xref: /openbmc/linux/net/mac80211/rx.c (revision 174cd4b1)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 					   struct sk_buff *skb,
100 					   unsigned int rtap_vendor_space)
101 {
102 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 		if (likely(skb->len > FCS_LEN))
104 			__pskb_trim(skb, skb->len - FCS_LEN);
105 		else {
106 			/* driver bug */
107 			WARN_ON(1);
108 			dev_kfree_skb(skb);
109 			return NULL;
110 		}
111 	}
112 
113 	__pskb_pull(skb, rtap_vendor_space);
114 
115 	return skb;
116 }
117 
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 				     unsigned int rtap_vendor_space)
120 {
121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 	struct ieee80211_hdr *hdr;
123 
124 	hdr = (void *)(skb->data + rtap_vendor_space);
125 
126 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 			    RX_FLAG_FAILED_PLCP_CRC |
128 			    RX_FLAG_ONLY_MONITOR))
129 		return true;
130 
131 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 		return true;
133 
134 	if (ieee80211_is_ctl(hdr->frame_control) &&
135 	    !ieee80211_is_pspoll(hdr->frame_control) &&
136 	    !ieee80211_is_back_req(hdr->frame_control))
137 		return true;
138 
139 	return false;
140 }
141 
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 			     struct ieee80211_rx_status *status,
145 			     struct sk_buff *skb)
146 {
147 	int len;
148 
149 	/* always present fields */
150 	len = sizeof(struct ieee80211_radiotap_header) + 8;
151 
152 	/* allocate extra bitmaps */
153 	if (status->chains)
154 		len += 4 * hweight8(status->chains);
155 
156 	if (ieee80211_have_rx_timestamp(status)) {
157 		len = ALIGN(len, 8);
158 		len += 8;
159 	}
160 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 		len += 1;
162 
163 	/* antenna field, if we don't have per-chain info */
164 	if (!status->chains)
165 		len += 1;
166 
167 	/* padding for RX_FLAGS if necessary */
168 	len = ALIGN(len, 2);
169 
170 	if (status->flag & RX_FLAG_HT) /* HT info */
171 		len += 3;
172 
173 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 		len = ALIGN(len, 4);
175 		len += 8;
176 	}
177 
178 	if (status->flag & RX_FLAG_VHT) {
179 		len = ALIGN(len, 2);
180 		len += 12;
181 	}
182 
183 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 		len = ALIGN(len, 8);
185 		len += 12;
186 	}
187 
188 	if (status->chains) {
189 		/* antenna and antenna signal fields */
190 		len += 2 * hweight8(status->chains);
191 	}
192 
193 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
195 
196 		/* vendor presence bitmap */
197 		len += 4;
198 		/* alignment for fixed 6-byte vendor data header */
199 		len = ALIGN(len, 2);
200 		/* vendor data header */
201 		len += 6;
202 		if (WARN_ON(rtap->align == 0))
203 			rtap->align = 1;
204 		len = ALIGN(len, rtap->align);
205 		len += rtap->len + rtap->pad;
206 	}
207 
208 	return len;
209 }
210 
211 /*
212  * ieee80211_add_rx_radiotap_header - add radiotap header
213  *
214  * add a radiotap header containing all the fields which the hardware provided.
215  */
216 static void
217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
218 				 struct sk_buff *skb,
219 				 struct ieee80211_rate *rate,
220 				 int rtap_len, bool has_fcs)
221 {
222 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223 	struct ieee80211_radiotap_header *rthdr;
224 	unsigned char *pos;
225 	__le32 *it_present;
226 	u32 it_present_val;
227 	u16 rx_flags = 0;
228 	u16 channel_flags = 0;
229 	int mpdulen, chain;
230 	unsigned long chains = status->chains;
231 	struct ieee80211_vendor_radiotap rtap = {};
232 
233 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
234 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
235 		/* rtap.len and rtap.pad are undone immediately */
236 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
237 	}
238 
239 	mpdulen = skb->len;
240 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
241 		mpdulen += FCS_LEN;
242 
243 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
244 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
245 	it_present = &rthdr->it_present;
246 
247 	/* radiotap header, set always present flags */
248 	rthdr->it_len = cpu_to_le16(rtap_len);
249 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
250 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
251 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
252 
253 	if (!status->chains)
254 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
255 
256 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
257 		it_present_val |=
258 			BIT(IEEE80211_RADIOTAP_EXT) |
259 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
260 		put_unaligned_le32(it_present_val, it_present);
261 		it_present++;
262 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
263 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
264 	}
265 
266 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
268 				  BIT(IEEE80211_RADIOTAP_EXT);
269 		put_unaligned_le32(it_present_val, it_present);
270 		it_present++;
271 		it_present_val = rtap.present;
272 	}
273 
274 	put_unaligned_le32(it_present_val, it_present);
275 
276 	pos = (void *)(it_present + 1);
277 
278 	/* the order of the following fields is important */
279 
280 	/* IEEE80211_RADIOTAP_TSFT */
281 	if (ieee80211_have_rx_timestamp(status)) {
282 		/* padding */
283 		while ((pos - (u8 *)rthdr) & 7)
284 			*pos++ = 0;
285 		put_unaligned_le64(
286 			ieee80211_calculate_rx_timestamp(local, status,
287 							 mpdulen, 0),
288 			pos);
289 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
290 		pos += 8;
291 	}
292 
293 	/* IEEE80211_RADIOTAP_FLAGS */
294 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
295 		*pos |= IEEE80211_RADIOTAP_F_FCS;
296 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
297 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
298 	if (status->flag & RX_FLAG_SHORTPRE)
299 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
300 	pos++;
301 
302 	/* IEEE80211_RADIOTAP_RATE */
303 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
304 		/*
305 		 * Without rate information don't add it. If we have,
306 		 * MCS information is a separate field in radiotap,
307 		 * added below. The byte here is needed as padding
308 		 * for the channel though, so initialise it to 0.
309 		 */
310 		*pos = 0;
311 	} else {
312 		int shift = 0;
313 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
314 		if (status->flag & RX_FLAG_10MHZ)
315 			shift = 1;
316 		else if (status->flag & RX_FLAG_5MHZ)
317 			shift = 2;
318 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
319 	}
320 	pos++;
321 
322 	/* IEEE80211_RADIOTAP_CHANNEL */
323 	put_unaligned_le16(status->freq, pos);
324 	pos += 2;
325 	if (status->flag & RX_FLAG_10MHZ)
326 		channel_flags |= IEEE80211_CHAN_HALF;
327 	else if (status->flag & RX_FLAG_5MHZ)
328 		channel_flags |= IEEE80211_CHAN_QUARTER;
329 
330 	if (status->band == NL80211_BAND_5GHZ)
331 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
332 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
333 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
334 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
335 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
336 	else if (rate)
337 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
338 	else
339 		channel_flags |= IEEE80211_CHAN_2GHZ;
340 	put_unaligned_le16(channel_flags, pos);
341 	pos += 2;
342 
343 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
344 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
345 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
346 		*pos = status->signal;
347 		rthdr->it_present |=
348 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
349 		pos++;
350 	}
351 
352 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
353 
354 	if (!status->chains) {
355 		/* IEEE80211_RADIOTAP_ANTENNA */
356 		*pos = status->antenna;
357 		pos++;
358 	}
359 
360 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
361 
362 	/* IEEE80211_RADIOTAP_RX_FLAGS */
363 	/* ensure 2 byte alignment for the 2 byte field as required */
364 	if ((pos - (u8 *)rthdr) & 1)
365 		*pos++ = 0;
366 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
367 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
368 	put_unaligned_le16(rx_flags, pos);
369 	pos += 2;
370 
371 	if (status->flag & RX_FLAG_HT) {
372 		unsigned int stbc;
373 
374 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
375 		*pos++ = local->hw.radiotap_mcs_details;
376 		*pos = 0;
377 		if (status->flag & RX_FLAG_SHORT_GI)
378 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
379 		if (status->flag & RX_FLAG_40MHZ)
380 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
381 		if (status->flag & RX_FLAG_HT_GF)
382 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
383 		if (status->flag & RX_FLAG_LDPC)
384 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
385 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
386 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
387 		pos++;
388 		*pos++ = status->rate_idx;
389 	}
390 
391 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
392 		u16 flags = 0;
393 
394 		/* ensure 4 byte alignment */
395 		while ((pos - (u8 *)rthdr) & 3)
396 			pos++;
397 		rthdr->it_present |=
398 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
399 		put_unaligned_le32(status->ampdu_reference, pos);
400 		pos += 4;
401 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
402 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
403 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
404 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
405 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
406 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
407 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
408 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
409 		put_unaligned_le16(flags, pos);
410 		pos += 2;
411 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
412 			*pos++ = status->ampdu_delimiter_crc;
413 		else
414 			*pos++ = 0;
415 		*pos++ = 0;
416 	}
417 
418 	if (status->flag & RX_FLAG_VHT) {
419 		u16 known = local->hw.radiotap_vht_details;
420 
421 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
422 		put_unaligned_le16(known, pos);
423 		pos += 2;
424 		/* flags */
425 		if (status->flag & RX_FLAG_SHORT_GI)
426 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
427 		/* in VHT, STBC is binary */
428 		if (status->flag & RX_FLAG_STBC_MASK)
429 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
430 		if (status->vht_flag & RX_VHT_FLAG_BF)
431 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
432 		pos++;
433 		/* bandwidth */
434 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
435 			*pos++ = 4;
436 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
437 			*pos++ = 11;
438 		else if (status->flag & RX_FLAG_40MHZ)
439 			*pos++ = 1;
440 		else /* 20 MHz */
441 			*pos++ = 0;
442 		/* MCS/NSS */
443 		*pos = (status->rate_idx << 4) | status->vht_nss;
444 		pos += 4;
445 		/* coding field */
446 		if (status->flag & RX_FLAG_LDPC)
447 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
448 		pos++;
449 		/* group ID */
450 		pos++;
451 		/* partial_aid */
452 		pos += 2;
453 	}
454 
455 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
456 		u16 accuracy = 0;
457 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
458 
459 		rthdr->it_present |=
460 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
461 
462 		/* ensure 8 byte alignment */
463 		while ((pos - (u8 *)rthdr) & 7)
464 			pos++;
465 
466 		put_unaligned_le64(status->device_timestamp, pos);
467 		pos += sizeof(u64);
468 
469 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
470 			accuracy = local->hw.radiotap_timestamp.accuracy;
471 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
472 		}
473 		put_unaligned_le16(accuracy, pos);
474 		pos += sizeof(u16);
475 
476 		*pos++ = local->hw.radiotap_timestamp.units_pos;
477 		*pos++ = flags;
478 	}
479 
480 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
481 		*pos++ = status->chain_signal[chain];
482 		*pos++ = chain;
483 	}
484 
485 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
486 		/* ensure 2 byte alignment for the vendor field as required */
487 		if ((pos - (u8 *)rthdr) & 1)
488 			*pos++ = 0;
489 		*pos++ = rtap.oui[0];
490 		*pos++ = rtap.oui[1];
491 		*pos++ = rtap.oui[2];
492 		*pos++ = rtap.subns;
493 		put_unaligned_le16(rtap.len, pos);
494 		pos += 2;
495 		/* align the actual payload as requested */
496 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
497 			*pos++ = 0;
498 		/* data (and possible padding) already follows */
499 	}
500 }
501 
502 /*
503  * This function copies a received frame to all monitor interfaces and
504  * returns a cleaned-up SKB that no longer includes the FCS nor the
505  * radiotap header the driver might have added.
506  */
507 static struct sk_buff *
508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
509 		     struct ieee80211_rate *rate)
510 {
511 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
512 	struct ieee80211_sub_if_data *sdata;
513 	int rt_hdrlen, needed_headroom;
514 	struct sk_buff *skb, *skb2;
515 	struct net_device *prev_dev = NULL;
516 	int present_fcs_len = 0;
517 	unsigned int rtap_vendor_space = 0;
518 	struct ieee80211_mgmt *mgmt;
519 	struct ieee80211_sub_if_data *monitor_sdata =
520 		rcu_dereference(local->monitor_sdata);
521 
522 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
523 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
524 
525 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
526 	}
527 
528 	/*
529 	 * First, we may need to make a copy of the skb because
530 	 *  (1) we need to modify it for radiotap (if not present), and
531 	 *  (2) the other RX handlers will modify the skb we got.
532 	 *
533 	 * We don't need to, of course, if we aren't going to return
534 	 * the SKB because it has a bad FCS/PLCP checksum.
535 	 */
536 
537 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
538 		present_fcs_len = FCS_LEN;
539 
540 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
541 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
542 		dev_kfree_skb(origskb);
543 		return NULL;
544 	}
545 
546 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
547 		if (should_drop_frame(origskb, present_fcs_len,
548 				      rtap_vendor_space)) {
549 			dev_kfree_skb(origskb);
550 			return NULL;
551 		}
552 
553 		return remove_monitor_info(local, origskb, rtap_vendor_space);
554 	}
555 
556 	/* room for the radiotap header based on driver features */
557 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
558 	needed_headroom = rt_hdrlen - rtap_vendor_space;
559 
560 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
561 		/* only need to expand headroom if necessary */
562 		skb = origskb;
563 		origskb = NULL;
564 
565 		/*
566 		 * This shouldn't trigger often because most devices have an
567 		 * RX header they pull before we get here, and that should
568 		 * be big enough for our radiotap information. We should
569 		 * probably export the length to drivers so that we can have
570 		 * them allocate enough headroom to start with.
571 		 */
572 		if (skb_headroom(skb) < needed_headroom &&
573 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
574 			dev_kfree_skb(skb);
575 			return NULL;
576 		}
577 	} else {
578 		/*
579 		 * Need to make a copy and possibly remove radiotap header
580 		 * and FCS from the original.
581 		 */
582 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
583 
584 		origskb = remove_monitor_info(local, origskb,
585 					      rtap_vendor_space);
586 
587 		if (!skb)
588 			return origskb;
589 	}
590 
591 	/* prepend radiotap information */
592 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
593 
594 	skb_reset_mac_header(skb);
595 	skb->ip_summed = CHECKSUM_UNNECESSARY;
596 	skb->pkt_type = PACKET_OTHERHOST;
597 	skb->protocol = htons(ETH_P_802_2);
598 
599 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
600 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
601 			continue;
602 
603 		if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
604 			continue;
605 
606 		if (!ieee80211_sdata_running(sdata))
607 			continue;
608 
609 		if (prev_dev) {
610 			skb2 = skb_clone(skb, GFP_ATOMIC);
611 			if (skb2) {
612 				skb2->dev = prev_dev;
613 				netif_receive_skb(skb2);
614 			}
615 		}
616 
617 		prev_dev = sdata->dev;
618 		ieee80211_rx_stats(sdata->dev, skb->len);
619 	}
620 
621 	mgmt = (void *)skb->data;
622 	if (monitor_sdata &&
623 	    skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN &&
624 	    ieee80211_is_action(mgmt->frame_control) &&
625 	    mgmt->u.action.category == WLAN_CATEGORY_VHT &&
626 	    mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT &&
627 	    is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) &&
628 	    ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) {
629 		struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC);
630 
631 		if (mu_skb) {
632 			mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
633 			skb_queue_tail(&monitor_sdata->skb_queue, mu_skb);
634 			ieee80211_queue_work(&local->hw, &monitor_sdata->work);
635 		}
636 	}
637 
638 	if (prev_dev) {
639 		skb->dev = prev_dev;
640 		netif_receive_skb(skb);
641 	} else
642 		dev_kfree_skb(skb);
643 
644 	return origskb;
645 }
646 
647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
648 {
649 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
650 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
651 	int tid, seqno_idx, security_idx;
652 
653 	/* does the frame have a qos control field? */
654 	if (ieee80211_is_data_qos(hdr->frame_control)) {
655 		u8 *qc = ieee80211_get_qos_ctl(hdr);
656 		/* frame has qos control */
657 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
658 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
659 			status->rx_flags |= IEEE80211_RX_AMSDU;
660 
661 		seqno_idx = tid;
662 		security_idx = tid;
663 	} else {
664 		/*
665 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
666 		 *
667 		 *	Sequence numbers for management frames, QoS data
668 		 *	frames with a broadcast/multicast address in the
669 		 *	Address 1 field, and all non-QoS data frames sent
670 		 *	by QoS STAs are assigned using an additional single
671 		 *	modulo-4096 counter, [...]
672 		 *
673 		 * We also use that counter for non-QoS STAs.
674 		 */
675 		seqno_idx = IEEE80211_NUM_TIDS;
676 		security_idx = 0;
677 		if (ieee80211_is_mgmt(hdr->frame_control))
678 			security_idx = IEEE80211_NUM_TIDS;
679 		tid = 0;
680 	}
681 
682 	rx->seqno_idx = seqno_idx;
683 	rx->security_idx = security_idx;
684 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
685 	 * For now, set skb->priority to 0 for other cases. */
686 	rx->skb->priority = (tid > 7) ? 0 : tid;
687 }
688 
689 /**
690  * DOC: Packet alignment
691  *
692  * Drivers always need to pass packets that are aligned to two-byte boundaries
693  * to the stack.
694  *
695  * Additionally, should, if possible, align the payload data in a way that
696  * guarantees that the contained IP header is aligned to a four-byte
697  * boundary. In the case of regular frames, this simply means aligning the
698  * payload to a four-byte boundary (because either the IP header is directly
699  * contained, or IV/RFC1042 headers that have a length divisible by four are
700  * in front of it).  If the payload data is not properly aligned and the
701  * architecture doesn't support efficient unaligned operations, mac80211
702  * will align the data.
703  *
704  * With A-MSDU frames, however, the payload data address must yield two modulo
705  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
706  * push the IP header further back to a multiple of four again. Thankfully, the
707  * specs were sane enough this time around to require padding each A-MSDU
708  * subframe to a length that is a multiple of four.
709  *
710  * Padding like Atheros hardware adds which is between the 802.11 header and
711  * the payload is not supported, the driver is required to move the 802.11
712  * header to be directly in front of the payload in that case.
713  */
714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
715 {
716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
717 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
718 #endif
719 }
720 
721 
722 /* rx handlers */
723 
724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
725 {
726 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
727 
728 	if (is_multicast_ether_addr(hdr->addr1))
729 		return 0;
730 
731 	return ieee80211_is_robust_mgmt_frame(skb);
732 }
733 
734 
735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
736 {
737 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
738 
739 	if (!is_multicast_ether_addr(hdr->addr1))
740 		return 0;
741 
742 	return ieee80211_is_robust_mgmt_frame(skb);
743 }
744 
745 
746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
748 {
749 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
750 	struct ieee80211_mmie *mmie;
751 	struct ieee80211_mmie_16 *mmie16;
752 
753 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
754 		return -1;
755 
756 	if (!ieee80211_is_robust_mgmt_frame(skb))
757 		return -1; /* not a robust management frame */
758 
759 	mmie = (struct ieee80211_mmie *)
760 		(skb->data + skb->len - sizeof(*mmie));
761 	if (mmie->element_id == WLAN_EID_MMIE &&
762 	    mmie->length == sizeof(*mmie) - 2)
763 		return le16_to_cpu(mmie->key_id);
764 
765 	mmie16 = (struct ieee80211_mmie_16 *)
766 		(skb->data + skb->len - sizeof(*mmie16));
767 	if (skb->len >= 24 + sizeof(*mmie16) &&
768 	    mmie16->element_id == WLAN_EID_MMIE &&
769 	    mmie16->length == sizeof(*mmie16) - 2)
770 		return le16_to_cpu(mmie16->key_id);
771 
772 	return -1;
773 }
774 
775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
776 				  struct sk_buff *skb)
777 {
778 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
779 	__le16 fc;
780 	int hdrlen;
781 	u8 keyid;
782 
783 	fc = hdr->frame_control;
784 	hdrlen = ieee80211_hdrlen(fc);
785 
786 	if (skb->len < hdrlen + cs->hdr_len)
787 		return -EINVAL;
788 
789 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
790 	keyid &= cs->key_idx_mask;
791 	keyid >>= cs->key_idx_shift;
792 
793 	return keyid;
794 }
795 
796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
797 {
798 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
799 	char *dev_addr = rx->sdata->vif.addr;
800 
801 	if (ieee80211_is_data(hdr->frame_control)) {
802 		if (is_multicast_ether_addr(hdr->addr1)) {
803 			if (ieee80211_has_tods(hdr->frame_control) ||
804 			    !ieee80211_has_fromds(hdr->frame_control))
805 				return RX_DROP_MONITOR;
806 			if (ether_addr_equal(hdr->addr3, dev_addr))
807 				return RX_DROP_MONITOR;
808 		} else {
809 			if (!ieee80211_has_a4(hdr->frame_control))
810 				return RX_DROP_MONITOR;
811 			if (ether_addr_equal(hdr->addr4, dev_addr))
812 				return RX_DROP_MONITOR;
813 		}
814 	}
815 
816 	/* If there is not an established peer link and this is not a peer link
817 	 * establisment frame, beacon or probe, drop the frame.
818 	 */
819 
820 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
821 		struct ieee80211_mgmt *mgmt;
822 
823 		if (!ieee80211_is_mgmt(hdr->frame_control))
824 			return RX_DROP_MONITOR;
825 
826 		if (ieee80211_is_action(hdr->frame_control)) {
827 			u8 category;
828 
829 			/* make sure category field is present */
830 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
831 				return RX_DROP_MONITOR;
832 
833 			mgmt = (struct ieee80211_mgmt *)hdr;
834 			category = mgmt->u.action.category;
835 			if (category != WLAN_CATEGORY_MESH_ACTION &&
836 			    category != WLAN_CATEGORY_SELF_PROTECTED)
837 				return RX_DROP_MONITOR;
838 			return RX_CONTINUE;
839 		}
840 
841 		if (ieee80211_is_probe_req(hdr->frame_control) ||
842 		    ieee80211_is_probe_resp(hdr->frame_control) ||
843 		    ieee80211_is_beacon(hdr->frame_control) ||
844 		    ieee80211_is_auth(hdr->frame_control))
845 			return RX_CONTINUE;
846 
847 		return RX_DROP_MONITOR;
848 	}
849 
850 	return RX_CONTINUE;
851 }
852 
853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
854 					      int index)
855 {
856 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
857 	struct sk_buff *tail = skb_peek_tail(frames);
858 	struct ieee80211_rx_status *status;
859 
860 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
861 		return true;
862 
863 	if (!tail)
864 		return false;
865 
866 	status = IEEE80211_SKB_RXCB(tail);
867 	if (status->flag & RX_FLAG_AMSDU_MORE)
868 		return false;
869 
870 	return true;
871 }
872 
873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
874 					    struct tid_ampdu_rx *tid_agg_rx,
875 					    int index,
876 					    struct sk_buff_head *frames)
877 {
878 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
879 	struct sk_buff *skb;
880 	struct ieee80211_rx_status *status;
881 
882 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
883 
884 	if (skb_queue_empty(skb_list))
885 		goto no_frame;
886 
887 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
888 		__skb_queue_purge(skb_list);
889 		goto no_frame;
890 	}
891 
892 	/* release frames from the reorder ring buffer */
893 	tid_agg_rx->stored_mpdu_num--;
894 	while ((skb = __skb_dequeue(skb_list))) {
895 		status = IEEE80211_SKB_RXCB(skb);
896 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
897 		__skb_queue_tail(frames, skb);
898 	}
899 
900 no_frame:
901 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
902 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
903 }
904 
905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
906 					     struct tid_ampdu_rx *tid_agg_rx,
907 					     u16 head_seq_num,
908 					     struct sk_buff_head *frames)
909 {
910 	int index;
911 
912 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
913 
914 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
915 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
916 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
917 						frames);
918 	}
919 }
920 
921 /*
922  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
923  * the skb was added to the buffer longer than this time ago, the earlier
924  * frames that have not yet been received are assumed to be lost and the skb
925  * can be released for processing. This may also release other skb's from the
926  * reorder buffer if there are no additional gaps between the frames.
927  *
928  * Callers must hold tid_agg_rx->reorder_lock.
929  */
930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
931 
932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
933 					  struct tid_ampdu_rx *tid_agg_rx,
934 					  struct sk_buff_head *frames)
935 {
936 	int index, i, j;
937 
938 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
939 
940 	/* release the buffer until next missing frame */
941 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
942 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
943 	    tid_agg_rx->stored_mpdu_num) {
944 		/*
945 		 * No buffers ready to be released, but check whether any
946 		 * frames in the reorder buffer have timed out.
947 		 */
948 		int skipped = 1;
949 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
950 		     j = (j + 1) % tid_agg_rx->buf_size) {
951 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
952 				skipped++;
953 				continue;
954 			}
955 			if (skipped &&
956 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
957 					HT_RX_REORDER_BUF_TIMEOUT))
958 				goto set_release_timer;
959 
960 			/* don't leave incomplete A-MSDUs around */
961 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
962 			     i = (i + 1) % tid_agg_rx->buf_size)
963 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
964 
965 			ht_dbg_ratelimited(sdata,
966 					   "release an RX reorder frame due to timeout on earlier frames\n");
967 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
968 							frames);
969 
970 			/*
971 			 * Increment the head seq# also for the skipped slots.
972 			 */
973 			tid_agg_rx->head_seq_num =
974 				(tid_agg_rx->head_seq_num +
975 				 skipped) & IEEE80211_SN_MASK;
976 			skipped = 0;
977 		}
978 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
979 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
980 						frames);
981 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
982 	}
983 
984 	if (tid_agg_rx->stored_mpdu_num) {
985 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
986 
987 		for (; j != (index - 1) % tid_agg_rx->buf_size;
988 		     j = (j + 1) % tid_agg_rx->buf_size) {
989 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
990 				break;
991 		}
992 
993  set_release_timer:
994 
995 		if (!tid_agg_rx->removed)
996 			mod_timer(&tid_agg_rx->reorder_timer,
997 				  tid_agg_rx->reorder_time[j] + 1 +
998 				  HT_RX_REORDER_BUF_TIMEOUT);
999 	} else {
1000 		del_timer(&tid_agg_rx->reorder_timer);
1001 	}
1002 }
1003 
1004 /*
1005  * As this function belongs to the RX path it must be under
1006  * rcu_read_lock protection. It returns false if the frame
1007  * can be processed immediately, true if it was consumed.
1008  */
1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1010 					     struct tid_ampdu_rx *tid_agg_rx,
1011 					     struct sk_buff *skb,
1012 					     struct sk_buff_head *frames)
1013 {
1014 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1016 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1017 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1018 	u16 head_seq_num, buf_size;
1019 	int index;
1020 	bool ret = true;
1021 
1022 	spin_lock(&tid_agg_rx->reorder_lock);
1023 
1024 	/*
1025 	 * Offloaded BA sessions have no known starting sequence number so pick
1026 	 * one from first Rxed frame for this tid after BA was started.
1027 	 */
1028 	if (unlikely(tid_agg_rx->auto_seq)) {
1029 		tid_agg_rx->auto_seq = false;
1030 		tid_agg_rx->ssn = mpdu_seq_num;
1031 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1032 	}
1033 
1034 	buf_size = tid_agg_rx->buf_size;
1035 	head_seq_num = tid_agg_rx->head_seq_num;
1036 
1037 	/* frame with out of date sequence number */
1038 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1039 		dev_kfree_skb(skb);
1040 		goto out;
1041 	}
1042 
1043 	/*
1044 	 * If frame the sequence number exceeds our buffering window
1045 	 * size release some previous frames to make room for this one.
1046 	 */
1047 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1048 		head_seq_num = ieee80211_sn_inc(
1049 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1050 		/* release stored frames up to new head to stack */
1051 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1052 						 head_seq_num, frames);
1053 	}
1054 
1055 	/* Now the new frame is always in the range of the reordering buffer */
1056 
1057 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1058 
1059 	/* check if we already stored this frame */
1060 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1061 		dev_kfree_skb(skb);
1062 		goto out;
1063 	}
1064 
1065 	/*
1066 	 * If the current MPDU is in the right order and nothing else
1067 	 * is stored we can process it directly, no need to buffer it.
1068 	 * If it is first but there's something stored, we may be able
1069 	 * to release frames after this one.
1070 	 */
1071 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1072 	    tid_agg_rx->stored_mpdu_num == 0) {
1073 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1074 			tid_agg_rx->head_seq_num =
1075 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1076 		ret = false;
1077 		goto out;
1078 	}
1079 
1080 	/* put the frame in the reordering buffer */
1081 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1082 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1083 		tid_agg_rx->reorder_time[index] = jiffies;
1084 		tid_agg_rx->stored_mpdu_num++;
1085 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1086 	}
1087 
1088  out:
1089 	spin_unlock(&tid_agg_rx->reorder_lock);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1095  * true if the MPDU was buffered, false if it should be processed.
1096  */
1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1098 				       struct sk_buff_head *frames)
1099 {
1100 	struct sk_buff *skb = rx->skb;
1101 	struct ieee80211_local *local = rx->local;
1102 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1103 	struct sta_info *sta = rx->sta;
1104 	struct tid_ampdu_rx *tid_agg_rx;
1105 	u16 sc;
1106 	u8 tid, ack_policy;
1107 
1108 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1109 	    is_multicast_ether_addr(hdr->addr1))
1110 		goto dont_reorder;
1111 
1112 	/*
1113 	 * filter the QoS data rx stream according to
1114 	 * STA/TID and check if this STA/TID is on aggregation
1115 	 */
1116 
1117 	if (!sta)
1118 		goto dont_reorder;
1119 
1120 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1121 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1122 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1123 
1124 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1125 	if (!tid_agg_rx) {
1126 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1127 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1128 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1129 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1130 					     WLAN_BACK_RECIPIENT,
1131 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1132 		goto dont_reorder;
1133 	}
1134 
1135 	/* qos null data frames are excluded */
1136 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1137 		goto dont_reorder;
1138 
1139 	/* not part of a BA session */
1140 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1141 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1142 		goto dont_reorder;
1143 
1144 	/* new, potentially un-ordered, ampdu frame - process it */
1145 
1146 	/* reset session timer */
1147 	if (tid_agg_rx->timeout)
1148 		tid_agg_rx->last_rx = jiffies;
1149 
1150 	/* if this mpdu is fragmented - terminate rx aggregation session */
1151 	sc = le16_to_cpu(hdr->seq_ctrl);
1152 	if (sc & IEEE80211_SCTL_FRAG) {
1153 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1154 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1155 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1156 		return;
1157 	}
1158 
1159 	/*
1160 	 * No locking needed -- we will only ever process one
1161 	 * RX packet at a time, and thus own tid_agg_rx. All
1162 	 * other code manipulating it needs to (and does) make
1163 	 * sure that we cannot get to it any more before doing
1164 	 * anything with it.
1165 	 */
1166 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1167 					     frames))
1168 		return;
1169 
1170  dont_reorder:
1171 	__skb_queue_tail(frames, skb);
1172 }
1173 
1174 static ieee80211_rx_result debug_noinline
1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1176 {
1177 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1178 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1179 
1180 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1181 		return RX_CONTINUE;
1182 
1183 	/*
1184 	 * Drop duplicate 802.11 retransmissions
1185 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1186 	 */
1187 
1188 	if (rx->skb->len < 24)
1189 		return RX_CONTINUE;
1190 
1191 	if (ieee80211_is_ctl(hdr->frame_control) ||
1192 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1193 	    is_multicast_ether_addr(hdr->addr1))
1194 		return RX_CONTINUE;
1195 
1196 	if (!rx->sta)
1197 		return RX_CONTINUE;
1198 
1199 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1200 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1201 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1202 		rx->sta->rx_stats.num_duplicates++;
1203 		return RX_DROP_UNUSABLE;
1204 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1205 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1206 	}
1207 
1208 	return RX_CONTINUE;
1209 }
1210 
1211 static ieee80211_rx_result debug_noinline
1212 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1213 {
1214 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1215 
1216 	/* Drop disallowed frame classes based on STA auth/assoc state;
1217 	 * IEEE 802.11, Chap 5.5.
1218 	 *
1219 	 * mac80211 filters only based on association state, i.e. it drops
1220 	 * Class 3 frames from not associated stations. hostapd sends
1221 	 * deauth/disassoc frames when needed. In addition, hostapd is
1222 	 * responsible for filtering on both auth and assoc states.
1223 	 */
1224 
1225 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1226 		return ieee80211_rx_mesh_check(rx);
1227 
1228 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1229 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1230 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1231 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1232 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1233 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1234 		/*
1235 		 * accept port control frames from the AP even when it's not
1236 		 * yet marked ASSOC to prevent a race where we don't set the
1237 		 * assoc bit quickly enough before it sends the first frame
1238 		 */
1239 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1240 		    ieee80211_is_data_present(hdr->frame_control)) {
1241 			unsigned int hdrlen;
1242 			__be16 ethertype;
1243 
1244 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1245 
1246 			if (rx->skb->len < hdrlen + 8)
1247 				return RX_DROP_MONITOR;
1248 
1249 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1250 			if (ethertype == rx->sdata->control_port_protocol)
1251 				return RX_CONTINUE;
1252 		}
1253 
1254 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1255 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1256 					       hdr->addr2,
1257 					       GFP_ATOMIC))
1258 			return RX_DROP_UNUSABLE;
1259 
1260 		return RX_DROP_MONITOR;
1261 	}
1262 
1263 	return RX_CONTINUE;
1264 }
1265 
1266 
1267 static ieee80211_rx_result debug_noinline
1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1269 {
1270 	struct ieee80211_local *local;
1271 	struct ieee80211_hdr *hdr;
1272 	struct sk_buff *skb;
1273 
1274 	local = rx->local;
1275 	skb = rx->skb;
1276 	hdr = (struct ieee80211_hdr *) skb->data;
1277 
1278 	if (!local->pspolling)
1279 		return RX_CONTINUE;
1280 
1281 	if (!ieee80211_has_fromds(hdr->frame_control))
1282 		/* this is not from AP */
1283 		return RX_CONTINUE;
1284 
1285 	if (!ieee80211_is_data(hdr->frame_control))
1286 		return RX_CONTINUE;
1287 
1288 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1289 		/* AP has no more frames buffered for us */
1290 		local->pspolling = false;
1291 		return RX_CONTINUE;
1292 	}
1293 
1294 	/* more data bit is set, let's request a new frame from the AP */
1295 	ieee80211_send_pspoll(local, rx->sdata);
1296 
1297 	return RX_CONTINUE;
1298 }
1299 
1300 static void sta_ps_start(struct sta_info *sta)
1301 {
1302 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1303 	struct ieee80211_local *local = sdata->local;
1304 	struct ps_data *ps;
1305 	int tid;
1306 
1307 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1308 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1309 		ps = &sdata->bss->ps;
1310 	else
1311 		return;
1312 
1313 	atomic_inc(&ps->num_sta_ps);
1314 	set_sta_flag(sta, WLAN_STA_PS_STA);
1315 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1316 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1317 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1318 	       sta->sta.addr, sta->sta.aid);
1319 
1320 	ieee80211_clear_fast_xmit(sta);
1321 
1322 	if (!sta->sta.txq[0])
1323 		return;
1324 
1325 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1326 		if (txq_has_queue(sta->sta.txq[tid]))
1327 			set_bit(tid, &sta->txq_buffered_tids);
1328 		else
1329 			clear_bit(tid, &sta->txq_buffered_tids);
1330 	}
1331 }
1332 
1333 static void sta_ps_end(struct sta_info *sta)
1334 {
1335 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1336 	       sta->sta.addr, sta->sta.aid);
1337 
1338 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1339 		/*
1340 		 * Clear the flag only if the other one is still set
1341 		 * so that the TX path won't start TX'ing new frames
1342 		 * directly ... In the case that the driver flag isn't
1343 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1344 		 */
1345 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1346 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1347 		       sta->sta.addr, sta->sta.aid);
1348 		return;
1349 	}
1350 
1351 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1352 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1353 	ieee80211_sta_ps_deliver_wakeup(sta);
1354 }
1355 
1356 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1357 {
1358 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1359 	bool in_ps;
1360 
1361 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1362 
1363 	/* Don't let the same PS state be set twice */
1364 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1365 	if ((start && in_ps) || (!start && !in_ps))
1366 		return -EINVAL;
1367 
1368 	if (start)
1369 		sta_ps_start(sta);
1370 	else
1371 		sta_ps_end(sta);
1372 
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1376 
1377 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1378 {
1379 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1380 
1381 	if (test_sta_flag(sta, WLAN_STA_SP))
1382 		return;
1383 
1384 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1385 		ieee80211_sta_ps_deliver_poll_response(sta);
1386 	else
1387 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1388 }
1389 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1390 
1391 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1392 {
1393 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1394 	int ac = ieee80211_ac_from_tid(tid);
1395 
1396 	/*
1397 	 * If this AC is not trigger-enabled do nothing unless the
1398 	 * driver is calling us after it already checked.
1399 	 *
1400 	 * NB: This could/should check a separate bitmap of trigger-
1401 	 * enabled queues, but for now we only implement uAPSD w/o
1402 	 * TSPEC changes to the ACs, so they're always the same.
1403 	 */
1404 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1405 	    tid != IEEE80211_NUM_TIDS)
1406 		return;
1407 
1408 	/* if we are in a service period, do nothing */
1409 	if (test_sta_flag(sta, WLAN_STA_SP))
1410 		return;
1411 
1412 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1413 		ieee80211_sta_ps_deliver_uapsd(sta);
1414 	else
1415 		set_sta_flag(sta, WLAN_STA_UAPSD);
1416 }
1417 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1418 
1419 static ieee80211_rx_result debug_noinline
1420 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1421 {
1422 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1423 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1424 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1425 
1426 	if (!rx->sta)
1427 		return RX_CONTINUE;
1428 
1429 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1430 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1431 		return RX_CONTINUE;
1432 
1433 	/*
1434 	 * The device handles station powersave, so don't do anything about
1435 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1436 	 * it to mac80211 since they're handled.)
1437 	 */
1438 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1439 		return RX_CONTINUE;
1440 
1441 	/*
1442 	 * Don't do anything if the station isn't already asleep. In
1443 	 * the uAPSD case, the station will probably be marked asleep,
1444 	 * in the PS-Poll case the station must be confused ...
1445 	 */
1446 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1447 		return RX_CONTINUE;
1448 
1449 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1450 		ieee80211_sta_pspoll(&rx->sta->sta);
1451 
1452 		/* Free PS Poll skb here instead of returning RX_DROP that would
1453 		 * count as an dropped frame. */
1454 		dev_kfree_skb(rx->skb);
1455 
1456 		return RX_QUEUED;
1457 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1458 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1459 		   ieee80211_has_pm(hdr->frame_control) &&
1460 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1461 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1462 		u8 tid;
1463 
1464 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1465 
1466 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1467 	}
1468 
1469 	return RX_CONTINUE;
1470 }
1471 
1472 static ieee80211_rx_result debug_noinline
1473 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1474 {
1475 	struct sta_info *sta = rx->sta;
1476 	struct sk_buff *skb = rx->skb;
1477 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1478 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1479 	int i;
1480 
1481 	if (!sta)
1482 		return RX_CONTINUE;
1483 
1484 	/*
1485 	 * Update last_rx only for IBSS packets which are for the current
1486 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1487 	 * current IBSS network alive in cases where other STAs start
1488 	 * using different BSSID. This will also give the station another
1489 	 * chance to restart the authentication/authorization in case
1490 	 * something went wrong the first time.
1491 	 */
1492 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1493 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1494 						NL80211_IFTYPE_ADHOC);
1495 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1496 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1497 			sta->rx_stats.last_rx = jiffies;
1498 			if (ieee80211_is_data(hdr->frame_control) &&
1499 			    !is_multicast_ether_addr(hdr->addr1))
1500 				sta->rx_stats.last_rate =
1501 					sta_stats_encode_rate(status);
1502 		}
1503 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1504 		sta->rx_stats.last_rx = jiffies;
1505 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1506 		/*
1507 		 * Mesh beacons will update last_rx when if they are found to
1508 		 * match the current local configuration when processed.
1509 		 */
1510 		sta->rx_stats.last_rx = jiffies;
1511 		if (ieee80211_is_data(hdr->frame_control))
1512 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1513 	}
1514 
1515 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1516 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1517 
1518 	sta->rx_stats.fragments++;
1519 
1520 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1521 	sta->rx_stats.bytes += rx->skb->len;
1522 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1523 
1524 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1525 		sta->rx_stats.last_signal = status->signal;
1526 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1527 	}
1528 
1529 	if (status->chains) {
1530 		sta->rx_stats.chains = status->chains;
1531 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1532 			int signal = status->chain_signal[i];
1533 
1534 			if (!(status->chains & BIT(i)))
1535 				continue;
1536 
1537 			sta->rx_stats.chain_signal_last[i] = signal;
1538 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1539 					-signal);
1540 		}
1541 	}
1542 
1543 	/*
1544 	 * Change STA power saving mode only at the end of a frame
1545 	 * exchange sequence.
1546 	 */
1547 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1548 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1549 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1550 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1551 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1552 	    /* PM bit is only checked in frames where it isn't reserved,
1553 	     * in AP mode it's reserved in non-bufferable management frames
1554 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1555 	     */
1556 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1557 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1558 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1559 			if (!ieee80211_has_pm(hdr->frame_control))
1560 				sta_ps_end(sta);
1561 		} else {
1562 			if (ieee80211_has_pm(hdr->frame_control))
1563 				sta_ps_start(sta);
1564 		}
1565 	}
1566 
1567 	/* mesh power save support */
1568 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1569 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1570 
1571 	/*
1572 	 * Drop (qos-)data::nullfunc frames silently, since they
1573 	 * are used only to control station power saving mode.
1574 	 */
1575 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1576 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1577 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1578 
1579 		/*
1580 		 * If we receive a 4-addr nullfunc frame from a STA
1581 		 * that was not moved to a 4-addr STA vlan yet send
1582 		 * the event to userspace and for older hostapd drop
1583 		 * the frame to the monitor interface.
1584 		 */
1585 		if (ieee80211_has_a4(hdr->frame_control) &&
1586 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1587 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1588 		      !rx->sdata->u.vlan.sta))) {
1589 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1590 				cfg80211_rx_unexpected_4addr_frame(
1591 					rx->sdata->dev, sta->sta.addr,
1592 					GFP_ATOMIC);
1593 			return RX_DROP_MONITOR;
1594 		}
1595 		/*
1596 		 * Update counter and free packet here to avoid
1597 		 * counting this as a dropped packed.
1598 		 */
1599 		sta->rx_stats.packets++;
1600 		dev_kfree_skb(rx->skb);
1601 		return RX_QUEUED;
1602 	}
1603 
1604 	return RX_CONTINUE;
1605 } /* ieee80211_rx_h_sta_process */
1606 
1607 static ieee80211_rx_result debug_noinline
1608 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1609 {
1610 	struct sk_buff *skb = rx->skb;
1611 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1612 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1613 	int keyidx;
1614 	int hdrlen;
1615 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1616 	struct ieee80211_key *sta_ptk = NULL;
1617 	int mmie_keyidx = -1;
1618 	__le16 fc;
1619 	const struct ieee80211_cipher_scheme *cs = NULL;
1620 
1621 	/*
1622 	 * Key selection 101
1623 	 *
1624 	 * There are four types of keys:
1625 	 *  - GTK (group keys)
1626 	 *  - IGTK (group keys for management frames)
1627 	 *  - PTK (pairwise keys)
1628 	 *  - STK (station-to-station pairwise keys)
1629 	 *
1630 	 * When selecting a key, we have to distinguish between multicast
1631 	 * (including broadcast) and unicast frames, the latter can only
1632 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1633 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1634 	 * unicast frames can also use key indices like GTKs. Hence, if we
1635 	 * don't have a PTK/STK we check the key index for a WEP key.
1636 	 *
1637 	 * Note that in a regular BSS, multicast frames are sent by the
1638 	 * AP only, associated stations unicast the frame to the AP first
1639 	 * which then multicasts it on their behalf.
1640 	 *
1641 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1642 	 * with each station, that is something we don't currently handle.
1643 	 * The spec seems to expect that one negotiates the same key with
1644 	 * every station but there's no such requirement; VLANs could be
1645 	 * possible.
1646 	 */
1647 
1648 	/* start without a key */
1649 	rx->key = NULL;
1650 	fc = hdr->frame_control;
1651 
1652 	if (rx->sta) {
1653 		int keyid = rx->sta->ptk_idx;
1654 
1655 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1656 			cs = rx->sta->cipher_scheme;
1657 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1658 			if (unlikely(keyid < 0))
1659 				return RX_DROP_UNUSABLE;
1660 		}
1661 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1662 	}
1663 
1664 	if (!ieee80211_has_protected(fc))
1665 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1666 
1667 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1668 		rx->key = sta_ptk;
1669 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1670 		    (status->flag & RX_FLAG_IV_STRIPPED))
1671 			return RX_CONTINUE;
1672 		/* Skip decryption if the frame is not protected. */
1673 		if (!ieee80211_has_protected(fc))
1674 			return RX_CONTINUE;
1675 	} else if (mmie_keyidx >= 0) {
1676 		/* Broadcast/multicast robust management frame / BIP */
1677 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1678 		    (status->flag & RX_FLAG_IV_STRIPPED))
1679 			return RX_CONTINUE;
1680 
1681 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1682 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1683 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1684 		if (rx->sta) {
1685 			if (ieee80211_is_group_privacy_action(skb) &&
1686 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1687 				return RX_DROP_MONITOR;
1688 
1689 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1690 		}
1691 		if (!rx->key)
1692 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1693 	} else if (!ieee80211_has_protected(fc)) {
1694 		/*
1695 		 * The frame was not protected, so skip decryption. However, we
1696 		 * need to set rx->key if there is a key that could have been
1697 		 * used so that the frame may be dropped if encryption would
1698 		 * have been expected.
1699 		 */
1700 		struct ieee80211_key *key = NULL;
1701 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1702 		int i;
1703 
1704 		if (ieee80211_is_mgmt(fc) &&
1705 		    is_multicast_ether_addr(hdr->addr1) &&
1706 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1707 			rx->key = key;
1708 		else {
1709 			if (rx->sta) {
1710 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1711 					key = rcu_dereference(rx->sta->gtk[i]);
1712 					if (key)
1713 						break;
1714 				}
1715 			}
1716 			if (!key) {
1717 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1718 					key = rcu_dereference(sdata->keys[i]);
1719 					if (key)
1720 						break;
1721 				}
1722 			}
1723 			if (key)
1724 				rx->key = key;
1725 		}
1726 		return RX_CONTINUE;
1727 	} else {
1728 		u8 keyid;
1729 
1730 		/*
1731 		 * The device doesn't give us the IV so we won't be
1732 		 * able to look up the key. That's ok though, we
1733 		 * don't need to decrypt the frame, we just won't
1734 		 * be able to keep statistics accurate.
1735 		 * Except for key threshold notifications, should
1736 		 * we somehow allow the driver to tell us which key
1737 		 * the hardware used if this flag is set?
1738 		 */
1739 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1740 		    (status->flag & RX_FLAG_IV_STRIPPED))
1741 			return RX_CONTINUE;
1742 
1743 		hdrlen = ieee80211_hdrlen(fc);
1744 
1745 		if (cs) {
1746 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1747 
1748 			if (unlikely(keyidx < 0))
1749 				return RX_DROP_UNUSABLE;
1750 		} else {
1751 			if (rx->skb->len < 8 + hdrlen)
1752 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1753 			/*
1754 			 * no need to call ieee80211_wep_get_keyidx,
1755 			 * it verifies a bunch of things we've done already
1756 			 */
1757 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1758 			keyidx = keyid >> 6;
1759 		}
1760 
1761 		/* check per-station GTK first, if multicast packet */
1762 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1763 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1764 
1765 		/* if not found, try default key */
1766 		if (!rx->key) {
1767 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1768 
1769 			/*
1770 			 * RSNA-protected unicast frames should always be
1771 			 * sent with pairwise or station-to-station keys,
1772 			 * but for WEP we allow using a key index as well.
1773 			 */
1774 			if (rx->key &&
1775 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1776 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1777 			    !is_multicast_ether_addr(hdr->addr1))
1778 				rx->key = NULL;
1779 		}
1780 	}
1781 
1782 	if (rx->key) {
1783 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1784 			return RX_DROP_MONITOR;
1785 
1786 		/* TODO: add threshold stuff again */
1787 	} else {
1788 		return RX_DROP_MONITOR;
1789 	}
1790 
1791 	switch (rx->key->conf.cipher) {
1792 	case WLAN_CIPHER_SUITE_WEP40:
1793 	case WLAN_CIPHER_SUITE_WEP104:
1794 		result = ieee80211_crypto_wep_decrypt(rx);
1795 		break;
1796 	case WLAN_CIPHER_SUITE_TKIP:
1797 		result = ieee80211_crypto_tkip_decrypt(rx);
1798 		break;
1799 	case WLAN_CIPHER_SUITE_CCMP:
1800 		result = ieee80211_crypto_ccmp_decrypt(
1801 			rx, IEEE80211_CCMP_MIC_LEN);
1802 		break;
1803 	case WLAN_CIPHER_SUITE_CCMP_256:
1804 		result = ieee80211_crypto_ccmp_decrypt(
1805 			rx, IEEE80211_CCMP_256_MIC_LEN);
1806 		break;
1807 	case WLAN_CIPHER_SUITE_AES_CMAC:
1808 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1809 		break;
1810 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1811 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1812 		break;
1813 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1814 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1815 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1816 		break;
1817 	case WLAN_CIPHER_SUITE_GCMP:
1818 	case WLAN_CIPHER_SUITE_GCMP_256:
1819 		result = ieee80211_crypto_gcmp_decrypt(rx);
1820 		break;
1821 	default:
1822 		result = ieee80211_crypto_hw_decrypt(rx);
1823 	}
1824 
1825 	/* the hdr variable is invalid after the decrypt handlers */
1826 
1827 	/* either the frame has been decrypted or will be dropped */
1828 	status->flag |= RX_FLAG_DECRYPTED;
1829 
1830 	return result;
1831 }
1832 
1833 static inline struct ieee80211_fragment_entry *
1834 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1835 			 unsigned int frag, unsigned int seq, int rx_queue,
1836 			 struct sk_buff **skb)
1837 {
1838 	struct ieee80211_fragment_entry *entry;
1839 
1840 	entry = &sdata->fragments[sdata->fragment_next++];
1841 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1842 		sdata->fragment_next = 0;
1843 
1844 	if (!skb_queue_empty(&entry->skb_list))
1845 		__skb_queue_purge(&entry->skb_list);
1846 
1847 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1848 	*skb = NULL;
1849 	entry->first_frag_time = jiffies;
1850 	entry->seq = seq;
1851 	entry->rx_queue = rx_queue;
1852 	entry->last_frag = frag;
1853 	entry->check_sequential_pn = false;
1854 	entry->extra_len = 0;
1855 
1856 	return entry;
1857 }
1858 
1859 static inline struct ieee80211_fragment_entry *
1860 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1861 			  unsigned int frag, unsigned int seq,
1862 			  int rx_queue, struct ieee80211_hdr *hdr)
1863 {
1864 	struct ieee80211_fragment_entry *entry;
1865 	int i, idx;
1866 
1867 	idx = sdata->fragment_next;
1868 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1869 		struct ieee80211_hdr *f_hdr;
1870 
1871 		idx--;
1872 		if (idx < 0)
1873 			idx = IEEE80211_FRAGMENT_MAX - 1;
1874 
1875 		entry = &sdata->fragments[idx];
1876 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1877 		    entry->rx_queue != rx_queue ||
1878 		    entry->last_frag + 1 != frag)
1879 			continue;
1880 
1881 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1882 
1883 		/*
1884 		 * Check ftype and addresses are equal, else check next fragment
1885 		 */
1886 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1887 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1888 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1889 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1890 			continue;
1891 
1892 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1893 			__skb_queue_purge(&entry->skb_list);
1894 			continue;
1895 		}
1896 		return entry;
1897 	}
1898 
1899 	return NULL;
1900 }
1901 
1902 static ieee80211_rx_result debug_noinline
1903 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1904 {
1905 	struct ieee80211_hdr *hdr;
1906 	u16 sc;
1907 	__le16 fc;
1908 	unsigned int frag, seq;
1909 	struct ieee80211_fragment_entry *entry;
1910 	struct sk_buff *skb;
1911 
1912 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1913 	fc = hdr->frame_control;
1914 
1915 	if (ieee80211_is_ctl(fc))
1916 		return RX_CONTINUE;
1917 
1918 	sc = le16_to_cpu(hdr->seq_ctrl);
1919 	frag = sc & IEEE80211_SCTL_FRAG;
1920 
1921 	if (is_multicast_ether_addr(hdr->addr1)) {
1922 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1923 		goto out_no_led;
1924 	}
1925 
1926 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1927 		goto out;
1928 
1929 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1930 
1931 	if (skb_linearize(rx->skb))
1932 		return RX_DROP_UNUSABLE;
1933 
1934 	/*
1935 	 *  skb_linearize() might change the skb->data and
1936 	 *  previously cached variables (in this case, hdr) need to
1937 	 *  be refreshed with the new data.
1938 	 */
1939 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1940 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1941 
1942 	if (frag == 0) {
1943 		/* This is the first fragment of a new frame. */
1944 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1945 						 rx->seqno_idx, &(rx->skb));
1946 		if (rx->key &&
1947 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1948 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1949 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1950 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1951 		    ieee80211_has_protected(fc)) {
1952 			int queue = rx->security_idx;
1953 
1954 			/* Store CCMP/GCMP PN so that we can verify that the
1955 			 * next fragment has a sequential PN value.
1956 			 */
1957 			entry->check_sequential_pn = true;
1958 			memcpy(entry->last_pn,
1959 			       rx->key->u.ccmp.rx_pn[queue],
1960 			       IEEE80211_CCMP_PN_LEN);
1961 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
1962 					      u.ccmp.rx_pn) !=
1963 				     offsetof(struct ieee80211_key,
1964 					      u.gcmp.rx_pn));
1965 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1966 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
1967 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1968 				     IEEE80211_GCMP_PN_LEN);
1969 		}
1970 		return RX_QUEUED;
1971 	}
1972 
1973 	/* This is a fragment for a frame that should already be pending in
1974 	 * fragment cache. Add this fragment to the end of the pending entry.
1975 	 */
1976 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1977 					  rx->seqno_idx, hdr);
1978 	if (!entry) {
1979 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1980 		return RX_DROP_MONITOR;
1981 	}
1982 
1983 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
1984 	 *  MPDU PN values are not incrementing in steps of 1."
1985 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1986 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1987 	 */
1988 	if (entry->check_sequential_pn) {
1989 		int i;
1990 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1991 		int queue;
1992 
1993 		if (!rx->key ||
1994 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1995 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1996 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1997 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1998 			return RX_DROP_UNUSABLE;
1999 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2000 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2001 			pn[i]++;
2002 			if (pn[i])
2003 				break;
2004 		}
2005 		queue = rx->security_idx;
2006 		rpn = rx->key->u.ccmp.rx_pn[queue];
2007 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2008 			return RX_DROP_UNUSABLE;
2009 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2010 	}
2011 
2012 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2013 	__skb_queue_tail(&entry->skb_list, rx->skb);
2014 	entry->last_frag = frag;
2015 	entry->extra_len += rx->skb->len;
2016 	if (ieee80211_has_morefrags(fc)) {
2017 		rx->skb = NULL;
2018 		return RX_QUEUED;
2019 	}
2020 
2021 	rx->skb = __skb_dequeue(&entry->skb_list);
2022 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2023 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2024 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2025 					      GFP_ATOMIC))) {
2026 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2027 			__skb_queue_purge(&entry->skb_list);
2028 			return RX_DROP_UNUSABLE;
2029 		}
2030 	}
2031 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2032 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2033 		dev_kfree_skb(skb);
2034 	}
2035 
2036  out:
2037 	ieee80211_led_rx(rx->local);
2038  out_no_led:
2039 	if (rx->sta)
2040 		rx->sta->rx_stats.packets++;
2041 	return RX_CONTINUE;
2042 }
2043 
2044 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2045 {
2046 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2047 		return -EACCES;
2048 
2049 	return 0;
2050 }
2051 
2052 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2053 {
2054 	struct sk_buff *skb = rx->skb;
2055 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2056 
2057 	/*
2058 	 * Pass through unencrypted frames if the hardware has
2059 	 * decrypted them already.
2060 	 */
2061 	if (status->flag & RX_FLAG_DECRYPTED)
2062 		return 0;
2063 
2064 	/* Drop unencrypted frames if key is set. */
2065 	if (unlikely(!ieee80211_has_protected(fc) &&
2066 		     !ieee80211_is_nullfunc(fc) &&
2067 		     ieee80211_is_data(fc) && rx->key))
2068 		return -EACCES;
2069 
2070 	return 0;
2071 }
2072 
2073 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2074 {
2075 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2076 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2077 	__le16 fc = hdr->frame_control;
2078 
2079 	/*
2080 	 * Pass through unencrypted frames if the hardware has
2081 	 * decrypted them already.
2082 	 */
2083 	if (status->flag & RX_FLAG_DECRYPTED)
2084 		return 0;
2085 
2086 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2087 		if (unlikely(!ieee80211_has_protected(fc) &&
2088 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2089 			     rx->key)) {
2090 			if (ieee80211_is_deauth(fc) ||
2091 			    ieee80211_is_disassoc(fc))
2092 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2093 							     rx->skb->data,
2094 							     rx->skb->len);
2095 			return -EACCES;
2096 		}
2097 		/* BIP does not use Protected field, so need to check MMIE */
2098 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2099 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2100 			if (ieee80211_is_deauth(fc) ||
2101 			    ieee80211_is_disassoc(fc))
2102 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2103 							     rx->skb->data,
2104 							     rx->skb->len);
2105 			return -EACCES;
2106 		}
2107 		/*
2108 		 * When using MFP, Action frames are not allowed prior to
2109 		 * having configured keys.
2110 		 */
2111 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2112 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2113 			return -EACCES;
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 static int
2120 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2121 {
2122 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2123 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2124 	bool check_port_control = false;
2125 	struct ethhdr *ehdr;
2126 	int ret;
2127 
2128 	*port_control = false;
2129 	if (ieee80211_has_a4(hdr->frame_control) &&
2130 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2131 		return -1;
2132 
2133 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2134 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2135 
2136 		if (!sdata->u.mgd.use_4addr)
2137 			return -1;
2138 		else
2139 			check_port_control = true;
2140 	}
2141 
2142 	if (is_multicast_ether_addr(hdr->addr1) &&
2143 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2144 		return -1;
2145 
2146 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2147 	if (ret < 0)
2148 		return ret;
2149 
2150 	ehdr = (struct ethhdr *) rx->skb->data;
2151 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2152 		*port_control = true;
2153 	else if (check_port_control)
2154 		return -1;
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * requires that rx->skb is a frame with ethernet header
2161  */
2162 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2163 {
2164 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2165 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2166 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2167 
2168 	/*
2169 	 * Allow EAPOL frames to us/the PAE group address regardless
2170 	 * of whether the frame was encrypted or not.
2171 	 */
2172 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2173 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2174 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2175 		return true;
2176 
2177 	if (ieee80211_802_1x_port_control(rx) ||
2178 	    ieee80211_drop_unencrypted(rx, fc))
2179 		return false;
2180 
2181 	return true;
2182 }
2183 
2184 /*
2185  * requires that rx->skb is a frame with ethernet header
2186  */
2187 static void
2188 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2189 {
2190 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2191 	struct net_device *dev = sdata->dev;
2192 	struct sk_buff *skb, *xmit_skb;
2193 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2194 	struct sta_info *dsta;
2195 
2196 	skb = rx->skb;
2197 	xmit_skb = NULL;
2198 
2199 	ieee80211_rx_stats(dev, skb->len);
2200 
2201 	if (rx->sta) {
2202 		/* The seqno index has the same property as needed
2203 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2204 		 * for non-QoS-data frames. Here we know it's a data
2205 		 * frame, so count MSDUs.
2206 		 */
2207 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2208 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2209 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2210 	}
2211 
2212 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2213 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2214 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2215 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2216 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2217 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2218 			/*
2219 			 * send multicast frames both to higher layers in
2220 			 * local net stack and back to the wireless medium
2221 			 */
2222 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2223 			if (!xmit_skb)
2224 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2225 						    dev->name);
2226 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2227 			dsta = sta_info_get(sdata, skb->data);
2228 			if (dsta) {
2229 				/*
2230 				 * The destination station is associated to
2231 				 * this AP (in this VLAN), so send the frame
2232 				 * directly to it and do not pass it to local
2233 				 * net stack.
2234 				 */
2235 				xmit_skb = skb;
2236 				skb = NULL;
2237 			}
2238 		}
2239 	}
2240 
2241 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2242 	if (skb) {
2243 		/* 'align' will only take the values 0 or 2 here since all
2244 		 * frames are required to be aligned to 2-byte boundaries
2245 		 * when being passed to mac80211; the code here works just
2246 		 * as well if that isn't true, but mac80211 assumes it can
2247 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2248 		 */
2249 		int align;
2250 
2251 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2252 		if (align) {
2253 			if (WARN_ON(skb_headroom(skb) < 3)) {
2254 				dev_kfree_skb(skb);
2255 				skb = NULL;
2256 			} else {
2257 				u8 *data = skb->data;
2258 				size_t len = skb_headlen(skb);
2259 				skb->data -= align;
2260 				memmove(skb->data, data, len);
2261 				skb_set_tail_pointer(skb, len);
2262 			}
2263 		}
2264 	}
2265 #endif
2266 
2267 	if (skb) {
2268 		/* deliver to local stack */
2269 		skb->protocol = eth_type_trans(skb, dev);
2270 		memset(skb->cb, 0, sizeof(skb->cb));
2271 		if (rx->napi)
2272 			napi_gro_receive(rx->napi, skb);
2273 		else
2274 			netif_receive_skb(skb);
2275 	}
2276 
2277 	if (xmit_skb) {
2278 		/*
2279 		 * Send to wireless media and increase priority by 256 to
2280 		 * keep the received priority instead of reclassifying
2281 		 * the frame (see cfg80211_classify8021d).
2282 		 */
2283 		xmit_skb->priority += 256;
2284 		xmit_skb->protocol = htons(ETH_P_802_3);
2285 		skb_reset_network_header(xmit_skb);
2286 		skb_reset_mac_header(xmit_skb);
2287 		dev_queue_xmit(xmit_skb);
2288 	}
2289 }
2290 
2291 static ieee80211_rx_result debug_noinline
2292 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2293 {
2294 	struct net_device *dev = rx->sdata->dev;
2295 	struct sk_buff *skb = rx->skb;
2296 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2297 	__le16 fc = hdr->frame_control;
2298 	struct sk_buff_head frame_list;
2299 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2300 	struct ethhdr ethhdr;
2301 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2302 
2303 	if (unlikely(!ieee80211_is_data(fc)))
2304 		return RX_CONTINUE;
2305 
2306 	if (unlikely(!ieee80211_is_data_present(fc)))
2307 		return RX_DROP_MONITOR;
2308 
2309 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2310 		return RX_CONTINUE;
2311 
2312 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2313 		switch (rx->sdata->vif.type) {
2314 		case NL80211_IFTYPE_AP_VLAN:
2315 			if (!rx->sdata->u.vlan.sta)
2316 				return RX_DROP_UNUSABLE;
2317 			break;
2318 		case NL80211_IFTYPE_STATION:
2319 			if (!rx->sdata->u.mgd.use_4addr)
2320 				return RX_DROP_UNUSABLE;
2321 			break;
2322 		default:
2323 			return RX_DROP_UNUSABLE;
2324 		}
2325 		check_da = NULL;
2326 		check_sa = NULL;
2327 	} else switch (rx->sdata->vif.type) {
2328 		case NL80211_IFTYPE_AP:
2329 		case NL80211_IFTYPE_AP_VLAN:
2330 			check_da = NULL;
2331 			break;
2332 		case NL80211_IFTYPE_STATION:
2333 			if (!rx->sta ||
2334 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2335 				check_sa = NULL;
2336 			break;
2337 		case NL80211_IFTYPE_MESH_POINT:
2338 			check_sa = NULL;
2339 			break;
2340 		default:
2341 			break;
2342 	}
2343 
2344 	if (is_multicast_ether_addr(hdr->addr1))
2345 		return RX_DROP_UNUSABLE;
2346 
2347 	skb->dev = dev;
2348 	__skb_queue_head_init(&frame_list);
2349 
2350 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2351 					  rx->sdata->vif.addr,
2352 					  rx->sdata->vif.type))
2353 		return RX_DROP_UNUSABLE;
2354 
2355 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2356 				 rx->sdata->vif.type,
2357 				 rx->local->hw.extra_tx_headroom,
2358 				 check_da, check_sa);
2359 
2360 	while (!skb_queue_empty(&frame_list)) {
2361 		rx->skb = __skb_dequeue(&frame_list);
2362 
2363 		if (!ieee80211_frame_allowed(rx, fc)) {
2364 			dev_kfree_skb(rx->skb);
2365 			continue;
2366 		}
2367 
2368 		ieee80211_deliver_skb(rx);
2369 	}
2370 
2371 	return RX_QUEUED;
2372 }
2373 
2374 #ifdef CONFIG_MAC80211_MESH
2375 static ieee80211_rx_result
2376 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2377 {
2378 	struct ieee80211_hdr *fwd_hdr, *hdr;
2379 	struct ieee80211_tx_info *info;
2380 	struct ieee80211s_hdr *mesh_hdr;
2381 	struct sk_buff *skb = rx->skb, *fwd_skb;
2382 	struct ieee80211_local *local = rx->local;
2383 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2384 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2385 	u16 ac, q, hdrlen;
2386 
2387 	hdr = (struct ieee80211_hdr *) skb->data;
2388 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2389 
2390 	/* make sure fixed part of mesh header is there, also checks skb len */
2391 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2392 		return RX_DROP_MONITOR;
2393 
2394 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2395 
2396 	/* make sure full mesh header is there, also checks skb len */
2397 	if (!pskb_may_pull(rx->skb,
2398 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2399 		return RX_DROP_MONITOR;
2400 
2401 	/* reload pointers */
2402 	hdr = (struct ieee80211_hdr *) skb->data;
2403 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2404 
2405 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2406 		return RX_DROP_MONITOR;
2407 
2408 	/* frame is in RMC, don't forward */
2409 	if (ieee80211_is_data(hdr->frame_control) &&
2410 	    is_multicast_ether_addr(hdr->addr1) &&
2411 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2412 		return RX_DROP_MONITOR;
2413 
2414 	if (!ieee80211_is_data(hdr->frame_control))
2415 		return RX_CONTINUE;
2416 
2417 	if (!mesh_hdr->ttl)
2418 		return RX_DROP_MONITOR;
2419 
2420 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2421 		struct mesh_path *mppath;
2422 		char *proxied_addr;
2423 		char *mpp_addr;
2424 
2425 		if (is_multicast_ether_addr(hdr->addr1)) {
2426 			mpp_addr = hdr->addr3;
2427 			proxied_addr = mesh_hdr->eaddr1;
2428 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2429 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2430 			mpp_addr = hdr->addr4;
2431 			proxied_addr = mesh_hdr->eaddr2;
2432 		} else {
2433 			return RX_DROP_MONITOR;
2434 		}
2435 
2436 		rcu_read_lock();
2437 		mppath = mpp_path_lookup(sdata, proxied_addr);
2438 		if (!mppath) {
2439 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2440 		} else {
2441 			spin_lock_bh(&mppath->state_lock);
2442 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2443 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2444 			mppath->exp_time = jiffies;
2445 			spin_unlock_bh(&mppath->state_lock);
2446 		}
2447 		rcu_read_unlock();
2448 	}
2449 
2450 	/* Frame has reached destination.  Don't forward */
2451 	if (!is_multicast_ether_addr(hdr->addr1) &&
2452 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2453 		return RX_CONTINUE;
2454 
2455 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2456 	q = sdata->vif.hw_queue[ac];
2457 	if (ieee80211_queue_stopped(&local->hw, q)) {
2458 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2459 		return RX_DROP_MONITOR;
2460 	}
2461 	skb_set_queue_mapping(skb, q);
2462 
2463 	if (!--mesh_hdr->ttl) {
2464 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2465 		goto out;
2466 	}
2467 
2468 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2469 		goto out;
2470 
2471 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2472 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2473 	if (!fwd_skb) {
2474 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2475 				    sdata->name);
2476 		goto out;
2477 	}
2478 
2479 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2480 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2481 	info = IEEE80211_SKB_CB(fwd_skb);
2482 	memset(info, 0, sizeof(*info));
2483 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2484 	info->control.vif = &rx->sdata->vif;
2485 	info->control.jiffies = jiffies;
2486 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2487 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2488 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2489 		/* update power mode indication when forwarding */
2490 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2491 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2492 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2493 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2494 	} else {
2495 		/* unable to resolve next hop */
2496 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2497 				   fwd_hdr->addr3, 0,
2498 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2499 				   fwd_hdr->addr2);
2500 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2501 		kfree_skb(fwd_skb);
2502 		return RX_DROP_MONITOR;
2503 	}
2504 
2505 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2506 	ieee80211_add_pending_skb(local, fwd_skb);
2507  out:
2508 	if (is_multicast_ether_addr(hdr->addr1))
2509 		return RX_CONTINUE;
2510 	return RX_DROP_MONITOR;
2511 }
2512 #endif
2513 
2514 static ieee80211_rx_result debug_noinline
2515 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2516 {
2517 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2518 	struct ieee80211_local *local = rx->local;
2519 	struct net_device *dev = sdata->dev;
2520 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2521 	__le16 fc = hdr->frame_control;
2522 	bool port_control;
2523 	int err;
2524 
2525 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2526 		return RX_CONTINUE;
2527 
2528 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2529 		return RX_DROP_MONITOR;
2530 
2531 	/*
2532 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2533 	 * also drop the frame to cooked monitor interfaces.
2534 	 */
2535 	if (ieee80211_has_a4(hdr->frame_control) &&
2536 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2537 		if (rx->sta &&
2538 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2539 			cfg80211_rx_unexpected_4addr_frame(
2540 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2541 		return RX_DROP_MONITOR;
2542 	}
2543 
2544 	err = __ieee80211_data_to_8023(rx, &port_control);
2545 	if (unlikely(err))
2546 		return RX_DROP_UNUSABLE;
2547 
2548 	if (!ieee80211_frame_allowed(rx, fc))
2549 		return RX_DROP_MONITOR;
2550 
2551 	/* directly handle TDLS channel switch requests/responses */
2552 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2553 						cpu_to_be16(ETH_P_TDLS))) {
2554 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2555 
2556 		if (pskb_may_pull(rx->skb,
2557 				  offsetof(struct ieee80211_tdls_data, u)) &&
2558 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2559 		    tf->category == WLAN_CATEGORY_TDLS &&
2560 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2561 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2562 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2563 			schedule_work(&local->tdls_chsw_work);
2564 			if (rx->sta)
2565 				rx->sta->rx_stats.packets++;
2566 
2567 			return RX_QUEUED;
2568 		}
2569 	}
2570 
2571 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2572 	    unlikely(port_control) && sdata->bss) {
2573 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2574 				     u.ap);
2575 		dev = sdata->dev;
2576 		rx->sdata = sdata;
2577 	}
2578 
2579 	rx->skb->dev = dev;
2580 
2581 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2582 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2583 	    !is_multicast_ether_addr(
2584 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2585 	    (!local->scanning &&
2586 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2587 		mod_timer(&local->dynamic_ps_timer, jiffies +
2588 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2589 
2590 	ieee80211_deliver_skb(rx);
2591 
2592 	return RX_QUEUED;
2593 }
2594 
2595 static ieee80211_rx_result debug_noinline
2596 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2597 {
2598 	struct sk_buff *skb = rx->skb;
2599 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2600 	struct tid_ampdu_rx *tid_agg_rx;
2601 	u16 start_seq_num;
2602 	u16 tid;
2603 
2604 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2605 		return RX_CONTINUE;
2606 
2607 	if (ieee80211_is_back_req(bar->frame_control)) {
2608 		struct {
2609 			__le16 control, start_seq_num;
2610 		} __packed bar_data;
2611 		struct ieee80211_event event = {
2612 			.type = BAR_RX_EVENT,
2613 		};
2614 
2615 		if (!rx->sta)
2616 			return RX_DROP_MONITOR;
2617 
2618 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2619 				  &bar_data, sizeof(bar_data)))
2620 			return RX_DROP_MONITOR;
2621 
2622 		tid = le16_to_cpu(bar_data.control) >> 12;
2623 
2624 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2625 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2626 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2627 					     WLAN_BACK_RECIPIENT,
2628 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2629 
2630 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2631 		if (!tid_agg_rx)
2632 			return RX_DROP_MONITOR;
2633 
2634 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2635 		event.u.ba.tid = tid;
2636 		event.u.ba.ssn = start_seq_num;
2637 		event.u.ba.sta = &rx->sta->sta;
2638 
2639 		/* reset session timer */
2640 		if (tid_agg_rx->timeout)
2641 			mod_timer(&tid_agg_rx->session_timer,
2642 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2643 
2644 		spin_lock(&tid_agg_rx->reorder_lock);
2645 		/* release stored frames up to start of BAR */
2646 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2647 						 start_seq_num, frames);
2648 		spin_unlock(&tid_agg_rx->reorder_lock);
2649 
2650 		drv_event_callback(rx->local, rx->sdata, &event);
2651 
2652 		kfree_skb(skb);
2653 		return RX_QUEUED;
2654 	}
2655 
2656 	/*
2657 	 * After this point, we only want management frames,
2658 	 * so we can drop all remaining control frames to
2659 	 * cooked monitor interfaces.
2660 	 */
2661 	return RX_DROP_MONITOR;
2662 }
2663 
2664 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2665 					   struct ieee80211_mgmt *mgmt,
2666 					   size_t len)
2667 {
2668 	struct ieee80211_local *local = sdata->local;
2669 	struct sk_buff *skb;
2670 	struct ieee80211_mgmt *resp;
2671 
2672 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2673 		/* Not to own unicast address */
2674 		return;
2675 	}
2676 
2677 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2678 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2679 		/* Not from the current AP or not associated yet. */
2680 		return;
2681 	}
2682 
2683 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2684 		/* Too short SA Query request frame */
2685 		return;
2686 	}
2687 
2688 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2689 	if (skb == NULL)
2690 		return;
2691 
2692 	skb_reserve(skb, local->hw.extra_tx_headroom);
2693 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2694 	memset(resp, 0, 24);
2695 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2696 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2697 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2698 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2699 					  IEEE80211_STYPE_ACTION);
2700 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2701 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2702 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2703 	memcpy(resp->u.action.u.sa_query.trans_id,
2704 	       mgmt->u.action.u.sa_query.trans_id,
2705 	       WLAN_SA_QUERY_TR_ID_LEN);
2706 
2707 	ieee80211_tx_skb(sdata, skb);
2708 }
2709 
2710 static ieee80211_rx_result debug_noinline
2711 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2712 {
2713 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2714 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2715 
2716 	/*
2717 	 * From here on, look only at management frames.
2718 	 * Data and control frames are already handled,
2719 	 * and unknown (reserved) frames are useless.
2720 	 */
2721 	if (rx->skb->len < 24)
2722 		return RX_DROP_MONITOR;
2723 
2724 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2725 		return RX_DROP_MONITOR;
2726 
2727 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2728 	    ieee80211_is_beacon(mgmt->frame_control) &&
2729 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2730 		int sig = 0;
2731 
2732 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2733 			sig = status->signal;
2734 
2735 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2736 					    rx->skb->data, rx->skb->len,
2737 					    status->freq, sig);
2738 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2739 	}
2740 
2741 	if (ieee80211_drop_unencrypted_mgmt(rx))
2742 		return RX_DROP_UNUSABLE;
2743 
2744 	return RX_CONTINUE;
2745 }
2746 
2747 static ieee80211_rx_result debug_noinline
2748 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2749 {
2750 	struct ieee80211_local *local = rx->local;
2751 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2752 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2753 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2754 	int len = rx->skb->len;
2755 
2756 	if (!ieee80211_is_action(mgmt->frame_control))
2757 		return RX_CONTINUE;
2758 
2759 	/* drop too small frames */
2760 	if (len < IEEE80211_MIN_ACTION_SIZE)
2761 		return RX_DROP_UNUSABLE;
2762 
2763 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2764 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2765 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2766 		return RX_DROP_UNUSABLE;
2767 
2768 	switch (mgmt->u.action.category) {
2769 	case WLAN_CATEGORY_HT:
2770 		/* reject HT action frames from stations not supporting HT */
2771 		if (!rx->sta->sta.ht_cap.ht_supported)
2772 			goto invalid;
2773 
2774 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2775 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2776 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2777 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2778 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2779 			break;
2780 
2781 		/* verify action & smps_control/chanwidth are present */
2782 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2783 			goto invalid;
2784 
2785 		switch (mgmt->u.action.u.ht_smps.action) {
2786 		case WLAN_HT_ACTION_SMPS: {
2787 			struct ieee80211_supported_band *sband;
2788 			enum ieee80211_smps_mode smps_mode;
2789 
2790 			/* convert to HT capability */
2791 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2792 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2793 				smps_mode = IEEE80211_SMPS_OFF;
2794 				break;
2795 			case WLAN_HT_SMPS_CONTROL_STATIC:
2796 				smps_mode = IEEE80211_SMPS_STATIC;
2797 				break;
2798 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2799 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2800 				break;
2801 			default:
2802 				goto invalid;
2803 			}
2804 
2805 			/* if no change do nothing */
2806 			if (rx->sta->sta.smps_mode == smps_mode)
2807 				goto handled;
2808 			rx->sta->sta.smps_mode = smps_mode;
2809 
2810 			sband = rx->local->hw.wiphy->bands[status->band];
2811 
2812 			rate_control_rate_update(local, sband, rx->sta,
2813 						 IEEE80211_RC_SMPS_CHANGED);
2814 			goto handled;
2815 		}
2816 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2817 			struct ieee80211_supported_band *sband;
2818 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2819 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2820 
2821 			/* If it doesn't support 40 MHz it can't change ... */
2822 			if (!(rx->sta->sta.ht_cap.cap &
2823 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2824 				goto handled;
2825 
2826 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2827 				max_bw = IEEE80211_STA_RX_BW_20;
2828 			else
2829 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2830 
2831 			/* set cur_max_bandwidth and recalc sta bw */
2832 			rx->sta->cur_max_bandwidth = max_bw;
2833 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2834 
2835 			if (rx->sta->sta.bandwidth == new_bw)
2836 				goto handled;
2837 
2838 			rx->sta->sta.bandwidth = new_bw;
2839 			sband = rx->local->hw.wiphy->bands[status->band];
2840 
2841 			rate_control_rate_update(local, sband, rx->sta,
2842 						 IEEE80211_RC_BW_CHANGED);
2843 			goto handled;
2844 		}
2845 		default:
2846 			goto invalid;
2847 		}
2848 
2849 		break;
2850 	case WLAN_CATEGORY_PUBLIC:
2851 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2852 			goto invalid;
2853 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2854 			break;
2855 		if (!rx->sta)
2856 			break;
2857 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2858 			break;
2859 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2860 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2861 			break;
2862 		if (len < offsetof(struct ieee80211_mgmt,
2863 				   u.action.u.ext_chan_switch.variable))
2864 			goto invalid;
2865 		goto queue;
2866 	case WLAN_CATEGORY_VHT:
2867 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2868 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2869 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2870 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2871 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2872 			break;
2873 
2874 		/* verify action code is present */
2875 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2876 			goto invalid;
2877 
2878 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2879 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2880 			/* verify opmode is present */
2881 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2882 				goto invalid;
2883 			goto queue;
2884 		}
2885 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2886 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2887 				goto invalid;
2888 			goto queue;
2889 		}
2890 		default:
2891 			break;
2892 		}
2893 		break;
2894 	case WLAN_CATEGORY_BACK:
2895 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2896 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2897 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2898 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2899 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2900 			break;
2901 
2902 		/* verify action_code is present */
2903 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2904 			break;
2905 
2906 		switch (mgmt->u.action.u.addba_req.action_code) {
2907 		case WLAN_ACTION_ADDBA_REQ:
2908 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2909 				   sizeof(mgmt->u.action.u.addba_req)))
2910 				goto invalid;
2911 			break;
2912 		case WLAN_ACTION_ADDBA_RESP:
2913 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2914 				   sizeof(mgmt->u.action.u.addba_resp)))
2915 				goto invalid;
2916 			break;
2917 		case WLAN_ACTION_DELBA:
2918 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2919 				   sizeof(mgmt->u.action.u.delba)))
2920 				goto invalid;
2921 			break;
2922 		default:
2923 			goto invalid;
2924 		}
2925 
2926 		goto queue;
2927 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2928 		/* verify action_code is present */
2929 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2930 			break;
2931 
2932 		switch (mgmt->u.action.u.measurement.action_code) {
2933 		case WLAN_ACTION_SPCT_MSR_REQ:
2934 			if (status->band != NL80211_BAND_5GHZ)
2935 				break;
2936 
2937 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2938 				   sizeof(mgmt->u.action.u.measurement)))
2939 				break;
2940 
2941 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2942 				break;
2943 
2944 			ieee80211_process_measurement_req(sdata, mgmt, len);
2945 			goto handled;
2946 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2947 			u8 *bssid;
2948 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2949 				   sizeof(mgmt->u.action.u.chan_switch)))
2950 				break;
2951 
2952 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2953 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2954 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2955 				break;
2956 
2957 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2958 				bssid = sdata->u.mgd.bssid;
2959 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2960 				bssid = sdata->u.ibss.bssid;
2961 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2962 				bssid = mgmt->sa;
2963 			else
2964 				break;
2965 
2966 			if (!ether_addr_equal(mgmt->bssid, bssid))
2967 				break;
2968 
2969 			goto queue;
2970 			}
2971 		}
2972 		break;
2973 	case WLAN_CATEGORY_SA_QUERY:
2974 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2975 			   sizeof(mgmt->u.action.u.sa_query)))
2976 			break;
2977 
2978 		switch (mgmt->u.action.u.sa_query.action) {
2979 		case WLAN_ACTION_SA_QUERY_REQUEST:
2980 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2981 				break;
2982 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2983 			goto handled;
2984 		}
2985 		break;
2986 	case WLAN_CATEGORY_SELF_PROTECTED:
2987 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2988 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2989 			break;
2990 
2991 		switch (mgmt->u.action.u.self_prot.action_code) {
2992 		case WLAN_SP_MESH_PEERING_OPEN:
2993 		case WLAN_SP_MESH_PEERING_CLOSE:
2994 		case WLAN_SP_MESH_PEERING_CONFIRM:
2995 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2996 				goto invalid;
2997 			if (sdata->u.mesh.user_mpm)
2998 				/* userspace handles this frame */
2999 				break;
3000 			goto queue;
3001 		case WLAN_SP_MGK_INFORM:
3002 		case WLAN_SP_MGK_ACK:
3003 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3004 				goto invalid;
3005 			break;
3006 		}
3007 		break;
3008 	case WLAN_CATEGORY_MESH_ACTION:
3009 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3010 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3011 			break;
3012 
3013 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3014 			break;
3015 		if (mesh_action_is_path_sel(mgmt) &&
3016 		    !mesh_path_sel_is_hwmp(sdata))
3017 			break;
3018 		goto queue;
3019 	}
3020 
3021 	return RX_CONTINUE;
3022 
3023  invalid:
3024 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3025 	/* will return in the next handlers */
3026 	return RX_CONTINUE;
3027 
3028  handled:
3029 	if (rx->sta)
3030 		rx->sta->rx_stats.packets++;
3031 	dev_kfree_skb(rx->skb);
3032 	return RX_QUEUED;
3033 
3034  queue:
3035 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3036 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3037 	ieee80211_queue_work(&local->hw, &sdata->work);
3038 	if (rx->sta)
3039 		rx->sta->rx_stats.packets++;
3040 	return RX_QUEUED;
3041 }
3042 
3043 static ieee80211_rx_result debug_noinline
3044 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3045 {
3046 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3047 	int sig = 0;
3048 
3049 	/* skip known-bad action frames and return them in the next handler */
3050 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3051 		return RX_CONTINUE;
3052 
3053 	/*
3054 	 * Getting here means the kernel doesn't know how to handle
3055 	 * it, but maybe userspace does ... include returned frames
3056 	 * so userspace can register for those to know whether ones
3057 	 * it transmitted were processed or returned.
3058 	 */
3059 
3060 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3061 		sig = status->signal;
3062 
3063 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3064 			     rx->skb->data, rx->skb->len, 0)) {
3065 		if (rx->sta)
3066 			rx->sta->rx_stats.packets++;
3067 		dev_kfree_skb(rx->skb);
3068 		return RX_QUEUED;
3069 	}
3070 
3071 	return RX_CONTINUE;
3072 }
3073 
3074 static ieee80211_rx_result debug_noinline
3075 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3076 {
3077 	struct ieee80211_local *local = rx->local;
3078 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3079 	struct sk_buff *nskb;
3080 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3081 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3082 
3083 	if (!ieee80211_is_action(mgmt->frame_control))
3084 		return RX_CONTINUE;
3085 
3086 	/*
3087 	 * For AP mode, hostapd is responsible for handling any action
3088 	 * frames that we didn't handle, including returning unknown
3089 	 * ones. For all other modes we will return them to the sender,
3090 	 * setting the 0x80 bit in the action category, as required by
3091 	 * 802.11-2012 9.24.4.
3092 	 * Newer versions of hostapd shall also use the management frame
3093 	 * registration mechanisms, but older ones still use cooked
3094 	 * monitor interfaces so push all frames there.
3095 	 */
3096 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3097 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3098 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3099 		return RX_DROP_MONITOR;
3100 
3101 	if (is_multicast_ether_addr(mgmt->da))
3102 		return RX_DROP_MONITOR;
3103 
3104 	/* do not return rejected action frames */
3105 	if (mgmt->u.action.category & 0x80)
3106 		return RX_DROP_UNUSABLE;
3107 
3108 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3109 			       GFP_ATOMIC);
3110 	if (nskb) {
3111 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3112 
3113 		nmgmt->u.action.category |= 0x80;
3114 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3115 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3116 
3117 		memset(nskb->cb, 0, sizeof(nskb->cb));
3118 
3119 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3120 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3121 
3122 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3123 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3124 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3125 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3126 				info->hw_queue =
3127 					local->hw.offchannel_tx_hw_queue;
3128 		}
3129 
3130 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3131 					    status->band);
3132 	}
3133 	dev_kfree_skb(rx->skb);
3134 	return RX_QUEUED;
3135 }
3136 
3137 static ieee80211_rx_result debug_noinline
3138 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3139 {
3140 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3141 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3142 	__le16 stype;
3143 
3144 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3145 
3146 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3147 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3148 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3149 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3150 		return RX_DROP_MONITOR;
3151 
3152 	switch (stype) {
3153 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3154 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3155 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3156 		/* process for all: mesh, mlme, ibss */
3157 		break;
3158 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3159 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3160 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3161 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3162 		if (is_multicast_ether_addr(mgmt->da) &&
3163 		    !is_broadcast_ether_addr(mgmt->da))
3164 			return RX_DROP_MONITOR;
3165 
3166 		/* process only for station */
3167 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3168 			return RX_DROP_MONITOR;
3169 		break;
3170 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3171 		/* process only for ibss and mesh */
3172 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3173 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3174 			return RX_DROP_MONITOR;
3175 		break;
3176 	default:
3177 		return RX_DROP_MONITOR;
3178 	}
3179 
3180 	/* queue up frame and kick off work to process it */
3181 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3182 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3183 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3184 	if (rx->sta)
3185 		rx->sta->rx_stats.packets++;
3186 
3187 	return RX_QUEUED;
3188 }
3189 
3190 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3191 					struct ieee80211_rate *rate)
3192 {
3193 	struct ieee80211_sub_if_data *sdata;
3194 	struct ieee80211_local *local = rx->local;
3195 	struct sk_buff *skb = rx->skb, *skb2;
3196 	struct net_device *prev_dev = NULL;
3197 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3198 	int needed_headroom;
3199 
3200 	/*
3201 	 * If cooked monitor has been processed already, then
3202 	 * don't do it again. If not, set the flag.
3203 	 */
3204 	if (rx->flags & IEEE80211_RX_CMNTR)
3205 		goto out_free_skb;
3206 	rx->flags |= IEEE80211_RX_CMNTR;
3207 
3208 	/* If there are no cooked monitor interfaces, just free the SKB */
3209 	if (!local->cooked_mntrs)
3210 		goto out_free_skb;
3211 
3212 	/* vendor data is long removed here */
3213 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3214 	/* room for the radiotap header based on driver features */
3215 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3216 
3217 	if (skb_headroom(skb) < needed_headroom &&
3218 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3219 		goto out_free_skb;
3220 
3221 	/* prepend radiotap information */
3222 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3223 					 false);
3224 
3225 	skb_reset_mac_header(skb);
3226 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3227 	skb->pkt_type = PACKET_OTHERHOST;
3228 	skb->protocol = htons(ETH_P_802_2);
3229 
3230 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3231 		if (!ieee80211_sdata_running(sdata))
3232 			continue;
3233 
3234 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3235 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3236 			continue;
3237 
3238 		if (prev_dev) {
3239 			skb2 = skb_clone(skb, GFP_ATOMIC);
3240 			if (skb2) {
3241 				skb2->dev = prev_dev;
3242 				netif_receive_skb(skb2);
3243 			}
3244 		}
3245 
3246 		prev_dev = sdata->dev;
3247 		ieee80211_rx_stats(sdata->dev, skb->len);
3248 	}
3249 
3250 	if (prev_dev) {
3251 		skb->dev = prev_dev;
3252 		netif_receive_skb(skb);
3253 		return;
3254 	}
3255 
3256  out_free_skb:
3257 	dev_kfree_skb(skb);
3258 }
3259 
3260 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3261 					 ieee80211_rx_result res)
3262 {
3263 	switch (res) {
3264 	case RX_DROP_MONITOR:
3265 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3266 		if (rx->sta)
3267 			rx->sta->rx_stats.dropped++;
3268 		/* fall through */
3269 	case RX_CONTINUE: {
3270 		struct ieee80211_rate *rate = NULL;
3271 		struct ieee80211_supported_band *sband;
3272 		struct ieee80211_rx_status *status;
3273 
3274 		status = IEEE80211_SKB_RXCB((rx->skb));
3275 
3276 		sband = rx->local->hw.wiphy->bands[status->band];
3277 		if (!(status->flag & RX_FLAG_HT) &&
3278 		    !(status->flag & RX_FLAG_VHT))
3279 			rate = &sband->bitrates[status->rate_idx];
3280 
3281 		ieee80211_rx_cooked_monitor(rx, rate);
3282 		break;
3283 		}
3284 	case RX_DROP_UNUSABLE:
3285 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3286 		if (rx->sta)
3287 			rx->sta->rx_stats.dropped++;
3288 		dev_kfree_skb(rx->skb);
3289 		break;
3290 	case RX_QUEUED:
3291 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3292 		break;
3293 	}
3294 }
3295 
3296 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3297 				  struct sk_buff_head *frames)
3298 {
3299 	ieee80211_rx_result res = RX_DROP_MONITOR;
3300 	struct sk_buff *skb;
3301 
3302 #define CALL_RXH(rxh)			\
3303 	do {				\
3304 		res = rxh(rx);		\
3305 		if (res != RX_CONTINUE)	\
3306 			goto rxh_next;  \
3307 	} while (0)
3308 
3309 	/* Lock here to avoid hitting all of the data used in the RX
3310 	 * path (e.g. key data, station data, ...) concurrently when
3311 	 * a frame is released from the reorder buffer due to timeout
3312 	 * from the timer, potentially concurrently with RX from the
3313 	 * driver.
3314 	 */
3315 	spin_lock_bh(&rx->local->rx_path_lock);
3316 
3317 	while ((skb = __skb_dequeue(frames))) {
3318 		/*
3319 		 * all the other fields are valid across frames
3320 		 * that belong to an aMPDU since they are on the
3321 		 * same TID from the same station
3322 		 */
3323 		rx->skb = skb;
3324 
3325 		CALL_RXH(ieee80211_rx_h_check_more_data);
3326 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3327 		CALL_RXH(ieee80211_rx_h_sta_process);
3328 		CALL_RXH(ieee80211_rx_h_decrypt);
3329 		CALL_RXH(ieee80211_rx_h_defragment);
3330 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3331 		/* must be after MMIC verify so header is counted in MPDU mic */
3332 #ifdef CONFIG_MAC80211_MESH
3333 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3334 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3335 #endif
3336 		CALL_RXH(ieee80211_rx_h_amsdu);
3337 		CALL_RXH(ieee80211_rx_h_data);
3338 
3339 		/* special treatment -- needs the queue */
3340 		res = ieee80211_rx_h_ctrl(rx, frames);
3341 		if (res != RX_CONTINUE)
3342 			goto rxh_next;
3343 
3344 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3345 		CALL_RXH(ieee80211_rx_h_action);
3346 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3347 		CALL_RXH(ieee80211_rx_h_action_return);
3348 		CALL_RXH(ieee80211_rx_h_mgmt);
3349 
3350  rxh_next:
3351 		ieee80211_rx_handlers_result(rx, res);
3352 
3353 #undef CALL_RXH
3354 	}
3355 
3356 	spin_unlock_bh(&rx->local->rx_path_lock);
3357 }
3358 
3359 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3360 {
3361 	struct sk_buff_head reorder_release;
3362 	ieee80211_rx_result res = RX_DROP_MONITOR;
3363 
3364 	__skb_queue_head_init(&reorder_release);
3365 
3366 #define CALL_RXH(rxh)			\
3367 	do {				\
3368 		res = rxh(rx);		\
3369 		if (res != RX_CONTINUE)	\
3370 			goto rxh_next;  \
3371 	} while (0)
3372 
3373 	CALL_RXH(ieee80211_rx_h_check_dup);
3374 	CALL_RXH(ieee80211_rx_h_check);
3375 
3376 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3377 
3378 	ieee80211_rx_handlers(rx, &reorder_release);
3379 	return;
3380 
3381  rxh_next:
3382 	ieee80211_rx_handlers_result(rx, res);
3383 
3384 #undef CALL_RXH
3385 }
3386 
3387 /*
3388  * This function makes calls into the RX path, therefore
3389  * it has to be invoked under RCU read lock.
3390  */
3391 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3392 {
3393 	struct sk_buff_head frames;
3394 	struct ieee80211_rx_data rx = {
3395 		.sta = sta,
3396 		.sdata = sta->sdata,
3397 		.local = sta->local,
3398 		/* This is OK -- must be QoS data frame */
3399 		.security_idx = tid,
3400 		.seqno_idx = tid,
3401 		.napi = NULL, /* must be NULL to not have races */
3402 	};
3403 	struct tid_ampdu_rx *tid_agg_rx;
3404 
3405 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3406 	if (!tid_agg_rx)
3407 		return;
3408 
3409 	__skb_queue_head_init(&frames);
3410 
3411 	spin_lock(&tid_agg_rx->reorder_lock);
3412 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3413 	spin_unlock(&tid_agg_rx->reorder_lock);
3414 
3415 	if (!skb_queue_empty(&frames)) {
3416 		struct ieee80211_event event = {
3417 			.type = BA_FRAME_TIMEOUT,
3418 			.u.ba.tid = tid,
3419 			.u.ba.sta = &sta->sta,
3420 		};
3421 		drv_event_callback(rx.local, rx.sdata, &event);
3422 	}
3423 
3424 	ieee80211_rx_handlers(&rx, &frames);
3425 }
3426 
3427 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3428 					  u16 ssn, u64 filtered,
3429 					  u16 received_mpdus)
3430 {
3431 	struct sta_info *sta;
3432 	struct tid_ampdu_rx *tid_agg_rx;
3433 	struct sk_buff_head frames;
3434 	struct ieee80211_rx_data rx = {
3435 		/* This is OK -- must be QoS data frame */
3436 		.security_idx = tid,
3437 		.seqno_idx = tid,
3438 	};
3439 	int i, diff;
3440 
3441 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3442 		return;
3443 
3444 	__skb_queue_head_init(&frames);
3445 
3446 	sta = container_of(pubsta, struct sta_info, sta);
3447 
3448 	rx.sta = sta;
3449 	rx.sdata = sta->sdata;
3450 	rx.local = sta->local;
3451 
3452 	rcu_read_lock();
3453 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3454 	if (!tid_agg_rx)
3455 		goto out;
3456 
3457 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3458 
3459 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3460 		int release;
3461 
3462 		/* release all frames in the reorder buffer */
3463 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3464 			   IEEE80211_SN_MODULO;
3465 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3466 						 release, &frames);
3467 		/* update ssn to match received ssn */
3468 		tid_agg_rx->head_seq_num = ssn;
3469 	} else {
3470 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3471 						 &frames);
3472 	}
3473 
3474 	/* handle the case that received ssn is behind the mac ssn.
3475 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3476 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3477 	if (diff >= tid_agg_rx->buf_size) {
3478 		tid_agg_rx->reorder_buf_filtered = 0;
3479 		goto release;
3480 	}
3481 	filtered = filtered >> diff;
3482 	ssn += diff;
3483 
3484 	/* update bitmap */
3485 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3486 		int index = (ssn + i) % tid_agg_rx->buf_size;
3487 
3488 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3489 		if (filtered & BIT_ULL(i))
3490 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3491 	}
3492 
3493 	/* now process also frames that the filter marking released */
3494 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3495 
3496 release:
3497 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3498 
3499 	ieee80211_rx_handlers(&rx, &frames);
3500 
3501  out:
3502 	rcu_read_unlock();
3503 }
3504 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3505 
3506 /* main receive path */
3507 
3508 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3509 {
3510 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3511 	struct sk_buff *skb = rx->skb;
3512 	struct ieee80211_hdr *hdr = (void *)skb->data;
3513 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3514 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3515 	int multicast = is_multicast_ether_addr(hdr->addr1);
3516 
3517 	switch (sdata->vif.type) {
3518 	case NL80211_IFTYPE_STATION:
3519 		if (!bssid && !sdata->u.mgd.use_4addr)
3520 			return false;
3521 		if (multicast)
3522 			return true;
3523 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3524 	case NL80211_IFTYPE_ADHOC:
3525 		if (!bssid)
3526 			return false;
3527 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3528 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3529 			return false;
3530 		if (ieee80211_is_beacon(hdr->frame_control))
3531 			return true;
3532 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3533 			return false;
3534 		if (!multicast &&
3535 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3536 			return false;
3537 		if (!rx->sta) {
3538 			int rate_idx;
3539 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3540 				rate_idx = 0; /* TODO: HT/VHT rates */
3541 			else
3542 				rate_idx = status->rate_idx;
3543 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3544 						 BIT(rate_idx));
3545 		}
3546 		return true;
3547 	case NL80211_IFTYPE_OCB:
3548 		if (!bssid)
3549 			return false;
3550 		if (!ieee80211_is_data_present(hdr->frame_control))
3551 			return false;
3552 		if (!is_broadcast_ether_addr(bssid))
3553 			return false;
3554 		if (!multicast &&
3555 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3556 			return false;
3557 		if (!rx->sta) {
3558 			int rate_idx;
3559 			if (status->flag & RX_FLAG_HT)
3560 				rate_idx = 0; /* TODO: HT rates */
3561 			else
3562 				rate_idx = status->rate_idx;
3563 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3564 						BIT(rate_idx));
3565 		}
3566 		return true;
3567 	case NL80211_IFTYPE_MESH_POINT:
3568 		if (multicast)
3569 			return true;
3570 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3571 	case NL80211_IFTYPE_AP_VLAN:
3572 	case NL80211_IFTYPE_AP:
3573 		if (!bssid)
3574 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3575 
3576 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3577 			/*
3578 			 * Accept public action frames even when the
3579 			 * BSSID doesn't match, this is used for P2P
3580 			 * and location updates. Note that mac80211
3581 			 * itself never looks at these frames.
3582 			 */
3583 			if (!multicast &&
3584 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3585 				return false;
3586 			if (ieee80211_is_public_action(hdr, skb->len))
3587 				return true;
3588 			return ieee80211_is_beacon(hdr->frame_control);
3589 		}
3590 
3591 		if (!ieee80211_has_tods(hdr->frame_control)) {
3592 			/* ignore data frames to TDLS-peers */
3593 			if (ieee80211_is_data(hdr->frame_control))
3594 				return false;
3595 			/* ignore action frames to TDLS-peers */
3596 			if (ieee80211_is_action(hdr->frame_control) &&
3597 			    !is_broadcast_ether_addr(bssid) &&
3598 			    !ether_addr_equal(bssid, hdr->addr1))
3599 				return false;
3600 		}
3601 		return true;
3602 	case NL80211_IFTYPE_WDS:
3603 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3604 			return false;
3605 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3606 	case NL80211_IFTYPE_P2P_DEVICE:
3607 		return ieee80211_is_public_action(hdr, skb->len) ||
3608 		       ieee80211_is_probe_req(hdr->frame_control) ||
3609 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3610 		       ieee80211_is_beacon(hdr->frame_control);
3611 	case NL80211_IFTYPE_NAN:
3612 		/* Currently no frames on NAN interface are allowed */
3613 		return false;
3614 	default:
3615 		break;
3616 	}
3617 
3618 	WARN_ON_ONCE(1);
3619 	return false;
3620 }
3621 
3622 void ieee80211_check_fast_rx(struct sta_info *sta)
3623 {
3624 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3625 	struct ieee80211_local *local = sdata->local;
3626 	struct ieee80211_key *key;
3627 	struct ieee80211_fast_rx fastrx = {
3628 		.dev = sdata->dev,
3629 		.vif_type = sdata->vif.type,
3630 		.control_port_protocol = sdata->control_port_protocol,
3631 	}, *old, *new = NULL;
3632 	bool assign = false;
3633 
3634 	/* use sparse to check that we don't return without updating */
3635 	__acquire(check_fast_rx);
3636 
3637 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3638 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3639 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3640 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3641 
3642 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3643 
3644 	/* fast-rx doesn't do reordering */
3645 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3646 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3647 		goto clear;
3648 
3649 	switch (sdata->vif.type) {
3650 	case NL80211_IFTYPE_STATION:
3651 		/* 4-addr is harder to deal with, later maybe */
3652 		if (sdata->u.mgd.use_4addr)
3653 			goto clear;
3654 		/* software powersave is a huge mess, avoid all of it */
3655 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3656 			goto clear;
3657 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3658 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3659 			goto clear;
3660 		if (sta->sta.tdls) {
3661 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3662 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3663 			fastrx.expected_ds_bits = 0;
3664 		} else {
3665 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3666 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3667 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3668 			fastrx.expected_ds_bits =
3669 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3670 		}
3671 		break;
3672 	case NL80211_IFTYPE_AP_VLAN:
3673 	case NL80211_IFTYPE_AP:
3674 		/* parallel-rx requires this, at least with calls to
3675 		 * ieee80211_sta_ps_transition()
3676 		 */
3677 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3678 			goto clear;
3679 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3680 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3681 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3682 
3683 		fastrx.internal_forward =
3684 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3685 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3686 			 !sdata->u.vlan.sta);
3687 		break;
3688 	default:
3689 		goto clear;
3690 	}
3691 
3692 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3693 		goto clear;
3694 
3695 	rcu_read_lock();
3696 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3697 	if (key) {
3698 		switch (key->conf.cipher) {
3699 		case WLAN_CIPHER_SUITE_TKIP:
3700 			/* we don't want to deal with MMIC in fast-rx */
3701 			goto clear_rcu;
3702 		case WLAN_CIPHER_SUITE_CCMP:
3703 		case WLAN_CIPHER_SUITE_CCMP_256:
3704 		case WLAN_CIPHER_SUITE_GCMP:
3705 		case WLAN_CIPHER_SUITE_GCMP_256:
3706 			break;
3707 		default:
3708 			/* we also don't want to deal with WEP or cipher scheme
3709 			 * since those require looking up the key idx in the
3710 			 * frame, rather than assuming the PTK is used
3711 			 * (we need to revisit this once we implement the real
3712 			 * PTK index, which is now valid in the spec, but we
3713 			 * haven't implemented that part yet)
3714 			 */
3715 			goto clear_rcu;
3716 		}
3717 
3718 		fastrx.key = true;
3719 		fastrx.icv_len = key->conf.icv_len;
3720 	}
3721 
3722 	assign = true;
3723  clear_rcu:
3724 	rcu_read_unlock();
3725  clear:
3726 	__release(check_fast_rx);
3727 
3728 	if (assign)
3729 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3730 
3731 	spin_lock_bh(&sta->lock);
3732 	old = rcu_dereference_protected(sta->fast_rx, true);
3733 	rcu_assign_pointer(sta->fast_rx, new);
3734 	spin_unlock_bh(&sta->lock);
3735 
3736 	if (old)
3737 		kfree_rcu(old, rcu_head);
3738 }
3739 
3740 void ieee80211_clear_fast_rx(struct sta_info *sta)
3741 {
3742 	struct ieee80211_fast_rx *old;
3743 
3744 	spin_lock_bh(&sta->lock);
3745 	old = rcu_dereference_protected(sta->fast_rx, true);
3746 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3747 	spin_unlock_bh(&sta->lock);
3748 
3749 	if (old)
3750 		kfree_rcu(old, rcu_head);
3751 }
3752 
3753 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3754 {
3755 	struct ieee80211_local *local = sdata->local;
3756 	struct sta_info *sta;
3757 
3758 	lockdep_assert_held(&local->sta_mtx);
3759 
3760 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3761 		if (sdata != sta->sdata &&
3762 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3763 			continue;
3764 		ieee80211_check_fast_rx(sta);
3765 	}
3766 }
3767 
3768 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3769 {
3770 	struct ieee80211_local *local = sdata->local;
3771 
3772 	mutex_lock(&local->sta_mtx);
3773 	__ieee80211_check_fast_rx_iface(sdata);
3774 	mutex_unlock(&local->sta_mtx);
3775 }
3776 
3777 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3778 				     struct ieee80211_fast_rx *fast_rx)
3779 {
3780 	struct sk_buff *skb = rx->skb;
3781 	struct ieee80211_hdr *hdr = (void *)skb->data;
3782 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3783 	struct sta_info *sta = rx->sta;
3784 	int orig_len = skb->len;
3785 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3786 	struct {
3787 		u8 snap[sizeof(rfc1042_header)];
3788 		__be16 proto;
3789 	} *payload __aligned(2);
3790 	struct {
3791 		u8 da[ETH_ALEN];
3792 		u8 sa[ETH_ALEN];
3793 	} addrs __aligned(2);
3794 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3795 
3796 	if (fast_rx->uses_rss)
3797 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3798 
3799 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3800 	 * to a common data structure; drivers can implement that per queue
3801 	 * but we don't have that information in mac80211
3802 	 */
3803 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3804 		return false;
3805 
3806 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3807 
3808 	/* If using encryption, we also need to have:
3809 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3810 	 *  - DECRYPTED: necessary for PN_VALIDATED
3811 	 */
3812 	if (fast_rx->key &&
3813 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3814 		return false;
3815 
3816 	/* we don't deal with A-MSDU deaggregation here */
3817 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3818 		return false;
3819 
3820 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3821 		return false;
3822 
3823 	if (unlikely(ieee80211_is_frag(hdr)))
3824 		return false;
3825 
3826 	/* Since our interface address cannot be multicast, this
3827 	 * implicitly also rejects multicast frames without the
3828 	 * explicit check.
3829 	 *
3830 	 * We shouldn't get any *data* frames not addressed to us
3831 	 * (AP mode will accept multicast *management* frames), but
3832 	 * punting here will make it go through the full checks in
3833 	 * ieee80211_accept_frame().
3834 	 */
3835 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3836 		return false;
3837 
3838 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3839 					      IEEE80211_FCTL_TODS)) !=
3840 	    fast_rx->expected_ds_bits)
3841 		goto drop;
3842 
3843 	/* assign the key to drop unencrypted frames (later)
3844 	 * and strip the IV/MIC if necessary
3845 	 */
3846 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3847 		/* GCMP header length is the same */
3848 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3849 	}
3850 
3851 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3852 		goto drop;
3853 	payload = (void *)(skb->data + snap_offs);
3854 
3855 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3856 		return false;
3857 
3858 	/* Don't handle these here since they require special code.
3859 	 * Accept AARP and IPX even though they should come with a
3860 	 * bridge-tunnel header - but if we get them this way then
3861 	 * there's little point in discarding them.
3862 	 */
3863 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3864 		     payload->proto == fast_rx->control_port_protocol))
3865 		return false;
3866 
3867 	/* after this point, don't punt to the slowpath! */
3868 
3869 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3870 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3871 		goto drop;
3872 
3873 	if (unlikely(fast_rx->sta_notify)) {
3874 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3875 		fast_rx->sta_notify = false;
3876 	}
3877 
3878 	/* statistics part of ieee80211_rx_h_sta_process() */
3879 	stats->last_rx = jiffies;
3880 	stats->last_rate = sta_stats_encode_rate(status);
3881 
3882 	stats->fragments++;
3883 
3884 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3885 		stats->last_signal = status->signal;
3886 		if (!fast_rx->uses_rss)
3887 			ewma_signal_add(&sta->rx_stats_avg.signal,
3888 					-status->signal);
3889 	}
3890 
3891 	if (status->chains) {
3892 		int i;
3893 
3894 		stats->chains = status->chains;
3895 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3896 			int signal = status->chain_signal[i];
3897 
3898 			if (!(status->chains & BIT(i)))
3899 				continue;
3900 
3901 			stats->chain_signal_last[i] = signal;
3902 			if (!fast_rx->uses_rss)
3903 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3904 						-signal);
3905 		}
3906 	}
3907 	/* end of statistics */
3908 
3909 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3910 		goto drop;
3911 
3912 	/* do the header conversion - first grab the addresses */
3913 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3914 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3915 	/* remove the SNAP but leave the ethertype */
3916 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3917 	/* push the addresses in front */
3918 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3919 
3920 	skb->dev = fast_rx->dev;
3921 
3922 	ieee80211_rx_stats(fast_rx->dev, skb->len);
3923 
3924 	/* The seqno index has the same property as needed
3925 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3926 	 * for non-QoS-data frames. Here we know it's a data
3927 	 * frame, so count MSDUs.
3928 	 */
3929 	u64_stats_update_begin(&stats->syncp);
3930 	stats->msdu[rx->seqno_idx]++;
3931 	stats->bytes += orig_len;
3932 	u64_stats_update_end(&stats->syncp);
3933 
3934 	if (fast_rx->internal_forward) {
3935 		struct sk_buff *xmit_skb = NULL;
3936 		bool multicast = is_multicast_ether_addr(skb->data);
3937 
3938 		if (multicast) {
3939 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
3940 		} else if (sta_info_get(rx->sdata, skb->data)) {
3941 			xmit_skb = skb;
3942 			skb = NULL;
3943 		}
3944 
3945 		if (xmit_skb) {
3946 			/*
3947 			 * Send to wireless media and increase priority by 256
3948 			 * to keep the received priority instead of
3949 			 * reclassifying the frame (see cfg80211_classify8021d).
3950 			 */
3951 			xmit_skb->priority += 256;
3952 			xmit_skb->protocol = htons(ETH_P_802_3);
3953 			skb_reset_network_header(xmit_skb);
3954 			skb_reset_mac_header(xmit_skb);
3955 			dev_queue_xmit(xmit_skb);
3956 		}
3957 
3958 		if (!skb)
3959 			return true;
3960 	}
3961 
3962 	/* deliver to local stack */
3963 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
3964 	memset(skb->cb, 0, sizeof(skb->cb));
3965 	if (rx->napi)
3966 		napi_gro_receive(rx->napi, skb);
3967 	else
3968 		netif_receive_skb(skb);
3969 
3970 	return true;
3971  drop:
3972 	dev_kfree_skb(skb);
3973 	stats->dropped++;
3974 	return true;
3975 }
3976 
3977 /*
3978  * This function returns whether or not the SKB
3979  * was destined for RX processing or not, which,
3980  * if consume is true, is equivalent to whether
3981  * or not the skb was consumed.
3982  */
3983 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3984 					    struct sk_buff *skb, bool consume)
3985 {
3986 	struct ieee80211_local *local = rx->local;
3987 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3988 
3989 	rx->skb = skb;
3990 
3991 	/* See if we can do fast-rx; if we have to copy we already lost,
3992 	 * so punt in that case. We should never have to deliver a data
3993 	 * frame to multiple interfaces anyway.
3994 	 *
3995 	 * We skip the ieee80211_accept_frame() call and do the necessary
3996 	 * checking inside ieee80211_invoke_fast_rx().
3997 	 */
3998 	if (consume && rx->sta) {
3999 		struct ieee80211_fast_rx *fast_rx;
4000 
4001 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4002 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4003 			return true;
4004 	}
4005 
4006 	if (!ieee80211_accept_frame(rx))
4007 		return false;
4008 
4009 	if (!consume) {
4010 		skb = skb_copy(skb, GFP_ATOMIC);
4011 		if (!skb) {
4012 			if (net_ratelimit())
4013 				wiphy_debug(local->hw.wiphy,
4014 					"failed to copy skb for %s\n",
4015 					sdata->name);
4016 			return true;
4017 		}
4018 
4019 		rx->skb = skb;
4020 	}
4021 
4022 	ieee80211_invoke_rx_handlers(rx);
4023 	return true;
4024 }
4025 
4026 /*
4027  * This is the actual Rx frames handler. as it belongs to Rx path it must
4028  * be called with rcu_read_lock protection.
4029  */
4030 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4031 					 struct ieee80211_sta *pubsta,
4032 					 struct sk_buff *skb,
4033 					 struct napi_struct *napi)
4034 {
4035 	struct ieee80211_local *local = hw_to_local(hw);
4036 	struct ieee80211_sub_if_data *sdata;
4037 	struct ieee80211_hdr *hdr;
4038 	__le16 fc;
4039 	struct ieee80211_rx_data rx;
4040 	struct ieee80211_sub_if_data *prev;
4041 	struct rhlist_head *tmp;
4042 	int err = 0;
4043 
4044 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4045 	memset(&rx, 0, sizeof(rx));
4046 	rx.skb = skb;
4047 	rx.local = local;
4048 	rx.napi = napi;
4049 
4050 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4051 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4052 
4053 	if (ieee80211_is_mgmt(fc)) {
4054 		/* drop frame if too short for header */
4055 		if (skb->len < ieee80211_hdrlen(fc))
4056 			err = -ENOBUFS;
4057 		else
4058 			err = skb_linearize(skb);
4059 	} else {
4060 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4061 	}
4062 
4063 	if (err) {
4064 		dev_kfree_skb(skb);
4065 		return;
4066 	}
4067 
4068 	hdr = (struct ieee80211_hdr *)skb->data;
4069 	ieee80211_parse_qos(&rx);
4070 	ieee80211_verify_alignment(&rx);
4071 
4072 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4073 		     ieee80211_is_beacon(hdr->frame_control)))
4074 		ieee80211_scan_rx(local, skb);
4075 
4076 	if (pubsta) {
4077 		rx.sta = container_of(pubsta, struct sta_info, sta);
4078 		rx.sdata = rx.sta->sdata;
4079 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4080 			return;
4081 		goto out;
4082 	} else if (ieee80211_is_data(fc)) {
4083 		struct sta_info *sta, *prev_sta;
4084 
4085 		prev_sta = NULL;
4086 
4087 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4088 			if (!prev_sta) {
4089 				prev_sta = sta;
4090 				continue;
4091 			}
4092 
4093 			rx.sta = prev_sta;
4094 			rx.sdata = prev_sta->sdata;
4095 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4096 
4097 			prev_sta = sta;
4098 		}
4099 
4100 		if (prev_sta) {
4101 			rx.sta = prev_sta;
4102 			rx.sdata = prev_sta->sdata;
4103 
4104 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4105 				return;
4106 			goto out;
4107 		}
4108 	}
4109 
4110 	prev = NULL;
4111 
4112 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4113 		if (!ieee80211_sdata_running(sdata))
4114 			continue;
4115 
4116 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4117 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4118 			continue;
4119 
4120 		/*
4121 		 * frame is destined for this interface, but if it's
4122 		 * not also for the previous one we handle that after
4123 		 * the loop to avoid copying the SKB once too much
4124 		 */
4125 
4126 		if (!prev) {
4127 			prev = sdata;
4128 			continue;
4129 		}
4130 
4131 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4132 		rx.sdata = prev;
4133 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4134 
4135 		prev = sdata;
4136 	}
4137 
4138 	if (prev) {
4139 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4140 		rx.sdata = prev;
4141 
4142 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4143 			return;
4144 	}
4145 
4146  out:
4147 	dev_kfree_skb(skb);
4148 }
4149 
4150 /*
4151  * This is the receive path handler. It is called by a low level driver when an
4152  * 802.11 MPDU is received from the hardware.
4153  */
4154 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4155 		       struct sk_buff *skb, struct napi_struct *napi)
4156 {
4157 	struct ieee80211_local *local = hw_to_local(hw);
4158 	struct ieee80211_rate *rate = NULL;
4159 	struct ieee80211_supported_band *sband;
4160 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4161 
4162 	WARN_ON_ONCE(softirq_count() == 0);
4163 
4164 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4165 		goto drop;
4166 
4167 	sband = local->hw.wiphy->bands[status->band];
4168 	if (WARN_ON(!sband))
4169 		goto drop;
4170 
4171 	/*
4172 	 * If we're suspending, it is possible although not too likely
4173 	 * that we'd be receiving frames after having already partially
4174 	 * quiesced the stack. We can't process such frames then since
4175 	 * that might, for example, cause stations to be added or other
4176 	 * driver callbacks be invoked.
4177 	 */
4178 	if (unlikely(local->quiescing || local->suspended))
4179 		goto drop;
4180 
4181 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4182 	if (unlikely(local->in_reconfig))
4183 		goto drop;
4184 
4185 	/*
4186 	 * The same happens when we're not even started,
4187 	 * but that's worth a warning.
4188 	 */
4189 	if (WARN_ON(!local->started))
4190 		goto drop;
4191 
4192 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4193 		/*
4194 		 * Validate the rate, unless a PLCP error means that
4195 		 * we probably can't have a valid rate here anyway.
4196 		 */
4197 
4198 		if (status->flag & RX_FLAG_HT) {
4199 			/*
4200 			 * rate_idx is MCS index, which can be [0-76]
4201 			 * as documented on:
4202 			 *
4203 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4204 			 *
4205 			 * Anything else would be some sort of driver or
4206 			 * hardware error. The driver should catch hardware
4207 			 * errors.
4208 			 */
4209 			if (WARN(status->rate_idx > 76,
4210 				 "Rate marked as an HT rate but passed "
4211 				 "status->rate_idx is not "
4212 				 "an MCS index [0-76]: %d (0x%02x)\n",
4213 				 status->rate_idx,
4214 				 status->rate_idx))
4215 				goto drop;
4216 		} else if (status->flag & RX_FLAG_VHT) {
4217 			if (WARN_ONCE(status->rate_idx > 9 ||
4218 				      !status->vht_nss ||
4219 				      status->vht_nss > 8,
4220 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4221 				      status->rate_idx, status->vht_nss))
4222 				goto drop;
4223 		} else {
4224 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4225 				goto drop;
4226 			rate = &sband->bitrates[status->rate_idx];
4227 		}
4228 	}
4229 
4230 	status->rx_flags = 0;
4231 
4232 	/*
4233 	 * key references and virtual interfaces are protected using RCU
4234 	 * and this requires that we are in a read-side RCU section during
4235 	 * receive processing
4236 	 */
4237 	rcu_read_lock();
4238 
4239 	/*
4240 	 * Frames with failed FCS/PLCP checksum are not returned,
4241 	 * all other frames are returned without radiotap header
4242 	 * if it was previously present.
4243 	 * Also, frames with less than 16 bytes are dropped.
4244 	 */
4245 	skb = ieee80211_rx_monitor(local, skb, rate);
4246 	if (!skb) {
4247 		rcu_read_unlock();
4248 		return;
4249 	}
4250 
4251 	ieee80211_tpt_led_trig_rx(local,
4252 			((struct ieee80211_hdr *)skb->data)->frame_control,
4253 			skb->len);
4254 
4255 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4256 
4257 	rcu_read_unlock();
4258 
4259 	return;
4260  drop:
4261 	kfree_skb(skb);
4262 }
4263 EXPORT_SYMBOL(ieee80211_rx_napi);
4264 
4265 /* This is a version of the rx handler that can be called from hard irq
4266  * context. Post the skb on the queue and schedule the tasklet */
4267 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4268 {
4269 	struct ieee80211_local *local = hw_to_local(hw);
4270 
4271 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4272 
4273 	skb->pkt_type = IEEE80211_RX_MSG;
4274 	skb_queue_tail(&local->skb_queue, skb);
4275 	tasklet_schedule(&local->tasklet);
4276 }
4277 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4278