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 		return skb;
66 
67 	hdrlen = ieee80211_hdrlen(fc);
68 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69 
70 	if (!pskb_may_pull(skb, hdrlen)) {
71 		dev_kfree_skb(skb);
72 		return NULL;
73 	}
74 
75 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 		hdrlen - IEEE80211_HT_CTL_LEN);
77 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78 
79 	return skb;
80 }
81 
82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 				     unsigned int rtap_space)
84 {
85 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 	struct ieee80211_hdr *hdr;
87 
88 	hdr = (void *)(skb->data + rtap_space);
89 
90 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 			    RX_FLAG_FAILED_PLCP_CRC |
92 			    RX_FLAG_ONLY_MONITOR |
93 			    RX_FLAG_NO_PSDU))
94 		return true;
95 
96 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 		return true;
98 
99 	if (ieee80211_is_ctl(hdr->frame_control) &&
100 	    !ieee80211_is_pspoll(hdr->frame_control) &&
101 	    !ieee80211_is_back_req(hdr->frame_control))
102 		return true;
103 
104 	return false;
105 }
106 
107 static int
108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 			     struct ieee80211_rx_status *status,
110 			     struct sk_buff *skb)
111 {
112 	int len;
113 
114 	/* always present fields */
115 	len = sizeof(struct ieee80211_radiotap_header) + 8;
116 
117 	/* allocate extra bitmaps */
118 	if (status->chains)
119 		len += 4 * hweight8(status->chains);
120 	/* vendor presence bitmap */
121 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 		len += 4;
123 
124 	if (ieee80211_have_rx_timestamp(status)) {
125 		len = ALIGN(len, 8);
126 		len += 8;
127 	}
128 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 		len += 1;
130 
131 	/* antenna field, if we don't have per-chain info */
132 	if (!status->chains)
133 		len += 1;
134 
135 	/* padding for RX_FLAGS if necessary */
136 	len = ALIGN(len, 2);
137 
138 	if (status->encoding == RX_ENC_HT) /* HT info */
139 		len += 3;
140 
141 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 		len = ALIGN(len, 4);
143 		len += 8;
144 	}
145 
146 	if (status->encoding == RX_ENC_VHT) {
147 		len = ALIGN(len, 2);
148 		len += 12;
149 	}
150 
151 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 		len = ALIGN(len, 8);
153 		len += 12;
154 	}
155 
156 	if (status->encoding == RX_ENC_HE &&
157 	    status->flag & RX_FLAG_RADIOTAP_HE) {
158 		len = ALIGN(len, 2);
159 		len += 12;
160 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 	}
162 
163 	if (status->encoding == RX_ENC_HE &&
164 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 		len = ALIGN(len, 2);
166 		len += 12;
167 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 	}
169 
170 	if (status->flag & RX_FLAG_NO_PSDU)
171 		len += 1;
172 
173 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 		len = ALIGN(len, 2);
175 		len += 4;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 	}
178 
179 	if (status->chains) {
180 		/* antenna and antenna signal fields */
181 		len += 2 * hweight8(status->chains);
182 	}
183 
184 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 		struct ieee80211_vendor_radiotap *rtap;
186 		int vendor_data_offset = 0;
187 
188 		/*
189 		 * The position to look at depends on the existence (or non-
190 		 * existence) of other elements, so take that into account...
191 		 */
192 		if (status->flag & RX_FLAG_RADIOTAP_HE)
193 			vendor_data_offset +=
194 				sizeof(struct ieee80211_radiotap_he);
195 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 			vendor_data_offset +=
197 				sizeof(struct ieee80211_radiotap_he_mu);
198 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 			vendor_data_offset +=
200 				sizeof(struct ieee80211_radiotap_lsig);
201 
202 		rtap = (void *)&skb->data[vendor_data_offset];
203 
204 		/* alignment for fixed 6-byte vendor data header */
205 		len = ALIGN(len, 2);
206 		/* vendor data header */
207 		len += 6;
208 		if (WARN_ON(rtap->align == 0))
209 			rtap->align = 1;
210 		len = ALIGN(len, rtap->align);
211 		len += rtap->len + rtap->pad;
212 	}
213 
214 	return len;
215 }
216 
217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 					   struct sta_info *sta,
219 					   struct sk_buff *skb)
220 {
221 	skb_queue_tail(&sdata->skb_queue, skb);
222 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
223 	if (sta)
224 		sta->rx_stats.packets++;
225 }
226 
227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
228 					 struct sta_info *sta,
229 					 struct sk_buff *skb)
230 {
231 	skb->protocol = 0;
232 	__ieee80211_queue_skb_to_iface(sdata, sta, skb);
233 }
234 
235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
236 					 struct sk_buff *skb,
237 					 int rtap_space)
238 {
239 	struct {
240 		struct ieee80211_hdr_3addr hdr;
241 		u8 category;
242 		u8 action_code;
243 	} __packed __aligned(2) action;
244 
245 	if (!sdata)
246 		return;
247 
248 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
249 
250 	if (skb->len < rtap_space + sizeof(action) +
251 		       VHT_MUMIMO_GROUPS_DATA_LEN)
252 		return;
253 
254 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
255 		return;
256 
257 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
258 
259 	if (!ieee80211_is_action(action.hdr.frame_control))
260 		return;
261 
262 	if (action.category != WLAN_CATEGORY_VHT)
263 		return;
264 
265 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
266 		return;
267 
268 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
269 		return;
270 
271 	skb = skb_copy(skb, GFP_ATOMIC);
272 	if (!skb)
273 		return;
274 
275 	ieee80211_queue_skb_to_iface(sdata, NULL, skb);
276 }
277 
278 /*
279  * ieee80211_add_rx_radiotap_header - add radiotap header
280  *
281  * add a radiotap header containing all the fields which the hardware provided.
282  */
283 static void
284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
285 				 struct sk_buff *skb,
286 				 struct ieee80211_rate *rate,
287 				 int rtap_len, bool has_fcs)
288 {
289 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
290 	struct ieee80211_radiotap_header *rthdr;
291 	unsigned char *pos;
292 	__le32 *it_present;
293 	u32 it_present_val;
294 	u16 rx_flags = 0;
295 	u16 channel_flags = 0;
296 	int mpdulen, chain;
297 	unsigned long chains = status->chains;
298 	struct ieee80211_vendor_radiotap rtap = {};
299 	struct ieee80211_radiotap_he he = {};
300 	struct ieee80211_radiotap_he_mu he_mu = {};
301 	struct ieee80211_radiotap_lsig lsig = {};
302 
303 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
304 		he = *(struct ieee80211_radiotap_he *)skb->data;
305 		skb_pull(skb, sizeof(he));
306 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
307 	}
308 
309 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
310 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
311 		skb_pull(skb, sizeof(he_mu));
312 	}
313 
314 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
315 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
316 		skb_pull(skb, sizeof(lsig));
317 	}
318 
319 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
320 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
321 		/* rtap.len and rtap.pad are undone immediately */
322 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
323 	}
324 
325 	mpdulen = skb->len;
326 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
327 		mpdulen += FCS_LEN;
328 
329 	rthdr = skb_push(skb, rtap_len);
330 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
331 	it_present = &rthdr->it_present;
332 
333 	/* radiotap header, set always present flags */
334 	rthdr->it_len = cpu_to_le16(rtap_len);
335 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
336 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
337 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
338 
339 	if (!status->chains)
340 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
341 
342 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
343 		it_present_val |=
344 			BIT(IEEE80211_RADIOTAP_EXT) |
345 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
346 		put_unaligned_le32(it_present_val, it_present);
347 		it_present++;
348 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
349 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
350 	}
351 
352 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
353 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
354 				  BIT(IEEE80211_RADIOTAP_EXT);
355 		put_unaligned_le32(it_present_val, it_present);
356 		it_present++;
357 		it_present_val = rtap.present;
358 	}
359 
360 	put_unaligned_le32(it_present_val, it_present);
361 
362 	/* This references through an offset into it_optional[] rather
363 	 * than via it_present otherwise later uses of pos will cause
364 	 * the compiler to think we have walked past the end of the
365 	 * struct member.
366 	 */
367 	pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
368 
369 	/* the order of the following fields is important */
370 
371 	/* IEEE80211_RADIOTAP_TSFT */
372 	if (ieee80211_have_rx_timestamp(status)) {
373 		/* padding */
374 		while ((pos - (u8 *)rthdr) & 7)
375 			*pos++ = 0;
376 		put_unaligned_le64(
377 			ieee80211_calculate_rx_timestamp(local, status,
378 							 mpdulen, 0),
379 			pos);
380 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
381 		pos += 8;
382 	}
383 
384 	/* IEEE80211_RADIOTAP_FLAGS */
385 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
386 		*pos |= IEEE80211_RADIOTAP_F_FCS;
387 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
388 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
389 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
390 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
391 	pos++;
392 
393 	/* IEEE80211_RADIOTAP_RATE */
394 	if (!rate || status->encoding != RX_ENC_LEGACY) {
395 		/*
396 		 * Without rate information don't add it. If we have,
397 		 * MCS information is a separate field in radiotap,
398 		 * added below. The byte here is needed as padding
399 		 * for the channel though, so initialise it to 0.
400 		 */
401 		*pos = 0;
402 	} else {
403 		int shift = 0;
404 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
405 		if (status->bw == RATE_INFO_BW_10)
406 			shift = 1;
407 		else if (status->bw == RATE_INFO_BW_5)
408 			shift = 2;
409 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
410 	}
411 	pos++;
412 
413 	/* IEEE80211_RADIOTAP_CHANNEL */
414 	/* TODO: frequency offset in KHz */
415 	put_unaligned_le16(status->freq, pos);
416 	pos += 2;
417 	if (status->bw == RATE_INFO_BW_10)
418 		channel_flags |= IEEE80211_CHAN_HALF;
419 	else if (status->bw == RATE_INFO_BW_5)
420 		channel_flags |= IEEE80211_CHAN_QUARTER;
421 
422 	if (status->band == NL80211_BAND_5GHZ ||
423 	    status->band == NL80211_BAND_6GHZ)
424 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
425 	else if (status->encoding != RX_ENC_LEGACY)
426 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
428 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
429 	else if (rate)
430 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
431 	else
432 		channel_flags |= IEEE80211_CHAN_2GHZ;
433 	put_unaligned_le16(channel_flags, pos);
434 	pos += 2;
435 
436 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
437 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
438 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
439 		*pos = status->signal;
440 		rthdr->it_present |=
441 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
442 		pos++;
443 	}
444 
445 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446 
447 	if (!status->chains) {
448 		/* IEEE80211_RADIOTAP_ANTENNA */
449 		*pos = status->antenna;
450 		pos++;
451 	}
452 
453 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454 
455 	/* IEEE80211_RADIOTAP_RX_FLAGS */
456 	/* ensure 2 byte alignment for the 2 byte field as required */
457 	if ((pos - (u8 *)rthdr) & 1)
458 		*pos++ = 0;
459 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
460 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
461 	put_unaligned_le16(rx_flags, pos);
462 	pos += 2;
463 
464 	if (status->encoding == RX_ENC_HT) {
465 		unsigned int stbc;
466 
467 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
468 		*pos++ = local->hw.radiotap_mcs_details;
469 		*pos = 0;
470 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
471 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
472 		if (status->bw == RATE_INFO_BW_40)
473 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
474 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
475 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
476 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
477 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
478 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
479 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
480 		pos++;
481 		*pos++ = status->rate_idx;
482 	}
483 
484 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
485 		u16 flags = 0;
486 
487 		/* ensure 4 byte alignment */
488 		while ((pos - (u8 *)rthdr) & 3)
489 			pos++;
490 		rthdr->it_present |=
491 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
492 		put_unaligned_le32(status->ampdu_reference, pos);
493 		pos += 4;
494 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
495 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
496 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
497 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
498 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
499 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
500 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
501 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
502 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
503 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
504 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
505 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
506 		put_unaligned_le16(flags, pos);
507 		pos += 2;
508 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
509 			*pos++ = status->ampdu_delimiter_crc;
510 		else
511 			*pos++ = 0;
512 		*pos++ = 0;
513 	}
514 
515 	if (status->encoding == RX_ENC_VHT) {
516 		u16 known = local->hw.radiotap_vht_details;
517 
518 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
519 		put_unaligned_le16(known, pos);
520 		pos += 2;
521 		/* flags */
522 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
523 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
524 		/* in VHT, STBC is binary */
525 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
526 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
527 		if (status->enc_flags & RX_ENC_FLAG_BF)
528 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
529 		pos++;
530 		/* bandwidth */
531 		switch (status->bw) {
532 		case RATE_INFO_BW_80:
533 			*pos++ = 4;
534 			break;
535 		case RATE_INFO_BW_160:
536 			*pos++ = 11;
537 			break;
538 		case RATE_INFO_BW_40:
539 			*pos++ = 1;
540 			break;
541 		default:
542 			*pos++ = 0;
543 		}
544 		/* MCS/NSS */
545 		*pos = (status->rate_idx << 4) | status->nss;
546 		pos += 4;
547 		/* coding field */
548 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
549 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
550 		pos++;
551 		/* group ID */
552 		pos++;
553 		/* partial_aid */
554 		pos += 2;
555 	}
556 
557 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
558 		u16 accuracy = 0;
559 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
560 
561 		rthdr->it_present |=
562 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
563 
564 		/* ensure 8 byte alignment */
565 		while ((pos - (u8 *)rthdr) & 7)
566 			pos++;
567 
568 		put_unaligned_le64(status->device_timestamp, pos);
569 		pos += sizeof(u64);
570 
571 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
572 			accuracy = local->hw.radiotap_timestamp.accuracy;
573 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
574 		}
575 		put_unaligned_le16(accuracy, pos);
576 		pos += sizeof(u16);
577 
578 		*pos++ = local->hw.radiotap_timestamp.units_pos;
579 		*pos++ = flags;
580 	}
581 
582 	if (status->encoding == RX_ENC_HE &&
583 	    status->flag & RX_FLAG_RADIOTAP_HE) {
584 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
585 
586 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
587 			he.data6 |= HE_PREP(DATA6_NSTS,
588 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
589 						      status->enc_flags));
590 			he.data3 |= HE_PREP(DATA3_STBC, 1);
591 		} else {
592 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
593 		}
594 
595 #define CHECK_GI(s) \
596 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
597 		     (int)NL80211_RATE_INFO_HE_GI_##s)
598 
599 		CHECK_GI(0_8);
600 		CHECK_GI(1_6);
601 		CHECK_GI(3_2);
602 
603 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
604 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
605 		he.data3 |= HE_PREP(DATA3_CODING,
606 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
607 
608 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
609 
610 		switch (status->bw) {
611 		case RATE_INFO_BW_20:
612 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
613 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
614 			break;
615 		case RATE_INFO_BW_40:
616 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
617 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
618 			break;
619 		case RATE_INFO_BW_80:
620 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
621 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
622 			break;
623 		case RATE_INFO_BW_160:
624 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
625 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
626 			break;
627 		case RATE_INFO_BW_HE_RU:
628 #define CHECK_RU_ALLOC(s) \
629 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
630 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
631 
632 			CHECK_RU_ALLOC(26);
633 			CHECK_RU_ALLOC(52);
634 			CHECK_RU_ALLOC(106);
635 			CHECK_RU_ALLOC(242);
636 			CHECK_RU_ALLOC(484);
637 			CHECK_RU_ALLOC(996);
638 			CHECK_RU_ALLOC(2x996);
639 
640 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
641 					    status->he_ru + 4);
642 			break;
643 		default:
644 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
645 		}
646 
647 		/* ensure 2 byte alignment */
648 		while ((pos - (u8 *)rthdr) & 1)
649 			pos++;
650 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
651 		memcpy(pos, &he, sizeof(he));
652 		pos += sizeof(he);
653 	}
654 
655 	if (status->encoding == RX_ENC_HE &&
656 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
657 		/* ensure 2 byte alignment */
658 		while ((pos - (u8 *)rthdr) & 1)
659 			pos++;
660 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
661 		memcpy(pos, &he_mu, sizeof(he_mu));
662 		pos += sizeof(he_mu);
663 	}
664 
665 	if (status->flag & RX_FLAG_NO_PSDU) {
666 		rthdr->it_present |=
667 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
668 		*pos++ = status->zero_length_psdu_type;
669 	}
670 
671 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
672 		/* ensure 2 byte alignment */
673 		while ((pos - (u8 *)rthdr) & 1)
674 			pos++;
675 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
676 		memcpy(pos, &lsig, sizeof(lsig));
677 		pos += sizeof(lsig);
678 	}
679 
680 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
681 		*pos++ = status->chain_signal[chain];
682 		*pos++ = chain;
683 	}
684 
685 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
686 		/* ensure 2 byte alignment for the vendor field as required */
687 		if ((pos - (u8 *)rthdr) & 1)
688 			*pos++ = 0;
689 		*pos++ = rtap.oui[0];
690 		*pos++ = rtap.oui[1];
691 		*pos++ = rtap.oui[2];
692 		*pos++ = rtap.subns;
693 		put_unaligned_le16(rtap.len, pos);
694 		pos += 2;
695 		/* align the actual payload as requested */
696 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
697 			*pos++ = 0;
698 		/* data (and possible padding) already follows */
699 	}
700 }
701 
702 static struct sk_buff *
703 ieee80211_make_monitor_skb(struct ieee80211_local *local,
704 			   struct sk_buff **origskb,
705 			   struct ieee80211_rate *rate,
706 			   int rtap_space, bool use_origskb)
707 {
708 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
709 	int rt_hdrlen, needed_headroom;
710 	struct sk_buff *skb;
711 
712 	/* room for the radiotap header based on driver features */
713 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
714 	needed_headroom = rt_hdrlen - rtap_space;
715 
716 	if (use_origskb) {
717 		/* only need to expand headroom if necessary */
718 		skb = *origskb;
719 		*origskb = NULL;
720 
721 		/*
722 		 * This shouldn't trigger often because most devices have an
723 		 * RX header they pull before we get here, and that should
724 		 * be big enough for our radiotap information. We should
725 		 * probably export the length to drivers so that we can have
726 		 * them allocate enough headroom to start with.
727 		 */
728 		if (skb_headroom(skb) < needed_headroom &&
729 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
730 			dev_kfree_skb(skb);
731 			return NULL;
732 		}
733 	} else {
734 		/*
735 		 * Need to make a copy and possibly remove radiotap header
736 		 * and FCS from the original.
737 		 */
738 		skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
739 				      0, GFP_ATOMIC);
740 
741 		if (!skb)
742 			return NULL;
743 	}
744 
745 	/* prepend radiotap information */
746 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
747 
748 	skb_reset_mac_header(skb);
749 	skb->ip_summed = CHECKSUM_UNNECESSARY;
750 	skb->pkt_type = PACKET_OTHERHOST;
751 	skb->protocol = htons(ETH_P_802_2);
752 
753 	return skb;
754 }
755 
756 /*
757  * This function copies a received frame to all monitor interfaces and
758  * returns a cleaned-up SKB that no longer includes the FCS nor the
759  * radiotap header the driver might have added.
760  */
761 static struct sk_buff *
762 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
763 		     struct ieee80211_rate *rate)
764 {
765 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
766 	struct ieee80211_sub_if_data *sdata;
767 	struct sk_buff *monskb = NULL;
768 	int present_fcs_len = 0;
769 	unsigned int rtap_space = 0;
770 	struct ieee80211_sub_if_data *monitor_sdata =
771 		rcu_dereference(local->monitor_sdata);
772 	bool only_monitor = false;
773 	unsigned int min_head_len;
774 
775 	if (status->flag & RX_FLAG_RADIOTAP_HE)
776 		rtap_space += sizeof(struct ieee80211_radiotap_he);
777 
778 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
779 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
780 
781 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
782 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
783 
784 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
785 		struct ieee80211_vendor_radiotap *rtap =
786 			(void *)(origskb->data + rtap_space);
787 
788 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
789 	}
790 
791 	min_head_len = rtap_space;
792 
793 	/*
794 	 * First, we may need to make a copy of the skb because
795 	 *  (1) we need to modify it for radiotap (if not present), and
796 	 *  (2) the other RX handlers will modify the skb we got.
797 	 *
798 	 * We don't need to, of course, if we aren't going to return
799 	 * the SKB because it has a bad FCS/PLCP checksum.
800 	 */
801 
802 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
803 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
804 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
805 				/* driver bug */
806 				WARN_ON(1);
807 				dev_kfree_skb(origskb);
808 				return NULL;
809 			}
810 			present_fcs_len = FCS_LEN;
811 		}
812 
813 		/* also consider the hdr->frame_control */
814 		min_head_len += 2;
815 	}
816 
817 	/* ensure that the expected data elements are in skb head */
818 	if (!pskb_may_pull(origskb, min_head_len)) {
819 		dev_kfree_skb(origskb);
820 		return NULL;
821 	}
822 
823 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
824 
825 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
826 		if (only_monitor) {
827 			dev_kfree_skb(origskb);
828 			return NULL;
829 		}
830 
831 		return ieee80211_clean_skb(origskb, present_fcs_len,
832 					   rtap_space);
833 	}
834 
835 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
836 
837 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
838 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
839 						 &local->mon_list);
840 
841 		if (!monskb)
842 			monskb = ieee80211_make_monitor_skb(local, &origskb,
843 							    rate, rtap_space,
844 							    only_monitor &&
845 							    last_monitor);
846 
847 		if (monskb) {
848 			struct sk_buff *skb;
849 
850 			if (last_monitor) {
851 				skb = monskb;
852 				monskb = NULL;
853 			} else {
854 				skb = skb_clone(monskb, GFP_ATOMIC);
855 			}
856 
857 			if (skb) {
858 				skb->dev = sdata->dev;
859 				dev_sw_netstats_rx_add(skb->dev, skb->len);
860 				netif_receive_skb(skb);
861 			}
862 		}
863 
864 		if (last_monitor)
865 			break;
866 	}
867 
868 	/* this happens if last_monitor was erroneously false */
869 	dev_kfree_skb(monskb);
870 
871 	/* ditto */
872 	if (!origskb)
873 		return NULL;
874 
875 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
876 }
877 
878 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
879 {
880 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
881 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
882 	int tid, seqno_idx, security_idx;
883 
884 	/* does the frame have a qos control field? */
885 	if (ieee80211_is_data_qos(hdr->frame_control)) {
886 		u8 *qc = ieee80211_get_qos_ctl(hdr);
887 		/* frame has qos control */
888 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
889 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
890 			status->rx_flags |= IEEE80211_RX_AMSDU;
891 
892 		seqno_idx = tid;
893 		security_idx = tid;
894 	} else {
895 		/*
896 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
897 		 *
898 		 *	Sequence numbers for management frames, QoS data
899 		 *	frames with a broadcast/multicast address in the
900 		 *	Address 1 field, and all non-QoS data frames sent
901 		 *	by QoS STAs are assigned using an additional single
902 		 *	modulo-4096 counter, [...]
903 		 *
904 		 * We also use that counter for non-QoS STAs.
905 		 */
906 		seqno_idx = IEEE80211_NUM_TIDS;
907 		security_idx = 0;
908 		if (ieee80211_is_mgmt(hdr->frame_control))
909 			security_idx = IEEE80211_NUM_TIDS;
910 		tid = 0;
911 	}
912 
913 	rx->seqno_idx = seqno_idx;
914 	rx->security_idx = security_idx;
915 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
916 	 * For now, set skb->priority to 0 for other cases. */
917 	rx->skb->priority = (tid > 7) ? 0 : tid;
918 }
919 
920 /**
921  * DOC: Packet alignment
922  *
923  * Drivers always need to pass packets that are aligned to two-byte boundaries
924  * to the stack.
925  *
926  * Additionally, should, if possible, align the payload data in a way that
927  * guarantees that the contained IP header is aligned to a four-byte
928  * boundary. In the case of regular frames, this simply means aligning the
929  * payload to a four-byte boundary (because either the IP header is directly
930  * contained, or IV/RFC1042 headers that have a length divisible by four are
931  * in front of it).  If the payload data is not properly aligned and the
932  * architecture doesn't support efficient unaligned operations, mac80211
933  * will align the data.
934  *
935  * With A-MSDU frames, however, the payload data address must yield two modulo
936  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
937  * push the IP header further back to a multiple of four again. Thankfully, the
938  * specs were sane enough this time around to require padding each A-MSDU
939  * subframe to a length that is a multiple of four.
940  *
941  * Padding like Atheros hardware adds which is between the 802.11 header and
942  * the payload is not supported, the driver is required to move the 802.11
943  * header to be directly in front of the payload in that case.
944  */
945 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
946 {
947 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
948 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
949 #endif
950 }
951 
952 
953 /* rx handlers */
954 
955 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
956 {
957 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
958 
959 	if (is_multicast_ether_addr(hdr->addr1))
960 		return 0;
961 
962 	return ieee80211_is_robust_mgmt_frame(skb);
963 }
964 
965 
966 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
967 {
968 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
969 
970 	if (!is_multicast_ether_addr(hdr->addr1))
971 		return 0;
972 
973 	return ieee80211_is_robust_mgmt_frame(skb);
974 }
975 
976 
977 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
978 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
979 {
980 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
981 	struct ieee80211_mmie *mmie;
982 	struct ieee80211_mmie_16 *mmie16;
983 
984 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
985 		return -1;
986 
987 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
988 	    !ieee80211_is_beacon(hdr->frame_control))
989 		return -1; /* not a robust management frame */
990 
991 	mmie = (struct ieee80211_mmie *)
992 		(skb->data + skb->len - sizeof(*mmie));
993 	if (mmie->element_id == WLAN_EID_MMIE &&
994 	    mmie->length == sizeof(*mmie) - 2)
995 		return le16_to_cpu(mmie->key_id);
996 
997 	mmie16 = (struct ieee80211_mmie_16 *)
998 		(skb->data + skb->len - sizeof(*mmie16));
999 	if (skb->len >= 24 + sizeof(*mmie16) &&
1000 	    mmie16->element_id == WLAN_EID_MMIE &&
1001 	    mmie16->length == sizeof(*mmie16) - 2)
1002 		return le16_to_cpu(mmie16->key_id);
1003 
1004 	return -1;
1005 }
1006 
1007 static int ieee80211_get_keyid(struct sk_buff *skb,
1008 			       const struct ieee80211_cipher_scheme *cs)
1009 {
1010 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1011 	__le16 fc;
1012 	int hdrlen;
1013 	int minlen;
1014 	u8 key_idx_off;
1015 	u8 key_idx_shift;
1016 	u8 keyid;
1017 
1018 	fc = hdr->frame_control;
1019 	hdrlen = ieee80211_hdrlen(fc);
1020 
1021 	if (cs) {
1022 		minlen = hdrlen + cs->hdr_len;
1023 		key_idx_off = hdrlen + cs->key_idx_off;
1024 		key_idx_shift = cs->key_idx_shift;
1025 	} else {
1026 		/* WEP, TKIP, CCMP and GCMP */
1027 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1028 		key_idx_off = hdrlen + 3;
1029 		key_idx_shift = 6;
1030 	}
1031 
1032 	if (unlikely(skb->len < minlen))
1033 		return -EINVAL;
1034 
1035 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1036 
1037 	if (cs)
1038 		keyid &= cs->key_idx_mask;
1039 	keyid >>= key_idx_shift;
1040 
1041 	/* cs could use more than the usual two bits for the keyid */
1042 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1043 		return -EINVAL;
1044 
1045 	return keyid;
1046 }
1047 
1048 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1049 {
1050 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1051 	char *dev_addr = rx->sdata->vif.addr;
1052 
1053 	if (ieee80211_is_data(hdr->frame_control)) {
1054 		if (is_multicast_ether_addr(hdr->addr1)) {
1055 			if (ieee80211_has_tods(hdr->frame_control) ||
1056 			    !ieee80211_has_fromds(hdr->frame_control))
1057 				return RX_DROP_MONITOR;
1058 			if (ether_addr_equal(hdr->addr3, dev_addr))
1059 				return RX_DROP_MONITOR;
1060 		} else {
1061 			if (!ieee80211_has_a4(hdr->frame_control))
1062 				return RX_DROP_MONITOR;
1063 			if (ether_addr_equal(hdr->addr4, dev_addr))
1064 				return RX_DROP_MONITOR;
1065 		}
1066 	}
1067 
1068 	/* If there is not an established peer link and this is not a peer link
1069 	 * establisment frame, beacon or probe, drop the frame.
1070 	 */
1071 
1072 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1073 		struct ieee80211_mgmt *mgmt;
1074 
1075 		if (!ieee80211_is_mgmt(hdr->frame_control))
1076 			return RX_DROP_MONITOR;
1077 
1078 		if (ieee80211_is_action(hdr->frame_control)) {
1079 			u8 category;
1080 
1081 			/* make sure category field is present */
1082 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1083 				return RX_DROP_MONITOR;
1084 
1085 			mgmt = (struct ieee80211_mgmt *)hdr;
1086 			category = mgmt->u.action.category;
1087 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1088 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1089 				return RX_DROP_MONITOR;
1090 			return RX_CONTINUE;
1091 		}
1092 
1093 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1094 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1095 		    ieee80211_is_beacon(hdr->frame_control) ||
1096 		    ieee80211_is_auth(hdr->frame_control))
1097 			return RX_CONTINUE;
1098 
1099 		return RX_DROP_MONITOR;
1100 	}
1101 
1102 	return RX_CONTINUE;
1103 }
1104 
1105 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1106 					      int index)
1107 {
1108 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1109 	struct sk_buff *tail = skb_peek_tail(frames);
1110 	struct ieee80211_rx_status *status;
1111 
1112 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1113 		return true;
1114 
1115 	if (!tail)
1116 		return false;
1117 
1118 	status = IEEE80211_SKB_RXCB(tail);
1119 	if (status->flag & RX_FLAG_AMSDU_MORE)
1120 		return false;
1121 
1122 	return true;
1123 }
1124 
1125 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1126 					    struct tid_ampdu_rx *tid_agg_rx,
1127 					    int index,
1128 					    struct sk_buff_head *frames)
1129 {
1130 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1131 	struct sk_buff *skb;
1132 	struct ieee80211_rx_status *status;
1133 
1134 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1135 
1136 	if (skb_queue_empty(skb_list))
1137 		goto no_frame;
1138 
1139 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1140 		__skb_queue_purge(skb_list);
1141 		goto no_frame;
1142 	}
1143 
1144 	/* release frames from the reorder ring buffer */
1145 	tid_agg_rx->stored_mpdu_num--;
1146 	while ((skb = __skb_dequeue(skb_list))) {
1147 		status = IEEE80211_SKB_RXCB(skb);
1148 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1149 		__skb_queue_tail(frames, skb);
1150 	}
1151 
1152 no_frame:
1153 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1154 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1155 }
1156 
1157 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1158 					     struct tid_ampdu_rx *tid_agg_rx,
1159 					     u16 head_seq_num,
1160 					     struct sk_buff_head *frames)
1161 {
1162 	int index;
1163 
1164 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1165 
1166 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1167 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1168 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1169 						frames);
1170 	}
1171 }
1172 
1173 /*
1174  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1175  * the skb was added to the buffer longer than this time ago, the earlier
1176  * frames that have not yet been received are assumed to be lost and the skb
1177  * can be released for processing. This may also release other skb's from the
1178  * reorder buffer if there are no additional gaps between the frames.
1179  *
1180  * Callers must hold tid_agg_rx->reorder_lock.
1181  */
1182 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1183 
1184 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1185 					  struct tid_ampdu_rx *tid_agg_rx,
1186 					  struct sk_buff_head *frames)
1187 {
1188 	int index, i, j;
1189 
1190 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1191 
1192 	/* release the buffer until next missing frame */
1193 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1194 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1195 	    tid_agg_rx->stored_mpdu_num) {
1196 		/*
1197 		 * No buffers ready to be released, but check whether any
1198 		 * frames in the reorder buffer have timed out.
1199 		 */
1200 		int skipped = 1;
1201 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1202 		     j = (j + 1) % tid_agg_rx->buf_size) {
1203 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1204 				skipped++;
1205 				continue;
1206 			}
1207 			if (skipped &&
1208 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1209 					HT_RX_REORDER_BUF_TIMEOUT))
1210 				goto set_release_timer;
1211 
1212 			/* don't leave incomplete A-MSDUs around */
1213 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1214 			     i = (i + 1) % tid_agg_rx->buf_size)
1215 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1216 
1217 			ht_dbg_ratelimited(sdata,
1218 					   "release an RX reorder frame due to timeout on earlier frames\n");
1219 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1220 							frames);
1221 
1222 			/*
1223 			 * Increment the head seq# also for the skipped slots.
1224 			 */
1225 			tid_agg_rx->head_seq_num =
1226 				(tid_agg_rx->head_seq_num +
1227 				 skipped) & IEEE80211_SN_MASK;
1228 			skipped = 0;
1229 		}
1230 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1231 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1232 						frames);
1233 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1234 	}
1235 
1236 	if (tid_agg_rx->stored_mpdu_num) {
1237 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1238 
1239 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1240 		     j = (j + 1) % tid_agg_rx->buf_size) {
1241 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1242 				break;
1243 		}
1244 
1245  set_release_timer:
1246 
1247 		if (!tid_agg_rx->removed)
1248 			mod_timer(&tid_agg_rx->reorder_timer,
1249 				  tid_agg_rx->reorder_time[j] + 1 +
1250 				  HT_RX_REORDER_BUF_TIMEOUT);
1251 	} else {
1252 		del_timer(&tid_agg_rx->reorder_timer);
1253 	}
1254 }
1255 
1256 /*
1257  * As this function belongs to the RX path it must be under
1258  * rcu_read_lock protection. It returns false if the frame
1259  * can be processed immediately, true if it was consumed.
1260  */
1261 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1262 					     struct tid_ampdu_rx *tid_agg_rx,
1263 					     struct sk_buff *skb,
1264 					     struct sk_buff_head *frames)
1265 {
1266 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1267 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1268 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1269 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1270 	u16 head_seq_num, buf_size;
1271 	int index;
1272 	bool ret = true;
1273 
1274 	spin_lock(&tid_agg_rx->reorder_lock);
1275 
1276 	/*
1277 	 * Offloaded BA sessions have no known starting sequence number so pick
1278 	 * one from first Rxed frame for this tid after BA was started.
1279 	 */
1280 	if (unlikely(tid_agg_rx->auto_seq)) {
1281 		tid_agg_rx->auto_seq = false;
1282 		tid_agg_rx->ssn = mpdu_seq_num;
1283 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1284 	}
1285 
1286 	buf_size = tid_agg_rx->buf_size;
1287 	head_seq_num = tid_agg_rx->head_seq_num;
1288 
1289 	/*
1290 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1291 	 * be reordered.
1292 	 */
1293 	if (unlikely(!tid_agg_rx->started)) {
1294 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1295 			ret = false;
1296 			goto out;
1297 		}
1298 		tid_agg_rx->started = true;
1299 	}
1300 
1301 	/* frame with out of date sequence number */
1302 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1303 		dev_kfree_skb(skb);
1304 		goto out;
1305 	}
1306 
1307 	/*
1308 	 * If frame the sequence number exceeds our buffering window
1309 	 * size release some previous frames to make room for this one.
1310 	 */
1311 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1312 		head_seq_num = ieee80211_sn_inc(
1313 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1314 		/* release stored frames up to new head to stack */
1315 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1316 						 head_seq_num, frames);
1317 	}
1318 
1319 	/* Now the new frame is always in the range of the reordering buffer */
1320 
1321 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1322 
1323 	/* check if we already stored this frame */
1324 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1325 		dev_kfree_skb(skb);
1326 		goto out;
1327 	}
1328 
1329 	/*
1330 	 * If the current MPDU is in the right order and nothing else
1331 	 * is stored we can process it directly, no need to buffer it.
1332 	 * If it is first but there's something stored, we may be able
1333 	 * to release frames after this one.
1334 	 */
1335 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1336 	    tid_agg_rx->stored_mpdu_num == 0) {
1337 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1338 			tid_agg_rx->head_seq_num =
1339 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1340 		ret = false;
1341 		goto out;
1342 	}
1343 
1344 	/* put the frame in the reordering buffer */
1345 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1346 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1347 		tid_agg_rx->reorder_time[index] = jiffies;
1348 		tid_agg_rx->stored_mpdu_num++;
1349 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1350 	}
1351 
1352  out:
1353 	spin_unlock(&tid_agg_rx->reorder_lock);
1354 	return ret;
1355 }
1356 
1357 /*
1358  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1359  * true if the MPDU was buffered, false if it should be processed.
1360  */
1361 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1362 				       struct sk_buff_head *frames)
1363 {
1364 	struct sk_buff *skb = rx->skb;
1365 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1366 	struct sta_info *sta = rx->sta;
1367 	struct tid_ampdu_rx *tid_agg_rx;
1368 	u16 sc;
1369 	u8 tid, ack_policy;
1370 
1371 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1372 	    is_multicast_ether_addr(hdr->addr1))
1373 		goto dont_reorder;
1374 
1375 	/*
1376 	 * filter the QoS data rx stream according to
1377 	 * STA/TID and check if this STA/TID is on aggregation
1378 	 */
1379 
1380 	if (!sta)
1381 		goto dont_reorder;
1382 
1383 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1384 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1385 	tid = ieee80211_get_tid(hdr);
1386 
1387 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1388 	if (!tid_agg_rx) {
1389 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1390 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1391 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1392 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1393 					     WLAN_BACK_RECIPIENT,
1394 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1395 		goto dont_reorder;
1396 	}
1397 
1398 	/* qos null data frames are excluded */
1399 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1400 		goto dont_reorder;
1401 
1402 	/* not part of a BA session */
1403 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1404 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1405 		goto dont_reorder;
1406 
1407 	/* new, potentially un-ordered, ampdu frame - process it */
1408 
1409 	/* reset session timer */
1410 	if (tid_agg_rx->timeout)
1411 		tid_agg_rx->last_rx = jiffies;
1412 
1413 	/* if this mpdu is fragmented - terminate rx aggregation session */
1414 	sc = le16_to_cpu(hdr->seq_ctrl);
1415 	if (sc & IEEE80211_SCTL_FRAG) {
1416 		ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
1417 		return;
1418 	}
1419 
1420 	/*
1421 	 * No locking needed -- we will only ever process one
1422 	 * RX packet at a time, and thus own tid_agg_rx. All
1423 	 * other code manipulating it needs to (and does) make
1424 	 * sure that we cannot get to it any more before doing
1425 	 * anything with it.
1426 	 */
1427 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1428 					     frames))
1429 		return;
1430 
1431  dont_reorder:
1432 	__skb_queue_tail(frames, skb);
1433 }
1434 
1435 static ieee80211_rx_result debug_noinline
1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1437 {
1438 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1439 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1440 
1441 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1442 		return RX_CONTINUE;
1443 
1444 	/*
1445 	 * Drop duplicate 802.11 retransmissions
1446 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1447 	 */
1448 
1449 	if (rx->skb->len < 24)
1450 		return RX_CONTINUE;
1451 
1452 	if (ieee80211_is_ctl(hdr->frame_control) ||
1453 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1454 	    is_multicast_ether_addr(hdr->addr1))
1455 		return RX_CONTINUE;
1456 
1457 	if (!rx->sta)
1458 		return RX_CONTINUE;
1459 
1460 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1461 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1462 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1463 		rx->sta->rx_stats.num_duplicates++;
1464 		return RX_DROP_UNUSABLE;
1465 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1466 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1467 	}
1468 
1469 	return RX_CONTINUE;
1470 }
1471 
1472 static ieee80211_rx_result debug_noinline
1473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1474 {
1475 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1476 
1477 	/* Drop disallowed frame classes based on STA auth/assoc state;
1478 	 * IEEE 802.11, Chap 5.5.
1479 	 *
1480 	 * mac80211 filters only based on association state, i.e. it drops
1481 	 * Class 3 frames from not associated stations. hostapd sends
1482 	 * deauth/disassoc frames when needed. In addition, hostapd is
1483 	 * responsible for filtering on both auth and assoc states.
1484 	 */
1485 
1486 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1487 		return ieee80211_rx_mesh_check(rx);
1488 
1489 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1490 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1491 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1492 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1493 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1494 		/*
1495 		 * accept port control frames from the AP even when it's not
1496 		 * yet marked ASSOC to prevent a race where we don't set the
1497 		 * assoc bit quickly enough before it sends the first frame
1498 		 */
1499 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1500 		    ieee80211_is_data_present(hdr->frame_control)) {
1501 			unsigned int hdrlen;
1502 			__be16 ethertype;
1503 
1504 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1505 
1506 			if (rx->skb->len < hdrlen + 8)
1507 				return RX_DROP_MONITOR;
1508 
1509 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1510 			if (ethertype == rx->sdata->control_port_protocol)
1511 				return RX_CONTINUE;
1512 		}
1513 
1514 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1515 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1516 					       hdr->addr2,
1517 					       GFP_ATOMIC))
1518 			return RX_DROP_UNUSABLE;
1519 
1520 		return RX_DROP_MONITOR;
1521 	}
1522 
1523 	return RX_CONTINUE;
1524 }
1525 
1526 
1527 static ieee80211_rx_result debug_noinline
1528 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1529 {
1530 	struct ieee80211_local *local;
1531 	struct ieee80211_hdr *hdr;
1532 	struct sk_buff *skb;
1533 
1534 	local = rx->local;
1535 	skb = rx->skb;
1536 	hdr = (struct ieee80211_hdr *) skb->data;
1537 
1538 	if (!local->pspolling)
1539 		return RX_CONTINUE;
1540 
1541 	if (!ieee80211_has_fromds(hdr->frame_control))
1542 		/* this is not from AP */
1543 		return RX_CONTINUE;
1544 
1545 	if (!ieee80211_is_data(hdr->frame_control))
1546 		return RX_CONTINUE;
1547 
1548 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1549 		/* AP has no more frames buffered for us */
1550 		local->pspolling = false;
1551 		return RX_CONTINUE;
1552 	}
1553 
1554 	/* more data bit is set, let's request a new frame from the AP */
1555 	ieee80211_send_pspoll(local, rx->sdata);
1556 
1557 	return RX_CONTINUE;
1558 }
1559 
1560 static void sta_ps_start(struct sta_info *sta)
1561 {
1562 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1563 	struct ieee80211_local *local = sdata->local;
1564 	struct ps_data *ps;
1565 	int tid;
1566 
1567 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1568 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1569 		ps = &sdata->bss->ps;
1570 	else
1571 		return;
1572 
1573 	atomic_inc(&ps->num_sta_ps);
1574 	set_sta_flag(sta, WLAN_STA_PS_STA);
1575 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1576 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1577 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1578 	       sta->sta.addr, sta->sta.aid);
1579 
1580 	ieee80211_clear_fast_xmit(sta);
1581 
1582 	if (!sta->sta.txq[0])
1583 		return;
1584 
1585 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1586 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1587 
1588 		ieee80211_unschedule_txq(&local->hw, txq, false);
1589 
1590 		if (txq_has_queue(txq))
1591 			set_bit(tid, &sta->txq_buffered_tids);
1592 		else
1593 			clear_bit(tid, &sta->txq_buffered_tids);
1594 	}
1595 }
1596 
1597 static void sta_ps_end(struct sta_info *sta)
1598 {
1599 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1600 	       sta->sta.addr, sta->sta.aid);
1601 
1602 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1603 		/*
1604 		 * Clear the flag only if the other one is still set
1605 		 * so that the TX path won't start TX'ing new frames
1606 		 * directly ... In the case that the driver flag isn't
1607 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1608 		 */
1609 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1610 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1611 		       sta->sta.addr, sta->sta.aid);
1612 		return;
1613 	}
1614 
1615 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1616 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1617 	ieee80211_sta_ps_deliver_wakeup(sta);
1618 }
1619 
1620 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1621 {
1622 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1623 	bool in_ps;
1624 
1625 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1626 
1627 	/* Don't let the same PS state be set twice */
1628 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1629 	if ((start && in_ps) || (!start && !in_ps))
1630 		return -EINVAL;
1631 
1632 	if (start)
1633 		sta_ps_start(sta);
1634 	else
1635 		sta_ps_end(sta);
1636 
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1640 
1641 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1642 {
1643 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1644 
1645 	if (test_sta_flag(sta, WLAN_STA_SP))
1646 		return;
1647 
1648 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1649 		ieee80211_sta_ps_deliver_poll_response(sta);
1650 	else
1651 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1652 }
1653 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1654 
1655 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1656 {
1657 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1658 	int ac = ieee80211_ac_from_tid(tid);
1659 
1660 	/*
1661 	 * If this AC is not trigger-enabled do nothing unless the
1662 	 * driver is calling us after it already checked.
1663 	 *
1664 	 * NB: This could/should check a separate bitmap of trigger-
1665 	 * enabled queues, but for now we only implement uAPSD w/o
1666 	 * TSPEC changes to the ACs, so they're always the same.
1667 	 */
1668 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1669 	    tid != IEEE80211_NUM_TIDS)
1670 		return;
1671 
1672 	/* if we are in a service period, do nothing */
1673 	if (test_sta_flag(sta, WLAN_STA_SP))
1674 		return;
1675 
1676 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1677 		ieee80211_sta_ps_deliver_uapsd(sta);
1678 	else
1679 		set_sta_flag(sta, WLAN_STA_UAPSD);
1680 }
1681 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1682 
1683 static ieee80211_rx_result debug_noinline
1684 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1685 {
1686 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1687 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1688 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1689 
1690 	if (!rx->sta)
1691 		return RX_CONTINUE;
1692 
1693 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1694 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1695 		return RX_CONTINUE;
1696 
1697 	/*
1698 	 * The device handles station powersave, so don't do anything about
1699 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1700 	 * it to mac80211 since they're handled.)
1701 	 */
1702 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1703 		return RX_CONTINUE;
1704 
1705 	/*
1706 	 * Don't do anything if the station isn't already asleep. In
1707 	 * the uAPSD case, the station will probably be marked asleep,
1708 	 * in the PS-Poll case the station must be confused ...
1709 	 */
1710 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1711 		return RX_CONTINUE;
1712 
1713 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1714 		ieee80211_sta_pspoll(&rx->sta->sta);
1715 
1716 		/* Free PS Poll skb here instead of returning RX_DROP that would
1717 		 * count as an dropped frame. */
1718 		dev_kfree_skb(rx->skb);
1719 
1720 		return RX_QUEUED;
1721 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1722 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1723 		   ieee80211_has_pm(hdr->frame_control) &&
1724 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1725 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1726 		u8 tid = ieee80211_get_tid(hdr);
1727 
1728 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1729 	}
1730 
1731 	return RX_CONTINUE;
1732 }
1733 
1734 static ieee80211_rx_result debug_noinline
1735 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1736 {
1737 	struct sta_info *sta = rx->sta;
1738 	struct sk_buff *skb = rx->skb;
1739 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1740 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1741 	int i;
1742 
1743 	if (!sta)
1744 		return RX_CONTINUE;
1745 
1746 	/*
1747 	 * Update last_rx only for IBSS packets which are for the current
1748 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1749 	 * current IBSS network alive in cases where other STAs start
1750 	 * using different BSSID. This will also give the station another
1751 	 * chance to restart the authentication/authorization in case
1752 	 * something went wrong the first time.
1753 	 */
1754 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1755 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1756 						NL80211_IFTYPE_ADHOC);
1757 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1758 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1759 			sta->rx_stats.last_rx = jiffies;
1760 			if (ieee80211_is_data(hdr->frame_control) &&
1761 			    !is_multicast_ether_addr(hdr->addr1))
1762 				sta->rx_stats.last_rate =
1763 					sta_stats_encode_rate(status);
1764 		}
1765 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1766 		sta->rx_stats.last_rx = jiffies;
1767 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1768 		   !is_multicast_ether_addr(hdr->addr1)) {
1769 		/*
1770 		 * Mesh beacons will update last_rx when if they are found to
1771 		 * match the current local configuration when processed.
1772 		 */
1773 		sta->rx_stats.last_rx = jiffies;
1774 		if (ieee80211_is_data(hdr->frame_control))
1775 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1776 	}
1777 
1778 	sta->rx_stats.fragments++;
1779 
1780 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1781 	sta->rx_stats.bytes += rx->skb->len;
1782 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1783 
1784 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1785 		sta->rx_stats.last_signal = status->signal;
1786 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1787 	}
1788 
1789 	if (status->chains) {
1790 		sta->rx_stats.chains = status->chains;
1791 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1792 			int signal = status->chain_signal[i];
1793 
1794 			if (!(status->chains & BIT(i)))
1795 				continue;
1796 
1797 			sta->rx_stats.chain_signal_last[i] = signal;
1798 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1799 					-signal);
1800 		}
1801 	}
1802 
1803 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1804 		return RX_CONTINUE;
1805 
1806 	/*
1807 	 * Change STA power saving mode only at the end of a frame
1808 	 * exchange sequence, and only for a data or management
1809 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1810 	 */
1811 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1812 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1813 	    !is_multicast_ether_addr(hdr->addr1) &&
1814 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1815 	     ieee80211_is_data(hdr->frame_control)) &&
1816 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1817 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1818 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1819 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1820 			if (!ieee80211_has_pm(hdr->frame_control))
1821 				sta_ps_end(sta);
1822 		} else {
1823 			if (ieee80211_has_pm(hdr->frame_control))
1824 				sta_ps_start(sta);
1825 		}
1826 	}
1827 
1828 	/* mesh power save support */
1829 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1830 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1831 
1832 	/*
1833 	 * Drop (qos-)data::nullfunc frames silently, since they
1834 	 * are used only to control station power saving mode.
1835 	 */
1836 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1837 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1838 
1839 		/*
1840 		 * If we receive a 4-addr nullfunc frame from a STA
1841 		 * that was not moved to a 4-addr STA vlan yet send
1842 		 * the event to userspace and for older hostapd drop
1843 		 * the frame to the monitor interface.
1844 		 */
1845 		if (ieee80211_has_a4(hdr->frame_control) &&
1846 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1847 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1848 		      !rx->sdata->u.vlan.sta))) {
1849 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1850 				cfg80211_rx_unexpected_4addr_frame(
1851 					rx->sdata->dev, sta->sta.addr,
1852 					GFP_ATOMIC);
1853 			return RX_DROP_MONITOR;
1854 		}
1855 		/*
1856 		 * Update counter and free packet here to avoid
1857 		 * counting this as a dropped packed.
1858 		 */
1859 		sta->rx_stats.packets++;
1860 		dev_kfree_skb(rx->skb);
1861 		return RX_QUEUED;
1862 	}
1863 
1864 	return RX_CONTINUE;
1865 } /* ieee80211_rx_h_sta_process */
1866 
1867 static struct ieee80211_key *
1868 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1869 {
1870 	struct ieee80211_key *key = NULL;
1871 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1872 	int idx2;
1873 
1874 	/* Make sure key gets set if either BIGTK key index is set so that
1875 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1876 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1877 	 * index (i.e., a key that we do not have).
1878 	 */
1879 
1880 	if (idx < 0) {
1881 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1882 		idx2 = idx + 1;
1883 	} else {
1884 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1885 			idx2 = idx + 1;
1886 		else
1887 			idx2 = idx - 1;
1888 	}
1889 
1890 	if (rx->sta)
1891 		key = rcu_dereference(rx->sta->gtk[idx]);
1892 	if (!key)
1893 		key = rcu_dereference(sdata->keys[idx]);
1894 	if (!key && rx->sta)
1895 		key = rcu_dereference(rx->sta->gtk[idx2]);
1896 	if (!key)
1897 		key = rcu_dereference(sdata->keys[idx2]);
1898 
1899 	return key;
1900 }
1901 
1902 static ieee80211_rx_result debug_noinline
1903 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1904 {
1905 	struct sk_buff *skb = rx->skb;
1906 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1907 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1908 	int keyidx;
1909 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1910 	struct ieee80211_key *sta_ptk = NULL;
1911 	struct ieee80211_key *ptk_idx = NULL;
1912 	int mmie_keyidx = -1;
1913 	__le16 fc;
1914 	const struct ieee80211_cipher_scheme *cs = NULL;
1915 
1916 	if (ieee80211_is_ext(hdr->frame_control))
1917 		return RX_CONTINUE;
1918 
1919 	/*
1920 	 * Key selection 101
1921 	 *
1922 	 * There are five types of keys:
1923 	 *  - GTK (group keys)
1924 	 *  - IGTK (group keys for management frames)
1925 	 *  - BIGTK (group keys for Beacon frames)
1926 	 *  - PTK (pairwise keys)
1927 	 *  - STK (station-to-station pairwise keys)
1928 	 *
1929 	 * When selecting a key, we have to distinguish between multicast
1930 	 * (including broadcast) and unicast frames, the latter can only
1931 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1932 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1933 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1934 	 * don't have a PTK/STK we check the key index for a WEP key.
1935 	 *
1936 	 * Note that in a regular BSS, multicast frames are sent by the
1937 	 * AP only, associated stations unicast the frame to the AP first
1938 	 * which then multicasts it on their behalf.
1939 	 *
1940 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1941 	 * with each station, that is something we don't currently handle.
1942 	 * The spec seems to expect that one negotiates the same key with
1943 	 * every station but there's no such requirement; VLANs could be
1944 	 * possible.
1945 	 */
1946 
1947 	/* start without a key */
1948 	rx->key = NULL;
1949 	fc = hdr->frame_control;
1950 
1951 	if (rx->sta) {
1952 		int keyid = rx->sta->ptk_idx;
1953 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1954 
1955 		if (ieee80211_has_protected(fc) &&
1956 		    !(status->flag & RX_FLAG_IV_STRIPPED)) {
1957 			cs = rx->sta->cipher_scheme;
1958 			keyid = ieee80211_get_keyid(rx->skb, cs);
1959 
1960 			if (unlikely(keyid < 0))
1961 				return RX_DROP_UNUSABLE;
1962 
1963 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1964 		}
1965 	}
1966 
1967 	if (!ieee80211_has_protected(fc))
1968 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1969 
1970 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1971 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1972 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 		    (status->flag & RX_FLAG_IV_STRIPPED))
1974 			return RX_CONTINUE;
1975 		/* Skip decryption if the frame is not protected. */
1976 		if (!ieee80211_has_protected(fc))
1977 			return RX_CONTINUE;
1978 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1979 		/* Broadcast/multicast robust management frame / BIP */
1980 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1981 		    (status->flag & RX_FLAG_IV_STRIPPED))
1982 			return RX_CONTINUE;
1983 
1984 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1985 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1986 		    NUM_DEFAULT_BEACON_KEYS) {
1987 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1988 						     skb->data,
1989 						     skb->len);
1990 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1991 		}
1992 
1993 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1994 		if (!rx->key)
1995 			return RX_CONTINUE; /* Beacon protection not in use */
1996 	} else if (mmie_keyidx >= 0) {
1997 		/* Broadcast/multicast robust management frame / BIP */
1998 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1999 		    (status->flag & RX_FLAG_IV_STRIPPED))
2000 			return RX_CONTINUE;
2001 
2002 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2003 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2004 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
2005 		if (rx->sta) {
2006 			if (ieee80211_is_group_privacy_action(skb) &&
2007 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
2008 				return RX_DROP_MONITOR;
2009 
2010 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2011 		}
2012 		if (!rx->key)
2013 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2014 	} else if (!ieee80211_has_protected(fc)) {
2015 		/*
2016 		 * The frame was not protected, so skip decryption. However, we
2017 		 * need to set rx->key if there is a key that could have been
2018 		 * used so that the frame may be dropped if encryption would
2019 		 * have been expected.
2020 		 */
2021 		struct ieee80211_key *key = NULL;
2022 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2023 		int i;
2024 
2025 		if (ieee80211_is_beacon(fc)) {
2026 			key = ieee80211_rx_get_bigtk(rx, -1);
2027 		} else if (ieee80211_is_mgmt(fc) &&
2028 			   is_multicast_ether_addr(hdr->addr1)) {
2029 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2030 		} else {
2031 			if (rx->sta) {
2032 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2033 					key = rcu_dereference(rx->sta->gtk[i]);
2034 					if (key)
2035 						break;
2036 				}
2037 			}
2038 			if (!key) {
2039 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2040 					key = rcu_dereference(sdata->keys[i]);
2041 					if (key)
2042 						break;
2043 				}
2044 			}
2045 		}
2046 		if (key)
2047 			rx->key = key;
2048 		return RX_CONTINUE;
2049 	} else {
2050 		/*
2051 		 * The device doesn't give us the IV so we won't be
2052 		 * able to look up the key. That's ok though, we
2053 		 * don't need to decrypt the frame, we just won't
2054 		 * be able to keep statistics accurate.
2055 		 * Except for key threshold notifications, should
2056 		 * we somehow allow the driver to tell us which key
2057 		 * the hardware used if this flag is set?
2058 		 */
2059 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2060 		    (status->flag & RX_FLAG_IV_STRIPPED))
2061 			return RX_CONTINUE;
2062 
2063 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2064 
2065 		if (unlikely(keyidx < 0))
2066 			return RX_DROP_UNUSABLE;
2067 
2068 		/* check per-station GTK first, if multicast packet */
2069 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2070 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2071 
2072 		/* if not found, try default key */
2073 		if (!rx->key) {
2074 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2075 
2076 			/*
2077 			 * RSNA-protected unicast frames should always be
2078 			 * sent with pairwise or station-to-station keys,
2079 			 * but for WEP we allow using a key index as well.
2080 			 */
2081 			if (rx->key &&
2082 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2083 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2084 			    !is_multicast_ether_addr(hdr->addr1))
2085 				rx->key = NULL;
2086 		}
2087 	}
2088 
2089 	if (rx->key) {
2090 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2091 			return RX_DROP_MONITOR;
2092 
2093 		/* TODO: add threshold stuff again */
2094 	} else {
2095 		return RX_DROP_MONITOR;
2096 	}
2097 
2098 	switch (rx->key->conf.cipher) {
2099 	case WLAN_CIPHER_SUITE_WEP40:
2100 	case WLAN_CIPHER_SUITE_WEP104:
2101 		result = ieee80211_crypto_wep_decrypt(rx);
2102 		break;
2103 	case WLAN_CIPHER_SUITE_TKIP:
2104 		result = ieee80211_crypto_tkip_decrypt(rx);
2105 		break;
2106 	case WLAN_CIPHER_SUITE_CCMP:
2107 		result = ieee80211_crypto_ccmp_decrypt(
2108 			rx, IEEE80211_CCMP_MIC_LEN);
2109 		break;
2110 	case WLAN_CIPHER_SUITE_CCMP_256:
2111 		result = ieee80211_crypto_ccmp_decrypt(
2112 			rx, IEEE80211_CCMP_256_MIC_LEN);
2113 		break;
2114 	case WLAN_CIPHER_SUITE_AES_CMAC:
2115 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2116 		break;
2117 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2118 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2119 		break;
2120 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2121 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2122 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2123 		break;
2124 	case WLAN_CIPHER_SUITE_GCMP:
2125 	case WLAN_CIPHER_SUITE_GCMP_256:
2126 		result = ieee80211_crypto_gcmp_decrypt(rx);
2127 		break;
2128 	default:
2129 		result = ieee80211_crypto_hw_decrypt(rx);
2130 	}
2131 
2132 	/* the hdr variable is invalid after the decrypt handlers */
2133 
2134 	/* either the frame has been decrypted or will be dropped */
2135 	status->flag |= RX_FLAG_DECRYPTED;
2136 
2137 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2138 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2139 					     skb->data, skb->len);
2140 
2141 	return result;
2142 }
2143 
2144 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2145 {
2146 	int i;
2147 
2148 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2149 		skb_queue_head_init(&cache->entries[i].skb_list);
2150 }
2151 
2152 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2153 {
2154 	int i;
2155 
2156 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2157 		__skb_queue_purge(&cache->entries[i].skb_list);
2158 }
2159 
2160 static inline struct ieee80211_fragment_entry *
2161 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2162 			 unsigned int frag, unsigned int seq, int rx_queue,
2163 			 struct sk_buff **skb)
2164 {
2165 	struct ieee80211_fragment_entry *entry;
2166 
2167 	entry = &cache->entries[cache->next++];
2168 	if (cache->next >= IEEE80211_FRAGMENT_MAX)
2169 		cache->next = 0;
2170 
2171 	__skb_queue_purge(&entry->skb_list);
2172 
2173 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2174 	*skb = NULL;
2175 	entry->first_frag_time = jiffies;
2176 	entry->seq = seq;
2177 	entry->rx_queue = rx_queue;
2178 	entry->last_frag = frag;
2179 	entry->check_sequential_pn = false;
2180 	entry->extra_len = 0;
2181 
2182 	return entry;
2183 }
2184 
2185 static inline struct ieee80211_fragment_entry *
2186 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2187 			  unsigned int frag, unsigned int seq,
2188 			  int rx_queue, struct ieee80211_hdr *hdr)
2189 {
2190 	struct ieee80211_fragment_entry *entry;
2191 	int i, idx;
2192 
2193 	idx = cache->next;
2194 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2195 		struct ieee80211_hdr *f_hdr;
2196 		struct sk_buff *f_skb;
2197 
2198 		idx--;
2199 		if (idx < 0)
2200 			idx = IEEE80211_FRAGMENT_MAX - 1;
2201 
2202 		entry = &cache->entries[idx];
2203 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2204 		    entry->rx_queue != rx_queue ||
2205 		    entry->last_frag + 1 != frag)
2206 			continue;
2207 
2208 		f_skb = __skb_peek(&entry->skb_list);
2209 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2210 
2211 		/*
2212 		 * Check ftype and addresses are equal, else check next fragment
2213 		 */
2214 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2215 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2216 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2217 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2218 			continue;
2219 
2220 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2221 			__skb_queue_purge(&entry->skb_list);
2222 			continue;
2223 		}
2224 		return entry;
2225 	}
2226 
2227 	return NULL;
2228 }
2229 
2230 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2231 {
2232 	return rx->key &&
2233 		(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2234 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2235 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2236 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2237 		ieee80211_has_protected(fc);
2238 }
2239 
2240 static ieee80211_rx_result debug_noinline
2241 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2242 {
2243 	struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2244 	struct ieee80211_hdr *hdr;
2245 	u16 sc;
2246 	__le16 fc;
2247 	unsigned int frag, seq;
2248 	struct ieee80211_fragment_entry *entry;
2249 	struct sk_buff *skb;
2250 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2251 
2252 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2253 	fc = hdr->frame_control;
2254 
2255 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2256 		return RX_CONTINUE;
2257 
2258 	sc = le16_to_cpu(hdr->seq_ctrl);
2259 	frag = sc & IEEE80211_SCTL_FRAG;
2260 
2261 	if (rx->sta)
2262 		cache = &rx->sta->frags;
2263 
2264 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2265 		goto out;
2266 
2267 	if (is_multicast_ether_addr(hdr->addr1))
2268 		return RX_DROP_MONITOR;
2269 
2270 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2271 
2272 	if (skb_linearize(rx->skb))
2273 		return RX_DROP_UNUSABLE;
2274 
2275 	/*
2276 	 *  skb_linearize() might change the skb->data and
2277 	 *  previously cached variables (in this case, hdr) need to
2278 	 *  be refreshed with the new data.
2279 	 */
2280 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2281 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2282 
2283 	if (frag == 0) {
2284 		/* This is the first fragment of a new frame. */
2285 		entry = ieee80211_reassemble_add(cache, frag, seq,
2286 						 rx->seqno_idx, &(rx->skb));
2287 		if (requires_sequential_pn(rx, fc)) {
2288 			int queue = rx->security_idx;
2289 
2290 			/* Store CCMP/GCMP PN so that we can verify that the
2291 			 * next fragment has a sequential PN value.
2292 			 */
2293 			entry->check_sequential_pn = true;
2294 			entry->is_protected = true;
2295 			entry->key_color = rx->key->color;
2296 			memcpy(entry->last_pn,
2297 			       rx->key->u.ccmp.rx_pn[queue],
2298 			       IEEE80211_CCMP_PN_LEN);
2299 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2300 					      u.ccmp.rx_pn) !=
2301 				     offsetof(struct ieee80211_key,
2302 					      u.gcmp.rx_pn));
2303 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2304 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2305 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2306 				     IEEE80211_GCMP_PN_LEN);
2307 		} else if (rx->key &&
2308 			   (ieee80211_has_protected(fc) ||
2309 			    (status->flag & RX_FLAG_DECRYPTED))) {
2310 			entry->is_protected = true;
2311 			entry->key_color = rx->key->color;
2312 		}
2313 		return RX_QUEUED;
2314 	}
2315 
2316 	/* This is a fragment for a frame that should already be pending in
2317 	 * fragment cache. Add this fragment to the end of the pending entry.
2318 	 */
2319 	entry = ieee80211_reassemble_find(cache, frag, seq,
2320 					  rx->seqno_idx, hdr);
2321 	if (!entry) {
2322 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2323 		return RX_DROP_MONITOR;
2324 	}
2325 
2326 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2327 	 *  MPDU PN values are not incrementing in steps of 1."
2328 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2329 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2330 	 */
2331 	if (entry->check_sequential_pn) {
2332 		int i;
2333 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2334 
2335 		if (!requires_sequential_pn(rx, fc))
2336 			return RX_DROP_UNUSABLE;
2337 
2338 		/* Prevent mixed key and fragment cache attacks */
2339 		if (entry->key_color != rx->key->color)
2340 			return RX_DROP_UNUSABLE;
2341 
2342 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2343 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2344 			pn[i]++;
2345 			if (pn[i])
2346 				break;
2347 		}
2348 
2349 		rpn = rx->ccm_gcm.pn;
2350 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2351 			return RX_DROP_UNUSABLE;
2352 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2353 	} else if (entry->is_protected &&
2354 		   (!rx->key ||
2355 		    (!ieee80211_has_protected(fc) &&
2356 		     !(status->flag & RX_FLAG_DECRYPTED)) ||
2357 		    rx->key->color != entry->key_color)) {
2358 		/* Drop this as a mixed key or fragment cache attack, even
2359 		 * if for TKIP Michael MIC should protect us, and WEP is a
2360 		 * lost cause anyway.
2361 		 */
2362 		return RX_DROP_UNUSABLE;
2363 	} else if (entry->is_protected && rx->key &&
2364 		   entry->key_color != rx->key->color &&
2365 		   (status->flag & RX_FLAG_DECRYPTED)) {
2366 		return RX_DROP_UNUSABLE;
2367 	}
2368 
2369 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2370 	__skb_queue_tail(&entry->skb_list, rx->skb);
2371 	entry->last_frag = frag;
2372 	entry->extra_len += rx->skb->len;
2373 	if (ieee80211_has_morefrags(fc)) {
2374 		rx->skb = NULL;
2375 		return RX_QUEUED;
2376 	}
2377 
2378 	rx->skb = __skb_dequeue(&entry->skb_list);
2379 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2380 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2381 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2382 					      GFP_ATOMIC))) {
2383 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2384 			__skb_queue_purge(&entry->skb_list);
2385 			return RX_DROP_UNUSABLE;
2386 		}
2387 	}
2388 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2389 		skb_put_data(rx->skb, skb->data, skb->len);
2390 		dev_kfree_skb(skb);
2391 	}
2392 
2393  out:
2394 	ieee80211_led_rx(rx->local);
2395 	if (rx->sta)
2396 		rx->sta->rx_stats.packets++;
2397 	return RX_CONTINUE;
2398 }
2399 
2400 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2401 {
2402 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2403 		return -EACCES;
2404 
2405 	return 0;
2406 }
2407 
2408 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2409 {
2410 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2411 	struct sk_buff *skb = rx->skb;
2412 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2413 
2414 	/*
2415 	 * Pass through unencrypted frames if the hardware has
2416 	 * decrypted them already.
2417 	 */
2418 	if (status->flag & RX_FLAG_DECRYPTED)
2419 		return 0;
2420 
2421 	/* check mesh EAPOL frames first */
2422 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2423 		     ieee80211_is_data(fc))) {
2424 		struct ieee80211s_hdr *mesh_hdr;
2425 		u16 hdr_len = ieee80211_hdrlen(fc);
2426 		u16 ethertype_offset;
2427 		__be16 ethertype;
2428 
2429 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2430 			goto drop_check;
2431 
2432 		/* make sure fixed part of mesh header is there, also checks skb len */
2433 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2434 			goto drop_check;
2435 
2436 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2437 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2438 				   sizeof(rfc1042_header);
2439 
2440 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2441 		    ethertype == rx->sdata->control_port_protocol)
2442 			return 0;
2443 	}
2444 
2445 drop_check:
2446 	/* Drop unencrypted frames if key is set. */
2447 	if (unlikely(!ieee80211_has_protected(fc) &&
2448 		     !ieee80211_is_any_nullfunc(fc) &&
2449 		     ieee80211_is_data(fc) && rx->key))
2450 		return -EACCES;
2451 
2452 	return 0;
2453 }
2454 
2455 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2456 {
2457 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2458 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2459 	__le16 fc = hdr->frame_control;
2460 
2461 	/*
2462 	 * Pass through unencrypted frames if the hardware has
2463 	 * decrypted them already.
2464 	 */
2465 	if (status->flag & RX_FLAG_DECRYPTED)
2466 		return 0;
2467 
2468 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2469 		if (unlikely(!ieee80211_has_protected(fc) &&
2470 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2471 			     rx->key)) {
2472 			if (ieee80211_is_deauth(fc) ||
2473 			    ieee80211_is_disassoc(fc))
2474 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2475 							     rx->skb->data,
2476 							     rx->skb->len);
2477 			return -EACCES;
2478 		}
2479 		/* BIP does not use Protected field, so need to check MMIE */
2480 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2481 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2482 			if (ieee80211_is_deauth(fc) ||
2483 			    ieee80211_is_disassoc(fc))
2484 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2485 							     rx->skb->data,
2486 							     rx->skb->len);
2487 			return -EACCES;
2488 		}
2489 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2490 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2491 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2492 						     rx->skb->data,
2493 						     rx->skb->len);
2494 			return -EACCES;
2495 		}
2496 		/*
2497 		 * When using MFP, Action frames are not allowed prior to
2498 		 * having configured keys.
2499 		 */
2500 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2501 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2502 			return -EACCES;
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static int
2509 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2510 {
2511 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2512 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2513 	bool check_port_control = false;
2514 	struct ethhdr *ehdr;
2515 	int ret;
2516 
2517 	*port_control = false;
2518 	if (ieee80211_has_a4(hdr->frame_control) &&
2519 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2520 		return -1;
2521 
2522 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2523 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2524 
2525 		if (!sdata->u.mgd.use_4addr)
2526 			return -1;
2527 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2528 			check_port_control = true;
2529 	}
2530 
2531 	if (is_multicast_ether_addr(hdr->addr1) &&
2532 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2533 		return -1;
2534 
2535 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2536 	if (ret < 0)
2537 		return ret;
2538 
2539 	ehdr = (struct ethhdr *) rx->skb->data;
2540 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2541 		*port_control = true;
2542 	else if (check_port_control)
2543 		return -1;
2544 
2545 	return 0;
2546 }
2547 
2548 /*
2549  * requires that rx->skb is a frame with ethernet header
2550  */
2551 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2552 {
2553 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2554 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2555 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2556 
2557 	/*
2558 	 * Allow EAPOL frames to us/the PAE group address regardless of
2559 	 * whether the frame was encrypted or not, and always disallow
2560 	 * all other destination addresses for them.
2561 	 */
2562 	if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2563 		return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2564 		       ether_addr_equal(ehdr->h_dest, pae_group_addr);
2565 
2566 	if (ieee80211_802_1x_port_control(rx) ||
2567 	    ieee80211_drop_unencrypted(rx, fc))
2568 		return false;
2569 
2570 	return true;
2571 }
2572 
2573 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2574 						 struct ieee80211_rx_data *rx)
2575 {
2576 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2577 	struct net_device *dev = sdata->dev;
2578 
2579 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2580 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2581 		      !sdata->control_port_no_preauth)) &&
2582 		     sdata->control_port_over_nl80211)) {
2583 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2584 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2585 
2586 		cfg80211_rx_control_port(dev, skb, noencrypt);
2587 		dev_kfree_skb(skb);
2588 	} else {
2589 		struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2590 
2591 		memset(skb->cb, 0, sizeof(skb->cb));
2592 
2593 		/*
2594 		 * 802.1X over 802.11 requires that the authenticator address
2595 		 * be used for EAPOL frames. However, 802.1X allows the use of
2596 		 * the PAE group address instead. If the interface is part of
2597 		 * a bridge and we pass the frame with the PAE group address,
2598 		 * then the bridge will forward it to the network (even if the
2599 		 * client was not associated yet), which isn't supposed to
2600 		 * happen.
2601 		 * To avoid that, rewrite the destination address to our own
2602 		 * address, so that the authenticator (e.g. hostapd) will see
2603 		 * the frame, but bridge won't forward it anywhere else. Note
2604 		 * that due to earlier filtering, the only other address can
2605 		 * be the PAE group address.
2606 		 */
2607 		if (unlikely(skb->protocol == sdata->control_port_protocol &&
2608 			     !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2609 			ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2610 
2611 		/* deliver to local stack */
2612 		if (rx->list)
2613 			list_add_tail(&skb->list, rx->list);
2614 		else
2615 			netif_receive_skb(skb);
2616 	}
2617 }
2618 
2619 /*
2620  * requires that rx->skb is a frame with ethernet header
2621  */
2622 static void
2623 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2624 {
2625 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2626 	struct net_device *dev = sdata->dev;
2627 	struct sk_buff *skb, *xmit_skb;
2628 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2629 	struct sta_info *dsta;
2630 
2631 	skb = rx->skb;
2632 	xmit_skb = NULL;
2633 
2634 	dev_sw_netstats_rx_add(dev, skb->len);
2635 
2636 	if (rx->sta) {
2637 		/* The seqno index has the same property as needed
2638 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2639 		 * for non-QoS-data frames. Here we know it's a data
2640 		 * frame, so count MSDUs.
2641 		 */
2642 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2643 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2644 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2645 	}
2646 
2647 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2648 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2649 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2650 	    ehdr->h_proto != rx->sdata->control_port_protocol &&
2651 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2652 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2653 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2654 			/*
2655 			 * send multicast frames both to higher layers in
2656 			 * local net stack and back to the wireless medium
2657 			 */
2658 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2659 			if (!xmit_skb)
2660 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2661 						    dev->name);
2662 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2663 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2664 			dsta = sta_info_get(sdata, ehdr->h_dest);
2665 			if (dsta) {
2666 				/*
2667 				 * The destination station is associated to
2668 				 * this AP (in this VLAN), so send the frame
2669 				 * directly to it and do not pass it to local
2670 				 * net stack.
2671 				 */
2672 				xmit_skb = skb;
2673 				skb = NULL;
2674 			}
2675 		}
2676 	}
2677 
2678 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2679 	if (skb) {
2680 		/* 'align' will only take the values 0 or 2 here since all
2681 		 * frames are required to be aligned to 2-byte boundaries
2682 		 * when being passed to mac80211; the code here works just
2683 		 * as well if that isn't true, but mac80211 assumes it can
2684 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2685 		 */
2686 		int align;
2687 
2688 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2689 		if (align) {
2690 			if (WARN_ON(skb_headroom(skb) < 3)) {
2691 				dev_kfree_skb(skb);
2692 				skb = NULL;
2693 			} else {
2694 				u8 *data = skb->data;
2695 				size_t len = skb_headlen(skb);
2696 				skb->data -= align;
2697 				memmove(skb->data, data, len);
2698 				skb_set_tail_pointer(skb, len);
2699 			}
2700 		}
2701 	}
2702 #endif
2703 
2704 	if (skb) {
2705 		skb->protocol = eth_type_trans(skb, dev);
2706 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2707 	}
2708 
2709 	if (xmit_skb) {
2710 		/*
2711 		 * Send to wireless media and increase priority by 256 to
2712 		 * keep the received priority instead of reclassifying
2713 		 * the frame (see cfg80211_classify8021d).
2714 		 */
2715 		xmit_skb->priority += 256;
2716 		xmit_skb->protocol = htons(ETH_P_802_3);
2717 		skb_reset_network_header(xmit_skb);
2718 		skb_reset_mac_header(xmit_skb);
2719 		dev_queue_xmit(xmit_skb);
2720 	}
2721 }
2722 
2723 static ieee80211_rx_result debug_noinline
2724 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2725 {
2726 	struct net_device *dev = rx->sdata->dev;
2727 	struct sk_buff *skb = rx->skb;
2728 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2729 	__le16 fc = hdr->frame_control;
2730 	struct sk_buff_head frame_list;
2731 	struct ethhdr ethhdr;
2732 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2733 
2734 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2735 		check_da = NULL;
2736 		check_sa = NULL;
2737 	} else switch (rx->sdata->vif.type) {
2738 		case NL80211_IFTYPE_AP:
2739 		case NL80211_IFTYPE_AP_VLAN:
2740 			check_da = NULL;
2741 			break;
2742 		case NL80211_IFTYPE_STATION:
2743 			if (!rx->sta ||
2744 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2745 				check_sa = NULL;
2746 			break;
2747 		case NL80211_IFTYPE_MESH_POINT:
2748 			check_sa = NULL;
2749 			break;
2750 		default:
2751 			break;
2752 	}
2753 
2754 	skb->dev = dev;
2755 	__skb_queue_head_init(&frame_list);
2756 
2757 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2758 					  rx->sdata->vif.addr,
2759 					  rx->sdata->vif.type,
2760 					  data_offset, true))
2761 		return RX_DROP_UNUSABLE;
2762 
2763 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2764 				 rx->sdata->vif.type,
2765 				 rx->local->hw.extra_tx_headroom,
2766 				 check_da, check_sa);
2767 
2768 	while (!skb_queue_empty(&frame_list)) {
2769 		rx->skb = __skb_dequeue(&frame_list);
2770 
2771 		if (!ieee80211_frame_allowed(rx, fc)) {
2772 			dev_kfree_skb(rx->skb);
2773 			continue;
2774 		}
2775 
2776 		ieee80211_deliver_skb(rx);
2777 	}
2778 
2779 	return RX_QUEUED;
2780 }
2781 
2782 static ieee80211_rx_result debug_noinline
2783 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2784 {
2785 	struct sk_buff *skb = rx->skb;
2786 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2787 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2788 	__le16 fc = hdr->frame_control;
2789 
2790 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2791 		return RX_CONTINUE;
2792 
2793 	if (unlikely(!ieee80211_is_data(fc)))
2794 		return RX_CONTINUE;
2795 
2796 	if (unlikely(!ieee80211_is_data_present(fc)))
2797 		return RX_DROP_MONITOR;
2798 
2799 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2800 		switch (rx->sdata->vif.type) {
2801 		case NL80211_IFTYPE_AP_VLAN:
2802 			if (!rx->sdata->u.vlan.sta)
2803 				return RX_DROP_UNUSABLE;
2804 			break;
2805 		case NL80211_IFTYPE_STATION:
2806 			if (!rx->sdata->u.mgd.use_4addr)
2807 				return RX_DROP_UNUSABLE;
2808 			break;
2809 		default:
2810 			return RX_DROP_UNUSABLE;
2811 		}
2812 	}
2813 
2814 	if (is_multicast_ether_addr(hdr->addr1))
2815 		return RX_DROP_UNUSABLE;
2816 
2817 	if (rx->key) {
2818 		/*
2819 		 * We should not receive A-MSDUs on pre-HT connections,
2820 		 * and HT connections cannot use old ciphers. Thus drop
2821 		 * them, as in those cases we couldn't even have SPP
2822 		 * A-MSDUs or such.
2823 		 */
2824 		switch (rx->key->conf.cipher) {
2825 		case WLAN_CIPHER_SUITE_WEP40:
2826 		case WLAN_CIPHER_SUITE_WEP104:
2827 		case WLAN_CIPHER_SUITE_TKIP:
2828 			return RX_DROP_UNUSABLE;
2829 		default:
2830 			break;
2831 		}
2832 	}
2833 
2834 	return __ieee80211_rx_h_amsdu(rx, 0);
2835 }
2836 
2837 #ifdef CONFIG_MAC80211_MESH
2838 static ieee80211_rx_result
2839 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2840 {
2841 	struct ieee80211_hdr *fwd_hdr, *hdr;
2842 	struct ieee80211_tx_info *info;
2843 	struct ieee80211s_hdr *mesh_hdr;
2844 	struct sk_buff *skb = rx->skb, *fwd_skb;
2845 	struct ieee80211_local *local = rx->local;
2846 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2847 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2848 	u16 ac, q, hdrlen;
2849 	int tailroom = 0;
2850 
2851 	hdr = (struct ieee80211_hdr *) skb->data;
2852 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2853 
2854 	/* make sure fixed part of mesh header is there, also checks skb len */
2855 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2856 		return RX_DROP_MONITOR;
2857 
2858 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2859 
2860 	/* make sure full mesh header is there, also checks skb len */
2861 	if (!pskb_may_pull(rx->skb,
2862 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2863 		return RX_DROP_MONITOR;
2864 
2865 	/* reload pointers */
2866 	hdr = (struct ieee80211_hdr *) skb->data;
2867 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2868 
2869 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2870 		return RX_DROP_MONITOR;
2871 
2872 	/* frame is in RMC, don't forward */
2873 	if (ieee80211_is_data(hdr->frame_control) &&
2874 	    is_multicast_ether_addr(hdr->addr1) &&
2875 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2876 		return RX_DROP_MONITOR;
2877 
2878 	if (!ieee80211_is_data(hdr->frame_control))
2879 		return RX_CONTINUE;
2880 
2881 	if (!mesh_hdr->ttl)
2882 		return RX_DROP_MONITOR;
2883 
2884 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2885 		struct mesh_path *mppath;
2886 		char *proxied_addr;
2887 		char *mpp_addr;
2888 
2889 		if (is_multicast_ether_addr(hdr->addr1)) {
2890 			mpp_addr = hdr->addr3;
2891 			proxied_addr = mesh_hdr->eaddr1;
2892 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2893 			    MESH_FLAGS_AE_A5_A6) {
2894 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2895 			mpp_addr = hdr->addr4;
2896 			proxied_addr = mesh_hdr->eaddr2;
2897 		} else {
2898 			return RX_DROP_MONITOR;
2899 		}
2900 
2901 		rcu_read_lock();
2902 		mppath = mpp_path_lookup(sdata, proxied_addr);
2903 		if (!mppath) {
2904 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2905 		} else {
2906 			spin_lock_bh(&mppath->state_lock);
2907 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2908 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2909 			mppath->exp_time = jiffies;
2910 			spin_unlock_bh(&mppath->state_lock);
2911 		}
2912 		rcu_read_unlock();
2913 	}
2914 
2915 	/* Frame has reached destination.  Don't forward */
2916 	if (!is_multicast_ether_addr(hdr->addr1) &&
2917 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2918 		return RX_CONTINUE;
2919 
2920 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2921 	q = sdata->vif.hw_queue[ac];
2922 	if (ieee80211_queue_stopped(&local->hw, q)) {
2923 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2924 		return RX_DROP_MONITOR;
2925 	}
2926 	skb_set_queue_mapping(skb, q);
2927 
2928 	if (!--mesh_hdr->ttl) {
2929 		if (!is_multicast_ether_addr(hdr->addr1))
2930 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2931 						     dropped_frames_ttl);
2932 		goto out;
2933 	}
2934 
2935 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2936 		goto out;
2937 
2938 	if (sdata->crypto_tx_tailroom_needed_cnt)
2939 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2940 
2941 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2942 				       sdata->encrypt_headroom,
2943 				  tailroom, GFP_ATOMIC);
2944 	if (!fwd_skb)
2945 		goto out;
2946 
2947 	fwd_skb->dev = sdata->dev;
2948 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2949 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2950 	info = IEEE80211_SKB_CB(fwd_skb);
2951 	memset(info, 0, sizeof(*info));
2952 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2953 	info->control.vif = &rx->sdata->vif;
2954 	info->control.jiffies = jiffies;
2955 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2956 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2957 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2958 		/* update power mode indication when forwarding */
2959 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2960 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2961 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2962 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2963 	} else {
2964 		/* unable to resolve next hop */
2965 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2966 				   fwd_hdr->addr3, 0,
2967 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2968 				   fwd_hdr->addr2);
2969 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2970 		kfree_skb(fwd_skb);
2971 		return RX_DROP_MONITOR;
2972 	}
2973 
2974 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2975 	ieee80211_add_pending_skb(local, fwd_skb);
2976  out:
2977 	if (is_multicast_ether_addr(hdr->addr1))
2978 		return RX_CONTINUE;
2979 	return RX_DROP_MONITOR;
2980 }
2981 #endif
2982 
2983 static ieee80211_rx_result debug_noinline
2984 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2985 {
2986 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2987 	struct ieee80211_local *local = rx->local;
2988 	struct net_device *dev = sdata->dev;
2989 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2990 	__le16 fc = hdr->frame_control;
2991 	bool port_control;
2992 	int err;
2993 
2994 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2995 		return RX_CONTINUE;
2996 
2997 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2998 		return RX_DROP_MONITOR;
2999 
3000 	/*
3001 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
3002 	 * also drop the frame to cooked monitor interfaces.
3003 	 */
3004 	if (ieee80211_has_a4(hdr->frame_control) &&
3005 	    sdata->vif.type == NL80211_IFTYPE_AP) {
3006 		if (rx->sta &&
3007 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3008 			cfg80211_rx_unexpected_4addr_frame(
3009 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3010 		return RX_DROP_MONITOR;
3011 	}
3012 
3013 	err = __ieee80211_data_to_8023(rx, &port_control);
3014 	if (unlikely(err))
3015 		return RX_DROP_UNUSABLE;
3016 
3017 	if (!ieee80211_frame_allowed(rx, fc))
3018 		return RX_DROP_MONITOR;
3019 
3020 	/* directly handle TDLS channel switch requests/responses */
3021 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3022 						cpu_to_be16(ETH_P_TDLS))) {
3023 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3024 
3025 		if (pskb_may_pull(rx->skb,
3026 				  offsetof(struct ieee80211_tdls_data, u)) &&
3027 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3028 		    tf->category == WLAN_CATEGORY_TDLS &&
3029 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3030 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3031 			rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3032 			__ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3033 			return RX_QUEUED;
3034 		}
3035 	}
3036 
3037 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3038 	    unlikely(port_control) && sdata->bss) {
3039 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3040 				     u.ap);
3041 		dev = sdata->dev;
3042 		rx->sdata = sdata;
3043 	}
3044 
3045 	rx->skb->dev = dev;
3046 
3047 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3048 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3049 	    !is_multicast_ether_addr(
3050 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
3051 	    (!local->scanning &&
3052 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3053 		mod_timer(&local->dynamic_ps_timer, jiffies +
3054 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3055 
3056 	ieee80211_deliver_skb(rx);
3057 
3058 	return RX_QUEUED;
3059 }
3060 
3061 static ieee80211_rx_result debug_noinline
3062 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3063 {
3064 	struct sk_buff *skb = rx->skb;
3065 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3066 	struct tid_ampdu_rx *tid_agg_rx;
3067 	u16 start_seq_num;
3068 	u16 tid;
3069 
3070 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
3071 		return RX_CONTINUE;
3072 
3073 	if (ieee80211_is_back_req(bar->frame_control)) {
3074 		struct {
3075 			__le16 control, start_seq_num;
3076 		} __packed bar_data;
3077 		struct ieee80211_event event = {
3078 			.type = BAR_RX_EVENT,
3079 		};
3080 
3081 		if (!rx->sta)
3082 			return RX_DROP_MONITOR;
3083 
3084 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3085 				  &bar_data, sizeof(bar_data)))
3086 			return RX_DROP_MONITOR;
3087 
3088 		tid = le16_to_cpu(bar_data.control) >> 12;
3089 
3090 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3091 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3092 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3093 					     WLAN_BACK_RECIPIENT,
3094 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3095 
3096 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3097 		if (!tid_agg_rx)
3098 			return RX_DROP_MONITOR;
3099 
3100 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3101 		event.u.ba.tid = tid;
3102 		event.u.ba.ssn = start_seq_num;
3103 		event.u.ba.sta = &rx->sta->sta;
3104 
3105 		/* reset session timer */
3106 		if (tid_agg_rx->timeout)
3107 			mod_timer(&tid_agg_rx->session_timer,
3108 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3109 
3110 		spin_lock(&tid_agg_rx->reorder_lock);
3111 		/* release stored frames up to start of BAR */
3112 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3113 						 start_seq_num, frames);
3114 		spin_unlock(&tid_agg_rx->reorder_lock);
3115 
3116 		drv_event_callback(rx->local, rx->sdata, &event);
3117 
3118 		kfree_skb(skb);
3119 		return RX_QUEUED;
3120 	}
3121 
3122 	/*
3123 	 * After this point, we only want management frames,
3124 	 * so we can drop all remaining control frames to
3125 	 * cooked monitor interfaces.
3126 	 */
3127 	return RX_DROP_MONITOR;
3128 }
3129 
3130 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3131 					   struct ieee80211_mgmt *mgmt,
3132 					   size_t len)
3133 {
3134 	struct ieee80211_local *local = sdata->local;
3135 	struct sk_buff *skb;
3136 	struct ieee80211_mgmt *resp;
3137 
3138 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3139 		/* Not to own unicast address */
3140 		return;
3141 	}
3142 
3143 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3144 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3145 		/* Not from the current AP or not associated yet. */
3146 		return;
3147 	}
3148 
3149 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3150 		/* Too short SA Query request frame */
3151 		return;
3152 	}
3153 
3154 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3155 	if (skb == NULL)
3156 		return;
3157 
3158 	skb_reserve(skb, local->hw.extra_tx_headroom);
3159 	resp = skb_put_zero(skb, 24);
3160 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3161 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3162 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3163 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3164 					  IEEE80211_STYPE_ACTION);
3165 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3166 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3167 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3168 	memcpy(resp->u.action.u.sa_query.trans_id,
3169 	       mgmt->u.action.u.sa_query.trans_id,
3170 	       WLAN_SA_QUERY_TR_ID_LEN);
3171 
3172 	ieee80211_tx_skb(sdata, skb);
3173 }
3174 
3175 static ieee80211_rx_result debug_noinline
3176 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3177 {
3178 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3179 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3180 
3181 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3182 		return RX_CONTINUE;
3183 
3184 	/*
3185 	 * From here on, look only at management frames.
3186 	 * Data and control frames are already handled,
3187 	 * and unknown (reserved) frames are useless.
3188 	 */
3189 	if (rx->skb->len < 24)
3190 		return RX_DROP_MONITOR;
3191 
3192 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3193 		return RX_DROP_MONITOR;
3194 
3195 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3196 	    ieee80211_is_beacon(mgmt->frame_control) &&
3197 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3198 		int sig = 0;
3199 
3200 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3201 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3202 			sig = status->signal;
3203 
3204 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3205 						rx->skb->data, rx->skb->len,
3206 						ieee80211_rx_status_to_khz(status),
3207 						sig);
3208 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3209 	}
3210 
3211 	if (ieee80211_drop_unencrypted_mgmt(rx))
3212 		return RX_DROP_UNUSABLE;
3213 
3214 	return RX_CONTINUE;
3215 }
3216 
3217 static bool
3218 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3219 {
3220 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3221 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3222 
3223 	/* TWT actions are only supported in AP for the moment */
3224 	if (sdata->vif.type != NL80211_IFTYPE_AP)
3225 		return false;
3226 
3227 	if (!rx->local->ops->add_twt_setup)
3228 		return false;
3229 
3230 	if (!sdata->vif.bss_conf.twt_responder)
3231 		return false;
3232 
3233 	if (!rx->sta)
3234 		return false;
3235 
3236 	switch (mgmt->u.action.u.s1g.action_code) {
3237 	case WLAN_S1G_TWT_SETUP: {
3238 		struct ieee80211_twt_setup *twt;
3239 
3240 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3241 				   1 + /* action code */
3242 				   sizeof(struct ieee80211_twt_setup) +
3243 				   2 /* TWT req_type agrt */)
3244 			break;
3245 
3246 		twt = (void *)mgmt->u.action.u.s1g.variable;
3247 		if (twt->element_id != WLAN_EID_S1G_TWT)
3248 			break;
3249 
3250 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3251 				   4 + /* action code + token + tlv */
3252 				   twt->length)
3253 			break;
3254 
3255 		return true; /* queue the frame */
3256 	}
3257 	case WLAN_S1G_TWT_TEARDOWN:
3258 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3259 			break;
3260 
3261 		return true; /* queue the frame */
3262 	default:
3263 		break;
3264 	}
3265 
3266 	return false;
3267 }
3268 
3269 static ieee80211_rx_result debug_noinline
3270 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3271 {
3272 	struct ieee80211_local *local = rx->local;
3273 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3274 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3275 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3276 	int len = rx->skb->len;
3277 
3278 	if (!ieee80211_is_action(mgmt->frame_control))
3279 		return RX_CONTINUE;
3280 
3281 	/* drop too small frames */
3282 	if (len < IEEE80211_MIN_ACTION_SIZE)
3283 		return RX_DROP_UNUSABLE;
3284 
3285 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3286 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3287 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3288 		return RX_DROP_UNUSABLE;
3289 
3290 	switch (mgmt->u.action.category) {
3291 	case WLAN_CATEGORY_HT:
3292 		/* reject HT action frames from stations not supporting HT */
3293 		if (!rx->sta->sta.ht_cap.ht_supported)
3294 			goto invalid;
3295 
3296 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3297 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3298 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3299 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3300 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3301 			break;
3302 
3303 		/* verify action & smps_control/chanwidth are present */
3304 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3305 			goto invalid;
3306 
3307 		switch (mgmt->u.action.u.ht_smps.action) {
3308 		case WLAN_HT_ACTION_SMPS: {
3309 			struct ieee80211_supported_band *sband;
3310 			enum ieee80211_smps_mode smps_mode;
3311 			struct sta_opmode_info sta_opmode = {};
3312 
3313 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3314 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3315 				goto handled;
3316 
3317 			/* convert to HT capability */
3318 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3319 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3320 				smps_mode = IEEE80211_SMPS_OFF;
3321 				break;
3322 			case WLAN_HT_SMPS_CONTROL_STATIC:
3323 				smps_mode = IEEE80211_SMPS_STATIC;
3324 				break;
3325 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3326 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3327 				break;
3328 			default:
3329 				goto invalid;
3330 			}
3331 
3332 			/* if no change do nothing */
3333 			if (rx->sta->sta.smps_mode == smps_mode)
3334 				goto handled;
3335 			rx->sta->sta.smps_mode = smps_mode;
3336 			sta_opmode.smps_mode =
3337 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3338 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3339 
3340 			sband = rx->local->hw.wiphy->bands[status->band];
3341 
3342 			rate_control_rate_update(local, sband, rx->sta,
3343 						 IEEE80211_RC_SMPS_CHANGED);
3344 			cfg80211_sta_opmode_change_notify(sdata->dev,
3345 							  rx->sta->addr,
3346 							  &sta_opmode,
3347 							  GFP_ATOMIC);
3348 			goto handled;
3349 		}
3350 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3351 			struct ieee80211_supported_band *sband;
3352 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3353 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3354 			struct sta_opmode_info sta_opmode = {};
3355 
3356 			/* If it doesn't support 40 MHz it can't change ... */
3357 			if (!(rx->sta->sta.ht_cap.cap &
3358 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3359 				goto handled;
3360 
3361 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3362 				max_bw = IEEE80211_STA_RX_BW_20;
3363 			else
3364 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3365 
3366 			/* set cur_max_bandwidth and recalc sta bw */
3367 			rx->sta->cur_max_bandwidth = max_bw;
3368 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3369 
3370 			if (rx->sta->sta.bandwidth == new_bw)
3371 				goto handled;
3372 
3373 			rx->sta->sta.bandwidth = new_bw;
3374 			sband = rx->local->hw.wiphy->bands[status->band];
3375 			sta_opmode.bw =
3376 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3377 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3378 
3379 			rate_control_rate_update(local, sband, rx->sta,
3380 						 IEEE80211_RC_BW_CHANGED);
3381 			cfg80211_sta_opmode_change_notify(sdata->dev,
3382 							  rx->sta->addr,
3383 							  &sta_opmode,
3384 							  GFP_ATOMIC);
3385 			goto handled;
3386 		}
3387 		default:
3388 			goto invalid;
3389 		}
3390 
3391 		break;
3392 	case WLAN_CATEGORY_PUBLIC:
3393 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3394 			goto invalid;
3395 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3396 			break;
3397 		if (!rx->sta)
3398 			break;
3399 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3400 			break;
3401 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3402 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3403 			break;
3404 		if (len < offsetof(struct ieee80211_mgmt,
3405 				   u.action.u.ext_chan_switch.variable))
3406 			goto invalid;
3407 		goto queue;
3408 	case WLAN_CATEGORY_VHT:
3409 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3410 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3411 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3412 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3413 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3414 			break;
3415 
3416 		/* verify action code is present */
3417 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3418 			goto invalid;
3419 
3420 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3421 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3422 			/* verify opmode is present */
3423 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3424 				goto invalid;
3425 			goto queue;
3426 		}
3427 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3428 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3429 				goto invalid;
3430 			goto queue;
3431 		}
3432 		default:
3433 			break;
3434 		}
3435 		break;
3436 	case WLAN_CATEGORY_BACK:
3437 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3438 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3439 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3440 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3441 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3442 			break;
3443 
3444 		/* verify action_code is present */
3445 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3446 			break;
3447 
3448 		switch (mgmt->u.action.u.addba_req.action_code) {
3449 		case WLAN_ACTION_ADDBA_REQ:
3450 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3451 				   sizeof(mgmt->u.action.u.addba_req)))
3452 				goto invalid;
3453 			break;
3454 		case WLAN_ACTION_ADDBA_RESP:
3455 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3456 				   sizeof(mgmt->u.action.u.addba_resp)))
3457 				goto invalid;
3458 			break;
3459 		case WLAN_ACTION_DELBA:
3460 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3461 				   sizeof(mgmt->u.action.u.delba)))
3462 				goto invalid;
3463 			break;
3464 		default:
3465 			goto invalid;
3466 		}
3467 
3468 		goto queue;
3469 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3470 		/* verify action_code is present */
3471 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3472 			break;
3473 
3474 		switch (mgmt->u.action.u.measurement.action_code) {
3475 		case WLAN_ACTION_SPCT_MSR_REQ:
3476 			if (status->band != NL80211_BAND_5GHZ)
3477 				break;
3478 
3479 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3480 				   sizeof(mgmt->u.action.u.measurement)))
3481 				break;
3482 
3483 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3484 				break;
3485 
3486 			ieee80211_process_measurement_req(sdata, mgmt, len);
3487 			goto handled;
3488 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3489 			u8 *bssid;
3490 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3491 				   sizeof(mgmt->u.action.u.chan_switch)))
3492 				break;
3493 
3494 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3495 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3496 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3497 				break;
3498 
3499 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3500 				bssid = sdata->u.mgd.bssid;
3501 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3502 				bssid = sdata->u.ibss.bssid;
3503 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3504 				bssid = mgmt->sa;
3505 			else
3506 				break;
3507 
3508 			if (!ether_addr_equal(mgmt->bssid, bssid))
3509 				break;
3510 
3511 			goto queue;
3512 			}
3513 		}
3514 		break;
3515 	case WLAN_CATEGORY_SELF_PROTECTED:
3516 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3517 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3518 			break;
3519 
3520 		switch (mgmt->u.action.u.self_prot.action_code) {
3521 		case WLAN_SP_MESH_PEERING_OPEN:
3522 		case WLAN_SP_MESH_PEERING_CLOSE:
3523 		case WLAN_SP_MESH_PEERING_CONFIRM:
3524 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3525 				goto invalid;
3526 			if (sdata->u.mesh.user_mpm)
3527 				/* userspace handles this frame */
3528 				break;
3529 			goto queue;
3530 		case WLAN_SP_MGK_INFORM:
3531 		case WLAN_SP_MGK_ACK:
3532 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3533 				goto invalid;
3534 			break;
3535 		}
3536 		break;
3537 	case WLAN_CATEGORY_MESH_ACTION:
3538 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3539 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3540 			break;
3541 
3542 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3543 			break;
3544 		if (mesh_action_is_path_sel(mgmt) &&
3545 		    !mesh_path_sel_is_hwmp(sdata))
3546 			break;
3547 		goto queue;
3548 	case WLAN_CATEGORY_S1G:
3549 		switch (mgmt->u.action.u.s1g.action_code) {
3550 		case WLAN_S1G_TWT_SETUP:
3551 		case WLAN_S1G_TWT_TEARDOWN:
3552 			if (ieee80211_process_rx_twt_action(rx))
3553 				goto queue;
3554 			break;
3555 		default:
3556 			break;
3557 		}
3558 		break;
3559 	}
3560 
3561 	return RX_CONTINUE;
3562 
3563  invalid:
3564 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3565 	/* will return in the next handlers */
3566 	return RX_CONTINUE;
3567 
3568  handled:
3569 	if (rx->sta)
3570 		rx->sta->rx_stats.packets++;
3571 	dev_kfree_skb(rx->skb);
3572 	return RX_QUEUED;
3573 
3574  queue:
3575 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3576 	return RX_QUEUED;
3577 }
3578 
3579 static ieee80211_rx_result debug_noinline
3580 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3581 {
3582 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3583 	int sig = 0;
3584 
3585 	/* skip known-bad action frames and return them in the next handler */
3586 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3587 		return RX_CONTINUE;
3588 
3589 	/*
3590 	 * Getting here means the kernel doesn't know how to handle
3591 	 * it, but maybe userspace does ... include returned frames
3592 	 * so userspace can register for those to know whether ones
3593 	 * it transmitted were processed or returned.
3594 	 */
3595 
3596 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3597 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3598 		sig = status->signal;
3599 
3600 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3601 				 ieee80211_rx_status_to_khz(status), sig,
3602 				 rx->skb->data, rx->skb->len, 0)) {
3603 		if (rx->sta)
3604 			rx->sta->rx_stats.packets++;
3605 		dev_kfree_skb(rx->skb);
3606 		return RX_QUEUED;
3607 	}
3608 
3609 	return RX_CONTINUE;
3610 }
3611 
3612 static ieee80211_rx_result debug_noinline
3613 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3614 {
3615 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3616 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3617 	int len = rx->skb->len;
3618 
3619 	if (!ieee80211_is_action(mgmt->frame_control))
3620 		return RX_CONTINUE;
3621 
3622 	switch (mgmt->u.action.category) {
3623 	case WLAN_CATEGORY_SA_QUERY:
3624 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3625 			   sizeof(mgmt->u.action.u.sa_query)))
3626 			break;
3627 
3628 		switch (mgmt->u.action.u.sa_query.action) {
3629 		case WLAN_ACTION_SA_QUERY_REQUEST:
3630 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3631 				break;
3632 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3633 			goto handled;
3634 		}
3635 		break;
3636 	}
3637 
3638 	return RX_CONTINUE;
3639 
3640  handled:
3641 	if (rx->sta)
3642 		rx->sta->rx_stats.packets++;
3643 	dev_kfree_skb(rx->skb);
3644 	return RX_QUEUED;
3645 }
3646 
3647 static ieee80211_rx_result debug_noinline
3648 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3649 {
3650 	struct ieee80211_local *local = rx->local;
3651 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3652 	struct sk_buff *nskb;
3653 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3654 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3655 
3656 	if (!ieee80211_is_action(mgmt->frame_control))
3657 		return RX_CONTINUE;
3658 
3659 	/*
3660 	 * For AP mode, hostapd is responsible for handling any action
3661 	 * frames that we didn't handle, including returning unknown
3662 	 * ones. For all other modes we will return them to the sender,
3663 	 * setting the 0x80 bit in the action category, as required by
3664 	 * 802.11-2012 9.24.4.
3665 	 * Newer versions of hostapd shall also use the management frame
3666 	 * registration mechanisms, but older ones still use cooked
3667 	 * monitor interfaces so push all frames there.
3668 	 */
3669 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3670 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3671 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3672 		return RX_DROP_MONITOR;
3673 
3674 	if (is_multicast_ether_addr(mgmt->da))
3675 		return RX_DROP_MONITOR;
3676 
3677 	/* do not return rejected action frames */
3678 	if (mgmt->u.action.category & 0x80)
3679 		return RX_DROP_UNUSABLE;
3680 
3681 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3682 			       GFP_ATOMIC);
3683 	if (nskb) {
3684 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3685 
3686 		nmgmt->u.action.category |= 0x80;
3687 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3688 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3689 
3690 		memset(nskb->cb, 0, sizeof(nskb->cb));
3691 
3692 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3693 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3694 
3695 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3696 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3697 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3698 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3699 				info->hw_queue =
3700 					local->hw.offchannel_tx_hw_queue;
3701 		}
3702 
3703 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3704 					    status->band);
3705 	}
3706 	dev_kfree_skb(rx->skb);
3707 	return RX_QUEUED;
3708 }
3709 
3710 static ieee80211_rx_result debug_noinline
3711 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3712 {
3713 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3714 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3715 
3716 	if (!ieee80211_is_ext(hdr->frame_control))
3717 		return RX_CONTINUE;
3718 
3719 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3720 		return RX_DROP_MONITOR;
3721 
3722 	/* for now only beacons are ext, so queue them */
3723 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3724 
3725 	return RX_QUEUED;
3726 }
3727 
3728 static ieee80211_rx_result debug_noinline
3729 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3730 {
3731 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3732 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3733 	__le16 stype;
3734 
3735 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3736 
3737 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3738 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3739 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3740 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3741 		return RX_DROP_MONITOR;
3742 
3743 	switch (stype) {
3744 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3745 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3746 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3747 		/* process for all: mesh, mlme, ibss */
3748 		break;
3749 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3750 		if (is_multicast_ether_addr(mgmt->da) &&
3751 		    !is_broadcast_ether_addr(mgmt->da))
3752 			return RX_DROP_MONITOR;
3753 
3754 		/* process only for station/IBSS */
3755 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3756 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3757 			return RX_DROP_MONITOR;
3758 		break;
3759 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3760 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3761 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3762 		if (is_multicast_ether_addr(mgmt->da) &&
3763 		    !is_broadcast_ether_addr(mgmt->da))
3764 			return RX_DROP_MONITOR;
3765 
3766 		/* process only for station */
3767 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3768 			return RX_DROP_MONITOR;
3769 		break;
3770 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3771 		/* process only for ibss and mesh */
3772 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3773 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3774 			return RX_DROP_MONITOR;
3775 		break;
3776 	default:
3777 		return RX_DROP_MONITOR;
3778 	}
3779 
3780 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3781 
3782 	return RX_QUEUED;
3783 }
3784 
3785 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3786 					struct ieee80211_rate *rate)
3787 {
3788 	struct ieee80211_sub_if_data *sdata;
3789 	struct ieee80211_local *local = rx->local;
3790 	struct sk_buff *skb = rx->skb, *skb2;
3791 	struct net_device *prev_dev = NULL;
3792 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3793 	int needed_headroom;
3794 
3795 	/*
3796 	 * If cooked monitor has been processed already, then
3797 	 * don't do it again. If not, set the flag.
3798 	 */
3799 	if (rx->flags & IEEE80211_RX_CMNTR)
3800 		goto out_free_skb;
3801 	rx->flags |= IEEE80211_RX_CMNTR;
3802 
3803 	/* If there are no cooked monitor interfaces, just free the SKB */
3804 	if (!local->cooked_mntrs)
3805 		goto out_free_skb;
3806 
3807 	/* vendor data is long removed here */
3808 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3809 	/* room for the radiotap header based on driver features */
3810 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3811 
3812 	if (skb_headroom(skb) < needed_headroom &&
3813 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3814 		goto out_free_skb;
3815 
3816 	/* prepend radiotap information */
3817 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3818 					 false);
3819 
3820 	skb_reset_mac_header(skb);
3821 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3822 	skb->pkt_type = PACKET_OTHERHOST;
3823 	skb->protocol = htons(ETH_P_802_2);
3824 
3825 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3826 		if (!ieee80211_sdata_running(sdata))
3827 			continue;
3828 
3829 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3830 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3831 			continue;
3832 
3833 		if (prev_dev) {
3834 			skb2 = skb_clone(skb, GFP_ATOMIC);
3835 			if (skb2) {
3836 				skb2->dev = prev_dev;
3837 				netif_receive_skb(skb2);
3838 			}
3839 		}
3840 
3841 		prev_dev = sdata->dev;
3842 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3843 	}
3844 
3845 	if (prev_dev) {
3846 		skb->dev = prev_dev;
3847 		netif_receive_skb(skb);
3848 		return;
3849 	}
3850 
3851  out_free_skb:
3852 	dev_kfree_skb(skb);
3853 }
3854 
3855 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3856 					 ieee80211_rx_result res)
3857 {
3858 	switch (res) {
3859 	case RX_DROP_MONITOR:
3860 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3861 		if (rx->sta)
3862 			rx->sta->rx_stats.dropped++;
3863 		fallthrough;
3864 	case RX_CONTINUE: {
3865 		struct ieee80211_rate *rate = NULL;
3866 		struct ieee80211_supported_band *sband;
3867 		struct ieee80211_rx_status *status;
3868 
3869 		status = IEEE80211_SKB_RXCB((rx->skb));
3870 
3871 		sband = rx->local->hw.wiphy->bands[status->band];
3872 		if (status->encoding == RX_ENC_LEGACY)
3873 			rate = &sband->bitrates[status->rate_idx];
3874 
3875 		ieee80211_rx_cooked_monitor(rx, rate);
3876 		break;
3877 		}
3878 	case RX_DROP_UNUSABLE:
3879 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3880 		if (rx->sta)
3881 			rx->sta->rx_stats.dropped++;
3882 		dev_kfree_skb(rx->skb);
3883 		break;
3884 	case RX_QUEUED:
3885 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3886 		break;
3887 	}
3888 }
3889 
3890 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3891 				  struct sk_buff_head *frames)
3892 {
3893 	ieee80211_rx_result res = RX_DROP_MONITOR;
3894 	struct sk_buff *skb;
3895 
3896 #define CALL_RXH(rxh)			\
3897 	do {				\
3898 		res = rxh(rx);		\
3899 		if (res != RX_CONTINUE)	\
3900 			goto rxh_next;  \
3901 	} while (0)
3902 
3903 	/* Lock here to avoid hitting all of the data used in the RX
3904 	 * path (e.g. key data, station data, ...) concurrently when
3905 	 * a frame is released from the reorder buffer due to timeout
3906 	 * from the timer, potentially concurrently with RX from the
3907 	 * driver.
3908 	 */
3909 	spin_lock_bh(&rx->local->rx_path_lock);
3910 
3911 	while ((skb = __skb_dequeue(frames))) {
3912 		/*
3913 		 * all the other fields are valid across frames
3914 		 * that belong to an aMPDU since they are on the
3915 		 * same TID from the same station
3916 		 */
3917 		rx->skb = skb;
3918 
3919 		CALL_RXH(ieee80211_rx_h_check_more_data);
3920 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3921 		CALL_RXH(ieee80211_rx_h_sta_process);
3922 		CALL_RXH(ieee80211_rx_h_decrypt);
3923 		CALL_RXH(ieee80211_rx_h_defragment);
3924 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3925 		/* must be after MMIC verify so header is counted in MPDU mic */
3926 #ifdef CONFIG_MAC80211_MESH
3927 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3928 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3929 #endif
3930 		CALL_RXH(ieee80211_rx_h_amsdu);
3931 		CALL_RXH(ieee80211_rx_h_data);
3932 
3933 		/* special treatment -- needs the queue */
3934 		res = ieee80211_rx_h_ctrl(rx, frames);
3935 		if (res != RX_CONTINUE)
3936 			goto rxh_next;
3937 
3938 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3939 		CALL_RXH(ieee80211_rx_h_action);
3940 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3941 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3942 		CALL_RXH(ieee80211_rx_h_action_return);
3943 		CALL_RXH(ieee80211_rx_h_ext);
3944 		CALL_RXH(ieee80211_rx_h_mgmt);
3945 
3946  rxh_next:
3947 		ieee80211_rx_handlers_result(rx, res);
3948 
3949 #undef CALL_RXH
3950 	}
3951 
3952 	spin_unlock_bh(&rx->local->rx_path_lock);
3953 }
3954 
3955 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3956 {
3957 	struct sk_buff_head reorder_release;
3958 	ieee80211_rx_result res = RX_DROP_MONITOR;
3959 
3960 	__skb_queue_head_init(&reorder_release);
3961 
3962 #define CALL_RXH(rxh)			\
3963 	do {				\
3964 		res = rxh(rx);		\
3965 		if (res != RX_CONTINUE)	\
3966 			goto rxh_next;  \
3967 	} while (0)
3968 
3969 	CALL_RXH(ieee80211_rx_h_check_dup);
3970 	CALL_RXH(ieee80211_rx_h_check);
3971 
3972 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3973 
3974 	ieee80211_rx_handlers(rx, &reorder_release);
3975 	return;
3976 
3977  rxh_next:
3978 	ieee80211_rx_handlers_result(rx, res);
3979 
3980 #undef CALL_RXH
3981 }
3982 
3983 /*
3984  * This function makes calls into the RX path, therefore
3985  * it has to be invoked under RCU read lock.
3986  */
3987 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3988 {
3989 	struct sk_buff_head frames;
3990 	struct ieee80211_rx_data rx = {
3991 		.sta = sta,
3992 		.sdata = sta->sdata,
3993 		.local = sta->local,
3994 		/* This is OK -- must be QoS data frame */
3995 		.security_idx = tid,
3996 		.seqno_idx = tid,
3997 	};
3998 	struct tid_ampdu_rx *tid_agg_rx;
3999 
4000 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4001 	if (!tid_agg_rx)
4002 		return;
4003 
4004 	__skb_queue_head_init(&frames);
4005 
4006 	spin_lock(&tid_agg_rx->reorder_lock);
4007 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4008 	spin_unlock(&tid_agg_rx->reorder_lock);
4009 
4010 	if (!skb_queue_empty(&frames)) {
4011 		struct ieee80211_event event = {
4012 			.type = BA_FRAME_TIMEOUT,
4013 			.u.ba.tid = tid,
4014 			.u.ba.sta = &sta->sta,
4015 		};
4016 		drv_event_callback(rx.local, rx.sdata, &event);
4017 	}
4018 
4019 	ieee80211_rx_handlers(&rx, &frames);
4020 }
4021 
4022 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4023 					  u16 ssn, u64 filtered,
4024 					  u16 received_mpdus)
4025 {
4026 	struct sta_info *sta;
4027 	struct tid_ampdu_rx *tid_agg_rx;
4028 	struct sk_buff_head frames;
4029 	struct ieee80211_rx_data rx = {
4030 		/* This is OK -- must be QoS data frame */
4031 		.security_idx = tid,
4032 		.seqno_idx = tid,
4033 	};
4034 	int i, diff;
4035 
4036 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4037 		return;
4038 
4039 	__skb_queue_head_init(&frames);
4040 
4041 	sta = container_of(pubsta, struct sta_info, sta);
4042 
4043 	rx.sta = sta;
4044 	rx.sdata = sta->sdata;
4045 	rx.local = sta->local;
4046 
4047 	rcu_read_lock();
4048 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4049 	if (!tid_agg_rx)
4050 		goto out;
4051 
4052 	spin_lock_bh(&tid_agg_rx->reorder_lock);
4053 
4054 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4055 		int release;
4056 
4057 		/* release all frames in the reorder buffer */
4058 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4059 			   IEEE80211_SN_MODULO;
4060 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4061 						 release, &frames);
4062 		/* update ssn to match received ssn */
4063 		tid_agg_rx->head_seq_num = ssn;
4064 	} else {
4065 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4066 						 &frames);
4067 	}
4068 
4069 	/* handle the case that received ssn is behind the mac ssn.
4070 	 * it can be tid_agg_rx->buf_size behind and still be valid */
4071 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4072 	if (diff >= tid_agg_rx->buf_size) {
4073 		tid_agg_rx->reorder_buf_filtered = 0;
4074 		goto release;
4075 	}
4076 	filtered = filtered >> diff;
4077 	ssn += diff;
4078 
4079 	/* update bitmap */
4080 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
4081 		int index = (ssn + i) % tid_agg_rx->buf_size;
4082 
4083 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4084 		if (filtered & BIT_ULL(i))
4085 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4086 	}
4087 
4088 	/* now process also frames that the filter marking released */
4089 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4090 
4091 release:
4092 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
4093 
4094 	ieee80211_rx_handlers(&rx, &frames);
4095 
4096  out:
4097 	rcu_read_unlock();
4098 }
4099 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4100 
4101 /* main receive path */
4102 
4103 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4104 {
4105 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4106 	struct sk_buff *skb = rx->skb;
4107 	struct ieee80211_hdr *hdr = (void *)skb->data;
4108 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4109 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4110 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4111 			 ieee80211_is_s1g_beacon(hdr->frame_control);
4112 
4113 	switch (sdata->vif.type) {
4114 	case NL80211_IFTYPE_STATION:
4115 		if (!bssid && !sdata->u.mgd.use_4addr)
4116 			return false;
4117 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4118 			return false;
4119 		if (multicast)
4120 			return true;
4121 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4122 	case NL80211_IFTYPE_ADHOC:
4123 		if (!bssid)
4124 			return false;
4125 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4126 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4127 		    !is_valid_ether_addr(hdr->addr2))
4128 			return false;
4129 		if (ieee80211_is_beacon(hdr->frame_control))
4130 			return true;
4131 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4132 			return false;
4133 		if (!multicast &&
4134 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4135 			return false;
4136 		if (!rx->sta) {
4137 			int rate_idx;
4138 			if (status->encoding != RX_ENC_LEGACY)
4139 				rate_idx = 0; /* TODO: HT/VHT rates */
4140 			else
4141 				rate_idx = status->rate_idx;
4142 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4143 						 BIT(rate_idx));
4144 		}
4145 		return true;
4146 	case NL80211_IFTYPE_OCB:
4147 		if (!bssid)
4148 			return false;
4149 		if (!ieee80211_is_data_present(hdr->frame_control))
4150 			return false;
4151 		if (!is_broadcast_ether_addr(bssid))
4152 			return false;
4153 		if (!multicast &&
4154 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4155 			return false;
4156 		if (!rx->sta) {
4157 			int rate_idx;
4158 			if (status->encoding != RX_ENC_LEGACY)
4159 				rate_idx = 0; /* TODO: HT rates */
4160 			else
4161 				rate_idx = status->rate_idx;
4162 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4163 						BIT(rate_idx));
4164 		}
4165 		return true;
4166 	case NL80211_IFTYPE_MESH_POINT:
4167 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4168 			return false;
4169 		if (multicast)
4170 			return true;
4171 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4172 	case NL80211_IFTYPE_AP_VLAN:
4173 	case NL80211_IFTYPE_AP:
4174 		if (!bssid)
4175 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4176 
4177 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4178 			/*
4179 			 * Accept public action frames even when the
4180 			 * BSSID doesn't match, this is used for P2P
4181 			 * and location updates. Note that mac80211
4182 			 * itself never looks at these frames.
4183 			 */
4184 			if (!multicast &&
4185 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4186 				return false;
4187 			if (ieee80211_is_public_action(hdr, skb->len))
4188 				return true;
4189 			return ieee80211_is_beacon(hdr->frame_control);
4190 		}
4191 
4192 		if (!ieee80211_has_tods(hdr->frame_control)) {
4193 			/* ignore data frames to TDLS-peers */
4194 			if (ieee80211_is_data(hdr->frame_control))
4195 				return false;
4196 			/* ignore action frames to TDLS-peers */
4197 			if (ieee80211_is_action(hdr->frame_control) &&
4198 			    !is_broadcast_ether_addr(bssid) &&
4199 			    !ether_addr_equal(bssid, hdr->addr1))
4200 				return false;
4201 		}
4202 
4203 		/*
4204 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4205 		 * the BSSID - we've checked that already but may have accepted
4206 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4207 		 *
4208 		 * It also says:
4209 		 *	The BSSID of the Data frame is determined as follows:
4210 		 *	a) If the STA is contained within an AP or is associated
4211 		 *	   with an AP, the BSSID is the address currently in use
4212 		 *	   by the STA contained in the AP.
4213 		 *
4214 		 * So we should not accept data frames with an address that's
4215 		 * multicast.
4216 		 *
4217 		 * Accepting it also opens a security problem because stations
4218 		 * could encrypt it with the GTK and inject traffic that way.
4219 		 */
4220 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4221 			return false;
4222 
4223 		return true;
4224 	case NL80211_IFTYPE_P2P_DEVICE:
4225 		return ieee80211_is_public_action(hdr, skb->len) ||
4226 		       ieee80211_is_probe_req(hdr->frame_control) ||
4227 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4228 		       ieee80211_is_beacon(hdr->frame_control);
4229 	case NL80211_IFTYPE_NAN:
4230 		/* Currently no frames on NAN interface are allowed */
4231 		return false;
4232 	default:
4233 		break;
4234 	}
4235 
4236 	WARN_ON_ONCE(1);
4237 	return false;
4238 }
4239 
4240 void ieee80211_check_fast_rx(struct sta_info *sta)
4241 {
4242 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4243 	struct ieee80211_local *local = sdata->local;
4244 	struct ieee80211_key *key;
4245 	struct ieee80211_fast_rx fastrx = {
4246 		.dev = sdata->dev,
4247 		.vif_type = sdata->vif.type,
4248 		.control_port_protocol = sdata->control_port_protocol,
4249 	}, *old, *new = NULL;
4250 	bool set_offload = false;
4251 	bool assign = false;
4252 	bool offload;
4253 
4254 	/* use sparse to check that we don't return without updating */
4255 	__acquire(check_fast_rx);
4256 
4257 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4258 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4259 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4260 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4261 
4262 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4263 
4264 	/* fast-rx doesn't do reordering */
4265 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4266 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4267 		goto clear;
4268 
4269 	switch (sdata->vif.type) {
4270 	case NL80211_IFTYPE_STATION:
4271 		if (sta->sta.tdls) {
4272 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4273 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4274 			fastrx.expected_ds_bits = 0;
4275 		} else {
4276 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4277 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4278 			fastrx.expected_ds_bits =
4279 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4280 		}
4281 
4282 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4283 			fastrx.expected_ds_bits |=
4284 				cpu_to_le16(IEEE80211_FCTL_TODS);
4285 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4286 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4287 		}
4288 
4289 		if (!sdata->u.mgd.powersave)
4290 			break;
4291 
4292 		/* software powersave is a huge mess, avoid all of it */
4293 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4294 			goto clear;
4295 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4296 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4297 			goto clear;
4298 		break;
4299 	case NL80211_IFTYPE_AP_VLAN:
4300 	case NL80211_IFTYPE_AP:
4301 		/* parallel-rx requires this, at least with calls to
4302 		 * ieee80211_sta_ps_transition()
4303 		 */
4304 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4305 			goto clear;
4306 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4307 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4308 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4309 
4310 		fastrx.internal_forward =
4311 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4312 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4313 			 !sdata->u.vlan.sta);
4314 
4315 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4316 		    sdata->u.vlan.sta) {
4317 			fastrx.expected_ds_bits |=
4318 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4319 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4320 			fastrx.internal_forward = 0;
4321 		}
4322 
4323 		break;
4324 	default:
4325 		goto clear;
4326 	}
4327 
4328 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4329 		goto clear;
4330 
4331 	rcu_read_lock();
4332 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4333 	if (!key)
4334 		key = rcu_dereference(sdata->default_unicast_key);
4335 	if (key) {
4336 		switch (key->conf.cipher) {
4337 		case WLAN_CIPHER_SUITE_TKIP:
4338 			/* we don't want to deal with MMIC in fast-rx */
4339 			goto clear_rcu;
4340 		case WLAN_CIPHER_SUITE_CCMP:
4341 		case WLAN_CIPHER_SUITE_CCMP_256:
4342 		case WLAN_CIPHER_SUITE_GCMP:
4343 		case WLAN_CIPHER_SUITE_GCMP_256:
4344 			break;
4345 		default:
4346 			/* We also don't want to deal with
4347 			 * WEP or cipher scheme.
4348 			 */
4349 			goto clear_rcu;
4350 		}
4351 
4352 		fastrx.key = true;
4353 		fastrx.icv_len = key->conf.icv_len;
4354 	}
4355 
4356 	assign = true;
4357  clear_rcu:
4358 	rcu_read_unlock();
4359  clear:
4360 	__release(check_fast_rx);
4361 
4362 	if (assign)
4363 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4364 
4365 	offload = assign &&
4366 		  (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4367 
4368 	if (offload)
4369 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4370 	else
4371 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4372 
4373 	if (set_offload)
4374 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4375 
4376 	spin_lock_bh(&sta->lock);
4377 	old = rcu_dereference_protected(sta->fast_rx, true);
4378 	rcu_assign_pointer(sta->fast_rx, new);
4379 	spin_unlock_bh(&sta->lock);
4380 
4381 	if (old)
4382 		kfree_rcu(old, rcu_head);
4383 }
4384 
4385 void ieee80211_clear_fast_rx(struct sta_info *sta)
4386 {
4387 	struct ieee80211_fast_rx *old;
4388 
4389 	spin_lock_bh(&sta->lock);
4390 	old = rcu_dereference_protected(sta->fast_rx, true);
4391 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4392 	spin_unlock_bh(&sta->lock);
4393 
4394 	if (old)
4395 		kfree_rcu(old, rcu_head);
4396 }
4397 
4398 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4399 {
4400 	struct ieee80211_local *local = sdata->local;
4401 	struct sta_info *sta;
4402 
4403 	lockdep_assert_held(&local->sta_mtx);
4404 
4405 	list_for_each_entry(sta, &local->sta_list, list) {
4406 		if (sdata != sta->sdata &&
4407 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4408 			continue;
4409 		ieee80211_check_fast_rx(sta);
4410 	}
4411 }
4412 
4413 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4414 {
4415 	struct ieee80211_local *local = sdata->local;
4416 
4417 	mutex_lock(&local->sta_mtx);
4418 	__ieee80211_check_fast_rx_iface(sdata);
4419 	mutex_unlock(&local->sta_mtx);
4420 }
4421 
4422 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4423 			      struct ieee80211_fast_rx *fast_rx,
4424 			      int orig_len)
4425 {
4426 	struct ieee80211_sta_rx_stats *stats;
4427 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4428 	struct sta_info *sta = rx->sta;
4429 	struct sk_buff *skb = rx->skb;
4430 	void *sa = skb->data + ETH_ALEN;
4431 	void *da = skb->data;
4432 
4433 	stats = &sta->rx_stats;
4434 	if (fast_rx->uses_rss)
4435 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4436 
4437 	/* statistics part of ieee80211_rx_h_sta_process() */
4438 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4439 		stats->last_signal = status->signal;
4440 		if (!fast_rx->uses_rss)
4441 			ewma_signal_add(&sta->rx_stats_avg.signal,
4442 					-status->signal);
4443 	}
4444 
4445 	if (status->chains) {
4446 		int i;
4447 
4448 		stats->chains = status->chains;
4449 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4450 			int signal = status->chain_signal[i];
4451 
4452 			if (!(status->chains & BIT(i)))
4453 				continue;
4454 
4455 			stats->chain_signal_last[i] = signal;
4456 			if (!fast_rx->uses_rss)
4457 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4458 						-signal);
4459 		}
4460 	}
4461 	/* end of statistics */
4462 
4463 	stats->last_rx = jiffies;
4464 	stats->last_rate = sta_stats_encode_rate(status);
4465 
4466 	stats->fragments++;
4467 	stats->packets++;
4468 
4469 	skb->dev = fast_rx->dev;
4470 
4471 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4472 
4473 	/* The seqno index has the same property as needed
4474 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4475 	 * for non-QoS-data frames. Here we know it's a data
4476 	 * frame, so count MSDUs.
4477 	 */
4478 	u64_stats_update_begin(&stats->syncp);
4479 	stats->msdu[rx->seqno_idx]++;
4480 	stats->bytes += orig_len;
4481 	u64_stats_update_end(&stats->syncp);
4482 
4483 	if (fast_rx->internal_forward) {
4484 		struct sk_buff *xmit_skb = NULL;
4485 		if (is_multicast_ether_addr(da)) {
4486 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4487 		} else if (!ether_addr_equal(da, sa) &&
4488 			   sta_info_get(rx->sdata, da)) {
4489 			xmit_skb = skb;
4490 			skb = NULL;
4491 		}
4492 
4493 		if (xmit_skb) {
4494 			/*
4495 			 * Send to wireless media and increase priority by 256
4496 			 * to keep the received priority instead of
4497 			 * reclassifying the frame (see cfg80211_classify8021d).
4498 			 */
4499 			xmit_skb->priority += 256;
4500 			xmit_skb->protocol = htons(ETH_P_802_3);
4501 			skb_reset_network_header(xmit_skb);
4502 			skb_reset_mac_header(xmit_skb);
4503 			dev_queue_xmit(xmit_skb);
4504 		}
4505 
4506 		if (!skb)
4507 			return;
4508 	}
4509 
4510 	/* deliver to local stack */
4511 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4512 	memset(skb->cb, 0, sizeof(skb->cb));
4513 	if (rx->list)
4514 		list_add_tail(&skb->list, rx->list);
4515 	else
4516 		netif_receive_skb(skb);
4517 
4518 }
4519 
4520 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4521 				     struct ieee80211_fast_rx *fast_rx)
4522 {
4523 	struct sk_buff *skb = rx->skb;
4524 	struct ieee80211_hdr *hdr = (void *)skb->data;
4525 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4526 	struct sta_info *sta = rx->sta;
4527 	int orig_len = skb->len;
4528 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4529 	int snap_offs = hdrlen;
4530 	struct {
4531 		u8 snap[sizeof(rfc1042_header)];
4532 		__be16 proto;
4533 	} *payload __aligned(2);
4534 	struct {
4535 		u8 da[ETH_ALEN];
4536 		u8 sa[ETH_ALEN];
4537 	} addrs __aligned(2);
4538 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4539 
4540 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4541 	 * to a common data structure; drivers can implement that per queue
4542 	 * but we don't have that information in mac80211
4543 	 */
4544 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4545 		return false;
4546 
4547 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4548 
4549 	/* If using encryption, we also need to have:
4550 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4551 	 *  - DECRYPTED: necessary for PN_VALIDATED
4552 	 */
4553 	if (fast_rx->key &&
4554 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4555 		return false;
4556 
4557 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4558 		return false;
4559 
4560 	if (unlikely(ieee80211_is_frag(hdr)))
4561 		return false;
4562 
4563 	/* Since our interface address cannot be multicast, this
4564 	 * implicitly also rejects multicast frames without the
4565 	 * explicit check.
4566 	 *
4567 	 * We shouldn't get any *data* frames not addressed to us
4568 	 * (AP mode will accept multicast *management* frames), but
4569 	 * punting here will make it go through the full checks in
4570 	 * ieee80211_accept_frame().
4571 	 */
4572 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4573 		return false;
4574 
4575 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4576 					      IEEE80211_FCTL_TODS)) !=
4577 	    fast_rx->expected_ds_bits)
4578 		return false;
4579 
4580 	/* assign the key to drop unencrypted frames (later)
4581 	 * and strip the IV/MIC if necessary
4582 	 */
4583 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4584 		/* GCMP header length is the same */
4585 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4586 	}
4587 
4588 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4589 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4590 			goto drop;
4591 
4592 		payload = (void *)(skb->data + snap_offs);
4593 
4594 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4595 			return false;
4596 
4597 		/* Don't handle these here since they require special code.
4598 		 * Accept AARP and IPX even though they should come with a
4599 		 * bridge-tunnel header - but if we get them this way then
4600 		 * there's little point in discarding them.
4601 		 */
4602 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4603 			     payload->proto == fast_rx->control_port_protocol))
4604 			return false;
4605 	}
4606 
4607 	/* after this point, don't punt to the slowpath! */
4608 
4609 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4610 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4611 		goto drop;
4612 
4613 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4614 		goto drop;
4615 
4616 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4617 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4618 		    RX_QUEUED)
4619 			goto drop;
4620 
4621 		return true;
4622 	}
4623 
4624 	/* do the header conversion - first grab the addresses */
4625 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4626 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4627 	/* remove the SNAP but leave the ethertype */
4628 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4629 	/* push the addresses in front */
4630 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4631 
4632 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4633 
4634 	return true;
4635  drop:
4636 	dev_kfree_skb(skb);
4637 	if (fast_rx->uses_rss)
4638 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4639 
4640 	stats->dropped++;
4641 	return true;
4642 }
4643 
4644 /*
4645  * This function returns whether or not the SKB
4646  * was destined for RX processing or not, which,
4647  * if consume is true, is equivalent to whether
4648  * or not the skb was consumed.
4649  */
4650 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4651 					    struct sk_buff *skb, bool consume)
4652 {
4653 	struct ieee80211_local *local = rx->local;
4654 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4655 
4656 	rx->skb = skb;
4657 
4658 	/* See if we can do fast-rx; if we have to copy we already lost,
4659 	 * so punt in that case. We should never have to deliver a data
4660 	 * frame to multiple interfaces anyway.
4661 	 *
4662 	 * We skip the ieee80211_accept_frame() call and do the necessary
4663 	 * checking inside ieee80211_invoke_fast_rx().
4664 	 */
4665 	if (consume && rx->sta) {
4666 		struct ieee80211_fast_rx *fast_rx;
4667 
4668 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4669 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4670 			return true;
4671 	}
4672 
4673 	if (!ieee80211_accept_frame(rx))
4674 		return false;
4675 
4676 	if (!consume) {
4677 		skb = skb_copy(skb, GFP_ATOMIC);
4678 		if (!skb) {
4679 			if (net_ratelimit())
4680 				wiphy_debug(local->hw.wiphy,
4681 					"failed to copy skb for %s\n",
4682 					sdata->name);
4683 			return true;
4684 		}
4685 
4686 		rx->skb = skb;
4687 	}
4688 
4689 	ieee80211_invoke_rx_handlers(rx);
4690 	return true;
4691 }
4692 
4693 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4694 				       struct ieee80211_sta *pubsta,
4695 				       struct sk_buff *skb,
4696 				       struct list_head *list)
4697 {
4698 	struct ieee80211_local *local = hw_to_local(hw);
4699 	struct ieee80211_fast_rx *fast_rx;
4700 	struct ieee80211_rx_data rx;
4701 
4702 	memset(&rx, 0, sizeof(rx));
4703 	rx.skb = skb;
4704 	rx.local = local;
4705 	rx.list = list;
4706 
4707 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4708 
4709 	/* drop frame if too short for header */
4710 	if (skb->len < sizeof(struct ethhdr))
4711 		goto drop;
4712 
4713 	if (!pubsta)
4714 		goto drop;
4715 
4716 	rx.sta = container_of(pubsta, struct sta_info, sta);
4717 	rx.sdata = rx.sta->sdata;
4718 
4719 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4720 	if (!fast_rx)
4721 		goto drop;
4722 
4723 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4724 	return;
4725 
4726 drop:
4727 	dev_kfree_skb(skb);
4728 }
4729 
4730 /*
4731  * This is the actual Rx frames handler. as it belongs to Rx path it must
4732  * be called with rcu_read_lock protection.
4733  */
4734 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4735 					 struct ieee80211_sta *pubsta,
4736 					 struct sk_buff *skb,
4737 					 struct list_head *list)
4738 {
4739 	struct ieee80211_local *local = hw_to_local(hw);
4740 	struct ieee80211_sub_if_data *sdata;
4741 	struct ieee80211_hdr *hdr;
4742 	__le16 fc;
4743 	struct ieee80211_rx_data rx;
4744 	struct ieee80211_sub_if_data *prev;
4745 	struct rhlist_head *tmp;
4746 	int err = 0;
4747 
4748 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4749 	memset(&rx, 0, sizeof(rx));
4750 	rx.skb = skb;
4751 	rx.local = local;
4752 	rx.list = list;
4753 
4754 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4755 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4756 
4757 	if (ieee80211_is_mgmt(fc)) {
4758 		/* drop frame if too short for header */
4759 		if (skb->len < ieee80211_hdrlen(fc))
4760 			err = -ENOBUFS;
4761 		else
4762 			err = skb_linearize(skb);
4763 	} else {
4764 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4765 	}
4766 
4767 	if (err) {
4768 		dev_kfree_skb(skb);
4769 		return;
4770 	}
4771 
4772 	hdr = (struct ieee80211_hdr *)skb->data;
4773 	ieee80211_parse_qos(&rx);
4774 	ieee80211_verify_alignment(&rx);
4775 
4776 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4777 		     ieee80211_is_beacon(hdr->frame_control) ||
4778 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4779 		ieee80211_scan_rx(local, skb);
4780 
4781 	if (ieee80211_is_data(fc)) {
4782 		struct sta_info *sta, *prev_sta;
4783 
4784 		if (pubsta) {
4785 			rx.sta = container_of(pubsta, struct sta_info, sta);
4786 			rx.sdata = rx.sta->sdata;
4787 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4788 				return;
4789 			goto out;
4790 		}
4791 
4792 		prev_sta = NULL;
4793 
4794 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4795 			if (!prev_sta) {
4796 				prev_sta = sta;
4797 				continue;
4798 			}
4799 
4800 			rx.sta = prev_sta;
4801 			rx.sdata = prev_sta->sdata;
4802 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4803 
4804 			prev_sta = sta;
4805 		}
4806 
4807 		if (prev_sta) {
4808 			rx.sta = prev_sta;
4809 			rx.sdata = prev_sta->sdata;
4810 
4811 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4812 				return;
4813 			goto out;
4814 		}
4815 	}
4816 
4817 	prev = NULL;
4818 
4819 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4820 		if (!ieee80211_sdata_running(sdata))
4821 			continue;
4822 
4823 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4824 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4825 			continue;
4826 
4827 		/*
4828 		 * frame is destined for this interface, but if it's
4829 		 * not also for the previous one we handle that after
4830 		 * the loop to avoid copying the SKB once too much
4831 		 */
4832 
4833 		if (!prev) {
4834 			prev = sdata;
4835 			continue;
4836 		}
4837 
4838 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4839 		rx.sdata = prev;
4840 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4841 
4842 		prev = sdata;
4843 	}
4844 
4845 	if (prev) {
4846 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4847 		rx.sdata = prev;
4848 
4849 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4850 			return;
4851 	}
4852 
4853  out:
4854 	dev_kfree_skb(skb);
4855 }
4856 
4857 /*
4858  * This is the receive path handler. It is called by a low level driver when an
4859  * 802.11 MPDU is received from the hardware.
4860  */
4861 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4862 		       struct sk_buff *skb, struct list_head *list)
4863 {
4864 	struct ieee80211_local *local = hw_to_local(hw);
4865 	struct ieee80211_rate *rate = NULL;
4866 	struct ieee80211_supported_band *sband;
4867 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4868 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
4869 
4870 	WARN_ON_ONCE(softirq_count() == 0);
4871 
4872 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4873 		goto drop;
4874 
4875 	sband = local->hw.wiphy->bands[status->band];
4876 	if (WARN_ON(!sband))
4877 		goto drop;
4878 
4879 	/*
4880 	 * If we're suspending, it is possible although not too likely
4881 	 * that we'd be receiving frames after having already partially
4882 	 * quiesced the stack. We can't process such frames then since
4883 	 * that might, for example, cause stations to be added or other
4884 	 * driver callbacks be invoked.
4885 	 */
4886 	if (unlikely(local->quiescing || local->suspended))
4887 		goto drop;
4888 
4889 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4890 	if (unlikely(local->in_reconfig))
4891 		goto drop;
4892 
4893 	/*
4894 	 * The same happens when we're not even started,
4895 	 * but that's worth a warning.
4896 	 */
4897 	if (WARN_ON(!local->started))
4898 		goto drop;
4899 
4900 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4901 		/*
4902 		 * Validate the rate, unless a PLCP error means that
4903 		 * we probably can't have a valid rate here anyway.
4904 		 */
4905 
4906 		switch (status->encoding) {
4907 		case RX_ENC_HT:
4908 			/*
4909 			 * rate_idx is MCS index, which can be [0-76]
4910 			 * as documented on:
4911 			 *
4912 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4913 			 *
4914 			 * Anything else would be some sort of driver or
4915 			 * hardware error. The driver should catch hardware
4916 			 * errors.
4917 			 */
4918 			if (WARN(status->rate_idx > 76,
4919 				 "Rate marked as an HT rate but passed "
4920 				 "status->rate_idx is not "
4921 				 "an MCS index [0-76]: %d (0x%02x)\n",
4922 				 status->rate_idx,
4923 				 status->rate_idx))
4924 				goto drop;
4925 			break;
4926 		case RX_ENC_VHT:
4927 			if (WARN_ONCE(status->rate_idx > 9 ||
4928 				      !status->nss ||
4929 				      status->nss > 8,
4930 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4931 				      status->rate_idx, status->nss))
4932 				goto drop;
4933 			break;
4934 		case RX_ENC_HE:
4935 			if (WARN_ONCE(status->rate_idx > 11 ||
4936 				      !status->nss ||
4937 				      status->nss > 8,
4938 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4939 				      status->rate_idx, status->nss))
4940 				goto drop;
4941 			break;
4942 		default:
4943 			WARN_ON_ONCE(1);
4944 			fallthrough;
4945 		case RX_ENC_LEGACY:
4946 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4947 				goto drop;
4948 			rate = &sband->bitrates[status->rate_idx];
4949 		}
4950 	}
4951 
4952 	status->rx_flags = 0;
4953 
4954 	kcov_remote_start_common(skb_get_kcov_handle(skb));
4955 
4956 	/*
4957 	 * Frames with failed FCS/PLCP checksum are not returned,
4958 	 * all other frames are returned without radiotap header
4959 	 * if it was previously present.
4960 	 * Also, frames with less than 16 bytes are dropped.
4961 	 */
4962 	if (!(status->flag & RX_FLAG_8023))
4963 		skb = ieee80211_rx_monitor(local, skb, rate);
4964 	if (skb) {
4965 		if ((status->flag & RX_FLAG_8023) ||
4966 			ieee80211_is_data_present(hdr->frame_control))
4967 			ieee80211_tpt_led_trig_rx(local, skb->len);
4968 
4969 		if (status->flag & RX_FLAG_8023)
4970 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4971 		else
4972 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4973 	}
4974 
4975 	kcov_remote_stop();
4976 	return;
4977  drop:
4978 	kfree_skb(skb);
4979 }
4980 EXPORT_SYMBOL(ieee80211_rx_list);
4981 
4982 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4983 		       struct sk_buff *skb, struct napi_struct *napi)
4984 {
4985 	struct sk_buff *tmp;
4986 	LIST_HEAD(list);
4987 
4988 
4989 	/*
4990 	 * key references and virtual interfaces are protected using RCU
4991 	 * and this requires that we are in a read-side RCU section during
4992 	 * receive processing
4993 	 */
4994 	rcu_read_lock();
4995 	ieee80211_rx_list(hw, pubsta, skb, &list);
4996 	rcu_read_unlock();
4997 
4998 	if (!napi) {
4999 		netif_receive_skb_list(&list);
5000 		return;
5001 	}
5002 
5003 	list_for_each_entry_safe(skb, tmp, &list, list) {
5004 		skb_list_del_init(skb);
5005 		napi_gro_receive(napi, skb);
5006 	}
5007 }
5008 EXPORT_SYMBOL(ieee80211_rx_napi);
5009 
5010 /* This is a version of the rx handler that can be called from hard irq
5011  * context. Post the skb on the queue and schedule the tasklet */
5012 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5013 {
5014 	struct ieee80211_local *local = hw_to_local(hw);
5015 
5016 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5017 
5018 	skb->pkt_type = IEEE80211_RX_MSG;
5019 	skb_queue_tail(&local->skb_queue, skb);
5020 	tasklet_schedule(&local->tasklet);
5021 }
5022 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5023