xref: /openbmc/linux/net/mac80211/rx.c (revision 275876e2)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23 
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33 
34 /*
35  * monitor mode reception
36  *
37  * This function cleans up the SKB, i.e. it removes all the stuff
38  * only useful for monitoring.
39  */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 					   struct sk_buff *skb)
42 {
43 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 		if (likely(skb->len > FCS_LEN))
45 			__pskb_trim(skb, skb->len - FCS_LEN);
46 		else {
47 			/* driver bug */
48 			WARN_ON(1);
49 			dev_kfree_skb(skb);
50 			return NULL;
51 		}
52 	}
53 
54 	return skb;
55 }
56 
57 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len)
58 {
59 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 	struct ieee80211_hdr *hdr = (void *)skb->data;
61 
62 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
63 			    RX_FLAG_FAILED_PLCP_CRC |
64 			    RX_FLAG_AMPDU_IS_ZEROLEN))
65 		return true;
66 
67 	if (unlikely(skb->len < 16 + present_fcs_len))
68 		return true;
69 
70 	if (ieee80211_is_ctl(hdr->frame_control) &&
71 	    !ieee80211_is_pspoll(hdr->frame_control) &&
72 	    !ieee80211_is_back_req(hdr->frame_control))
73 		return true;
74 
75 	return false;
76 }
77 
78 static int
79 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
80 			    struct ieee80211_rx_status *status)
81 {
82 	int len;
83 
84 	/* always present fields */
85 	len = sizeof(struct ieee80211_radiotap_header) + 8;
86 
87 	/* allocate extra bitmaps */
88 	if (status->chains)
89 		len += 4 * hweight8(status->chains);
90 
91 	if (ieee80211_have_rx_timestamp(status)) {
92 		len = ALIGN(len, 8);
93 		len += 8;
94 	}
95 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
96 		len += 1;
97 
98 	/* antenna field, if we don't have per-chain info */
99 	if (!status->chains)
100 		len += 1;
101 
102 	/* padding for RX_FLAGS if necessary */
103 	len = ALIGN(len, 2);
104 
105 	if (status->flag & RX_FLAG_HT) /* HT info */
106 		len += 3;
107 
108 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
109 		len = ALIGN(len, 4);
110 		len += 8;
111 	}
112 
113 	if (status->flag & RX_FLAG_VHT) {
114 		len = ALIGN(len, 2);
115 		len += 12;
116 	}
117 
118 	if (status->chains) {
119 		/* antenna and antenna signal fields */
120 		len += 2 * hweight8(status->chains);
121 	}
122 
123 	return len;
124 }
125 
126 /*
127  * ieee80211_add_rx_radiotap_header - add radiotap header
128  *
129  * add a radiotap header containing all the fields which the hardware provided.
130  */
131 static void
132 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
133 				 struct sk_buff *skb,
134 				 struct ieee80211_rate *rate,
135 				 int rtap_len, bool has_fcs)
136 {
137 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
138 	struct ieee80211_radiotap_header *rthdr;
139 	unsigned char *pos;
140 	__le32 *it_present;
141 	u32 it_present_val;
142 	u16 rx_flags = 0;
143 	u16 channel_flags = 0;
144 	int mpdulen, chain;
145 	unsigned long chains = status->chains;
146 
147 	mpdulen = skb->len;
148 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
149 		mpdulen += FCS_LEN;
150 
151 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
152 	memset(rthdr, 0, rtap_len);
153 	it_present = &rthdr->it_present;
154 
155 	/* radiotap header, set always present flags */
156 	rthdr->it_len = cpu_to_le16(rtap_len);
157 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
158 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
159 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
160 
161 	if (!status->chains)
162 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
163 
164 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
165 		it_present_val |=
166 			BIT(IEEE80211_RADIOTAP_EXT) |
167 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
168 		put_unaligned_le32(it_present_val, it_present);
169 		it_present++;
170 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
171 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
172 	}
173 
174 	put_unaligned_le32(it_present_val, it_present);
175 
176 	pos = (void *)(it_present + 1);
177 
178 	/* the order of the following fields is important */
179 
180 	/* IEEE80211_RADIOTAP_TSFT */
181 	if (ieee80211_have_rx_timestamp(status)) {
182 		/* padding */
183 		while ((pos - (u8 *)rthdr) & 7)
184 			*pos++ = 0;
185 		put_unaligned_le64(
186 			ieee80211_calculate_rx_timestamp(local, status,
187 							 mpdulen, 0),
188 			pos);
189 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190 		pos += 8;
191 	}
192 
193 	/* IEEE80211_RADIOTAP_FLAGS */
194 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
195 		*pos |= IEEE80211_RADIOTAP_F_FCS;
196 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
197 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
198 	if (status->flag & RX_FLAG_SHORTPRE)
199 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
200 	pos++;
201 
202 	/* IEEE80211_RADIOTAP_RATE */
203 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
204 		/*
205 		 * Without rate information don't add it. If we have,
206 		 * MCS information is a separate field in radiotap,
207 		 * added below. The byte here is needed as padding
208 		 * for the channel though, so initialise it to 0.
209 		 */
210 		*pos = 0;
211 	} else {
212 		int shift = 0;
213 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
214 		if (status->flag & RX_FLAG_10MHZ)
215 			shift = 1;
216 		else if (status->flag & RX_FLAG_5MHZ)
217 			shift = 2;
218 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
219 	}
220 	pos++;
221 
222 	/* IEEE80211_RADIOTAP_CHANNEL */
223 	put_unaligned_le16(status->freq, pos);
224 	pos += 2;
225 	if (status->flag & RX_FLAG_10MHZ)
226 		channel_flags |= IEEE80211_CHAN_HALF;
227 	else if (status->flag & RX_FLAG_5MHZ)
228 		channel_flags |= IEEE80211_CHAN_QUARTER;
229 
230 	if (status->band == IEEE80211_BAND_5GHZ)
231 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
232 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
233 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
234 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
235 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
236 	else if (rate)
237 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
238 	else
239 		channel_flags |= IEEE80211_CHAN_2GHZ;
240 	put_unaligned_le16(channel_flags, pos);
241 	pos += 2;
242 
243 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
244 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
245 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
246 		*pos = status->signal;
247 		rthdr->it_present |=
248 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
249 		pos++;
250 	}
251 
252 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
253 
254 	if (!status->chains) {
255 		/* IEEE80211_RADIOTAP_ANTENNA */
256 		*pos = status->antenna;
257 		pos++;
258 	}
259 
260 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
261 
262 	/* IEEE80211_RADIOTAP_RX_FLAGS */
263 	/* ensure 2 byte alignment for the 2 byte field as required */
264 	if ((pos - (u8 *)rthdr) & 1)
265 		*pos++ = 0;
266 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
267 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
268 	put_unaligned_le16(rx_flags, pos);
269 	pos += 2;
270 
271 	if (status->flag & RX_FLAG_HT) {
272 		unsigned int stbc;
273 
274 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
275 		*pos++ = local->hw.radiotap_mcs_details;
276 		*pos = 0;
277 		if (status->flag & RX_FLAG_SHORT_GI)
278 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
279 		if (status->flag & RX_FLAG_40MHZ)
280 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
281 		if (status->flag & RX_FLAG_HT_GF)
282 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
283 		if (status->flag & RX_FLAG_LDPC)
284 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
285 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
286 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
287 		pos++;
288 		*pos++ = status->rate_idx;
289 	}
290 
291 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
292 		u16 flags = 0;
293 
294 		/* ensure 4 byte alignment */
295 		while ((pos - (u8 *)rthdr) & 3)
296 			pos++;
297 		rthdr->it_present |=
298 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
299 		put_unaligned_le32(status->ampdu_reference, pos);
300 		pos += 4;
301 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
302 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
303 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
304 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
305 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
306 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
307 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
308 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
309 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
310 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
311 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
312 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
313 		put_unaligned_le16(flags, pos);
314 		pos += 2;
315 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
316 			*pos++ = status->ampdu_delimiter_crc;
317 		else
318 			*pos++ = 0;
319 		*pos++ = 0;
320 	}
321 
322 	if (status->flag & RX_FLAG_VHT) {
323 		u16 known = local->hw.radiotap_vht_details;
324 
325 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
326 		/* known field - how to handle 80+80? */
327 		if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
328 			known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
329 		put_unaligned_le16(known, pos);
330 		pos += 2;
331 		/* flags */
332 		if (status->flag & RX_FLAG_SHORT_GI)
333 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
334 		/* in VHT, STBC is binary */
335 		if (status->flag & RX_FLAG_STBC_MASK)
336 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
337 		if (status->vht_flag & RX_VHT_FLAG_BF)
338 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
339 		pos++;
340 		/* bandwidth */
341 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
342 			*pos++ = 4;
343 		else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
344 			*pos++ = 0; /* marked not known above */
345 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
346 			*pos++ = 11;
347 		else if (status->flag & RX_FLAG_40MHZ)
348 			*pos++ = 1;
349 		else /* 20 MHz */
350 			*pos++ = 0;
351 		/* MCS/NSS */
352 		*pos = (status->rate_idx << 4) | status->vht_nss;
353 		pos += 4;
354 		/* coding field */
355 		if (status->flag & RX_FLAG_LDPC)
356 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
357 		pos++;
358 		/* group ID */
359 		pos++;
360 		/* partial_aid */
361 		pos += 2;
362 	}
363 
364 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
365 		*pos++ = status->chain_signal[chain];
366 		*pos++ = chain;
367 	}
368 }
369 
370 /*
371  * This function copies a received frame to all monitor interfaces and
372  * returns a cleaned-up SKB that no longer includes the FCS nor the
373  * radiotap header the driver might have added.
374  */
375 static struct sk_buff *
376 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
377 		     struct ieee80211_rate *rate)
378 {
379 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
380 	struct ieee80211_sub_if_data *sdata;
381 	int needed_headroom;
382 	struct sk_buff *skb, *skb2;
383 	struct net_device *prev_dev = NULL;
384 	int present_fcs_len = 0;
385 
386 	/*
387 	 * First, we may need to make a copy of the skb because
388 	 *  (1) we need to modify it for radiotap (if not present), and
389 	 *  (2) the other RX handlers will modify the skb we got.
390 	 *
391 	 * We don't need to, of course, if we aren't going to return
392 	 * the SKB because it has a bad FCS/PLCP checksum.
393 	 */
394 
395 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
396 		present_fcs_len = FCS_LEN;
397 
398 	/* ensure hdr->frame_control is in skb head */
399 	if (!pskb_may_pull(origskb, 2)) {
400 		dev_kfree_skb(origskb);
401 		return NULL;
402 	}
403 
404 	if (!local->monitors) {
405 		if (should_drop_frame(origskb, present_fcs_len)) {
406 			dev_kfree_skb(origskb);
407 			return NULL;
408 		}
409 
410 		return remove_monitor_info(local, origskb);
411 	}
412 
413 	/* room for the radiotap header based on driver features */
414 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
415 
416 	if (should_drop_frame(origskb, present_fcs_len)) {
417 		/* only need to expand headroom if necessary */
418 		skb = origskb;
419 		origskb = NULL;
420 
421 		/*
422 		 * This shouldn't trigger often because most devices have an
423 		 * RX header they pull before we get here, and that should
424 		 * be big enough for our radiotap information. We should
425 		 * probably export the length to drivers so that we can have
426 		 * them allocate enough headroom to start with.
427 		 */
428 		if (skb_headroom(skb) < needed_headroom &&
429 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
430 			dev_kfree_skb(skb);
431 			return NULL;
432 		}
433 	} else {
434 		/*
435 		 * Need to make a copy and possibly remove radiotap header
436 		 * and FCS from the original.
437 		 */
438 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
439 
440 		origskb = remove_monitor_info(local, origskb);
441 
442 		if (!skb)
443 			return origskb;
444 	}
445 
446 	/* prepend radiotap information */
447 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
448 					 true);
449 
450 	skb_reset_mac_header(skb);
451 	skb->ip_summed = CHECKSUM_UNNECESSARY;
452 	skb->pkt_type = PACKET_OTHERHOST;
453 	skb->protocol = htons(ETH_P_802_2);
454 
455 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
456 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
457 			continue;
458 
459 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
460 			continue;
461 
462 		if (!ieee80211_sdata_running(sdata))
463 			continue;
464 
465 		if (prev_dev) {
466 			skb2 = skb_clone(skb, GFP_ATOMIC);
467 			if (skb2) {
468 				skb2->dev = prev_dev;
469 				netif_receive_skb(skb2);
470 			}
471 		}
472 
473 		prev_dev = sdata->dev;
474 		sdata->dev->stats.rx_packets++;
475 		sdata->dev->stats.rx_bytes += skb->len;
476 	}
477 
478 	if (prev_dev) {
479 		skb->dev = prev_dev;
480 		netif_receive_skb(skb);
481 	} else
482 		dev_kfree_skb(skb);
483 
484 	return origskb;
485 }
486 
487 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
488 {
489 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
490 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
491 	int tid, seqno_idx, security_idx;
492 
493 	/* does the frame have a qos control field? */
494 	if (ieee80211_is_data_qos(hdr->frame_control)) {
495 		u8 *qc = ieee80211_get_qos_ctl(hdr);
496 		/* frame has qos control */
497 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
498 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
499 			status->rx_flags |= IEEE80211_RX_AMSDU;
500 
501 		seqno_idx = tid;
502 		security_idx = tid;
503 	} else {
504 		/*
505 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
506 		 *
507 		 *	Sequence numbers for management frames, QoS data
508 		 *	frames with a broadcast/multicast address in the
509 		 *	Address 1 field, and all non-QoS data frames sent
510 		 *	by QoS STAs are assigned using an additional single
511 		 *	modulo-4096 counter, [...]
512 		 *
513 		 * We also use that counter for non-QoS STAs.
514 		 */
515 		seqno_idx = IEEE80211_NUM_TIDS;
516 		security_idx = 0;
517 		if (ieee80211_is_mgmt(hdr->frame_control))
518 			security_idx = IEEE80211_NUM_TIDS;
519 		tid = 0;
520 	}
521 
522 	rx->seqno_idx = seqno_idx;
523 	rx->security_idx = security_idx;
524 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
525 	 * For now, set skb->priority to 0 for other cases. */
526 	rx->skb->priority = (tid > 7) ? 0 : tid;
527 }
528 
529 /**
530  * DOC: Packet alignment
531  *
532  * Drivers always need to pass packets that are aligned to two-byte boundaries
533  * to the stack.
534  *
535  * Additionally, should, if possible, align the payload data in a way that
536  * guarantees that the contained IP header is aligned to a four-byte
537  * boundary. In the case of regular frames, this simply means aligning the
538  * payload to a four-byte boundary (because either the IP header is directly
539  * contained, or IV/RFC1042 headers that have a length divisible by four are
540  * in front of it).  If the payload data is not properly aligned and the
541  * architecture doesn't support efficient unaligned operations, mac80211
542  * will align the data.
543  *
544  * With A-MSDU frames, however, the payload data address must yield two modulo
545  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
546  * push the IP header further back to a multiple of four again. Thankfully, the
547  * specs were sane enough this time around to require padding each A-MSDU
548  * subframe to a length that is a multiple of four.
549  *
550  * Padding like Atheros hardware adds which is between the 802.11 header and
551  * the payload is not supported, the driver is required to move the 802.11
552  * header to be directly in front of the payload in that case.
553  */
554 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
555 {
556 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
557 	WARN_ONCE((unsigned long)rx->skb->data & 1,
558 		  "unaligned packet at 0x%p\n", rx->skb->data);
559 #endif
560 }
561 
562 
563 /* rx handlers */
564 
565 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
566 {
567 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
568 
569 	if (is_multicast_ether_addr(hdr->addr1))
570 		return 0;
571 
572 	return ieee80211_is_robust_mgmt_frame(skb);
573 }
574 
575 
576 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
577 {
578 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
579 
580 	if (!is_multicast_ether_addr(hdr->addr1))
581 		return 0;
582 
583 	return ieee80211_is_robust_mgmt_frame(skb);
584 }
585 
586 
587 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
588 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
589 {
590 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
591 	struct ieee80211_mmie *mmie;
592 
593 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
594 		return -1;
595 
596 	if (!ieee80211_is_robust_mgmt_frame(skb))
597 		return -1; /* not a robust management frame */
598 
599 	mmie = (struct ieee80211_mmie *)
600 		(skb->data + skb->len - sizeof(*mmie));
601 	if (mmie->element_id != WLAN_EID_MMIE ||
602 	    mmie->length != sizeof(*mmie) - 2)
603 		return -1;
604 
605 	return le16_to_cpu(mmie->key_id);
606 }
607 
608 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
609 				 struct sk_buff *skb)
610 {
611 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
612 	__le16 fc;
613 	int hdrlen;
614 	u8 keyid;
615 
616 	fc = hdr->frame_control;
617 	hdrlen = ieee80211_hdrlen(fc);
618 
619 	if (skb->len < hdrlen + cs->hdr_len)
620 		return -EINVAL;
621 
622 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
623 	keyid &= cs->key_idx_mask;
624 	keyid >>= cs->key_idx_shift;
625 
626 	return keyid;
627 }
628 
629 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
630 {
631 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
632 	char *dev_addr = rx->sdata->vif.addr;
633 
634 	if (ieee80211_is_data(hdr->frame_control)) {
635 		if (is_multicast_ether_addr(hdr->addr1)) {
636 			if (ieee80211_has_tods(hdr->frame_control) ||
637 			    !ieee80211_has_fromds(hdr->frame_control))
638 				return RX_DROP_MONITOR;
639 			if (ether_addr_equal(hdr->addr3, dev_addr))
640 				return RX_DROP_MONITOR;
641 		} else {
642 			if (!ieee80211_has_a4(hdr->frame_control))
643 				return RX_DROP_MONITOR;
644 			if (ether_addr_equal(hdr->addr4, dev_addr))
645 				return RX_DROP_MONITOR;
646 		}
647 	}
648 
649 	/* If there is not an established peer link and this is not a peer link
650 	 * establisment frame, beacon or probe, drop the frame.
651 	 */
652 
653 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
654 		struct ieee80211_mgmt *mgmt;
655 
656 		if (!ieee80211_is_mgmt(hdr->frame_control))
657 			return RX_DROP_MONITOR;
658 
659 		if (ieee80211_is_action(hdr->frame_control)) {
660 			u8 category;
661 
662 			/* make sure category field is present */
663 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
664 				return RX_DROP_MONITOR;
665 
666 			mgmt = (struct ieee80211_mgmt *)hdr;
667 			category = mgmt->u.action.category;
668 			if (category != WLAN_CATEGORY_MESH_ACTION &&
669 			    category != WLAN_CATEGORY_SELF_PROTECTED)
670 				return RX_DROP_MONITOR;
671 			return RX_CONTINUE;
672 		}
673 
674 		if (ieee80211_is_probe_req(hdr->frame_control) ||
675 		    ieee80211_is_probe_resp(hdr->frame_control) ||
676 		    ieee80211_is_beacon(hdr->frame_control) ||
677 		    ieee80211_is_auth(hdr->frame_control))
678 			return RX_CONTINUE;
679 
680 		return RX_DROP_MONITOR;
681 	}
682 
683 	return RX_CONTINUE;
684 }
685 
686 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
687 					    struct tid_ampdu_rx *tid_agg_rx,
688 					    int index,
689 					    struct sk_buff_head *frames)
690 {
691 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
692 	struct sk_buff *skb;
693 	struct ieee80211_rx_status *status;
694 
695 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
696 
697 	if (skb_queue_empty(skb_list))
698 		goto no_frame;
699 
700 	if (!ieee80211_rx_reorder_ready(skb_list)) {
701 		__skb_queue_purge(skb_list);
702 		goto no_frame;
703 	}
704 
705 	/* release frames from the reorder ring buffer */
706 	tid_agg_rx->stored_mpdu_num--;
707 	while ((skb = __skb_dequeue(skb_list))) {
708 		status = IEEE80211_SKB_RXCB(skb);
709 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
710 		__skb_queue_tail(frames, skb);
711 	}
712 
713 no_frame:
714 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
715 }
716 
717 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
718 					     struct tid_ampdu_rx *tid_agg_rx,
719 					     u16 head_seq_num,
720 					     struct sk_buff_head *frames)
721 {
722 	int index;
723 
724 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
725 
726 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
727 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
728 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
729 						frames);
730 	}
731 }
732 
733 /*
734  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
735  * the skb was added to the buffer longer than this time ago, the earlier
736  * frames that have not yet been received are assumed to be lost and the skb
737  * can be released for processing. This may also release other skb's from the
738  * reorder buffer if there are no additional gaps between the frames.
739  *
740  * Callers must hold tid_agg_rx->reorder_lock.
741  */
742 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
743 
744 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
745 					  struct tid_ampdu_rx *tid_agg_rx,
746 					  struct sk_buff_head *frames)
747 {
748 	int index, i, j;
749 
750 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
751 
752 	/* release the buffer until next missing frame */
753 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
754 	if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
755 	    tid_agg_rx->stored_mpdu_num) {
756 		/*
757 		 * No buffers ready to be released, but check whether any
758 		 * frames in the reorder buffer have timed out.
759 		 */
760 		int skipped = 1;
761 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
762 		     j = (j + 1) % tid_agg_rx->buf_size) {
763 			if (!ieee80211_rx_reorder_ready(
764 					&tid_agg_rx->reorder_buf[j])) {
765 				skipped++;
766 				continue;
767 			}
768 			if (skipped &&
769 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
770 					HT_RX_REORDER_BUF_TIMEOUT))
771 				goto set_release_timer;
772 
773 			/* don't leave incomplete A-MSDUs around */
774 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
775 			     i = (i + 1) % tid_agg_rx->buf_size)
776 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
777 
778 			ht_dbg_ratelimited(sdata,
779 					   "release an RX reorder frame due to timeout on earlier frames\n");
780 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
781 							frames);
782 
783 			/*
784 			 * Increment the head seq# also for the skipped slots.
785 			 */
786 			tid_agg_rx->head_seq_num =
787 				(tid_agg_rx->head_seq_num +
788 				 skipped) & IEEE80211_SN_MASK;
789 			skipped = 0;
790 		}
791 	} else while (ieee80211_rx_reorder_ready(
792 				&tid_agg_rx->reorder_buf[index])) {
793 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
794 						frames);
795 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
796 	}
797 
798 	if (tid_agg_rx->stored_mpdu_num) {
799 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
800 
801 		for (; j != (index - 1) % tid_agg_rx->buf_size;
802 		     j = (j + 1) % tid_agg_rx->buf_size) {
803 			if (ieee80211_rx_reorder_ready(
804 					&tid_agg_rx->reorder_buf[j]))
805 				break;
806 		}
807 
808  set_release_timer:
809 
810 		mod_timer(&tid_agg_rx->reorder_timer,
811 			  tid_agg_rx->reorder_time[j] + 1 +
812 			  HT_RX_REORDER_BUF_TIMEOUT);
813 	} else {
814 		del_timer(&tid_agg_rx->reorder_timer);
815 	}
816 }
817 
818 /*
819  * As this function belongs to the RX path it must be under
820  * rcu_read_lock protection. It returns false if the frame
821  * can be processed immediately, true if it was consumed.
822  */
823 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
824 					     struct tid_ampdu_rx *tid_agg_rx,
825 					     struct sk_buff *skb,
826 					     struct sk_buff_head *frames)
827 {
828 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
829 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
830 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
831 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
832 	u16 head_seq_num, buf_size;
833 	int index;
834 	bool ret = true;
835 
836 	spin_lock(&tid_agg_rx->reorder_lock);
837 
838 	buf_size = tid_agg_rx->buf_size;
839 	head_seq_num = tid_agg_rx->head_seq_num;
840 
841 	/* frame with out of date sequence number */
842 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
843 		dev_kfree_skb(skb);
844 		goto out;
845 	}
846 
847 	/*
848 	 * If frame the sequence number exceeds our buffering window
849 	 * size release some previous frames to make room for this one.
850 	 */
851 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
852 		head_seq_num = ieee80211_sn_inc(
853 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
854 		/* release stored frames up to new head to stack */
855 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
856 						 head_seq_num, frames);
857 	}
858 
859 	/* Now the new frame is always in the range of the reordering buffer */
860 
861 	index = mpdu_seq_num % tid_agg_rx->buf_size;
862 
863 	/* check if we already stored this frame */
864 	if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
865 		dev_kfree_skb(skb);
866 		goto out;
867 	}
868 
869 	/*
870 	 * If the current MPDU is in the right order and nothing else
871 	 * is stored we can process it directly, no need to buffer it.
872 	 * If it is first but there's something stored, we may be able
873 	 * to release frames after this one.
874 	 */
875 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
876 	    tid_agg_rx->stored_mpdu_num == 0) {
877 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
878 			tid_agg_rx->head_seq_num =
879 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
880 		ret = false;
881 		goto out;
882 	}
883 
884 	/* put the frame in the reordering buffer */
885 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
886 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
887 		tid_agg_rx->reorder_time[index] = jiffies;
888 		tid_agg_rx->stored_mpdu_num++;
889 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
890 	}
891 
892  out:
893 	spin_unlock(&tid_agg_rx->reorder_lock);
894 	return ret;
895 }
896 
897 /*
898  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
899  * true if the MPDU was buffered, false if it should be processed.
900  */
901 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
902 				       struct sk_buff_head *frames)
903 {
904 	struct sk_buff *skb = rx->skb;
905 	struct ieee80211_local *local = rx->local;
906 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
907 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
908 	struct sta_info *sta = rx->sta;
909 	struct tid_ampdu_rx *tid_agg_rx;
910 	u16 sc;
911 	u8 tid, ack_policy;
912 
913 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
914 	    is_multicast_ether_addr(hdr->addr1))
915 		goto dont_reorder;
916 
917 	/*
918 	 * filter the QoS data rx stream according to
919 	 * STA/TID and check if this STA/TID is on aggregation
920 	 */
921 
922 	if (!sta)
923 		goto dont_reorder;
924 
925 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
926 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
927 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
928 
929 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
930 	if (!tid_agg_rx)
931 		goto dont_reorder;
932 
933 	/* qos null data frames are excluded */
934 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
935 		goto dont_reorder;
936 
937 	/* not part of a BA session */
938 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
939 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
940 		goto dont_reorder;
941 
942 	/* not actually part of this BA session */
943 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
944 		goto dont_reorder;
945 
946 	/* new, potentially un-ordered, ampdu frame - process it */
947 
948 	/* reset session timer */
949 	if (tid_agg_rx->timeout)
950 		tid_agg_rx->last_rx = jiffies;
951 
952 	/* if this mpdu is fragmented - terminate rx aggregation session */
953 	sc = le16_to_cpu(hdr->seq_ctrl);
954 	if (sc & IEEE80211_SCTL_FRAG) {
955 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
956 		skb_queue_tail(&rx->sdata->skb_queue, skb);
957 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
958 		return;
959 	}
960 
961 	/*
962 	 * No locking needed -- we will only ever process one
963 	 * RX packet at a time, and thus own tid_agg_rx. All
964 	 * other code manipulating it needs to (and does) make
965 	 * sure that we cannot get to it any more before doing
966 	 * anything with it.
967 	 */
968 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
969 					     frames))
970 		return;
971 
972  dont_reorder:
973 	__skb_queue_tail(frames, skb);
974 }
975 
976 static ieee80211_rx_result debug_noinline
977 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
978 {
979 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
980 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
981 
982 	/*
983 	 * Drop duplicate 802.11 retransmissions
984 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
985 	 */
986 	if (rx->skb->len >= 24 && rx->sta &&
987 	    !ieee80211_is_ctl(hdr->frame_control) &&
988 	    !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
989 	    !is_multicast_ether_addr(hdr->addr1)) {
990 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
991 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
992 			     hdr->seq_ctrl)) {
993 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
994 				rx->local->dot11FrameDuplicateCount++;
995 				rx->sta->num_duplicates++;
996 			}
997 			return RX_DROP_UNUSABLE;
998 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
999 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1000 		}
1001 	}
1002 
1003 	if (unlikely(rx->skb->len < 16)) {
1004 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1005 		return RX_DROP_MONITOR;
1006 	}
1007 
1008 	/* Drop disallowed frame classes based on STA auth/assoc state;
1009 	 * IEEE 802.11, Chap 5.5.
1010 	 *
1011 	 * mac80211 filters only based on association state, i.e. it drops
1012 	 * Class 3 frames from not associated stations. hostapd sends
1013 	 * deauth/disassoc frames when needed. In addition, hostapd is
1014 	 * responsible for filtering on both auth and assoc states.
1015 	 */
1016 
1017 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1018 		return ieee80211_rx_mesh_check(rx);
1019 
1020 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1021 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1022 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1023 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1024 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1025 		/*
1026 		 * accept port control frames from the AP even when it's not
1027 		 * yet marked ASSOC to prevent a race where we don't set the
1028 		 * assoc bit quickly enough before it sends the first frame
1029 		 */
1030 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1031 		    ieee80211_is_data_present(hdr->frame_control)) {
1032 			unsigned int hdrlen;
1033 			__be16 ethertype;
1034 
1035 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1036 
1037 			if (rx->skb->len < hdrlen + 8)
1038 				return RX_DROP_MONITOR;
1039 
1040 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1041 			if (ethertype == rx->sdata->control_port_protocol)
1042 				return RX_CONTINUE;
1043 		}
1044 
1045 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1046 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1047 					       hdr->addr2,
1048 					       GFP_ATOMIC))
1049 			return RX_DROP_UNUSABLE;
1050 
1051 		return RX_DROP_MONITOR;
1052 	}
1053 
1054 	return RX_CONTINUE;
1055 }
1056 
1057 
1058 static ieee80211_rx_result debug_noinline
1059 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1060 {
1061 	struct ieee80211_local *local;
1062 	struct ieee80211_hdr *hdr;
1063 	struct sk_buff *skb;
1064 
1065 	local = rx->local;
1066 	skb = rx->skb;
1067 	hdr = (struct ieee80211_hdr *) skb->data;
1068 
1069 	if (!local->pspolling)
1070 		return RX_CONTINUE;
1071 
1072 	if (!ieee80211_has_fromds(hdr->frame_control))
1073 		/* this is not from AP */
1074 		return RX_CONTINUE;
1075 
1076 	if (!ieee80211_is_data(hdr->frame_control))
1077 		return RX_CONTINUE;
1078 
1079 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1080 		/* AP has no more frames buffered for us */
1081 		local->pspolling = false;
1082 		return RX_CONTINUE;
1083 	}
1084 
1085 	/* more data bit is set, let's request a new frame from the AP */
1086 	ieee80211_send_pspoll(local, rx->sdata);
1087 
1088 	return RX_CONTINUE;
1089 }
1090 
1091 static void sta_ps_start(struct sta_info *sta)
1092 {
1093 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1094 	struct ieee80211_local *local = sdata->local;
1095 	struct ps_data *ps;
1096 
1097 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1098 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1099 		ps = &sdata->bss->ps;
1100 	else
1101 		return;
1102 
1103 	atomic_inc(&ps->num_sta_ps);
1104 	set_sta_flag(sta, WLAN_STA_PS_STA);
1105 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1106 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1107 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1108 	       sta->sta.addr, sta->sta.aid);
1109 }
1110 
1111 static void sta_ps_end(struct sta_info *sta)
1112 {
1113 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1114 	       sta->sta.addr, sta->sta.aid);
1115 
1116 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1117 		/*
1118 		 * Clear the flag only if the other one is still set
1119 		 * so that the TX path won't start TX'ing new frames
1120 		 * directly ... In the case that the driver flag isn't
1121 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1122 		 */
1123 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1124 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1125 		       sta->sta.addr, sta->sta.aid);
1126 		return;
1127 	}
1128 
1129 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1130 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1131 	ieee80211_sta_ps_deliver_wakeup(sta);
1132 }
1133 
1134 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1135 {
1136 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1137 	bool in_ps;
1138 
1139 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1140 
1141 	/* Don't let the same PS state be set twice */
1142 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1143 	if ((start && in_ps) || (!start && !in_ps))
1144 		return -EINVAL;
1145 
1146 	if (start)
1147 		sta_ps_start(sta_inf);
1148 	else
1149 		sta_ps_end(sta_inf);
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1154 
1155 static ieee80211_rx_result debug_noinline
1156 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1157 {
1158 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1159 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1160 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1161 	int tid, ac;
1162 
1163 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1164 		return RX_CONTINUE;
1165 
1166 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1167 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1168 		return RX_CONTINUE;
1169 
1170 	/*
1171 	 * The device handles station powersave, so don't do anything about
1172 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1173 	 * it to mac80211 since they're handled.)
1174 	 */
1175 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1176 		return RX_CONTINUE;
1177 
1178 	/*
1179 	 * Don't do anything if the station isn't already asleep. In
1180 	 * the uAPSD case, the station will probably be marked asleep,
1181 	 * in the PS-Poll case the station must be confused ...
1182 	 */
1183 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1184 		return RX_CONTINUE;
1185 
1186 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1187 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1188 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1189 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1190 			else
1191 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1192 		}
1193 
1194 		/* Free PS Poll skb here instead of returning RX_DROP that would
1195 		 * count as an dropped frame. */
1196 		dev_kfree_skb(rx->skb);
1197 
1198 		return RX_QUEUED;
1199 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1200 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1201 		   ieee80211_has_pm(hdr->frame_control) &&
1202 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1203 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1204 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1205 		ac = ieee802_1d_to_ac[tid & 7];
1206 
1207 		/*
1208 		 * If this AC is not trigger-enabled do nothing.
1209 		 *
1210 		 * NB: This could/should check a separate bitmap of trigger-
1211 		 * enabled queues, but for now we only implement uAPSD w/o
1212 		 * TSPEC changes to the ACs, so they're always the same.
1213 		 */
1214 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1215 			return RX_CONTINUE;
1216 
1217 		/* if we are in a service period, do nothing */
1218 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1219 			return RX_CONTINUE;
1220 
1221 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1222 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1223 		else
1224 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1225 	}
1226 
1227 	return RX_CONTINUE;
1228 }
1229 
1230 static ieee80211_rx_result debug_noinline
1231 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1232 {
1233 	struct sta_info *sta = rx->sta;
1234 	struct sk_buff *skb = rx->skb;
1235 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1236 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1237 	int i;
1238 
1239 	if (!sta)
1240 		return RX_CONTINUE;
1241 
1242 	/*
1243 	 * Update last_rx only for IBSS packets which are for the current
1244 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1245 	 * current IBSS network alive in cases where other STAs start
1246 	 * using different BSSID. This will also give the station another
1247 	 * chance to restart the authentication/authorization in case
1248 	 * something went wrong the first time.
1249 	 */
1250 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1251 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1252 						NL80211_IFTYPE_ADHOC);
1253 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1254 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1255 			sta->last_rx = jiffies;
1256 			if (ieee80211_is_data(hdr->frame_control) &&
1257 			    !is_multicast_ether_addr(hdr->addr1)) {
1258 				sta->last_rx_rate_idx = status->rate_idx;
1259 				sta->last_rx_rate_flag = status->flag;
1260 				sta->last_rx_rate_vht_flag = status->vht_flag;
1261 				sta->last_rx_rate_vht_nss = status->vht_nss;
1262 			}
1263 		}
1264 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1265 		/*
1266 		 * Mesh beacons will update last_rx when if they are found to
1267 		 * match the current local configuration when processed.
1268 		 */
1269 		sta->last_rx = jiffies;
1270 		if (ieee80211_is_data(hdr->frame_control)) {
1271 			sta->last_rx_rate_idx = status->rate_idx;
1272 			sta->last_rx_rate_flag = status->flag;
1273 			sta->last_rx_rate_vht_flag = status->vht_flag;
1274 			sta->last_rx_rate_vht_nss = status->vht_nss;
1275 		}
1276 	}
1277 
1278 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1279 		return RX_CONTINUE;
1280 
1281 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1282 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1283 
1284 	sta->rx_fragments++;
1285 	sta->rx_bytes += rx->skb->len;
1286 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1287 		sta->last_signal = status->signal;
1288 		ewma_add(&sta->avg_signal, -status->signal);
1289 	}
1290 
1291 	if (status->chains) {
1292 		sta->chains = status->chains;
1293 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1294 			int signal = status->chain_signal[i];
1295 
1296 			if (!(status->chains & BIT(i)))
1297 				continue;
1298 
1299 			sta->chain_signal_last[i] = signal;
1300 			ewma_add(&sta->chain_signal_avg[i], -signal);
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * Change STA power saving mode only at the end of a frame
1306 	 * exchange sequence.
1307 	 */
1308 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1309 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1310 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1311 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1312 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1313 	    /* PM bit is only checked in frames where it isn't reserved,
1314 	     * in AP mode it's reserved in non-bufferable management frames
1315 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1316 	     */
1317 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1318 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1319 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1320 			if (!ieee80211_has_pm(hdr->frame_control))
1321 				sta_ps_end(sta);
1322 		} else {
1323 			if (ieee80211_has_pm(hdr->frame_control))
1324 				sta_ps_start(sta);
1325 		}
1326 	}
1327 
1328 	/* mesh power save support */
1329 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1330 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1331 
1332 	/*
1333 	 * Drop (qos-)data::nullfunc frames silently, since they
1334 	 * are used only to control station power saving mode.
1335 	 */
1336 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1337 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1338 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1339 
1340 		/*
1341 		 * If we receive a 4-addr nullfunc frame from a STA
1342 		 * that was not moved to a 4-addr STA vlan yet send
1343 		 * the event to userspace and for older hostapd drop
1344 		 * the frame to the monitor interface.
1345 		 */
1346 		if (ieee80211_has_a4(hdr->frame_control) &&
1347 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1348 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1349 		      !rx->sdata->u.vlan.sta))) {
1350 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1351 				cfg80211_rx_unexpected_4addr_frame(
1352 					rx->sdata->dev, sta->sta.addr,
1353 					GFP_ATOMIC);
1354 			return RX_DROP_MONITOR;
1355 		}
1356 		/*
1357 		 * Update counter and free packet here to avoid
1358 		 * counting this as a dropped packed.
1359 		 */
1360 		sta->rx_packets++;
1361 		dev_kfree_skb(rx->skb);
1362 		return RX_QUEUED;
1363 	}
1364 
1365 	return RX_CONTINUE;
1366 } /* ieee80211_rx_h_sta_process */
1367 
1368 static ieee80211_rx_result debug_noinline
1369 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1370 {
1371 	struct sk_buff *skb = rx->skb;
1372 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1373 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1374 	int keyidx;
1375 	int hdrlen;
1376 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1377 	struct ieee80211_key *sta_ptk = NULL;
1378 	int mmie_keyidx = -1;
1379 	__le16 fc;
1380 	const struct ieee80211_cipher_scheme *cs = NULL;
1381 
1382 	/*
1383 	 * Key selection 101
1384 	 *
1385 	 * There are four types of keys:
1386 	 *  - GTK (group keys)
1387 	 *  - IGTK (group keys for management frames)
1388 	 *  - PTK (pairwise keys)
1389 	 *  - STK (station-to-station pairwise keys)
1390 	 *
1391 	 * When selecting a key, we have to distinguish between multicast
1392 	 * (including broadcast) and unicast frames, the latter can only
1393 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1394 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1395 	 * unicast frames can also use key indices like GTKs. Hence, if we
1396 	 * don't have a PTK/STK we check the key index for a WEP key.
1397 	 *
1398 	 * Note that in a regular BSS, multicast frames are sent by the
1399 	 * AP only, associated stations unicast the frame to the AP first
1400 	 * which then multicasts it on their behalf.
1401 	 *
1402 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1403 	 * with each station, that is something we don't currently handle.
1404 	 * The spec seems to expect that one negotiates the same key with
1405 	 * every station but there's no such requirement; VLANs could be
1406 	 * possible.
1407 	 */
1408 
1409 	/*
1410 	 * No point in finding a key and decrypting if the frame is neither
1411 	 * addressed to us nor a multicast frame.
1412 	 */
1413 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1414 		return RX_CONTINUE;
1415 
1416 	/* start without a key */
1417 	rx->key = NULL;
1418 	fc = hdr->frame_control;
1419 
1420 	if (rx->sta) {
1421 		int keyid = rx->sta->ptk_idx;
1422 
1423 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1424 			cs = rx->sta->cipher_scheme;
1425 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1426 			if (unlikely(keyid < 0))
1427 				return RX_DROP_UNUSABLE;
1428 		}
1429 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1430 	}
1431 
1432 	if (!ieee80211_has_protected(fc))
1433 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1434 
1435 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1436 		rx->key = sta_ptk;
1437 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1438 		    (status->flag & RX_FLAG_IV_STRIPPED))
1439 			return RX_CONTINUE;
1440 		/* Skip decryption if the frame is not protected. */
1441 		if (!ieee80211_has_protected(fc))
1442 			return RX_CONTINUE;
1443 	} else if (mmie_keyidx >= 0) {
1444 		/* Broadcast/multicast robust management frame / BIP */
1445 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1446 		    (status->flag & RX_FLAG_IV_STRIPPED))
1447 			return RX_CONTINUE;
1448 
1449 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1450 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1451 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1452 		if (rx->sta)
1453 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1454 		if (!rx->key)
1455 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1456 	} else if (!ieee80211_has_protected(fc)) {
1457 		/*
1458 		 * The frame was not protected, so skip decryption. However, we
1459 		 * need to set rx->key if there is a key that could have been
1460 		 * used so that the frame may be dropped if encryption would
1461 		 * have been expected.
1462 		 */
1463 		struct ieee80211_key *key = NULL;
1464 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1465 		int i;
1466 
1467 		if (ieee80211_is_mgmt(fc) &&
1468 		    is_multicast_ether_addr(hdr->addr1) &&
1469 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1470 			rx->key = key;
1471 		else {
1472 			if (rx->sta) {
1473 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1474 					key = rcu_dereference(rx->sta->gtk[i]);
1475 					if (key)
1476 						break;
1477 				}
1478 			}
1479 			if (!key) {
1480 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1481 					key = rcu_dereference(sdata->keys[i]);
1482 					if (key)
1483 						break;
1484 				}
1485 			}
1486 			if (key)
1487 				rx->key = key;
1488 		}
1489 		return RX_CONTINUE;
1490 	} else {
1491 		u8 keyid;
1492 
1493 		/*
1494 		 * The device doesn't give us the IV so we won't be
1495 		 * able to look up the key. That's ok though, we
1496 		 * don't need to decrypt the frame, we just won't
1497 		 * be able to keep statistics accurate.
1498 		 * Except for key threshold notifications, should
1499 		 * we somehow allow the driver to tell us which key
1500 		 * the hardware used if this flag is set?
1501 		 */
1502 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1503 		    (status->flag & RX_FLAG_IV_STRIPPED))
1504 			return RX_CONTINUE;
1505 
1506 		hdrlen = ieee80211_hdrlen(fc);
1507 
1508 		if (cs) {
1509 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1510 
1511 			if (unlikely(keyidx < 0))
1512 				return RX_DROP_UNUSABLE;
1513 		} else {
1514 			if (rx->skb->len < 8 + hdrlen)
1515 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1516 			/*
1517 			 * no need to call ieee80211_wep_get_keyidx,
1518 			 * it verifies a bunch of things we've done already
1519 			 */
1520 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1521 			keyidx = keyid >> 6;
1522 		}
1523 
1524 		/* check per-station GTK first, if multicast packet */
1525 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1526 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1527 
1528 		/* if not found, try default key */
1529 		if (!rx->key) {
1530 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1531 
1532 			/*
1533 			 * RSNA-protected unicast frames should always be
1534 			 * sent with pairwise or station-to-station keys,
1535 			 * but for WEP we allow using a key index as well.
1536 			 */
1537 			if (rx->key &&
1538 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1539 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1540 			    !is_multicast_ether_addr(hdr->addr1))
1541 				rx->key = NULL;
1542 		}
1543 	}
1544 
1545 	if (rx->key) {
1546 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1547 			return RX_DROP_MONITOR;
1548 
1549 		rx->key->tx_rx_count++;
1550 		/* TODO: add threshold stuff again */
1551 	} else {
1552 		return RX_DROP_MONITOR;
1553 	}
1554 
1555 	switch (rx->key->conf.cipher) {
1556 	case WLAN_CIPHER_SUITE_WEP40:
1557 	case WLAN_CIPHER_SUITE_WEP104:
1558 		result = ieee80211_crypto_wep_decrypt(rx);
1559 		break;
1560 	case WLAN_CIPHER_SUITE_TKIP:
1561 		result = ieee80211_crypto_tkip_decrypt(rx);
1562 		break;
1563 	case WLAN_CIPHER_SUITE_CCMP:
1564 		result = ieee80211_crypto_ccmp_decrypt(rx);
1565 		break;
1566 	case WLAN_CIPHER_SUITE_AES_CMAC:
1567 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1568 		break;
1569 	default:
1570 		result = ieee80211_crypto_hw_decrypt(rx);
1571 	}
1572 
1573 	/* the hdr variable is invalid after the decrypt handlers */
1574 
1575 	/* either the frame has been decrypted or will be dropped */
1576 	status->flag |= RX_FLAG_DECRYPTED;
1577 
1578 	return result;
1579 }
1580 
1581 static inline struct ieee80211_fragment_entry *
1582 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1583 			 unsigned int frag, unsigned int seq, int rx_queue,
1584 			 struct sk_buff **skb)
1585 {
1586 	struct ieee80211_fragment_entry *entry;
1587 
1588 	entry = &sdata->fragments[sdata->fragment_next++];
1589 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1590 		sdata->fragment_next = 0;
1591 
1592 	if (!skb_queue_empty(&entry->skb_list))
1593 		__skb_queue_purge(&entry->skb_list);
1594 
1595 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1596 	*skb = NULL;
1597 	entry->first_frag_time = jiffies;
1598 	entry->seq = seq;
1599 	entry->rx_queue = rx_queue;
1600 	entry->last_frag = frag;
1601 	entry->ccmp = 0;
1602 	entry->extra_len = 0;
1603 
1604 	return entry;
1605 }
1606 
1607 static inline struct ieee80211_fragment_entry *
1608 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1609 			  unsigned int frag, unsigned int seq,
1610 			  int rx_queue, struct ieee80211_hdr *hdr)
1611 {
1612 	struct ieee80211_fragment_entry *entry;
1613 	int i, idx;
1614 
1615 	idx = sdata->fragment_next;
1616 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1617 		struct ieee80211_hdr *f_hdr;
1618 
1619 		idx--;
1620 		if (idx < 0)
1621 			idx = IEEE80211_FRAGMENT_MAX - 1;
1622 
1623 		entry = &sdata->fragments[idx];
1624 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1625 		    entry->rx_queue != rx_queue ||
1626 		    entry->last_frag + 1 != frag)
1627 			continue;
1628 
1629 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1630 
1631 		/*
1632 		 * Check ftype and addresses are equal, else check next fragment
1633 		 */
1634 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1635 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1636 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1637 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1638 			continue;
1639 
1640 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1641 			__skb_queue_purge(&entry->skb_list);
1642 			continue;
1643 		}
1644 		return entry;
1645 	}
1646 
1647 	return NULL;
1648 }
1649 
1650 static ieee80211_rx_result debug_noinline
1651 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1652 {
1653 	struct ieee80211_hdr *hdr;
1654 	u16 sc;
1655 	__le16 fc;
1656 	unsigned int frag, seq;
1657 	struct ieee80211_fragment_entry *entry;
1658 	struct sk_buff *skb;
1659 	struct ieee80211_rx_status *status;
1660 
1661 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1662 	fc = hdr->frame_control;
1663 
1664 	if (ieee80211_is_ctl(fc))
1665 		return RX_CONTINUE;
1666 
1667 	sc = le16_to_cpu(hdr->seq_ctrl);
1668 	frag = sc & IEEE80211_SCTL_FRAG;
1669 
1670 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1671 		   is_multicast_ether_addr(hdr->addr1))) {
1672 		/* not fragmented */
1673 		goto out;
1674 	}
1675 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1676 
1677 	if (skb_linearize(rx->skb))
1678 		return RX_DROP_UNUSABLE;
1679 
1680 	/*
1681 	 *  skb_linearize() might change the skb->data and
1682 	 *  previously cached variables (in this case, hdr) need to
1683 	 *  be refreshed with the new data.
1684 	 */
1685 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1686 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1687 
1688 	if (frag == 0) {
1689 		/* This is the first fragment of a new frame. */
1690 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1691 						 rx->seqno_idx, &(rx->skb));
1692 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1693 		    ieee80211_has_protected(fc)) {
1694 			int queue = rx->security_idx;
1695 			/* Store CCMP PN so that we can verify that the next
1696 			 * fragment has a sequential PN value. */
1697 			entry->ccmp = 1;
1698 			memcpy(entry->last_pn,
1699 			       rx->key->u.ccmp.rx_pn[queue],
1700 			       IEEE80211_CCMP_PN_LEN);
1701 		}
1702 		return RX_QUEUED;
1703 	}
1704 
1705 	/* This is a fragment for a frame that should already be pending in
1706 	 * fragment cache. Add this fragment to the end of the pending entry.
1707 	 */
1708 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1709 					  rx->seqno_idx, hdr);
1710 	if (!entry) {
1711 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1712 		return RX_DROP_MONITOR;
1713 	}
1714 
1715 	/* Verify that MPDUs within one MSDU have sequential PN values.
1716 	 * (IEEE 802.11i, 8.3.3.4.5) */
1717 	if (entry->ccmp) {
1718 		int i;
1719 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1720 		int queue;
1721 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1722 			return RX_DROP_UNUSABLE;
1723 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1724 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1725 			pn[i]++;
1726 			if (pn[i])
1727 				break;
1728 		}
1729 		queue = rx->security_idx;
1730 		rpn = rx->key->u.ccmp.rx_pn[queue];
1731 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1732 			return RX_DROP_UNUSABLE;
1733 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1734 	}
1735 
1736 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1737 	__skb_queue_tail(&entry->skb_list, rx->skb);
1738 	entry->last_frag = frag;
1739 	entry->extra_len += rx->skb->len;
1740 	if (ieee80211_has_morefrags(fc)) {
1741 		rx->skb = NULL;
1742 		return RX_QUEUED;
1743 	}
1744 
1745 	rx->skb = __skb_dequeue(&entry->skb_list);
1746 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1747 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1748 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1749 					      GFP_ATOMIC))) {
1750 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1751 			__skb_queue_purge(&entry->skb_list);
1752 			return RX_DROP_UNUSABLE;
1753 		}
1754 	}
1755 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1756 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1757 		dev_kfree_skb(skb);
1758 	}
1759 
1760 	/* Complete frame has been reassembled - process it now */
1761 	status = IEEE80211_SKB_RXCB(rx->skb);
1762 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1763 
1764  out:
1765 	if (rx->sta)
1766 		rx->sta->rx_packets++;
1767 	if (is_multicast_ether_addr(hdr->addr1))
1768 		rx->local->dot11MulticastReceivedFrameCount++;
1769 	else
1770 		ieee80211_led_rx(rx->local);
1771 	return RX_CONTINUE;
1772 }
1773 
1774 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1775 {
1776 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1777 		return -EACCES;
1778 
1779 	return 0;
1780 }
1781 
1782 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1783 {
1784 	struct sk_buff *skb = rx->skb;
1785 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1786 
1787 	/*
1788 	 * Pass through unencrypted frames if the hardware has
1789 	 * decrypted them already.
1790 	 */
1791 	if (status->flag & RX_FLAG_DECRYPTED)
1792 		return 0;
1793 
1794 	/* Drop unencrypted frames if key is set. */
1795 	if (unlikely(!ieee80211_has_protected(fc) &&
1796 		     !ieee80211_is_nullfunc(fc) &&
1797 		     ieee80211_is_data(fc) &&
1798 		     (rx->key || rx->sdata->drop_unencrypted)))
1799 		return -EACCES;
1800 
1801 	return 0;
1802 }
1803 
1804 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1805 {
1806 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1807 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1808 	__le16 fc = hdr->frame_control;
1809 
1810 	/*
1811 	 * Pass through unencrypted frames if the hardware has
1812 	 * decrypted them already.
1813 	 */
1814 	if (status->flag & RX_FLAG_DECRYPTED)
1815 		return 0;
1816 
1817 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1818 		if (unlikely(!ieee80211_has_protected(fc) &&
1819 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1820 			     rx->key)) {
1821 			if (ieee80211_is_deauth(fc) ||
1822 			    ieee80211_is_disassoc(fc))
1823 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1824 							     rx->skb->data,
1825 							     rx->skb->len);
1826 			return -EACCES;
1827 		}
1828 		/* BIP does not use Protected field, so need to check MMIE */
1829 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1830 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1831 			if (ieee80211_is_deauth(fc) ||
1832 			    ieee80211_is_disassoc(fc))
1833 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1834 							     rx->skb->data,
1835 							     rx->skb->len);
1836 			return -EACCES;
1837 		}
1838 		/*
1839 		 * When using MFP, Action frames are not allowed prior to
1840 		 * having configured keys.
1841 		 */
1842 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1843 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
1844 			return -EACCES;
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int
1851 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1852 {
1853 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1854 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1855 	bool check_port_control = false;
1856 	struct ethhdr *ehdr;
1857 	int ret;
1858 
1859 	*port_control = false;
1860 	if (ieee80211_has_a4(hdr->frame_control) &&
1861 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1862 		return -1;
1863 
1864 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1865 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1866 
1867 		if (!sdata->u.mgd.use_4addr)
1868 			return -1;
1869 		else
1870 			check_port_control = true;
1871 	}
1872 
1873 	if (is_multicast_ether_addr(hdr->addr1) &&
1874 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1875 		return -1;
1876 
1877 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1878 	if (ret < 0)
1879 		return ret;
1880 
1881 	ehdr = (struct ethhdr *) rx->skb->data;
1882 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1883 		*port_control = true;
1884 	else if (check_port_control)
1885 		return -1;
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * requires that rx->skb is a frame with ethernet header
1892  */
1893 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1894 {
1895 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1896 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1897 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1898 
1899 	/*
1900 	 * Allow EAPOL frames to us/the PAE group address regardless
1901 	 * of whether the frame was encrypted or not.
1902 	 */
1903 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1904 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1905 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1906 		return true;
1907 
1908 	if (ieee80211_802_1x_port_control(rx) ||
1909 	    ieee80211_drop_unencrypted(rx, fc))
1910 		return false;
1911 
1912 	return true;
1913 }
1914 
1915 /*
1916  * requires that rx->skb is a frame with ethernet header
1917  */
1918 static void
1919 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1920 {
1921 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1922 	struct net_device *dev = sdata->dev;
1923 	struct sk_buff *skb, *xmit_skb;
1924 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1925 	struct sta_info *dsta;
1926 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1927 
1928 	skb = rx->skb;
1929 	xmit_skb = NULL;
1930 
1931 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1932 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1933 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1934 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1935 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1936 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1937 			/*
1938 			 * send multicast frames both to higher layers in
1939 			 * local net stack and back to the wireless medium
1940 			 */
1941 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1942 			if (!xmit_skb)
1943 				net_info_ratelimited("%s: failed to clone multicast frame\n",
1944 						    dev->name);
1945 		} else {
1946 			dsta = sta_info_get(sdata, skb->data);
1947 			if (dsta) {
1948 				/*
1949 				 * The destination station is associated to
1950 				 * this AP (in this VLAN), so send the frame
1951 				 * directly to it and do not pass it to local
1952 				 * net stack.
1953 				 */
1954 				xmit_skb = skb;
1955 				skb = NULL;
1956 			}
1957 		}
1958 	}
1959 
1960 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1961 	if (skb) {
1962 		/* 'align' will only take the values 0 or 2 here since all
1963 		 * frames are required to be aligned to 2-byte boundaries
1964 		 * when being passed to mac80211; the code here works just
1965 		 * as well if that isn't true, but mac80211 assumes it can
1966 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1967 		 */
1968 		int align;
1969 
1970 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1971 		if (align) {
1972 			if (WARN_ON(skb_headroom(skb) < 3)) {
1973 				dev_kfree_skb(skb);
1974 				skb = NULL;
1975 			} else {
1976 				u8 *data = skb->data;
1977 				size_t len = skb_headlen(skb);
1978 				skb->data -= align;
1979 				memmove(skb->data, data, len);
1980 				skb_set_tail_pointer(skb, len);
1981 			}
1982 		}
1983 	}
1984 #endif
1985 
1986 	if (skb) {
1987 		/* deliver to local stack */
1988 		skb->protocol = eth_type_trans(skb, dev);
1989 		memset(skb->cb, 0, sizeof(skb->cb));
1990 		if (rx->local->napi)
1991 			napi_gro_receive(rx->local->napi, skb);
1992 		else
1993 			netif_receive_skb(skb);
1994 	}
1995 
1996 	if (xmit_skb) {
1997 		/*
1998 		 * Send to wireless media and increase priority by 256 to
1999 		 * keep the received priority instead of reclassifying
2000 		 * the frame (see cfg80211_classify8021d).
2001 		 */
2002 		xmit_skb->priority += 256;
2003 		xmit_skb->protocol = htons(ETH_P_802_3);
2004 		skb_reset_network_header(xmit_skb);
2005 		skb_reset_mac_header(xmit_skb);
2006 		dev_queue_xmit(xmit_skb);
2007 	}
2008 }
2009 
2010 static ieee80211_rx_result debug_noinline
2011 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2012 {
2013 	struct net_device *dev = rx->sdata->dev;
2014 	struct sk_buff *skb = rx->skb;
2015 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2016 	__le16 fc = hdr->frame_control;
2017 	struct sk_buff_head frame_list;
2018 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2019 
2020 	if (unlikely(!ieee80211_is_data(fc)))
2021 		return RX_CONTINUE;
2022 
2023 	if (unlikely(!ieee80211_is_data_present(fc)))
2024 		return RX_DROP_MONITOR;
2025 
2026 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2027 		return RX_CONTINUE;
2028 
2029 	if (ieee80211_has_a4(hdr->frame_control) &&
2030 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2031 	    !rx->sdata->u.vlan.sta)
2032 		return RX_DROP_UNUSABLE;
2033 
2034 	if (is_multicast_ether_addr(hdr->addr1) &&
2035 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2036 	      rx->sdata->u.vlan.sta) ||
2037 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2038 	      rx->sdata->u.mgd.use_4addr)))
2039 		return RX_DROP_UNUSABLE;
2040 
2041 	skb->dev = dev;
2042 	__skb_queue_head_init(&frame_list);
2043 
2044 	if (skb_linearize(skb))
2045 		return RX_DROP_UNUSABLE;
2046 
2047 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2048 				 rx->sdata->vif.type,
2049 				 rx->local->hw.extra_tx_headroom, true);
2050 
2051 	while (!skb_queue_empty(&frame_list)) {
2052 		rx->skb = __skb_dequeue(&frame_list);
2053 
2054 		if (!ieee80211_frame_allowed(rx, fc)) {
2055 			dev_kfree_skb(rx->skb);
2056 			continue;
2057 		}
2058 		dev->stats.rx_packets++;
2059 		dev->stats.rx_bytes += rx->skb->len;
2060 
2061 		ieee80211_deliver_skb(rx);
2062 	}
2063 
2064 	return RX_QUEUED;
2065 }
2066 
2067 #ifdef CONFIG_MAC80211_MESH
2068 static ieee80211_rx_result
2069 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2070 {
2071 	struct ieee80211_hdr *fwd_hdr, *hdr;
2072 	struct ieee80211_tx_info *info;
2073 	struct ieee80211s_hdr *mesh_hdr;
2074 	struct sk_buff *skb = rx->skb, *fwd_skb;
2075 	struct ieee80211_local *local = rx->local;
2076 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2077 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2078 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2079 	u16 q, hdrlen;
2080 
2081 	hdr = (struct ieee80211_hdr *) skb->data;
2082 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2083 
2084 	/* make sure fixed part of mesh header is there, also checks skb len */
2085 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2086 		return RX_DROP_MONITOR;
2087 
2088 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2089 
2090 	/* make sure full mesh header is there, also checks skb len */
2091 	if (!pskb_may_pull(rx->skb,
2092 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2093 		return RX_DROP_MONITOR;
2094 
2095 	/* reload pointers */
2096 	hdr = (struct ieee80211_hdr *) skb->data;
2097 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2098 
2099 	/* frame is in RMC, don't forward */
2100 	if (ieee80211_is_data(hdr->frame_control) &&
2101 	    is_multicast_ether_addr(hdr->addr1) &&
2102 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2103 		return RX_DROP_MONITOR;
2104 
2105 	if (!ieee80211_is_data(hdr->frame_control) ||
2106 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2107 		return RX_CONTINUE;
2108 
2109 	if (!mesh_hdr->ttl)
2110 		return RX_DROP_MONITOR;
2111 
2112 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2113 		struct mesh_path *mppath;
2114 		char *proxied_addr;
2115 		char *mpp_addr;
2116 
2117 		if (is_multicast_ether_addr(hdr->addr1)) {
2118 			mpp_addr = hdr->addr3;
2119 			proxied_addr = mesh_hdr->eaddr1;
2120 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2121 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2122 			mpp_addr = hdr->addr4;
2123 			proxied_addr = mesh_hdr->eaddr2;
2124 		} else {
2125 			return RX_DROP_MONITOR;
2126 		}
2127 
2128 		rcu_read_lock();
2129 		mppath = mpp_path_lookup(sdata, proxied_addr);
2130 		if (!mppath) {
2131 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2132 		} else {
2133 			spin_lock_bh(&mppath->state_lock);
2134 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2135 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2136 			spin_unlock_bh(&mppath->state_lock);
2137 		}
2138 		rcu_read_unlock();
2139 	}
2140 
2141 	/* Frame has reached destination.  Don't forward */
2142 	if (!is_multicast_ether_addr(hdr->addr1) &&
2143 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2144 		return RX_CONTINUE;
2145 
2146 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2147 	if (ieee80211_queue_stopped(&local->hw, q)) {
2148 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2149 		return RX_DROP_MONITOR;
2150 	}
2151 	skb_set_queue_mapping(skb, q);
2152 
2153 	if (!--mesh_hdr->ttl) {
2154 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2155 		goto out;
2156 	}
2157 
2158 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2159 		goto out;
2160 
2161 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2162 	if (!fwd_skb) {
2163 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2164 				    sdata->name);
2165 		goto out;
2166 	}
2167 
2168 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2169 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2170 	info = IEEE80211_SKB_CB(fwd_skb);
2171 	memset(info, 0, sizeof(*info));
2172 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2173 	info->control.vif = &rx->sdata->vif;
2174 	info->control.jiffies = jiffies;
2175 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2176 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2177 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2178 		/* update power mode indication when forwarding */
2179 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2180 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2181 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2182 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2183 	} else {
2184 		/* unable to resolve next hop */
2185 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2186 				   fwd_hdr->addr3, 0,
2187 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2188 				   fwd_hdr->addr2);
2189 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2190 		kfree_skb(fwd_skb);
2191 		return RX_DROP_MONITOR;
2192 	}
2193 
2194 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2195 	ieee80211_add_pending_skb(local, fwd_skb);
2196  out:
2197 	if (is_multicast_ether_addr(hdr->addr1) ||
2198 	    sdata->dev->flags & IFF_PROMISC)
2199 		return RX_CONTINUE;
2200 	else
2201 		return RX_DROP_MONITOR;
2202 }
2203 #endif
2204 
2205 static ieee80211_rx_result debug_noinline
2206 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2207 {
2208 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2209 	struct ieee80211_local *local = rx->local;
2210 	struct net_device *dev = sdata->dev;
2211 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2212 	__le16 fc = hdr->frame_control;
2213 	bool port_control;
2214 	int err;
2215 
2216 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2217 		return RX_CONTINUE;
2218 
2219 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2220 		return RX_DROP_MONITOR;
2221 
2222 	/*
2223 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2224 	 * also drop the frame to cooked monitor interfaces.
2225 	 */
2226 	if (ieee80211_has_a4(hdr->frame_control) &&
2227 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2228 		if (rx->sta &&
2229 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2230 			cfg80211_rx_unexpected_4addr_frame(
2231 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2232 		return RX_DROP_MONITOR;
2233 	}
2234 
2235 	err = __ieee80211_data_to_8023(rx, &port_control);
2236 	if (unlikely(err))
2237 		return RX_DROP_UNUSABLE;
2238 
2239 	if (!ieee80211_frame_allowed(rx, fc))
2240 		return RX_DROP_MONITOR;
2241 
2242 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2243 	    unlikely(port_control) && sdata->bss) {
2244 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2245 				     u.ap);
2246 		dev = sdata->dev;
2247 		rx->sdata = sdata;
2248 	}
2249 
2250 	rx->skb->dev = dev;
2251 
2252 	dev->stats.rx_packets++;
2253 	dev->stats.rx_bytes += rx->skb->len;
2254 
2255 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2256 	    !is_multicast_ether_addr(
2257 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2258 	    (!local->scanning &&
2259 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2260 			mod_timer(&local->dynamic_ps_timer, jiffies +
2261 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2262 	}
2263 
2264 	ieee80211_deliver_skb(rx);
2265 
2266 	return RX_QUEUED;
2267 }
2268 
2269 static ieee80211_rx_result debug_noinline
2270 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2271 {
2272 	struct sk_buff *skb = rx->skb;
2273 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2274 	struct tid_ampdu_rx *tid_agg_rx;
2275 	u16 start_seq_num;
2276 	u16 tid;
2277 
2278 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2279 		return RX_CONTINUE;
2280 
2281 	if (ieee80211_is_back_req(bar->frame_control)) {
2282 		struct {
2283 			__le16 control, start_seq_num;
2284 		} __packed bar_data;
2285 
2286 		if (!rx->sta)
2287 			return RX_DROP_MONITOR;
2288 
2289 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2290 				  &bar_data, sizeof(bar_data)))
2291 			return RX_DROP_MONITOR;
2292 
2293 		tid = le16_to_cpu(bar_data.control) >> 12;
2294 
2295 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2296 		if (!tid_agg_rx)
2297 			return RX_DROP_MONITOR;
2298 
2299 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2300 
2301 		/* reset session timer */
2302 		if (tid_agg_rx->timeout)
2303 			mod_timer(&tid_agg_rx->session_timer,
2304 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2305 
2306 		spin_lock(&tid_agg_rx->reorder_lock);
2307 		/* release stored frames up to start of BAR */
2308 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2309 						 start_seq_num, frames);
2310 		spin_unlock(&tid_agg_rx->reorder_lock);
2311 
2312 		kfree_skb(skb);
2313 		return RX_QUEUED;
2314 	}
2315 
2316 	/*
2317 	 * After this point, we only want management frames,
2318 	 * so we can drop all remaining control frames to
2319 	 * cooked monitor interfaces.
2320 	 */
2321 	return RX_DROP_MONITOR;
2322 }
2323 
2324 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2325 					   struct ieee80211_mgmt *mgmt,
2326 					   size_t len)
2327 {
2328 	struct ieee80211_local *local = sdata->local;
2329 	struct sk_buff *skb;
2330 	struct ieee80211_mgmt *resp;
2331 
2332 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2333 		/* Not to own unicast address */
2334 		return;
2335 	}
2336 
2337 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2338 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2339 		/* Not from the current AP or not associated yet. */
2340 		return;
2341 	}
2342 
2343 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2344 		/* Too short SA Query request frame */
2345 		return;
2346 	}
2347 
2348 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2349 	if (skb == NULL)
2350 		return;
2351 
2352 	skb_reserve(skb, local->hw.extra_tx_headroom);
2353 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2354 	memset(resp, 0, 24);
2355 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2356 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2357 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2358 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2359 					  IEEE80211_STYPE_ACTION);
2360 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2361 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2362 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2363 	memcpy(resp->u.action.u.sa_query.trans_id,
2364 	       mgmt->u.action.u.sa_query.trans_id,
2365 	       WLAN_SA_QUERY_TR_ID_LEN);
2366 
2367 	ieee80211_tx_skb(sdata, skb);
2368 }
2369 
2370 static ieee80211_rx_result debug_noinline
2371 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2372 {
2373 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2374 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2375 
2376 	/*
2377 	 * From here on, look only at management frames.
2378 	 * Data and control frames are already handled,
2379 	 * and unknown (reserved) frames are useless.
2380 	 */
2381 	if (rx->skb->len < 24)
2382 		return RX_DROP_MONITOR;
2383 
2384 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2385 		return RX_DROP_MONITOR;
2386 
2387 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2388 	    ieee80211_is_beacon(mgmt->frame_control) &&
2389 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2390 		int sig = 0;
2391 
2392 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2393 			sig = status->signal;
2394 
2395 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2396 					    rx->skb->data, rx->skb->len,
2397 					    status->freq, sig);
2398 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2399 	}
2400 
2401 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2402 		return RX_DROP_MONITOR;
2403 
2404 	if (ieee80211_drop_unencrypted_mgmt(rx))
2405 		return RX_DROP_UNUSABLE;
2406 
2407 	return RX_CONTINUE;
2408 }
2409 
2410 static ieee80211_rx_result debug_noinline
2411 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2412 {
2413 	struct ieee80211_local *local = rx->local;
2414 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2415 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2416 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2417 	int len = rx->skb->len;
2418 
2419 	if (!ieee80211_is_action(mgmt->frame_control))
2420 		return RX_CONTINUE;
2421 
2422 	/* drop too small frames */
2423 	if (len < IEEE80211_MIN_ACTION_SIZE)
2424 		return RX_DROP_UNUSABLE;
2425 
2426 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2427 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2428 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2429 		return RX_DROP_UNUSABLE;
2430 
2431 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2432 		return RX_DROP_UNUSABLE;
2433 
2434 	switch (mgmt->u.action.category) {
2435 	case WLAN_CATEGORY_HT:
2436 		/* reject HT action frames from stations not supporting HT */
2437 		if (!rx->sta->sta.ht_cap.ht_supported)
2438 			goto invalid;
2439 
2440 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2441 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2442 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2443 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2444 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2445 			break;
2446 
2447 		/* verify action & smps_control/chanwidth are present */
2448 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2449 			goto invalid;
2450 
2451 		switch (mgmt->u.action.u.ht_smps.action) {
2452 		case WLAN_HT_ACTION_SMPS: {
2453 			struct ieee80211_supported_band *sband;
2454 			enum ieee80211_smps_mode smps_mode;
2455 
2456 			/* convert to HT capability */
2457 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2458 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2459 				smps_mode = IEEE80211_SMPS_OFF;
2460 				break;
2461 			case WLAN_HT_SMPS_CONTROL_STATIC:
2462 				smps_mode = IEEE80211_SMPS_STATIC;
2463 				break;
2464 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2465 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2466 				break;
2467 			default:
2468 				goto invalid;
2469 			}
2470 
2471 			/* if no change do nothing */
2472 			if (rx->sta->sta.smps_mode == smps_mode)
2473 				goto handled;
2474 			rx->sta->sta.smps_mode = smps_mode;
2475 
2476 			sband = rx->local->hw.wiphy->bands[status->band];
2477 
2478 			rate_control_rate_update(local, sband, rx->sta,
2479 						 IEEE80211_RC_SMPS_CHANGED);
2480 			goto handled;
2481 		}
2482 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2483 			struct ieee80211_supported_band *sband;
2484 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2485 			enum ieee80211_sta_rx_bandwidth new_bw;
2486 
2487 			/* If it doesn't support 40 MHz it can't change ... */
2488 			if (!(rx->sta->sta.ht_cap.cap &
2489 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2490 				goto handled;
2491 
2492 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2493 				new_bw = IEEE80211_STA_RX_BW_20;
2494 			else
2495 				new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2496 
2497 			if (rx->sta->sta.bandwidth == new_bw)
2498 				goto handled;
2499 
2500 			sband = rx->local->hw.wiphy->bands[status->band];
2501 
2502 			rate_control_rate_update(local, sband, rx->sta,
2503 						 IEEE80211_RC_BW_CHANGED);
2504 			goto handled;
2505 		}
2506 		default:
2507 			goto invalid;
2508 		}
2509 
2510 		break;
2511 	case WLAN_CATEGORY_PUBLIC:
2512 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2513 			goto invalid;
2514 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2515 			break;
2516 		if (!rx->sta)
2517 			break;
2518 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2519 			break;
2520 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2521 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2522 			break;
2523 		if (len < offsetof(struct ieee80211_mgmt,
2524 				   u.action.u.ext_chan_switch.variable))
2525 			goto invalid;
2526 		goto queue;
2527 	case WLAN_CATEGORY_VHT:
2528 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2529 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2530 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2531 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2532 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2533 			break;
2534 
2535 		/* verify action code is present */
2536 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2537 			goto invalid;
2538 
2539 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2540 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2541 			u8 opmode;
2542 
2543 			/* verify opmode is present */
2544 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2545 				goto invalid;
2546 
2547 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2548 
2549 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2550 						    opmode, status->band,
2551 						    false);
2552 			goto handled;
2553 		}
2554 		default:
2555 			break;
2556 		}
2557 		break;
2558 	case WLAN_CATEGORY_BACK:
2559 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2560 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2561 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2562 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2563 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2564 			break;
2565 
2566 		/* verify action_code is present */
2567 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2568 			break;
2569 
2570 		switch (mgmt->u.action.u.addba_req.action_code) {
2571 		case WLAN_ACTION_ADDBA_REQ:
2572 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2573 				   sizeof(mgmt->u.action.u.addba_req)))
2574 				goto invalid;
2575 			break;
2576 		case WLAN_ACTION_ADDBA_RESP:
2577 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2578 				   sizeof(mgmt->u.action.u.addba_resp)))
2579 				goto invalid;
2580 			break;
2581 		case WLAN_ACTION_DELBA:
2582 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2583 				   sizeof(mgmt->u.action.u.delba)))
2584 				goto invalid;
2585 			break;
2586 		default:
2587 			goto invalid;
2588 		}
2589 
2590 		goto queue;
2591 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2592 		/* verify action_code is present */
2593 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2594 			break;
2595 
2596 		switch (mgmt->u.action.u.measurement.action_code) {
2597 		case WLAN_ACTION_SPCT_MSR_REQ:
2598 			if (status->band != IEEE80211_BAND_5GHZ)
2599 				break;
2600 
2601 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2602 				   sizeof(mgmt->u.action.u.measurement)))
2603 				break;
2604 
2605 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2606 				break;
2607 
2608 			ieee80211_process_measurement_req(sdata, mgmt, len);
2609 			goto handled;
2610 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2611 			u8 *bssid;
2612 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2613 				   sizeof(mgmt->u.action.u.chan_switch)))
2614 				break;
2615 
2616 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2617 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2618 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2619 				break;
2620 
2621 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2622 				bssid = sdata->u.mgd.bssid;
2623 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2624 				bssid = sdata->u.ibss.bssid;
2625 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2626 				bssid = mgmt->sa;
2627 			else
2628 				break;
2629 
2630 			if (!ether_addr_equal(mgmt->bssid, bssid))
2631 				break;
2632 
2633 			goto queue;
2634 			}
2635 		}
2636 		break;
2637 	case WLAN_CATEGORY_SA_QUERY:
2638 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2639 			   sizeof(mgmt->u.action.u.sa_query)))
2640 			break;
2641 
2642 		switch (mgmt->u.action.u.sa_query.action) {
2643 		case WLAN_ACTION_SA_QUERY_REQUEST:
2644 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2645 				break;
2646 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2647 			goto handled;
2648 		}
2649 		break;
2650 	case WLAN_CATEGORY_SELF_PROTECTED:
2651 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2652 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2653 			break;
2654 
2655 		switch (mgmt->u.action.u.self_prot.action_code) {
2656 		case WLAN_SP_MESH_PEERING_OPEN:
2657 		case WLAN_SP_MESH_PEERING_CLOSE:
2658 		case WLAN_SP_MESH_PEERING_CONFIRM:
2659 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2660 				goto invalid;
2661 			if (sdata->u.mesh.user_mpm)
2662 				/* userspace handles this frame */
2663 				break;
2664 			goto queue;
2665 		case WLAN_SP_MGK_INFORM:
2666 		case WLAN_SP_MGK_ACK:
2667 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2668 				goto invalid;
2669 			break;
2670 		}
2671 		break;
2672 	case WLAN_CATEGORY_MESH_ACTION:
2673 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2674 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2675 			break;
2676 
2677 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2678 			break;
2679 		if (mesh_action_is_path_sel(mgmt) &&
2680 		    !mesh_path_sel_is_hwmp(sdata))
2681 			break;
2682 		goto queue;
2683 	}
2684 
2685 	return RX_CONTINUE;
2686 
2687  invalid:
2688 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2689 	/* will return in the next handlers */
2690 	return RX_CONTINUE;
2691 
2692  handled:
2693 	if (rx->sta)
2694 		rx->sta->rx_packets++;
2695 	dev_kfree_skb(rx->skb);
2696 	return RX_QUEUED;
2697 
2698  queue:
2699 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2700 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2701 	ieee80211_queue_work(&local->hw, &sdata->work);
2702 	if (rx->sta)
2703 		rx->sta->rx_packets++;
2704 	return RX_QUEUED;
2705 }
2706 
2707 static ieee80211_rx_result debug_noinline
2708 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2709 {
2710 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2711 	int sig = 0;
2712 
2713 	/* skip known-bad action frames and return them in the next handler */
2714 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2715 		return RX_CONTINUE;
2716 
2717 	/*
2718 	 * Getting here means the kernel doesn't know how to handle
2719 	 * it, but maybe userspace does ... include returned frames
2720 	 * so userspace can register for those to know whether ones
2721 	 * it transmitted were processed or returned.
2722 	 */
2723 
2724 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2725 		sig = status->signal;
2726 
2727 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2728 			     rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2729 		if (rx->sta)
2730 			rx->sta->rx_packets++;
2731 		dev_kfree_skb(rx->skb);
2732 		return RX_QUEUED;
2733 	}
2734 
2735 	return RX_CONTINUE;
2736 }
2737 
2738 static ieee80211_rx_result debug_noinline
2739 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2740 {
2741 	struct ieee80211_local *local = rx->local;
2742 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2743 	struct sk_buff *nskb;
2744 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2745 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2746 
2747 	if (!ieee80211_is_action(mgmt->frame_control))
2748 		return RX_CONTINUE;
2749 
2750 	/*
2751 	 * For AP mode, hostapd is responsible for handling any action
2752 	 * frames that we didn't handle, including returning unknown
2753 	 * ones. For all other modes we will return them to the sender,
2754 	 * setting the 0x80 bit in the action category, as required by
2755 	 * 802.11-2012 9.24.4.
2756 	 * Newer versions of hostapd shall also use the management frame
2757 	 * registration mechanisms, but older ones still use cooked
2758 	 * monitor interfaces so push all frames there.
2759 	 */
2760 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2761 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2762 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2763 		return RX_DROP_MONITOR;
2764 
2765 	if (is_multicast_ether_addr(mgmt->da))
2766 		return RX_DROP_MONITOR;
2767 
2768 	/* do not return rejected action frames */
2769 	if (mgmt->u.action.category & 0x80)
2770 		return RX_DROP_UNUSABLE;
2771 
2772 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2773 			       GFP_ATOMIC);
2774 	if (nskb) {
2775 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2776 
2777 		nmgmt->u.action.category |= 0x80;
2778 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2779 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2780 
2781 		memset(nskb->cb, 0, sizeof(nskb->cb));
2782 
2783 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2784 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2785 
2786 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2787 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2788 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2789 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2790 				info->hw_queue =
2791 					local->hw.offchannel_tx_hw_queue;
2792 		}
2793 
2794 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2795 					    status->band);
2796 	}
2797 	dev_kfree_skb(rx->skb);
2798 	return RX_QUEUED;
2799 }
2800 
2801 static ieee80211_rx_result debug_noinline
2802 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2803 {
2804 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2805 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2806 	__le16 stype;
2807 
2808 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2809 
2810 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2811 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2812 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2813 		return RX_DROP_MONITOR;
2814 
2815 	switch (stype) {
2816 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2817 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2818 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2819 		/* process for all: mesh, mlme, ibss */
2820 		break;
2821 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2822 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2823 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2824 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2825 		if (is_multicast_ether_addr(mgmt->da) &&
2826 		    !is_broadcast_ether_addr(mgmt->da))
2827 			return RX_DROP_MONITOR;
2828 
2829 		/* process only for station */
2830 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2831 			return RX_DROP_MONITOR;
2832 		break;
2833 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2834 		/* process only for ibss and mesh */
2835 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2836 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2837 			return RX_DROP_MONITOR;
2838 		break;
2839 	default:
2840 		return RX_DROP_MONITOR;
2841 	}
2842 
2843 	/* queue up frame and kick off work to process it */
2844 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2845 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2846 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2847 	if (rx->sta)
2848 		rx->sta->rx_packets++;
2849 
2850 	return RX_QUEUED;
2851 }
2852 
2853 /* TODO: use IEEE80211_RX_FRAGMENTED */
2854 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2855 					struct ieee80211_rate *rate)
2856 {
2857 	struct ieee80211_sub_if_data *sdata;
2858 	struct ieee80211_local *local = rx->local;
2859 	struct sk_buff *skb = rx->skb, *skb2;
2860 	struct net_device *prev_dev = NULL;
2861 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2862 	int needed_headroom;
2863 
2864 	/*
2865 	 * If cooked monitor has been processed already, then
2866 	 * don't do it again. If not, set the flag.
2867 	 */
2868 	if (rx->flags & IEEE80211_RX_CMNTR)
2869 		goto out_free_skb;
2870 	rx->flags |= IEEE80211_RX_CMNTR;
2871 
2872 	/* If there are no cooked monitor interfaces, just free the SKB */
2873 	if (!local->cooked_mntrs)
2874 		goto out_free_skb;
2875 
2876 	/* room for the radiotap header based on driver features */
2877 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
2878 
2879 	if (skb_headroom(skb) < needed_headroom &&
2880 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2881 		goto out_free_skb;
2882 
2883 	/* prepend radiotap information */
2884 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2885 					 false);
2886 
2887 	skb_set_mac_header(skb, 0);
2888 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2889 	skb->pkt_type = PACKET_OTHERHOST;
2890 	skb->protocol = htons(ETH_P_802_2);
2891 
2892 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2893 		if (!ieee80211_sdata_running(sdata))
2894 			continue;
2895 
2896 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2897 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2898 			continue;
2899 
2900 		if (prev_dev) {
2901 			skb2 = skb_clone(skb, GFP_ATOMIC);
2902 			if (skb2) {
2903 				skb2->dev = prev_dev;
2904 				netif_receive_skb(skb2);
2905 			}
2906 		}
2907 
2908 		prev_dev = sdata->dev;
2909 		sdata->dev->stats.rx_packets++;
2910 		sdata->dev->stats.rx_bytes += skb->len;
2911 	}
2912 
2913 	if (prev_dev) {
2914 		skb->dev = prev_dev;
2915 		netif_receive_skb(skb);
2916 		return;
2917 	}
2918 
2919  out_free_skb:
2920 	dev_kfree_skb(skb);
2921 }
2922 
2923 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2924 					 ieee80211_rx_result res)
2925 {
2926 	switch (res) {
2927 	case RX_DROP_MONITOR:
2928 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2929 		if (rx->sta)
2930 			rx->sta->rx_dropped++;
2931 		/* fall through */
2932 	case RX_CONTINUE: {
2933 		struct ieee80211_rate *rate = NULL;
2934 		struct ieee80211_supported_band *sband;
2935 		struct ieee80211_rx_status *status;
2936 
2937 		status = IEEE80211_SKB_RXCB((rx->skb));
2938 
2939 		sband = rx->local->hw.wiphy->bands[status->band];
2940 		if (!(status->flag & RX_FLAG_HT) &&
2941 		    !(status->flag & RX_FLAG_VHT))
2942 			rate = &sband->bitrates[status->rate_idx];
2943 
2944 		ieee80211_rx_cooked_monitor(rx, rate);
2945 		break;
2946 		}
2947 	case RX_DROP_UNUSABLE:
2948 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2949 		if (rx->sta)
2950 			rx->sta->rx_dropped++;
2951 		dev_kfree_skb(rx->skb);
2952 		break;
2953 	case RX_QUEUED:
2954 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2955 		break;
2956 	}
2957 }
2958 
2959 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2960 				  struct sk_buff_head *frames)
2961 {
2962 	ieee80211_rx_result res = RX_DROP_MONITOR;
2963 	struct sk_buff *skb;
2964 
2965 #define CALL_RXH(rxh)			\
2966 	do {				\
2967 		res = rxh(rx);		\
2968 		if (res != RX_CONTINUE)	\
2969 			goto rxh_next;  \
2970 	} while (0);
2971 
2972 	spin_lock_bh(&rx->local->rx_path_lock);
2973 
2974 	while ((skb = __skb_dequeue(frames))) {
2975 		/*
2976 		 * all the other fields are valid across frames
2977 		 * that belong to an aMPDU since they are on the
2978 		 * same TID from the same station
2979 		 */
2980 		rx->skb = skb;
2981 
2982 		CALL_RXH(ieee80211_rx_h_check_more_data)
2983 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2984 		CALL_RXH(ieee80211_rx_h_sta_process)
2985 		CALL_RXH(ieee80211_rx_h_decrypt)
2986 		CALL_RXH(ieee80211_rx_h_defragment)
2987 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2988 		/* must be after MMIC verify so header is counted in MPDU mic */
2989 #ifdef CONFIG_MAC80211_MESH
2990 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2991 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2992 #endif
2993 		CALL_RXH(ieee80211_rx_h_amsdu)
2994 		CALL_RXH(ieee80211_rx_h_data)
2995 
2996 		/* special treatment -- needs the queue */
2997 		res = ieee80211_rx_h_ctrl(rx, frames);
2998 		if (res != RX_CONTINUE)
2999 			goto rxh_next;
3000 
3001 		CALL_RXH(ieee80211_rx_h_mgmt_check)
3002 		CALL_RXH(ieee80211_rx_h_action)
3003 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3004 		CALL_RXH(ieee80211_rx_h_action_return)
3005 		CALL_RXH(ieee80211_rx_h_mgmt)
3006 
3007  rxh_next:
3008 		ieee80211_rx_handlers_result(rx, res);
3009 
3010 #undef CALL_RXH
3011 	}
3012 
3013 	spin_unlock_bh(&rx->local->rx_path_lock);
3014 }
3015 
3016 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3017 {
3018 	struct sk_buff_head reorder_release;
3019 	ieee80211_rx_result res = RX_DROP_MONITOR;
3020 
3021 	__skb_queue_head_init(&reorder_release);
3022 
3023 #define CALL_RXH(rxh)			\
3024 	do {				\
3025 		res = rxh(rx);		\
3026 		if (res != RX_CONTINUE)	\
3027 			goto rxh_next;  \
3028 	} while (0);
3029 
3030 	CALL_RXH(ieee80211_rx_h_check)
3031 
3032 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3033 
3034 	ieee80211_rx_handlers(rx, &reorder_release);
3035 	return;
3036 
3037  rxh_next:
3038 	ieee80211_rx_handlers_result(rx, res);
3039 
3040 #undef CALL_RXH
3041 }
3042 
3043 /*
3044  * This function makes calls into the RX path, therefore
3045  * it has to be invoked under RCU read lock.
3046  */
3047 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3048 {
3049 	struct sk_buff_head frames;
3050 	struct ieee80211_rx_data rx = {
3051 		.sta = sta,
3052 		.sdata = sta->sdata,
3053 		.local = sta->local,
3054 		/* This is OK -- must be QoS data frame */
3055 		.security_idx = tid,
3056 		.seqno_idx = tid,
3057 		.flags = 0,
3058 	};
3059 	struct tid_ampdu_rx *tid_agg_rx;
3060 
3061 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3062 	if (!tid_agg_rx)
3063 		return;
3064 
3065 	__skb_queue_head_init(&frames);
3066 
3067 	spin_lock(&tid_agg_rx->reorder_lock);
3068 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3069 	spin_unlock(&tid_agg_rx->reorder_lock);
3070 
3071 	ieee80211_rx_handlers(&rx, &frames);
3072 }
3073 
3074 /* main receive path */
3075 
3076 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3077 				 struct ieee80211_hdr *hdr)
3078 {
3079 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3080 	struct sk_buff *skb = rx->skb;
3081 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3082 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3083 	int multicast = is_multicast_ether_addr(hdr->addr1);
3084 
3085 	switch (sdata->vif.type) {
3086 	case NL80211_IFTYPE_STATION:
3087 		if (!bssid && !sdata->u.mgd.use_4addr)
3088 			return false;
3089 		if (!multicast &&
3090 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3091 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3092 			    sdata->u.mgd.use_4addr)
3093 				return false;
3094 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3095 		}
3096 		break;
3097 	case NL80211_IFTYPE_ADHOC:
3098 		if (!bssid)
3099 			return false;
3100 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3101 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3102 			return false;
3103 		if (ieee80211_is_beacon(hdr->frame_control)) {
3104 			return true;
3105 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3106 			return false;
3107 		} else if (!multicast &&
3108 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3109 			if (!(sdata->dev->flags & IFF_PROMISC))
3110 				return false;
3111 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3112 		} else if (!rx->sta) {
3113 			int rate_idx;
3114 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3115 				rate_idx = 0; /* TODO: HT/VHT rates */
3116 			else
3117 				rate_idx = status->rate_idx;
3118 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3119 						 BIT(rate_idx));
3120 		}
3121 		break;
3122 	case NL80211_IFTYPE_MESH_POINT:
3123 		if (!multicast &&
3124 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3125 			if (!(sdata->dev->flags & IFF_PROMISC))
3126 				return false;
3127 
3128 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3129 		}
3130 		break;
3131 	case NL80211_IFTYPE_AP_VLAN:
3132 	case NL80211_IFTYPE_AP:
3133 		if (!bssid) {
3134 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3135 				return false;
3136 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3137 			/*
3138 			 * Accept public action frames even when the
3139 			 * BSSID doesn't match, this is used for P2P
3140 			 * and location updates. Note that mac80211
3141 			 * itself never looks at these frames.
3142 			 */
3143 			if (!multicast &&
3144 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3145 				return false;
3146 			if (ieee80211_is_public_action(hdr, skb->len))
3147 				return true;
3148 			if (!ieee80211_is_beacon(hdr->frame_control))
3149 				return false;
3150 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3151 		} else if (!ieee80211_has_tods(hdr->frame_control)) {
3152 			/* ignore data frames to TDLS-peers */
3153 			if (ieee80211_is_data(hdr->frame_control))
3154 				return false;
3155 			/* ignore action frames to TDLS-peers */
3156 			if (ieee80211_is_action(hdr->frame_control) &&
3157 			    !ether_addr_equal(bssid, hdr->addr1))
3158 				return false;
3159 		}
3160 		break;
3161 	case NL80211_IFTYPE_WDS:
3162 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3163 			return false;
3164 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3165 			return false;
3166 		break;
3167 	case NL80211_IFTYPE_P2P_DEVICE:
3168 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3169 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3170 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3171 		    !ieee80211_is_beacon(hdr->frame_control))
3172 			return false;
3173 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3174 		    !multicast)
3175 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3176 		break;
3177 	default:
3178 		/* should never get here */
3179 		WARN_ON_ONCE(1);
3180 		break;
3181 	}
3182 
3183 	return true;
3184 }
3185 
3186 /*
3187  * This function returns whether or not the SKB
3188  * was destined for RX processing or not, which,
3189  * if consume is true, is equivalent to whether
3190  * or not the skb was consumed.
3191  */
3192 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3193 					    struct sk_buff *skb, bool consume)
3194 {
3195 	struct ieee80211_local *local = rx->local;
3196 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3197 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3198 	struct ieee80211_hdr *hdr = (void *)skb->data;
3199 
3200 	rx->skb = skb;
3201 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3202 
3203 	if (!prepare_for_handlers(rx, hdr))
3204 		return false;
3205 
3206 	if (!consume) {
3207 		skb = skb_copy(skb, GFP_ATOMIC);
3208 		if (!skb) {
3209 			if (net_ratelimit())
3210 				wiphy_debug(local->hw.wiphy,
3211 					"failed to copy skb for %s\n",
3212 					sdata->name);
3213 			return true;
3214 		}
3215 
3216 		rx->skb = skb;
3217 	}
3218 
3219 	ieee80211_invoke_rx_handlers(rx);
3220 	return true;
3221 }
3222 
3223 /*
3224  * This is the actual Rx frames handler. as it belongs to Rx path it must
3225  * be called with rcu_read_lock protection.
3226  */
3227 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3228 					 struct sk_buff *skb)
3229 {
3230 	struct ieee80211_local *local = hw_to_local(hw);
3231 	struct ieee80211_sub_if_data *sdata;
3232 	struct ieee80211_hdr *hdr;
3233 	__le16 fc;
3234 	struct ieee80211_rx_data rx;
3235 	struct ieee80211_sub_if_data *prev;
3236 	struct sta_info *sta, *tmp, *prev_sta;
3237 	int err = 0;
3238 
3239 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3240 	memset(&rx, 0, sizeof(rx));
3241 	rx.skb = skb;
3242 	rx.local = local;
3243 
3244 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3245 		local->dot11ReceivedFragmentCount++;
3246 
3247 	if (ieee80211_is_mgmt(fc)) {
3248 		/* drop frame if too short for header */
3249 		if (skb->len < ieee80211_hdrlen(fc))
3250 			err = -ENOBUFS;
3251 		else
3252 			err = skb_linearize(skb);
3253 	} else {
3254 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3255 	}
3256 
3257 	if (err) {
3258 		dev_kfree_skb(skb);
3259 		return;
3260 	}
3261 
3262 	hdr = (struct ieee80211_hdr *)skb->data;
3263 	ieee80211_parse_qos(&rx);
3264 	ieee80211_verify_alignment(&rx);
3265 
3266 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3267 		     ieee80211_is_beacon(hdr->frame_control)))
3268 		ieee80211_scan_rx(local, skb);
3269 
3270 	if (ieee80211_is_data(fc)) {
3271 		prev_sta = NULL;
3272 
3273 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
3274 			if (!prev_sta) {
3275 				prev_sta = sta;
3276 				continue;
3277 			}
3278 
3279 			rx.sta = prev_sta;
3280 			rx.sdata = prev_sta->sdata;
3281 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3282 
3283 			prev_sta = sta;
3284 		}
3285 
3286 		if (prev_sta) {
3287 			rx.sta = prev_sta;
3288 			rx.sdata = prev_sta->sdata;
3289 
3290 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3291 				return;
3292 			goto out;
3293 		}
3294 	}
3295 
3296 	prev = NULL;
3297 
3298 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3299 		if (!ieee80211_sdata_running(sdata))
3300 			continue;
3301 
3302 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3303 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3304 			continue;
3305 
3306 		/*
3307 		 * frame is destined for this interface, but if it's
3308 		 * not also for the previous one we handle that after
3309 		 * the loop to avoid copying the SKB once too much
3310 		 */
3311 
3312 		if (!prev) {
3313 			prev = sdata;
3314 			continue;
3315 		}
3316 
3317 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3318 		rx.sdata = prev;
3319 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3320 
3321 		prev = sdata;
3322 	}
3323 
3324 	if (prev) {
3325 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3326 		rx.sdata = prev;
3327 
3328 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3329 			return;
3330 	}
3331 
3332  out:
3333 	dev_kfree_skb(skb);
3334 }
3335 
3336 /*
3337  * This is the receive path handler. It is called by a low level driver when an
3338  * 802.11 MPDU is received from the hardware.
3339  */
3340 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3341 {
3342 	struct ieee80211_local *local = hw_to_local(hw);
3343 	struct ieee80211_rate *rate = NULL;
3344 	struct ieee80211_supported_band *sband;
3345 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3346 
3347 	WARN_ON_ONCE(softirq_count() == 0);
3348 
3349 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3350 		goto drop;
3351 
3352 	sband = local->hw.wiphy->bands[status->band];
3353 	if (WARN_ON(!sband))
3354 		goto drop;
3355 
3356 	/*
3357 	 * If we're suspending, it is possible although not too likely
3358 	 * that we'd be receiving frames after having already partially
3359 	 * quiesced the stack. We can't process such frames then since
3360 	 * that might, for example, cause stations to be added or other
3361 	 * driver callbacks be invoked.
3362 	 */
3363 	if (unlikely(local->quiescing || local->suspended))
3364 		goto drop;
3365 
3366 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3367 	if (unlikely(local->in_reconfig))
3368 		goto drop;
3369 
3370 	/*
3371 	 * The same happens when we're not even started,
3372 	 * but that's worth a warning.
3373 	 */
3374 	if (WARN_ON(!local->started))
3375 		goto drop;
3376 
3377 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3378 		/*
3379 		 * Validate the rate, unless a PLCP error means that
3380 		 * we probably can't have a valid rate here anyway.
3381 		 */
3382 
3383 		if (status->flag & RX_FLAG_HT) {
3384 			/*
3385 			 * rate_idx is MCS index, which can be [0-76]
3386 			 * as documented on:
3387 			 *
3388 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3389 			 *
3390 			 * Anything else would be some sort of driver or
3391 			 * hardware error. The driver should catch hardware
3392 			 * errors.
3393 			 */
3394 			if (WARN(status->rate_idx > 76,
3395 				 "Rate marked as an HT rate but passed "
3396 				 "status->rate_idx is not "
3397 				 "an MCS index [0-76]: %d (0x%02x)\n",
3398 				 status->rate_idx,
3399 				 status->rate_idx))
3400 				goto drop;
3401 		} else if (status->flag & RX_FLAG_VHT) {
3402 			if (WARN_ONCE(status->rate_idx > 9 ||
3403 				      !status->vht_nss ||
3404 				      status->vht_nss > 8,
3405 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3406 				      status->rate_idx, status->vht_nss))
3407 				goto drop;
3408 		} else {
3409 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3410 				goto drop;
3411 			rate = &sband->bitrates[status->rate_idx];
3412 		}
3413 	}
3414 
3415 	status->rx_flags = 0;
3416 
3417 	/*
3418 	 * key references and virtual interfaces are protected using RCU
3419 	 * and this requires that we are in a read-side RCU section during
3420 	 * receive processing
3421 	 */
3422 	rcu_read_lock();
3423 
3424 	/*
3425 	 * Frames with failed FCS/PLCP checksum are not returned,
3426 	 * all other frames are returned without radiotap header
3427 	 * if it was previously present.
3428 	 * Also, frames with less than 16 bytes are dropped.
3429 	 */
3430 	skb = ieee80211_rx_monitor(local, skb, rate);
3431 	if (!skb) {
3432 		rcu_read_unlock();
3433 		return;
3434 	}
3435 
3436 	ieee80211_tpt_led_trig_rx(local,
3437 			((struct ieee80211_hdr *)skb->data)->frame_control,
3438 			skb->len);
3439 	__ieee80211_rx_handle_packet(hw, skb);
3440 
3441 	rcu_read_unlock();
3442 
3443 	return;
3444  drop:
3445 	kfree_skb(skb);
3446 }
3447 EXPORT_SYMBOL(ieee80211_rx);
3448 
3449 /* This is a version of the rx handler that can be called from hard irq
3450  * context. Post the skb on the queue and schedule the tasklet */
3451 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3452 {
3453 	struct ieee80211_local *local = hw_to_local(hw);
3454 
3455 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3456 
3457 	skb->pkt_type = IEEE80211_RX_MSG;
3458 	skb_queue_tail(&local->skb_queue, skb);
3459 	tasklet_schedule(&local->tasklet);
3460 }
3461 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3462