1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 struct sta_info *sta, 219 struct sk_buff *skb) 220 { 221 skb_queue_tail(&sdata->skb_queue, skb); 222 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 223 if (sta) 224 sta->rx_stats.packets++; 225 } 226 227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 228 struct sta_info *sta, 229 struct sk_buff *skb) 230 { 231 skb->protocol = 0; 232 __ieee80211_queue_skb_to_iface(sdata, sta, skb); 233 } 234 235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 236 struct sk_buff *skb, 237 int rtap_space) 238 { 239 struct { 240 struct ieee80211_hdr_3addr hdr; 241 u8 category; 242 u8 action_code; 243 } __packed __aligned(2) action; 244 245 if (!sdata) 246 return; 247 248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 249 250 if (skb->len < rtap_space + sizeof(action) + 251 VHT_MUMIMO_GROUPS_DATA_LEN) 252 return; 253 254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 255 return; 256 257 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 258 259 if (!ieee80211_is_action(action.hdr.frame_control)) 260 return; 261 262 if (action.category != WLAN_CATEGORY_VHT) 263 return; 264 265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 266 return; 267 268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 269 return; 270 271 skb = skb_copy(skb, GFP_ATOMIC); 272 if (!skb) 273 return; 274 275 ieee80211_queue_skb_to_iface(sdata, NULL, skb); 276 } 277 278 /* 279 * ieee80211_add_rx_radiotap_header - add radiotap header 280 * 281 * add a radiotap header containing all the fields which the hardware provided. 282 */ 283 static void 284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 285 struct sk_buff *skb, 286 struct ieee80211_rate *rate, 287 int rtap_len, bool has_fcs) 288 { 289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 290 struct ieee80211_radiotap_header *rthdr; 291 unsigned char *pos; 292 __le32 *it_present; 293 u32 it_present_val; 294 u16 rx_flags = 0; 295 u16 channel_flags = 0; 296 int mpdulen, chain; 297 unsigned long chains = status->chains; 298 struct ieee80211_vendor_radiotap rtap = {}; 299 struct ieee80211_radiotap_he he = {}; 300 struct ieee80211_radiotap_he_mu he_mu = {}; 301 struct ieee80211_radiotap_lsig lsig = {}; 302 303 if (status->flag & RX_FLAG_RADIOTAP_HE) { 304 he = *(struct ieee80211_radiotap_he *)skb->data; 305 skb_pull(skb, sizeof(he)); 306 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 307 } 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 311 skb_pull(skb, sizeof(he_mu)); 312 } 313 314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 316 skb_pull(skb, sizeof(lsig)); 317 } 318 319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 321 /* rtap.len and rtap.pad are undone immediately */ 322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 323 } 324 325 mpdulen = skb->len; 326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 327 mpdulen += FCS_LEN; 328 329 rthdr = skb_push(skb, rtap_len); 330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 331 it_present = &rthdr->it_present; 332 333 /* radiotap header, set always present flags */ 334 rthdr->it_len = cpu_to_le16(rtap_len); 335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 336 BIT(IEEE80211_RADIOTAP_CHANNEL) | 337 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 338 339 if (!status->chains) 340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 341 342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 343 it_present_val |= 344 BIT(IEEE80211_RADIOTAP_EXT) | 345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 350 } 351 352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 354 BIT(IEEE80211_RADIOTAP_EXT); 355 put_unaligned_le32(it_present_val, it_present); 356 it_present++; 357 it_present_val = rtap.present; 358 } 359 360 put_unaligned_le32(it_present_val, it_present); 361 362 /* This references through an offset into it_optional[] rather 363 * than via it_present otherwise later uses of pos will cause 364 * the compiler to think we have walked past the end of the 365 * struct member. 366 */ 367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 368 369 /* the order of the following fields is important */ 370 371 /* IEEE80211_RADIOTAP_TSFT */ 372 if (ieee80211_have_rx_timestamp(status)) { 373 /* padding */ 374 while ((pos - (u8 *)rthdr) & 7) 375 *pos++ = 0; 376 put_unaligned_le64( 377 ieee80211_calculate_rx_timestamp(local, status, 378 mpdulen, 0), 379 pos); 380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 381 pos += 8; 382 } 383 384 /* IEEE80211_RADIOTAP_FLAGS */ 385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 386 *pos |= IEEE80211_RADIOTAP_F_FCS; 387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 388 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 391 pos++; 392 393 /* IEEE80211_RADIOTAP_RATE */ 394 if (!rate || status->encoding != RX_ENC_LEGACY) { 395 /* 396 * Without rate information don't add it. If we have, 397 * MCS information is a separate field in radiotap, 398 * added below. The byte here is needed as padding 399 * for the channel though, so initialise it to 0. 400 */ 401 *pos = 0; 402 } else { 403 int shift = 0; 404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 405 if (status->bw == RATE_INFO_BW_10) 406 shift = 1; 407 else if (status->bw == RATE_INFO_BW_5) 408 shift = 2; 409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 410 } 411 pos++; 412 413 /* IEEE80211_RADIOTAP_CHANNEL */ 414 /* TODO: frequency offset in KHz */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ || 423 status->band == NL80211_BAND_6GHZ) 424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 425 else if (status->encoding != RX_ENC_LEGACY) 426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 429 else if (rate) 430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 431 else 432 channel_flags |= IEEE80211_CHAN_2GHZ; 433 put_unaligned_le16(channel_flags, pos); 434 pos += 2; 435 436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 439 *pos = status->signal; 440 rthdr->it_present |= 441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 442 pos++; 443 } 444 445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 446 447 if (!status->chains) { 448 /* IEEE80211_RADIOTAP_ANTENNA */ 449 *pos = status->antenna; 450 pos++; 451 } 452 453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 454 455 /* IEEE80211_RADIOTAP_RX_FLAGS */ 456 /* ensure 2 byte alignment for the 2 byte field as required */ 457 if ((pos - (u8 *)rthdr) & 1) 458 *pos++ = 0; 459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 461 put_unaligned_le16(rx_flags, pos); 462 pos += 2; 463 464 if (status->encoding == RX_ENC_HT) { 465 unsigned int stbc; 466 467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 468 *pos = local->hw.radiotap_mcs_details; 469 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 470 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 471 if (status->enc_flags & RX_ENC_FLAG_LDPC) 472 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 473 pos++; 474 *pos = 0; 475 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 476 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 477 if (status->bw == RATE_INFO_BW_40) 478 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 479 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 480 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 481 if (status->enc_flags & RX_ENC_FLAG_LDPC) 482 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 483 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 484 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 485 pos++; 486 *pos++ = status->rate_idx; 487 } 488 489 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 490 u16 flags = 0; 491 492 /* ensure 4 byte alignment */ 493 while ((pos - (u8 *)rthdr) & 3) 494 pos++; 495 rthdr->it_present |= 496 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 497 put_unaligned_le32(status->ampdu_reference, pos); 498 pos += 4; 499 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 502 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 503 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 504 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 505 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 506 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 507 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 508 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 509 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 510 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 511 put_unaligned_le16(flags, pos); 512 pos += 2; 513 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 514 *pos++ = status->ampdu_delimiter_crc; 515 else 516 *pos++ = 0; 517 *pos++ = 0; 518 } 519 520 if (status->encoding == RX_ENC_VHT) { 521 u16 known = local->hw.radiotap_vht_details; 522 523 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 524 put_unaligned_le16(known, pos); 525 pos += 2; 526 /* flags */ 527 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 529 /* in VHT, STBC is binary */ 530 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 531 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 532 if (status->enc_flags & RX_ENC_FLAG_BF) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 534 pos++; 535 /* bandwidth */ 536 switch (status->bw) { 537 case RATE_INFO_BW_80: 538 *pos++ = 4; 539 break; 540 case RATE_INFO_BW_160: 541 *pos++ = 11; 542 break; 543 case RATE_INFO_BW_40: 544 *pos++ = 1; 545 break; 546 default: 547 *pos++ = 0; 548 } 549 /* MCS/NSS */ 550 *pos = (status->rate_idx << 4) | status->nss; 551 pos += 4; 552 /* coding field */ 553 if (status->enc_flags & RX_ENC_FLAG_LDPC) 554 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 555 pos++; 556 /* group ID */ 557 pos++; 558 /* partial_aid */ 559 pos += 2; 560 } 561 562 if (local->hw.radiotap_timestamp.units_pos >= 0) { 563 u16 accuracy = 0; 564 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 565 566 rthdr->it_present |= 567 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 568 569 /* ensure 8 byte alignment */ 570 while ((pos - (u8 *)rthdr) & 7) 571 pos++; 572 573 put_unaligned_le64(status->device_timestamp, pos); 574 pos += sizeof(u64); 575 576 if (local->hw.radiotap_timestamp.accuracy >= 0) { 577 accuracy = local->hw.radiotap_timestamp.accuracy; 578 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 579 } 580 put_unaligned_le16(accuracy, pos); 581 pos += sizeof(u16); 582 583 *pos++ = local->hw.radiotap_timestamp.units_pos; 584 *pos++ = flags; 585 } 586 587 if (status->encoding == RX_ENC_HE && 588 status->flag & RX_FLAG_RADIOTAP_HE) { 589 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 590 591 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 592 he.data6 |= HE_PREP(DATA6_NSTS, 593 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 594 status->enc_flags)); 595 he.data3 |= HE_PREP(DATA3_STBC, 1); 596 } else { 597 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 598 } 599 600 #define CHECK_GI(s) \ 601 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 602 (int)NL80211_RATE_INFO_HE_GI_##s) 603 604 CHECK_GI(0_8); 605 CHECK_GI(1_6); 606 CHECK_GI(3_2); 607 608 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 609 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 610 he.data3 |= HE_PREP(DATA3_CODING, 611 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 612 613 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 614 615 switch (status->bw) { 616 case RATE_INFO_BW_20: 617 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 618 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 619 break; 620 case RATE_INFO_BW_40: 621 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 622 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 623 break; 624 case RATE_INFO_BW_80: 625 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 626 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 627 break; 628 case RATE_INFO_BW_160: 629 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 630 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 631 break; 632 case RATE_INFO_BW_HE_RU: 633 #define CHECK_RU_ALLOC(s) \ 634 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 635 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 636 637 CHECK_RU_ALLOC(26); 638 CHECK_RU_ALLOC(52); 639 CHECK_RU_ALLOC(106); 640 CHECK_RU_ALLOC(242); 641 CHECK_RU_ALLOC(484); 642 CHECK_RU_ALLOC(996); 643 CHECK_RU_ALLOC(2x996); 644 645 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 646 status->he_ru + 4); 647 break; 648 default: 649 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 650 } 651 652 /* ensure 2 byte alignment */ 653 while ((pos - (u8 *)rthdr) & 1) 654 pos++; 655 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 656 memcpy(pos, &he, sizeof(he)); 657 pos += sizeof(he); 658 } 659 660 if (status->encoding == RX_ENC_HE && 661 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 662 /* ensure 2 byte alignment */ 663 while ((pos - (u8 *)rthdr) & 1) 664 pos++; 665 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 666 memcpy(pos, &he_mu, sizeof(he_mu)); 667 pos += sizeof(he_mu); 668 } 669 670 if (status->flag & RX_FLAG_NO_PSDU) { 671 rthdr->it_present |= 672 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 673 *pos++ = status->zero_length_psdu_type; 674 } 675 676 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 677 /* ensure 2 byte alignment */ 678 while ((pos - (u8 *)rthdr) & 1) 679 pos++; 680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 681 memcpy(pos, &lsig, sizeof(lsig)); 682 pos += sizeof(lsig); 683 } 684 685 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 686 *pos++ = status->chain_signal[chain]; 687 *pos++ = chain; 688 } 689 690 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 691 /* ensure 2 byte alignment for the vendor field as required */ 692 if ((pos - (u8 *)rthdr) & 1) 693 *pos++ = 0; 694 *pos++ = rtap.oui[0]; 695 *pos++ = rtap.oui[1]; 696 *pos++ = rtap.oui[2]; 697 *pos++ = rtap.subns; 698 put_unaligned_le16(rtap.len, pos); 699 pos += 2; 700 /* align the actual payload as requested */ 701 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 702 *pos++ = 0; 703 /* data (and possible padding) already follows */ 704 } 705 } 706 707 static struct sk_buff * 708 ieee80211_make_monitor_skb(struct ieee80211_local *local, 709 struct sk_buff **origskb, 710 struct ieee80211_rate *rate, 711 int rtap_space, bool use_origskb) 712 { 713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 714 int rt_hdrlen, needed_headroom; 715 struct sk_buff *skb; 716 717 /* room for the radiotap header based on driver features */ 718 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 719 needed_headroom = rt_hdrlen - rtap_space; 720 721 if (use_origskb) { 722 /* only need to expand headroom if necessary */ 723 skb = *origskb; 724 *origskb = NULL; 725 726 /* 727 * This shouldn't trigger often because most devices have an 728 * RX header they pull before we get here, and that should 729 * be big enough for our radiotap information. We should 730 * probably export the length to drivers so that we can have 731 * them allocate enough headroom to start with. 732 */ 733 if (skb_headroom(skb) < needed_headroom && 734 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 735 dev_kfree_skb(skb); 736 return NULL; 737 } 738 } else { 739 /* 740 * Need to make a copy and possibly remove radiotap header 741 * and FCS from the original. 742 */ 743 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 744 0, GFP_ATOMIC); 745 746 if (!skb) 747 return NULL; 748 } 749 750 /* prepend radiotap information */ 751 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 752 753 skb_reset_mac_header(skb); 754 skb->ip_summed = CHECKSUM_UNNECESSARY; 755 skb->pkt_type = PACKET_OTHERHOST; 756 skb->protocol = htons(ETH_P_802_2); 757 758 return skb; 759 } 760 761 /* 762 * This function copies a received frame to all monitor interfaces and 763 * returns a cleaned-up SKB that no longer includes the FCS nor the 764 * radiotap header the driver might have added. 765 */ 766 static struct sk_buff * 767 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 768 struct ieee80211_rate *rate) 769 { 770 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 771 struct ieee80211_sub_if_data *sdata; 772 struct sk_buff *monskb = NULL; 773 int present_fcs_len = 0; 774 unsigned int rtap_space = 0; 775 struct ieee80211_sub_if_data *monitor_sdata = 776 rcu_dereference(local->monitor_sdata); 777 bool only_monitor = false; 778 unsigned int min_head_len; 779 780 if (status->flag & RX_FLAG_RADIOTAP_HE) 781 rtap_space += sizeof(struct ieee80211_radiotap_he); 782 783 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 784 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 785 786 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 787 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 788 789 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 790 struct ieee80211_vendor_radiotap *rtap = 791 (void *)(origskb->data + rtap_space); 792 793 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 794 } 795 796 min_head_len = rtap_space; 797 798 /* 799 * First, we may need to make a copy of the skb because 800 * (1) we need to modify it for radiotap (if not present), and 801 * (2) the other RX handlers will modify the skb we got. 802 * 803 * We don't need to, of course, if we aren't going to return 804 * the SKB because it has a bad FCS/PLCP checksum. 805 */ 806 807 if (!(status->flag & RX_FLAG_NO_PSDU)) { 808 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 809 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 810 /* driver bug */ 811 WARN_ON(1); 812 dev_kfree_skb(origskb); 813 return NULL; 814 } 815 present_fcs_len = FCS_LEN; 816 } 817 818 /* also consider the hdr->frame_control */ 819 min_head_len += 2; 820 } 821 822 /* ensure that the expected data elements are in skb head */ 823 if (!pskb_may_pull(origskb, min_head_len)) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 829 830 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 831 if (only_monitor) { 832 dev_kfree_skb(origskb); 833 return NULL; 834 } 835 836 return ieee80211_clean_skb(origskb, present_fcs_len, 837 rtap_space); 838 } 839 840 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 841 842 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 843 bool last_monitor = list_is_last(&sdata->u.mntr.list, 844 &local->mon_list); 845 846 if (!monskb) 847 monskb = ieee80211_make_monitor_skb(local, &origskb, 848 rate, rtap_space, 849 only_monitor && 850 last_monitor); 851 852 if (monskb) { 853 struct sk_buff *skb; 854 855 if (last_monitor) { 856 skb = monskb; 857 monskb = NULL; 858 } else { 859 skb = skb_clone(monskb, GFP_ATOMIC); 860 } 861 862 if (skb) { 863 skb->dev = sdata->dev; 864 dev_sw_netstats_rx_add(skb->dev, skb->len); 865 netif_receive_skb(skb); 866 } 867 } 868 869 if (last_monitor) 870 break; 871 } 872 873 /* this happens if last_monitor was erroneously false */ 874 dev_kfree_skb(monskb); 875 876 /* ditto */ 877 if (!origskb) 878 return NULL; 879 880 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 881 } 882 883 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 884 { 885 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 886 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 887 int tid, seqno_idx, security_idx; 888 889 /* does the frame have a qos control field? */ 890 if (ieee80211_is_data_qos(hdr->frame_control)) { 891 u8 *qc = ieee80211_get_qos_ctl(hdr); 892 /* frame has qos control */ 893 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 894 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 895 status->rx_flags |= IEEE80211_RX_AMSDU; 896 897 seqno_idx = tid; 898 security_idx = tid; 899 } else { 900 /* 901 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 902 * 903 * Sequence numbers for management frames, QoS data 904 * frames with a broadcast/multicast address in the 905 * Address 1 field, and all non-QoS data frames sent 906 * by QoS STAs are assigned using an additional single 907 * modulo-4096 counter, [...] 908 * 909 * We also use that counter for non-QoS STAs. 910 */ 911 seqno_idx = IEEE80211_NUM_TIDS; 912 security_idx = 0; 913 if (ieee80211_is_mgmt(hdr->frame_control)) 914 security_idx = IEEE80211_NUM_TIDS; 915 tid = 0; 916 } 917 918 rx->seqno_idx = seqno_idx; 919 rx->security_idx = security_idx; 920 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 921 * For now, set skb->priority to 0 for other cases. */ 922 rx->skb->priority = (tid > 7) ? 0 : tid; 923 } 924 925 /** 926 * DOC: Packet alignment 927 * 928 * Drivers always need to pass packets that are aligned to two-byte boundaries 929 * to the stack. 930 * 931 * Additionally, should, if possible, align the payload data in a way that 932 * guarantees that the contained IP header is aligned to a four-byte 933 * boundary. In the case of regular frames, this simply means aligning the 934 * payload to a four-byte boundary (because either the IP header is directly 935 * contained, or IV/RFC1042 headers that have a length divisible by four are 936 * in front of it). If the payload data is not properly aligned and the 937 * architecture doesn't support efficient unaligned operations, mac80211 938 * will align the data. 939 * 940 * With A-MSDU frames, however, the payload data address must yield two modulo 941 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 942 * push the IP header further back to a multiple of four again. Thankfully, the 943 * specs were sane enough this time around to require padding each A-MSDU 944 * subframe to a length that is a multiple of four. 945 * 946 * Padding like Atheros hardware adds which is between the 802.11 header and 947 * the payload is not supported, the driver is required to move the 802.11 948 * header to be directly in front of the payload in that case. 949 */ 950 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 951 { 952 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 953 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 954 #endif 955 } 956 957 958 /* rx handlers */ 959 960 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 961 { 962 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 963 964 if (is_multicast_ether_addr(hdr->addr1)) 965 return 0; 966 967 return ieee80211_is_robust_mgmt_frame(skb); 968 } 969 970 971 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 972 { 973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 974 975 if (!is_multicast_ether_addr(hdr->addr1)) 976 return 0; 977 978 return ieee80211_is_robust_mgmt_frame(skb); 979 } 980 981 982 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 983 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 984 { 985 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 986 struct ieee80211_mmie *mmie; 987 struct ieee80211_mmie_16 *mmie16; 988 989 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 990 return -1; 991 992 if (!ieee80211_is_robust_mgmt_frame(skb) && 993 !ieee80211_is_beacon(hdr->frame_control)) 994 return -1; /* not a robust management frame */ 995 996 mmie = (struct ieee80211_mmie *) 997 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id == WLAN_EID_MMIE && 999 mmie->length == sizeof(*mmie) - 2) 1000 return le16_to_cpu(mmie->key_id); 1001 1002 mmie16 = (struct ieee80211_mmie_16 *) 1003 (skb->data + skb->len - sizeof(*mmie16)); 1004 if (skb->len >= 24 + sizeof(*mmie16) && 1005 mmie16->element_id == WLAN_EID_MMIE && 1006 mmie16->length == sizeof(*mmie16) - 2) 1007 return le16_to_cpu(mmie16->key_id); 1008 1009 return -1; 1010 } 1011 1012 static int ieee80211_get_keyid(struct sk_buff *skb, 1013 const struct ieee80211_cipher_scheme *cs) 1014 { 1015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1016 __le16 fc; 1017 int hdrlen; 1018 int minlen; 1019 u8 key_idx_off; 1020 u8 key_idx_shift; 1021 u8 keyid; 1022 1023 fc = hdr->frame_control; 1024 hdrlen = ieee80211_hdrlen(fc); 1025 1026 if (cs) { 1027 minlen = hdrlen + cs->hdr_len; 1028 key_idx_off = hdrlen + cs->key_idx_off; 1029 key_idx_shift = cs->key_idx_shift; 1030 } else { 1031 /* WEP, TKIP, CCMP and GCMP */ 1032 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1033 key_idx_off = hdrlen + 3; 1034 key_idx_shift = 6; 1035 } 1036 1037 if (unlikely(skb->len < minlen)) 1038 return -EINVAL; 1039 1040 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1041 1042 if (cs) 1043 keyid &= cs->key_idx_mask; 1044 keyid >>= key_idx_shift; 1045 1046 /* cs could use more than the usual two bits for the keyid */ 1047 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1048 return -EINVAL; 1049 1050 return keyid; 1051 } 1052 1053 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1054 { 1055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1056 char *dev_addr = rx->sdata->vif.addr; 1057 1058 if (ieee80211_is_data(hdr->frame_control)) { 1059 if (is_multicast_ether_addr(hdr->addr1)) { 1060 if (ieee80211_has_tods(hdr->frame_control) || 1061 !ieee80211_has_fromds(hdr->frame_control)) 1062 return RX_DROP_MONITOR; 1063 if (ether_addr_equal(hdr->addr3, dev_addr)) 1064 return RX_DROP_MONITOR; 1065 } else { 1066 if (!ieee80211_has_a4(hdr->frame_control)) 1067 return RX_DROP_MONITOR; 1068 if (ether_addr_equal(hdr->addr4, dev_addr)) 1069 return RX_DROP_MONITOR; 1070 } 1071 } 1072 1073 /* If there is not an established peer link and this is not a peer link 1074 * establisment frame, beacon or probe, drop the frame. 1075 */ 1076 1077 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1078 struct ieee80211_mgmt *mgmt; 1079 1080 if (!ieee80211_is_mgmt(hdr->frame_control)) 1081 return RX_DROP_MONITOR; 1082 1083 if (ieee80211_is_action(hdr->frame_control)) { 1084 u8 category; 1085 1086 /* make sure category field is present */ 1087 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1088 return RX_DROP_MONITOR; 1089 1090 mgmt = (struct ieee80211_mgmt *)hdr; 1091 category = mgmt->u.action.category; 1092 if (category != WLAN_CATEGORY_MESH_ACTION && 1093 category != WLAN_CATEGORY_SELF_PROTECTED) 1094 return RX_DROP_MONITOR; 1095 return RX_CONTINUE; 1096 } 1097 1098 if (ieee80211_is_probe_req(hdr->frame_control) || 1099 ieee80211_is_probe_resp(hdr->frame_control) || 1100 ieee80211_is_beacon(hdr->frame_control) || 1101 ieee80211_is_auth(hdr->frame_control)) 1102 return RX_CONTINUE; 1103 1104 return RX_DROP_MONITOR; 1105 } 1106 1107 return RX_CONTINUE; 1108 } 1109 1110 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1111 int index) 1112 { 1113 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1114 struct sk_buff *tail = skb_peek_tail(frames); 1115 struct ieee80211_rx_status *status; 1116 1117 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1118 return true; 1119 1120 if (!tail) 1121 return false; 1122 1123 status = IEEE80211_SKB_RXCB(tail); 1124 if (status->flag & RX_FLAG_AMSDU_MORE) 1125 return false; 1126 1127 return true; 1128 } 1129 1130 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1131 struct tid_ampdu_rx *tid_agg_rx, 1132 int index, 1133 struct sk_buff_head *frames) 1134 { 1135 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1136 struct sk_buff *skb; 1137 struct ieee80211_rx_status *status; 1138 1139 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1140 1141 if (skb_queue_empty(skb_list)) 1142 goto no_frame; 1143 1144 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1145 __skb_queue_purge(skb_list); 1146 goto no_frame; 1147 } 1148 1149 /* release frames from the reorder ring buffer */ 1150 tid_agg_rx->stored_mpdu_num--; 1151 while ((skb = __skb_dequeue(skb_list))) { 1152 status = IEEE80211_SKB_RXCB(skb); 1153 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1154 __skb_queue_tail(frames, skb); 1155 } 1156 1157 no_frame: 1158 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1159 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1160 } 1161 1162 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1163 struct tid_ampdu_rx *tid_agg_rx, 1164 u16 head_seq_num, 1165 struct sk_buff_head *frames) 1166 { 1167 int index; 1168 1169 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1170 1171 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1172 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1173 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1174 frames); 1175 } 1176 } 1177 1178 /* 1179 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1180 * the skb was added to the buffer longer than this time ago, the earlier 1181 * frames that have not yet been received are assumed to be lost and the skb 1182 * can be released for processing. This may also release other skb's from the 1183 * reorder buffer if there are no additional gaps between the frames. 1184 * 1185 * Callers must hold tid_agg_rx->reorder_lock. 1186 */ 1187 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1188 1189 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1190 struct tid_ampdu_rx *tid_agg_rx, 1191 struct sk_buff_head *frames) 1192 { 1193 int index, i, j; 1194 1195 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1196 1197 /* release the buffer until next missing frame */ 1198 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1199 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1200 tid_agg_rx->stored_mpdu_num) { 1201 /* 1202 * No buffers ready to be released, but check whether any 1203 * frames in the reorder buffer have timed out. 1204 */ 1205 int skipped = 1; 1206 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1207 j = (j + 1) % tid_agg_rx->buf_size) { 1208 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1209 skipped++; 1210 continue; 1211 } 1212 if (skipped && 1213 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1214 HT_RX_REORDER_BUF_TIMEOUT)) 1215 goto set_release_timer; 1216 1217 /* don't leave incomplete A-MSDUs around */ 1218 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1219 i = (i + 1) % tid_agg_rx->buf_size) 1220 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1221 1222 ht_dbg_ratelimited(sdata, 1223 "release an RX reorder frame due to timeout on earlier frames\n"); 1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1225 frames); 1226 1227 /* 1228 * Increment the head seq# also for the skipped slots. 1229 */ 1230 tid_agg_rx->head_seq_num = 1231 (tid_agg_rx->head_seq_num + 1232 skipped) & IEEE80211_SN_MASK; 1233 skipped = 0; 1234 } 1235 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1236 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1237 frames); 1238 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1239 } 1240 1241 if (tid_agg_rx->stored_mpdu_num) { 1242 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1243 1244 for (; j != (index - 1) % tid_agg_rx->buf_size; 1245 j = (j + 1) % tid_agg_rx->buf_size) { 1246 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1247 break; 1248 } 1249 1250 set_release_timer: 1251 1252 if (!tid_agg_rx->removed) 1253 mod_timer(&tid_agg_rx->reorder_timer, 1254 tid_agg_rx->reorder_time[j] + 1 + 1255 HT_RX_REORDER_BUF_TIMEOUT); 1256 } else { 1257 del_timer(&tid_agg_rx->reorder_timer); 1258 } 1259 } 1260 1261 /* 1262 * As this function belongs to the RX path it must be under 1263 * rcu_read_lock protection. It returns false if the frame 1264 * can be processed immediately, true if it was consumed. 1265 */ 1266 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1267 struct tid_ampdu_rx *tid_agg_rx, 1268 struct sk_buff *skb, 1269 struct sk_buff_head *frames) 1270 { 1271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1272 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1273 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1274 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1275 u16 head_seq_num, buf_size; 1276 int index; 1277 bool ret = true; 1278 1279 spin_lock(&tid_agg_rx->reorder_lock); 1280 1281 /* 1282 * Offloaded BA sessions have no known starting sequence number so pick 1283 * one from first Rxed frame for this tid after BA was started. 1284 */ 1285 if (unlikely(tid_agg_rx->auto_seq)) { 1286 tid_agg_rx->auto_seq = false; 1287 tid_agg_rx->ssn = mpdu_seq_num; 1288 tid_agg_rx->head_seq_num = mpdu_seq_num; 1289 } 1290 1291 buf_size = tid_agg_rx->buf_size; 1292 head_seq_num = tid_agg_rx->head_seq_num; 1293 1294 /* 1295 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1296 * be reordered. 1297 */ 1298 if (unlikely(!tid_agg_rx->started)) { 1299 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1300 ret = false; 1301 goto out; 1302 } 1303 tid_agg_rx->started = true; 1304 } 1305 1306 /* frame with out of date sequence number */ 1307 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1308 dev_kfree_skb(skb); 1309 goto out; 1310 } 1311 1312 /* 1313 * If frame the sequence number exceeds our buffering window 1314 * size release some previous frames to make room for this one. 1315 */ 1316 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1317 head_seq_num = ieee80211_sn_inc( 1318 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1319 /* release stored frames up to new head to stack */ 1320 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1321 head_seq_num, frames); 1322 } 1323 1324 /* Now the new frame is always in the range of the reordering buffer */ 1325 1326 index = mpdu_seq_num % tid_agg_rx->buf_size; 1327 1328 /* check if we already stored this frame */ 1329 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1330 dev_kfree_skb(skb); 1331 goto out; 1332 } 1333 1334 /* 1335 * If the current MPDU is in the right order and nothing else 1336 * is stored we can process it directly, no need to buffer it. 1337 * If it is first but there's something stored, we may be able 1338 * to release frames after this one. 1339 */ 1340 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1341 tid_agg_rx->stored_mpdu_num == 0) { 1342 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1343 tid_agg_rx->head_seq_num = 1344 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1345 ret = false; 1346 goto out; 1347 } 1348 1349 /* put the frame in the reordering buffer */ 1350 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1351 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1352 tid_agg_rx->reorder_time[index] = jiffies; 1353 tid_agg_rx->stored_mpdu_num++; 1354 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1355 } 1356 1357 out: 1358 spin_unlock(&tid_agg_rx->reorder_lock); 1359 return ret; 1360 } 1361 1362 /* 1363 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1364 * true if the MPDU was buffered, false if it should be processed. 1365 */ 1366 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1367 struct sk_buff_head *frames) 1368 { 1369 struct sk_buff *skb = rx->skb; 1370 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1371 struct sta_info *sta = rx->sta; 1372 struct tid_ampdu_rx *tid_agg_rx; 1373 u16 sc; 1374 u8 tid, ack_policy; 1375 1376 if (!ieee80211_is_data_qos(hdr->frame_control) || 1377 is_multicast_ether_addr(hdr->addr1)) 1378 goto dont_reorder; 1379 1380 /* 1381 * filter the QoS data rx stream according to 1382 * STA/TID and check if this STA/TID is on aggregation 1383 */ 1384 1385 if (!sta) 1386 goto dont_reorder; 1387 1388 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1389 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1390 tid = ieee80211_get_tid(hdr); 1391 1392 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1393 if (!tid_agg_rx) { 1394 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1395 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1396 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1397 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1398 WLAN_BACK_RECIPIENT, 1399 WLAN_REASON_QSTA_REQUIRE_SETUP); 1400 goto dont_reorder; 1401 } 1402 1403 /* qos null data frames are excluded */ 1404 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1405 goto dont_reorder; 1406 1407 /* not part of a BA session */ 1408 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1409 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1410 goto dont_reorder; 1411 1412 /* new, potentially un-ordered, ampdu frame - process it */ 1413 1414 /* reset session timer */ 1415 if (tid_agg_rx->timeout) 1416 tid_agg_rx->last_rx = jiffies; 1417 1418 /* if this mpdu is fragmented - terminate rx aggregation session */ 1419 sc = le16_to_cpu(hdr->seq_ctrl); 1420 if (sc & IEEE80211_SCTL_FRAG) { 1421 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); 1422 return; 1423 } 1424 1425 /* 1426 * No locking needed -- we will only ever process one 1427 * RX packet at a time, and thus own tid_agg_rx. All 1428 * other code manipulating it needs to (and does) make 1429 * sure that we cannot get to it any more before doing 1430 * anything with it. 1431 */ 1432 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1433 frames)) 1434 return; 1435 1436 dont_reorder: 1437 __skb_queue_tail(frames, skb); 1438 } 1439 1440 static ieee80211_rx_result debug_noinline 1441 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1442 { 1443 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1444 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1445 1446 if (status->flag & RX_FLAG_DUP_VALIDATED) 1447 return RX_CONTINUE; 1448 1449 /* 1450 * Drop duplicate 802.11 retransmissions 1451 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1452 */ 1453 1454 if (rx->skb->len < 24) 1455 return RX_CONTINUE; 1456 1457 if (ieee80211_is_ctl(hdr->frame_control) || 1458 ieee80211_is_any_nullfunc(hdr->frame_control) || 1459 is_multicast_ether_addr(hdr->addr1)) 1460 return RX_CONTINUE; 1461 1462 if (!rx->sta) 1463 return RX_CONTINUE; 1464 1465 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1466 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1467 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1468 rx->sta->rx_stats.num_duplicates++; 1469 return RX_DROP_UNUSABLE; 1470 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1471 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1472 } 1473 1474 return RX_CONTINUE; 1475 } 1476 1477 static ieee80211_rx_result debug_noinline 1478 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1479 { 1480 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1481 1482 /* Drop disallowed frame classes based on STA auth/assoc state; 1483 * IEEE 802.11, Chap 5.5. 1484 * 1485 * mac80211 filters only based on association state, i.e. it drops 1486 * Class 3 frames from not associated stations. hostapd sends 1487 * deauth/disassoc frames when needed. In addition, hostapd is 1488 * responsible for filtering on both auth and assoc states. 1489 */ 1490 1491 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1492 return ieee80211_rx_mesh_check(rx); 1493 1494 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1495 ieee80211_is_pspoll(hdr->frame_control)) && 1496 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1497 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1498 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1499 /* 1500 * accept port control frames from the AP even when it's not 1501 * yet marked ASSOC to prevent a race where we don't set the 1502 * assoc bit quickly enough before it sends the first frame 1503 */ 1504 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1505 ieee80211_is_data_present(hdr->frame_control)) { 1506 unsigned int hdrlen; 1507 __be16 ethertype; 1508 1509 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1510 1511 if (rx->skb->len < hdrlen + 8) 1512 return RX_DROP_MONITOR; 1513 1514 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1515 if (ethertype == rx->sdata->control_port_protocol) 1516 return RX_CONTINUE; 1517 } 1518 1519 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1520 cfg80211_rx_spurious_frame(rx->sdata->dev, 1521 hdr->addr2, 1522 GFP_ATOMIC)) 1523 return RX_DROP_UNUSABLE; 1524 1525 return RX_DROP_MONITOR; 1526 } 1527 1528 return RX_CONTINUE; 1529 } 1530 1531 1532 static ieee80211_rx_result debug_noinline 1533 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1534 { 1535 struct ieee80211_local *local; 1536 struct ieee80211_hdr *hdr; 1537 struct sk_buff *skb; 1538 1539 local = rx->local; 1540 skb = rx->skb; 1541 hdr = (struct ieee80211_hdr *) skb->data; 1542 1543 if (!local->pspolling) 1544 return RX_CONTINUE; 1545 1546 if (!ieee80211_has_fromds(hdr->frame_control)) 1547 /* this is not from AP */ 1548 return RX_CONTINUE; 1549 1550 if (!ieee80211_is_data(hdr->frame_control)) 1551 return RX_CONTINUE; 1552 1553 if (!ieee80211_has_moredata(hdr->frame_control)) { 1554 /* AP has no more frames buffered for us */ 1555 local->pspolling = false; 1556 return RX_CONTINUE; 1557 } 1558 1559 /* more data bit is set, let's request a new frame from the AP */ 1560 ieee80211_send_pspoll(local, rx->sdata); 1561 1562 return RX_CONTINUE; 1563 } 1564 1565 static void sta_ps_start(struct sta_info *sta) 1566 { 1567 struct ieee80211_sub_if_data *sdata = sta->sdata; 1568 struct ieee80211_local *local = sdata->local; 1569 struct ps_data *ps; 1570 int tid; 1571 1572 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1573 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1574 ps = &sdata->bss->ps; 1575 else 1576 return; 1577 1578 atomic_inc(&ps->num_sta_ps); 1579 set_sta_flag(sta, WLAN_STA_PS_STA); 1580 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1581 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1582 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1583 sta->sta.addr, sta->sta.aid); 1584 1585 ieee80211_clear_fast_xmit(sta); 1586 1587 if (!sta->sta.txq[0]) 1588 return; 1589 1590 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1591 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1592 1593 ieee80211_unschedule_txq(&local->hw, txq, false); 1594 1595 if (txq_has_queue(txq)) 1596 set_bit(tid, &sta->txq_buffered_tids); 1597 else 1598 clear_bit(tid, &sta->txq_buffered_tids); 1599 } 1600 } 1601 1602 static void sta_ps_end(struct sta_info *sta) 1603 { 1604 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1605 sta->sta.addr, sta->sta.aid); 1606 1607 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1608 /* 1609 * Clear the flag only if the other one is still set 1610 * so that the TX path won't start TX'ing new frames 1611 * directly ... In the case that the driver flag isn't 1612 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1613 */ 1614 clear_sta_flag(sta, WLAN_STA_PS_STA); 1615 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1616 sta->sta.addr, sta->sta.aid); 1617 return; 1618 } 1619 1620 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1621 clear_sta_flag(sta, WLAN_STA_PS_STA); 1622 ieee80211_sta_ps_deliver_wakeup(sta); 1623 } 1624 1625 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1626 { 1627 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1628 bool in_ps; 1629 1630 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1631 1632 /* Don't let the same PS state be set twice */ 1633 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1634 if ((start && in_ps) || (!start && !in_ps)) 1635 return -EINVAL; 1636 1637 if (start) 1638 sta_ps_start(sta); 1639 else 1640 sta_ps_end(sta); 1641 1642 return 0; 1643 } 1644 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1645 1646 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1647 { 1648 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1649 1650 if (test_sta_flag(sta, WLAN_STA_SP)) 1651 return; 1652 1653 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1654 ieee80211_sta_ps_deliver_poll_response(sta); 1655 else 1656 set_sta_flag(sta, WLAN_STA_PSPOLL); 1657 } 1658 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1659 1660 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1661 { 1662 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1663 int ac = ieee80211_ac_from_tid(tid); 1664 1665 /* 1666 * If this AC is not trigger-enabled do nothing unless the 1667 * driver is calling us after it already checked. 1668 * 1669 * NB: This could/should check a separate bitmap of trigger- 1670 * enabled queues, but for now we only implement uAPSD w/o 1671 * TSPEC changes to the ACs, so they're always the same. 1672 */ 1673 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1674 tid != IEEE80211_NUM_TIDS) 1675 return; 1676 1677 /* if we are in a service period, do nothing */ 1678 if (test_sta_flag(sta, WLAN_STA_SP)) 1679 return; 1680 1681 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1682 ieee80211_sta_ps_deliver_uapsd(sta); 1683 else 1684 set_sta_flag(sta, WLAN_STA_UAPSD); 1685 } 1686 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1687 1688 static ieee80211_rx_result debug_noinline 1689 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1690 { 1691 struct ieee80211_sub_if_data *sdata = rx->sdata; 1692 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1693 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1694 1695 if (!rx->sta) 1696 return RX_CONTINUE; 1697 1698 if (sdata->vif.type != NL80211_IFTYPE_AP && 1699 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1700 return RX_CONTINUE; 1701 1702 /* 1703 * The device handles station powersave, so don't do anything about 1704 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1705 * it to mac80211 since they're handled.) 1706 */ 1707 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1708 return RX_CONTINUE; 1709 1710 /* 1711 * Don't do anything if the station isn't already asleep. In 1712 * the uAPSD case, the station will probably be marked asleep, 1713 * in the PS-Poll case the station must be confused ... 1714 */ 1715 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1716 return RX_CONTINUE; 1717 1718 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1719 ieee80211_sta_pspoll(&rx->sta->sta); 1720 1721 /* Free PS Poll skb here instead of returning RX_DROP that would 1722 * count as an dropped frame. */ 1723 dev_kfree_skb(rx->skb); 1724 1725 return RX_QUEUED; 1726 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1727 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1728 ieee80211_has_pm(hdr->frame_control) && 1729 (ieee80211_is_data_qos(hdr->frame_control) || 1730 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1731 u8 tid = ieee80211_get_tid(hdr); 1732 1733 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1734 } 1735 1736 return RX_CONTINUE; 1737 } 1738 1739 static ieee80211_rx_result debug_noinline 1740 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1741 { 1742 struct sta_info *sta = rx->sta; 1743 struct sk_buff *skb = rx->skb; 1744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1745 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1746 int i; 1747 1748 if (!sta) 1749 return RX_CONTINUE; 1750 1751 /* 1752 * Update last_rx only for IBSS packets which are for the current 1753 * BSSID and for station already AUTHORIZED to avoid keeping the 1754 * current IBSS network alive in cases where other STAs start 1755 * using different BSSID. This will also give the station another 1756 * chance to restart the authentication/authorization in case 1757 * something went wrong the first time. 1758 */ 1759 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1760 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1761 NL80211_IFTYPE_ADHOC); 1762 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1763 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1764 sta->rx_stats.last_rx = jiffies; 1765 if (ieee80211_is_data(hdr->frame_control) && 1766 !is_multicast_ether_addr(hdr->addr1)) 1767 sta->rx_stats.last_rate = 1768 sta_stats_encode_rate(status); 1769 } 1770 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1771 sta->rx_stats.last_rx = jiffies; 1772 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1773 !is_multicast_ether_addr(hdr->addr1)) { 1774 /* 1775 * Mesh beacons will update last_rx when if they are found to 1776 * match the current local configuration when processed. 1777 */ 1778 sta->rx_stats.last_rx = jiffies; 1779 if (ieee80211_is_data(hdr->frame_control)) 1780 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1781 } 1782 1783 sta->rx_stats.fragments++; 1784 1785 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1786 sta->rx_stats.bytes += rx->skb->len; 1787 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1788 1789 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1790 sta->rx_stats.last_signal = status->signal; 1791 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1792 } 1793 1794 if (status->chains) { 1795 sta->rx_stats.chains = status->chains; 1796 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1797 int signal = status->chain_signal[i]; 1798 1799 if (!(status->chains & BIT(i))) 1800 continue; 1801 1802 sta->rx_stats.chain_signal_last[i] = signal; 1803 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1804 -signal); 1805 } 1806 } 1807 1808 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1809 return RX_CONTINUE; 1810 1811 /* 1812 * Change STA power saving mode only at the end of a frame 1813 * exchange sequence, and only for a data or management 1814 * frame as specified in IEEE 802.11-2016 11.2.3.2 1815 */ 1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1817 !ieee80211_has_morefrags(hdr->frame_control) && 1818 !is_multicast_ether_addr(hdr->addr1) && 1819 (ieee80211_is_mgmt(hdr->frame_control) || 1820 ieee80211_is_data(hdr->frame_control)) && 1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1825 if (!ieee80211_has_pm(hdr->frame_control)) 1826 sta_ps_end(sta); 1827 } else { 1828 if (ieee80211_has_pm(hdr->frame_control)) 1829 sta_ps_start(sta); 1830 } 1831 } 1832 1833 /* mesh power save support */ 1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1835 ieee80211_mps_rx_h_sta_process(sta, hdr); 1836 1837 /* 1838 * Drop (qos-)data::nullfunc frames silently, since they 1839 * are used only to control station power saving mode. 1840 */ 1841 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1843 1844 /* 1845 * If we receive a 4-addr nullfunc frame from a STA 1846 * that was not moved to a 4-addr STA vlan yet send 1847 * the event to userspace and for older hostapd drop 1848 * the frame to the monitor interface. 1849 */ 1850 if (ieee80211_has_a4(hdr->frame_control) && 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1853 !rx->sdata->u.vlan.sta))) { 1854 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1855 cfg80211_rx_unexpected_4addr_frame( 1856 rx->sdata->dev, sta->sta.addr, 1857 GFP_ATOMIC); 1858 return RX_DROP_MONITOR; 1859 } 1860 /* 1861 * Update counter and free packet here to avoid 1862 * counting this as a dropped packed. 1863 */ 1864 sta->rx_stats.packets++; 1865 dev_kfree_skb(rx->skb); 1866 return RX_QUEUED; 1867 } 1868 1869 return RX_CONTINUE; 1870 } /* ieee80211_rx_h_sta_process */ 1871 1872 static struct ieee80211_key * 1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1874 { 1875 struct ieee80211_key *key = NULL; 1876 struct ieee80211_sub_if_data *sdata = rx->sdata; 1877 int idx2; 1878 1879 /* Make sure key gets set if either BIGTK key index is set so that 1880 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1881 * Beacon frames and Beacon frames that claim to use another BIGTK key 1882 * index (i.e., a key that we do not have). 1883 */ 1884 1885 if (idx < 0) { 1886 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1887 idx2 = idx + 1; 1888 } else { 1889 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1890 idx2 = idx + 1; 1891 else 1892 idx2 = idx - 1; 1893 } 1894 1895 if (rx->sta) 1896 key = rcu_dereference(rx->sta->gtk[idx]); 1897 if (!key) 1898 key = rcu_dereference(sdata->keys[idx]); 1899 if (!key && rx->sta) 1900 key = rcu_dereference(rx->sta->gtk[idx2]); 1901 if (!key) 1902 key = rcu_dereference(sdata->keys[idx2]); 1903 1904 return key; 1905 } 1906 1907 static ieee80211_rx_result debug_noinline 1908 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1909 { 1910 struct sk_buff *skb = rx->skb; 1911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1913 int keyidx; 1914 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1915 struct ieee80211_key *sta_ptk = NULL; 1916 struct ieee80211_key *ptk_idx = NULL; 1917 int mmie_keyidx = -1; 1918 __le16 fc; 1919 const struct ieee80211_cipher_scheme *cs = NULL; 1920 1921 if (ieee80211_is_ext(hdr->frame_control)) 1922 return RX_CONTINUE; 1923 1924 /* 1925 * Key selection 101 1926 * 1927 * There are five types of keys: 1928 * - GTK (group keys) 1929 * - IGTK (group keys for management frames) 1930 * - BIGTK (group keys for Beacon frames) 1931 * - PTK (pairwise keys) 1932 * - STK (station-to-station pairwise keys) 1933 * 1934 * When selecting a key, we have to distinguish between multicast 1935 * (including broadcast) and unicast frames, the latter can only 1936 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1937 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1938 * then unicast frames can also use key indices like GTKs. Hence, if we 1939 * don't have a PTK/STK we check the key index for a WEP key. 1940 * 1941 * Note that in a regular BSS, multicast frames are sent by the 1942 * AP only, associated stations unicast the frame to the AP first 1943 * which then multicasts it on their behalf. 1944 * 1945 * There is also a slight problem in IBSS mode: GTKs are negotiated 1946 * with each station, that is something we don't currently handle. 1947 * The spec seems to expect that one negotiates the same key with 1948 * every station but there's no such requirement; VLANs could be 1949 * possible. 1950 */ 1951 1952 /* start without a key */ 1953 rx->key = NULL; 1954 fc = hdr->frame_control; 1955 1956 if (rx->sta) { 1957 int keyid = rx->sta->ptk_idx; 1958 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1959 1960 if (ieee80211_has_protected(fc) && 1961 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1962 cs = rx->sta->cipher_scheme; 1963 keyid = ieee80211_get_keyid(rx->skb, cs); 1964 1965 if (unlikely(keyid < 0)) 1966 return RX_DROP_UNUSABLE; 1967 1968 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1969 } 1970 } 1971 1972 if (!ieee80211_has_protected(fc)) 1973 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1974 1975 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1976 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1977 if ((status->flag & RX_FLAG_DECRYPTED) && 1978 (status->flag & RX_FLAG_IV_STRIPPED)) 1979 return RX_CONTINUE; 1980 /* Skip decryption if the frame is not protected. */ 1981 if (!ieee80211_has_protected(fc)) 1982 return RX_CONTINUE; 1983 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1984 /* Broadcast/multicast robust management frame / BIP */ 1985 if ((status->flag & RX_FLAG_DECRYPTED) && 1986 (status->flag & RX_FLAG_IV_STRIPPED)) 1987 return RX_CONTINUE; 1988 1989 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1990 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1991 NUM_DEFAULT_BEACON_KEYS) { 1992 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1993 skb->data, 1994 skb->len); 1995 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1996 } 1997 1998 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1999 if (!rx->key) 2000 return RX_CONTINUE; /* Beacon protection not in use */ 2001 } else if (mmie_keyidx >= 0) { 2002 /* Broadcast/multicast robust management frame / BIP */ 2003 if ((status->flag & RX_FLAG_DECRYPTED) && 2004 (status->flag & RX_FLAG_IV_STRIPPED)) 2005 return RX_CONTINUE; 2006 2007 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2008 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2009 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2010 if (rx->sta) { 2011 if (ieee80211_is_group_privacy_action(skb) && 2012 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2013 return RX_DROP_MONITOR; 2014 2015 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2016 } 2017 if (!rx->key) 2018 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2019 } else if (!ieee80211_has_protected(fc)) { 2020 /* 2021 * The frame was not protected, so skip decryption. However, we 2022 * need to set rx->key if there is a key that could have been 2023 * used so that the frame may be dropped if encryption would 2024 * have been expected. 2025 */ 2026 struct ieee80211_key *key = NULL; 2027 struct ieee80211_sub_if_data *sdata = rx->sdata; 2028 int i; 2029 2030 if (ieee80211_is_beacon(fc)) { 2031 key = ieee80211_rx_get_bigtk(rx, -1); 2032 } else if (ieee80211_is_mgmt(fc) && 2033 is_multicast_ether_addr(hdr->addr1)) { 2034 key = rcu_dereference(rx->sdata->default_mgmt_key); 2035 } else { 2036 if (rx->sta) { 2037 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2038 key = rcu_dereference(rx->sta->gtk[i]); 2039 if (key) 2040 break; 2041 } 2042 } 2043 if (!key) { 2044 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2045 key = rcu_dereference(sdata->keys[i]); 2046 if (key) 2047 break; 2048 } 2049 } 2050 } 2051 if (key) 2052 rx->key = key; 2053 return RX_CONTINUE; 2054 } else { 2055 /* 2056 * The device doesn't give us the IV so we won't be 2057 * able to look up the key. That's ok though, we 2058 * don't need to decrypt the frame, we just won't 2059 * be able to keep statistics accurate. 2060 * Except for key threshold notifications, should 2061 * we somehow allow the driver to tell us which key 2062 * the hardware used if this flag is set? 2063 */ 2064 if ((status->flag & RX_FLAG_DECRYPTED) && 2065 (status->flag & RX_FLAG_IV_STRIPPED)) 2066 return RX_CONTINUE; 2067 2068 keyidx = ieee80211_get_keyid(rx->skb, cs); 2069 2070 if (unlikely(keyidx < 0)) 2071 return RX_DROP_UNUSABLE; 2072 2073 /* check per-station GTK first, if multicast packet */ 2074 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2075 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2076 2077 /* if not found, try default key */ 2078 if (!rx->key) { 2079 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2080 2081 /* 2082 * RSNA-protected unicast frames should always be 2083 * sent with pairwise or station-to-station keys, 2084 * but for WEP we allow using a key index as well. 2085 */ 2086 if (rx->key && 2087 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2088 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2089 !is_multicast_ether_addr(hdr->addr1)) 2090 rx->key = NULL; 2091 } 2092 } 2093 2094 if (rx->key) { 2095 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2096 return RX_DROP_MONITOR; 2097 2098 /* TODO: add threshold stuff again */ 2099 } else { 2100 return RX_DROP_MONITOR; 2101 } 2102 2103 switch (rx->key->conf.cipher) { 2104 case WLAN_CIPHER_SUITE_WEP40: 2105 case WLAN_CIPHER_SUITE_WEP104: 2106 result = ieee80211_crypto_wep_decrypt(rx); 2107 break; 2108 case WLAN_CIPHER_SUITE_TKIP: 2109 result = ieee80211_crypto_tkip_decrypt(rx); 2110 break; 2111 case WLAN_CIPHER_SUITE_CCMP: 2112 result = ieee80211_crypto_ccmp_decrypt( 2113 rx, IEEE80211_CCMP_MIC_LEN); 2114 break; 2115 case WLAN_CIPHER_SUITE_CCMP_256: 2116 result = ieee80211_crypto_ccmp_decrypt( 2117 rx, IEEE80211_CCMP_256_MIC_LEN); 2118 break; 2119 case WLAN_CIPHER_SUITE_AES_CMAC: 2120 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2121 break; 2122 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2123 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2124 break; 2125 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2126 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2127 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2128 break; 2129 case WLAN_CIPHER_SUITE_GCMP: 2130 case WLAN_CIPHER_SUITE_GCMP_256: 2131 result = ieee80211_crypto_gcmp_decrypt(rx); 2132 break; 2133 default: 2134 result = ieee80211_crypto_hw_decrypt(rx); 2135 } 2136 2137 /* the hdr variable is invalid after the decrypt handlers */ 2138 2139 /* either the frame has been decrypted or will be dropped */ 2140 status->flag |= RX_FLAG_DECRYPTED; 2141 2142 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2143 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2144 skb->data, skb->len); 2145 2146 return result; 2147 } 2148 2149 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2150 { 2151 int i; 2152 2153 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2154 skb_queue_head_init(&cache->entries[i].skb_list); 2155 } 2156 2157 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2158 { 2159 int i; 2160 2161 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2162 __skb_queue_purge(&cache->entries[i].skb_list); 2163 } 2164 2165 static inline struct ieee80211_fragment_entry * 2166 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2167 unsigned int frag, unsigned int seq, int rx_queue, 2168 struct sk_buff **skb) 2169 { 2170 struct ieee80211_fragment_entry *entry; 2171 2172 entry = &cache->entries[cache->next++]; 2173 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2174 cache->next = 0; 2175 2176 __skb_queue_purge(&entry->skb_list); 2177 2178 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2179 *skb = NULL; 2180 entry->first_frag_time = jiffies; 2181 entry->seq = seq; 2182 entry->rx_queue = rx_queue; 2183 entry->last_frag = frag; 2184 entry->check_sequential_pn = false; 2185 entry->extra_len = 0; 2186 2187 return entry; 2188 } 2189 2190 static inline struct ieee80211_fragment_entry * 2191 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2192 unsigned int frag, unsigned int seq, 2193 int rx_queue, struct ieee80211_hdr *hdr) 2194 { 2195 struct ieee80211_fragment_entry *entry; 2196 int i, idx; 2197 2198 idx = cache->next; 2199 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2200 struct ieee80211_hdr *f_hdr; 2201 struct sk_buff *f_skb; 2202 2203 idx--; 2204 if (idx < 0) 2205 idx = IEEE80211_FRAGMENT_MAX - 1; 2206 2207 entry = &cache->entries[idx]; 2208 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2209 entry->rx_queue != rx_queue || 2210 entry->last_frag + 1 != frag) 2211 continue; 2212 2213 f_skb = __skb_peek(&entry->skb_list); 2214 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2215 2216 /* 2217 * Check ftype and addresses are equal, else check next fragment 2218 */ 2219 if (((hdr->frame_control ^ f_hdr->frame_control) & 2220 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2221 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2222 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2223 continue; 2224 2225 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2226 __skb_queue_purge(&entry->skb_list); 2227 continue; 2228 } 2229 return entry; 2230 } 2231 2232 return NULL; 2233 } 2234 2235 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2236 { 2237 return rx->key && 2238 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2239 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2240 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2241 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2242 ieee80211_has_protected(fc); 2243 } 2244 2245 static ieee80211_rx_result debug_noinline 2246 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2247 { 2248 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2249 struct ieee80211_hdr *hdr; 2250 u16 sc; 2251 __le16 fc; 2252 unsigned int frag, seq; 2253 struct ieee80211_fragment_entry *entry; 2254 struct sk_buff *skb; 2255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2256 2257 hdr = (struct ieee80211_hdr *)rx->skb->data; 2258 fc = hdr->frame_control; 2259 2260 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2261 return RX_CONTINUE; 2262 2263 sc = le16_to_cpu(hdr->seq_ctrl); 2264 frag = sc & IEEE80211_SCTL_FRAG; 2265 2266 if (rx->sta) 2267 cache = &rx->sta->frags; 2268 2269 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2270 goto out; 2271 2272 if (is_multicast_ether_addr(hdr->addr1)) 2273 return RX_DROP_MONITOR; 2274 2275 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2276 2277 if (skb_linearize(rx->skb)) 2278 return RX_DROP_UNUSABLE; 2279 2280 /* 2281 * skb_linearize() might change the skb->data and 2282 * previously cached variables (in this case, hdr) need to 2283 * be refreshed with the new data. 2284 */ 2285 hdr = (struct ieee80211_hdr *)rx->skb->data; 2286 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2287 2288 if (frag == 0) { 2289 /* This is the first fragment of a new frame. */ 2290 entry = ieee80211_reassemble_add(cache, frag, seq, 2291 rx->seqno_idx, &(rx->skb)); 2292 if (requires_sequential_pn(rx, fc)) { 2293 int queue = rx->security_idx; 2294 2295 /* Store CCMP/GCMP PN so that we can verify that the 2296 * next fragment has a sequential PN value. 2297 */ 2298 entry->check_sequential_pn = true; 2299 entry->is_protected = true; 2300 entry->key_color = rx->key->color; 2301 memcpy(entry->last_pn, 2302 rx->key->u.ccmp.rx_pn[queue], 2303 IEEE80211_CCMP_PN_LEN); 2304 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2305 u.ccmp.rx_pn) != 2306 offsetof(struct ieee80211_key, 2307 u.gcmp.rx_pn)); 2308 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2309 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2310 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2311 IEEE80211_GCMP_PN_LEN); 2312 } else if (rx->key && 2313 (ieee80211_has_protected(fc) || 2314 (status->flag & RX_FLAG_DECRYPTED))) { 2315 entry->is_protected = true; 2316 entry->key_color = rx->key->color; 2317 } 2318 return RX_QUEUED; 2319 } 2320 2321 /* This is a fragment for a frame that should already be pending in 2322 * fragment cache. Add this fragment to the end of the pending entry. 2323 */ 2324 entry = ieee80211_reassemble_find(cache, frag, seq, 2325 rx->seqno_idx, hdr); 2326 if (!entry) { 2327 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2328 return RX_DROP_MONITOR; 2329 } 2330 2331 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2332 * MPDU PN values are not incrementing in steps of 1." 2333 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2334 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2335 */ 2336 if (entry->check_sequential_pn) { 2337 int i; 2338 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2339 2340 if (!requires_sequential_pn(rx, fc)) 2341 return RX_DROP_UNUSABLE; 2342 2343 /* Prevent mixed key and fragment cache attacks */ 2344 if (entry->key_color != rx->key->color) 2345 return RX_DROP_UNUSABLE; 2346 2347 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2348 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2349 pn[i]++; 2350 if (pn[i]) 2351 break; 2352 } 2353 2354 rpn = rx->ccm_gcm.pn; 2355 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2356 return RX_DROP_UNUSABLE; 2357 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2358 } else if (entry->is_protected && 2359 (!rx->key || 2360 (!ieee80211_has_protected(fc) && 2361 !(status->flag & RX_FLAG_DECRYPTED)) || 2362 rx->key->color != entry->key_color)) { 2363 /* Drop this as a mixed key or fragment cache attack, even 2364 * if for TKIP Michael MIC should protect us, and WEP is a 2365 * lost cause anyway. 2366 */ 2367 return RX_DROP_UNUSABLE; 2368 } else if (entry->is_protected && rx->key && 2369 entry->key_color != rx->key->color && 2370 (status->flag & RX_FLAG_DECRYPTED)) { 2371 return RX_DROP_UNUSABLE; 2372 } 2373 2374 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2375 __skb_queue_tail(&entry->skb_list, rx->skb); 2376 entry->last_frag = frag; 2377 entry->extra_len += rx->skb->len; 2378 if (ieee80211_has_morefrags(fc)) { 2379 rx->skb = NULL; 2380 return RX_QUEUED; 2381 } 2382 2383 rx->skb = __skb_dequeue(&entry->skb_list); 2384 if (skb_tailroom(rx->skb) < entry->extra_len) { 2385 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2386 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2387 GFP_ATOMIC))) { 2388 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2389 __skb_queue_purge(&entry->skb_list); 2390 return RX_DROP_UNUSABLE; 2391 } 2392 } 2393 while ((skb = __skb_dequeue(&entry->skb_list))) { 2394 skb_put_data(rx->skb, skb->data, skb->len); 2395 dev_kfree_skb(skb); 2396 } 2397 2398 out: 2399 ieee80211_led_rx(rx->local); 2400 if (rx->sta) 2401 rx->sta->rx_stats.packets++; 2402 return RX_CONTINUE; 2403 } 2404 2405 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2406 { 2407 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2408 return -EACCES; 2409 2410 return 0; 2411 } 2412 2413 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2414 { 2415 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2416 struct sk_buff *skb = rx->skb; 2417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2418 2419 /* 2420 * Pass through unencrypted frames if the hardware has 2421 * decrypted them already. 2422 */ 2423 if (status->flag & RX_FLAG_DECRYPTED) 2424 return 0; 2425 2426 /* check mesh EAPOL frames first */ 2427 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2428 ieee80211_is_data(fc))) { 2429 struct ieee80211s_hdr *mesh_hdr; 2430 u16 hdr_len = ieee80211_hdrlen(fc); 2431 u16 ethertype_offset; 2432 __be16 ethertype; 2433 2434 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2435 goto drop_check; 2436 2437 /* make sure fixed part of mesh header is there, also checks skb len */ 2438 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2439 goto drop_check; 2440 2441 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2442 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2443 sizeof(rfc1042_header); 2444 2445 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2446 ethertype == rx->sdata->control_port_protocol) 2447 return 0; 2448 } 2449 2450 drop_check: 2451 /* Drop unencrypted frames if key is set. */ 2452 if (unlikely(!ieee80211_has_protected(fc) && 2453 !ieee80211_is_any_nullfunc(fc) && 2454 ieee80211_is_data(fc) && rx->key)) 2455 return -EACCES; 2456 2457 return 0; 2458 } 2459 2460 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2461 { 2462 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2463 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2464 __le16 fc = hdr->frame_control; 2465 2466 /* 2467 * Pass through unencrypted frames if the hardware has 2468 * decrypted them already. 2469 */ 2470 if (status->flag & RX_FLAG_DECRYPTED) 2471 return 0; 2472 2473 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2474 if (unlikely(!ieee80211_has_protected(fc) && 2475 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2476 rx->key)) { 2477 if (ieee80211_is_deauth(fc) || 2478 ieee80211_is_disassoc(fc)) 2479 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2480 rx->skb->data, 2481 rx->skb->len); 2482 return -EACCES; 2483 } 2484 /* BIP does not use Protected field, so need to check MMIE */ 2485 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2486 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2487 if (ieee80211_is_deauth(fc) || 2488 ieee80211_is_disassoc(fc)) 2489 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2490 rx->skb->data, 2491 rx->skb->len); 2492 return -EACCES; 2493 } 2494 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2495 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2496 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2497 rx->skb->data, 2498 rx->skb->len); 2499 return -EACCES; 2500 } 2501 /* 2502 * When using MFP, Action frames are not allowed prior to 2503 * having configured keys. 2504 */ 2505 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2506 ieee80211_is_robust_mgmt_frame(rx->skb))) 2507 return -EACCES; 2508 } 2509 2510 return 0; 2511 } 2512 2513 static int 2514 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2515 { 2516 struct ieee80211_sub_if_data *sdata = rx->sdata; 2517 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2518 bool check_port_control = false; 2519 struct ethhdr *ehdr; 2520 int ret; 2521 2522 *port_control = false; 2523 if (ieee80211_has_a4(hdr->frame_control) && 2524 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2525 return -1; 2526 2527 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2528 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2529 2530 if (!sdata->u.mgd.use_4addr) 2531 return -1; 2532 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2533 check_port_control = true; 2534 } 2535 2536 if (is_multicast_ether_addr(hdr->addr1) && 2537 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2538 return -1; 2539 2540 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2541 if (ret < 0) 2542 return ret; 2543 2544 ehdr = (struct ethhdr *) rx->skb->data; 2545 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2546 *port_control = true; 2547 else if (check_port_control) 2548 return -1; 2549 2550 return 0; 2551 } 2552 2553 /* 2554 * requires that rx->skb is a frame with ethernet header 2555 */ 2556 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2557 { 2558 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2559 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2560 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2561 2562 /* 2563 * Allow EAPOL frames to us/the PAE group address regardless of 2564 * whether the frame was encrypted or not, and always disallow 2565 * all other destination addresses for them. 2566 */ 2567 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2568 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2569 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2570 2571 if (ieee80211_802_1x_port_control(rx) || 2572 ieee80211_drop_unencrypted(rx, fc)) 2573 return false; 2574 2575 return true; 2576 } 2577 2578 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2579 struct ieee80211_rx_data *rx) 2580 { 2581 struct ieee80211_sub_if_data *sdata = rx->sdata; 2582 struct net_device *dev = sdata->dev; 2583 2584 if (unlikely((skb->protocol == sdata->control_port_protocol || 2585 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2586 !sdata->control_port_no_preauth)) && 2587 sdata->control_port_over_nl80211)) { 2588 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2589 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2590 2591 cfg80211_rx_control_port(dev, skb, noencrypt); 2592 dev_kfree_skb(skb); 2593 } else { 2594 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2595 2596 memset(skb->cb, 0, sizeof(skb->cb)); 2597 2598 /* 2599 * 802.1X over 802.11 requires that the authenticator address 2600 * be used for EAPOL frames. However, 802.1X allows the use of 2601 * the PAE group address instead. If the interface is part of 2602 * a bridge and we pass the frame with the PAE group address, 2603 * then the bridge will forward it to the network (even if the 2604 * client was not associated yet), which isn't supposed to 2605 * happen. 2606 * To avoid that, rewrite the destination address to our own 2607 * address, so that the authenticator (e.g. hostapd) will see 2608 * the frame, but bridge won't forward it anywhere else. Note 2609 * that due to earlier filtering, the only other address can 2610 * be the PAE group address. 2611 */ 2612 if (unlikely(skb->protocol == sdata->control_port_protocol && 2613 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2614 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2615 2616 /* deliver to local stack */ 2617 if (rx->list) 2618 list_add_tail(&skb->list, rx->list); 2619 else 2620 netif_receive_skb(skb); 2621 } 2622 } 2623 2624 /* 2625 * requires that rx->skb is a frame with ethernet header 2626 */ 2627 static void 2628 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2629 { 2630 struct ieee80211_sub_if_data *sdata = rx->sdata; 2631 struct net_device *dev = sdata->dev; 2632 struct sk_buff *skb, *xmit_skb; 2633 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2634 struct sta_info *dsta; 2635 2636 skb = rx->skb; 2637 xmit_skb = NULL; 2638 2639 dev_sw_netstats_rx_add(dev, skb->len); 2640 2641 if (rx->sta) { 2642 /* The seqno index has the same property as needed 2643 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2644 * for non-QoS-data frames. Here we know it's a data 2645 * frame, so count MSDUs. 2646 */ 2647 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2648 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2649 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2650 } 2651 2652 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2653 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2654 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2655 ehdr->h_proto != rx->sdata->control_port_protocol && 2656 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2657 if (is_multicast_ether_addr(ehdr->h_dest) && 2658 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2659 /* 2660 * send multicast frames both to higher layers in 2661 * local net stack and back to the wireless medium 2662 */ 2663 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2664 if (!xmit_skb) 2665 net_info_ratelimited("%s: failed to clone multicast frame\n", 2666 dev->name); 2667 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2668 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2669 dsta = sta_info_get(sdata, ehdr->h_dest); 2670 if (dsta) { 2671 /* 2672 * The destination station is associated to 2673 * this AP (in this VLAN), so send the frame 2674 * directly to it and do not pass it to local 2675 * net stack. 2676 */ 2677 xmit_skb = skb; 2678 skb = NULL; 2679 } 2680 } 2681 } 2682 2683 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2684 if (skb) { 2685 /* 'align' will only take the values 0 or 2 here since all 2686 * frames are required to be aligned to 2-byte boundaries 2687 * when being passed to mac80211; the code here works just 2688 * as well if that isn't true, but mac80211 assumes it can 2689 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2690 */ 2691 int align; 2692 2693 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2694 if (align) { 2695 if (WARN_ON(skb_headroom(skb) < 3)) { 2696 dev_kfree_skb(skb); 2697 skb = NULL; 2698 } else { 2699 u8 *data = skb->data; 2700 size_t len = skb_headlen(skb); 2701 skb->data -= align; 2702 memmove(skb->data, data, len); 2703 skb_set_tail_pointer(skb, len); 2704 } 2705 } 2706 } 2707 #endif 2708 2709 if (skb) { 2710 skb->protocol = eth_type_trans(skb, dev); 2711 ieee80211_deliver_skb_to_local_stack(skb, rx); 2712 } 2713 2714 if (xmit_skb) { 2715 /* 2716 * Send to wireless media and increase priority by 256 to 2717 * keep the received priority instead of reclassifying 2718 * the frame (see cfg80211_classify8021d). 2719 */ 2720 xmit_skb->priority += 256; 2721 xmit_skb->protocol = htons(ETH_P_802_3); 2722 skb_reset_network_header(xmit_skb); 2723 skb_reset_mac_header(xmit_skb); 2724 dev_queue_xmit(xmit_skb); 2725 } 2726 } 2727 2728 static ieee80211_rx_result debug_noinline 2729 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2730 { 2731 struct net_device *dev = rx->sdata->dev; 2732 struct sk_buff *skb = rx->skb; 2733 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2734 __le16 fc = hdr->frame_control; 2735 struct sk_buff_head frame_list; 2736 struct ethhdr ethhdr; 2737 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2738 2739 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2740 check_da = NULL; 2741 check_sa = NULL; 2742 } else switch (rx->sdata->vif.type) { 2743 case NL80211_IFTYPE_AP: 2744 case NL80211_IFTYPE_AP_VLAN: 2745 check_da = NULL; 2746 break; 2747 case NL80211_IFTYPE_STATION: 2748 if (!rx->sta || 2749 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2750 check_sa = NULL; 2751 break; 2752 case NL80211_IFTYPE_MESH_POINT: 2753 check_sa = NULL; 2754 break; 2755 default: 2756 break; 2757 } 2758 2759 skb->dev = dev; 2760 __skb_queue_head_init(&frame_list); 2761 2762 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2763 rx->sdata->vif.addr, 2764 rx->sdata->vif.type, 2765 data_offset, true)) 2766 return RX_DROP_UNUSABLE; 2767 2768 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2769 rx->sdata->vif.type, 2770 rx->local->hw.extra_tx_headroom, 2771 check_da, check_sa); 2772 2773 while (!skb_queue_empty(&frame_list)) { 2774 rx->skb = __skb_dequeue(&frame_list); 2775 2776 if (!ieee80211_frame_allowed(rx, fc)) { 2777 dev_kfree_skb(rx->skb); 2778 continue; 2779 } 2780 2781 ieee80211_deliver_skb(rx); 2782 } 2783 2784 return RX_QUEUED; 2785 } 2786 2787 static ieee80211_rx_result debug_noinline 2788 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2789 { 2790 struct sk_buff *skb = rx->skb; 2791 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2792 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2793 __le16 fc = hdr->frame_control; 2794 2795 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2796 return RX_CONTINUE; 2797 2798 if (unlikely(!ieee80211_is_data(fc))) 2799 return RX_CONTINUE; 2800 2801 if (unlikely(!ieee80211_is_data_present(fc))) 2802 return RX_DROP_MONITOR; 2803 2804 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2805 switch (rx->sdata->vif.type) { 2806 case NL80211_IFTYPE_AP_VLAN: 2807 if (!rx->sdata->u.vlan.sta) 2808 return RX_DROP_UNUSABLE; 2809 break; 2810 case NL80211_IFTYPE_STATION: 2811 if (!rx->sdata->u.mgd.use_4addr) 2812 return RX_DROP_UNUSABLE; 2813 break; 2814 default: 2815 return RX_DROP_UNUSABLE; 2816 } 2817 } 2818 2819 if (is_multicast_ether_addr(hdr->addr1)) 2820 return RX_DROP_UNUSABLE; 2821 2822 if (rx->key) { 2823 /* 2824 * We should not receive A-MSDUs on pre-HT connections, 2825 * and HT connections cannot use old ciphers. Thus drop 2826 * them, as in those cases we couldn't even have SPP 2827 * A-MSDUs or such. 2828 */ 2829 switch (rx->key->conf.cipher) { 2830 case WLAN_CIPHER_SUITE_WEP40: 2831 case WLAN_CIPHER_SUITE_WEP104: 2832 case WLAN_CIPHER_SUITE_TKIP: 2833 return RX_DROP_UNUSABLE; 2834 default: 2835 break; 2836 } 2837 } 2838 2839 return __ieee80211_rx_h_amsdu(rx, 0); 2840 } 2841 2842 #ifdef CONFIG_MAC80211_MESH 2843 static ieee80211_rx_result 2844 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2845 { 2846 struct ieee80211_hdr *fwd_hdr, *hdr; 2847 struct ieee80211_tx_info *info; 2848 struct ieee80211s_hdr *mesh_hdr; 2849 struct sk_buff *skb = rx->skb, *fwd_skb; 2850 struct ieee80211_local *local = rx->local; 2851 struct ieee80211_sub_if_data *sdata = rx->sdata; 2852 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2853 u16 ac, q, hdrlen; 2854 int tailroom = 0; 2855 2856 hdr = (struct ieee80211_hdr *) skb->data; 2857 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2858 2859 /* make sure fixed part of mesh header is there, also checks skb len */ 2860 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2861 return RX_DROP_MONITOR; 2862 2863 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2864 2865 /* make sure full mesh header is there, also checks skb len */ 2866 if (!pskb_may_pull(rx->skb, 2867 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2868 return RX_DROP_MONITOR; 2869 2870 /* reload pointers */ 2871 hdr = (struct ieee80211_hdr *) skb->data; 2872 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2873 2874 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2875 return RX_DROP_MONITOR; 2876 2877 /* frame is in RMC, don't forward */ 2878 if (ieee80211_is_data(hdr->frame_control) && 2879 is_multicast_ether_addr(hdr->addr1) && 2880 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2881 return RX_DROP_MONITOR; 2882 2883 if (!ieee80211_is_data(hdr->frame_control)) 2884 return RX_CONTINUE; 2885 2886 if (!mesh_hdr->ttl) 2887 return RX_DROP_MONITOR; 2888 2889 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2890 struct mesh_path *mppath; 2891 char *proxied_addr; 2892 char *mpp_addr; 2893 2894 if (is_multicast_ether_addr(hdr->addr1)) { 2895 mpp_addr = hdr->addr3; 2896 proxied_addr = mesh_hdr->eaddr1; 2897 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2898 MESH_FLAGS_AE_A5_A6) { 2899 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2900 mpp_addr = hdr->addr4; 2901 proxied_addr = mesh_hdr->eaddr2; 2902 } else { 2903 return RX_DROP_MONITOR; 2904 } 2905 2906 rcu_read_lock(); 2907 mppath = mpp_path_lookup(sdata, proxied_addr); 2908 if (!mppath) { 2909 mpp_path_add(sdata, proxied_addr, mpp_addr); 2910 } else { 2911 spin_lock_bh(&mppath->state_lock); 2912 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2913 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2914 mppath->exp_time = jiffies; 2915 spin_unlock_bh(&mppath->state_lock); 2916 } 2917 rcu_read_unlock(); 2918 } 2919 2920 /* Frame has reached destination. Don't forward */ 2921 if (!is_multicast_ether_addr(hdr->addr1) && 2922 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2923 return RX_CONTINUE; 2924 2925 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2926 q = sdata->vif.hw_queue[ac]; 2927 if (ieee80211_queue_stopped(&local->hw, q)) { 2928 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2929 return RX_DROP_MONITOR; 2930 } 2931 skb_set_queue_mapping(skb, q); 2932 2933 if (!--mesh_hdr->ttl) { 2934 if (!is_multicast_ether_addr(hdr->addr1)) 2935 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2936 dropped_frames_ttl); 2937 goto out; 2938 } 2939 2940 if (!ifmsh->mshcfg.dot11MeshForwarding) 2941 goto out; 2942 2943 if (sdata->crypto_tx_tailroom_needed_cnt) 2944 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2945 2946 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2947 sdata->encrypt_headroom, 2948 tailroom, GFP_ATOMIC); 2949 if (!fwd_skb) 2950 goto out; 2951 2952 fwd_skb->dev = sdata->dev; 2953 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2954 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2955 info = IEEE80211_SKB_CB(fwd_skb); 2956 memset(info, 0, sizeof(*info)); 2957 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2958 info->control.vif = &rx->sdata->vif; 2959 info->control.jiffies = jiffies; 2960 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2961 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2962 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2963 /* update power mode indication when forwarding */ 2964 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2965 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2966 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2967 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2968 } else { 2969 /* unable to resolve next hop */ 2970 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2971 fwd_hdr->addr3, 0, 2972 WLAN_REASON_MESH_PATH_NOFORWARD, 2973 fwd_hdr->addr2); 2974 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2975 kfree_skb(fwd_skb); 2976 return RX_DROP_MONITOR; 2977 } 2978 2979 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2980 ieee80211_add_pending_skb(local, fwd_skb); 2981 out: 2982 if (is_multicast_ether_addr(hdr->addr1)) 2983 return RX_CONTINUE; 2984 return RX_DROP_MONITOR; 2985 } 2986 #endif 2987 2988 static ieee80211_rx_result debug_noinline 2989 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2990 { 2991 struct ieee80211_sub_if_data *sdata = rx->sdata; 2992 struct ieee80211_local *local = rx->local; 2993 struct net_device *dev = sdata->dev; 2994 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2995 __le16 fc = hdr->frame_control; 2996 bool port_control; 2997 int err; 2998 2999 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3000 return RX_CONTINUE; 3001 3002 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3003 return RX_DROP_MONITOR; 3004 3005 /* 3006 * Send unexpected-4addr-frame event to hostapd. For older versions, 3007 * also drop the frame to cooked monitor interfaces. 3008 */ 3009 if (ieee80211_has_a4(hdr->frame_control) && 3010 sdata->vif.type == NL80211_IFTYPE_AP) { 3011 if (rx->sta && 3012 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3013 cfg80211_rx_unexpected_4addr_frame( 3014 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3015 return RX_DROP_MONITOR; 3016 } 3017 3018 err = __ieee80211_data_to_8023(rx, &port_control); 3019 if (unlikely(err)) 3020 return RX_DROP_UNUSABLE; 3021 3022 if (!ieee80211_frame_allowed(rx, fc)) 3023 return RX_DROP_MONITOR; 3024 3025 /* directly handle TDLS channel switch requests/responses */ 3026 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3027 cpu_to_be16(ETH_P_TDLS))) { 3028 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3029 3030 if (pskb_may_pull(rx->skb, 3031 offsetof(struct ieee80211_tdls_data, u)) && 3032 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3033 tf->category == WLAN_CATEGORY_TDLS && 3034 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3035 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3036 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3037 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3038 return RX_QUEUED; 3039 } 3040 } 3041 3042 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3043 unlikely(port_control) && sdata->bss) { 3044 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3045 u.ap); 3046 dev = sdata->dev; 3047 rx->sdata = sdata; 3048 } 3049 3050 rx->skb->dev = dev; 3051 3052 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3053 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3054 !is_multicast_ether_addr( 3055 ((struct ethhdr *)rx->skb->data)->h_dest) && 3056 (!local->scanning && 3057 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3058 mod_timer(&local->dynamic_ps_timer, jiffies + 3059 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3060 3061 ieee80211_deliver_skb(rx); 3062 3063 return RX_QUEUED; 3064 } 3065 3066 static ieee80211_rx_result debug_noinline 3067 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3068 { 3069 struct sk_buff *skb = rx->skb; 3070 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3071 struct tid_ampdu_rx *tid_agg_rx; 3072 u16 start_seq_num; 3073 u16 tid; 3074 3075 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3076 return RX_CONTINUE; 3077 3078 if (ieee80211_is_back_req(bar->frame_control)) { 3079 struct { 3080 __le16 control, start_seq_num; 3081 } __packed bar_data; 3082 struct ieee80211_event event = { 3083 .type = BAR_RX_EVENT, 3084 }; 3085 3086 if (!rx->sta) 3087 return RX_DROP_MONITOR; 3088 3089 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3090 &bar_data, sizeof(bar_data))) 3091 return RX_DROP_MONITOR; 3092 3093 tid = le16_to_cpu(bar_data.control) >> 12; 3094 3095 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3096 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3097 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3098 WLAN_BACK_RECIPIENT, 3099 WLAN_REASON_QSTA_REQUIRE_SETUP); 3100 3101 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3102 if (!tid_agg_rx) 3103 return RX_DROP_MONITOR; 3104 3105 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3106 event.u.ba.tid = tid; 3107 event.u.ba.ssn = start_seq_num; 3108 event.u.ba.sta = &rx->sta->sta; 3109 3110 /* reset session timer */ 3111 if (tid_agg_rx->timeout) 3112 mod_timer(&tid_agg_rx->session_timer, 3113 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3114 3115 spin_lock(&tid_agg_rx->reorder_lock); 3116 /* release stored frames up to start of BAR */ 3117 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3118 start_seq_num, frames); 3119 spin_unlock(&tid_agg_rx->reorder_lock); 3120 3121 drv_event_callback(rx->local, rx->sdata, &event); 3122 3123 kfree_skb(skb); 3124 return RX_QUEUED; 3125 } 3126 3127 /* 3128 * After this point, we only want management frames, 3129 * so we can drop all remaining control frames to 3130 * cooked monitor interfaces. 3131 */ 3132 return RX_DROP_MONITOR; 3133 } 3134 3135 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3136 struct ieee80211_mgmt *mgmt, 3137 size_t len) 3138 { 3139 struct ieee80211_local *local = sdata->local; 3140 struct sk_buff *skb; 3141 struct ieee80211_mgmt *resp; 3142 3143 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3144 /* Not to own unicast address */ 3145 return; 3146 } 3147 3148 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3149 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3150 /* Not from the current AP or not associated yet. */ 3151 return; 3152 } 3153 3154 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3155 /* Too short SA Query request frame */ 3156 return; 3157 } 3158 3159 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3160 if (skb == NULL) 3161 return; 3162 3163 skb_reserve(skb, local->hw.extra_tx_headroom); 3164 resp = skb_put_zero(skb, 24); 3165 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3166 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3167 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3168 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3169 IEEE80211_STYPE_ACTION); 3170 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3171 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3172 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3173 memcpy(resp->u.action.u.sa_query.trans_id, 3174 mgmt->u.action.u.sa_query.trans_id, 3175 WLAN_SA_QUERY_TR_ID_LEN); 3176 3177 ieee80211_tx_skb(sdata, skb); 3178 } 3179 3180 static ieee80211_rx_result debug_noinline 3181 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3182 { 3183 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3184 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3185 3186 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3187 return RX_CONTINUE; 3188 3189 /* 3190 * From here on, look only at management frames. 3191 * Data and control frames are already handled, 3192 * and unknown (reserved) frames are useless. 3193 */ 3194 if (rx->skb->len < 24) 3195 return RX_DROP_MONITOR; 3196 3197 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3198 return RX_DROP_MONITOR; 3199 3200 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3201 ieee80211_is_beacon(mgmt->frame_control) && 3202 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3203 int sig = 0; 3204 3205 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3206 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3207 sig = status->signal; 3208 3209 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3210 rx->skb->data, rx->skb->len, 3211 ieee80211_rx_status_to_khz(status), 3212 sig); 3213 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3214 } 3215 3216 if (ieee80211_drop_unencrypted_mgmt(rx)) 3217 return RX_DROP_UNUSABLE; 3218 3219 return RX_CONTINUE; 3220 } 3221 3222 static bool 3223 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3224 { 3225 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3226 struct ieee80211_sub_if_data *sdata = rx->sdata; 3227 3228 /* TWT actions are only supported in AP for the moment */ 3229 if (sdata->vif.type != NL80211_IFTYPE_AP) 3230 return false; 3231 3232 if (!rx->local->ops->add_twt_setup) 3233 return false; 3234 3235 if (!sdata->vif.bss_conf.twt_responder) 3236 return false; 3237 3238 if (!rx->sta) 3239 return false; 3240 3241 switch (mgmt->u.action.u.s1g.action_code) { 3242 case WLAN_S1G_TWT_SETUP: { 3243 struct ieee80211_twt_setup *twt; 3244 3245 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3246 1 + /* action code */ 3247 sizeof(struct ieee80211_twt_setup) + 3248 2 /* TWT req_type agrt */) 3249 break; 3250 3251 twt = (void *)mgmt->u.action.u.s1g.variable; 3252 if (twt->element_id != WLAN_EID_S1G_TWT) 3253 break; 3254 3255 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3256 4 + /* action code + token + tlv */ 3257 twt->length) 3258 break; 3259 3260 return true; /* queue the frame */ 3261 } 3262 case WLAN_S1G_TWT_TEARDOWN: 3263 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3264 break; 3265 3266 return true; /* queue the frame */ 3267 default: 3268 break; 3269 } 3270 3271 return false; 3272 } 3273 3274 static ieee80211_rx_result debug_noinline 3275 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3276 { 3277 struct ieee80211_local *local = rx->local; 3278 struct ieee80211_sub_if_data *sdata = rx->sdata; 3279 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3280 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3281 int len = rx->skb->len; 3282 3283 if (!ieee80211_is_action(mgmt->frame_control)) 3284 return RX_CONTINUE; 3285 3286 /* drop too small frames */ 3287 if (len < IEEE80211_MIN_ACTION_SIZE) 3288 return RX_DROP_UNUSABLE; 3289 3290 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3291 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3292 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3293 return RX_DROP_UNUSABLE; 3294 3295 switch (mgmt->u.action.category) { 3296 case WLAN_CATEGORY_HT: 3297 /* reject HT action frames from stations not supporting HT */ 3298 if (!rx->sta->sta.ht_cap.ht_supported) 3299 goto invalid; 3300 3301 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3302 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3303 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3304 sdata->vif.type != NL80211_IFTYPE_AP && 3305 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3306 break; 3307 3308 /* verify action & smps_control/chanwidth are present */ 3309 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3310 goto invalid; 3311 3312 switch (mgmt->u.action.u.ht_smps.action) { 3313 case WLAN_HT_ACTION_SMPS: { 3314 struct ieee80211_supported_band *sband; 3315 enum ieee80211_smps_mode smps_mode; 3316 struct sta_opmode_info sta_opmode = {}; 3317 3318 if (sdata->vif.type != NL80211_IFTYPE_AP && 3319 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3320 goto handled; 3321 3322 /* convert to HT capability */ 3323 switch (mgmt->u.action.u.ht_smps.smps_control) { 3324 case WLAN_HT_SMPS_CONTROL_DISABLED: 3325 smps_mode = IEEE80211_SMPS_OFF; 3326 break; 3327 case WLAN_HT_SMPS_CONTROL_STATIC: 3328 smps_mode = IEEE80211_SMPS_STATIC; 3329 break; 3330 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3331 smps_mode = IEEE80211_SMPS_DYNAMIC; 3332 break; 3333 default: 3334 goto invalid; 3335 } 3336 3337 /* if no change do nothing */ 3338 if (rx->sta->sta.smps_mode == smps_mode) 3339 goto handled; 3340 rx->sta->sta.smps_mode = smps_mode; 3341 sta_opmode.smps_mode = 3342 ieee80211_smps_mode_to_smps_mode(smps_mode); 3343 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3344 3345 sband = rx->local->hw.wiphy->bands[status->band]; 3346 3347 rate_control_rate_update(local, sband, rx->sta, 3348 IEEE80211_RC_SMPS_CHANGED); 3349 cfg80211_sta_opmode_change_notify(sdata->dev, 3350 rx->sta->addr, 3351 &sta_opmode, 3352 GFP_ATOMIC); 3353 goto handled; 3354 } 3355 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3356 struct ieee80211_supported_band *sband; 3357 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3358 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3359 struct sta_opmode_info sta_opmode = {}; 3360 3361 /* If it doesn't support 40 MHz it can't change ... */ 3362 if (!(rx->sta->sta.ht_cap.cap & 3363 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3364 goto handled; 3365 3366 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3367 max_bw = IEEE80211_STA_RX_BW_20; 3368 else 3369 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3370 3371 /* set cur_max_bandwidth and recalc sta bw */ 3372 rx->sta->cur_max_bandwidth = max_bw; 3373 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3374 3375 if (rx->sta->sta.bandwidth == new_bw) 3376 goto handled; 3377 3378 rx->sta->sta.bandwidth = new_bw; 3379 sband = rx->local->hw.wiphy->bands[status->band]; 3380 sta_opmode.bw = 3381 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3382 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3383 3384 rate_control_rate_update(local, sband, rx->sta, 3385 IEEE80211_RC_BW_CHANGED); 3386 cfg80211_sta_opmode_change_notify(sdata->dev, 3387 rx->sta->addr, 3388 &sta_opmode, 3389 GFP_ATOMIC); 3390 goto handled; 3391 } 3392 default: 3393 goto invalid; 3394 } 3395 3396 break; 3397 case WLAN_CATEGORY_PUBLIC: 3398 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3399 goto invalid; 3400 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3401 break; 3402 if (!rx->sta) 3403 break; 3404 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3405 break; 3406 if (mgmt->u.action.u.ext_chan_switch.action_code != 3407 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3408 break; 3409 if (len < offsetof(struct ieee80211_mgmt, 3410 u.action.u.ext_chan_switch.variable)) 3411 goto invalid; 3412 goto queue; 3413 case WLAN_CATEGORY_VHT: 3414 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3415 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3416 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3417 sdata->vif.type != NL80211_IFTYPE_AP && 3418 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3419 break; 3420 3421 /* verify action code is present */ 3422 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3423 goto invalid; 3424 3425 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3426 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3427 /* verify opmode is present */ 3428 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3429 goto invalid; 3430 goto queue; 3431 } 3432 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3433 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3434 goto invalid; 3435 goto queue; 3436 } 3437 default: 3438 break; 3439 } 3440 break; 3441 case WLAN_CATEGORY_BACK: 3442 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3443 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3444 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3445 sdata->vif.type != NL80211_IFTYPE_AP && 3446 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3447 break; 3448 3449 /* verify action_code is present */ 3450 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3451 break; 3452 3453 switch (mgmt->u.action.u.addba_req.action_code) { 3454 case WLAN_ACTION_ADDBA_REQ: 3455 if (len < (IEEE80211_MIN_ACTION_SIZE + 3456 sizeof(mgmt->u.action.u.addba_req))) 3457 goto invalid; 3458 break; 3459 case WLAN_ACTION_ADDBA_RESP: 3460 if (len < (IEEE80211_MIN_ACTION_SIZE + 3461 sizeof(mgmt->u.action.u.addba_resp))) 3462 goto invalid; 3463 break; 3464 case WLAN_ACTION_DELBA: 3465 if (len < (IEEE80211_MIN_ACTION_SIZE + 3466 sizeof(mgmt->u.action.u.delba))) 3467 goto invalid; 3468 break; 3469 default: 3470 goto invalid; 3471 } 3472 3473 goto queue; 3474 case WLAN_CATEGORY_SPECTRUM_MGMT: 3475 /* verify action_code is present */ 3476 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3477 break; 3478 3479 switch (mgmt->u.action.u.measurement.action_code) { 3480 case WLAN_ACTION_SPCT_MSR_REQ: 3481 if (status->band != NL80211_BAND_5GHZ) 3482 break; 3483 3484 if (len < (IEEE80211_MIN_ACTION_SIZE + 3485 sizeof(mgmt->u.action.u.measurement))) 3486 break; 3487 3488 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3489 break; 3490 3491 ieee80211_process_measurement_req(sdata, mgmt, len); 3492 goto handled; 3493 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3494 u8 *bssid; 3495 if (len < (IEEE80211_MIN_ACTION_SIZE + 3496 sizeof(mgmt->u.action.u.chan_switch))) 3497 break; 3498 3499 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3500 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3501 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3502 break; 3503 3504 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3505 bssid = sdata->u.mgd.bssid; 3506 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3507 bssid = sdata->u.ibss.bssid; 3508 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3509 bssid = mgmt->sa; 3510 else 3511 break; 3512 3513 if (!ether_addr_equal(mgmt->bssid, bssid)) 3514 break; 3515 3516 goto queue; 3517 } 3518 } 3519 break; 3520 case WLAN_CATEGORY_SELF_PROTECTED: 3521 if (len < (IEEE80211_MIN_ACTION_SIZE + 3522 sizeof(mgmt->u.action.u.self_prot.action_code))) 3523 break; 3524 3525 switch (mgmt->u.action.u.self_prot.action_code) { 3526 case WLAN_SP_MESH_PEERING_OPEN: 3527 case WLAN_SP_MESH_PEERING_CLOSE: 3528 case WLAN_SP_MESH_PEERING_CONFIRM: 3529 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3530 goto invalid; 3531 if (sdata->u.mesh.user_mpm) 3532 /* userspace handles this frame */ 3533 break; 3534 goto queue; 3535 case WLAN_SP_MGK_INFORM: 3536 case WLAN_SP_MGK_ACK: 3537 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3538 goto invalid; 3539 break; 3540 } 3541 break; 3542 case WLAN_CATEGORY_MESH_ACTION: 3543 if (len < (IEEE80211_MIN_ACTION_SIZE + 3544 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3545 break; 3546 3547 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3548 break; 3549 if (mesh_action_is_path_sel(mgmt) && 3550 !mesh_path_sel_is_hwmp(sdata)) 3551 break; 3552 goto queue; 3553 case WLAN_CATEGORY_S1G: 3554 switch (mgmt->u.action.u.s1g.action_code) { 3555 case WLAN_S1G_TWT_SETUP: 3556 case WLAN_S1G_TWT_TEARDOWN: 3557 if (ieee80211_process_rx_twt_action(rx)) 3558 goto queue; 3559 break; 3560 default: 3561 break; 3562 } 3563 break; 3564 } 3565 3566 return RX_CONTINUE; 3567 3568 invalid: 3569 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3570 /* will return in the next handlers */ 3571 return RX_CONTINUE; 3572 3573 handled: 3574 if (rx->sta) 3575 rx->sta->rx_stats.packets++; 3576 dev_kfree_skb(rx->skb); 3577 return RX_QUEUED; 3578 3579 queue: 3580 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3581 return RX_QUEUED; 3582 } 3583 3584 static ieee80211_rx_result debug_noinline 3585 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3586 { 3587 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3588 int sig = 0; 3589 3590 /* skip known-bad action frames and return them in the next handler */ 3591 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3592 return RX_CONTINUE; 3593 3594 /* 3595 * Getting here means the kernel doesn't know how to handle 3596 * it, but maybe userspace does ... include returned frames 3597 * so userspace can register for those to know whether ones 3598 * it transmitted were processed or returned. 3599 */ 3600 3601 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3602 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3603 sig = status->signal; 3604 3605 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3606 ieee80211_rx_status_to_khz(status), sig, 3607 rx->skb->data, rx->skb->len, 0)) { 3608 if (rx->sta) 3609 rx->sta->rx_stats.packets++; 3610 dev_kfree_skb(rx->skb); 3611 return RX_QUEUED; 3612 } 3613 3614 return RX_CONTINUE; 3615 } 3616 3617 static ieee80211_rx_result debug_noinline 3618 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3619 { 3620 struct ieee80211_sub_if_data *sdata = rx->sdata; 3621 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3622 int len = rx->skb->len; 3623 3624 if (!ieee80211_is_action(mgmt->frame_control)) 3625 return RX_CONTINUE; 3626 3627 switch (mgmt->u.action.category) { 3628 case WLAN_CATEGORY_SA_QUERY: 3629 if (len < (IEEE80211_MIN_ACTION_SIZE + 3630 sizeof(mgmt->u.action.u.sa_query))) 3631 break; 3632 3633 switch (mgmt->u.action.u.sa_query.action) { 3634 case WLAN_ACTION_SA_QUERY_REQUEST: 3635 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3636 break; 3637 ieee80211_process_sa_query_req(sdata, mgmt, len); 3638 goto handled; 3639 } 3640 break; 3641 } 3642 3643 return RX_CONTINUE; 3644 3645 handled: 3646 if (rx->sta) 3647 rx->sta->rx_stats.packets++; 3648 dev_kfree_skb(rx->skb); 3649 return RX_QUEUED; 3650 } 3651 3652 static ieee80211_rx_result debug_noinline 3653 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3654 { 3655 struct ieee80211_local *local = rx->local; 3656 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3657 struct sk_buff *nskb; 3658 struct ieee80211_sub_if_data *sdata = rx->sdata; 3659 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3660 3661 if (!ieee80211_is_action(mgmt->frame_control)) 3662 return RX_CONTINUE; 3663 3664 /* 3665 * For AP mode, hostapd is responsible for handling any action 3666 * frames that we didn't handle, including returning unknown 3667 * ones. For all other modes we will return them to the sender, 3668 * setting the 0x80 bit in the action category, as required by 3669 * 802.11-2012 9.24.4. 3670 * Newer versions of hostapd shall also use the management frame 3671 * registration mechanisms, but older ones still use cooked 3672 * monitor interfaces so push all frames there. 3673 */ 3674 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3675 (sdata->vif.type == NL80211_IFTYPE_AP || 3676 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3677 return RX_DROP_MONITOR; 3678 3679 if (is_multicast_ether_addr(mgmt->da)) 3680 return RX_DROP_MONITOR; 3681 3682 /* do not return rejected action frames */ 3683 if (mgmt->u.action.category & 0x80) 3684 return RX_DROP_UNUSABLE; 3685 3686 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3687 GFP_ATOMIC); 3688 if (nskb) { 3689 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3690 3691 nmgmt->u.action.category |= 0x80; 3692 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3693 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3694 3695 memset(nskb->cb, 0, sizeof(nskb->cb)); 3696 3697 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3698 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3699 3700 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3701 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3702 IEEE80211_TX_CTL_NO_CCK_RATE; 3703 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3704 info->hw_queue = 3705 local->hw.offchannel_tx_hw_queue; 3706 } 3707 3708 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3709 status->band); 3710 } 3711 dev_kfree_skb(rx->skb); 3712 return RX_QUEUED; 3713 } 3714 3715 static ieee80211_rx_result debug_noinline 3716 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3717 { 3718 struct ieee80211_sub_if_data *sdata = rx->sdata; 3719 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3720 3721 if (!ieee80211_is_ext(hdr->frame_control)) 3722 return RX_CONTINUE; 3723 3724 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3725 return RX_DROP_MONITOR; 3726 3727 /* for now only beacons are ext, so queue them */ 3728 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3729 3730 return RX_QUEUED; 3731 } 3732 3733 static ieee80211_rx_result debug_noinline 3734 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3735 { 3736 struct ieee80211_sub_if_data *sdata = rx->sdata; 3737 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3738 __le16 stype; 3739 3740 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3741 3742 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3743 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3744 sdata->vif.type != NL80211_IFTYPE_OCB && 3745 sdata->vif.type != NL80211_IFTYPE_STATION) 3746 return RX_DROP_MONITOR; 3747 3748 switch (stype) { 3749 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3750 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3751 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3752 /* process for all: mesh, mlme, ibss */ 3753 break; 3754 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3755 if (is_multicast_ether_addr(mgmt->da) && 3756 !is_broadcast_ether_addr(mgmt->da)) 3757 return RX_DROP_MONITOR; 3758 3759 /* process only for station/IBSS */ 3760 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3761 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3762 return RX_DROP_MONITOR; 3763 break; 3764 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3765 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3766 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3767 if (is_multicast_ether_addr(mgmt->da) && 3768 !is_broadcast_ether_addr(mgmt->da)) 3769 return RX_DROP_MONITOR; 3770 3771 /* process only for station */ 3772 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3773 return RX_DROP_MONITOR; 3774 break; 3775 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3776 /* process only for ibss and mesh */ 3777 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3778 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3779 return RX_DROP_MONITOR; 3780 break; 3781 default: 3782 return RX_DROP_MONITOR; 3783 } 3784 3785 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3786 3787 return RX_QUEUED; 3788 } 3789 3790 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3791 struct ieee80211_rate *rate) 3792 { 3793 struct ieee80211_sub_if_data *sdata; 3794 struct ieee80211_local *local = rx->local; 3795 struct sk_buff *skb = rx->skb, *skb2; 3796 struct net_device *prev_dev = NULL; 3797 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3798 int needed_headroom; 3799 3800 /* 3801 * If cooked monitor has been processed already, then 3802 * don't do it again. If not, set the flag. 3803 */ 3804 if (rx->flags & IEEE80211_RX_CMNTR) 3805 goto out_free_skb; 3806 rx->flags |= IEEE80211_RX_CMNTR; 3807 3808 /* If there are no cooked monitor interfaces, just free the SKB */ 3809 if (!local->cooked_mntrs) 3810 goto out_free_skb; 3811 3812 /* vendor data is long removed here */ 3813 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3814 /* room for the radiotap header based on driver features */ 3815 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3816 3817 if (skb_headroom(skb) < needed_headroom && 3818 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3819 goto out_free_skb; 3820 3821 /* prepend radiotap information */ 3822 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3823 false); 3824 3825 skb_reset_mac_header(skb); 3826 skb->ip_summed = CHECKSUM_UNNECESSARY; 3827 skb->pkt_type = PACKET_OTHERHOST; 3828 skb->protocol = htons(ETH_P_802_2); 3829 3830 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3831 if (!ieee80211_sdata_running(sdata)) 3832 continue; 3833 3834 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3835 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3836 continue; 3837 3838 if (prev_dev) { 3839 skb2 = skb_clone(skb, GFP_ATOMIC); 3840 if (skb2) { 3841 skb2->dev = prev_dev; 3842 netif_receive_skb(skb2); 3843 } 3844 } 3845 3846 prev_dev = sdata->dev; 3847 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3848 } 3849 3850 if (prev_dev) { 3851 skb->dev = prev_dev; 3852 netif_receive_skb(skb); 3853 return; 3854 } 3855 3856 out_free_skb: 3857 dev_kfree_skb(skb); 3858 } 3859 3860 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3861 ieee80211_rx_result res) 3862 { 3863 switch (res) { 3864 case RX_DROP_MONITOR: 3865 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3866 if (rx->sta) 3867 rx->sta->rx_stats.dropped++; 3868 fallthrough; 3869 case RX_CONTINUE: { 3870 struct ieee80211_rate *rate = NULL; 3871 struct ieee80211_supported_band *sband; 3872 struct ieee80211_rx_status *status; 3873 3874 status = IEEE80211_SKB_RXCB((rx->skb)); 3875 3876 sband = rx->local->hw.wiphy->bands[status->band]; 3877 if (status->encoding == RX_ENC_LEGACY) 3878 rate = &sband->bitrates[status->rate_idx]; 3879 3880 ieee80211_rx_cooked_monitor(rx, rate); 3881 break; 3882 } 3883 case RX_DROP_UNUSABLE: 3884 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3885 if (rx->sta) 3886 rx->sta->rx_stats.dropped++; 3887 dev_kfree_skb(rx->skb); 3888 break; 3889 case RX_QUEUED: 3890 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3891 break; 3892 } 3893 } 3894 3895 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3896 struct sk_buff_head *frames) 3897 { 3898 ieee80211_rx_result res = RX_DROP_MONITOR; 3899 struct sk_buff *skb; 3900 3901 #define CALL_RXH(rxh) \ 3902 do { \ 3903 res = rxh(rx); \ 3904 if (res != RX_CONTINUE) \ 3905 goto rxh_next; \ 3906 } while (0) 3907 3908 /* Lock here to avoid hitting all of the data used in the RX 3909 * path (e.g. key data, station data, ...) concurrently when 3910 * a frame is released from the reorder buffer due to timeout 3911 * from the timer, potentially concurrently with RX from the 3912 * driver. 3913 */ 3914 spin_lock_bh(&rx->local->rx_path_lock); 3915 3916 while ((skb = __skb_dequeue(frames))) { 3917 /* 3918 * all the other fields are valid across frames 3919 * that belong to an aMPDU since they are on the 3920 * same TID from the same station 3921 */ 3922 rx->skb = skb; 3923 3924 CALL_RXH(ieee80211_rx_h_check_more_data); 3925 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3926 CALL_RXH(ieee80211_rx_h_sta_process); 3927 CALL_RXH(ieee80211_rx_h_decrypt); 3928 CALL_RXH(ieee80211_rx_h_defragment); 3929 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3930 /* must be after MMIC verify so header is counted in MPDU mic */ 3931 #ifdef CONFIG_MAC80211_MESH 3932 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3933 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3934 #endif 3935 CALL_RXH(ieee80211_rx_h_amsdu); 3936 CALL_RXH(ieee80211_rx_h_data); 3937 3938 /* special treatment -- needs the queue */ 3939 res = ieee80211_rx_h_ctrl(rx, frames); 3940 if (res != RX_CONTINUE) 3941 goto rxh_next; 3942 3943 CALL_RXH(ieee80211_rx_h_mgmt_check); 3944 CALL_RXH(ieee80211_rx_h_action); 3945 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3946 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3947 CALL_RXH(ieee80211_rx_h_action_return); 3948 CALL_RXH(ieee80211_rx_h_ext); 3949 CALL_RXH(ieee80211_rx_h_mgmt); 3950 3951 rxh_next: 3952 ieee80211_rx_handlers_result(rx, res); 3953 3954 #undef CALL_RXH 3955 } 3956 3957 spin_unlock_bh(&rx->local->rx_path_lock); 3958 } 3959 3960 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3961 { 3962 struct sk_buff_head reorder_release; 3963 ieee80211_rx_result res = RX_DROP_MONITOR; 3964 3965 __skb_queue_head_init(&reorder_release); 3966 3967 #define CALL_RXH(rxh) \ 3968 do { \ 3969 res = rxh(rx); \ 3970 if (res != RX_CONTINUE) \ 3971 goto rxh_next; \ 3972 } while (0) 3973 3974 CALL_RXH(ieee80211_rx_h_check_dup); 3975 CALL_RXH(ieee80211_rx_h_check); 3976 3977 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3978 3979 ieee80211_rx_handlers(rx, &reorder_release); 3980 return; 3981 3982 rxh_next: 3983 ieee80211_rx_handlers_result(rx, res); 3984 3985 #undef CALL_RXH 3986 } 3987 3988 /* 3989 * This function makes calls into the RX path, therefore 3990 * it has to be invoked under RCU read lock. 3991 */ 3992 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3993 { 3994 struct sk_buff_head frames; 3995 struct ieee80211_rx_data rx = { 3996 .sta = sta, 3997 .sdata = sta->sdata, 3998 .local = sta->local, 3999 /* This is OK -- must be QoS data frame */ 4000 .security_idx = tid, 4001 .seqno_idx = tid, 4002 }; 4003 struct tid_ampdu_rx *tid_agg_rx; 4004 4005 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4006 if (!tid_agg_rx) 4007 return; 4008 4009 __skb_queue_head_init(&frames); 4010 4011 spin_lock(&tid_agg_rx->reorder_lock); 4012 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4013 spin_unlock(&tid_agg_rx->reorder_lock); 4014 4015 if (!skb_queue_empty(&frames)) { 4016 struct ieee80211_event event = { 4017 .type = BA_FRAME_TIMEOUT, 4018 .u.ba.tid = tid, 4019 .u.ba.sta = &sta->sta, 4020 }; 4021 drv_event_callback(rx.local, rx.sdata, &event); 4022 } 4023 4024 ieee80211_rx_handlers(&rx, &frames); 4025 } 4026 4027 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4028 u16 ssn, u64 filtered, 4029 u16 received_mpdus) 4030 { 4031 struct sta_info *sta; 4032 struct tid_ampdu_rx *tid_agg_rx; 4033 struct sk_buff_head frames; 4034 struct ieee80211_rx_data rx = { 4035 /* This is OK -- must be QoS data frame */ 4036 .security_idx = tid, 4037 .seqno_idx = tid, 4038 }; 4039 int i, diff; 4040 4041 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4042 return; 4043 4044 __skb_queue_head_init(&frames); 4045 4046 sta = container_of(pubsta, struct sta_info, sta); 4047 4048 rx.sta = sta; 4049 rx.sdata = sta->sdata; 4050 rx.local = sta->local; 4051 4052 rcu_read_lock(); 4053 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4054 if (!tid_agg_rx) 4055 goto out; 4056 4057 spin_lock_bh(&tid_agg_rx->reorder_lock); 4058 4059 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4060 int release; 4061 4062 /* release all frames in the reorder buffer */ 4063 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4064 IEEE80211_SN_MODULO; 4065 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4066 release, &frames); 4067 /* update ssn to match received ssn */ 4068 tid_agg_rx->head_seq_num = ssn; 4069 } else { 4070 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4071 &frames); 4072 } 4073 4074 /* handle the case that received ssn is behind the mac ssn. 4075 * it can be tid_agg_rx->buf_size behind and still be valid */ 4076 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4077 if (diff >= tid_agg_rx->buf_size) { 4078 tid_agg_rx->reorder_buf_filtered = 0; 4079 goto release; 4080 } 4081 filtered = filtered >> diff; 4082 ssn += diff; 4083 4084 /* update bitmap */ 4085 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4086 int index = (ssn + i) % tid_agg_rx->buf_size; 4087 4088 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4089 if (filtered & BIT_ULL(i)) 4090 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4091 } 4092 4093 /* now process also frames that the filter marking released */ 4094 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4095 4096 release: 4097 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4098 4099 ieee80211_rx_handlers(&rx, &frames); 4100 4101 out: 4102 rcu_read_unlock(); 4103 } 4104 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4105 4106 /* main receive path */ 4107 4108 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4109 { 4110 struct ieee80211_sub_if_data *sdata = rx->sdata; 4111 struct sk_buff *skb = rx->skb; 4112 struct ieee80211_hdr *hdr = (void *)skb->data; 4113 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4114 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4115 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4116 ieee80211_is_s1g_beacon(hdr->frame_control); 4117 4118 switch (sdata->vif.type) { 4119 case NL80211_IFTYPE_STATION: 4120 if (!bssid && !sdata->u.mgd.use_4addr) 4121 return false; 4122 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4123 return false; 4124 if (multicast) 4125 return true; 4126 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4127 case NL80211_IFTYPE_ADHOC: 4128 if (!bssid) 4129 return false; 4130 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4131 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4132 !is_valid_ether_addr(hdr->addr2)) 4133 return false; 4134 if (ieee80211_is_beacon(hdr->frame_control)) 4135 return true; 4136 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4137 return false; 4138 if (!multicast && 4139 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4140 return false; 4141 if (!rx->sta) { 4142 int rate_idx; 4143 if (status->encoding != RX_ENC_LEGACY) 4144 rate_idx = 0; /* TODO: HT/VHT rates */ 4145 else 4146 rate_idx = status->rate_idx; 4147 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4148 BIT(rate_idx)); 4149 } 4150 return true; 4151 case NL80211_IFTYPE_OCB: 4152 if (!bssid) 4153 return false; 4154 if (!ieee80211_is_data_present(hdr->frame_control)) 4155 return false; 4156 if (!is_broadcast_ether_addr(bssid)) 4157 return false; 4158 if (!multicast && 4159 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4160 return false; 4161 if (!rx->sta) { 4162 int rate_idx; 4163 if (status->encoding != RX_ENC_LEGACY) 4164 rate_idx = 0; /* TODO: HT rates */ 4165 else 4166 rate_idx = status->rate_idx; 4167 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4168 BIT(rate_idx)); 4169 } 4170 return true; 4171 case NL80211_IFTYPE_MESH_POINT: 4172 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4173 return false; 4174 if (multicast) 4175 return true; 4176 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4177 case NL80211_IFTYPE_AP_VLAN: 4178 case NL80211_IFTYPE_AP: 4179 if (!bssid) 4180 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4181 4182 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4183 /* 4184 * Accept public action frames even when the 4185 * BSSID doesn't match, this is used for P2P 4186 * and location updates. Note that mac80211 4187 * itself never looks at these frames. 4188 */ 4189 if (!multicast && 4190 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4191 return false; 4192 if (ieee80211_is_public_action(hdr, skb->len)) 4193 return true; 4194 return ieee80211_is_beacon(hdr->frame_control); 4195 } 4196 4197 if (!ieee80211_has_tods(hdr->frame_control)) { 4198 /* ignore data frames to TDLS-peers */ 4199 if (ieee80211_is_data(hdr->frame_control)) 4200 return false; 4201 /* ignore action frames to TDLS-peers */ 4202 if (ieee80211_is_action(hdr->frame_control) && 4203 !is_broadcast_ether_addr(bssid) && 4204 !ether_addr_equal(bssid, hdr->addr1)) 4205 return false; 4206 } 4207 4208 /* 4209 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4210 * the BSSID - we've checked that already but may have accepted 4211 * the wildcard (ff:ff:ff:ff:ff:ff). 4212 * 4213 * It also says: 4214 * The BSSID of the Data frame is determined as follows: 4215 * a) If the STA is contained within an AP or is associated 4216 * with an AP, the BSSID is the address currently in use 4217 * by the STA contained in the AP. 4218 * 4219 * So we should not accept data frames with an address that's 4220 * multicast. 4221 * 4222 * Accepting it also opens a security problem because stations 4223 * could encrypt it with the GTK and inject traffic that way. 4224 */ 4225 if (ieee80211_is_data(hdr->frame_control) && multicast) 4226 return false; 4227 4228 return true; 4229 case NL80211_IFTYPE_P2P_DEVICE: 4230 return ieee80211_is_public_action(hdr, skb->len) || 4231 ieee80211_is_probe_req(hdr->frame_control) || 4232 ieee80211_is_probe_resp(hdr->frame_control) || 4233 ieee80211_is_beacon(hdr->frame_control); 4234 case NL80211_IFTYPE_NAN: 4235 /* Currently no frames on NAN interface are allowed */ 4236 return false; 4237 default: 4238 break; 4239 } 4240 4241 WARN_ON_ONCE(1); 4242 return false; 4243 } 4244 4245 void ieee80211_check_fast_rx(struct sta_info *sta) 4246 { 4247 struct ieee80211_sub_if_data *sdata = sta->sdata; 4248 struct ieee80211_local *local = sdata->local; 4249 struct ieee80211_key *key; 4250 struct ieee80211_fast_rx fastrx = { 4251 .dev = sdata->dev, 4252 .vif_type = sdata->vif.type, 4253 .control_port_protocol = sdata->control_port_protocol, 4254 }, *old, *new = NULL; 4255 bool set_offload = false; 4256 bool assign = false; 4257 bool offload; 4258 4259 /* use sparse to check that we don't return without updating */ 4260 __acquire(check_fast_rx); 4261 4262 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4263 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4264 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4265 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4266 4267 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4268 4269 /* fast-rx doesn't do reordering */ 4270 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4271 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4272 goto clear; 4273 4274 switch (sdata->vif.type) { 4275 case NL80211_IFTYPE_STATION: 4276 if (sta->sta.tdls) { 4277 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4278 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4279 fastrx.expected_ds_bits = 0; 4280 } else { 4281 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4282 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4283 fastrx.expected_ds_bits = 4284 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4285 } 4286 4287 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4288 fastrx.expected_ds_bits |= 4289 cpu_to_le16(IEEE80211_FCTL_TODS); 4290 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4291 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4292 } 4293 4294 if (!sdata->u.mgd.powersave) 4295 break; 4296 4297 /* software powersave is a huge mess, avoid all of it */ 4298 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4299 goto clear; 4300 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4301 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4302 goto clear; 4303 break; 4304 case NL80211_IFTYPE_AP_VLAN: 4305 case NL80211_IFTYPE_AP: 4306 /* parallel-rx requires this, at least with calls to 4307 * ieee80211_sta_ps_transition() 4308 */ 4309 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4310 goto clear; 4311 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4312 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4313 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4314 4315 fastrx.internal_forward = 4316 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4317 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4318 !sdata->u.vlan.sta); 4319 4320 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4321 sdata->u.vlan.sta) { 4322 fastrx.expected_ds_bits |= 4323 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4324 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4325 fastrx.internal_forward = 0; 4326 } 4327 4328 break; 4329 default: 4330 goto clear; 4331 } 4332 4333 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4334 goto clear; 4335 4336 rcu_read_lock(); 4337 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4338 if (!key) 4339 key = rcu_dereference(sdata->default_unicast_key); 4340 if (key) { 4341 switch (key->conf.cipher) { 4342 case WLAN_CIPHER_SUITE_TKIP: 4343 /* we don't want to deal with MMIC in fast-rx */ 4344 goto clear_rcu; 4345 case WLAN_CIPHER_SUITE_CCMP: 4346 case WLAN_CIPHER_SUITE_CCMP_256: 4347 case WLAN_CIPHER_SUITE_GCMP: 4348 case WLAN_CIPHER_SUITE_GCMP_256: 4349 break; 4350 default: 4351 /* We also don't want to deal with 4352 * WEP or cipher scheme. 4353 */ 4354 goto clear_rcu; 4355 } 4356 4357 fastrx.key = true; 4358 fastrx.icv_len = key->conf.icv_len; 4359 } 4360 4361 assign = true; 4362 clear_rcu: 4363 rcu_read_unlock(); 4364 clear: 4365 __release(check_fast_rx); 4366 4367 if (assign) 4368 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4369 4370 offload = assign && 4371 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4372 4373 if (offload) 4374 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4375 else 4376 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4377 4378 if (set_offload) 4379 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4380 4381 spin_lock_bh(&sta->lock); 4382 old = rcu_dereference_protected(sta->fast_rx, true); 4383 rcu_assign_pointer(sta->fast_rx, new); 4384 spin_unlock_bh(&sta->lock); 4385 4386 if (old) 4387 kfree_rcu(old, rcu_head); 4388 } 4389 4390 void ieee80211_clear_fast_rx(struct sta_info *sta) 4391 { 4392 struct ieee80211_fast_rx *old; 4393 4394 spin_lock_bh(&sta->lock); 4395 old = rcu_dereference_protected(sta->fast_rx, true); 4396 RCU_INIT_POINTER(sta->fast_rx, NULL); 4397 spin_unlock_bh(&sta->lock); 4398 4399 if (old) 4400 kfree_rcu(old, rcu_head); 4401 } 4402 4403 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4404 { 4405 struct ieee80211_local *local = sdata->local; 4406 struct sta_info *sta; 4407 4408 lockdep_assert_held(&local->sta_mtx); 4409 4410 list_for_each_entry(sta, &local->sta_list, list) { 4411 if (sdata != sta->sdata && 4412 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4413 continue; 4414 ieee80211_check_fast_rx(sta); 4415 } 4416 } 4417 4418 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4419 { 4420 struct ieee80211_local *local = sdata->local; 4421 4422 mutex_lock(&local->sta_mtx); 4423 __ieee80211_check_fast_rx_iface(sdata); 4424 mutex_unlock(&local->sta_mtx); 4425 } 4426 4427 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4428 struct ieee80211_fast_rx *fast_rx, 4429 int orig_len) 4430 { 4431 struct ieee80211_sta_rx_stats *stats; 4432 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4433 struct sta_info *sta = rx->sta; 4434 struct sk_buff *skb = rx->skb; 4435 void *sa = skb->data + ETH_ALEN; 4436 void *da = skb->data; 4437 4438 stats = &sta->rx_stats; 4439 if (fast_rx->uses_rss) 4440 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4441 4442 /* statistics part of ieee80211_rx_h_sta_process() */ 4443 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4444 stats->last_signal = status->signal; 4445 if (!fast_rx->uses_rss) 4446 ewma_signal_add(&sta->rx_stats_avg.signal, 4447 -status->signal); 4448 } 4449 4450 if (status->chains) { 4451 int i; 4452 4453 stats->chains = status->chains; 4454 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4455 int signal = status->chain_signal[i]; 4456 4457 if (!(status->chains & BIT(i))) 4458 continue; 4459 4460 stats->chain_signal_last[i] = signal; 4461 if (!fast_rx->uses_rss) 4462 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4463 -signal); 4464 } 4465 } 4466 /* end of statistics */ 4467 4468 stats->last_rx = jiffies; 4469 stats->last_rate = sta_stats_encode_rate(status); 4470 4471 stats->fragments++; 4472 stats->packets++; 4473 4474 skb->dev = fast_rx->dev; 4475 4476 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4477 4478 /* The seqno index has the same property as needed 4479 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4480 * for non-QoS-data frames. Here we know it's a data 4481 * frame, so count MSDUs. 4482 */ 4483 u64_stats_update_begin(&stats->syncp); 4484 stats->msdu[rx->seqno_idx]++; 4485 stats->bytes += orig_len; 4486 u64_stats_update_end(&stats->syncp); 4487 4488 if (fast_rx->internal_forward) { 4489 struct sk_buff *xmit_skb = NULL; 4490 if (is_multicast_ether_addr(da)) { 4491 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4492 } else if (!ether_addr_equal(da, sa) && 4493 sta_info_get(rx->sdata, da)) { 4494 xmit_skb = skb; 4495 skb = NULL; 4496 } 4497 4498 if (xmit_skb) { 4499 /* 4500 * Send to wireless media and increase priority by 256 4501 * to keep the received priority instead of 4502 * reclassifying the frame (see cfg80211_classify8021d). 4503 */ 4504 xmit_skb->priority += 256; 4505 xmit_skb->protocol = htons(ETH_P_802_3); 4506 skb_reset_network_header(xmit_skb); 4507 skb_reset_mac_header(xmit_skb); 4508 dev_queue_xmit(xmit_skb); 4509 } 4510 4511 if (!skb) 4512 return; 4513 } 4514 4515 /* deliver to local stack */ 4516 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4517 memset(skb->cb, 0, sizeof(skb->cb)); 4518 if (rx->list) 4519 list_add_tail(&skb->list, rx->list); 4520 else 4521 netif_receive_skb(skb); 4522 4523 } 4524 4525 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4526 struct ieee80211_fast_rx *fast_rx) 4527 { 4528 struct sk_buff *skb = rx->skb; 4529 struct ieee80211_hdr *hdr = (void *)skb->data; 4530 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4531 struct sta_info *sta = rx->sta; 4532 int orig_len = skb->len; 4533 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4534 int snap_offs = hdrlen; 4535 struct { 4536 u8 snap[sizeof(rfc1042_header)]; 4537 __be16 proto; 4538 } *payload __aligned(2); 4539 struct { 4540 u8 da[ETH_ALEN]; 4541 u8 sa[ETH_ALEN]; 4542 } addrs __aligned(2); 4543 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4544 4545 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4546 * to a common data structure; drivers can implement that per queue 4547 * but we don't have that information in mac80211 4548 */ 4549 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4550 return false; 4551 4552 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4553 4554 /* If using encryption, we also need to have: 4555 * - PN_VALIDATED: similar, but the implementation is tricky 4556 * - DECRYPTED: necessary for PN_VALIDATED 4557 */ 4558 if (fast_rx->key && 4559 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4560 return false; 4561 4562 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4563 return false; 4564 4565 if (unlikely(ieee80211_is_frag(hdr))) 4566 return false; 4567 4568 /* Since our interface address cannot be multicast, this 4569 * implicitly also rejects multicast frames without the 4570 * explicit check. 4571 * 4572 * We shouldn't get any *data* frames not addressed to us 4573 * (AP mode will accept multicast *management* frames), but 4574 * punting here will make it go through the full checks in 4575 * ieee80211_accept_frame(). 4576 */ 4577 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4578 return false; 4579 4580 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4581 IEEE80211_FCTL_TODS)) != 4582 fast_rx->expected_ds_bits) 4583 return false; 4584 4585 /* assign the key to drop unencrypted frames (later) 4586 * and strip the IV/MIC if necessary 4587 */ 4588 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4589 /* GCMP header length is the same */ 4590 snap_offs += IEEE80211_CCMP_HDR_LEN; 4591 } 4592 4593 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4594 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4595 goto drop; 4596 4597 payload = (void *)(skb->data + snap_offs); 4598 4599 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4600 return false; 4601 4602 /* Don't handle these here since they require special code. 4603 * Accept AARP and IPX even though they should come with a 4604 * bridge-tunnel header - but if we get them this way then 4605 * there's little point in discarding them. 4606 */ 4607 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4608 payload->proto == fast_rx->control_port_protocol)) 4609 return false; 4610 } 4611 4612 /* after this point, don't punt to the slowpath! */ 4613 4614 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4615 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4616 goto drop; 4617 4618 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4619 goto drop; 4620 4621 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4622 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4623 RX_QUEUED) 4624 goto drop; 4625 4626 return true; 4627 } 4628 4629 /* do the header conversion - first grab the addresses */ 4630 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4631 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4632 /* remove the SNAP but leave the ethertype */ 4633 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4634 /* push the addresses in front */ 4635 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4636 4637 ieee80211_rx_8023(rx, fast_rx, orig_len); 4638 4639 return true; 4640 drop: 4641 dev_kfree_skb(skb); 4642 if (fast_rx->uses_rss) 4643 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4644 4645 stats->dropped++; 4646 return true; 4647 } 4648 4649 /* 4650 * This function returns whether or not the SKB 4651 * was destined for RX processing or not, which, 4652 * if consume is true, is equivalent to whether 4653 * or not the skb was consumed. 4654 */ 4655 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4656 struct sk_buff *skb, bool consume) 4657 { 4658 struct ieee80211_local *local = rx->local; 4659 struct ieee80211_sub_if_data *sdata = rx->sdata; 4660 4661 rx->skb = skb; 4662 4663 /* See if we can do fast-rx; if we have to copy we already lost, 4664 * so punt in that case. We should never have to deliver a data 4665 * frame to multiple interfaces anyway. 4666 * 4667 * We skip the ieee80211_accept_frame() call and do the necessary 4668 * checking inside ieee80211_invoke_fast_rx(). 4669 */ 4670 if (consume && rx->sta) { 4671 struct ieee80211_fast_rx *fast_rx; 4672 4673 fast_rx = rcu_dereference(rx->sta->fast_rx); 4674 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4675 return true; 4676 } 4677 4678 if (!ieee80211_accept_frame(rx)) 4679 return false; 4680 4681 if (!consume) { 4682 skb = skb_copy(skb, GFP_ATOMIC); 4683 if (!skb) { 4684 if (net_ratelimit()) 4685 wiphy_debug(local->hw.wiphy, 4686 "failed to copy skb for %s\n", 4687 sdata->name); 4688 return true; 4689 } 4690 4691 rx->skb = skb; 4692 } 4693 4694 ieee80211_invoke_rx_handlers(rx); 4695 return true; 4696 } 4697 4698 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4699 struct ieee80211_sta *pubsta, 4700 struct sk_buff *skb, 4701 struct list_head *list) 4702 { 4703 struct ieee80211_local *local = hw_to_local(hw); 4704 struct ieee80211_fast_rx *fast_rx; 4705 struct ieee80211_rx_data rx; 4706 4707 memset(&rx, 0, sizeof(rx)); 4708 rx.skb = skb; 4709 rx.local = local; 4710 rx.list = list; 4711 4712 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4713 4714 /* drop frame if too short for header */ 4715 if (skb->len < sizeof(struct ethhdr)) 4716 goto drop; 4717 4718 if (!pubsta) 4719 goto drop; 4720 4721 rx.sta = container_of(pubsta, struct sta_info, sta); 4722 rx.sdata = rx.sta->sdata; 4723 4724 fast_rx = rcu_dereference(rx.sta->fast_rx); 4725 if (!fast_rx) 4726 goto drop; 4727 4728 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4729 return; 4730 4731 drop: 4732 dev_kfree_skb(skb); 4733 } 4734 4735 /* 4736 * This is the actual Rx frames handler. as it belongs to Rx path it must 4737 * be called with rcu_read_lock protection. 4738 */ 4739 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4740 struct ieee80211_sta *pubsta, 4741 struct sk_buff *skb, 4742 struct list_head *list) 4743 { 4744 struct ieee80211_local *local = hw_to_local(hw); 4745 struct ieee80211_sub_if_data *sdata; 4746 struct ieee80211_hdr *hdr; 4747 __le16 fc; 4748 struct ieee80211_rx_data rx; 4749 struct ieee80211_sub_if_data *prev; 4750 struct rhlist_head *tmp; 4751 int err = 0; 4752 4753 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4754 memset(&rx, 0, sizeof(rx)); 4755 rx.skb = skb; 4756 rx.local = local; 4757 rx.list = list; 4758 4759 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4760 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4761 4762 if (ieee80211_is_mgmt(fc)) { 4763 /* drop frame if too short for header */ 4764 if (skb->len < ieee80211_hdrlen(fc)) 4765 err = -ENOBUFS; 4766 else 4767 err = skb_linearize(skb); 4768 } else { 4769 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4770 } 4771 4772 if (err) { 4773 dev_kfree_skb(skb); 4774 return; 4775 } 4776 4777 hdr = (struct ieee80211_hdr *)skb->data; 4778 ieee80211_parse_qos(&rx); 4779 ieee80211_verify_alignment(&rx); 4780 4781 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4782 ieee80211_is_beacon(hdr->frame_control) || 4783 ieee80211_is_s1g_beacon(hdr->frame_control))) 4784 ieee80211_scan_rx(local, skb); 4785 4786 if (ieee80211_is_data(fc)) { 4787 struct sta_info *sta, *prev_sta; 4788 4789 if (pubsta) { 4790 rx.sta = container_of(pubsta, struct sta_info, sta); 4791 rx.sdata = rx.sta->sdata; 4792 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4793 return; 4794 goto out; 4795 } 4796 4797 prev_sta = NULL; 4798 4799 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4800 if (!prev_sta) { 4801 prev_sta = sta; 4802 continue; 4803 } 4804 4805 rx.sta = prev_sta; 4806 rx.sdata = prev_sta->sdata; 4807 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4808 4809 prev_sta = sta; 4810 } 4811 4812 if (prev_sta) { 4813 rx.sta = prev_sta; 4814 rx.sdata = prev_sta->sdata; 4815 4816 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4817 return; 4818 goto out; 4819 } 4820 } 4821 4822 prev = NULL; 4823 4824 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4825 if (!ieee80211_sdata_running(sdata)) 4826 continue; 4827 4828 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4829 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4830 continue; 4831 4832 /* 4833 * frame is destined for this interface, but if it's 4834 * not also for the previous one we handle that after 4835 * the loop to avoid copying the SKB once too much 4836 */ 4837 4838 if (!prev) { 4839 prev = sdata; 4840 continue; 4841 } 4842 4843 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4844 rx.sdata = prev; 4845 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4846 4847 prev = sdata; 4848 } 4849 4850 if (prev) { 4851 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4852 rx.sdata = prev; 4853 4854 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4855 return; 4856 } 4857 4858 out: 4859 dev_kfree_skb(skb); 4860 } 4861 4862 /* 4863 * This is the receive path handler. It is called by a low level driver when an 4864 * 802.11 MPDU is received from the hardware. 4865 */ 4866 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4867 struct sk_buff *skb, struct list_head *list) 4868 { 4869 struct ieee80211_local *local = hw_to_local(hw); 4870 struct ieee80211_rate *rate = NULL; 4871 struct ieee80211_supported_band *sband; 4872 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4873 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 4874 4875 WARN_ON_ONCE(softirq_count() == 0); 4876 4877 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4878 goto drop; 4879 4880 sband = local->hw.wiphy->bands[status->band]; 4881 if (WARN_ON(!sband)) 4882 goto drop; 4883 4884 /* 4885 * If we're suspending, it is possible although not too likely 4886 * that we'd be receiving frames after having already partially 4887 * quiesced the stack. We can't process such frames then since 4888 * that might, for example, cause stations to be added or other 4889 * driver callbacks be invoked. 4890 */ 4891 if (unlikely(local->quiescing || local->suspended)) 4892 goto drop; 4893 4894 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4895 if (unlikely(local->in_reconfig)) 4896 goto drop; 4897 4898 /* 4899 * The same happens when we're not even started, 4900 * but that's worth a warning. 4901 */ 4902 if (WARN_ON(!local->started)) 4903 goto drop; 4904 4905 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4906 /* 4907 * Validate the rate, unless a PLCP error means that 4908 * we probably can't have a valid rate here anyway. 4909 */ 4910 4911 switch (status->encoding) { 4912 case RX_ENC_HT: 4913 /* 4914 * rate_idx is MCS index, which can be [0-76] 4915 * as documented on: 4916 * 4917 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4918 * 4919 * Anything else would be some sort of driver or 4920 * hardware error. The driver should catch hardware 4921 * errors. 4922 */ 4923 if (WARN(status->rate_idx > 76, 4924 "Rate marked as an HT rate but passed " 4925 "status->rate_idx is not " 4926 "an MCS index [0-76]: %d (0x%02x)\n", 4927 status->rate_idx, 4928 status->rate_idx)) 4929 goto drop; 4930 break; 4931 case RX_ENC_VHT: 4932 if (WARN_ONCE(status->rate_idx > 11 || 4933 !status->nss || 4934 status->nss > 8, 4935 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4936 status->rate_idx, status->nss)) 4937 goto drop; 4938 break; 4939 case RX_ENC_HE: 4940 if (WARN_ONCE(status->rate_idx > 11 || 4941 !status->nss || 4942 status->nss > 8, 4943 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4944 status->rate_idx, status->nss)) 4945 goto drop; 4946 break; 4947 default: 4948 WARN_ON_ONCE(1); 4949 fallthrough; 4950 case RX_ENC_LEGACY: 4951 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4952 goto drop; 4953 rate = &sband->bitrates[status->rate_idx]; 4954 } 4955 } 4956 4957 status->rx_flags = 0; 4958 4959 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4960 4961 /* 4962 * Frames with failed FCS/PLCP checksum are not returned, 4963 * all other frames are returned without radiotap header 4964 * if it was previously present. 4965 * Also, frames with less than 16 bytes are dropped. 4966 */ 4967 if (!(status->flag & RX_FLAG_8023)) 4968 skb = ieee80211_rx_monitor(local, skb, rate); 4969 if (skb) { 4970 if ((status->flag & RX_FLAG_8023) || 4971 ieee80211_is_data_present(hdr->frame_control)) 4972 ieee80211_tpt_led_trig_rx(local, skb->len); 4973 4974 if (status->flag & RX_FLAG_8023) 4975 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 4976 else 4977 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4978 } 4979 4980 kcov_remote_stop(); 4981 return; 4982 drop: 4983 kfree_skb(skb); 4984 } 4985 EXPORT_SYMBOL(ieee80211_rx_list); 4986 4987 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4988 struct sk_buff *skb, struct napi_struct *napi) 4989 { 4990 struct sk_buff *tmp; 4991 LIST_HEAD(list); 4992 4993 4994 /* 4995 * key references and virtual interfaces are protected using RCU 4996 * and this requires that we are in a read-side RCU section during 4997 * receive processing 4998 */ 4999 rcu_read_lock(); 5000 ieee80211_rx_list(hw, pubsta, skb, &list); 5001 rcu_read_unlock(); 5002 5003 if (!napi) { 5004 netif_receive_skb_list(&list); 5005 return; 5006 } 5007 5008 list_for_each_entry_safe(skb, tmp, &list, list) { 5009 skb_list_del_init(skb); 5010 napi_gro_receive(napi, skb); 5011 } 5012 } 5013 EXPORT_SYMBOL(ieee80211_rx_napi); 5014 5015 /* This is a version of the rx handler that can be called from hard irq 5016 * context. Post the skb on the queue and schedule the tasklet */ 5017 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5018 { 5019 struct ieee80211_local *local = hw_to_local(hw); 5020 5021 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5022 5023 skb->pkt_type = IEEE80211_RX_MSG; 5024 skb_queue_tail(&local->skb_queue, skb); 5025 tasklet_schedule(&local->tasklet); 5026 } 5027 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5028