xref: /openbmc/linux/net/mac80211/rx.c (revision 0edbfea5)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 					   struct sk_buff *skb,
100 					   unsigned int rtap_vendor_space)
101 {
102 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 		if (likely(skb->len > FCS_LEN))
104 			__pskb_trim(skb, skb->len - FCS_LEN);
105 		else {
106 			/* driver bug */
107 			WARN_ON(1);
108 			dev_kfree_skb(skb);
109 			return NULL;
110 		}
111 	}
112 
113 	__pskb_pull(skb, rtap_vendor_space);
114 
115 	return skb;
116 }
117 
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 				     unsigned int rtap_vendor_space)
120 {
121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 	struct ieee80211_hdr *hdr;
123 
124 	hdr = (void *)(skb->data + rtap_vendor_space);
125 
126 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 			    RX_FLAG_FAILED_PLCP_CRC |
128 			    RX_FLAG_ONLY_MONITOR))
129 		return true;
130 
131 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 		return true;
133 
134 	if (ieee80211_is_ctl(hdr->frame_control) &&
135 	    !ieee80211_is_pspoll(hdr->frame_control) &&
136 	    !ieee80211_is_back_req(hdr->frame_control))
137 		return true;
138 
139 	return false;
140 }
141 
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 			     struct ieee80211_rx_status *status,
145 			     struct sk_buff *skb)
146 {
147 	int len;
148 
149 	/* always present fields */
150 	len = sizeof(struct ieee80211_radiotap_header) + 8;
151 
152 	/* allocate extra bitmaps */
153 	if (status->chains)
154 		len += 4 * hweight8(status->chains);
155 
156 	if (ieee80211_have_rx_timestamp(status)) {
157 		len = ALIGN(len, 8);
158 		len += 8;
159 	}
160 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 		len += 1;
162 
163 	/* antenna field, if we don't have per-chain info */
164 	if (!status->chains)
165 		len += 1;
166 
167 	/* padding for RX_FLAGS if necessary */
168 	len = ALIGN(len, 2);
169 
170 	if (status->flag & RX_FLAG_HT) /* HT info */
171 		len += 3;
172 
173 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 		len = ALIGN(len, 4);
175 		len += 8;
176 	}
177 
178 	if (status->flag & RX_FLAG_VHT) {
179 		len = ALIGN(len, 2);
180 		len += 12;
181 	}
182 
183 	if (status->chains) {
184 		/* antenna and antenna signal fields */
185 		len += 2 * hweight8(status->chains);
186 	}
187 
188 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
189 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
190 
191 		/* vendor presence bitmap */
192 		len += 4;
193 		/* alignment for fixed 6-byte vendor data header */
194 		len = ALIGN(len, 2);
195 		/* vendor data header */
196 		len += 6;
197 		if (WARN_ON(rtap->align == 0))
198 			rtap->align = 1;
199 		len = ALIGN(len, rtap->align);
200 		len += rtap->len + rtap->pad;
201 	}
202 
203 	return len;
204 }
205 
206 /*
207  * ieee80211_add_rx_radiotap_header - add radiotap header
208  *
209  * add a radiotap header containing all the fields which the hardware provided.
210  */
211 static void
212 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
213 				 struct sk_buff *skb,
214 				 struct ieee80211_rate *rate,
215 				 int rtap_len, bool has_fcs)
216 {
217 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
218 	struct ieee80211_radiotap_header *rthdr;
219 	unsigned char *pos;
220 	__le32 *it_present;
221 	u32 it_present_val;
222 	u16 rx_flags = 0;
223 	u16 channel_flags = 0;
224 	int mpdulen, chain;
225 	unsigned long chains = status->chains;
226 	struct ieee80211_vendor_radiotap rtap = {};
227 
228 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
229 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
230 		/* rtap.len and rtap.pad are undone immediately */
231 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
232 	}
233 
234 	mpdulen = skb->len;
235 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
236 		mpdulen += FCS_LEN;
237 
238 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
239 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
240 	it_present = &rthdr->it_present;
241 
242 	/* radiotap header, set always present flags */
243 	rthdr->it_len = cpu_to_le16(rtap_len);
244 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
245 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
246 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
247 
248 	if (!status->chains)
249 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
250 
251 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
252 		it_present_val |=
253 			BIT(IEEE80211_RADIOTAP_EXT) |
254 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
255 		put_unaligned_le32(it_present_val, it_present);
256 		it_present++;
257 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
258 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
259 	}
260 
261 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
262 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
263 				  BIT(IEEE80211_RADIOTAP_EXT);
264 		put_unaligned_le32(it_present_val, it_present);
265 		it_present++;
266 		it_present_val = rtap.present;
267 	}
268 
269 	put_unaligned_le32(it_present_val, it_present);
270 
271 	pos = (void *)(it_present + 1);
272 
273 	/* the order of the following fields is important */
274 
275 	/* IEEE80211_RADIOTAP_TSFT */
276 	if (ieee80211_have_rx_timestamp(status)) {
277 		/* padding */
278 		while ((pos - (u8 *)rthdr) & 7)
279 			*pos++ = 0;
280 		put_unaligned_le64(
281 			ieee80211_calculate_rx_timestamp(local, status,
282 							 mpdulen, 0),
283 			pos);
284 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
285 		pos += 8;
286 	}
287 
288 	/* IEEE80211_RADIOTAP_FLAGS */
289 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
290 		*pos |= IEEE80211_RADIOTAP_F_FCS;
291 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
292 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
293 	if (status->flag & RX_FLAG_SHORTPRE)
294 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
295 	pos++;
296 
297 	/* IEEE80211_RADIOTAP_RATE */
298 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
299 		/*
300 		 * Without rate information don't add it. If we have,
301 		 * MCS information is a separate field in radiotap,
302 		 * added below. The byte here is needed as padding
303 		 * for the channel though, so initialise it to 0.
304 		 */
305 		*pos = 0;
306 	} else {
307 		int shift = 0;
308 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
309 		if (status->flag & RX_FLAG_10MHZ)
310 			shift = 1;
311 		else if (status->flag & RX_FLAG_5MHZ)
312 			shift = 2;
313 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
314 	}
315 	pos++;
316 
317 	/* IEEE80211_RADIOTAP_CHANNEL */
318 	put_unaligned_le16(status->freq, pos);
319 	pos += 2;
320 	if (status->flag & RX_FLAG_10MHZ)
321 		channel_flags |= IEEE80211_CHAN_HALF;
322 	else if (status->flag & RX_FLAG_5MHZ)
323 		channel_flags |= IEEE80211_CHAN_QUARTER;
324 
325 	if (status->band == NL80211_BAND_5GHZ)
326 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
327 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
328 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
329 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
330 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
331 	else if (rate)
332 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
333 	else
334 		channel_flags |= IEEE80211_CHAN_2GHZ;
335 	put_unaligned_le16(channel_flags, pos);
336 	pos += 2;
337 
338 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
339 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
340 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
341 		*pos = status->signal;
342 		rthdr->it_present |=
343 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
344 		pos++;
345 	}
346 
347 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
348 
349 	if (!status->chains) {
350 		/* IEEE80211_RADIOTAP_ANTENNA */
351 		*pos = status->antenna;
352 		pos++;
353 	}
354 
355 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
356 
357 	/* IEEE80211_RADIOTAP_RX_FLAGS */
358 	/* ensure 2 byte alignment for the 2 byte field as required */
359 	if ((pos - (u8 *)rthdr) & 1)
360 		*pos++ = 0;
361 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
362 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
363 	put_unaligned_le16(rx_flags, pos);
364 	pos += 2;
365 
366 	if (status->flag & RX_FLAG_HT) {
367 		unsigned int stbc;
368 
369 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
370 		*pos++ = local->hw.radiotap_mcs_details;
371 		*pos = 0;
372 		if (status->flag & RX_FLAG_SHORT_GI)
373 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
374 		if (status->flag & RX_FLAG_40MHZ)
375 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
376 		if (status->flag & RX_FLAG_HT_GF)
377 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
378 		if (status->flag & RX_FLAG_LDPC)
379 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
380 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
381 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
382 		pos++;
383 		*pos++ = status->rate_idx;
384 	}
385 
386 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
387 		u16 flags = 0;
388 
389 		/* ensure 4 byte alignment */
390 		while ((pos - (u8 *)rthdr) & 3)
391 			pos++;
392 		rthdr->it_present |=
393 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
394 		put_unaligned_le32(status->ampdu_reference, pos);
395 		pos += 4;
396 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
397 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
398 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
399 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
400 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
401 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
402 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
403 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
404 		put_unaligned_le16(flags, pos);
405 		pos += 2;
406 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
407 			*pos++ = status->ampdu_delimiter_crc;
408 		else
409 			*pos++ = 0;
410 		*pos++ = 0;
411 	}
412 
413 	if (status->flag & RX_FLAG_VHT) {
414 		u16 known = local->hw.radiotap_vht_details;
415 
416 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
417 		put_unaligned_le16(known, pos);
418 		pos += 2;
419 		/* flags */
420 		if (status->flag & RX_FLAG_SHORT_GI)
421 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
422 		/* in VHT, STBC is binary */
423 		if (status->flag & RX_FLAG_STBC_MASK)
424 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
425 		if (status->vht_flag & RX_VHT_FLAG_BF)
426 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
427 		pos++;
428 		/* bandwidth */
429 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
430 			*pos++ = 4;
431 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
432 			*pos++ = 11;
433 		else if (status->flag & RX_FLAG_40MHZ)
434 			*pos++ = 1;
435 		else /* 20 MHz */
436 			*pos++ = 0;
437 		/* MCS/NSS */
438 		*pos = (status->rate_idx << 4) | status->vht_nss;
439 		pos += 4;
440 		/* coding field */
441 		if (status->flag & RX_FLAG_LDPC)
442 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
443 		pos++;
444 		/* group ID */
445 		pos++;
446 		/* partial_aid */
447 		pos += 2;
448 	}
449 
450 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
451 		*pos++ = status->chain_signal[chain];
452 		*pos++ = chain;
453 	}
454 
455 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
456 		/* ensure 2 byte alignment for the vendor field as required */
457 		if ((pos - (u8 *)rthdr) & 1)
458 			*pos++ = 0;
459 		*pos++ = rtap.oui[0];
460 		*pos++ = rtap.oui[1];
461 		*pos++ = rtap.oui[2];
462 		*pos++ = rtap.subns;
463 		put_unaligned_le16(rtap.len, pos);
464 		pos += 2;
465 		/* align the actual payload as requested */
466 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
467 			*pos++ = 0;
468 		/* data (and possible padding) already follows */
469 	}
470 }
471 
472 /*
473  * This function copies a received frame to all monitor interfaces and
474  * returns a cleaned-up SKB that no longer includes the FCS nor the
475  * radiotap header the driver might have added.
476  */
477 static struct sk_buff *
478 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
479 		     struct ieee80211_rate *rate)
480 {
481 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
482 	struct ieee80211_sub_if_data *sdata;
483 	int rt_hdrlen, needed_headroom;
484 	struct sk_buff *skb, *skb2;
485 	struct net_device *prev_dev = NULL;
486 	int present_fcs_len = 0;
487 	unsigned int rtap_vendor_space = 0;
488 
489 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
490 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
491 
492 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
493 	}
494 
495 	/*
496 	 * First, we may need to make a copy of the skb because
497 	 *  (1) we need to modify it for radiotap (if not present), and
498 	 *  (2) the other RX handlers will modify the skb we got.
499 	 *
500 	 * We don't need to, of course, if we aren't going to return
501 	 * the SKB because it has a bad FCS/PLCP checksum.
502 	 */
503 
504 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
505 		present_fcs_len = FCS_LEN;
506 
507 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
508 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
509 		dev_kfree_skb(origskb);
510 		return NULL;
511 	}
512 
513 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
514 		if (should_drop_frame(origskb, present_fcs_len,
515 				      rtap_vendor_space)) {
516 			dev_kfree_skb(origskb);
517 			return NULL;
518 		}
519 
520 		return remove_monitor_info(local, origskb, rtap_vendor_space);
521 	}
522 
523 	/* room for the radiotap header based on driver features */
524 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
525 	needed_headroom = rt_hdrlen - rtap_vendor_space;
526 
527 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
528 		/* only need to expand headroom if necessary */
529 		skb = origskb;
530 		origskb = NULL;
531 
532 		/*
533 		 * This shouldn't trigger often because most devices have an
534 		 * RX header they pull before we get here, and that should
535 		 * be big enough for our radiotap information. We should
536 		 * probably export the length to drivers so that we can have
537 		 * them allocate enough headroom to start with.
538 		 */
539 		if (skb_headroom(skb) < needed_headroom &&
540 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
541 			dev_kfree_skb(skb);
542 			return NULL;
543 		}
544 	} else {
545 		/*
546 		 * Need to make a copy and possibly remove radiotap header
547 		 * and FCS from the original.
548 		 */
549 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
550 
551 		origskb = remove_monitor_info(local, origskb,
552 					      rtap_vendor_space);
553 
554 		if (!skb)
555 			return origskb;
556 	}
557 
558 	/* prepend radiotap information */
559 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
560 
561 	skb_reset_mac_header(skb);
562 	skb->ip_summed = CHECKSUM_UNNECESSARY;
563 	skb->pkt_type = PACKET_OTHERHOST;
564 	skb->protocol = htons(ETH_P_802_2);
565 
566 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
567 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
568 			continue;
569 
570 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
571 			continue;
572 
573 		if (!ieee80211_sdata_running(sdata))
574 			continue;
575 
576 		if (prev_dev) {
577 			skb2 = skb_clone(skb, GFP_ATOMIC);
578 			if (skb2) {
579 				skb2->dev = prev_dev;
580 				netif_receive_skb(skb2);
581 			}
582 		}
583 
584 		prev_dev = sdata->dev;
585 		ieee80211_rx_stats(sdata->dev, skb->len);
586 	}
587 
588 	if (prev_dev) {
589 		skb->dev = prev_dev;
590 		netif_receive_skb(skb);
591 	} else
592 		dev_kfree_skb(skb);
593 
594 	return origskb;
595 }
596 
597 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
598 {
599 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
600 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
601 	int tid, seqno_idx, security_idx;
602 
603 	/* does the frame have a qos control field? */
604 	if (ieee80211_is_data_qos(hdr->frame_control)) {
605 		u8 *qc = ieee80211_get_qos_ctl(hdr);
606 		/* frame has qos control */
607 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
608 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
609 			status->rx_flags |= IEEE80211_RX_AMSDU;
610 
611 		seqno_idx = tid;
612 		security_idx = tid;
613 	} else {
614 		/*
615 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
616 		 *
617 		 *	Sequence numbers for management frames, QoS data
618 		 *	frames with a broadcast/multicast address in the
619 		 *	Address 1 field, and all non-QoS data frames sent
620 		 *	by QoS STAs are assigned using an additional single
621 		 *	modulo-4096 counter, [...]
622 		 *
623 		 * We also use that counter for non-QoS STAs.
624 		 */
625 		seqno_idx = IEEE80211_NUM_TIDS;
626 		security_idx = 0;
627 		if (ieee80211_is_mgmt(hdr->frame_control))
628 			security_idx = IEEE80211_NUM_TIDS;
629 		tid = 0;
630 	}
631 
632 	rx->seqno_idx = seqno_idx;
633 	rx->security_idx = security_idx;
634 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
635 	 * For now, set skb->priority to 0 for other cases. */
636 	rx->skb->priority = (tid > 7) ? 0 : tid;
637 }
638 
639 /**
640  * DOC: Packet alignment
641  *
642  * Drivers always need to pass packets that are aligned to two-byte boundaries
643  * to the stack.
644  *
645  * Additionally, should, if possible, align the payload data in a way that
646  * guarantees that the contained IP header is aligned to a four-byte
647  * boundary. In the case of regular frames, this simply means aligning the
648  * payload to a four-byte boundary (because either the IP header is directly
649  * contained, or IV/RFC1042 headers that have a length divisible by four are
650  * in front of it).  If the payload data is not properly aligned and the
651  * architecture doesn't support efficient unaligned operations, mac80211
652  * will align the data.
653  *
654  * With A-MSDU frames, however, the payload data address must yield two modulo
655  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
656  * push the IP header further back to a multiple of four again. Thankfully, the
657  * specs were sane enough this time around to require padding each A-MSDU
658  * subframe to a length that is a multiple of four.
659  *
660  * Padding like Atheros hardware adds which is between the 802.11 header and
661  * the payload is not supported, the driver is required to move the 802.11
662  * header to be directly in front of the payload in that case.
663  */
664 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
665 {
666 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
667 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
668 #endif
669 }
670 
671 
672 /* rx handlers */
673 
674 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
675 {
676 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
677 
678 	if (is_multicast_ether_addr(hdr->addr1))
679 		return 0;
680 
681 	return ieee80211_is_robust_mgmt_frame(skb);
682 }
683 
684 
685 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
686 {
687 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
688 
689 	if (!is_multicast_ether_addr(hdr->addr1))
690 		return 0;
691 
692 	return ieee80211_is_robust_mgmt_frame(skb);
693 }
694 
695 
696 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
697 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
698 {
699 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
700 	struct ieee80211_mmie *mmie;
701 	struct ieee80211_mmie_16 *mmie16;
702 
703 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
704 		return -1;
705 
706 	if (!ieee80211_is_robust_mgmt_frame(skb))
707 		return -1; /* not a robust management frame */
708 
709 	mmie = (struct ieee80211_mmie *)
710 		(skb->data + skb->len - sizeof(*mmie));
711 	if (mmie->element_id == WLAN_EID_MMIE &&
712 	    mmie->length == sizeof(*mmie) - 2)
713 		return le16_to_cpu(mmie->key_id);
714 
715 	mmie16 = (struct ieee80211_mmie_16 *)
716 		(skb->data + skb->len - sizeof(*mmie16));
717 	if (skb->len >= 24 + sizeof(*mmie16) &&
718 	    mmie16->element_id == WLAN_EID_MMIE &&
719 	    mmie16->length == sizeof(*mmie16) - 2)
720 		return le16_to_cpu(mmie16->key_id);
721 
722 	return -1;
723 }
724 
725 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
726 				  struct sk_buff *skb)
727 {
728 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
729 	__le16 fc;
730 	int hdrlen;
731 	u8 keyid;
732 
733 	fc = hdr->frame_control;
734 	hdrlen = ieee80211_hdrlen(fc);
735 
736 	if (skb->len < hdrlen + cs->hdr_len)
737 		return -EINVAL;
738 
739 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
740 	keyid &= cs->key_idx_mask;
741 	keyid >>= cs->key_idx_shift;
742 
743 	return keyid;
744 }
745 
746 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
747 {
748 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
749 	char *dev_addr = rx->sdata->vif.addr;
750 
751 	if (ieee80211_is_data(hdr->frame_control)) {
752 		if (is_multicast_ether_addr(hdr->addr1)) {
753 			if (ieee80211_has_tods(hdr->frame_control) ||
754 			    !ieee80211_has_fromds(hdr->frame_control))
755 				return RX_DROP_MONITOR;
756 			if (ether_addr_equal(hdr->addr3, dev_addr))
757 				return RX_DROP_MONITOR;
758 		} else {
759 			if (!ieee80211_has_a4(hdr->frame_control))
760 				return RX_DROP_MONITOR;
761 			if (ether_addr_equal(hdr->addr4, dev_addr))
762 				return RX_DROP_MONITOR;
763 		}
764 	}
765 
766 	/* If there is not an established peer link and this is not a peer link
767 	 * establisment frame, beacon or probe, drop the frame.
768 	 */
769 
770 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
771 		struct ieee80211_mgmt *mgmt;
772 
773 		if (!ieee80211_is_mgmt(hdr->frame_control))
774 			return RX_DROP_MONITOR;
775 
776 		if (ieee80211_is_action(hdr->frame_control)) {
777 			u8 category;
778 
779 			/* make sure category field is present */
780 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
781 				return RX_DROP_MONITOR;
782 
783 			mgmt = (struct ieee80211_mgmt *)hdr;
784 			category = mgmt->u.action.category;
785 			if (category != WLAN_CATEGORY_MESH_ACTION &&
786 			    category != WLAN_CATEGORY_SELF_PROTECTED)
787 				return RX_DROP_MONITOR;
788 			return RX_CONTINUE;
789 		}
790 
791 		if (ieee80211_is_probe_req(hdr->frame_control) ||
792 		    ieee80211_is_probe_resp(hdr->frame_control) ||
793 		    ieee80211_is_beacon(hdr->frame_control) ||
794 		    ieee80211_is_auth(hdr->frame_control))
795 			return RX_CONTINUE;
796 
797 		return RX_DROP_MONITOR;
798 	}
799 
800 	return RX_CONTINUE;
801 }
802 
803 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
804 					      int index)
805 {
806 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
807 	struct sk_buff *tail = skb_peek_tail(frames);
808 	struct ieee80211_rx_status *status;
809 
810 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
811 		return true;
812 
813 	if (!tail)
814 		return false;
815 
816 	status = IEEE80211_SKB_RXCB(tail);
817 	if (status->flag & RX_FLAG_AMSDU_MORE)
818 		return false;
819 
820 	return true;
821 }
822 
823 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
824 					    struct tid_ampdu_rx *tid_agg_rx,
825 					    int index,
826 					    struct sk_buff_head *frames)
827 {
828 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
829 	struct sk_buff *skb;
830 	struct ieee80211_rx_status *status;
831 
832 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
833 
834 	if (skb_queue_empty(skb_list))
835 		goto no_frame;
836 
837 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
838 		__skb_queue_purge(skb_list);
839 		goto no_frame;
840 	}
841 
842 	/* release frames from the reorder ring buffer */
843 	tid_agg_rx->stored_mpdu_num--;
844 	while ((skb = __skb_dequeue(skb_list))) {
845 		status = IEEE80211_SKB_RXCB(skb);
846 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
847 		__skb_queue_tail(frames, skb);
848 	}
849 
850 no_frame:
851 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
852 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
853 }
854 
855 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
856 					     struct tid_ampdu_rx *tid_agg_rx,
857 					     u16 head_seq_num,
858 					     struct sk_buff_head *frames)
859 {
860 	int index;
861 
862 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
863 
864 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
865 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
867 						frames);
868 	}
869 }
870 
871 /*
872  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
873  * the skb was added to the buffer longer than this time ago, the earlier
874  * frames that have not yet been received are assumed to be lost and the skb
875  * can be released for processing. This may also release other skb's from the
876  * reorder buffer if there are no additional gaps between the frames.
877  *
878  * Callers must hold tid_agg_rx->reorder_lock.
879  */
880 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
881 
882 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
883 					  struct tid_ampdu_rx *tid_agg_rx,
884 					  struct sk_buff_head *frames)
885 {
886 	int index, i, j;
887 
888 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
889 
890 	/* release the buffer until next missing frame */
891 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
892 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
893 	    tid_agg_rx->stored_mpdu_num) {
894 		/*
895 		 * No buffers ready to be released, but check whether any
896 		 * frames in the reorder buffer have timed out.
897 		 */
898 		int skipped = 1;
899 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
900 		     j = (j + 1) % tid_agg_rx->buf_size) {
901 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
902 				skipped++;
903 				continue;
904 			}
905 			if (skipped &&
906 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
907 					HT_RX_REORDER_BUF_TIMEOUT))
908 				goto set_release_timer;
909 
910 			/* don't leave incomplete A-MSDUs around */
911 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
912 			     i = (i + 1) % tid_agg_rx->buf_size)
913 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
914 
915 			ht_dbg_ratelimited(sdata,
916 					   "release an RX reorder frame due to timeout on earlier frames\n");
917 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
918 							frames);
919 
920 			/*
921 			 * Increment the head seq# also for the skipped slots.
922 			 */
923 			tid_agg_rx->head_seq_num =
924 				(tid_agg_rx->head_seq_num +
925 				 skipped) & IEEE80211_SN_MASK;
926 			skipped = 0;
927 		}
928 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
929 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
930 						frames);
931 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
932 	}
933 
934 	if (tid_agg_rx->stored_mpdu_num) {
935 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
936 
937 		for (; j != (index - 1) % tid_agg_rx->buf_size;
938 		     j = (j + 1) % tid_agg_rx->buf_size) {
939 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
940 				break;
941 		}
942 
943  set_release_timer:
944 
945 		if (!tid_agg_rx->removed)
946 			mod_timer(&tid_agg_rx->reorder_timer,
947 				  tid_agg_rx->reorder_time[j] + 1 +
948 				  HT_RX_REORDER_BUF_TIMEOUT);
949 	} else {
950 		del_timer(&tid_agg_rx->reorder_timer);
951 	}
952 }
953 
954 /*
955  * As this function belongs to the RX path it must be under
956  * rcu_read_lock protection. It returns false if the frame
957  * can be processed immediately, true if it was consumed.
958  */
959 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
960 					     struct tid_ampdu_rx *tid_agg_rx,
961 					     struct sk_buff *skb,
962 					     struct sk_buff_head *frames)
963 {
964 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
965 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
966 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
967 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
968 	u16 head_seq_num, buf_size;
969 	int index;
970 	bool ret = true;
971 
972 	spin_lock(&tid_agg_rx->reorder_lock);
973 
974 	/*
975 	 * Offloaded BA sessions have no known starting sequence number so pick
976 	 * one from first Rxed frame for this tid after BA was started.
977 	 */
978 	if (unlikely(tid_agg_rx->auto_seq)) {
979 		tid_agg_rx->auto_seq = false;
980 		tid_agg_rx->ssn = mpdu_seq_num;
981 		tid_agg_rx->head_seq_num = mpdu_seq_num;
982 	}
983 
984 	buf_size = tid_agg_rx->buf_size;
985 	head_seq_num = tid_agg_rx->head_seq_num;
986 
987 	/* frame with out of date sequence number */
988 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
989 		dev_kfree_skb(skb);
990 		goto out;
991 	}
992 
993 	/*
994 	 * If frame the sequence number exceeds our buffering window
995 	 * size release some previous frames to make room for this one.
996 	 */
997 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
998 		head_seq_num = ieee80211_sn_inc(
999 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1000 		/* release stored frames up to new head to stack */
1001 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1002 						 head_seq_num, frames);
1003 	}
1004 
1005 	/* Now the new frame is always in the range of the reordering buffer */
1006 
1007 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1008 
1009 	/* check if we already stored this frame */
1010 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1011 		dev_kfree_skb(skb);
1012 		goto out;
1013 	}
1014 
1015 	/*
1016 	 * If the current MPDU is in the right order and nothing else
1017 	 * is stored we can process it directly, no need to buffer it.
1018 	 * If it is first but there's something stored, we may be able
1019 	 * to release frames after this one.
1020 	 */
1021 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1022 	    tid_agg_rx->stored_mpdu_num == 0) {
1023 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1024 			tid_agg_rx->head_seq_num =
1025 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1026 		ret = false;
1027 		goto out;
1028 	}
1029 
1030 	/* put the frame in the reordering buffer */
1031 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1032 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1033 		tid_agg_rx->reorder_time[index] = jiffies;
1034 		tid_agg_rx->stored_mpdu_num++;
1035 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1036 	}
1037 
1038  out:
1039 	spin_unlock(&tid_agg_rx->reorder_lock);
1040 	return ret;
1041 }
1042 
1043 /*
1044  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1045  * true if the MPDU was buffered, false if it should be processed.
1046  */
1047 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1048 				       struct sk_buff_head *frames)
1049 {
1050 	struct sk_buff *skb = rx->skb;
1051 	struct ieee80211_local *local = rx->local;
1052 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1053 	struct sta_info *sta = rx->sta;
1054 	struct tid_ampdu_rx *tid_agg_rx;
1055 	u16 sc;
1056 	u8 tid, ack_policy;
1057 
1058 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1059 	    is_multicast_ether_addr(hdr->addr1))
1060 		goto dont_reorder;
1061 
1062 	/*
1063 	 * filter the QoS data rx stream according to
1064 	 * STA/TID and check if this STA/TID is on aggregation
1065 	 */
1066 
1067 	if (!sta)
1068 		goto dont_reorder;
1069 
1070 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1071 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1072 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1073 
1074 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1075 	if (!tid_agg_rx)
1076 		goto dont_reorder;
1077 
1078 	/* qos null data frames are excluded */
1079 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1080 		goto dont_reorder;
1081 
1082 	/* not part of a BA session */
1083 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1084 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1085 		goto dont_reorder;
1086 
1087 	/* new, potentially un-ordered, ampdu frame - process it */
1088 
1089 	/* reset session timer */
1090 	if (tid_agg_rx->timeout)
1091 		tid_agg_rx->last_rx = jiffies;
1092 
1093 	/* if this mpdu is fragmented - terminate rx aggregation session */
1094 	sc = le16_to_cpu(hdr->seq_ctrl);
1095 	if (sc & IEEE80211_SCTL_FRAG) {
1096 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1097 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1098 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1099 		return;
1100 	}
1101 
1102 	/*
1103 	 * No locking needed -- we will only ever process one
1104 	 * RX packet at a time, and thus own tid_agg_rx. All
1105 	 * other code manipulating it needs to (and does) make
1106 	 * sure that we cannot get to it any more before doing
1107 	 * anything with it.
1108 	 */
1109 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1110 					     frames))
1111 		return;
1112 
1113  dont_reorder:
1114 	__skb_queue_tail(frames, skb);
1115 }
1116 
1117 static ieee80211_rx_result debug_noinline
1118 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1119 {
1120 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1122 
1123 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1124 		return RX_CONTINUE;
1125 
1126 	/*
1127 	 * Drop duplicate 802.11 retransmissions
1128 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1129 	 */
1130 
1131 	if (rx->skb->len < 24)
1132 		return RX_CONTINUE;
1133 
1134 	if (ieee80211_is_ctl(hdr->frame_control) ||
1135 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1136 	    is_multicast_ether_addr(hdr->addr1))
1137 		return RX_CONTINUE;
1138 
1139 	if (!rx->sta)
1140 		return RX_CONTINUE;
1141 
1142 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1143 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1144 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1145 		rx->sta->rx_stats.num_duplicates++;
1146 		return RX_DROP_UNUSABLE;
1147 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1148 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1149 	}
1150 
1151 	return RX_CONTINUE;
1152 }
1153 
1154 static ieee80211_rx_result debug_noinline
1155 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1156 {
1157 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1158 
1159 	/* Drop disallowed frame classes based on STA auth/assoc state;
1160 	 * IEEE 802.11, Chap 5.5.
1161 	 *
1162 	 * mac80211 filters only based on association state, i.e. it drops
1163 	 * Class 3 frames from not associated stations. hostapd sends
1164 	 * deauth/disassoc frames when needed. In addition, hostapd is
1165 	 * responsible for filtering on both auth and assoc states.
1166 	 */
1167 
1168 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1169 		return ieee80211_rx_mesh_check(rx);
1170 
1171 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1172 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1173 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1174 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1175 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1176 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1177 		/*
1178 		 * accept port control frames from the AP even when it's not
1179 		 * yet marked ASSOC to prevent a race where we don't set the
1180 		 * assoc bit quickly enough before it sends the first frame
1181 		 */
1182 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1183 		    ieee80211_is_data_present(hdr->frame_control)) {
1184 			unsigned int hdrlen;
1185 			__be16 ethertype;
1186 
1187 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1188 
1189 			if (rx->skb->len < hdrlen + 8)
1190 				return RX_DROP_MONITOR;
1191 
1192 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1193 			if (ethertype == rx->sdata->control_port_protocol)
1194 				return RX_CONTINUE;
1195 		}
1196 
1197 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1198 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1199 					       hdr->addr2,
1200 					       GFP_ATOMIC))
1201 			return RX_DROP_UNUSABLE;
1202 
1203 		return RX_DROP_MONITOR;
1204 	}
1205 
1206 	return RX_CONTINUE;
1207 }
1208 
1209 
1210 static ieee80211_rx_result debug_noinline
1211 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1212 {
1213 	struct ieee80211_local *local;
1214 	struct ieee80211_hdr *hdr;
1215 	struct sk_buff *skb;
1216 
1217 	local = rx->local;
1218 	skb = rx->skb;
1219 	hdr = (struct ieee80211_hdr *) skb->data;
1220 
1221 	if (!local->pspolling)
1222 		return RX_CONTINUE;
1223 
1224 	if (!ieee80211_has_fromds(hdr->frame_control))
1225 		/* this is not from AP */
1226 		return RX_CONTINUE;
1227 
1228 	if (!ieee80211_is_data(hdr->frame_control))
1229 		return RX_CONTINUE;
1230 
1231 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1232 		/* AP has no more frames buffered for us */
1233 		local->pspolling = false;
1234 		return RX_CONTINUE;
1235 	}
1236 
1237 	/* more data bit is set, let's request a new frame from the AP */
1238 	ieee80211_send_pspoll(local, rx->sdata);
1239 
1240 	return RX_CONTINUE;
1241 }
1242 
1243 static void sta_ps_start(struct sta_info *sta)
1244 {
1245 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1246 	struct ieee80211_local *local = sdata->local;
1247 	struct ps_data *ps;
1248 	int tid;
1249 
1250 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1251 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1252 		ps = &sdata->bss->ps;
1253 	else
1254 		return;
1255 
1256 	atomic_inc(&ps->num_sta_ps);
1257 	set_sta_flag(sta, WLAN_STA_PS_STA);
1258 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1259 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1260 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1261 	       sta->sta.addr, sta->sta.aid);
1262 
1263 	ieee80211_clear_fast_xmit(sta);
1264 
1265 	if (!sta->sta.txq[0])
1266 		return;
1267 
1268 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1269 		struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1270 
1271 		if (!skb_queue_len(&txqi->queue))
1272 			set_bit(tid, &sta->txq_buffered_tids);
1273 		else
1274 			clear_bit(tid, &sta->txq_buffered_tids);
1275 	}
1276 }
1277 
1278 static void sta_ps_end(struct sta_info *sta)
1279 {
1280 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1281 	       sta->sta.addr, sta->sta.aid);
1282 
1283 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1284 		/*
1285 		 * Clear the flag only if the other one is still set
1286 		 * so that the TX path won't start TX'ing new frames
1287 		 * directly ... In the case that the driver flag isn't
1288 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1289 		 */
1290 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1291 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1292 		       sta->sta.addr, sta->sta.aid);
1293 		return;
1294 	}
1295 
1296 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1297 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1298 	ieee80211_sta_ps_deliver_wakeup(sta);
1299 }
1300 
1301 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1302 {
1303 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1304 	bool in_ps;
1305 
1306 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1307 
1308 	/* Don't let the same PS state be set twice */
1309 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1310 	if ((start && in_ps) || (!start && !in_ps))
1311 		return -EINVAL;
1312 
1313 	if (start)
1314 		sta_ps_start(sta);
1315 	else
1316 		sta_ps_end(sta);
1317 
1318 	return 0;
1319 }
1320 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1321 
1322 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1323 {
1324 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1325 
1326 	if (test_sta_flag(sta, WLAN_STA_SP))
1327 		return;
1328 
1329 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1330 		ieee80211_sta_ps_deliver_poll_response(sta);
1331 	else
1332 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1333 }
1334 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1335 
1336 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1337 {
1338 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1339 	u8 ac = ieee802_1d_to_ac[tid & 7];
1340 
1341 	/*
1342 	 * If this AC is not trigger-enabled do nothing.
1343 	 *
1344 	 * NB: This could/should check a separate bitmap of trigger-
1345 	 * enabled queues, but for now we only implement uAPSD w/o
1346 	 * TSPEC changes to the ACs, so they're always the same.
1347 	 */
1348 	if (!(sta->sta.uapsd_queues & BIT(ac)))
1349 		return;
1350 
1351 	/* if we are in a service period, do nothing */
1352 	if (test_sta_flag(sta, WLAN_STA_SP))
1353 		return;
1354 
1355 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1356 		ieee80211_sta_ps_deliver_uapsd(sta);
1357 	else
1358 		set_sta_flag(sta, WLAN_STA_UAPSD);
1359 }
1360 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1361 
1362 static ieee80211_rx_result debug_noinline
1363 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1364 {
1365 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1366 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1367 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1368 
1369 	if (!rx->sta)
1370 		return RX_CONTINUE;
1371 
1372 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1373 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1374 		return RX_CONTINUE;
1375 
1376 	/*
1377 	 * The device handles station powersave, so don't do anything about
1378 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1379 	 * it to mac80211 since they're handled.)
1380 	 */
1381 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1382 		return RX_CONTINUE;
1383 
1384 	/*
1385 	 * Don't do anything if the station isn't already asleep. In
1386 	 * the uAPSD case, the station will probably be marked asleep,
1387 	 * in the PS-Poll case the station must be confused ...
1388 	 */
1389 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1390 		return RX_CONTINUE;
1391 
1392 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1393 		ieee80211_sta_pspoll(&rx->sta->sta);
1394 
1395 		/* Free PS Poll skb here instead of returning RX_DROP that would
1396 		 * count as an dropped frame. */
1397 		dev_kfree_skb(rx->skb);
1398 
1399 		return RX_QUEUED;
1400 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1401 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1402 		   ieee80211_has_pm(hdr->frame_control) &&
1403 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1404 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1405 		u8 tid;
1406 
1407 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1408 
1409 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1410 	}
1411 
1412 	return RX_CONTINUE;
1413 }
1414 
1415 static ieee80211_rx_result debug_noinline
1416 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1417 {
1418 	struct sta_info *sta = rx->sta;
1419 	struct sk_buff *skb = rx->skb;
1420 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1421 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1422 	int i;
1423 
1424 	if (!sta)
1425 		return RX_CONTINUE;
1426 
1427 	/*
1428 	 * Update last_rx only for IBSS packets which are for the current
1429 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1430 	 * current IBSS network alive in cases where other STAs start
1431 	 * using different BSSID. This will also give the station another
1432 	 * chance to restart the authentication/authorization in case
1433 	 * something went wrong the first time.
1434 	 */
1435 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1436 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1437 						NL80211_IFTYPE_ADHOC);
1438 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1439 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1440 			sta->rx_stats.last_rx = jiffies;
1441 			if (ieee80211_is_data(hdr->frame_control) &&
1442 			    !is_multicast_ether_addr(hdr->addr1))
1443 				sta->rx_stats.last_rate =
1444 					sta_stats_encode_rate(status);
1445 		}
1446 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1447 		sta->rx_stats.last_rx = jiffies;
1448 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1449 		/*
1450 		 * Mesh beacons will update last_rx when if they are found to
1451 		 * match the current local configuration when processed.
1452 		 */
1453 		sta->rx_stats.last_rx = jiffies;
1454 		if (ieee80211_is_data(hdr->frame_control))
1455 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1456 	}
1457 
1458 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1459 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1460 
1461 	sta->rx_stats.fragments++;
1462 
1463 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1464 	sta->rx_stats.bytes += rx->skb->len;
1465 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1466 
1467 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1468 		sta->rx_stats.last_signal = status->signal;
1469 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1470 	}
1471 
1472 	if (status->chains) {
1473 		sta->rx_stats.chains = status->chains;
1474 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1475 			int signal = status->chain_signal[i];
1476 
1477 			if (!(status->chains & BIT(i)))
1478 				continue;
1479 
1480 			sta->rx_stats.chain_signal_last[i] = signal;
1481 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1482 					-signal);
1483 		}
1484 	}
1485 
1486 	/*
1487 	 * Change STA power saving mode only at the end of a frame
1488 	 * exchange sequence.
1489 	 */
1490 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1491 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1492 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1493 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1494 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1495 	    /* PM bit is only checked in frames where it isn't reserved,
1496 	     * in AP mode it's reserved in non-bufferable management frames
1497 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1498 	     */
1499 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1500 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1501 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1502 			if (!ieee80211_has_pm(hdr->frame_control))
1503 				sta_ps_end(sta);
1504 		} else {
1505 			if (ieee80211_has_pm(hdr->frame_control))
1506 				sta_ps_start(sta);
1507 		}
1508 	}
1509 
1510 	/* mesh power save support */
1511 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1512 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1513 
1514 	/*
1515 	 * Drop (qos-)data::nullfunc frames silently, since they
1516 	 * are used only to control station power saving mode.
1517 	 */
1518 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1519 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1520 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1521 
1522 		/*
1523 		 * If we receive a 4-addr nullfunc frame from a STA
1524 		 * that was not moved to a 4-addr STA vlan yet send
1525 		 * the event to userspace and for older hostapd drop
1526 		 * the frame to the monitor interface.
1527 		 */
1528 		if (ieee80211_has_a4(hdr->frame_control) &&
1529 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1530 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1531 		      !rx->sdata->u.vlan.sta))) {
1532 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1533 				cfg80211_rx_unexpected_4addr_frame(
1534 					rx->sdata->dev, sta->sta.addr,
1535 					GFP_ATOMIC);
1536 			return RX_DROP_MONITOR;
1537 		}
1538 		/*
1539 		 * Update counter and free packet here to avoid
1540 		 * counting this as a dropped packed.
1541 		 */
1542 		sta->rx_stats.packets++;
1543 		dev_kfree_skb(rx->skb);
1544 		return RX_QUEUED;
1545 	}
1546 
1547 	return RX_CONTINUE;
1548 } /* ieee80211_rx_h_sta_process */
1549 
1550 static ieee80211_rx_result debug_noinline
1551 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1552 {
1553 	struct sk_buff *skb = rx->skb;
1554 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1555 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1556 	int keyidx;
1557 	int hdrlen;
1558 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1559 	struct ieee80211_key *sta_ptk = NULL;
1560 	int mmie_keyidx = -1;
1561 	__le16 fc;
1562 	const struct ieee80211_cipher_scheme *cs = NULL;
1563 
1564 	/*
1565 	 * Key selection 101
1566 	 *
1567 	 * There are four types of keys:
1568 	 *  - GTK (group keys)
1569 	 *  - IGTK (group keys for management frames)
1570 	 *  - PTK (pairwise keys)
1571 	 *  - STK (station-to-station pairwise keys)
1572 	 *
1573 	 * When selecting a key, we have to distinguish between multicast
1574 	 * (including broadcast) and unicast frames, the latter can only
1575 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1576 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1577 	 * unicast frames can also use key indices like GTKs. Hence, if we
1578 	 * don't have a PTK/STK we check the key index for a WEP key.
1579 	 *
1580 	 * Note that in a regular BSS, multicast frames are sent by the
1581 	 * AP only, associated stations unicast the frame to the AP first
1582 	 * which then multicasts it on their behalf.
1583 	 *
1584 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1585 	 * with each station, that is something we don't currently handle.
1586 	 * The spec seems to expect that one negotiates the same key with
1587 	 * every station but there's no such requirement; VLANs could be
1588 	 * possible.
1589 	 */
1590 
1591 	/* start without a key */
1592 	rx->key = NULL;
1593 	fc = hdr->frame_control;
1594 
1595 	if (rx->sta) {
1596 		int keyid = rx->sta->ptk_idx;
1597 
1598 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1599 			cs = rx->sta->cipher_scheme;
1600 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1601 			if (unlikely(keyid < 0))
1602 				return RX_DROP_UNUSABLE;
1603 		}
1604 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1605 	}
1606 
1607 	if (!ieee80211_has_protected(fc))
1608 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1609 
1610 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1611 		rx->key = sta_ptk;
1612 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1613 		    (status->flag & RX_FLAG_IV_STRIPPED))
1614 			return RX_CONTINUE;
1615 		/* Skip decryption if the frame is not protected. */
1616 		if (!ieee80211_has_protected(fc))
1617 			return RX_CONTINUE;
1618 	} else if (mmie_keyidx >= 0) {
1619 		/* Broadcast/multicast robust management frame / BIP */
1620 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1621 		    (status->flag & RX_FLAG_IV_STRIPPED))
1622 			return RX_CONTINUE;
1623 
1624 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1625 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1626 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1627 		if (rx->sta)
1628 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1629 		if (!rx->key)
1630 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1631 	} else if (!ieee80211_has_protected(fc)) {
1632 		/*
1633 		 * The frame was not protected, so skip decryption. However, we
1634 		 * need to set rx->key if there is a key that could have been
1635 		 * used so that the frame may be dropped if encryption would
1636 		 * have been expected.
1637 		 */
1638 		struct ieee80211_key *key = NULL;
1639 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1640 		int i;
1641 
1642 		if (ieee80211_is_mgmt(fc) &&
1643 		    is_multicast_ether_addr(hdr->addr1) &&
1644 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1645 			rx->key = key;
1646 		else {
1647 			if (rx->sta) {
1648 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1649 					key = rcu_dereference(rx->sta->gtk[i]);
1650 					if (key)
1651 						break;
1652 				}
1653 			}
1654 			if (!key) {
1655 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1656 					key = rcu_dereference(sdata->keys[i]);
1657 					if (key)
1658 						break;
1659 				}
1660 			}
1661 			if (key)
1662 				rx->key = key;
1663 		}
1664 		return RX_CONTINUE;
1665 	} else {
1666 		u8 keyid;
1667 
1668 		/*
1669 		 * The device doesn't give us the IV so we won't be
1670 		 * able to look up the key. That's ok though, we
1671 		 * don't need to decrypt the frame, we just won't
1672 		 * be able to keep statistics accurate.
1673 		 * Except for key threshold notifications, should
1674 		 * we somehow allow the driver to tell us which key
1675 		 * the hardware used if this flag is set?
1676 		 */
1677 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1678 		    (status->flag & RX_FLAG_IV_STRIPPED))
1679 			return RX_CONTINUE;
1680 
1681 		hdrlen = ieee80211_hdrlen(fc);
1682 
1683 		if (cs) {
1684 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1685 
1686 			if (unlikely(keyidx < 0))
1687 				return RX_DROP_UNUSABLE;
1688 		} else {
1689 			if (rx->skb->len < 8 + hdrlen)
1690 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1691 			/*
1692 			 * no need to call ieee80211_wep_get_keyidx,
1693 			 * it verifies a bunch of things we've done already
1694 			 */
1695 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1696 			keyidx = keyid >> 6;
1697 		}
1698 
1699 		/* check per-station GTK first, if multicast packet */
1700 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1701 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1702 
1703 		/* if not found, try default key */
1704 		if (!rx->key) {
1705 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1706 
1707 			/*
1708 			 * RSNA-protected unicast frames should always be
1709 			 * sent with pairwise or station-to-station keys,
1710 			 * but for WEP we allow using a key index as well.
1711 			 */
1712 			if (rx->key &&
1713 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1714 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1715 			    !is_multicast_ether_addr(hdr->addr1))
1716 				rx->key = NULL;
1717 		}
1718 	}
1719 
1720 	if (rx->key) {
1721 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1722 			return RX_DROP_MONITOR;
1723 
1724 		/* TODO: add threshold stuff again */
1725 	} else {
1726 		return RX_DROP_MONITOR;
1727 	}
1728 
1729 	switch (rx->key->conf.cipher) {
1730 	case WLAN_CIPHER_SUITE_WEP40:
1731 	case WLAN_CIPHER_SUITE_WEP104:
1732 		result = ieee80211_crypto_wep_decrypt(rx);
1733 		break;
1734 	case WLAN_CIPHER_SUITE_TKIP:
1735 		result = ieee80211_crypto_tkip_decrypt(rx);
1736 		break;
1737 	case WLAN_CIPHER_SUITE_CCMP:
1738 		result = ieee80211_crypto_ccmp_decrypt(
1739 			rx, IEEE80211_CCMP_MIC_LEN);
1740 		break;
1741 	case WLAN_CIPHER_SUITE_CCMP_256:
1742 		result = ieee80211_crypto_ccmp_decrypt(
1743 			rx, IEEE80211_CCMP_256_MIC_LEN);
1744 		break;
1745 	case WLAN_CIPHER_SUITE_AES_CMAC:
1746 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1747 		break;
1748 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1749 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1750 		break;
1751 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1752 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1753 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1754 		break;
1755 	case WLAN_CIPHER_SUITE_GCMP:
1756 	case WLAN_CIPHER_SUITE_GCMP_256:
1757 		result = ieee80211_crypto_gcmp_decrypt(rx);
1758 		break;
1759 	default:
1760 		result = ieee80211_crypto_hw_decrypt(rx);
1761 	}
1762 
1763 	/* the hdr variable is invalid after the decrypt handlers */
1764 
1765 	/* either the frame has been decrypted or will be dropped */
1766 	status->flag |= RX_FLAG_DECRYPTED;
1767 
1768 	return result;
1769 }
1770 
1771 static inline struct ieee80211_fragment_entry *
1772 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1773 			 unsigned int frag, unsigned int seq, int rx_queue,
1774 			 struct sk_buff **skb)
1775 {
1776 	struct ieee80211_fragment_entry *entry;
1777 
1778 	entry = &sdata->fragments[sdata->fragment_next++];
1779 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1780 		sdata->fragment_next = 0;
1781 
1782 	if (!skb_queue_empty(&entry->skb_list))
1783 		__skb_queue_purge(&entry->skb_list);
1784 
1785 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1786 	*skb = NULL;
1787 	entry->first_frag_time = jiffies;
1788 	entry->seq = seq;
1789 	entry->rx_queue = rx_queue;
1790 	entry->last_frag = frag;
1791 	entry->check_sequential_pn = false;
1792 	entry->extra_len = 0;
1793 
1794 	return entry;
1795 }
1796 
1797 static inline struct ieee80211_fragment_entry *
1798 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1799 			  unsigned int frag, unsigned int seq,
1800 			  int rx_queue, struct ieee80211_hdr *hdr)
1801 {
1802 	struct ieee80211_fragment_entry *entry;
1803 	int i, idx;
1804 
1805 	idx = sdata->fragment_next;
1806 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1807 		struct ieee80211_hdr *f_hdr;
1808 
1809 		idx--;
1810 		if (idx < 0)
1811 			idx = IEEE80211_FRAGMENT_MAX - 1;
1812 
1813 		entry = &sdata->fragments[idx];
1814 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1815 		    entry->rx_queue != rx_queue ||
1816 		    entry->last_frag + 1 != frag)
1817 			continue;
1818 
1819 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1820 
1821 		/*
1822 		 * Check ftype and addresses are equal, else check next fragment
1823 		 */
1824 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1825 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1826 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1827 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1828 			continue;
1829 
1830 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1831 			__skb_queue_purge(&entry->skb_list);
1832 			continue;
1833 		}
1834 		return entry;
1835 	}
1836 
1837 	return NULL;
1838 }
1839 
1840 static ieee80211_rx_result debug_noinline
1841 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1842 {
1843 	struct ieee80211_hdr *hdr;
1844 	u16 sc;
1845 	__le16 fc;
1846 	unsigned int frag, seq;
1847 	struct ieee80211_fragment_entry *entry;
1848 	struct sk_buff *skb;
1849 	struct ieee80211_rx_status *status;
1850 
1851 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1852 	fc = hdr->frame_control;
1853 
1854 	if (ieee80211_is_ctl(fc))
1855 		return RX_CONTINUE;
1856 
1857 	sc = le16_to_cpu(hdr->seq_ctrl);
1858 	frag = sc & IEEE80211_SCTL_FRAG;
1859 
1860 	if (is_multicast_ether_addr(hdr->addr1)) {
1861 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1862 		goto out_no_led;
1863 	}
1864 
1865 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1866 		goto out;
1867 
1868 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1869 
1870 	if (skb_linearize(rx->skb))
1871 		return RX_DROP_UNUSABLE;
1872 
1873 	/*
1874 	 *  skb_linearize() might change the skb->data and
1875 	 *  previously cached variables (in this case, hdr) need to
1876 	 *  be refreshed with the new data.
1877 	 */
1878 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1879 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1880 
1881 	if (frag == 0) {
1882 		/* This is the first fragment of a new frame. */
1883 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1884 						 rx->seqno_idx, &(rx->skb));
1885 		if (rx->key &&
1886 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1887 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1888 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1889 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1890 		    ieee80211_has_protected(fc)) {
1891 			int queue = rx->security_idx;
1892 
1893 			/* Store CCMP/GCMP PN so that we can verify that the
1894 			 * next fragment has a sequential PN value.
1895 			 */
1896 			entry->check_sequential_pn = true;
1897 			memcpy(entry->last_pn,
1898 			       rx->key->u.ccmp.rx_pn[queue],
1899 			       IEEE80211_CCMP_PN_LEN);
1900 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
1901 					      u.ccmp.rx_pn) !=
1902 				     offsetof(struct ieee80211_key,
1903 					      u.gcmp.rx_pn));
1904 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1905 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
1906 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1907 				     IEEE80211_GCMP_PN_LEN);
1908 		}
1909 		return RX_QUEUED;
1910 	}
1911 
1912 	/* This is a fragment for a frame that should already be pending in
1913 	 * fragment cache. Add this fragment to the end of the pending entry.
1914 	 */
1915 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1916 					  rx->seqno_idx, hdr);
1917 	if (!entry) {
1918 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1919 		return RX_DROP_MONITOR;
1920 	}
1921 
1922 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
1923 	 *  MPDU PN values are not incrementing in steps of 1."
1924 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1925 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1926 	 */
1927 	if (entry->check_sequential_pn) {
1928 		int i;
1929 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1930 		int queue;
1931 
1932 		if (!rx->key ||
1933 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1934 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1935 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1936 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1937 			return RX_DROP_UNUSABLE;
1938 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1939 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1940 			pn[i]++;
1941 			if (pn[i])
1942 				break;
1943 		}
1944 		queue = rx->security_idx;
1945 		rpn = rx->key->u.ccmp.rx_pn[queue];
1946 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1947 			return RX_DROP_UNUSABLE;
1948 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1949 	}
1950 
1951 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1952 	__skb_queue_tail(&entry->skb_list, rx->skb);
1953 	entry->last_frag = frag;
1954 	entry->extra_len += rx->skb->len;
1955 	if (ieee80211_has_morefrags(fc)) {
1956 		rx->skb = NULL;
1957 		return RX_QUEUED;
1958 	}
1959 
1960 	rx->skb = __skb_dequeue(&entry->skb_list);
1961 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1962 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1963 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1964 					      GFP_ATOMIC))) {
1965 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1966 			__skb_queue_purge(&entry->skb_list);
1967 			return RX_DROP_UNUSABLE;
1968 		}
1969 	}
1970 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1971 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1972 		dev_kfree_skb(skb);
1973 	}
1974 
1975 	/* Complete frame has been reassembled - process it now */
1976 	status = IEEE80211_SKB_RXCB(rx->skb);
1977 
1978  out:
1979 	ieee80211_led_rx(rx->local);
1980  out_no_led:
1981 	if (rx->sta)
1982 		rx->sta->rx_stats.packets++;
1983 	return RX_CONTINUE;
1984 }
1985 
1986 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1987 {
1988 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1989 		return -EACCES;
1990 
1991 	return 0;
1992 }
1993 
1994 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1995 {
1996 	struct sk_buff *skb = rx->skb;
1997 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1998 
1999 	/*
2000 	 * Pass through unencrypted frames if the hardware has
2001 	 * decrypted them already.
2002 	 */
2003 	if (status->flag & RX_FLAG_DECRYPTED)
2004 		return 0;
2005 
2006 	/* Drop unencrypted frames if key is set. */
2007 	if (unlikely(!ieee80211_has_protected(fc) &&
2008 		     !ieee80211_is_nullfunc(fc) &&
2009 		     ieee80211_is_data(fc) && rx->key))
2010 		return -EACCES;
2011 
2012 	return 0;
2013 }
2014 
2015 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2016 {
2017 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2018 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2019 	__le16 fc = hdr->frame_control;
2020 
2021 	/*
2022 	 * Pass through unencrypted frames if the hardware has
2023 	 * decrypted them already.
2024 	 */
2025 	if (status->flag & RX_FLAG_DECRYPTED)
2026 		return 0;
2027 
2028 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2029 		if (unlikely(!ieee80211_has_protected(fc) &&
2030 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2031 			     rx->key)) {
2032 			if (ieee80211_is_deauth(fc) ||
2033 			    ieee80211_is_disassoc(fc))
2034 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2035 							     rx->skb->data,
2036 							     rx->skb->len);
2037 			return -EACCES;
2038 		}
2039 		/* BIP does not use Protected field, so need to check MMIE */
2040 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2041 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2042 			if (ieee80211_is_deauth(fc) ||
2043 			    ieee80211_is_disassoc(fc))
2044 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2045 							     rx->skb->data,
2046 							     rx->skb->len);
2047 			return -EACCES;
2048 		}
2049 		/*
2050 		 * When using MFP, Action frames are not allowed prior to
2051 		 * having configured keys.
2052 		 */
2053 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2054 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2055 			return -EACCES;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static int
2062 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2063 {
2064 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2065 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2066 	bool check_port_control = false;
2067 	struct ethhdr *ehdr;
2068 	int ret;
2069 
2070 	*port_control = false;
2071 	if (ieee80211_has_a4(hdr->frame_control) &&
2072 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2073 		return -1;
2074 
2075 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2076 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2077 
2078 		if (!sdata->u.mgd.use_4addr)
2079 			return -1;
2080 		else
2081 			check_port_control = true;
2082 	}
2083 
2084 	if (is_multicast_ether_addr(hdr->addr1) &&
2085 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2086 		return -1;
2087 
2088 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2089 	if (ret < 0)
2090 		return ret;
2091 
2092 	ehdr = (struct ethhdr *) rx->skb->data;
2093 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2094 		*port_control = true;
2095 	else if (check_port_control)
2096 		return -1;
2097 
2098 	return 0;
2099 }
2100 
2101 /*
2102  * requires that rx->skb is a frame with ethernet header
2103  */
2104 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2105 {
2106 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2107 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2108 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2109 
2110 	/*
2111 	 * Allow EAPOL frames to us/the PAE group address regardless
2112 	 * of whether the frame was encrypted or not.
2113 	 */
2114 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2115 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2116 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2117 		return true;
2118 
2119 	if (ieee80211_802_1x_port_control(rx) ||
2120 	    ieee80211_drop_unencrypted(rx, fc))
2121 		return false;
2122 
2123 	return true;
2124 }
2125 
2126 /*
2127  * requires that rx->skb is a frame with ethernet header
2128  */
2129 static void
2130 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2131 {
2132 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2133 	struct net_device *dev = sdata->dev;
2134 	struct sk_buff *skb, *xmit_skb;
2135 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2136 	struct sta_info *dsta;
2137 
2138 	skb = rx->skb;
2139 	xmit_skb = NULL;
2140 
2141 	ieee80211_rx_stats(dev, skb->len);
2142 
2143 	if (rx->sta) {
2144 		/* The seqno index has the same property as needed
2145 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2146 		 * for non-QoS-data frames. Here we know it's a data
2147 		 * frame, so count MSDUs.
2148 		 */
2149 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2150 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2151 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2152 	}
2153 
2154 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2155 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2156 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2157 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2158 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2159 			/*
2160 			 * send multicast frames both to higher layers in
2161 			 * local net stack and back to the wireless medium
2162 			 */
2163 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2164 			if (!xmit_skb)
2165 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2166 						    dev->name);
2167 		} else {
2168 			dsta = sta_info_get(sdata, skb->data);
2169 			if (dsta) {
2170 				/*
2171 				 * The destination station is associated to
2172 				 * this AP (in this VLAN), so send the frame
2173 				 * directly to it and do not pass it to local
2174 				 * net stack.
2175 				 */
2176 				xmit_skb = skb;
2177 				skb = NULL;
2178 			}
2179 		}
2180 	}
2181 
2182 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2183 	if (skb) {
2184 		/* 'align' will only take the values 0 or 2 here since all
2185 		 * frames are required to be aligned to 2-byte boundaries
2186 		 * when being passed to mac80211; the code here works just
2187 		 * as well if that isn't true, but mac80211 assumes it can
2188 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2189 		 */
2190 		int align;
2191 
2192 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2193 		if (align) {
2194 			if (WARN_ON(skb_headroom(skb) < 3)) {
2195 				dev_kfree_skb(skb);
2196 				skb = NULL;
2197 			} else {
2198 				u8 *data = skb->data;
2199 				size_t len = skb_headlen(skb);
2200 				skb->data -= align;
2201 				memmove(skb->data, data, len);
2202 				skb_set_tail_pointer(skb, len);
2203 			}
2204 		}
2205 	}
2206 #endif
2207 
2208 	if (skb) {
2209 		/* deliver to local stack */
2210 		skb->protocol = eth_type_trans(skb, dev);
2211 		memset(skb->cb, 0, sizeof(skb->cb));
2212 		if (rx->napi)
2213 			napi_gro_receive(rx->napi, skb);
2214 		else
2215 			netif_receive_skb(skb);
2216 	}
2217 
2218 	if (xmit_skb) {
2219 		/*
2220 		 * Send to wireless media and increase priority by 256 to
2221 		 * keep the received priority instead of reclassifying
2222 		 * the frame (see cfg80211_classify8021d).
2223 		 */
2224 		xmit_skb->priority += 256;
2225 		xmit_skb->protocol = htons(ETH_P_802_3);
2226 		skb_reset_network_header(xmit_skb);
2227 		skb_reset_mac_header(xmit_skb);
2228 		dev_queue_xmit(xmit_skb);
2229 	}
2230 }
2231 
2232 static ieee80211_rx_result debug_noinline
2233 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2234 {
2235 	struct net_device *dev = rx->sdata->dev;
2236 	struct sk_buff *skb = rx->skb;
2237 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2238 	__le16 fc = hdr->frame_control;
2239 	struct sk_buff_head frame_list;
2240 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2241 
2242 	if (unlikely(!ieee80211_is_data(fc)))
2243 		return RX_CONTINUE;
2244 
2245 	if (unlikely(!ieee80211_is_data_present(fc)))
2246 		return RX_DROP_MONITOR;
2247 
2248 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2249 		return RX_CONTINUE;
2250 
2251 	if (ieee80211_has_a4(hdr->frame_control) &&
2252 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2253 	    !rx->sdata->u.vlan.sta)
2254 		return RX_DROP_UNUSABLE;
2255 
2256 	if (is_multicast_ether_addr(hdr->addr1) &&
2257 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2258 	      rx->sdata->u.vlan.sta) ||
2259 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2260 	      rx->sdata->u.mgd.use_4addr)))
2261 		return RX_DROP_UNUSABLE;
2262 
2263 	skb->dev = dev;
2264 	__skb_queue_head_init(&frame_list);
2265 
2266 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2267 				 rx->sdata->vif.type,
2268 				 rx->local->hw.extra_tx_headroom, true);
2269 
2270 	while (!skb_queue_empty(&frame_list)) {
2271 		rx->skb = __skb_dequeue(&frame_list);
2272 
2273 		if (!ieee80211_frame_allowed(rx, fc)) {
2274 			dev_kfree_skb(rx->skb);
2275 			continue;
2276 		}
2277 
2278 		ieee80211_deliver_skb(rx);
2279 	}
2280 
2281 	return RX_QUEUED;
2282 }
2283 
2284 #ifdef CONFIG_MAC80211_MESH
2285 static ieee80211_rx_result
2286 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2287 {
2288 	struct ieee80211_hdr *fwd_hdr, *hdr;
2289 	struct ieee80211_tx_info *info;
2290 	struct ieee80211s_hdr *mesh_hdr;
2291 	struct sk_buff *skb = rx->skb, *fwd_skb;
2292 	struct ieee80211_local *local = rx->local;
2293 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2294 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2295 	u16 ac, q, hdrlen;
2296 
2297 	hdr = (struct ieee80211_hdr *) skb->data;
2298 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2299 
2300 	/* make sure fixed part of mesh header is there, also checks skb len */
2301 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2302 		return RX_DROP_MONITOR;
2303 
2304 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2305 
2306 	/* make sure full mesh header is there, also checks skb len */
2307 	if (!pskb_may_pull(rx->skb,
2308 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2309 		return RX_DROP_MONITOR;
2310 
2311 	/* reload pointers */
2312 	hdr = (struct ieee80211_hdr *) skb->data;
2313 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2314 
2315 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2316 		return RX_DROP_MONITOR;
2317 
2318 	/* frame is in RMC, don't forward */
2319 	if (ieee80211_is_data(hdr->frame_control) &&
2320 	    is_multicast_ether_addr(hdr->addr1) &&
2321 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2322 		return RX_DROP_MONITOR;
2323 
2324 	if (!ieee80211_is_data(hdr->frame_control))
2325 		return RX_CONTINUE;
2326 
2327 	if (!mesh_hdr->ttl)
2328 		return RX_DROP_MONITOR;
2329 
2330 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2331 		struct mesh_path *mppath;
2332 		char *proxied_addr;
2333 		char *mpp_addr;
2334 
2335 		if (is_multicast_ether_addr(hdr->addr1)) {
2336 			mpp_addr = hdr->addr3;
2337 			proxied_addr = mesh_hdr->eaddr1;
2338 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2339 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2340 			mpp_addr = hdr->addr4;
2341 			proxied_addr = mesh_hdr->eaddr2;
2342 		} else {
2343 			return RX_DROP_MONITOR;
2344 		}
2345 
2346 		rcu_read_lock();
2347 		mppath = mpp_path_lookup(sdata, proxied_addr);
2348 		if (!mppath) {
2349 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2350 		} else {
2351 			spin_lock_bh(&mppath->state_lock);
2352 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2353 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2354 			mppath->exp_time = jiffies;
2355 			spin_unlock_bh(&mppath->state_lock);
2356 		}
2357 		rcu_read_unlock();
2358 	}
2359 
2360 	/* Frame has reached destination.  Don't forward */
2361 	if (!is_multicast_ether_addr(hdr->addr1) &&
2362 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2363 		return RX_CONTINUE;
2364 
2365 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2366 	q = sdata->vif.hw_queue[ac];
2367 	if (ieee80211_queue_stopped(&local->hw, q)) {
2368 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2369 		return RX_DROP_MONITOR;
2370 	}
2371 	skb_set_queue_mapping(skb, q);
2372 
2373 	if (!--mesh_hdr->ttl) {
2374 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2375 		goto out;
2376 	}
2377 
2378 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2379 		goto out;
2380 
2381 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2382 	if (!fwd_skb) {
2383 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2384 				    sdata->name);
2385 		goto out;
2386 	}
2387 
2388 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2389 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2390 	info = IEEE80211_SKB_CB(fwd_skb);
2391 	memset(info, 0, sizeof(*info));
2392 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2393 	info->control.vif = &rx->sdata->vif;
2394 	info->control.jiffies = jiffies;
2395 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2396 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2397 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2398 		/* update power mode indication when forwarding */
2399 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2400 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2401 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2402 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2403 	} else {
2404 		/* unable to resolve next hop */
2405 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2406 				   fwd_hdr->addr3, 0,
2407 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2408 				   fwd_hdr->addr2);
2409 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2410 		kfree_skb(fwd_skb);
2411 		return RX_DROP_MONITOR;
2412 	}
2413 
2414 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2415 	ieee80211_add_pending_skb(local, fwd_skb);
2416  out:
2417 	if (is_multicast_ether_addr(hdr->addr1))
2418 		return RX_CONTINUE;
2419 	return RX_DROP_MONITOR;
2420 }
2421 #endif
2422 
2423 static ieee80211_rx_result debug_noinline
2424 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2425 {
2426 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2427 	struct ieee80211_local *local = rx->local;
2428 	struct net_device *dev = sdata->dev;
2429 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2430 	__le16 fc = hdr->frame_control;
2431 	bool port_control;
2432 	int err;
2433 
2434 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2435 		return RX_CONTINUE;
2436 
2437 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2438 		return RX_DROP_MONITOR;
2439 
2440 	/*
2441 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2442 	 * also drop the frame to cooked monitor interfaces.
2443 	 */
2444 	if (ieee80211_has_a4(hdr->frame_control) &&
2445 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2446 		if (rx->sta &&
2447 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2448 			cfg80211_rx_unexpected_4addr_frame(
2449 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2450 		return RX_DROP_MONITOR;
2451 	}
2452 
2453 	err = __ieee80211_data_to_8023(rx, &port_control);
2454 	if (unlikely(err))
2455 		return RX_DROP_UNUSABLE;
2456 
2457 	if (!ieee80211_frame_allowed(rx, fc))
2458 		return RX_DROP_MONITOR;
2459 
2460 	/* directly handle TDLS channel switch requests/responses */
2461 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2462 						cpu_to_be16(ETH_P_TDLS))) {
2463 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2464 
2465 		if (pskb_may_pull(rx->skb,
2466 				  offsetof(struct ieee80211_tdls_data, u)) &&
2467 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2468 		    tf->category == WLAN_CATEGORY_TDLS &&
2469 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2470 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2471 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2472 			schedule_work(&local->tdls_chsw_work);
2473 			if (rx->sta)
2474 				rx->sta->rx_stats.packets++;
2475 
2476 			return RX_QUEUED;
2477 		}
2478 	}
2479 
2480 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2481 	    unlikely(port_control) && sdata->bss) {
2482 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2483 				     u.ap);
2484 		dev = sdata->dev;
2485 		rx->sdata = sdata;
2486 	}
2487 
2488 	rx->skb->dev = dev;
2489 
2490 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2491 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2492 	    !is_multicast_ether_addr(
2493 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2494 	    (!local->scanning &&
2495 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2496 		mod_timer(&local->dynamic_ps_timer, jiffies +
2497 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2498 
2499 	ieee80211_deliver_skb(rx);
2500 
2501 	return RX_QUEUED;
2502 }
2503 
2504 static ieee80211_rx_result debug_noinline
2505 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2506 {
2507 	struct sk_buff *skb = rx->skb;
2508 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2509 	struct tid_ampdu_rx *tid_agg_rx;
2510 	u16 start_seq_num;
2511 	u16 tid;
2512 
2513 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2514 		return RX_CONTINUE;
2515 
2516 	if (ieee80211_is_back_req(bar->frame_control)) {
2517 		struct {
2518 			__le16 control, start_seq_num;
2519 		} __packed bar_data;
2520 		struct ieee80211_event event = {
2521 			.type = BAR_RX_EVENT,
2522 		};
2523 
2524 		if (!rx->sta)
2525 			return RX_DROP_MONITOR;
2526 
2527 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2528 				  &bar_data, sizeof(bar_data)))
2529 			return RX_DROP_MONITOR;
2530 
2531 		tid = le16_to_cpu(bar_data.control) >> 12;
2532 
2533 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2534 		if (!tid_agg_rx)
2535 			return RX_DROP_MONITOR;
2536 
2537 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2538 		event.u.ba.tid = tid;
2539 		event.u.ba.ssn = start_seq_num;
2540 		event.u.ba.sta = &rx->sta->sta;
2541 
2542 		/* reset session timer */
2543 		if (tid_agg_rx->timeout)
2544 			mod_timer(&tid_agg_rx->session_timer,
2545 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2546 
2547 		spin_lock(&tid_agg_rx->reorder_lock);
2548 		/* release stored frames up to start of BAR */
2549 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2550 						 start_seq_num, frames);
2551 		spin_unlock(&tid_agg_rx->reorder_lock);
2552 
2553 		drv_event_callback(rx->local, rx->sdata, &event);
2554 
2555 		kfree_skb(skb);
2556 		return RX_QUEUED;
2557 	}
2558 
2559 	/*
2560 	 * After this point, we only want management frames,
2561 	 * so we can drop all remaining control frames to
2562 	 * cooked monitor interfaces.
2563 	 */
2564 	return RX_DROP_MONITOR;
2565 }
2566 
2567 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2568 					   struct ieee80211_mgmt *mgmt,
2569 					   size_t len)
2570 {
2571 	struct ieee80211_local *local = sdata->local;
2572 	struct sk_buff *skb;
2573 	struct ieee80211_mgmt *resp;
2574 
2575 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2576 		/* Not to own unicast address */
2577 		return;
2578 	}
2579 
2580 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2581 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2582 		/* Not from the current AP or not associated yet. */
2583 		return;
2584 	}
2585 
2586 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2587 		/* Too short SA Query request frame */
2588 		return;
2589 	}
2590 
2591 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2592 	if (skb == NULL)
2593 		return;
2594 
2595 	skb_reserve(skb, local->hw.extra_tx_headroom);
2596 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2597 	memset(resp, 0, 24);
2598 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2599 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2600 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2601 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2602 					  IEEE80211_STYPE_ACTION);
2603 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2604 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2605 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2606 	memcpy(resp->u.action.u.sa_query.trans_id,
2607 	       mgmt->u.action.u.sa_query.trans_id,
2608 	       WLAN_SA_QUERY_TR_ID_LEN);
2609 
2610 	ieee80211_tx_skb(sdata, skb);
2611 }
2612 
2613 static ieee80211_rx_result debug_noinline
2614 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2615 {
2616 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2617 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2618 
2619 	/*
2620 	 * From here on, look only at management frames.
2621 	 * Data and control frames are already handled,
2622 	 * and unknown (reserved) frames are useless.
2623 	 */
2624 	if (rx->skb->len < 24)
2625 		return RX_DROP_MONITOR;
2626 
2627 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2628 		return RX_DROP_MONITOR;
2629 
2630 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2631 	    ieee80211_is_beacon(mgmt->frame_control) &&
2632 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2633 		int sig = 0;
2634 
2635 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2636 			sig = status->signal;
2637 
2638 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2639 					    rx->skb->data, rx->skb->len,
2640 					    status->freq, sig);
2641 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2642 	}
2643 
2644 	if (ieee80211_drop_unencrypted_mgmt(rx))
2645 		return RX_DROP_UNUSABLE;
2646 
2647 	return RX_CONTINUE;
2648 }
2649 
2650 static ieee80211_rx_result debug_noinline
2651 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2652 {
2653 	struct ieee80211_local *local = rx->local;
2654 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2655 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2656 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2657 	int len = rx->skb->len;
2658 
2659 	if (!ieee80211_is_action(mgmt->frame_control))
2660 		return RX_CONTINUE;
2661 
2662 	/* drop too small frames */
2663 	if (len < IEEE80211_MIN_ACTION_SIZE)
2664 		return RX_DROP_UNUSABLE;
2665 
2666 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2667 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2668 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2669 		return RX_DROP_UNUSABLE;
2670 
2671 	switch (mgmt->u.action.category) {
2672 	case WLAN_CATEGORY_HT:
2673 		/* reject HT action frames from stations not supporting HT */
2674 		if (!rx->sta->sta.ht_cap.ht_supported)
2675 			goto invalid;
2676 
2677 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2678 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2679 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2680 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2681 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2682 			break;
2683 
2684 		/* verify action & smps_control/chanwidth are present */
2685 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2686 			goto invalid;
2687 
2688 		switch (mgmt->u.action.u.ht_smps.action) {
2689 		case WLAN_HT_ACTION_SMPS: {
2690 			struct ieee80211_supported_band *sband;
2691 			enum ieee80211_smps_mode smps_mode;
2692 
2693 			/* convert to HT capability */
2694 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2695 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2696 				smps_mode = IEEE80211_SMPS_OFF;
2697 				break;
2698 			case WLAN_HT_SMPS_CONTROL_STATIC:
2699 				smps_mode = IEEE80211_SMPS_STATIC;
2700 				break;
2701 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2702 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2703 				break;
2704 			default:
2705 				goto invalid;
2706 			}
2707 
2708 			/* if no change do nothing */
2709 			if (rx->sta->sta.smps_mode == smps_mode)
2710 				goto handled;
2711 			rx->sta->sta.smps_mode = smps_mode;
2712 
2713 			sband = rx->local->hw.wiphy->bands[status->band];
2714 
2715 			rate_control_rate_update(local, sband, rx->sta,
2716 						 IEEE80211_RC_SMPS_CHANGED);
2717 			goto handled;
2718 		}
2719 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2720 			struct ieee80211_supported_band *sband;
2721 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2722 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2723 
2724 			/* If it doesn't support 40 MHz it can't change ... */
2725 			if (!(rx->sta->sta.ht_cap.cap &
2726 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2727 				goto handled;
2728 
2729 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2730 				max_bw = IEEE80211_STA_RX_BW_20;
2731 			else
2732 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2733 
2734 			/* set cur_max_bandwidth and recalc sta bw */
2735 			rx->sta->cur_max_bandwidth = max_bw;
2736 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2737 
2738 			if (rx->sta->sta.bandwidth == new_bw)
2739 				goto handled;
2740 
2741 			rx->sta->sta.bandwidth = new_bw;
2742 			sband = rx->local->hw.wiphy->bands[status->band];
2743 
2744 			rate_control_rate_update(local, sband, rx->sta,
2745 						 IEEE80211_RC_BW_CHANGED);
2746 			goto handled;
2747 		}
2748 		default:
2749 			goto invalid;
2750 		}
2751 
2752 		break;
2753 	case WLAN_CATEGORY_PUBLIC:
2754 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2755 			goto invalid;
2756 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2757 			break;
2758 		if (!rx->sta)
2759 			break;
2760 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2761 			break;
2762 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2763 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2764 			break;
2765 		if (len < offsetof(struct ieee80211_mgmt,
2766 				   u.action.u.ext_chan_switch.variable))
2767 			goto invalid;
2768 		goto queue;
2769 	case WLAN_CATEGORY_VHT:
2770 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2771 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2772 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2773 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2774 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2775 			break;
2776 
2777 		/* verify action code is present */
2778 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2779 			goto invalid;
2780 
2781 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2782 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2783 			u8 opmode;
2784 
2785 			/* verify opmode is present */
2786 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2787 				goto invalid;
2788 
2789 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2790 
2791 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2792 						    opmode, status->band);
2793 			goto handled;
2794 		}
2795 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2796 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2797 				goto invalid;
2798 			goto queue;
2799 		}
2800 		default:
2801 			break;
2802 		}
2803 		break;
2804 	case WLAN_CATEGORY_BACK:
2805 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2806 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2807 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2808 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2809 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2810 			break;
2811 
2812 		/* verify action_code is present */
2813 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2814 			break;
2815 
2816 		switch (mgmt->u.action.u.addba_req.action_code) {
2817 		case WLAN_ACTION_ADDBA_REQ:
2818 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2819 				   sizeof(mgmt->u.action.u.addba_req)))
2820 				goto invalid;
2821 			break;
2822 		case WLAN_ACTION_ADDBA_RESP:
2823 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2824 				   sizeof(mgmt->u.action.u.addba_resp)))
2825 				goto invalid;
2826 			break;
2827 		case WLAN_ACTION_DELBA:
2828 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2829 				   sizeof(mgmt->u.action.u.delba)))
2830 				goto invalid;
2831 			break;
2832 		default:
2833 			goto invalid;
2834 		}
2835 
2836 		goto queue;
2837 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2838 		/* verify action_code is present */
2839 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2840 			break;
2841 
2842 		switch (mgmt->u.action.u.measurement.action_code) {
2843 		case WLAN_ACTION_SPCT_MSR_REQ:
2844 			if (status->band != NL80211_BAND_5GHZ)
2845 				break;
2846 
2847 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2848 				   sizeof(mgmt->u.action.u.measurement)))
2849 				break;
2850 
2851 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2852 				break;
2853 
2854 			ieee80211_process_measurement_req(sdata, mgmt, len);
2855 			goto handled;
2856 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2857 			u8 *bssid;
2858 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2859 				   sizeof(mgmt->u.action.u.chan_switch)))
2860 				break;
2861 
2862 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2863 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2864 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2865 				break;
2866 
2867 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2868 				bssid = sdata->u.mgd.bssid;
2869 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2870 				bssid = sdata->u.ibss.bssid;
2871 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2872 				bssid = mgmt->sa;
2873 			else
2874 				break;
2875 
2876 			if (!ether_addr_equal(mgmt->bssid, bssid))
2877 				break;
2878 
2879 			goto queue;
2880 			}
2881 		}
2882 		break;
2883 	case WLAN_CATEGORY_SA_QUERY:
2884 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2885 			   sizeof(mgmt->u.action.u.sa_query)))
2886 			break;
2887 
2888 		switch (mgmt->u.action.u.sa_query.action) {
2889 		case WLAN_ACTION_SA_QUERY_REQUEST:
2890 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2891 				break;
2892 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2893 			goto handled;
2894 		}
2895 		break;
2896 	case WLAN_CATEGORY_SELF_PROTECTED:
2897 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2898 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2899 			break;
2900 
2901 		switch (mgmt->u.action.u.self_prot.action_code) {
2902 		case WLAN_SP_MESH_PEERING_OPEN:
2903 		case WLAN_SP_MESH_PEERING_CLOSE:
2904 		case WLAN_SP_MESH_PEERING_CONFIRM:
2905 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2906 				goto invalid;
2907 			if (sdata->u.mesh.user_mpm)
2908 				/* userspace handles this frame */
2909 				break;
2910 			goto queue;
2911 		case WLAN_SP_MGK_INFORM:
2912 		case WLAN_SP_MGK_ACK:
2913 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2914 				goto invalid;
2915 			break;
2916 		}
2917 		break;
2918 	case WLAN_CATEGORY_MESH_ACTION:
2919 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2920 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2921 			break;
2922 
2923 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2924 			break;
2925 		if (mesh_action_is_path_sel(mgmt) &&
2926 		    !mesh_path_sel_is_hwmp(sdata))
2927 			break;
2928 		goto queue;
2929 	}
2930 
2931 	return RX_CONTINUE;
2932 
2933  invalid:
2934 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2935 	/* will return in the next handlers */
2936 	return RX_CONTINUE;
2937 
2938  handled:
2939 	if (rx->sta)
2940 		rx->sta->rx_stats.packets++;
2941 	dev_kfree_skb(rx->skb);
2942 	return RX_QUEUED;
2943 
2944  queue:
2945 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2946 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2947 	ieee80211_queue_work(&local->hw, &sdata->work);
2948 	if (rx->sta)
2949 		rx->sta->rx_stats.packets++;
2950 	return RX_QUEUED;
2951 }
2952 
2953 static ieee80211_rx_result debug_noinline
2954 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2955 {
2956 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2957 	int sig = 0;
2958 
2959 	/* skip known-bad action frames and return them in the next handler */
2960 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2961 		return RX_CONTINUE;
2962 
2963 	/*
2964 	 * Getting here means the kernel doesn't know how to handle
2965 	 * it, but maybe userspace does ... include returned frames
2966 	 * so userspace can register for those to know whether ones
2967 	 * it transmitted were processed or returned.
2968 	 */
2969 
2970 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2971 		sig = status->signal;
2972 
2973 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2974 			     rx->skb->data, rx->skb->len, 0)) {
2975 		if (rx->sta)
2976 			rx->sta->rx_stats.packets++;
2977 		dev_kfree_skb(rx->skb);
2978 		return RX_QUEUED;
2979 	}
2980 
2981 	return RX_CONTINUE;
2982 }
2983 
2984 static ieee80211_rx_result debug_noinline
2985 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2986 {
2987 	struct ieee80211_local *local = rx->local;
2988 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2989 	struct sk_buff *nskb;
2990 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2991 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2992 
2993 	if (!ieee80211_is_action(mgmt->frame_control))
2994 		return RX_CONTINUE;
2995 
2996 	/*
2997 	 * For AP mode, hostapd is responsible for handling any action
2998 	 * frames that we didn't handle, including returning unknown
2999 	 * ones. For all other modes we will return them to the sender,
3000 	 * setting the 0x80 bit in the action category, as required by
3001 	 * 802.11-2012 9.24.4.
3002 	 * Newer versions of hostapd shall also use the management frame
3003 	 * registration mechanisms, but older ones still use cooked
3004 	 * monitor interfaces so push all frames there.
3005 	 */
3006 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3007 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3008 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3009 		return RX_DROP_MONITOR;
3010 
3011 	if (is_multicast_ether_addr(mgmt->da))
3012 		return RX_DROP_MONITOR;
3013 
3014 	/* do not return rejected action frames */
3015 	if (mgmt->u.action.category & 0x80)
3016 		return RX_DROP_UNUSABLE;
3017 
3018 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3019 			       GFP_ATOMIC);
3020 	if (nskb) {
3021 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3022 
3023 		nmgmt->u.action.category |= 0x80;
3024 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3025 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3026 
3027 		memset(nskb->cb, 0, sizeof(nskb->cb));
3028 
3029 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3030 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3031 
3032 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3033 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3034 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3035 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3036 				info->hw_queue =
3037 					local->hw.offchannel_tx_hw_queue;
3038 		}
3039 
3040 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3041 					    status->band);
3042 	}
3043 	dev_kfree_skb(rx->skb);
3044 	return RX_QUEUED;
3045 }
3046 
3047 static ieee80211_rx_result debug_noinline
3048 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3049 {
3050 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3051 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3052 	__le16 stype;
3053 
3054 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3055 
3056 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3057 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3058 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3059 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3060 		return RX_DROP_MONITOR;
3061 
3062 	switch (stype) {
3063 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3064 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3065 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3066 		/* process for all: mesh, mlme, ibss */
3067 		break;
3068 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3069 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3070 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3071 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3072 		if (is_multicast_ether_addr(mgmt->da) &&
3073 		    !is_broadcast_ether_addr(mgmt->da))
3074 			return RX_DROP_MONITOR;
3075 
3076 		/* process only for station */
3077 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3078 			return RX_DROP_MONITOR;
3079 		break;
3080 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3081 		/* process only for ibss and mesh */
3082 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3083 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3084 			return RX_DROP_MONITOR;
3085 		break;
3086 	default:
3087 		return RX_DROP_MONITOR;
3088 	}
3089 
3090 	/* queue up frame and kick off work to process it */
3091 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3092 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3093 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3094 	if (rx->sta)
3095 		rx->sta->rx_stats.packets++;
3096 
3097 	return RX_QUEUED;
3098 }
3099 
3100 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3101 					struct ieee80211_rate *rate)
3102 {
3103 	struct ieee80211_sub_if_data *sdata;
3104 	struct ieee80211_local *local = rx->local;
3105 	struct sk_buff *skb = rx->skb, *skb2;
3106 	struct net_device *prev_dev = NULL;
3107 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3108 	int needed_headroom;
3109 
3110 	/*
3111 	 * If cooked monitor has been processed already, then
3112 	 * don't do it again. If not, set the flag.
3113 	 */
3114 	if (rx->flags & IEEE80211_RX_CMNTR)
3115 		goto out_free_skb;
3116 	rx->flags |= IEEE80211_RX_CMNTR;
3117 
3118 	/* If there are no cooked monitor interfaces, just free the SKB */
3119 	if (!local->cooked_mntrs)
3120 		goto out_free_skb;
3121 
3122 	/* vendor data is long removed here */
3123 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3124 	/* room for the radiotap header based on driver features */
3125 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3126 
3127 	if (skb_headroom(skb) < needed_headroom &&
3128 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3129 		goto out_free_skb;
3130 
3131 	/* prepend radiotap information */
3132 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3133 					 false);
3134 
3135 	skb_reset_mac_header(skb);
3136 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3137 	skb->pkt_type = PACKET_OTHERHOST;
3138 	skb->protocol = htons(ETH_P_802_2);
3139 
3140 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3141 		if (!ieee80211_sdata_running(sdata))
3142 			continue;
3143 
3144 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3145 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3146 			continue;
3147 
3148 		if (prev_dev) {
3149 			skb2 = skb_clone(skb, GFP_ATOMIC);
3150 			if (skb2) {
3151 				skb2->dev = prev_dev;
3152 				netif_receive_skb(skb2);
3153 			}
3154 		}
3155 
3156 		prev_dev = sdata->dev;
3157 		ieee80211_rx_stats(sdata->dev, skb->len);
3158 	}
3159 
3160 	if (prev_dev) {
3161 		skb->dev = prev_dev;
3162 		netif_receive_skb(skb);
3163 		return;
3164 	}
3165 
3166  out_free_skb:
3167 	dev_kfree_skb(skb);
3168 }
3169 
3170 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3171 					 ieee80211_rx_result res)
3172 {
3173 	switch (res) {
3174 	case RX_DROP_MONITOR:
3175 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3176 		if (rx->sta)
3177 			rx->sta->rx_stats.dropped++;
3178 		/* fall through */
3179 	case RX_CONTINUE: {
3180 		struct ieee80211_rate *rate = NULL;
3181 		struct ieee80211_supported_band *sband;
3182 		struct ieee80211_rx_status *status;
3183 
3184 		status = IEEE80211_SKB_RXCB((rx->skb));
3185 
3186 		sband = rx->local->hw.wiphy->bands[status->band];
3187 		if (!(status->flag & RX_FLAG_HT) &&
3188 		    !(status->flag & RX_FLAG_VHT))
3189 			rate = &sband->bitrates[status->rate_idx];
3190 
3191 		ieee80211_rx_cooked_monitor(rx, rate);
3192 		break;
3193 		}
3194 	case RX_DROP_UNUSABLE:
3195 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3196 		if (rx->sta)
3197 			rx->sta->rx_stats.dropped++;
3198 		dev_kfree_skb(rx->skb);
3199 		break;
3200 	case RX_QUEUED:
3201 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3202 		break;
3203 	}
3204 }
3205 
3206 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3207 				  struct sk_buff_head *frames)
3208 {
3209 	ieee80211_rx_result res = RX_DROP_MONITOR;
3210 	struct sk_buff *skb;
3211 
3212 #define CALL_RXH(rxh)			\
3213 	do {				\
3214 		res = rxh(rx);		\
3215 		if (res != RX_CONTINUE)	\
3216 			goto rxh_next;  \
3217 	} while (0)
3218 
3219 	/* Lock here to avoid hitting all of the data used in the RX
3220 	 * path (e.g. key data, station data, ...) concurrently when
3221 	 * a frame is released from the reorder buffer due to timeout
3222 	 * from the timer, potentially concurrently with RX from the
3223 	 * driver.
3224 	 */
3225 	spin_lock_bh(&rx->local->rx_path_lock);
3226 
3227 	while ((skb = __skb_dequeue(frames))) {
3228 		/*
3229 		 * all the other fields are valid across frames
3230 		 * that belong to an aMPDU since they are on the
3231 		 * same TID from the same station
3232 		 */
3233 		rx->skb = skb;
3234 
3235 		CALL_RXH(ieee80211_rx_h_check_more_data);
3236 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3237 		CALL_RXH(ieee80211_rx_h_sta_process);
3238 		CALL_RXH(ieee80211_rx_h_decrypt);
3239 		CALL_RXH(ieee80211_rx_h_defragment);
3240 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3241 		/* must be after MMIC verify so header is counted in MPDU mic */
3242 #ifdef CONFIG_MAC80211_MESH
3243 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3244 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3245 #endif
3246 		CALL_RXH(ieee80211_rx_h_amsdu);
3247 		CALL_RXH(ieee80211_rx_h_data);
3248 
3249 		/* special treatment -- needs the queue */
3250 		res = ieee80211_rx_h_ctrl(rx, frames);
3251 		if (res != RX_CONTINUE)
3252 			goto rxh_next;
3253 
3254 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3255 		CALL_RXH(ieee80211_rx_h_action);
3256 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3257 		CALL_RXH(ieee80211_rx_h_action_return);
3258 		CALL_RXH(ieee80211_rx_h_mgmt);
3259 
3260  rxh_next:
3261 		ieee80211_rx_handlers_result(rx, res);
3262 
3263 #undef CALL_RXH
3264 	}
3265 
3266 	spin_unlock_bh(&rx->local->rx_path_lock);
3267 }
3268 
3269 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3270 {
3271 	struct sk_buff_head reorder_release;
3272 	ieee80211_rx_result res = RX_DROP_MONITOR;
3273 
3274 	__skb_queue_head_init(&reorder_release);
3275 
3276 #define CALL_RXH(rxh)			\
3277 	do {				\
3278 		res = rxh(rx);		\
3279 		if (res != RX_CONTINUE)	\
3280 			goto rxh_next;  \
3281 	} while (0)
3282 
3283 	CALL_RXH(ieee80211_rx_h_check_dup);
3284 	CALL_RXH(ieee80211_rx_h_check);
3285 
3286 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3287 
3288 	ieee80211_rx_handlers(rx, &reorder_release);
3289 	return;
3290 
3291  rxh_next:
3292 	ieee80211_rx_handlers_result(rx, res);
3293 
3294 #undef CALL_RXH
3295 }
3296 
3297 /*
3298  * This function makes calls into the RX path, therefore
3299  * it has to be invoked under RCU read lock.
3300  */
3301 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3302 {
3303 	struct sk_buff_head frames;
3304 	struct ieee80211_rx_data rx = {
3305 		.sta = sta,
3306 		.sdata = sta->sdata,
3307 		.local = sta->local,
3308 		/* This is OK -- must be QoS data frame */
3309 		.security_idx = tid,
3310 		.seqno_idx = tid,
3311 		.napi = NULL, /* must be NULL to not have races */
3312 	};
3313 	struct tid_ampdu_rx *tid_agg_rx;
3314 
3315 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3316 	if (!tid_agg_rx)
3317 		return;
3318 
3319 	__skb_queue_head_init(&frames);
3320 
3321 	spin_lock(&tid_agg_rx->reorder_lock);
3322 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3323 	spin_unlock(&tid_agg_rx->reorder_lock);
3324 
3325 	if (!skb_queue_empty(&frames)) {
3326 		struct ieee80211_event event = {
3327 			.type = BA_FRAME_TIMEOUT,
3328 			.u.ba.tid = tid,
3329 			.u.ba.sta = &sta->sta,
3330 		};
3331 		drv_event_callback(rx.local, rx.sdata, &event);
3332 	}
3333 
3334 	ieee80211_rx_handlers(&rx, &frames);
3335 }
3336 
3337 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3338 					  u16 ssn, u64 filtered,
3339 					  u16 received_mpdus)
3340 {
3341 	struct sta_info *sta;
3342 	struct tid_ampdu_rx *tid_agg_rx;
3343 	struct sk_buff_head frames;
3344 	struct ieee80211_rx_data rx = {
3345 		/* This is OK -- must be QoS data frame */
3346 		.security_idx = tid,
3347 		.seqno_idx = tid,
3348 	};
3349 	int i, diff;
3350 
3351 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3352 		return;
3353 
3354 	__skb_queue_head_init(&frames);
3355 
3356 	sta = container_of(pubsta, struct sta_info, sta);
3357 
3358 	rx.sta = sta;
3359 	rx.sdata = sta->sdata;
3360 	rx.local = sta->local;
3361 
3362 	rcu_read_lock();
3363 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3364 	if (!tid_agg_rx)
3365 		goto out;
3366 
3367 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3368 
3369 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3370 		int release;
3371 
3372 		/* release all frames in the reorder buffer */
3373 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3374 			   IEEE80211_SN_MODULO;
3375 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3376 						 release, &frames);
3377 		/* update ssn to match received ssn */
3378 		tid_agg_rx->head_seq_num = ssn;
3379 	} else {
3380 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3381 						 &frames);
3382 	}
3383 
3384 	/* handle the case that received ssn is behind the mac ssn.
3385 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3386 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3387 	if (diff >= tid_agg_rx->buf_size) {
3388 		tid_agg_rx->reorder_buf_filtered = 0;
3389 		goto release;
3390 	}
3391 	filtered = filtered >> diff;
3392 	ssn += diff;
3393 
3394 	/* update bitmap */
3395 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3396 		int index = (ssn + i) % tid_agg_rx->buf_size;
3397 
3398 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3399 		if (filtered & BIT_ULL(i))
3400 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3401 	}
3402 
3403 	/* now process also frames that the filter marking released */
3404 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3405 
3406 release:
3407 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3408 
3409 	ieee80211_rx_handlers(&rx, &frames);
3410 
3411  out:
3412 	rcu_read_unlock();
3413 }
3414 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3415 
3416 /* main receive path */
3417 
3418 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3419 {
3420 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3421 	struct sk_buff *skb = rx->skb;
3422 	struct ieee80211_hdr *hdr = (void *)skb->data;
3423 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3424 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3425 	int multicast = is_multicast_ether_addr(hdr->addr1);
3426 
3427 	switch (sdata->vif.type) {
3428 	case NL80211_IFTYPE_STATION:
3429 		if (!bssid && !sdata->u.mgd.use_4addr)
3430 			return false;
3431 		if (multicast)
3432 			return true;
3433 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3434 	case NL80211_IFTYPE_ADHOC:
3435 		if (!bssid)
3436 			return false;
3437 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3438 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3439 			return false;
3440 		if (ieee80211_is_beacon(hdr->frame_control))
3441 			return true;
3442 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3443 			return false;
3444 		if (!multicast &&
3445 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3446 			return false;
3447 		if (!rx->sta) {
3448 			int rate_idx;
3449 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3450 				rate_idx = 0; /* TODO: HT/VHT rates */
3451 			else
3452 				rate_idx = status->rate_idx;
3453 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3454 						 BIT(rate_idx));
3455 		}
3456 		return true;
3457 	case NL80211_IFTYPE_OCB:
3458 		if (!bssid)
3459 			return false;
3460 		if (!ieee80211_is_data_present(hdr->frame_control))
3461 			return false;
3462 		if (!is_broadcast_ether_addr(bssid))
3463 			return false;
3464 		if (!multicast &&
3465 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3466 			return false;
3467 		if (!rx->sta) {
3468 			int rate_idx;
3469 			if (status->flag & RX_FLAG_HT)
3470 				rate_idx = 0; /* TODO: HT rates */
3471 			else
3472 				rate_idx = status->rate_idx;
3473 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3474 						BIT(rate_idx));
3475 		}
3476 		return true;
3477 	case NL80211_IFTYPE_MESH_POINT:
3478 		if (multicast)
3479 			return true;
3480 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3481 	case NL80211_IFTYPE_AP_VLAN:
3482 	case NL80211_IFTYPE_AP:
3483 		if (!bssid)
3484 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3485 
3486 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3487 			/*
3488 			 * Accept public action frames even when the
3489 			 * BSSID doesn't match, this is used for P2P
3490 			 * and location updates. Note that mac80211
3491 			 * itself never looks at these frames.
3492 			 */
3493 			if (!multicast &&
3494 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3495 				return false;
3496 			if (ieee80211_is_public_action(hdr, skb->len))
3497 				return true;
3498 			return ieee80211_is_beacon(hdr->frame_control);
3499 		}
3500 
3501 		if (!ieee80211_has_tods(hdr->frame_control)) {
3502 			/* ignore data frames to TDLS-peers */
3503 			if (ieee80211_is_data(hdr->frame_control))
3504 				return false;
3505 			/* ignore action frames to TDLS-peers */
3506 			if (ieee80211_is_action(hdr->frame_control) &&
3507 			    !is_broadcast_ether_addr(bssid) &&
3508 			    !ether_addr_equal(bssid, hdr->addr1))
3509 				return false;
3510 		}
3511 		return true;
3512 	case NL80211_IFTYPE_WDS:
3513 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3514 			return false;
3515 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3516 	case NL80211_IFTYPE_P2P_DEVICE:
3517 		return ieee80211_is_public_action(hdr, skb->len) ||
3518 		       ieee80211_is_probe_req(hdr->frame_control) ||
3519 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3520 		       ieee80211_is_beacon(hdr->frame_control);
3521 	default:
3522 		break;
3523 	}
3524 
3525 	WARN_ON_ONCE(1);
3526 	return false;
3527 }
3528 
3529 void ieee80211_check_fast_rx(struct sta_info *sta)
3530 {
3531 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3532 	struct ieee80211_local *local = sdata->local;
3533 	struct ieee80211_key *key;
3534 	struct ieee80211_fast_rx fastrx = {
3535 		.dev = sdata->dev,
3536 		.vif_type = sdata->vif.type,
3537 		.control_port_protocol = sdata->control_port_protocol,
3538 	}, *old, *new = NULL;
3539 	bool assign = false;
3540 
3541 	/* use sparse to check that we don't return without updating */
3542 	__acquire(check_fast_rx);
3543 
3544 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3545 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3546 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3547 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3548 
3549 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3550 
3551 	/* fast-rx doesn't do reordering */
3552 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3553 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3554 		goto clear;
3555 
3556 	switch (sdata->vif.type) {
3557 	case NL80211_IFTYPE_STATION:
3558 		/* 4-addr is harder to deal with, later maybe */
3559 		if (sdata->u.mgd.use_4addr)
3560 			goto clear;
3561 		/* software powersave is a huge mess, avoid all of it */
3562 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3563 			goto clear;
3564 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3565 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3566 			goto clear;
3567 		if (sta->sta.tdls) {
3568 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3569 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3570 			fastrx.expected_ds_bits = 0;
3571 		} else {
3572 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3573 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3574 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3575 			fastrx.expected_ds_bits =
3576 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3577 		}
3578 		break;
3579 	case NL80211_IFTYPE_AP_VLAN:
3580 	case NL80211_IFTYPE_AP:
3581 		/* parallel-rx requires this, at least with calls to
3582 		 * ieee80211_sta_ps_transition()
3583 		 */
3584 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3585 			goto clear;
3586 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3587 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3588 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3589 
3590 		fastrx.internal_forward =
3591 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3592 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3593 			 !sdata->u.vlan.sta);
3594 		break;
3595 	default:
3596 		goto clear;
3597 	}
3598 
3599 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3600 		goto clear;
3601 
3602 	rcu_read_lock();
3603 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3604 	if (key) {
3605 		switch (key->conf.cipher) {
3606 		case WLAN_CIPHER_SUITE_TKIP:
3607 			/* we don't want to deal with MMIC in fast-rx */
3608 			goto clear_rcu;
3609 		case WLAN_CIPHER_SUITE_CCMP:
3610 		case WLAN_CIPHER_SUITE_CCMP_256:
3611 		case WLAN_CIPHER_SUITE_GCMP:
3612 		case WLAN_CIPHER_SUITE_GCMP_256:
3613 			break;
3614 		default:
3615 			/* we also don't want to deal with WEP or cipher scheme
3616 			 * since those require looking up the key idx in the
3617 			 * frame, rather than assuming the PTK is used
3618 			 * (we need to revisit this once we implement the real
3619 			 * PTK index, which is now valid in the spec, but we
3620 			 * haven't implemented that part yet)
3621 			 */
3622 			goto clear_rcu;
3623 		}
3624 
3625 		fastrx.key = true;
3626 		fastrx.icv_len = key->conf.icv_len;
3627 	}
3628 
3629 	assign = true;
3630  clear_rcu:
3631 	rcu_read_unlock();
3632  clear:
3633 	__release(check_fast_rx);
3634 
3635 	if (assign)
3636 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3637 
3638 	spin_lock_bh(&sta->lock);
3639 	old = rcu_dereference_protected(sta->fast_rx, true);
3640 	rcu_assign_pointer(sta->fast_rx, new);
3641 	spin_unlock_bh(&sta->lock);
3642 
3643 	if (old)
3644 		kfree_rcu(old, rcu_head);
3645 }
3646 
3647 void ieee80211_clear_fast_rx(struct sta_info *sta)
3648 {
3649 	struct ieee80211_fast_rx *old;
3650 
3651 	spin_lock_bh(&sta->lock);
3652 	old = rcu_dereference_protected(sta->fast_rx, true);
3653 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3654 	spin_unlock_bh(&sta->lock);
3655 
3656 	if (old)
3657 		kfree_rcu(old, rcu_head);
3658 }
3659 
3660 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3661 {
3662 	struct ieee80211_local *local = sdata->local;
3663 	struct sta_info *sta;
3664 
3665 	lockdep_assert_held(&local->sta_mtx);
3666 
3667 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3668 		if (sdata != sta->sdata &&
3669 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3670 			continue;
3671 		ieee80211_check_fast_rx(sta);
3672 	}
3673 }
3674 
3675 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3676 {
3677 	struct ieee80211_local *local = sdata->local;
3678 
3679 	mutex_lock(&local->sta_mtx);
3680 	__ieee80211_check_fast_rx_iface(sdata);
3681 	mutex_unlock(&local->sta_mtx);
3682 }
3683 
3684 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3685 				     struct ieee80211_fast_rx *fast_rx)
3686 {
3687 	struct sk_buff *skb = rx->skb;
3688 	struct ieee80211_hdr *hdr = (void *)skb->data;
3689 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3690 	struct sta_info *sta = rx->sta;
3691 	int orig_len = skb->len;
3692 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3693 	struct {
3694 		u8 snap[sizeof(rfc1042_header)];
3695 		__be16 proto;
3696 	} *payload __aligned(2);
3697 	struct {
3698 		u8 da[ETH_ALEN];
3699 		u8 sa[ETH_ALEN];
3700 	} addrs __aligned(2);
3701 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3702 
3703 	if (fast_rx->uses_rss)
3704 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3705 
3706 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3707 	 * to a common data structure; drivers can implement that per queue
3708 	 * but we don't have that information in mac80211
3709 	 */
3710 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3711 		return false;
3712 
3713 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3714 
3715 	/* If using encryption, we also need to have:
3716 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3717 	 *  - DECRYPTED: necessary for PN_VALIDATED
3718 	 */
3719 	if (fast_rx->key &&
3720 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3721 		return false;
3722 
3723 	/* we don't deal with A-MSDU deaggregation here */
3724 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3725 		return false;
3726 
3727 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3728 		return false;
3729 
3730 	if (unlikely(ieee80211_is_frag(hdr)))
3731 		return false;
3732 
3733 	/* Since our interface address cannot be multicast, this
3734 	 * implicitly also rejects multicast frames without the
3735 	 * explicit check.
3736 	 *
3737 	 * We shouldn't get any *data* frames not addressed to us
3738 	 * (AP mode will accept multicast *management* frames), but
3739 	 * punting here will make it go through the full checks in
3740 	 * ieee80211_accept_frame().
3741 	 */
3742 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3743 		return false;
3744 
3745 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3746 					      IEEE80211_FCTL_TODS)) !=
3747 	    fast_rx->expected_ds_bits)
3748 		goto drop;
3749 
3750 	/* assign the key to drop unencrypted frames (later)
3751 	 * and strip the IV/MIC if necessary
3752 	 */
3753 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3754 		/* GCMP header length is the same */
3755 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3756 	}
3757 
3758 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3759 		goto drop;
3760 	payload = (void *)(skb->data + snap_offs);
3761 
3762 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3763 		return false;
3764 
3765 	/* Don't handle these here since they require special code.
3766 	 * Accept AARP and IPX even though they should come with a
3767 	 * bridge-tunnel header - but if we get them this way then
3768 	 * there's little point in discarding them.
3769 	 */
3770 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3771 		     payload->proto == fast_rx->control_port_protocol))
3772 		return false;
3773 
3774 	/* after this point, don't punt to the slowpath! */
3775 
3776 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3777 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3778 		goto drop;
3779 
3780 	if (unlikely(fast_rx->sta_notify)) {
3781 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3782 		fast_rx->sta_notify = false;
3783 	}
3784 
3785 	/* statistics part of ieee80211_rx_h_sta_process() */
3786 	stats->last_rx = jiffies;
3787 	stats->last_rate = sta_stats_encode_rate(status);
3788 
3789 	stats->fragments++;
3790 
3791 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3792 		stats->last_signal = status->signal;
3793 		if (!fast_rx->uses_rss)
3794 			ewma_signal_add(&sta->rx_stats_avg.signal,
3795 					-status->signal);
3796 	}
3797 
3798 	if (status->chains) {
3799 		int i;
3800 
3801 		stats->chains = status->chains;
3802 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3803 			int signal = status->chain_signal[i];
3804 
3805 			if (!(status->chains & BIT(i)))
3806 				continue;
3807 
3808 			stats->chain_signal_last[i] = signal;
3809 			if (!fast_rx->uses_rss)
3810 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3811 						-signal);
3812 		}
3813 	}
3814 	/* end of statistics */
3815 
3816 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3817 		goto drop;
3818 
3819 	/* do the header conversion - first grab the addresses */
3820 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3821 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3822 	/* remove the SNAP but leave the ethertype */
3823 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3824 	/* push the addresses in front */
3825 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3826 
3827 	skb->dev = fast_rx->dev;
3828 
3829 	ieee80211_rx_stats(fast_rx->dev, skb->len);
3830 
3831 	/* The seqno index has the same property as needed
3832 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3833 	 * for non-QoS-data frames. Here we know it's a data
3834 	 * frame, so count MSDUs.
3835 	 */
3836 	u64_stats_update_begin(&stats->syncp);
3837 	stats->msdu[rx->seqno_idx]++;
3838 	stats->bytes += orig_len;
3839 	u64_stats_update_end(&stats->syncp);
3840 
3841 	if (fast_rx->internal_forward) {
3842 		struct sta_info *dsta = sta_info_get(rx->sdata, skb->data);
3843 
3844 		if (dsta) {
3845 			/*
3846 			 * Send to wireless media and increase priority by 256
3847 			 * to keep the received priority instead of
3848 			 * reclassifying the frame (see cfg80211_classify8021d).
3849 			 */
3850 			skb->priority += 256;
3851 			skb->protocol = htons(ETH_P_802_3);
3852 			skb_reset_network_header(skb);
3853 			skb_reset_mac_header(skb);
3854 			dev_queue_xmit(skb);
3855 			return true;
3856 		}
3857 	}
3858 
3859 	/* deliver to local stack */
3860 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
3861 	memset(skb->cb, 0, sizeof(skb->cb));
3862 	if (rx->napi)
3863 		napi_gro_receive(rx->napi, skb);
3864 	else
3865 		netif_receive_skb(skb);
3866 
3867 	return true;
3868  drop:
3869 	dev_kfree_skb(skb);
3870 	stats->dropped++;
3871 	return true;
3872 }
3873 
3874 /*
3875  * This function returns whether or not the SKB
3876  * was destined for RX processing or not, which,
3877  * if consume is true, is equivalent to whether
3878  * or not the skb was consumed.
3879  */
3880 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3881 					    struct sk_buff *skb, bool consume)
3882 {
3883 	struct ieee80211_local *local = rx->local;
3884 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3885 
3886 	rx->skb = skb;
3887 
3888 	/* See if we can do fast-rx; if we have to copy we already lost,
3889 	 * so punt in that case. We should never have to deliver a data
3890 	 * frame to multiple interfaces anyway.
3891 	 *
3892 	 * We skip the ieee80211_accept_frame() call and do the necessary
3893 	 * checking inside ieee80211_invoke_fast_rx().
3894 	 */
3895 	if (consume && rx->sta) {
3896 		struct ieee80211_fast_rx *fast_rx;
3897 
3898 		fast_rx = rcu_dereference(rx->sta->fast_rx);
3899 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
3900 			return true;
3901 	}
3902 
3903 	if (!ieee80211_accept_frame(rx))
3904 		return false;
3905 
3906 	if (!consume) {
3907 		skb = skb_copy(skb, GFP_ATOMIC);
3908 		if (!skb) {
3909 			if (net_ratelimit())
3910 				wiphy_debug(local->hw.wiphy,
3911 					"failed to copy skb for %s\n",
3912 					sdata->name);
3913 			return true;
3914 		}
3915 
3916 		rx->skb = skb;
3917 	}
3918 
3919 	ieee80211_invoke_rx_handlers(rx);
3920 	return true;
3921 }
3922 
3923 /*
3924  * This is the actual Rx frames handler. as it belongs to Rx path it must
3925  * be called with rcu_read_lock protection.
3926  */
3927 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3928 					 struct ieee80211_sta *pubsta,
3929 					 struct sk_buff *skb,
3930 					 struct napi_struct *napi)
3931 {
3932 	struct ieee80211_local *local = hw_to_local(hw);
3933 	struct ieee80211_sub_if_data *sdata;
3934 	struct ieee80211_hdr *hdr;
3935 	__le16 fc;
3936 	struct ieee80211_rx_data rx;
3937 	struct ieee80211_sub_if_data *prev;
3938 	struct rhash_head *tmp;
3939 	int err = 0;
3940 
3941 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3942 	memset(&rx, 0, sizeof(rx));
3943 	rx.skb = skb;
3944 	rx.local = local;
3945 	rx.napi = napi;
3946 
3947 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3948 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3949 
3950 	if (ieee80211_is_mgmt(fc)) {
3951 		/* drop frame if too short for header */
3952 		if (skb->len < ieee80211_hdrlen(fc))
3953 			err = -ENOBUFS;
3954 		else
3955 			err = skb_linearize(skb);
3956 	} else {
3957 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3958 	}
3959 
3960 	if (err) {
3961 		dev_kfree_skb(skb);
3962 		return;
3963 	}
3964 
3965 	hdr = (struct ieee80211_hdr *)skb->data;
3966 	ieee80211_parse_qos(&rx);
3967 	ieee80211_verify_alignment(&rx);
3968 
3969 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3970 		     ieee80211_is_beacon(hdr->frame_control)))
3971 		ieee80211_scan_rx(local, skb);
3972 
3973 	if (pubsta) {
3974 		rx.sta = container_of(pubsta, struct sta_info, sta);
3975 		rx.sdata = rx.sta->sdata;
3976 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3977 			return;
3978 		goto out;
3979 	} else if (ieee80211_is_data(fc)) {
3980 		struct sta_info *sta, *prev_sta;
3981 		const struct bucket_table *tbl;
3982 
3983 		prev_sta = NULL;
3984 
3985 		tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3986 
3987 		for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3988 			if (!prev_sta) {
3989 				prev_sta = sta;
3990 				continue;
3991 			}
3992 
3993 			rx.sta = prev_sta;
3994 			rx.sdata = prev_sta->sdata;
3995 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3996 
3997 			prev_sta = sta;
3998 		}
3999 
4000 		if (prev_sta) {
4001 			rx.sta = prev_sta;
4002 			rx.sdata = prev_sta->sdata;
4003 
4004 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4005 				return;
4006 			goto out;
4007 		}
4008 	}
4009 
4010 	prev = NULL;
4011 
4012 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4013 		if (!ieee80211_sdata_running(sdata))
4014 			continue;
4015 
4016 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4017 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4018 			continue;
4019 
4020 		/*
4021 		 * frame is destined for this interface, but if it's
4022 		 * not also for the previous one we handle that after
4023 		 * the loop to avoid copying the SKB once too much
4024 		 */
4025 
4026 		if (!prev) {
4027 			prev = sdata;
4028 			continue;
4029 		}
4030 
4031 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4032 		rx.sdata = prev;
4033 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4034 
4035 		prev = sdata;
4036 	}
4037 
4038 	if (prev) {
4039 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4040 		rx.sdata = prev;
4041 
4042 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4043 			return;
4044 	}
4045 
4046  out:
4047 	dev_kfree_skb(skb);
4048 }
4049 
4050 /*
4051  * This is the receive path handler. It is called by a low level driver when an
4052  * 802.11 MPDU is received from the hardware.
4053  */
4054 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4055 		       struct sk_buff *skb, struct napi_struct *napi)
4056 {
4057 	struct ieee80211_local *local = hw_to_local(hw);
4058 	struct ieee80211_rate *rate = NULL;
4059 	struct ieee80211_supported_band *sband;
4060 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4061 
4062 	WARN_ON_ONCE(softirq_count() == 0);
4063 
4064 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4065 		goto drop;
4066 
4067 	sband = local->hw.wiphy->bands[status->band];
4068 	if (WARN_ON(!sband))
4069 		goto drop;
4070 
4071 	/*
4072 	 * If we're suspending, it is possible although not too likely
4073 	 * that we'd be receiving frames after having already partially
4074 	 * quiesced the stack. We can't process such frames then since
4075 	 * that might, for example, cause stations to be added or other
4076 	 * driver callbacks be invoked.
4077 	 */
4078 	if (unlikely(local->quiescing || local->suspended))
4079 		goto drop;
4080 
4081 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4082 	if (unlikely(local->in_reconfig))
4083 		goto drop;
4084 
4085 	/*
4086 	 * The same happens when we're not even started,
4087 	 * but that's worth a warning.
4088 	 */
4089 	if (WARN_ON(!local->started))
4090 		goto drop;
4091 
4092 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4093 		/*
4094 		 * Validate the rate, unless a PLCP error means that
4095 		 * we probably can't have a valid rate here anyway.
4096 		 */
4097 
4098 		if (status->flag & RX_FLAG_HT) {
4099 			/*
4100 			 * rate_idx is MCS index, which can be [0-76]
4101 			 * as documented on:
4102 			 *
4103 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4104 			 *
4105 			 * Anything else would be some sort of driver or
4106 			 * hardware error. The driver should catch hardware
4107 			 * errors.
4108 			 */
4109 			if (WARN(status->rate_idx > 76,
4110 				 "Rate marked as an HT rate but passed "
4111 				 "status->rate_idx is not "
4112 				 "an MCS index [0-76]: %d (0x%02x)\n",
4113 				 status->rate_idx,
4114 				 status->rate_idx))
4115 				goto drop;
4116 		} else if (status->flag & RX_FLAG_VHT) {
4117 			if (WARN_ONCE(status->rate_idx > 9 ||
4118 				      !status->vht_nss ||
4119 				      status->vht_nss > 8,
4120 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4121 				      status->rate_idx, status->vht_nss))
4122 				goto drop;
4123 		} else {
4124 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4125 				goto drop;
4126 			rate = &sband->bitrates[status->rate_idx];
4127 		}
4128 	}
4129 
4130 	status->rx_flags = 0;
4131 
4132 	/*
4133 	 * key references and virtual interfaces are protected using RCU
4134 	 * and this requires that we are in a read-side RCU section during
4135 	 * receive processing
4136 	 */
4137 	rcu_read_lock();
4138 
4139 	/*
4140 	 * Frames with failed FCS/PLCP checksum are not returned,
4141 	 * all other frames are returned without radiotap header
4142 	 * if it was previously present.
4143 	 * Also, frames with less than 16 bytes are dropped.
4144 	 */
4145 	skb = ieee80211_rx_monitor(local, skb, rate);
4146 	if (!skb) {
4147 		rcu_read_unlock();
4148 		return;
4149 	}
4150 
4151 	ieee80211_tpt_led_trig_rx(local,
4152 			((struct ieee80211_hdr *)skb->data)->frame_control,
4153 			skb->len);
4154 
4155 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4156 
4157 	rcu_read_unlock();
4158 
4159 	return;
4160  drop:
4161 	kfree_skb(skb);
4162 }
4163 EXPORT_SYMBOL(ieee80211_rx_napi);
4164 
4165 /* This is a version of the rx handler that can be called from hard irq
4166  * context. Post the skb on the queue and schedule the tasklet */
4167 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4168 {
4169 	struct ieee80211_local *local = hw_to_local(hw);
4170 
4171 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4172 
4173 	skb->pkt_type = IEEE80211_RX_MSG;
4174 	skb_queue_tail(&local->skb_queue, skb);
4175 	tasklet_schedule(&local->tasklet);
4176 }
4177 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4178