1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 struct sta_info *sta, 219 struct sk_buff *skb) 220 { 221 skb_queue_tail(&sdata->skb_queue, skb); 222 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 223 if (sta) 224 sta->rx_stats.packets++; 225 } 226 227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 228 struct sta_info *sta, 229 struct sk_buff *skb) 230 { 231 skb->protocol = 0; 232 __ieee80211_queue_skb_to_iface(sdata, sta, skb); 233 } 234 235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 236 struct sk_buff *skb, 237 int rtap_space) 238 { 239 struct { 240 struct ieee80211_hdr_3addr hdr; 241 u8 category; 242 u8 action_code; 243 } __packed __aligned(2) action; 244 245 if (!sdata) 246 return; 247 248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 249 250 if (skb->len < rtap_space + sizeof(action) + 251 VHT_MUMIMO_GROUPS_DATA_LEN) 252 return; 253 254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 255 return; 256 257 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 258 259 if (!ieee80211_is_action(action.hdr.frame_control)) 260 return; 261 262 if (action.category != WLAN_CATEGORY_VHT) 263 return; 264 265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 266 return; 267 268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 269 return; 270 271 skb = skb_copy(skb, GFP_ATOMIC); 272 if (!skb) 273 return; 274 275 ieee80211_queue_skb_to_iface(sdata, NULL, skb); 276 } 277 278 /* 279 * ieee80211_add_rx_radiotap_header - add radiotap header 280 * 281 * add a radiotap header containing all the fields which the hardware provided. 282 */ 283 static void 284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 285 struct sk_buff *skb, 286 struct ieee80211_rate *rate, 287 int rtap_len, bool has_fcs) 288 { 289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 290 struct ieee80211_radiotap_header *rthdr; 291 unsigned char *pos; 292 __le32 *it_present; 293 u32 it_present_val; 294 u16 rx_flags = 0; 295 u16 channel_flags = 0; 296 int mpdulen, chain; 297 unsigned long chains = status->chains; 298 struct ieee80211_vendor_radiotap rtap = {}; 299 struct ieee80211_radiotap_he he = {}; 300 struct ieee80211_radiotap_he_mu he_mu = {}; 301 struct ieee80211_radiotap_lsig lsig = {}; 302 303 if (status->flag & RX_FLAG_RADIOTAP_HE) { 304 he = *(struct ieee80211_radiotap_he *)skb->data; 305 skb_pull(skb, sizeof(he)); 306 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 307 } 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 311 skb_pull(skb, sizeof(he_mu)); 312 } 313 314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 316 skb_pull(skb, sizeof(lsig)); 317 } 318 319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 321 /* rtap.len and rtap.pad are undone immediately */ 322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 323 } 324 325 mpdulen = skb->len; 326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 327 mpdulen += FCS_LEN; 328 329 rthdr = skb_push(skb, rtap_len); 330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 331 it_present = &rthdr->it_present; 332 333 /* radiotap header, set always present flags */ 334 rthdr->it_len = cpu_to_le16(rtap_len); 335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 336 BIT(IEEE80211_RADIOTAP_CHANNEL) | 337 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 338 339 if (!status->chains) 340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 341 342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 343 it_present_val |= 344 BIT(IEEE80211_RADIOTAP_EXT) | 345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 350 } 351 352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 354 BIT(IEEE80211_RADIOTAP_EXT); 355 put_unaligned_le32(it_present_val, it_present); 356 it_present++; 357 it_present_val = rtap.present; 358 } 359 360 put_unaligned_le32(it_present_val, it_present); 361 362 pos = (void *)(it_present + 1); 363 364 /* the order of the following fields is important */ 365 366 /* IEEE80211_RADIOTAP_TSFT */ 367 if (ieee80211_have_rx_timestamp(status)) { 368 /* padding */ 369 while ((pos - (u8 *)rthdr) & 7) 370 *pos++ = 0; 371 put_unaligned_le64( 372 ieee80211_calculate_rx_timestamp(local, status, 373 mpdulen, 0), 374 pos); 375 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 376 pos += 8; 377 } 378 379 /* IEEE80211_RADIOTAP_FLAGS */ 380 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 381 *pos |= IEEE80211_RADIOTAP_F_FCS; 382 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 383 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 384 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 385 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 386 pos++; 387 388 /* IEEE80211_RADIOTAP_RATE */ 389 if (!rate || status->encoding != RX_ENC_LEGACY) { 390 /* 391 * Without rate information don't add it. If we have, 392 * MCS information is a separate field in radiotap, 393 * added below. The byte here is needed as padding 394 * for the channel though, so initialise it to 0. 395 */ 396 *pos = 0; 397 } else { 398 int shift = 0; 399 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 400 if (status->bw == RATE_INFO_BW_10) 401 shift = 1; 402 else if (status->bw == RATE_INFO_BW_5) 403 shift = 2; 404 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 405 } 406 pos++; 407 408 /* IEEE80211_RADIOTAP_CHANNEL */ 409 /* TODO: frequency offset in KHz */ 410 put_unaligned_le16(status->freq, pos); 411 pos += 2; 412 if (status->bw == RATE_INFO_BW_10) 413 channel_flags |= IEEE80211_CHAN_HALF; 414 else if (status->bw == RATE_INFO_BW_5) 415 channel_flags |= IEEE80211_CHAN_QUARTER; 416 417 if (status->band == NL80211_BAND_5GHZ || 418 status->band == NL80211_BAND_6GHZ) 419 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 420 else if (status->encoding != RX_ENC_LEGACY) 421 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 422 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 423 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 424 else if (rate) 425 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 426 else 427 channel_flags |= IEEE80211_CHAN_2GHZ; 428 put_unaligned_le16(channel_flags, pos); 429 pos += 2; 430 431 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 432 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 433 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 434 *pos = status->signal; 435 rthdr->it_present |= 436 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 437 pos++; 438 } 439 440 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 441 442 if (!status->chains) { 443 /* IEEE80211_RADIOTAP_ANTENNA */ 444 *pos = status->antenna; 445 pos++; 446 } 447 448 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 449 450 /* IEEE80211_RADIOTAP_RX_FLAGS */ 451 /* ensure 2 byte alignment for the 2 byte field as required */ 452 if ((pos - (u8 *)rthdr) & 1) 453 *pos++ = 0; 454 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 455 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 456 put_unaligned_le16(rx_flags, pos); 457 pos += 2; 458 459 if (status->encoding == RX_ENC_HT) { 460 unsigned int stbc; 461 462 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 463 *pos++ = local->hw.radiotap_mcs_details; 464 *pos = 0; 465 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 466 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 467 if (status->bw == RATE_INFO_BW_40) 468 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 469 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 470 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 471 if (status->enc_flags & RX_ENC_FLAG_LDPC) 472 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 473 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 474 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 475 pos++; 476 *pos++ = status->rate_idx; 477 } 478 479 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 480 u16 flags = 0; 481 482 /* ensure 4 byte alignment */ 483 while ((pos - (u8 *)rthdr) & 3) 484 pos++; 485 rthdr->it_present |= 486 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 487 put_unaligned_le32(status->ampdu_reference, pos); 488 pos += 4; 489 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 490 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 491 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 492 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 493 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 494 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 495 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 496 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 497 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 498 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 499 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 500 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 501 put_unaligned_le16(flags, pos); 502 pos += 2; 503 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 504 *pos++ = status->ampdu_delimiter_crc; 505 else 506 *pos++ = 0; 507 *pos++ = 0; 508 } 509 510 if (status->encoding == RX_ENC_VHT) { 511 u16 known = local->hw.radiotap_vht_details; 512 513 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 514 put_unaligned_le16(known, pos); 515 pos += 2; 516 /* flags */ 517 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 518 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 519 /* in VHT, STBC is binary */ 520 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 521 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 522 if (status->enc_flags & RX_ENC_FLAG_BF) 523 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 524 pos++; 525 /* bandwidth */ 526 switch (status->bw) { 527 case RATE_INFO_BW_80: 528 *pos++ = 4; 529 break; 530 case RATE_INFO_BW_160: 531 *pos++ = 11; 532 break; 533 case RATE_INFO_BW_40: 534 *pos++ = 1; 535 break; 536 default: 537 *pos++ = 0; 538 } 539 /* MCS/NSS */ 540 *pos = (status->rate_idx << 4) | status->nss; 541 pos += 4; 542 /* coding field */ 543 if (status->enc_flags & RX_ENC_FLAG_LDPC) 544 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 545 pos++; 546 /* group ID */ 547 pos++; 548 /* partial_aid */ 549 pos += 2; 550 } 551 552 if (local->hw.radiotap_timestamp.units_pos >= 0) { 553 u16 accuracy = 0; 554 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 555 556 rthdr->it_present |= 557 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 558 559 /* ensure 8 byte alignment */ 560 while ((pos - (u8 *)rthdr) & 7) 561 pos++; 562 563 put_unaligned_le64(status->device_timestamp, pos); 564 pos += sizeof(u64); 565 566 if (local->hw.radiotap_timestamp.accuracy >= 0) { 567 accuracy = local->hw.radiotap_timestamp.accuracy; 568 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 569 } 570 put_unaligned_le16(accuracy, pos); 571 pos += sizeof(u16); 572 573 *pos++ = local->hw.radiotap_timestamp.units_pos; 574 *pos++ = flags; 575 } 576 577 if (status->encoding == RX_ENC_HE && 578 status->flag & RX_FLAG_RADIOTAP_HE) { 579 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 580 581 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 582 he.data6 |= HE_PREP(DATA6_NSTS, 583 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 584 status->enc_flags)); 585 he.data3 |= HE_PREP(DATA3_STBC, 1); 586 } else { 587 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 588 } 589 590 #define CHECK_GI(s) \ 591 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 592 (int)NL80211_RATE_INFO_HE_GI_##s) 593 594 CHECK_GI(0_8); 595 CHECK_GI(1_6); 596 CHECK_GI(3_2); 597 598 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 599 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 600 he.data3 |= HE_PREP(DATA3_CODING, 601 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 602 603 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 604 605 switch (status->bw) { 606 case RATE_INFO_BW_20: 607 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 608 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 609 break; 610 case RATE_INFO_BW_40: 611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 613 break; 614 case RATE_INFO_BW_80: 615 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 617 break; 618 case RATE_INFO_BW_160: 619 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 621 break; 622 case RATE_INFO_BW_HE_RU: 623 #define CHECK_RU_ALLOC(s) \ 624 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 625 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 626 627 CHECK_RU_ALLOC(26); 628 CHECK_RU_ALLOC(52); 629 CHECK_RU_ALLOC(106); 630 CHECK_RU_ALLOC(242); 631 CHECK_RU_ALLOC(484); 632 CHECK_RU_ALLOC(996); 633 CHECK_RU_ALLOC(2x996); 634 635 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 636 status->he_ru + 4); 637 break; 638 default: 639 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 640 } 641 642 /* ensure 2 byte alignment */ 643 while ((pos - (u8 *)rthdr) & 1) 644 pos++; 645 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 646 memcpy(pos, &he, sizeof(he)); 647 pos += sizeof(he); 648 } 649 650 if (status->encoding == RX_ENC_HE && 651 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 652 /* ensure 2 byte alignment */ 653 while ((pos - (u8 *)rthdr) & 1) 654 pos++; 655 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 656 memcpy(pos, &he_mu, sizeof(he_mu)); 657 pos += sizeof(he_mu); 658 } 659 660 if (status->flag & RX_FLAG_NO_PSDU) { 661 rthdr->it_present |= 662 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 663 *pos++ = status->zero_length_psdu_type; 664 } 665 666 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 667 /* ensure 2 byte alignment */ 668 while ((pos - (u8 *)rthdr) & 1) 669 pos++; 670 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 671 memcpy(pos, &lsig, sizeof(lsig)); 672 pos += sizeof(lsig); 673 } 674 675 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 676 *pos++ = status->chain_signal[chain]; 677 *pos++ = chain; 678 } 679 680 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 681 /* ensure 2 byte alignment for the vendor field as required */ 682 if ((pos - (u8 *)rthdr) & 1) 683 *pos++ = 0; 684 *pos++ = rtap.oui[0]; 685 *pos++ = rtap.oui[1]; 686 *pos++ = rtap.oui[2]; 687 *pos++ = rtap.subns; 688 put_unaligned_le16(rtap.len, pos); 689 pos += 2; 690 /* align the actual payload as requested */ 691 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 692 *pos++ = 0; 693 /* data (and possible padding) already follows */ 694 } 695 } 696 697 static struct sk_buff * 698 ieee80211_make_monitor_skb(struct ieee80211_local *local, 699 struct sk_buff **origskb, 700 struct ieee80211_rate *rate, 701 int rtap_space, bool use_origskb) 702 { 703 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 704 int rt_hdrlen, needed_headroom; 705 struct sk_buff *skb; 706 707 /* room for the radiotap header based on driver features */ 708 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 709 needed_headroom = rt_hdrlen - rtap_space; 710 711 if (use_origskb) { 712 /* only need to expand headroom if necessary */ 713 skb = *origskb; 714 *origskb = NULL; 715 716 /* 717 * This shouldn't trigger often because most devices have an 718 * RX header they pull before we get here, and that should 719 * be big enough for our radiotap information. We should 720 * probably export the length to drivers so that we can have 721 * them allocate enough headroom to start with. 722 */ 723 if (skb_headroom(skb) < needed_headroom && 724 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 725 dev_kfree_skb(skb); 726 return NULL; 727 } 728 } else { 729 /* 730 * Need to make a copy and possibly remove radiotap header 731 * and FCS from the original. 732 */ 733 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 734 0, GFP_ATOMIC); 735 736 if (!skb) 737 return NULL; 738 } 739 740 /* prepend radiotap information */ 741 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 742 743 skb_reset_mac_header(skb); 744 skb->ip_summed = CHECKSUM_UNNECESSARY; 745 skb->pkt_type = PACKET_OTHERHOST; 746 skb->protocol = htons(ETH_P_802_2); 747 748 return skb; 749 } 750 751 /* 752 * This function copies a received frame to all monitor interfaces and 753 * returns a cleaned-up SKB that no longer includes the FCS nor the 754 * radiotap header the driver might have added. 755 */ 756 static struct sk_buff * 757 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 758 struct ieee80211_rate *rate) 759 { 760 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 761 struct ieee80211_sub_if_data *sdata; 762 struct sk_buff *monskb = NULL; 763 int present_fcs_len = 0; 764 unsigned int rtap_space = 0; 765 struct ieee80211_sub_if_data *monitor_sdata = 766 rcu_dereference(local->monitor_sdata); 767 bool only_monitor = false; 768 unsigned int min_head_len; 769 770 if (status->flag & RX_FLAG_RADIOTAP_HE) 771 rtap_space += sizeof(struct ieee80211_radiotap_he); 772 773 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 774 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 775 776 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 777 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 778 779 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 780 struct ieee80211_vendor_radiotap *rtap = 781 (void *)(origskb->data + rtap_space); 782 783 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 784 } 785 786 min_head_len = rtap_space; 787 788 /* 789 * First, we may need to make a copy of the skb because 790 * (1) we need to modify it for radiotap (if not present), and 791 * (2) the other RX handlers will modify the skb we got. 792 * 793 * We don't need to, of course, if we aren't going to return 794 * the SKB because it has a bad FCS/PLCP checksum. 795 */ 796 797 if (!(status->flag & RX_FLAG_NO_PSDU)) { 798 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 799 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 800 /* driver bug */ 801 WARN_ON(1); 802 dev_kfree_skb(origskb); 803 return NULL; 804 } 805 present_fcs_len = FCS_LEN; 806 } 807 808 /* also consider the hdr->frame_control */ 809 min_head_len += 2; 810 } 811 812 /* ensure that the expected data elements are in skb head */ 813 if (!pskb_may_pull(origskb, min_head_len)) { 814 dev_kfree_skb(origskb); 815 return NULL; 816 } 817 818 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 819 820 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 821 if (only_monitor) { 822 dev_kfree_skb(origskb); 823 return NULL; 824 } 825 826 return ieee80211_clean_skb(origskb, present_fcs_len, 827 rtap_space); 828 } 829 830 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 831 832 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 833 bool last_monitor = list_is_last(&sdata->u.mntr.list, 834 &local->mon_list); 835 836 if (!monskb) 837 monskb = ieee80211_make_monitor_skb(local, &origskb, 838 rate, rtap_space, 839 only_monitor && 840 last_monitor); 841 842 if (monskb) { 843 struct sk_buff *skb; 844 845 if (last_monitor) { 846 skb = monskb; 847 monskb = NULL; 848 } else { 849 skb = skb_clone(monskb, GFP_ATOMIC); 850 } 851 852 if (skb) { 853 skb->dev = sdata->dev; 854 dev_sw_netstats_rx_add(skb->dev, skb->len); 855 netif_receive_skb(skb); 856 } 857 } 858 859 if (last_monitor) 860 break; 861 } 862 863 /* this happens if last_monitor was erroneously false */ 864 dev_kfree_skb(monskb); 865 866 /* ditto */ 867 if (!origskb) 868 return NULL; 869 870 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 871 } 872 873 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 874 { 875 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 876 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 877 int tid, seqno_idx, security_idx; 878 879 /* does the frame have a qos control field? */ 880 if (ieee80211_is_data_qos(hdr->frame_control)) { 881 u8 *qc = ieee80211_get_qos_ctl(hdr); 882 /* frame has qos control */ 883 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 884 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 885 status->rx_flags |= IEEE80211_RX_AMSDU; 886 887 seqno_idx = tid; 888 security_idx = tid; 889 } else { 890 /* 891 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 892 * 893 * Sequence numbers for management frames, QoS data 894 * frames with a broadcast/multicast address in the 895 * Address 1 field, and all non-QoS data frames sent 896 * by QoS STAs are assigned using an additional single 897 * modulo-4096 counter, [...] 898 * 899 * We also use that counter for non-QoS STAs. 900 */ 901 seqno_idx = IEEE80211_NUM_TIDS; 902 security_idx = 0; 903 if (ieee80211_is_mgmt(hdr->frame_control)) 904 security_idx = IEEE80211_NUM_TIDS; 905 tid = 0; 906 } 907 908 rx->seqno_idx = seqno_idx; 909 rx->security_idx = security_idx; 910 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 911 * For now, set skb->priority to 0 for other cases. */ 912 rx->skb->priority = (tid > 7) ? 0 : tid; 913 } 914 915 /** 916 * DOC: Packet alignment 917 * 918 * Drivers always need to pass packets that are aligned to two-byte boundaries 919 * to the stack. 920 * 921 * Additionally, should, if possible, align the payload data in a way that 922 * guarantees that the contained IP header is aligned to a four-byte 923 * boundary. In the case of regular frames, this simply means aligning the 924 * payload to a four-byte boundary (because either the IP header is directly 925 * contained, or IV/RFC1042 headers that have a length divisible by four are 926 * in front of it). If the payload data is not properly aligned and the 927 * architecture doesn't support efficient unaligned operations, mac80211 928 * will align the data. 929 * 930 * With A-MSDU frames, however, the payload data address must yield two modulo 931 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 932 * push the IP header further back to a multiple of four again. Thankfully, the 933 * specs were sane enough this time around to require padding each A-MSDU 934 * subframe to a length that is a multiple of four. 935 * 936 * Padding like Atheros hardware adds which is between the 802.11 header and 937 * the payload is not supported, the driver is required to move the 802.11 938 * header to be directly in front of the payload in that case. 939 */ 940 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 941 { 942 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 943 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 944 #endif 945 } 946 947 948 /* rx handlers */ 949 950 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 951 { 952 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 953 954 if (is_multicast_ether_addr(hdr->addr1)) 955 return 0; 956 957 return ieee80211_is_robust_mgmt_frame(skb); 958 } 959 960 961 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 962 { 963 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 964 965 if (!is_multicast_ether_addr(hdr->addr1)) 966 return 0; 967 968 return ieee80211_is_robust_mgmt_frame(skb); 969 } 970 971 972 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 973 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 974 { 975 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 976 struct ieee80211_mmie *mmie; 977 struct ieee80211_mmie_16 *mmie16; 978 979 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 980 return -1; 981 982 if (!ieee80211_is_robust_mgmt_frame(skb) && 983 !ieee80211_is_beacon(hdr->frame_control)) 984 return -1; /* not a robust management frame */ 985 986 mmie = (struct ieee80211_mmie *) 987 (skb->data + skb->len - sizeof(*mmie)); 988 if (mmie->element_id == WLAN_EID_MMIE && 989 mmie->length == sizeof(*mmie) - 2) 990 return le16_to_cpu(mmie->key_id); 991 992 mmie16 = (struct ieee80211_mmie_16 *) 993 (skb->data + skb->len - sizeof(*mmie16)); 994 if (skb->len >= 24 + sizeof(*mmie16) && 995 mmie16->element_id == WLAN_EID_MMIE && 996 mmie16->length == sizeof(*mmie16) - 2) 997 return le16_to_cpu(mmie16->key_id); 998 999 return -1; 1000 } 1001 1002 static int ieee80211_get_keyid(struct sk_buff *skb, 1003 const struct ieee80211_cipher_scheme *cs) 1004 { 1005 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1006 __le16 fc; 1007 int hdrlen; 1008 int minlen; 1009 u8 key_idx_off; 1010 u8 key_idx_shift; 1011 u8 keyid; 1012 1013 fc = hdr->frame_control; 1014 hdrlen = ieee80211_hdrlen(fc); 1015 1016 if (cs) { 1017 minlen = hdrlen + cs->hdr_len; 1018 key_idx_off = hdrlen + cs->key_idx_off; 1019 key_idx_shift = cs->key_idx_shift; 1020 } else { 1021 /* WEP, TKIP, CCMP and GCMP */ 1022 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1023 key_idx_off = hdrlen + 3; 1024 key_idx_shift = 6; 1025 } 1026 1027 if (unlikely(skb->len < minlen)) 1028 return -EINVAL; 1029 1030 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1031 1032 if (cs) 1033 keyid &= cs->key_idx_mask; 1034 keyid >>= key_idx_shift; 1035 1036 /* cs could use more than the usual two bits for the keyid */ 1037 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1038 return -EINVAL; 1039 1040 return keyid; 1041 } 1042 1043 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1044 { 1045 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1046 char *dev_addr = rx->sdata->vif.addr; 1047 1048 if (ieee80211_is_data(hdr->frame_control)) { 1049 if (is_multicast_ether_addr(hdr->addr1)) { 1050 if (ieee80211_has_tods(hdr->frame_control) || 1051 !ieee80211_has_fromds(hdr->frame_control)) 1052 return RX_DROP_MONITOR; 1053 if (ether_addr_equal(hdr->addr3, dev_addr)) 1054 return RX_DROP_MONITOR; 1055 } else { 1056 if (!ieee80211_has_a4(hdr->frame_control)) 1057 return RX_DROP_MONITOR; 1058 if (ether_addr_equal(hdr->addr4, dev_addr)) 1059 return RX_DROP_MONITOR; 1060 } 1061 } 1062 1063 /* If there is not an established peer link and this is not a peer link 1064 * establisment frame, beacon or probe, drop the frame. 1065 */ 1066 1067 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1068 struct ieee80211_mgmt *mgmt; 1069 1070 if (!ieee80211_is_mgmt(hdr->frame_control)) 1071 return RX_DROP_MONITOR; 1072 1073 if (ieee80211_is_action(hdr->frame_control)) { 1074 u8 category; 1075 1076 /* make sure category field is present */ 1077 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1078 return RX_DROP_MONITOR; 1079 1080 mgmt = (struct ieee80211_mgmt *)hdr; 1081 category = mgmt->u.action.category; 1082 if (category != WLAN_CATEGORY_MESH_ACTION && 1083 category != WLAN_CATEGORY_SELF_PROTECTED) 1084 return RX_DROP_MONITOR; 1085 return RX_CONTINUE; 1086 } 1087 1088 if (ieee80211_is_probe_req(hdr->frame_control) || 1089 ieee80211_is_probe_resp(hdr->frame_control) || 1090 ieee80211_is_beacon(hdr->frame_control) || 1091 ieee80211_is_auth(hdr->frame_control)) 1092 return RX_CONTINUE; 1093 1094 return RX_DROP_MONITOR; 1095 } 1096 1097 return RX_CONTINUE; 1098 } 1099 1100 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1101 int index) 1102 { 1103 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1104 struct sk_buff *tail = skb_peek_tail(frames); 1105 struct ieee80211_rx_status *status; 1106 1107 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1108 return true; 1109 1110 if (!tail) 1111 return false; 1112 1113 status = IEEE80211_SKB_RXCB(tail); 1114 if (status->flag & RX_FLAG_AMSDU_MORE) 1115 return false; 1116 1117 return true; 1118 } 1119 1120 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1121 struct tid_ampdu_rx *tid_agg_rx, 1122 int index, 1123 struct sk_buff_head *frames) 1124 { 1125 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1126 struct sk_buff *skb; 1127 struct ieee80211_rx_status *status; 1128 1129 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1130 1131 if (skb_queue_empty(skb_list)) 1132 goto no_frame; 1133 1134 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1135 __skb_queue_purge(skb_list); 1136 goto no_frame; 1137 } 1138 1139 /* release frames from the reorder ring buffer */ 1140 tid_agg_rx->stored_mpdu_num--; 1141 while ((skb = __skb_dequeue(skb_list))) { 1142 status = IEEE80211_SKB_RXCB(skb); 1143 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1144 __skb_queue_tail(frames, skb); 1145 } 1146 1147 no_frame: 1148 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1149 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1150 } 1151 1152 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1153 struct tid_ampdu_rx *tid_agg_rx, 1154 u16 head_seq_num, 1155 struct sk_buff_head *frames) 1156 { 1157 int index; 1158 1159 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1160 1161 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1162 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1163 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1164 frames); 1165 } 1166 } 1167 1168 /* 1169 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1170 * the skb was added to the buffer longer than this time ago, the earlier 1171 * frames that have not yet been received are assumed to be lost and the skb 1172 * can be released for processing. This may also release other skb's from the 1173 * reorder buffer if there are no additional gaps between the frames. 1174 * 1175 * Callers must hold tid_agg_rx->reorder_lock. 1176 */ 1177 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1178 1179 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1180 struct tid_ampdu_rx *tid_agg_rx, 1181 struct sk_buff_head *frames) 1182 { 1183 int index, i, j; 1184 1185 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1186 1187 /* release the buffer until next missing frame */ 1188 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1190 tid_agg_rx->stored_mpdu_num) { 1191 /* 1192 * No buffers ready to be released, but check whether any 1193 * frames in the reorder buffer have timed out. 1194 */ 1195 int skipped = 1; 1196 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1197 j = (j + 1) % tid_agg_rx->buf_size) { 1198 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1199 skipped++; 1200 continue; 1201 } 1202 if (skipped && 1203 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1204 HT_RX_REORDER_BUF_TIMEOUT)) 1205 goto set_release_timer; 1206 1207 /* don't leave incomplete A-MSDUs around */ 1208 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1209 i = (i + 1) % tid_agg_rx->buf_size) 1210 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1211 1212 ht_dbg_ratelimited(sdata, 1213 "release an RX reorder frame due to timeout on earlier frames\n"); 1214 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1215 frames); 1216 1217 /* 1218 * Increment the head seq# also for the skipped slots. 1219 */ 1220 tid_agg_rx->head_seq_num = 1221 (tid_agg_rx->head_seq_num + 1222 skipped) & IEEE80211_SN_MASK; 1223 skipped = 0; 1224 } 1225 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1226 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1227 frames); 1228 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1229 } 1230 1231 if (tid_agg_rx->stored_mpdu_num) { 1232 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1233 1234 for (; j != (index - 1) % tid_agg_rx->buf_size; 1235 j = (j + 1) % tid_agg_rx->buf_size) { 1236 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1237 break; 1238 } 1239 1240 set_release_timer: 1241 1242 if (!tid_agg_rx->removed) 1243 mod_timer(&tid_agg_rx->reorder_timer, 1244 tid_agg_rx->reorder_time[j] + 1 + 1245 HT_RX_REORDER_BUF_TIMEOUT); 1246 } else { 1247 del_timer(&tid_agg_rx->reorder_timer); 1248 } 1249 } 1250 1251 /* 1252 * As this function belongs to the RX path it must be under 1253 * rcu_read_lock protection. It returns false if the frame 1254 * can be processed immediately, true if it was consumed. 1255 */ 1256 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1257 struct tid_ampdu_rx *tid_agg_rx, 1258 struct sk_buff *skb, 1259 struct sk_buff_head *frames) 1260 { 1261 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1262 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1263 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1264 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1265 u16 head_seq_num, buf_size; 1266 int index; 1267 bool ret = true; 1268 1269 spin_lock(&tid_agg_rx->reorder_lock); 1270 1271 /* 1272 * Offloaded BA sessions have no known starting sequence number so pick 1273 * one from first Rxed frame for this tid after BA was started. 1274 */ 1275 if (unlikely(tid_agg_rx->auto_seq)) { 1276 tid_agg_rx->auto_seq = false; 1277 tid_agg_rx->ssn = mpdu_seq_num; 1278 tid_agg_rx->head_seq_num = mpdu_seq_num; 1279 } 1280 1281 buf_size = tid_agg_rx->buf_size; 1282 head_seq_num = tid_agg_rx->head_seq_num; 1283 1284 /* 1285 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1286 * be reordered. 1287 */ 1288 if (unlikely(!tid_agg_rx->started)) { 1289 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1290 ret = false; 1291 goto out; 1292 } 1293 tid_agg_rx->started = true; 1294 } 1295 1296 /* frame with out of date sequence number */ 1297 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1298 dev_kfree_skb(skb); 1299 goto out; 1300 } 1301 1302 /* 1303 * If frame the sequence number exceeds our buffering window 1304 * size release some previous frames to make room for this one. 1305 */ 1306 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1307 head_seq_num = ieee80211_sn_inc( 1308 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1309 /* release stored frames up to new head to stack */ 1310 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1311 head_seq_num, frames); 1312 } 1313 1314 /* Now the new frame is always in the range of the reordering buffer */ 1315 1316 index = mpdu_seq_num % tid_agg_rx->buf_size; 1317 1318 /* check if we already stored this frame */ 1319 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1320 dev_kfree_skb(skb); 1321 goto out; 1322 } 1323 1324 /* 1325 * If the current MPDU is in the right order and nothing else 1326 * is stored we can process it directly, no need to buffer it. 1327 * If it is first but there's something stored, we may be able 1328 * to release frames after this one. 1329 */ 1330 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1331 tid_agg_rx->stored_mpdu_num == 0) { 1332 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1333 tid_agg_rx->head_seq_num = 1334 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1335 ret = false; 1336 goto out; 1337 } 1338 1339 /* put the frame in the reordering buffer */ 1340 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1341 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1342 tid_agg_rx->reorder_time[index] = jiffies; 1343 tid_agg_rx->stored_mpdu_num++; 1344 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1345 } 1346 1347 out: 1348 spin_unlock(&tid_agg_rx->reorder_lock); 1349 return ret; 1350 } 1351 1352 /* 1353 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1354 * true if the MPDU was buffered, false if it should be processed. 1355 */ 1356 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1357 struct sk_buff_head *frames) 1358 { 1359 struct sk_buff *skb = rx->skb; 1360 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1361 struct sta_info *sta = rx->sta; 1362 struct tid_ampdu_rx *tid_agg_rx; 1363 u16 sc; 1364 u8 tid, ack_policy; 1365 1366 if (!ieee80211_is_data_qos(hdr->frame_control) || 1367 is_multicast_ether_addr(hdr->addr1)) 1368 goto dont_reorder; 1369 1370 /* 1371 * filter the QoS data rx stream according to 1372 * STA/TID and check if this STA/TID is on aggregation 1373 */ 1374 1375 if (!sta) 1376 goto dont_reorder; 1377 1378 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1379 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1380 tid = ieee80211_get_tid(hdr); 1381 1382 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1383 if (!tid_agg_rx) { 1384 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1385 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1386 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1387 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1388 WLAN_BACK_RECIPIENT, 1389 WLAN_REASON_QSTA_REQUIRE_SETUP); 1390 goto dont_reorder; 1391 } 1392 1393 /* qos null data frames are excluded */ 1394 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1395 goto dont_reorder; 1396 1397 /* not part of a BA session */ 1398 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1399 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1400 goto dont_reorder; 1401 1402 /* new, potentially un-ordered, ampdu frame - process it */ 1403 1404 /* reset session timer */ 1405 if (tid_agg_rx->timeout) 1406 tid_agg_rx->last_rx = jiffies; 1407 1408 /* if this mpdu is fragmented - terminate rx aggregation session */ 1409 sc = le16_to_cpu(hdr->seq_ctrl); 1410 if (sc & IEEE80211_SCTL_FRAG) { 1411 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); 1412 return; 1413 } 1414 1415 /* 1416 * No locking needed -- we will only ever process one 1417 * RX packet at a time, and thus own tid_agg_rx. All 1418 * other code manipulating it needs to (and does) make 1419 * sure that we cannot get to it any more before doing 1420 * anything with it. 1421 */ 1422 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1423 frames)) 1424 return; 1425 1426 dont_reorder: 1427 __skb_queue_tail(frames, skb); 1428 } 1429 1430 static ieee80211_rx_result debug_noinline 1431 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1432 { 1433 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1434 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1435 1436 if (status->flag & RX_FLAG_DUP_VALIDATED) 1437 return RX_CONTINUE; 1438 1439 /* 1440 * Drop duplicate 802.11 retransmissions 1441 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1442 */ 1443 1444 if (rx->skb->len < 24) 1445 return RX_CONTINUE; 1446 1447 if (ieee80211_is_ctl(hdr->frame_control) || 1448 ieee80211_is_any_nullfunc(hdr->frame_control) || 1449 is_multicast_ether_addr(hdr->addr1)) 1450 return RX_CONTINUE; 1451 1452 if (!rx->sta) 1453 return RX_CONTINUE; 1454 1455 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1456 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1457 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1458 rx->sta->rx_stats.num_duplicates++; 1459 return RX_DROP_UNUSABLE; 1460 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1461 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1462 } 1463 1464 return RX_CONTINUE; 1465 } 1466 1467 static ieee80211_rx_result debug_noinline 1468 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1469 { 1470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1471 1472 /* Drop disallowed frame classes based on STA auth/assoc state; 1473 * IEEE 802.11, Chap 5.5. 1474 * 1475 * mac80211 filters only based on association state, i.e. it drops 1476 * Class 3 frames from not associated stations. hostapd sends 1477 * deauth/disassoc frames when needed. In addition, hostapd is 1478 * responsible for filtering on both auth and assoc states. 1479 */ 1480 1481 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1482 return ieee80211_rx_mesh_check(rx); 1483 1484 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1485 ieee80211_is_pspoll(hdr->frame_control)) && 1486 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1487 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1488 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1489 /* 1490 * accept port control frames from the AP even when it's not 1491 * yet marked ASSOC to prevent a race where we don't set the 1492 * assoc bit quickly enough before it sends the first frame 1493 */ 1494 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1495 ieee80211_is_data_present(hdr->frame_control)) { 1496 unsigned int hdrlen; 1497 __be16 ethertype; 1498 1499 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1500 1501 if (rx->skb->len < hdrlen + 8) 1502 return RX_DROP_MONITOR; 1503 1504 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1505 if (ethertype == rx->sdata->control_port_protocol) 1506 return RX_CONTINUE; 1507 } 1508 1509 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1510 cfg80211_rx_spurious_frame(rx->sdata->dev, 1511 hdr->addr2, 1512 GFP_ATOMIC)) 1513 return RX_DROP_UNUSABLE; 1514 1515 return RX_DROP_MONITOR; 1516 } 1517 1518 return RX_CONTINUE; 1519 } 1520 1521 1522 static ieee80211_rx_result debug_noinline 1523 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1524 { 1525 struct ieee80211_local *local; 1526 struct ieee80211_hdr *hdr; 1527 struct sk_buff *skb; 1528 1529 local = rx->local; 1530 skb = rx->skb; 1531 hdr = (struct ieee80211_hdr *) skb->data; 1532 1533 if (!local->pspolling) 1534 return RX_CONTINUE; 1535 1536 if (!ieee80211_has_fromds(hdr->frame_control)) 1537 /* this is not from AP */ 1538 return RX_CONTINUE; 1539 1540 if (!ieee80211_is_data(hdr->frame_control)) 1541 return RX_CONTINUE; 1542 1543 if (!ieee80211_has_moredata(hdr->frame_control)) { 1544 /* AP has no more frames buffered for us */ 1545 local->pspolling = false; 1546 return RX_CONTINUE; 1547 } 1548 1549 /* more data bit is set, let's request a new frame from the AP */ 1550 ieee80211_send_pspoll(local, rx->sdata); 1551 1552 return RX_CONTINUE; 1553 } 1554 1555 static void sta_ps_start(struct sta_info *sta) 1556 { 1557 struct ieee80211_sub_if_data *sdata = sta->sdata; 1558 struct ieee80211_local *local = sdata->local; 1559 struct ps_data *ps; 1560 int tid; 1561 1562 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1563 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1564 ps = &sdata->bss->ps; 1565 else 1566 return; 1567 1568 atomic_inc(&ps->num_sta_ps); 1569 set_sta_flag(sta, WLAN_STA_PS_STA); 1570 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1571 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1572 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1573 sta->sta.addr, sta->sta.aid); 1574 1575 ieee80211_clear_fast_xmit(sta); 1576 1577 if (!sta->sta.txq[0]) 1578 return; 1579 1580 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1581 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1582 1583 ieee80211_unschedule_txq(&local->hw, txq, false); 1584 1585 if (txq_has_queue(txq)) 1586 set_bit(tid, &sta->txq_buffered_tids); 1587 else 1588 clear_bit(tid, &sta->txq_buffered_tids); 1589 } 1590 } 1591 1592 static void sta_ps_end(struct sta_info *sta) 1593 { 1594 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1595 sta->sta.addr, sta->sta.aid); 1596 1597 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1598 /* 1599 * Clear the flag only if the other one is still set 1600 * so that the TX path won't start TX'ing new frames 1601 * directly ... In the case that the driver flag isn't 1602 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1603 */ 1604 clear_sta_flag(sta, WLAN_STA_PS_STA); 1605 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1606 sta->sta.addr, sta->sta.aid); 1607 return; 1608 } 1609 1610 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1611 clear_sta_flag(sta, WLAN_STA_PS_STA); 1612 ieee80211_sta_ps_deliver_wakeup(sta); 1613 } 1614 1615 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1616 { 1617 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1618 bool in_ps; 1619 1620 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1621 1622 /* Don't let the same PS state be set twice */ 1623 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1624 if ((start && in_ps) || (!start && !in_ps)) 1625 return -EINVAL; 1626 1627 if (start) 1628 sta_ps_start(sta); 1629 else 1630 sta_ps_end(sta); 1631 1632 return 0; 1633 } 1634 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1635 1636 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1637 { 1638 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1639 1640 if (test_sta_flag(sta, WLAN_STA_SP)) 1641 return; 1642 1643 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1644 ieee80211_sta_ps_deliver_poll_response(sta); 1645 else 1646 set_sta_flag(sta, WLAN_STA_PSPOLL); 1647 } 1648 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1649 1650 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1651 { 1652 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1653 int ac = ieee80211_ac_from_tid(tid); 1654 1655 /* 1656 * If this AC is not trigger-enabled do nothing unless the 1657 * driver is calling us after it already checked. 1658 * 1659 * NB: This could/should check a separate bitmap of trigger- 1660 * enabled queues, but for now we only implement uAPSD w/o 1661 * TSPEC changes to the ACs, so they're always the same. 1662 */ 1663 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1664 tid != IEEE80211_NUM_TIDS) 1665 return; 1666 1667 /* if we are in a service period, do nothing */ 1668 if (test_sta_flag(sta, WLAN_STA_SP)) 1669 return; 1670 1671 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1672 ieee80211_sta_ps_deliver_uapsd(sta); 1673 else 1674 set_sta_flag(sta, WLAN_STA_UAPSD); 1675 } 1676 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1677 1678 static ieee80211_rx_result debug_noinline 1679 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1680 { 1681 struct ieee80211_sub_if_data *sdata = rx->sdata; 1682 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1683 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1684 1685 if (!rx->sta) 1686 return RX_CONTINUE; 1687 1688 if (sdata->vif.type != NL80211_IFTYPE_AP && 1689 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1690 return RX_CONTINUE; 1691 1692 /* 1693 * The device handles station powersave, so don't do anything about 1694 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1695 * it to mac80211 since they're handled.) 1696 */ 1697 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1698 return RX_CONTINUE; 1699 1700 /* 1701 * Don't do anything if the station isn't already asleep. In 1702 * the uAPSD case, the station will probably be marked asleep, 1703 * in the PS-Poll case the station must be confused ... 1704 */ 1705 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1706 return RX_CONTINUE; 1707 1708 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1709 ieee80211_sta_pspoll(&rx->sta->sta); 1710 1711 /* Free PS Poll skb here instead of returning RX_DROP that would 1712 * count as an dropped frame. */ 1713 dev_kfree_skb(rx->skb); 1714 1715 return RX_QUEUED; 1716 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1717 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1718 ieee80211_has_pm(hdr->frame_control) && 1719 (ieee80211_is_data_qos(hdr->frame_control) || 1720 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1721 u8 tid = ieee80211_get_tid(hdr); 1722 1723 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1724 } 1725 1726 return RX_CONTINUE; 1727 } 1728 1729 static ieee80211_rx_result debug_noinline 1730 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1731 { 1732 struct sta_info *sta = rx->sta; 1733 struct sk_buff *skb = rx->skb; 1734 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1735 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1736 int i; 1737 1738 if (!sta) 1739 return RX_CONTINUE; 1740 1741 /* 1742 * Update last_rx only for IBSS packets which are for the current 1743 * BSSID and for station already AUTHORIZED to avoid keeping the 1744 * current IBSS network alive in cases where other STAs start 1745 * using different BSSID. This will also give the station another 1746 * chance to restart the authentication/authorization in case 1747 * something went wrong the first time. 1748 */ 1749 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1750 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1751 NL80211_IFTYPE_ADHOC); 1752 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1753 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1754 sta->rx_stats.last_rx = jiffies; 1755 if (ieee80211_is_data(hdr->frame_control) && 1756 !is_multicast_ether_addr(hdr->addr1)) 1757 sta->rx_stats.last_rate = 1758 sta_stats_encode_rate(status); 1759 } 1760 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1761 sta->rx_stats.last_rx = jiffies; 1762 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1763 !is_multicast_ether_addr(hdr->addr1)) { 1764 /* 1765 * Mesh beacons will update last_rx when if they are found to 1766 * match the current local configuration when processed. 1767 */ 1768 sta->rx_stats.last_rx = jiffies; 1769 if (ieee80211_is_data(hdr->frame_control)) 1770 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1771 } 1772 1773 sta->rx_stats.fragments++; 1774 1775 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1776 sta->rx_stats.bytes += rx->skb->len; 1777 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1778 1779 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1780 sta->rx_stats.last_signal = status->signal; 1781 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1782 } 1783 1784 if (status->chains) { 1785 sta->rx_stats.chains = status->chains; 1786 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1787 int signal = status->chain_signal[i]; 1788 1789 if (!(status->chains & BIT(i))) 1790 continue; 1791 1792 sta->rx_stats.chain_signal_last[i] = signal; 1793 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1794 -signal); 1795 } 1796 } 1797 1798 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1799 return RX_CONTINUE; 1800 1801 /* 1802 * Change STA power saving mode only at the end of a frame 1803 * exchange sequence, and only for a data or management 1804 * frame as specified in IEEE 802.11-2016 11.2.3.2 1805 */ 1806 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1807 !ieee80211_has_morefrags(hdr->frame_control) && 1808 !is_multicast_ether_addr(hdr->addr1) && 1809 (ieee80211_is_mgmt(hdr->frame_control) || 1810 ieee80211_is_data(hdr->frame_control)) && 1811 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1812 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1813 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1814 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1815 if (!ieee80211_has_pm(hdr->frame_control)) 1816 sta_ps_end(sta); 1817 } else { 1818 if (ieee80211_has_pm(hdr->frame_control)) 1819 sta_ps_start(sta); 1820 } 1821 } 1822 1823 /* mesh power save support */ 1824 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1825 ieee80211_mps_rx_h_sta_process(sta, hdr); 1826 1827 /* 1828 * Drop (qos-)data::nullfunc frames silently, since they 1829 * are used only to control station power saving mode. 1830 */ 1831 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1832 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1833 1834 /* 1835 * If we receive a 4-addr nullfunc frame from a STA 1836 * that was not moved to a 4-addr STA vlan yet send 1837 * the event to userspace and for older hostapd drop 1838 * the frame to the monitor interface. 1839 */ 1840 if (ieee80211_has_a4(hdr->frame_control) && 1841 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1842 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1843 !rx->sdata->u.vlan.sta))) { 1844 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1845 cfg80211_rx_unexpected_4addr_frame( 1846 rx->sdata->dev, sta->sta.addr, 1847 GFP_ATOMIC); 1848 return RX_DROP_MONITOR; 1849 } 1850 /* 1851 * Update counter and free packet here to avoid 1852 * counting this as a dropped packed. 1853 */ 1854 sta->rx_stats.packets++; 1855 dev_kfree_skb(rx->skb); 1856 return RX_QUEUED; 1857 } 1858 1859 return RX_CONTINUE; 1860 } /* ieee80211_rx_h_sta_process */ 1861 1862 static struct ieee80211_key * 1863 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1864 { 1865 struct ieee80211_key *key = NULL; 1866 struct ieee80211_sub_if_data *sdata = rx->sdata; 1867 int idx2; 1868 1869 /* Make sure key gets set if either BIGTK key index is set so that 1870 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1871 * Beacon frames and Beacon frames that claim to use another BIGTK key 1872 * index (i.e., a key that we do not have). 1873 */ 1874 1875 if (idx < 0) { 1876 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1877 idx2 = idx + 1; 1878 } else { 1879 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1880 idx2 = idx + 1; 1881 else 1882 idx2 = idx - 1; 1883 } 1884 1885 if (rx->sta) 1886 key = rcu_dereference(rx->sta->gtk[idx]); 1887 if (!key) 1888 key = rcu_dereference(sdata->keys[idx]); 1889 if (!key && rx->sta) 1890 key = rcu_dereference(rx->sta->gtk[idx2]); 1891 if (!key) 1892 key = rcu_dereference(sdata->keys[idx2]); 1893 1894 return key; 1895 } 1896 1897 static ieee80211_rx_result debug_noinline 1898 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1899 { 1900 struct sk_buff *skb = rx->skb; 1901 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1902 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1903 int keyidx; 1904 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1905 struct ieee80211_key *sta_ptk = NULL; 1906 struct ieee80211_key *ptk_idx = NULL; 1907 int mmie_keyidx = -1; 1908 __le16 fc; 1909 const struct ieee80211_cipher_scheme *cs = NULL; 1910 1911 if (ieee80211_is_ext(hdr->frame_control)) 1912 return RX_CONTINUE; 1913 1914 /* 1915 * Key selection 101 1916 * 1917 * There are five types of keys: 1918 * - GTK (group keys) 1919 * - IGTK (group keys for management frames) 1920 * - BIGTK (group keys for Beacon frames) 1921 * - PTK (pairwise keys) 1922 * - STK (station-to-station pairwise keys) 1923 * 1924 * When selecting a key, we have to distinguish between multicast 1925 * (including broadcast) and unicast frames, the latter can only 1926 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1927 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1928 * then unicast frames can also use key indices like GTKs. Hence, if we 1929 * don't have a PTK/STK we check the key index for a WEP key. 1930 * 1931 * Note that in a regular BSS, multicast frames are sent by the 1932 * AP only, associated stations unicast the frame to the AP first 1933 * which then multicasts it on their behalf. 1934 * 1935 * There is also a slight problem in IBSS mode: GTKs are negotiated 1936 * with each station, that is something we don't currently handle. 1937 * The spec seems to expect that one negotiates the same key with 1938 * every station but there's no such requirement; VLANs could be 1939 * possible. 1940 */ 1941 1942 /* start without a key */ 1943 rx->key = NULL; 1944 fc = hdr->frame_control; 1945 1946 if (rx->sta) { 1947 int keyid = rx->sta->ptk_idx; 1948 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1949 1950 if (ieee80211_has_protected(fc)) { 1951 cs = rx->sta->cipher_scheme; 1952 keyid = ieee80211_get_keyid(rx->skb, cs); 1953 1954 if (unlikely(keyid < 0)) 1955 return RX_DROP_UNUSABLE; 1956 1957 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1958 } 1959 } 1960 1961 if (!ieee80211_has_protected(fc)) 1962 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1963 1964 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1965 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1966 if ((status->flag & RX_FLAG_DECRYPTED) && 1967 (status->flag & RX_FLAG_IV_STRIPPED)) 1968 return RX_CONTINUE; 1969 /* Skip decryption if the frame is not protected. */ 1970 if (!ieee80211_has_protected(fc)) 1971 return RX_CONTINUE; 1972 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1973 /* Broadcast/multicast robust management frame / BIP */ 1974 if ((status->flag & RX_FLAG_DECRYPTED) && 1975 (status->flag & RX_FLAG_IV_STRIPPED)) 1976 return RX_CONTINUE; 1977 1978 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1979 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1980 NUM_DEFAULT_BEACON_KEYS) { 1981 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1982 skb->data, 1983 skb->len); 1984 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1985 } 1986 1987 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1988 if (!rx->key) 1989 return RX_CONTINUE; /* Beacon protection not in use */ 1990 } else if (mmie_keyidx >= 0) { 1991 /* Broadcast/multicast robust management frame / BIP */ 1992 if ((status->flag & RX_FLAG_DECRYPTED) && 1993 (status->flag & RX_FLAG_IV_STRIPPED)) 1994 return RX_CONTINUE; 1995 1996 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1997 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1998 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1999 if (rx->sta) { 2000 if (ieee80211_is_group_privacy_action(skb) && 2001 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2002 return RX_DROP_MONITOR; 2003 2004 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2005 } 2006 if (!rx->key) 2007 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2008 } else if (!ieee80211_has_protected(fc)) { 2009 /* 2010 * The frame was not protected, so skip decryption. However, we 2011 * need to set rx->key if there is a key that could have been 2012 * used so that the frame may be dropped if encryption would 2013 * have been expected. 2014 */ 2015 struct ieee80211_key *key = NULL; 2016 struct ieee80211_sub_if_data *sdata = rx->sdata; 2017 int i; 2018 2019 if (ieee80211_is_beacon(fc)) { 2020 key = ieee80211_rx_get_bigtk(rx, -1); 2021 } else if (ieee80211_is_mgmt(fc) && 2022 is_multicast_ether_addr(hdr->addr1)) { 2023 key = rcu_dereference(rx->sdata->default_mgmt_key); 2024 } else { 2025 if (rx->sta) { 2026 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2027 key = rcu_dereference(rx->sta->gtk[i]); 2028 if (key) 2029 break; 2030 } 2031 } 2032 if (!key) { 2033 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2034 key = rcu_dereference(sdata->keys[i]); 2035 if (key) 2036 break; 2037 } 2038 } 2039 } 2040 if (key) 2041 rx->key = key; 2042 return RX_CONTINUE; 2043 } else { 2044 /* 2045 * The device doesn't give us the IV so we won't be 2046 * able to look up the key. That's ok though, we 2047 * don't need to decrypt the frame, we just won't 2048 * be able to keep statistics accurate. 2049 * Except for key threshold notifications, should 2050 * we somehow allow the driver to tell us which key 2051 * the hardware used if this flag is set? 2052 */ 2053 if ((status->flag & RX_FLAG_DECRYPTED) && 2054 (status->flag & RX_FLAG_IV_STRIPPED)) 2055 return RX_CONTINUE; 2056 2057 keyidx = ieee80211_get_keyid(rx->skb, cs); 2058 2059 if (unlikely(keyidx < 0)) 2060 return RX_DROP_UNUSABLE; 2061 2062 /* check per-station GTK first, if multicast packet */ 2063 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2064 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2065 2066 /* if not found, try default key */ 2067 if (!rx->key) { 2068 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2069 2070 /* 2071 * RSNA-protected unicast frames should always be 2072 * sent with pairwise or station-to-station keys, 2073 * but for WEP we allow using a key index as well. 2074 */ 2075 if (rx->key && 2076 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2077 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2078 !is_multicast_ether_addr(hdr->addr1)) 2079 rx->key = NULL; 2080 } 2081 } 2082 2083 if (rx->key) { 2084 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2085 return RX_DROP_MONITOR; 2086 2087 /* TODO: add threshold stuff again */ 2088 } else { 2089 return RX_DROP_MONITOR; 2090 } 2091 2092 switch (rx->key->conf.cipher) { 2093 case WLAN_CIPHER_SUITE_WEP40: 2094 case WLAN_CIPHER_SUITE_WEP104: 2095 result = ieee80211_crypto_wep_decrypt(rx); 2096 break; 2097 case WLAN_CIPHER_SUITE_TKIP: 2098 result = ieee80211_crypto_tkip_decrypt(rx); 2099 break; 2100 case WLAN_CIPHER_SUITE_CCMP: 2101 result = ieee80211_crypto_ccmp_decrypt( 2102 rx, IEEE80211_CCMP_MIC_LEN); 2103 break; 2104 case WLAN_CIPHER_SUITE_CCMP_256: 2105 result = ieee80211_crypto_ccmp_decrypt( 2106 rx, IEEE80211_CCMP_256_MIC_LEN); 2107 break; 2108 case WLAN_CIPHER_SUITE_AES_CMAC: 2109 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2110 break; 2111 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2112 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2113 break; 2114 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2115 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2116 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2117 break; 2118 case WLAN_CIPHER_SUITE_GCMP: 2119 case WLAN_CIPHER_SUITE_GCMP_256: 2120 result = ieee80211_crypto_gcmp_decrypt(rx); 2121 break; 2122 default: 2123 result = ieee80211_crypto_hw_decrypt(rx); 2124 } 2125 2126 /* the hdr variable is invalid after the decrypt handlers */ 2127 2128 /* either the frame has been decrypted or will be dropped */ 2129 status->flag |= RX_FLAG_DECRYPTED; 2130 2131 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2132 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2133 skb->data, skb->len); 2134 2135 return result; 2136 } 2137 2138 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2139 { 2140 int i; 2141 2142 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2143 skb_queue_head_init(&cache->entries[i].skb_list); 2144 } 2145 2146 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2147 { 2148 int i; 2149 2150 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2151 __skb_queue_purge(&cache->entries[i].skb_list); 2152 } 2153 2154 static inline struct ieee80211_fragment_entry * 2155 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2156 unsigned int frag, unsigned int seq, int rx_queue, 2157 struct sk_buff **skb) 2158 { 2159 struct ieee80211_fragment_entry *entry; 2160 2161 entry = &cache->entries[cache->next++]; 2162 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2163 cache->next = 0; 2164 2165 __skb_queue_purge(&entry->skb_list); 2166 2167 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2168 *skb = NULL; 2169 entry->first_frag_time = jiffies; 2170 entry->seq = seq; 2171 entry->rx_queue = rx_queue; 2172 entry->last_frag = frag; 2173 entry->check_sequential_pn = false; 2174 entry->extra_len = 0; 2175 2176 return entry; 2177 } 2178 2179 static inline struct ieee80211_fragment_entry * 2180 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2181 unsigned int frag, unsigned int seq, 2182 int rx_queue, struct ieee80211_hdr *hdr) 2183 { 2184 struct ieee80211_fragment_entry *entry; 2185 int i, idx; 2186 2187 idx = cache->next; 2188 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2189 struct ieee80211_hdr *f_hdr; 2190 struct sk_buff *f_skb; 2191 2192 idx--; 2193 if (idx < 0) 2194 idx = IEEE80211_FRAGMENT_MAX - 1; 2195 2196 entry = &cache->entries[idx]; 2197 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2198 entry->rx_queue != rx_queue || 2199 entry->last_frag + 1 != frag) 2200 continue; 2201 2202 f_skb = __skb_peek(&entry->skb_list); 2203 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2204 2205 /* 2206 * Check ftype and addresses are equal, else check next fragment 2207 */ 2208 if (((hdr->frame_control ^ f_hdr->frame_control) & 2209 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2210 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2211 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2212 continue; 2213 2214 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2215 __skb_queue_purge(&entry->skb_list); 2216 continue; 2217 } 2218 return entry; 2219 } 2220 2221 return NULL; 2222 } 2223 2224 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2225 { 2226 return rx->key && 2227 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2228 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2229 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2230 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2231 ieee80211_has_protected(fc); 2232 } 2233 2234 static ieee80211_rx_result debug_noinline 2235 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2236 { 2237 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2238 struct ieee80211_hdr *hdr; 2239 u16 sc; 2240 __le16 fc; 2241 unsigned int frag, seq; 2242 struct ieee80211_fragment_entry *entry; 2243 struct sk_buff *skb; 2244 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2245 2246 hdr = (struct ieee80211_hdr *)rx->skb->data; 2247 fc = hdr->frame_control; 2248 2249 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2250 return RX_CONTINUE; 2251 2252 sc = le16_to_cpu(hdr->seq_ctrl); 2253 frag = sc & IEEE80211_SCTL_FRAG; 2254 2255 if (rx->sta) 2256 cache = &rx->sta->frags; 2257 2258 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2259 goto out; 2260 2261 if (is_multicast_ether_addr(hdr->addr1)) 2262 return RX_DROP_MONITOR; 2263 2264 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2265 2266 if (skb_linearize(rx->skb)) 2267 return RX_DROP_UNUSABLE; 2268 2269 /* 2270 * skb_linearize() might change the skb->data and 2271 * previously cached variables (in this case, hdr) need to 2272 * be refreshed with the new data. 2273 */ 2274 hdr = (struct ieee80211_hdr *)rx->skb->data; 2275 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2276 2277 if (frag == 0) { 2278 /* This is the first fragment of a new frame. */ 2279 entry = ieee80211_reassemble_add(cache, frag, seq, 2280 rx->seqno_idx, &(rx->skb)); 2281 if (requires_sequential_pn(rx, fc)) { 2282 int queue = rx->security_idx; 2283 2284 /* Store CCMP/GCMP PN so that we can verify that the 2285 * next fragment has a sequential PN value. 2286 */ 2287 entry->check_sequential_pn = true; 2288 entry->is_protected = true; 2289 entry->key_color = rx->key->color; 2290 memcpy(entry->last_pn, 2291 rx->key->u.ccmp.rx_pn[queue], 2292 IEEE80211_CCMP_PN_LEN); 2293 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2294 u.ccmp.rx_pn) != 2295 offsetof(struct ieee80211_key, 2296 u.gcmp.rx_pn)); 2297 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2298 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2299 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2300 IEEE80211_GCMP_PN_LEN); 2301 } else if (rx->key && 2302 (ieee80211_has_protected(fc) || 2303 (status->flag & RX_FLAG_DECRYPTED))) { 2304 entry->is_protected = true; 2305 entry->key_color = rx->key->color; 2306 } 2307 return RX_QUEUED; 2308 } 2309 2310 /* This is a fragment for a frame that should already be pending in 2311 * fragment cache. Add this fragment to the end of the pending entry. 2312 */ 2313 entry = ieee80211_reassemble_find(cache, frag, seq, 2314 rx->seqno_idx, hdr); 2315 if (!entry) { 2316 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2317 return RX_DROP_MONITOR; 2318 } 2319 2320 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2321 * MPDU PN values are not incrementing in steps of 1." 2322 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2323 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2324 */ 2325 if (entry->check_sequential_pn) { 2326 int i; 2327 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2328 2329 if (!requires_sequential_pn(rx, fc)) 2330 return RX_DROP_UNUSABLE; 2331 2332 /* Prevent mixed key and fragment cache attacks */ 2333 if (entry->key_color != rx->key->color) 2334 return RX_DROP_UNUSABLE; 2335 2336 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2337 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2338 pn[i]++; 2339 if (pn[i]) 2340 break; 2341 } 2342 2343 rpn = rx->ccm_gcm.pn; 2344 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2345 return RX_DROP_UNUSABLE; 2346 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2347 } else if (entry->is_protected && 2348 (!rx->key || 2349 (!ieee80211_has_protected(fc) && 2350 !(status->flag & RX_FLAG_DECRYPTED)) || 2351 rx->key->color != entry->key_color)) { 2352 /* Drop this as a mixed key or fragment cache attack, even 2353 * if for TKIP Michael MIC should protect us, and WEP is a 2354 * lost cause anyway. 2355 */ 2356 return RX_DROP_UNUSABLE; 2357 } else if (entry->is_protected && rx->key && 2358 entry->key_color != rx->key->color && 2359 (status->flag & RX_FLAG_DECRYPTED)) { 2360 return RX_DROP_UNUSABLE; 2361 } 2362 2363 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2364 __skb_queue_tail(&entry->skb_list, rx->skb); 2365 entry->last_frag = frag; 2366 entry->extra_len += rx->skb->len; 2367 if (ieee80211_has_morefrags(fc)) { 2368 rx->skb = NULL; 2369 return RX_QUEUED; 2370 } 2371 2372 rx->skb = __skb_dequeue(&entry->skb_list); 2373 if (skb_tailroom(rx->skb) < entry->extra_len) { 2374 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2375 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2376 GFP_ATOMIC))) { 2377 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2378 __skb_queue_purge(&entry->skb_list); 2379 return RX_DROP_UNUSABLE; 2380 } 2381 } 2382 while ((skb = __skb_dequeue(&entry->skb_list))) { 2383 skb_put_data(rx->skb, skb->data, skb->len); 2384 dev_kfree_skb(skb); 2385 } 2386 2387 out: 2388 ieee80211_led_rx(rx->local); 2389 if (rx->sta) 2390 rx->sta->rx_stats.packets++; 2391 return RX_CONTINUE; 2392 } 2393 2394 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2395 { 2396 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2397 return -EACCES; 2398 2399 return 0; 2400 } 2401 2402 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2403 { 2404 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2405 struct sk_buff *skb = rx->skb; 2406 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2407 2408 /* 2409 * Pass through unencrypted frames if the hardware has 2410 * decrypted them already. 2411 */ 2412 if (status->flag & RX_FLAG_DECRYPTED) 2413 return 0; 2414 2415 /* check mesh EAPOL frames first */ 2416 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2417 ieee80211_is_data(fc))) { 2418 struct ieee80211s_hdr *mesh_hdr; 2419 u16 hdr_len = ieee80211_hdrlen(fc); 2420 u16 ethertype_offset; 2421 __be16 ethertype; 2422 2423 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2424 goto drop_check; 2425 2426 /* make sure fixed part of mesh header is there, also checks skb len */ 2427 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2428 goto drop_check; 2429 2430 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2431 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2432 sizeof(rfc1042_header); 2433 2434 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2435 ethertype == rx->sdata->control_port_protocol) 2436 return 0; 2437 } 2438 2439 drop_check: 2440 /* Drop unencrypted frames if key is set. */ 2441 if (unlikely(!ieee80211_has_protected(fc) && 2442 !ieee80211_is_any_nullfunc(fc) && 2443 ieee80211_is_data(fc) && rx->key)) 2444 return -EACCES; 2445 2446 return 0; 2447 } 2448 2449 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2450 { 2451 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2452 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2453 __le16 fc = hdr->frame_control; 2454 2455 /* 2456 * Pass through unencrypted frames if the hardware has 2457 * decrypted them already. 2458 */ 2459 if (status->flag & RX_FLAG_DECRYPTED) 2460 return 0; 2461 2462 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2463 if (unlikely(!ieee80211_has_protected(fc) && 2464 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2465 rx->key)) { 2466 if (ieee80211_is_deauth(fc) || 2467 ieee80211_is_disassoc(fc)) 2468 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2469 rx->skb->data, 2470 rx->skb->len); 2471 return -EACCES; 2472 } 2473 /* BIP does not use Protected field, so need to check MMIE */ 2474 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2475 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2476 if (ieee80211_is_deauth(fc) || 2477 ieee80211_is_disassoc(fc)) 2478 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2479 rx->skb->data, 2480 rx->skb->len); 2481 return -EACCES; 2482 } 2483 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2484 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2485 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2486 rx->skb->data, 2487 rx->skb->len); 2488 return -EACCES; 2489 } 2490 /* 2491 * When using MFP, Action frames are not allowed prior to 2492 * having configured keys. 2493 */ 2494 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2495 ieee80211_is_robust_mgmt_frame(rx->skb))) 2496 return -EACCES; 2497 } 2498 2499 return 0; 2500 } 2501 2502 static int 2503 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2504 { 2505 struct ieee80211_sub_if_data *sdata = rx->sdata; 2506 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2507 bool check_port_control = false; 2508 struct ethhdr *ehdr; 2509 int ret; 2510 2511 *port_control = false; 2512 if (ieee80211_has_a4(hdr->frame_control) && 2513 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2514 return -1; 2515 2516 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2517 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2518 2519 if (!sdata->u.mgd.use_4addr) 2520 return -1; 2521 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2522 check_port_control = true; 2523 } 2524 2525 if (is_multicast_ether_addr(hdr->addr1) && 2526 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2527 return -1; 2528 2529 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2530 if (ret < 0) 2531 return ret; 2532 2533 ehdr = (struct ethhdr *) rx->skb->data; 2534 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2535 *port_control = true; 2536 else if (check_port_control) 2537 return -1; 2538 2539 return 0; 2540 } 2541 2542 /* 2543 * requires that rx->skb is a frame with ethernet header 2544 */ 2545 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2546 { 2547 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2548 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2549 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2550 2551 /* 2552 * Allow EAPOL frames to us/the PAE group address regardless of 2553 * whether the frame was encrypted or not, and always disallow 2554 * all other destination addresses for them. 2555 */ 2556 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2557 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2558 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2559 2560 if (ieee80211_802_1x_port_control(rx) || 2561 ieee80211_drop_unencrypted(rx, fc)) 2562 return false; 2563 2564 return true; 2565 } 2566 2567 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2568 struct ieee80211_rx_data *rx) 2569 { 2570 struct ieee80211_sub_if_data *sdata = rx->sdata; 2571 struct net_device *dev = sdata->dev; 2572 2573 if (unlikely((skb->protocol == sdata->control_port_protocol || 2574 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2575 !sdata->control_port_no_preauth)) && 2576 sdata->control_port_over_nl80211)) { 2577 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2578 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2579 2580 cfg80211_rx_control_port(dev, skb, noencrypt); 2581 dev_kfree_skb(skb); 2582 } else { 2583 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2584 2585 memset(skb->cb, 0, sizeof(skb->cb)); 2586 2587 /* 2588 * 802.1X over 802.11 requires that the authenticator address 2589 * be used for EAPOL frames. However, 802.1X allows the use of 2590 * the PAE group address instead. If the interface is part of 2591 * a bridge and we pass the frame with the PAE group address, 2592 * then the bridge will forward it to the network (even if the 2593 * client was not associated yet), which isn't supposed to 2594 * happen. 2595 * To avoid that, rewrite the destination address to our own 2596 * address, so that the authenticator (e.g. hostapd) will see 2597 * the frame, but bridge won't forward it anywhere else. Note 2598 * that due to earlier filtering, the only other address can 2599 * be the PAE group address. 2600 */ 2601 if (unlikely(skb->protocol == sdata->control_port_protocol && 2602 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2603 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2604 2605 /* deliver to local stack */ 2606 if (rx->list) 2607 list_add_tail(&skb->list, rx->list); 2608 else 2609 netif_receive_skb(skb); 2610 } 2611 } 2612 2613 /* 2614 * requires that rx->skb is a frame with ethernet header 2615 */ 2616 static void 2617 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2618 { 2619 struct ieee80211_sub_if_data *sdata = rx->sdata; 2620 struct net_device *dev = sdata->dev; 2621 struct sk_buff *skb, *xmit_skb; 2622 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2623 struct sta_info *dsta; 2624 2625 skb = rx->skb; 2626 xmit_skb = NULL; 2627 2628 dev_sw_netstats_rx_add(dev, skb->len); 2629 2630 if (rx->sta) { 2631 /* The seqno index has the same property as needed 2632 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2633 * for non-QoS-data frames. Here we know it's a data 2634 * frame, so count MSDUs. 2635 */ 2636 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2637 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2638 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2639 } 2640 2641 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2642 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2643 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2644 ehdr->h_proto != rx->sdata->control_port_protocol && 2645 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2646 if (is_multicast_ether_addr(ehdr->h_dest) && 2647 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2648 /* 2649 * send multicast frames both to higher layers in 2650 * local net stack and back to the wireless medium 2651 */ 2652 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2653 if (!xmit_skb) 2654 net_info_ratelimited("%s: failed to clone multicast frame\n", 2655 dev->name); 2656 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2657 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2658 dsta = sta_info_get(sdata, ehdr->h_dest); 2659 if (dsta) { 2660 /* 2661 * The destination station is associated to 2662 * this AP (in this VLAN), so send the frame 2663 * directly to it and do not pass it to local 2664 * net stack. 2665 */ 2666 xmit_skb = skb; 2667 skb = NULL; 2668 } 2669 } 2670 } 2671 2672 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2673 if (skb) { 2674 /* 'align' will only take the values 0 or 2 here since all 2675 * frames are required to be aligned to 2-byte boundaries 2676 * when being passed to mac80211; the code here works just 2677 * as well if that isn't true, but mac80211 assumes it can 2678 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2679 */ 2680 int align; 2681 2682 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2683 if (align) { 2684 if (WARN_ON(skb_headroom(skb) < 3)) { 2685 dev_kfree_skb(skb); 2686 skb = NULL; 2687 } else { 2688 u8 *data = skb->data; 2689 size_t len = skb_headlen(skb); 2690 skb->data -= align; 2691 memmove(skb->data, data, len); 2692 skb_set_tail_pointer(skb, len); 2693 } 2694 } 2695 } 2696 #endif 2697 2698 if (skb) { 2699 skb->protocol = eth_type_trans(skb, dev); 2700 ieee80211_deliver_skb_to_local_stack(skb, rx); 2701 } 2702 2703 if (xmit_skb) { 2704 /* 2705 * Send to wireless media and increase priority by 256 to 2706 * keep the received priority instead of reclassifying 2707 * the frame (see cfg80211_classify8021d). 2708 */ 2709 xmit_skb->priority += 256; 2710 xmit_skb->protocol = htons(ETH_P_802_3); 2711 skb_reset_network_header(xmit_skb); 2712 skb_reset_mac_header(xmit_skb); 2713 dev_queue_xmit(xmit_skb); 2714 } 2715 } 2716 2717 static ieee80211_rx_result debug_noinline 2718 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2719 { 2720 struct net_device *dev = rx->sdata->dev; 2721 struct sk_buff *skb = rx->skb; 2722 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2723 __le16 fc = hdr->frame_control; 2724 struct sk_buff_head frame_list; 2725 struct ethhdr ethhdr; 2726 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2727 2728 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2729 check_da = NULL; 2730 check_sa = NULL; 2731 } else switch (rx->sdata->vif.type) { 2732 case NL80211_IFTYPE_AP: 2733 case NL80211_IFTYPE_AP_VLAN: 2734 check_da = NULL; 2735 break; 2736 case NL80211_IFTYPE_STATION: 2737 if (!rx->sta || 2738 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2739 check_sa = NULL; 2740 break; 2741 case NL80211_IFTYPE_MESH_POINT: 2742 check_sa = NULL; 2743 break; 2744 default: 2745 break; 2746 } 2747 2748 skb->dev = dev; 2749 __skb_queue_head_init(&frame_list); 2750 2751 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2752 rx->sdata->vif.addr, 2753 rx->sdata->vif.type, 2754 data_offset, true)) 2755 return RX_DROP_UNUSABLE; 2756 2757 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2758 rx->sdata->vif.type, 2759 rx->local->hw.extra_tx_headroom, 2760 check_da, check_sa); 2761 2762 while (!skb_queue_empty(&frame_list)) { 2763 rx->skb = __skb_dequeue(&frame_list); 2764 2765 if (!ieee80211_frame_allowed(rx, fc)) { 2766 dev_kfree_skb(rx->skb); 2767 continue; 2768 } 2769 2770 ieee80211_deliver_skb(rx); 2771 } 2772 2773 return RX_QUEUED; 2774 } 2775 2776 static ieee80211_rx_result debug_noinline 2777 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2778 { 2779 struct sk_buff *skb = rx->skb; 2780 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2781 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2782 __le16 fc = hdr->frame_control; 2783 2784 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2785 return RX_CONTINUE; 2786 2787 if (unlikely(!ieee80211_is_data(fc))) 2788 return RX_CONTINUE; 2789 2790 if (unlikely(!ieee80211_is_data_present(fc))) 2791 return RX_DROP_MONITOR; 2792 2793 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2794 switch (rx->sdata->vif.type) { 2795 case NL80211_IFTYPE_AP_VLAN: 2796 if (!rx->sdata->u.vlan.sta) 2797 return RX_DROP_UNUSABLE; 2798 break; 2799 case NL80211_IFTYPE_STATION: 2800 if (!rx->sdata->u.mgd.use_4addr) 2801 return RX_DROP_UNUSABLE; 2802 break; 2803 default: 2804 return RX_DROP_UNUSABLE; 2805 } 2806 } 2807 2808 if (is_multicast_ether_addr(hdr->addr1)) 2809 return RX_DROP_UNUSABLE; 2810 2811 if (rx->key) { 2812 /* 2813 * We should not receive A-MSDUs on pre-HT connections, 2814 * and HT connections cannot use old ciphers. Thus drop 2815 * them, as in those cases we couldn't even have SPP 2816 * A-MSDUs or such. 2817 */ 2818 switch (rx->key->conf.cipher) { 2819 case WLAN_CIPHER_SUITE_WEP40: 2820 case WLAN_CIPHER_SUITE_WEP104: 2821 case WLAN_CIPHER_SUITE_TKIP: 2822 return RX_DROP_UNUSABLE; 2823 default: 2824 break; 2825 } 2826 } 2827 2828 return __ieee80211_rx_h_amsdu(rx, 0); 2829 } 2830 2831 #ifdef CONFIG_MAC80211_MESH 2832 static ieee80211_rx_result 2833 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2834 { 2835 struct ieee80211_hdr *fwd_hdr, *hdr; 2836 struct ieee80211_tx_info *info; 2837 struct ieee80211s_hdr *mesh_hdr; 2838 struct sk_buff *skb = rx->skb, *fwd_skb; 2839 struct ieee80211_local *local = rx->local; 2840 struct ieee80211_sub_if_data *sdata = rx->sdata; 2841 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2842 u16 ac, q, hdrlen; 2843 int tailroom = 0; 2844 2845 hdr = (struct ieee80211_hdr *) skb->data; 2846 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2847 2848 /* make sure fixed part of mesh header is there, also checks skb len */ 2849 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2850 return RX_DROP_MONITOR; 2851 2852 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2853 2854 /* make sure full mesh header is there, also checks skb len */ 2855 if (!pskb_may_pull(rx->skb, 2856 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2857 return RX_DROP_MONITOR; 2858 2859 /* reload pointers */ 2860 hdr = (struct ieee80211_hdr *) skb->data; 2861 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2862 2863 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2864 return RX_DROP_MONITOR; 2865 2866 /* frame is in RMC, don't forward */ 2867 if (ieee80211_is_data(hdr->frame_control) && 2868 is_multicast_ether_addr(hdr->addr1) && 2869 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2870 return RX_DROP_MONITOR; 2871 2872 if (!ieee80211_is_data(hdr->frame_control)) 2873 return RX_CONTINUE; 2874 2875 if (!mesh_hdr->ttl) 2876 return RX_DROP_MONITOR; 2877 2878 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2879 struct mesh_path *mppath; 2880 char *proxied_addr; 2881 char *mpp_addr; 2882 2883 if (is_multicast_ether_addr(hdr->addr1)) { 2884 mpp_addr = hdr->addr3; 2885 proxied_addr = mesh_hdr->eaddr1; 2886 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2887 MESH_FLAGS_AE_A5_A6) { 2888 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2889 mpp_addr = hdr->addr4; 2890 proxied_addr = mesh_hdr->eaddr2; 2891 } else { 2892 return RX_DROP_MONITOR; 2893 } 2894 2895 rcu_read_lock(); 2896 mppath = mpp_path_lookup(sdata, proxied_addr); 2897 if (!mppath) { 2898 mpp_path_add(sdata, proxied_addr, mpp_addr); 2899 } else { 2900 spin_lock_bh(&mppath->state_lock); 2901 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2902 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2903 mppath->exp_time = jiffies; 2904 spin_unlock_bh(&mppath->state_lock); 2905 } 2906 rcu_read_unlock(); 2907 } 2908 2909 /* Frame has reached destination. Don't forward */ 2910 if (!is_multicast_ether_addr(hdr->addr1) && 2911 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2912 return RX_CONTINUE; 2913 2914 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2915 q = sdata->vif.hw_queue[ac]; 2916 if (ieee80211_queue_stopped(&local->hw, q)) { 2917 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2918 return RX_DROP_MONITOR; 2919 } 2920 skb_set_queue_mapping(skb, q); 2921 2922 if (!--mesh_hdr->ttl) { 2923 if (!is_multicast_ether_addr(hdr->addr1)) 2924 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2925 dropped_frames_ttl); 2926 goto out; 2927 } 2928 2929 if (!ifmsh->mshcfg.dot11MeshForwarding) 2930 goto out; 2931 2932 if (sdata->crypto_tx_tailroom_needed_cnt) 2933 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2934 2935 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2936 sdata->encrypt_headroom, 2937 tailroom, GFP_ATOMIC); 2938 if (!fwd_skb) 2939 goto out; 2940 2941 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2942 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2943 info = IEEE80211_SKB_CB(fwd_skb); 2944 memset(info, 0, sizeof(*info)); 2945 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2946 info->control.vif = &rx->sdata->vif; 2947 info->control.jiffies = jiffies; 2948 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2949 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2950 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2951 /* update power mode indication when forwarding */ 2952 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2953 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2954 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2955 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2956 } else { 2957 /* unable to resolve next hop */ 2958 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2959 fwd_hdr->addr3, 0, 2960 WLAN_REASON_MESH_PATH_NOFORWARD, 2961 fwd_hdr->addr2); 2962 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2963 kfree_skb(fwd_skb); 2964 return RX_DROP_MONITOR; 2965 } 2966 2967 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2968 ieee80211_add_pending_skb(local, fwd_skb); 2969 out: 2970 if (is_multicast_ether_addr(hdr->addr1)) 2971 return RX_CONTINUE; 2972 return RX_DROP_MONITOR; 2973 } 2974 #endif 2975 2976 static ieee80211_rx_result debug_noinline 2977 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2978 { 2979 struct ieee80211_sub_if_data *sdata = rx->sdata; 2980 struct ieee80211_local *local = rx->local; 2981 struct net_device *dev = sdata->dev; 2982 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2983 __le16 fc = hdr->frame_control; 2984 bool port_control; 2985 int err; 2986 2987 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2988 return RX_CONTINUE; 2989 2990 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2991 return RX_DROP_MONITOR; 2992 2993 /* 2994 * Send unexpected-4addr-frame event to hostapd. For older versions, 2995 * also drop the frame to cooked monitor interfaces. 2996 */ 2997 if (ieee80211_has_a4(hdr->frame_control) && 2998 sdata->vif.type == NL80211_IFTYPE_AP) { 2999 if (rx->sta && 3000 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3001 cfg80211_rx_unexpected_4addr_frame( 3002 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3003 return RX_DROP_MONITOR; 3004 } 3005 3006 err = __ieee80211_data_to_8023(rx, &port_control); 3007 if (unlikely(err)) 3008 return RX_DROP_UNUSABLE; 3009 3010 if (!ieee80211_frame_allowed(rx, fc)) 3011 return RX_DROP_MONITOR; 3012 3013 /* directly handle TDLS channel switch requests/responses */ 3014 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3015 cpu_to_be16(ETH_P_TDLS))) { 3016 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3017 3018 if (pskb_may_pull(rx->skb, 3019 offsetof(struct ieee80211_tdls_data, u)) && 3020 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3021 tf->category == WLAN_CATEGORY_TDLS && 3022 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3023 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3024 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3025 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3026 return RX_QUEUED; 3027 } 3028 } 3029 3030 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3031 unlikely(port_control) && sdata->bss) { 3032 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3033 u.ap); 3034 dev = sdata->dev; 3035 rx->sdata = sdata; 3036 } 3037 3038 rx->skb->dev = dev; 3039 3040 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3041 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3042 !is_multicast_ether_addr( 3043 ((struct ethhdr *)rx->skb->data)->h_dest) && 3044 (!local->scanning && 3045 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3046 mod_timer(&local->dynamic_ps_timer, jiffies + 3047 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3048 3049 ieee80211_deliver_skb(rx); 3050 3051 return RX_QUEUED; 3052 } 3053 3054 static ieee80211_rx_result debug_noinline 3055 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3056 { 3057 struct sk_buff *skb = rx->skb; 3058 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3059 struct tid_ampdu_rx *tid_agg_rx; 3060 u16 start_seq_num; 3061 u16 tid; 3062 3063 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3064 return RX_CONTINUE; 3065 3066 if (ieee80211_is_back_req(bar->frame_control)) { 3067 struct { 3068 __le16 control, start_seq_num; 3069 } __packed bar_data; 3070 struct ieee80211_event event = { 3071 .type = BAR_RX_EVENT, 3072 }; 3073 3074 if (!rx->sta) 3075 return RX_DROP_MONITOR; 3076 3077 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3078 &bar_data, sizeof(bar_data))) 3079 return RX_DROP_MONITOR; 3080 3081 tid = le16_to_cpu(bar_data.control) >> 12; 3082 3083 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3084 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3085 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3086 WLAN_BACK_RECIPIENT, 3087 WLAN_REASON_QSTA_REQUIRE_SETUP); 3088 3089 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3090 if (!tid_agg_rx) 3091 return RX_DROP_MONITOR; 3092 3093 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3094 event.u.ba.tid = tid; 3095 event.u.ba.ssn = start_seq_num; 3096 event.u.ba.sta = &rx->sta->sta; 3097 3098 /* reset session timer */ 3099 if (tid_agg_rx->timeout) 3100 mod_timer(&tid_agg_rx->session_timer, 3101 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3102 3103 spin_lock(&tid_agg_rx->reorder_lock); 3104 /* release stored frames up to start of BAR */ 3105 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3106 start_seq_num, frames); 3107 spin_unlock(&tid_agg_rx->reorder_lock); 3108 3109 drv_event_callback(rx->local, rx->sdata, &event); 3110 3111 kfree_skb(skb); 3112 return RX_QUEUED; 3113 } 3114 3115 /* 3116 * After this point, we only want management frames, 3117 * so we can drop all remaining control frames to 3118 * cooked monitor interfaces. 3119 */ 3120 return RX_DROP_MONITOR; 3121 } 3122 3123 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3124 struct ieee80211_mgmt *mgmt, 3125 size_t len) 3126 { 3127 struct ieee80211_local *local = sdata->local; 3128 struct sk_buff *skb; 3129 struct ieee80211_mgmt *resp; 3130 3131 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3132 /* Not to own unicast address */ 3133 return; 3134 } 3135 3136 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3137 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3138 /* Not from the current AP or not associated yet. */ 3139 return; 3140 } 3141 3142 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3143 /* Too short SA Query request frame */ 3144 return; 3145 } 3146 3147 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3148 if (skb == NULL) 3149 return; 3150 3151 skb_reserve(skb, local->hw.extra_tx_headroom); 3152 resp = skb_put_zero(skb, 24); 3153 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3154 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3155 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3156 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3157 IEEE80211_STYPE_ACTION); 3158 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3159 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3160 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3161 memcpy(resp->u.action.u.sa_query.trans_id, 3162 mgmt->u.action.u.sa_query.trans_id, 3163 WLAN_SA_QUERY_TR_ID_LEN); 3164 3165 ieee80211_tx_skb(sdata, skb); 3166 } 3167 3168 static ieee80211_rx_result debug_noinline 3169 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3170 { 3171 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3172 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3173 3174 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3175 return RX_CONTINUE; 3176 3177 /* 3178 * From here on, look only at management frames. 3179 * Data and control frames are already handled, 3180 * and unknown (reserved) frames are useless. 3181 */ 3182 if (rx->skb->len < 24) 3183 return RX_DROP_MONITOR; 3184 3185 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3186 return RX_DROP_MONITOR; 3187 3188 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3189 ieee80211_is_beacon(mgmt->frame_control) && 3190 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3191 int sig = 0; 3192 3193 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3194 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3195 sig = status->signal; 3196 3197 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3198 rx->skb->data, rx->skb->len, 3199 ieee80211_rx_status_to_khz(status), 3200 sig); 3201 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3202 } 3203 3204 if (ieee80211_drop_unencrypted_mgmt(rx)) 3205 return RX_DROP_UNUSABLE; 3206 3207 return RX_CONTINUE; 3208 } 3209 3210 static ieee80211_rx_result debug_noinline 3211 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3212 { 3213 struct ieee80211_local *local = rx->local; 3214 struct ieee80211_sub_if_data *sdata = rx->sdata; 3215 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3216 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3217 int len = rx->skb->len; 3218 3219 if (!ieee80211_is_action(mgmt->frame_control)) 3220 return RX_CONTINUE; 3221 3222 /* drop too small frames */ 3223 if (len < IEEE80211_MIN_ACTION_SIZE) 3224 return RX_DROP_UNUSABLE; 3225 3226 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3227 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3228 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3229 return RX_DROP_UNUSABLE; 3230 3231 switch (mgmt->u.action.category) { 3232 case WLAN_CATEGORY_HT: 3233 /* reject HT action frames from stations not supporting HT */ 3234 if (!rx->sta->sta.ht_cap.ht_supported) 3235 goto invalid; 3236 3237 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3238 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3239 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3240 sdata->vif.type != NL80211_IFTYPE_AP && 3241 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3242 break; 3243 3244 /* verify action & smps_control/chanwidth are present */ 3245 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3246 goto invalid; 3247 3248 switch (mgmt->u.action.u.ht_smps.action) { 3249 case WLAN_HT_ACTION_SMPS: { 3250 struct ieee80211_supported_band *sband; 3251 enum ieee80211_smps_mode smps_mode; 3252 struct sta_opmode_info sta_opmode = {}; 3253 3254 if (sdata->vif.type != NL80211_IFTYPE_AP && 3255 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3256 goto handled; 3257 3258 /* convert to HT capability */ 3259 switch (mgmt->u.action.u.ht_smps.smps_control) { 3260 case WLAN_HT_SMPS_CONTROL_DISABLED: 3261 smps_mode = IEEE80211_SMPS_OFF; 3262 break; 3263 case WLAN_HT_SMPS_CONTROL_STATIC: 3264 smps_mode = IEEE80211_SMPS_STATIC; 3265 break; 3266 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3267 smps_mode = IEEE80211_SMPS_DYNAMIC; 3268 break; 3269 default: 3270 goto invalid; 3271 } 3272 3273 /* if no change do nothing */ 3274 if (rx->sta->sta.smps_mode == smps_mode) 3275 goto handled; 3276 rx->sta->sta.smps_mode = smps_mode; 3277 sta_opmode.smps_mode = 3278 ieee80211_smps_mode_to_smps_mode(smps_mode); 3279 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3280 3281 sband = rx->local->hw.wiphy->bands[status->band]; 3282 3283 rate_control_rate_update(local, sband, rx->sta, 3284 IEEE80211_RC_SMPS_CHANGED); 3285 cfg80211_sta_opmode_change_notify(sdata->dev, 3286 rx->sta->addr, 3287 &sta_opmode, 3288 GFP_ATOMIC); 3289 goto handled; 3290 } 3291 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3292 struct ieee80211_supported_band *sband; 3293 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3294 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3295 struct sta_opmode_info sta_opmode = {}; 3296 3297 /* If it doesn't support 40 MHz it can't change ... */ 3298 if (!(rx->sta->sta.ht_cap.cap & 3299 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3300 goto handled; 3301 3302 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3303 max_bw = IEEE80211_STA_RX_BW_20; 3304 else 3305 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3306 3307 /* set cur_max_bandwidth and recalc sta bw */ 3308 rx->sta->cur_max_bandwidth = max_bw; 3309 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3310 3311 if (rx->sta->sta.bandwidth == new_bw) 3312 goto handled; 3313 3314 rx->sta->sta.bandwidth = new_bw; 3315 sband = rx->local->hw.wiphy->bands[status->band]; 3316 sta_opmode.bw = 3317 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3318 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3319 3320 rate_control_rate_update(local, sband, rx->sta, 3321 IEEE80211_RC_BW_CHANGED); 3322 cfg80211_sta_opmode_change_notify(sdata->dev, 3323 rx->sta->addr, 3324 &sta_opmode, 3325 GFP_ATOMIC); 3326 goto handled; 3327 } 3328 default: 3329 goto invalid; 3330 } 3331 3332 break; 3333 case WLAN_CATEGORY_PUBLIC: 3334 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3335 goto invalid; 3336 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3337 break; 3338 if (!rx->sta) 3339 break; 3340 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3341 break; 3342 if (mgmt->u.action.u.ext_chan_switch.action_code != 3343 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3344 break; 3345 if (len < offsetof(struct ieee80211_mgmt, 3346 u.action.u.ext_chan_switch.variable)) 3347 goto invalid; 3348 goto queue; 3349 case WLAN_CATEGORY_VHT: 3350 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3351 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3352 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3353 sdata->vif.type != NL80211_IFTYPE_AP && 3354 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3355 break; 3356 3357 /* verify action code is present */ 3358 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3359 goto invalid; 3360 3361 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3362 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3363 /* verify opmode is present */ 3364 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3365 goto invalid; 3366 goto queue; 3367 } 3368 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3369 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3370 goto invalid; 3371 goto queue; 3372 } 3373 default: 3374 break; 3375 } 3376 break; 3377 case WLAN_CATEGORY_BACK: 3378 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3379 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3380 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3381 sdata->vif.type != NL80211_IFTYPE_AP && 3382 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3383 break; 3384 3385 /* verify action_code is present */ 3386 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3387 break; 3388 3389 switch (mgmt->u.action.u.addba_req.action_code) { 3390 case WLAN_ACTION_ADDBA_REQ: 3391 if (len < (IEEE80211_MIN_ACTION_SIZE + 3392 sizeof(mgmt->u.action.u.addba_req))) 3393 goto invalid; 3394 break; 3395 case WLAN_ACTION_ADDBA_RESP: 3396 if (len < (IEEE80211_MIN_ACTION_SIZE + 3397 sizeof(mgmt->u.action.u.addba_resp))) 3398 goto invalid; 3399 break; 3400 case WLAN_ACTION_DELBA: 3401 if (len < (IEEE80211_MIN_ACTION_SIZE + 3402 sizeof(mgmt->u.action.u.delba))) 3403 goto invalid; 3404 break; 3405 default: 3406 goto invalid; 3407 } 3408 3409 goto queue; 3410 case WLAN_CATEGORY_SPECTRUM_MGMT: 3411 /* verify action_code is present */ 3412 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3413 break; 3414 3415 switch (mgmt->u.action.u.measurement.action_code) { 3416 case WLAN_ACTION_SPCT_MSR_REQ: 3417 if (status->band != NL80211_BAND_5GHZ) 3418 break; 3419 3420 if (len < (IEEE80211_MIN_ACTION_SIZE + 3421 sizeof(mgmt->u.action.u.measurement))) 3422 break; 3423 3424 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3425 break; 3426 3427 ieee80211_process_measurement_req(sdata, mgmt, len); 3428 goto handled; 3429 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3430 u8 *bssid; 3431 if (len < (IEEE80211_MIN_ACTION_SIZE + 3432 sizeof(mgmt->u.action.u.chan_switch))) 3433 break; 3434 3435 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3436 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3437 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3438 break; 3439 3440 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3441 bssid = sdata->u.mgd.bssid; 3442 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3443 bssid = sdata->u.ibss.bssid; 3444 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3445 bssid = mgmt->sa; 3446 else 3447 break; 3448 3449 if (!ether_addr_equal(mgmt->bssid, bssid)) 3450 break; 3451 3452 goto queue; 3453 } 3454 } 3455 break; 3456 case WLAN_CATEGORY_SELF_PROTECTED: 3457 if (len < (IEEE80211_MIN_ACTION_SIZE + 3458 sizeof(mgmt->u.action.u.self_prot.action_code))) 3459 break; 3460 3461 switch (mgmt->u.action.u.self_prot.action_code) { 3462 case WLAN_SP_MESH_PEERING_OPEN: 3463 case WLAN_SP_MESH_PEERING_CLOSE: 3464 case WLAN_SP_MESH_PEERING_CONFIRM: 3465 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3466 goto invalid; 3467 if (sdata->u.mesh.user_mpm) 3468 /* userspace handles this frame */ 3469 break; 3470 goto queue; 3471 case WLAN_SP_MGK_INFORM: 3472 case WLAN_SP_MGK_ACK: 3473 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3474 goto invalid; 3475 break; 3476 } 3477 break; 3478 case WLAN_CATEGORY_MESH_ACTION: 3479 if (len < (IEEE80211_MIN_ACTION_SIZE + 3480 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3481 break; 3482 3483 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3484 break; 3485 if (mesh_action_is_path_sel(mgmt) && 3486 !mesh_path_sel_is_hwmp(sdata)) 3487 break; 3488 goto queue; 3489 } 3490 3491 return RX_CONTINUE; 3492 3493 invalid: 3494 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3495 /* will return in the next handlers */ 3496 return RX_CONTINUE; 3497 3498 handled: 3499 if (rx->sta) 3500 rx->sta->rx_stats.packets++; 3501 dev_kfree_skb(rx->skb); 3502 return RX_QUEUED; 3503 3504 queue: 3505 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3506 return RX_QUEUED; 3507 } 3508 3509 static ieee80211_rx_result debug_noinline 3510 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3511 { 3512 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3513 int sig = 0; 3514 3515 /* skip known-bad action frames and return them in the next handler */ 3516 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3517 return RX_CONTINUE; 3518 3519 /* 3520 * Getting here means the kernel doesn't know how to handle 3521 * it, but maybe userspace does ... include returned frames 3522 * so userspace can register for those to know whether ones 3523 * it transmitted were processed or returned. 3524 */ 3525 3526 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3527 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3528 sig = status->signal; 3529 3530 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3531 ieee80211_rx_status_to_khz(status), sig, 3532 rx->skb->data, rx->skb->len, 0)) { 3533 if (rx->sta) 3534 rx->sta->rx_stats.packets++; 3535 dev_kfree_skb(rx->skb); 3536 return RX_QUEUED; 3537 } 3538 3539 return RX_CONTINUE; 3540 } 3541 3542 static ieee80211_rx_result debug_noinline 3543 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3544 { 3545 struct ieee80211_sub_if_data *sdata = rx->sdata; 3546 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3547 int len = rx->skb->len; 3548 3549 if (!ieee80211_is_action(mgmt->frame_control)) 3550 return RX_CONTINUE; 3551 3552 switch (mgmt->u.action.category) { 3553 case WLAN_CATEGORY_SA_QUERY: 3554 if (len < (IEEE80211_MIN_ACTION_SIZE + 3555 sizeof(mgmt->u.action.u.sa_query))) 3556 break; 3557 3558 switch (mgmt->u.action.u.sa_query.action) { 3559 case WLAN_ACTION_SA_QUERY_REQUEST: 3560 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3561 break; 3562 ieee80211_process_sa_query_req(sdata, mgmt, len); 3563 goto handled; 3564 } 3565 break; 3566 } 3567 3568 return RX_CONTINUE; 3569 3570 handled: 3571 if (rx->sta) 3572 rx->sta->rx_stats.packets++; 3573 dev_kfree_skb(rx->skb); 3574 return RX_QUEUED; 3575 } 3576 3577 static ieee80211_rx_result debug_noinline 3578 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3579 { 3580 struct ieee80211_local *local = rx->local; 3581 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3582 struct sk_buff *nskb; 3583 struct ieee80211_sub_if_data *sdata = rx->sdata; 3584 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3585 3586 if (!ieee80211_is_action(mgmt->frame_control)) 3587 return RX_CONTINUE; 3588 3589 /* 3590 * For AP mode, hostapd is responsible for handling any action 3591 * frames that we didn't handle, including returning unknown 3592 * ones. For all other modes we will return them to the sender, 3593 * setting the 0x80 bit in the action category, as required by 3594 * 802.11-2012 9.24.4. 3595 * Newer versions of hostapd shall also use the management frame 3596 * registration mechanisms, but older ones still use cooked 3597 * monitor interfaces so push all frames there. 3598 */ 3599 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3600 (sdata->vif.type == NL80211_IFTYPE_AP || 3601 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3602 return RX_DROP_MONITOR; 3603 3604 if (is_multicast_ether_addr(mgmt->da)) 3605 return RX_DROP_MONITOR; 3606 3607 /* do not return rejected action frames */ 3608 if (mgmt->u.action.category & 0x80) 3609 return RX_DROP_UNUSABLE; 3610 3611 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3612 GFP_ATOMIC); 3613 if (nskb) { 3614 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3615 3616 nmgmt->u.action.category |= 0x80; 3617 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3618 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3619 3620 memset(nskb->cb, 0, sizeof(nskb->cb)); 3621 3622 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3623 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3624 3625 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3626 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3627 IEEE80211_TX_CTL_NO_CCK_RATE; 3628 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3629 info->hw_queue = 3630 local->hw.offchannel_tx_hw_queue; 3631 } 3632 3633 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3634 status->band); 3635 } 3636 dev_kfree_skb(rx->skb); 3637 return RX_QUEUED; 3638 } 3639 3640 static ieee80211_rx_result debug_noinline 3641 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3642 { 3643 struct ieee80211_sub_if_data *sdata = rx->sdata; 3644 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3645 3646 if (!ieee80211_is_ext(hdr->frame_control)) 3647 return RX_CONTINUE; 3648 3649 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3650 return RX_DROP_MONITOR; 3651 3652 /* for now only beacons are ext, so queue them */ 3653 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3654 3655 return RX_QUEUED; 3656 } 3657 3658 static ieee80211_rx_result debug_noinline 3659 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3660 { 3661 struct ieee80211_sub_if_data *sdata = rx->sdata; 3662 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3663 __le16 stype; 3664 3665 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3666 3667 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3668 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3669 sdata->vif.type != NL80211_IFTYPE_OCB && 3670 sdata->vif.type != NL80211_IFTYPE_STATION) 3671 return RX_DROP_MONITOR; 3672 3673 switch (stype) { 3674 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3675 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3676 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3677 /* process for all: mesh, mlme, ibss */ 3678 break; 3679 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3680 if (is_multicast_ether_addr(mgmt->da) && 3681 !is_broadcast_ether_addr(mgmt->da)) 3682 return RX_DROP_MONITOR; 3683 3684 /* process only for station/IBSS */ 3685 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3686 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3687 return RX_DROP_MONITOR; 3688 break; 3689 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3690 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3691 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3692 if (is_multicast_ether_addr(mgmt->da) && 3693 !is_broadcast_ether_addr(mgmt->da)) 3694 return RX_DROP_MONITOR; 3695 3696 /* process only for station */ 3697 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3698 return RX_DROP_MONITOR; 3699 break; 3700 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3701 /* process only for ibss and mesh */ 3702 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3703 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3704 return RX_DROP_MONITOR; 3705 break; 3706 default: 3707 return RX_DROP_MONITOR; 3708 } 3709 3710 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3711 3712 return RX_QUEUED; 3713 } 3714 3715 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3716 struct ieee80211_rate *rate) 3717 { 3718 struct ieee80211_sub_if_data *sdata; 3719 struct ieee80211_local *local = rx->local; 3720 struct sk_buff *skb = rx->skb, *skb2; 3721 struct net_device *prev_dev = NULL; 3722 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3723 int needed_headroom; 3724 3725 /* 3726 * If cooked monitor has been processed already, then 3727 * don't do it again. If not, set the flag. 3728 */ 3729 if (rx->flags & IEEE80211_RX_CMNTR) 3730 goto out_free_skb; 3731 rx->flags |= IEEE80211_RX_CMNTR; 3732 3733 /* If there are no cooked monitor interfaces, just free the SKB */ 3734 if (!local->cooked_mntrs) 3735 goto out_free_skb; 3736 3737 /* vendor data is long removed here */ 3738 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3739 /* room for the radiotap header based on driver features */ 3740 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3741 3742 if (skb_headroom(skb) < needed_headroom && 3743 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3744 goto out_free_skb; 3745 3746 /* prepend radiotap information */ 3747 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3748 false); 3749 3750 skb_reset_mac_header(skb); 3751 skb->ip_summed = CHECKSUM_UNNECESSARY; 3752 skb->pkt_type = PACKET_OTHERHOST; 3753 skb->protocol = htons(ETH_P_802_2); 3754 3755 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3756 if (!ieee80211_sdata_running(sdata)) 3757 continue; 3758 3759 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3760 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3761 continue; 3762 3763 if (prev_dev) { 3764 skb2 = skb_clone(skb, GFP_ATOMIC); 3765 if (skb2) { 3766 skb2->dev = prev_dev; 3767 netif_receive_skb(skb2); 3768 } 3769 } 3770 3771 prev_dev = sdata->dev; 3772 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3773 } 3774 3775 if (prev_dev) { 3776 skb->dev = prev_dev; 3777 netif_receive_skb(skb); 3778 return; 3779 } 3780 3781 out_free_skb: 3782 dev_kfree_skb(skb); 3783 } 3784 3785 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3786 ieee80211_rx_result res) 3787 { 3788 switch (res) { 3789 case RX_DROP_MONITOR: 3790 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3791 if (rx->sta) 3792 rx->sta->rx_stats.dropped++; 3793 fallthrough; 3794 case RX_CONTINUE: { 3795 struct ieee80211_rate *rate = NULL; 3796 struct ieee80211_supported_band *sband; 3797 struct ieee80211_rx_status *status; 3798 3799 status = IEEE80211_SKB_RXCB((rx->skb)); 3800 3801 sband = rx->local->hw.wiphy->bands[status->band]; 3802 if (status->encoding == RX_ENC_LEGACY) 3803 rate = &sband->bitrates[status->rate_idx]; 3804 3805 ieee80211_rx_cooked_monitor(rx, rate); 3806 break; 3807 } 3808 case RX_DROP_UNUSABLE: 3809 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3810 if (rx->sta) 3811 rx->sta->rx_stats.dropped++; 3812 dev_kfree_skb(rx->skb); 3813 break; 3814 case RX_QUEUED: 3815 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3816 break; 3817 } 3818 } 3819 3820 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3821 struct sk_buff_head *frames) 3822 { 3823 ieee80211_rx_result res = RX_DROP_MONITOR; 3824 struct sk_buff *skb; 3825 3826 #define CALL_RXH(rxh) \ 3827 do { \ 3828 res = rxh(rx); \ 3829 if (res != RX_CONTINUE) \ 3830 goto rxh_next; \ 3831 } while (0) 3832 3833 /* Lock here to avoid hitting all of the data used in the RX 3834 * path (e.g. key data, station data, ...) concurrently when 3835 * a frame is released from the reorder buffer due to timeout 3836 * from the timer, potentially concurrently with RX from the 3837 * driver. 3838 */ 3839 spin_lock_bh(&rx->local->rx_path_lock); 3840 3841 while ((skb = __skb_dequeue(frames))) { 3842 /* 3843 * all the other fields are valid across frames 3844 * that belong to an aMPDU since they are on the 3845 * same TID from the same station 3846 */ 3847 rx->skb = skb; 3848 3849 CALL_RXH(ieee80211_rx_h_check_more_data); 3850 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3851 CALL_RXH(ieee80211_rx_h_sta_process); 3852 CALL_RXH(ieee80211_rx_h_decrypt); 3853 CALL_RXH(ieee80211_rx_h_defragment); 3854 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3855 /* must be after MMIC verify so header is counted in MPDU mic */ 3856 #ifdef CONFIG_MAC80211_MESH 3857 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3858 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3859 #endif 3860 CALL_RXH(ieee80211_rx_h_amsdu); 3861 CALL_RXH(ieee80211_rx_h_data); 3862 3863 /* special treatment -- needs the queue */ 3864 res = ieee80211_rx_h_ctrl(rx, frames); 3865 if (res != RX_CONTINUE) 3866 goto rxh_next; 3867 3868 CALL_RXH(ieee80211_rx_h_mgmt_check); 3869 CALL_RXH(ieee80211_rx_h_action); 3870 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3871 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3872 CALL_RXH(ieee80211_rx_h_action_return); 3873 CALL_RXH(ieee80211_rx_h_ext); 3874 CALL_RXH(ieee80211_rx_h_mgmt); 3875 3876 rxh_next: 3877 ieee80211_rx_handlers_result(rx, res); 3878 3879 #undef CALL_RXH 3880 } 3881 3882 spin_unlock_bh(&rx->local->rx_path_lock); 3883 } 3884 3885 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3886 { 3887 struct sk_buff_head reorder_release; 3888 ieee80211_rx_result res = RX_DROP_MONITOR; 3889 3890 __skb_queue_head_init(&reorder_release); 3891 3892 #define CALL_RXH(rxh) \ 3893 do { \ 3894 res = rxh(rx); \ 3895 if (res != RX_CONTINUE) \ 3896 goto rxh_next; \ 3897 } while (0) 3898 3899 CALL_RXH(ieee80211_rx_h_check_dup); 3900 CALL_RXH(ieee80211_rx_h_check); 3901 3902 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3903 3904 ieee80211_rx_handlers(rx, &reorder_release); 3905 return; 3906 3907 rxh_next: 3908 ieee80211_rx_handlers_result(rx, res); 3909 3910 #undef CALL_RXH 3911 } 3912 3913 /* 3914 * This function makes calls into the RX path, therefore 3915 * it has to be invoked under RCU read lock. 3916 */ 3917 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3918 { 3919 struct sk_buff_head frames; 3920 struct ieee80211_rx_data rx = { 3921 .sta = sta, 3922 .sdata = sta->sdata, 3923 .local = sta->local, 3924 /* This is OK -- must be QoS data frame */ 3925 .security_idx = tid, 3926 .seqno_idx = tid, 3927 }; 3928 struct tid_ampdu_rx *tid_agg_rx; 3929 3930 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3931 if (!tid_agg_rx) 3932 return; 3933 3934 __skb_queue_head_init(&frames); 3935 3936 spin_lock(&tid_agg_rx->reorder_lock); 3937 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3938 spin_unlock(&tid_agg_rx->reorder_lock); 3939 3940 if (!skb_queue_empty(&frames)) { 3941 struct ieee80211_event event = { 3942 .type = BA_FRAME_TIMEOUT, 3943 .u.ba.tid = tid, 3944 .u.ba.sta = &sta->sta, 3945 }; 3946 drv_event_callback(rx.local, rx.sdata, &event); 3947 } 3948 3949 ieee80211_rx_handlers(&rx, &frames); 3950 } 3951 3952 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3953 u16 ssn, u64 filtered, 3954 u16 received_mpdus) 3955 { 3956 struct sta_info *sta; 3957 struct tid_ampdu_rx *tid_agg_rx; 3958 struct sk_buff_head frames; 3959 struct ieee80211_rx_data rx = { 3960 /* This is OK -- must be QoS data frame */ 3961 .security_idx = tid, 3962 .seqno_idx = tid, 3963 }; 3964 int i, diff; 3965 3966 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3967 return; 3968 3969 __skb_queue_head_init(&frames); 3970 3971 sta = container_of(pubsta, struct sta_info, sta); 3972 3973 rx.sta = sta; 3974 rx.sdata = sta->sdata; 3975 rx.local = sta->local; 3976 3977 rcu_read_lock(); 3978 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3979 if (!tid_agg_rx) 3980 goto out; 3981 3982 spin_lock_bh(&tid_agg_rx->reorder_lock); 3983 3984 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3985 int release; 3986 3987 /* release all frames in the reorder buffer */ 3988 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3989 IEEE80211_SN_MODULO; 3990 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3991 release, &frames); 3992 /* update ssn to match received ssn */ 3993 tid_agg_rx->head_seq_num = ssn; 3994 } else { 3995 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3996 &frames); 3997 } 3998 3999 /* handle the case that received ssn is behind the mac ssn. 4000 * it can be tid_agg_rx->buf_size behind and still be valid */ 4001 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4002 if (diff >= tid_agg_rx->buf_size) { 4003 tid_agg_rx->reorder_buf_filtered = 0; 4004 goto release; 4005 } 4006 filtered = filtered >> diff; 4007 ssn += diff; 4008 4009 /* update bitmap */ 4010 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4011 int index = (ssn + i) % tid_agg_rx->buf_size; 4012 4013 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4014 if (filtered & BIT_ULL(i)) 4015 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4016 } 4017 4018 /* now process also frames that the filter marking released */ 4019 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4020 4021 release: 4022 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4023 4024 ieee80211_rx_handlers(&rx, &frames); 4025 4026 out: 4027 rcu_read_unlock(); 4028 } 4029 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4030 4031 /* main receive path */ 4032 4033 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4034 { 4035 struct ieee80211_sub_if_data *sdata = rx->sdata; 4036 struct sk_buff *skb = rx->skb; 4037 struct ieee80211_hdr *hdr = (void *)skb->data; 4038 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4039 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4040 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4041 ieee80211_is_s1g_beacon(hdr->frame_control); 4042 4043 switch (sdata->vif.type) { 4044 case NL80211_IFTYPE_STATION: 4045 if (!bssid && !sdata->u.mgd.use_4addr) 4046 return false; 4047 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4048 return false; 4049 if (multicast) 4050 return true; 4051 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4052 case NL80211_IFTYPE_ADHOC: 4053 if (!bssid) 4054 return false; 4055 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4056 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 4057 return false; 4058 if (ieee80211_is_beacon(hdr->frame_control)) 4059 return true; 4060 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4061 return false; 4062 if (!multicast && 4063 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4064 return false; 4065 if (!rx->sta) { 4066 int rate_idx; 4067 if (status->encoding != RX_ENC_LEGACY) 4068 rate_idx = 0; /* TODO: HT/VHT rates */ 4069 else 4070 rate_idx = status->rate_idx; 4071 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4072 BIT(rate_idx)); 4073 } 4074 return true; 4075 case NL80211_IFTYPE_OCB: 4076 if (!bssid) 4077 return false; 4078 if (!ieee80211_is_data_present(hdr->frame_control)) 4079 return false; 4080 if (!is_broadcast_ether_addr(bssid)) 4081 return false; 4082 if (!multicast && 4083 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4084 return false; 4085 if (!rx->sta) { 4086 int rate_idx; 4087 if (status->encoding != RX_ENC_LEGACY) 4088 rate_idx = 0; /* TODO: HT rates */ 4089 else 4090 rate_idx = status->rate_idx; 4091 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4092 BIT(rate_idx)); 4093 } 4094 return true; 4095 case NL80211_IFTYPE_MESH_POINT: 4096 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4097 return false; 4098 if (multicast) 4099 return true; 4100 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4101 case NL80211_IFTYPE_AP_VLAN: 4102 case NL80211_IFTYPE_AP: 4103 if (!bssid) 4104 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4105 4106 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4107 /* 4108 * Accept public action frames even when the 4109 * BSSID doesn't match, this is used for P2P 4110 * and location updates. Note that mac80211 4111 * itself never looks at these frames. 4112 */ 4113 if (!multicast && 4114 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4115 return false; 4116 if (ieee80211_is_public_action(hdr, skb->len)) 4117 return true; 4118 return ieee80211_is_beacon(hdr->frame_control); 4119 } 4120 4121 if (!ieee80211_has_tods(hdr->frame_control)) { 4122 /* ignore data frames to TDLS-peers */ 4123 if (ieee80211_is_data(hdr->frame_control)) 4124 return false; 4125 /* ignore action frames to TDLS-peers */ 4126 if (ieee80211_is_action(hdr->frame_control) && 4127 !is_broadcast_ether_addr(bssid) && 4128 !ether_addr_equal(bssid, hdr->addr1)) 4129 return false; 4130 } 4131 4132 /* 4133 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4134 * the BSSID - we've checked that already but may have accepted 4135 * the wildcard (ff:ff:ff:ff:ff:ff). 4136 * 4137 * It also says: 4138 * The BSSID of the Data frame is determined as follows: 4139 * a) If the STA is contained within an AP or is associated 4140 * with an AP, the BSSID is the address currently in use 4141 * by the STA contained in the AP. 4142 * 4143 * So we should not accept data frames with an address that's 4144 * multicast. 4145 * 4146 * Accepting it also opens a security problem because stations 4147 * could encrypt it with the GTK and inject traffic that way. 4148 */ 4149 if (ieee80211_is_data(hdr->frame_control) && multicast) 4150 return false; 4151 4152 return true; 4153 case NL80211_IFTYPE_P2P_DEVICE: 4154 return ieee80211_is_public_action(hdr, skb->len) || 4155 ieee80211_is_probe_req(hdr->frame_control) || 4156 ieee80211_is_probe_resp(hdr->frame_control) || 4157 ieee80211_is_beacon(hdr->frame_control); 4158 case NL80211_IFTYPE_NAN: 4159 /* Currently no frames on NAN interface are allowed */ 4160 return false; 4161 default: 4162 break; 4163 } 4164 4165 WARN_ON_ONCE(1); 4166 return false; 4167 } 4168 4169 void ieee80211_check_fast_rx(struct sta_info *sta) 4170 { 4171 struct ieee80211_sub_if_data *sdata = sta->sdata; 4172 struct ieee80211_local *local = sdata->local; 4173 struct ieee80211_key *key; 4174 struct ieee80211_fast_rx fastrx = { 4175 .dev = sdata->dev, 4176 .vif_type = sdata->vif.type, 4177 .control_port_protocol = sdata->control_port_protocol, 4178 }, *old, *new = NULL; 4179 bool set_offload = false; 4180 bool assign = false; 4181 bool offload; 4182 4183 /* use sparse to check that we don't return without updating */ 4184 __acquire(check_fast_rx); 4185 4186 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4187 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4188 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4189 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4190 4191 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4192 4193 /* fast-rx doesn't do reordering */ 4194 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4195 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4196 goto clear; 4197 4198 switch (sdata->vif.type) { 4199 case NL80211_IFTYPE_STATION: 4200 if (sta->sta.tdls) { 4201 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4202 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4203 fastrx.expected_ds_bits = 0; 4204 } else { 4205 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4206 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4207 fastrx.expected_ds_bits = 4208 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4209 } 4210 4211 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4212 fastrx.expected_ds_bits |= 4213 cpu_to_le16(IEEE80211_FCTL_TODS); 4214 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4215 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4216 } 4217 4218 if (!sdata->u.mgd.powersave) 4219 break; 4220 4221 /* software powersave is a huge mess, avoid all of it */ 4222 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4223 goto clear; 4224 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4225 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4226 goto clear; 4227 break; 4228 case NL80211_IFTYPE_AP_VLAN: 4229 case NL80211_IFTYPE_AP: 4230 /* parallel-rx requires this, at least with calls to 4231 * ieee80211_sta_ps_transition() 4232 */ 4233 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4234 goto clear; 4235 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4236 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4237 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4238 4239 fastrx.internal_forward = 4240 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4241 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4242 !sdata->u.vlan.sta); 4243 4244 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4245 sdata->u.vlan.sta) { 4246 fastrx.expected_ds_bits |= 4247 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4248 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4249 fastrx.internal_forward = 0; 4250 } 4251 4252 break; 4253 default: 4254 goto clear; 4255 } 4256 4257 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4258 goto clear; 4259 4260 rcu_read_lock(); 4261 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4262 if (!key) 4263 key = rcu_dereference(sdata->default_unicast_key); 4264 if (key) { 4265 switch (key->conf.cipher) { 4266 case WLAN_CIPHER_SUITE_TKIP: 4267 /* we don't want to deal with MMIC in fast-rx */ 4268 goto clear_rcu; 4269 case WLAN_CIPHER_SUITE_CCMP: 4270 case WLAN_CIPHER_SUITE_CCMP_256: 4271 case WLAN_CIPHER_SUITE_GCMP: 4272 case WLAN_CIPHER_SUITE_GCMP_256: 4273 break; 4274 default: 4275 /* We also don't want to deal with 4276 * WEP or cipher scheme. 4277 */ 4278 goto clear_rcu; 4279 } 4280 4281 fastrx.key = true; 4282 fastrx.icv_len = key->conf.icv_len; 4283 } 4284 4285 assign = true; 4286 clear_rcu: 4287 rcu_read_unlock(); 4288 clear: 4289 __release(check_fast_rx); 4290 4291 if (assign) 4292 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4293 4294 offload = assign && 4295 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4296 4297 if (offload) 4298 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4299 else 4300 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4301 4302 if (set_offload) 4303 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4304 4305 spin_lock_bh(&sta->lock); 4306 old = rcu_dereference_protected(sta->fast_rx, true); 4307 rcu_assign_pointer(sta->fast_rx, new); 4308 spin_unlock_bh(&sta->lock); 4309 4310 if (old) 4311 kfree_rcu(old, rcu_head); 4312 } 4313 4314 void ieee80211_clear_fast_rx(struct sta_info *sta) 4315 { 4316 struct ieee80211_fast_rx *old; 4317 4318 spin_lock_bh(&sta->lock); 4319 old = rcu_dereference_protected(sta->fast_rx, true); 4320 RCU_INIT_POINTER(sta->fast_rx, NULL); 4321 spin_unlock_bh(&sta->lock); 4322 4323 if (old) 4324 kfree_rcu(old, rcu_head); 4325 } 4326 4327 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4328 { 4329 struct ieee80211_local *local = sdata->local; 4330 struct sta_info *sta; 4331 4332 lockdep_assert_held(&local->sta_mtx); 4333 4334 list_for_each_entry(sta, &local->sta_list, list) { 4335 if (sdata != sta->sdata && 4336 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4337 continue; 4338 ieee80211_check_fast_rx(sta); 4339 } 4340 } 4341 4342 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4343 { 4344 struct ieee80211_local *local = sdata->local; 4345 4346 mutex_lock(&local->sta_mtx); 4347 __ieee80211_check_fast_rx_iface(sdata); 4348 mutex_unlock(&local->sta_mtx); 4349 } 4350 4351 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4352 struct ieee80211_fast_rx *fast_rx, 4353 int orig_len) 4354 { 4355 struct ieee80211_sta_rx_stats *stats; 4356 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4357 struct sta_info *sta = rx->sta; 4358 struct sk_buff *skb = rx->skb; 4359 void *sa = skb->data + ETH_ALEN; 4360 void *da = skb->data; 4361 4362 stats = &sta->rx_stats; 4363 if (fast_rx->uses_rss) 4364 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4365 4366 /* statistics part of ieee80211_rx_h_sta_process() */ 4367 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4368 stats->last_signal = status->signal; 4369 if (!fast_rx->uses_rss) 4370 ewma_signal_add(&sta->rx_stats_avg.signal, 4371 -status->signal); 4372 } 4373 4374 if (status->chains) { 4375 int i; 4376 4377 stats->chains = status->chains; 4378 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4379 int signal = status->chain_signal[i]; 4380 4381 if (!(status->chains & BIT(i))) 4382 continue; 4383 4384 stats->chain_signal_last[i] = signal; 4385 if (!fast_rx->uses_rss) 4386 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4387 -signal); 4388 } 4389 } 4390 /* end of statistics */ 4391 4392 stats->last_rx = jiffies; 4393 stats->last_rate = sta_stats_encode_rate(status); 4394 4395 stats->fragments++; 4396 stats->packets++; 4397 4398 skb->dev = fast_rx->dev; 4399 4400 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4401 4402 /* The seqno index has the same property as needed 4403 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4404 * for non-QoS-data frames. Here we know it's a data 4405 * frame, so count MSDUs. 4406 */ 4407 u64_stats_update_begin(&stats->syncp); 4408 stats->msdu[rx->seqno_idx]++; 4409 stats->bytes += orig_len; 4410 u64_stats_update_end(&stats->syncp); 4411 4412 if (fast_rx->internal_forward) { 4413 struct sk_buff *xmit_skb = NULL; 4414 if (is_multicast_ether_addr(da)) { 4415 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4416 } else if (!ether_addr_equal(da, sa) && 4417 sta_info_get(rx->sdata, da)) { 4418 xmit_skb = skb; 4419 skb = NULL; 4420 } 4421 4422 if (xmit_skb) { 4423 /* 4424 * Send to wireless media and increase priority by 256 4425 * to keep the received priority instead of 4426 * reclassifying the frame (see cfg80211_classify8021d). 4427 */ 4428 xmit_skb->priority += 256; 4429 xmit_skb->protocol = htons(ETH_P_802_3); 4430 skb_reset_network_header(xmit_skb); 4431 skb_reset_mac_header(xmit_skb); 4432 dev_queue_xmit(xmit_skb); 4433 } 4434 4435 if (!skb) 4436 return; 4437 } 4438 4439 /* deliver to local stack */ 4440 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4441 memset(skb->cb, 0, sizeof(skb->cb)); 4442 if (rx->list) 4443 list_add_tail(&skb->list, rx->list); 4444 else 4445 netif_receive_skb(skb); 4446 4447 } 4448 4449 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4450 struct ieee80211_fast_rx *fast_rx) 4451 { 4452 struct sk_buff *skb = rx->skb; 4453 struct ieee80211_hdr *hdr = (void *)skb->data; 4454 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4455 struct sta_info *sta = rx->sta; 4456 int orig_len = skb->len; 4457 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4458 int snap_offs = hdrlen; 4459 struct { 4460 u8 snap[sizeof(rfc1042_header)]; 4461 __be16 proto; 4462 } *payload __aligned(2); 4463 struct { 4464 u8 da[ETH_ALEN]; 4465 u8 sa[ETH_ALEN]; 4466 } addrs __aligned(2); 4467 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4468 4469 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4470 * to a common data structure; drivers can implement that per queue 4471 * but we don't have that information in mac80211 4472 */ 4473 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4474 return false; 4475 4476 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4477 4478 /* If using encryption, we also need to have: 4479 * - PN_VALIDATED: similar, but the implementation is tricky 4480 * - DECRYPTED: necessary for PN_VALIDATED 4481 */ 4482 if (fast_rx->key && 4483 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4484 return false; 4485 4486 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4487 return false; 4488 4489 if (unlikely(ieee80211_is_frag(hdr))) 4490 return false; 4491 4492 /* Since our interface address cannot be multicast, this 4493 * implicitly also rejects multicast frames without the 4494 * explicit check. 4495 * 4496 * We shouldn't get any *data* frames not addressed to us 4497 * (AP mode will accept multicast *management* frames), but 4498 * punting here will make it go through the full checks in 4499 * ieee80211_accept_frame(). 4500 */ 4501 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4502 return false; 4503 4504 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4505 IEEE80211_FCTL_TODS)) != 4506 fast_rx->expected_ds_bits) 4507 return false; 4508 4509 /* assign the key to drop unencrypted frames (later) 4510 * and strip the IV/MIC if necessary 4511 */ 4512 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4513 /* GCMP header length is the same */ 4514 snap_offs += IEEE80211_CCMP_HDR_LEN; 4515 } 4516 4517 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4518 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4519 goto drop; 4520 4521 payload = (void *)(skb->data + snap_offs); 4522 4523 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4524 return false; 4525 4526 /* Don't handle these here since they require special code. 4527 * Accept AARP and IPX even though they should come with a 4528 * bridge-tunnel header - but if we get them this way then 4529 * there's little point in discarding them. 4530 */ 4531 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4532 payload->proto == fast_rx->control_port_protocol)) 4533 return false; 4534 } 4535 4536 /* after this point, don't punt to the slowpath! */ 4537 4538 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4539 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4540 goto drop; 4541 4542 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4543 goto drop; 4544 4545 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4546 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4547 RX_QUEUED) 4548 goto drop; 4549 4550 return true; 4551 } 4552 4553 /* do the header conversion - first grab the addresses */ 4554 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4555 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4556 /* remove the SNAP but leave the ethertype */ 4557 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4558 /* push the addresses in front */ 4559 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4560 4561 ieee80211_rx_8023(rx, fast_rx, orig_len); 4562 4563 return true; 4564 drop: 4565 dev_kfree_skb(skb); 4566 if (fast_rx->uses_rss) 4567 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4568 4569 stats->dropped++; 4570 return true; 4571 } 4572 4573 /* 4574 * This function returns whether or not the SKB 4575 * was destined for RX processing or not, which, 4576 * if consume is true, is equivalent to whether 4577 * or not the skb was consumed. 4578 */ 4579 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4580 struct sk_buff *skb, bool consume) 4581 { 4582 struct ieee80211_local *local = rx->local; 4583 struct ieee80211_sub_if_data *sdata = rx->sdata; 4584 4585 rx->skb = skb; 4586 4587 /* See if we can do fast-rx; if we have to copy we already lost, 4588 * so punt in that case. We should never have to deliver a data 4589 * frame to multiple interfaces anyway. 4590 * 4591 * We skip the ieee80211_accept_frame() call and do the necessary 4592 * checking inside ieee80211_invoke_fast_rx(). 4593 */ 4594 if (consume && rx->sta) { 4595 struct ieee80211_fast_rx *fast_rx; 4596 4597 fast_rx = rcu_dereference(rx->sta->fast_rx); 4598 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4599 return true; 4600 } 4601 4602 if (!ieee80211_accept_frame(rx)) 4603 return false; 4604 4605 if (!consume) { 4606 skb = skb_copy(skb, GFP_ATOMIC); 4607 if (!skb) { 4608 if (net_ratelimit()) 4609 wiphy_debug(local->hw.wiphy, 4610 "failed to copy skb for %s\n", 4611 sdata->name); 4612 return true; 4613 } 4614 4615 rx->skb = skb; 4616 } 4617 4618 ieee80211_invoke_rx_handlers(rx); 4619 return true; 4620 } 4621 4622 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4623 struct ieee80211_sta *pubsta, 4624 struct sk_buff *skb, 4625 struct list_head *list) 4626 { 4627 struct ieee80211_local *local = hw_to_local(hw); 4628 struct ieee80211_fast_rx *fast_rx; 4629 struct ieee80211_rx_data rx; 4630 4631 memset(&rx, 0, sizeof(rx)); 4632 rx.skb = skb; 4633 rx.local = local; 4634 rx.list = list; 4635 4636 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4637 4638 /* drop frame if too short for header */ 4639 if (skb->len < sizeof(struct ethhdr)) 4640 goto drop; 4641 4642 if (!pubsta) 4643 goto drop; 4644 4645 rx.sta = container_of(pubsta, struct sta_info, sta); 4646 rx.sdata = rx.sta->sdata; 4647 4648 fast_rx = rcu_dereference(rx.sta->fast_rx); 4649 if (!fast_rx) 4650 goto drop; 4651 4652 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4653 return; 4654 4655 drop: 4656 dev_kfree_skb(skb); 4657 } 4658 4659 /* 4660 * This is the actual Rx frames handler. as it belongs to Rx path it must 4661 * be called with rcu_read_lock protection. 4662 */ 4663 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4664 struct ieee80211_sta *pubsta, 4665 struct sk_buff *skb, 4666 struct list_head *list) 4667 { 4668 struct ieee80211_local *local = hw_to_local(hw); 4669 struct ieee80211_sub_if_data *sdata; 4670 struct ieee80211_hdr *hdr; 4671 __le16 fc; 4672 struct ieee80211_rx_data rx; 4673 struct ieee80211_sub_if_data *prev; 4674 struct rhlist_head *tmp; 4675 int err = 0; 4676 4677 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4678 memset(&rx, 0, sizeof(rx)); 4679 rx.skb = skb; 4680 rx.local = local; 4681 rx.list = list; 4682 4683 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4684 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4685 4686 if (ieee80211_is_mgmt(fc)) { 4687 /* drop frame if too short for header */ 4688 if (skb->len < ieee80211_hdrlen(fc)) 4689 err = -ENOBUFS; 4690 else 4691 err = skb_linearize(skb); 4692 } else { 4693 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4694 } 4695 4696 if (err) { 4697 dev_kfree_skb(skb); 4698 return; 4699 } 4700 4701 hdr = (struct ieee80211_hdr *)skb->data; 4702 ieee80211_parse_qos(&rx); 4703 ieee80211_verify_alignment(&rx); 4704 4705 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4706 ieee80211_is_beacon(hdr->frame_control) || 4707 ieee80211_is_s1g_beacon(hdr->frame_control))) 4708 ieee80211_scan_rx(local, skb); 4709 4710 if (ieee80211_is_data(fc)) { 4711 struct sta_info *sta, *prev_sta; 4712 4713 if (pubsta) { 4714 rx.sta = container_of(pubsta, struct sta_info, sta); 4715 rx.sdata = rx.sta->sdata; 4716 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4717 return; 4718 goto out; 4719 } 4720 4721 prev_sta = NULL; 4722 4723 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4724 if (!prev_sta) { 4725 prev_sta = sta; 4726 continue; 4727 } 4728 4729 rx.sta = prev_sta; 4730 rx.sdata = prev_sta->sdata; 4731 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4732 4733 prev_sta = sta; 4734 } 4735 4736 if (prev_sta) { 4737 rx.sta = prev_sta; 4738 rx.sdata = prev_sta->sdata; 4739 4740 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4741 return; 4742 goto out; 4743 } 4744 } 4745 4746 prev = NULL; 4747 4748 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4749 if (!ieee80211_sdata_running(sdata)) 4750 continue; 4751 4752 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4753 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4754 continue; 4755 4756 /* 4757 * frame is destined for this interface, but if it's 4758 * not also for the previous one we handle that after 4759 * the loop to avoid copying the SKB once too much 4760 */ 4761 4762 if (!prev) { 4763 prev = sdata; 4764 continue; 4765 } 4766 4767 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4768 rx.sdata = prev; 4769 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4770 4771 prev = sdata; 4772 } 4773 4774 if (prev) { 4775 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4776 rx.sdata = prev; 4777 4778 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4779 return; 4780 } 4781 4782 out: 4783 dev_kfree_skb(skb); 4784 } 4785 4786 /* 4787 * This is the receive path handler. It is called by a low level driver when an 4788 * 802.11 MPDU is received from the hardware. 4789 */ 4790 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4791 struct sk_buff *skb, struct list_head *list) 4792 { 4793 struct ieee80211_local *local = hw_to_local(hw); 4794 struct ieee80211_rate *rate = NULL; 4795 struct ieee80211_supported_band *sband; 4796 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4797 4798 WARN_ON_ONCE(softirq_count() == 0); 4799 4800 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4801 goto drop; 4802 4803 sband = local->hw.wiphy->bands[status->band]; 4804 if (WARN_ON(!sband)) 4805 goto drop; 4806 4807 /* 4808 * If we're suspending, it is possible although not too likely 4809 * that we'd be receiving frames after having already partially 4810 * quiesced the stack. We can't process such frames then since 4811 * that might, for example, cause stations to be added or other 4812 * driver callbacks be invoked. 4813 */ 4814 if (unlikely(local->quiescing || local->suspended)) 4815 goto drop; 4816 4817 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4818 if (unlikely(local->in_reconfig)) 4819 goto drop; 4820 4821 /* 4822 * The same happens when we're not even started, 4823 * but that's worth a warning. 4824 */ 4825 if (WARN_ON(!local->started)) 4826 goto drop; 4827 4828 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4829 /* 4830 * Validate the rate, unless a PLCP error means that 4831 * we probably can't have a valid rate here anyway. 4832 */ 4833 4834 switch (status->encoding) { 4835 case RX_ENC_HT: 4836 /* 4837 * rate_idx is MCS index, which can be [0-76] 4838 * as documented on: 4839 * 4840 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4841 * 4842 * Anything else would be some sort of driver or 4843 * hardware error. The driver should catch hardware 4844 * errors. 4845 */ 4846 if (WARN(status->rate_idx > 76, 4847 "Rate marked as an HT rate but passed " 4848 "status->rate_idx is not " 4849 "an MCS index [0-76]: %d (0x%02x)\n", 4850 status->rate_idx, 4851 status->rate_idx)) 4852 goto drop; 4853 break; 4854 case RX_ENC_VHT: 4855 if (WARN_ONCE(status->rate_idx > 9 || 4856 !status->nss || 4857 status->nss > 8, 4858 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4859 status->rate_idx, status->nss)) 4860 goto drop; 4861 break; 4862 case RX_ENC_HE: 4863 if (WARN_ONCE(status->rate_idx > 11 || 4864 !status->nss || 4865 status->nss > 8, 4866 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4867 status->rate_idx, status->nss)) 4868 goto drop; 4869 break; 4870 default: 4871 WARN_ON_ONCE(1); 4872 fallthrough; 4873 case RX_ENC_LEGACY: 4874 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4875 goto drop; 4876 rate = &sband->bitrates[status->rate_idx]; 4877 } 4878 } 4879 4880 status->rx_flags = 0; 4881 4882 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4883 4884 /* 4885 * Frames with failed FCS/PLCP checksum are not returned, 4886 * all other frames are returned without radiotap header 4887 * if it was previously present. 4888 * Also, frames with less than 16 bytes are dropped. 4889 */ 4890 if (!(status->flag & RX_FLAG_8023)) 4891 skb = ieee80211_rx_monitor(local, skb, rate); 4892 if (skb) { 4893 ieee80211_tpt_led_trig_rx(local, 4894 ((struct ieee80211_hdr *)skb->data)->frame_control, 4895 skb->len); 4896 4897 if (status->flag & RX_FLAG_8023) 4898 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 4899 else 4900 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4901 } 4902 4903 kcov_remote_stop(); 4904 return; 4905 drop: 4906 kfree_skb(skb); 4907 } 4908 EXPORT_SYMBOL(ieee80211_rx_list); 4909 4910 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4911 struct sk_buff *skb, struct napi_struct *napi) 4912 { 4913 struct sk_buff *tmp; 4914 LIST_HEAD(list); 4915 4916 4917 /* 4918 * key references and virtual interfaces are protected using RCU 4919 * and this requires that we are in a read-side RCU section during 4920 * receive processing 4921 */ 4922 rcu_read_lock(); 4923 ieee80211_rx_list(hw, pubsta, skb, &list); 4924 rcu_read_unlock(); 4925 4926 if (!napi) { 4927 netif_receive_skb_list(&list); 4928 return; 4929 } 4930 4931 list_for_each_entry_safe(skb, tmp, &list, list) { 4932 skb_list_del_init(skb); 4933 napi_gro_receive(napi, skb); 4934 } 4935 } 4936 EXPORT_SYMBOL(ieee80211_rx_napi); 4937 4938 /* This is a version of the rx handler that can be called from hard irq 4939 * context. Post the skb on the queue and schedule the tasklet */ 4940 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4941 { 4942 struct ieee80211_local *local = hw_to_local(hw); 4943 4944 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4945 4946 skb->pkt_type = IEEE80211_RX_MSG; 4947 skb_queue_tail(&local->skb_queue, skb); 4948 tasklet_schedule(&local->tasklet); 4949 } 4950 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4951