1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 15 #include <linux/jiffies.h> 16 #include <linux/slab.h> 17 #include <linux/kernel.h> 18 #include <linux/skbuff.h> 19 #include <linux/netdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/rcupdate.h> 22 #include <linux/export.h> 23 #include <linux/bitops.h> 24 #include <net/mac80211.h> 25 #include <net/ieee80211_radiotap.h> 26 #include <asm/unaligned.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "led.h" 31 #include "mesh.h" 32 #include "wep.h" 33 #include "wpa.h" 34 #include "tkip.h" 35 #include "wme.h" 36 #include "rate.h" 37 38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 39 { 40 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 41 42 u64_stats_update_begin(&tstats->syncp); 43 tstats->rx_packets++; 44 tstats->rx_bytes += len; 45 u64_stats_update_end(&tstats->syncp); 46 } 47 48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_mgmt(fc)) { 68 if (len < 24) /* drop incorrect hdr len (mgmt) */ 69 return NULL; 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_ctl(fc)) { 74 if (ieee80211_is_pspoll(fc)) 75 return hdr->addr1; 76 77 if (ieee80211_is_back_req(fc)) { 78 switch (type) { 79 case NL80211_IFTYPE_STATION: 80 return hdr->addr2; 81 case NL80211_IFTYPE_AP: 82 case NL80211_IFTYPE_AP_VLAN: 83 return hdr->addr1; 84 default: 85 break; /* fall through to the return */ 86 } 87 } 88 } 89 90 return NULL; 91 } 92 93 /* 94 * monitor mode reception 95 * 96 * This function cleans up the SKB, i.e. it removes all the stuff 97 * only useful for monitoring. 98 */ 99 static void remove_monitor_info(struct sk_buff *skb, 100 unsigned int present_fcs_len, 101 unsigned int rtap_space) 102 { 103 if (present_fcs_len) 104 __pskb_trim(skb, skb->len - present_fcs_len); 105 __pskb_pull(skb, rtap_space); 106 } 107 108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 109 unsigned int rtap_space) 110 { 111 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 112 struct ieee80211_hdr *hdr; 113 114 hdr = (void *)(skb->data + rtap_space); 115 116 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 117 RX_FLAG_FAILED_PLCP_CRC | 118 RX_FLAG_ONLY_MONITOR | 119 RX_FLAG_NO_PSDU)) 120 return true; 121 122 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 123 return true; 124 125 if (ieee80211_is_ctl(hdr->frame_control) && 126 !ieee80211_is_pspoll(hdr->frame_control) && 127 !ieee80211_is_back_req(hdr->frame_control)) 128 return true; 129 130 return false; 131 } 132 133 static int 134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 135 struct ieee80211_rx_status *status, 136 struct sk_buff *skb) 137 { 138 int len; 139 140 /* always present fields */ 141 len = sizeof(struct ieee80211_radiotap_header) + 8; 142 143 /* allocate extra bitmaps */ 144 if (status->chains) 145 len += 4 * hweight8(status->chains); 146 147 if (ieee80211_have_rx_timestamp(status)) { 148 len = ALIGN(len, 8); 149 len += 8; 150 } 151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 152 len += 1; 153 154 /* antenna field, if we don't have per-chain info */ 155 if (!status->chains) 156 len += 1; 157 158 /* padding for RX_FLAGS if necessary */ 159 len = ALIGN(len, 2); 160 161 if (status->encoding == RX_ENC_HT) /* HT info */ 162 len += 3; 163 164 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 165 len = ALIGN(len, 4); 166 len += 8; 167 } 168 169 if (status->encoding == RX_ENC_VHT) { 170 len = ALIGN(len, 2); 171 len += 12; 172 } 173 174 if (local->hw.radiotap_timestamp.units_pos >= 0) { 175 len = ALIGN(len, 8); 176 len += 12; 177 } 178 179 if (status->encoding == RX_ENC_HE && 180 status->flag & RX_FLAG_RADIOTAP_HE) { 181 len = ALIGN(len, 2); 182 len += 12; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 184 } 185 186 if (status->encoding == RX_ENC_HE && 187 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 188 len = ALIGN(len, 2); 189 len += 12; 190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 191 } 192 193 if (status->flag & RX_FLAG_NO_PSDU) 194 len += 1; 195 196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 197 len = ALIGN(len, 2); 198 len += 4; 199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 200 } 201 202 if (status->chains) { 203 /* antenna and antenna signal fields */ 204 len += 2 * hweight8(status->chains); 205 } 206 207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 208 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 209 210 /* vendor presence bitmap */ 211 len += 4; 212 /* alignment for fixed 6-byte vendor data header */ 213 len = ALIGN(len, 2); 214 /* vendor data header */ 215 len += 6; 216 if (WARN_ON(rtap->align == 0)) 217 rtap->align = 1; 218 len = ALIGN(len, rtap->align); 219 len += rtap->len + rtap->pad; 220 } 221 222 return len; 223 } 224 225 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 226 struct sk_buff *skb, 227 int rtap_space) 228 { 229 struct { 230 struct ieee80211_hdr_3addr hdr; 231 u8 category; 232 u8 action_code; 233 } __packed action; 234 235 if (!sdata) 236 return; 237 238 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 239 240 if (skb->len < rtap_space + sizeof(action) + 241 VHT_MUMIMO_GROUPS_DATA_LEN) 242 return; 243 244 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 245 return; 246 247 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 248 249 if (!ieee80211_is_action(action.hdr.frame_control)) 250 return; 251 252 if (action.category != WLAN_CATEGORY_VHT) 253 return; 254 255 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 256 return; 257 258 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 259 return; 260 261 skb = skb_copy(skb, GFP_ATOMIC); 262 if (!skb) 263 return; 264 265 skb_queue_tail(&sdata->skb_queue, skb); 266 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 267 } 268 269 /* 270 * ieee80211_add_rx_radiotap_header - add radiotap header 271 * 272 * add a radiotap header containing all the fields which the hardware provided. 273 */ 274 static void 275 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 276 struct sk_buff *skb, 277 struct ieee80211_rate *rate, 278 int rtap_len, bool has_fcs) 279 { 280 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 281 struct ieee80211_radiotap_header *rthdr; 282 unsigned char *pos; 283 __le32 *it_present; 284 u32 it_present_val; 285 u16 rx_flags = 0; 286 u16 channel_flags = 0; 287 int mpdulen, chain; 288 unsigned long chains = status->chains; 289 struct ieee80211_vendor_radiotap rtap = {}; 290 struct ieee80211_radiotap_he he = {}; 291 struct ieee80211_radiotap_he_mu he_mu = {}; 292 struct ieee80211_radiotap_lsig lsig = {}; 293 294 if (status->flag & RX_FLAG_RADIOTAP_HE) { 295 he = *(struct ieee80211_radiotap_he *)skb->data; 296 skb_pull(skb, sizeof(he)); 297 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 298 } 299 300 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 301 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 302 skb_pull(skb, sizeof(he_mu)); 303 } 304 305 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 306 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 307 skb_pull(skb, sizeof(lsig)); 308 } 309 310 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 311 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 312 /* rtap.len and rtap.pad are undone immediately */ 313 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 314 } 315 316 mpdulen = skb->len; 317 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 318 mpdulen += FCS_LEN; 319 320 rthdr = skb_push(skb, rtap_len); 321 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 322 it_present = &rthdr->it_present; 323 324 /* radiotap header, set always present flags */ 325 rthdr->it_len = cpu_to_le16(rtap_len); 326 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 327 BIT(IEEE80211_RADIOTAP_CHANNEL) | 328 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 329 330 if (!status->chains) 331 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 332 333 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 334 it_present_val |= 335 BIT(IEEE80211_RADIOTAP_EXT) | 336 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 337 put_unaligned_le32(it_present_val, it_present); 338 it_present++; 339 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 340 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 341 } 342 343 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 344 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 345 BIT(IEEE80211_RADIOTAP_EXT); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = rtap.present; 349 } 350 351 put_unaligned_le32(it_present_val, it_present); 352 353 pos = (void *)(it_present + 1); 354 355 /* the order of the following fields is important */ 356 357 /* IEEE80211_RADIOTAP_TSFT */ 358 if (ieee80211_have_rx_timestamp(status)) { 359 /* padding */ 360 while ((pos - (u8 *)rthdr) & 7) 361 *pos++ = 0; 362 put_unaligned_le64( 363 ieee80211_calculate_rx_timestamp(local, status, 364 mpdulen, 0), 365 pos); 366 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 367 pos += 8; 368 } 369 370 /* IEEE80211_RADIOTAP_FLAGS */ 371 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 372 *pos |= IEEE80211_RADIOTAP_F_FCS; 373 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 374 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 375 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 376 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 377 pos++; 378 379 /* IEEE80211_RADIOTAP_RATE */ 380 if (!rate || status->encoding != RX_ENC_LEGACY) { 381 /* 382 * Without rate information don't add it. If we have, 383 * MCS information is a separate field in radiotap, 384 * added below. The byte here is needed as padding 385 * for the channel though, so initialise it to 0. 386 */ 387 *pos = 0; 388 } else { 389 int shift = 0; 390 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 391 if (status->bw == RATE_INFO_BW_10) 392 shift = 1; 393 else if (status->bw == RATE_INFO_BW_5) 394 shift = 2; 395 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 396 } 397 pos++; 398 399 /* IEEE80211_RADIOTAP_CHANNEL */ 400 put_unaligned_le16(status->freq, pos); 401 pos += 2; 402 if (status->bw == RATE_INFO_BW_10) 403 channel_flags |= IEEE80211_CHAN_HALF; 404 else if (status->bw == RATE_INFO_BW_5) 405 channel_flags |= IEEE80211_CHAN_QUARTER; 406 407 if (status->band == NL80211_BAND_5GHZ) 408 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 409 else if (status->encoding != RX_ENC_LEGACY) 410 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 411 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 412 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 413 else if (rate) 414 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 415 else 416 channel_flags |= IEEE80211_CHAN_2GHZ; 417 put_unaligned_le16(channel_flags, pos); 418 pos += 2; 419 420 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 421 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 422 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 423 *pos = status->signal; 424 rthdr->it_present |= 425 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 426 pos++; 427 } 428 429 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 430 431 if (!status->chains) { 432 /* IEEE80211_RADIOTAP_ANTENNA */ 433 *pos = status->antenna; 434 pos++; 435 } 436 437 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 438 439 /* IEEE80211_RADIOTAP_RX_FLAGS */ 440 /* ensure 2 byte alignment for the 2 byte field as required */ 441 if ((pos - (u8 *)rthdr) & 1) 442 *pos++ = 0; 443 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 444 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 445 put_unaligned_le16(rx_flags, pos); 446 pos += 2; 447 448 if (status->encoding == RX_ENC_HT) { 449 unsigned int stbc; 450 451 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 452 *pos++ = local->hw.radiotap_mcs_details; 453 *pos = 0; 454 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 455 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 456 if (status->bw == RATE_INFO_BW_40) 457 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 458 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 459 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 460 if (status->enc_flags & RX_ENC_FLAG_LDPC) 461 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 462 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 463 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 464 pos++; 465 *pos++ = status->rate_idx; 466 } 467 468 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 469 u16 flags = 0; 470 471 /* ensure 4 byte alignment */ 472 while ((pos - (u8 *)rthdr) & 3) 473 pos++; 474 rthdr->it_present |= 475 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 476 put_unaligned_le32(status->ampdu_reference, pos); 477 pos += 4; 478 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 479 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 480 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 481 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 482 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 483 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 484 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 485 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 486 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 487 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 488 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 489 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 490 put_unaligned_le16(flags, pos); 491 pos += 2; 492 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 493 *pos++ = status->ampdu_delimiter_crc; 494 else 495 *pos++ = 0; 496 *pos++ = 0; 497 } 498 499 if (status->encoding == RX_ENC_VHT) { 500 u16 known = local->hw.radiotap_vht_details; 501 502 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 503 put_unaligned_le16(known, pos); 504 pos += 2; 505 /* flags */ 506 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 507 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 508 /* in VHT, STBC is binary */ 509 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 510 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 511 if (status->enc_flags & RX_ENC_FLAG_BF) 512 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 513 pos++; 514 /* bandwidth */ 515 switch (status->bw) { 516 case RATE_INFO_BW_80: 517 *pos++ = 4; 518 break; 519 case RATE_INFO_BW_160: 520 *pos++ = 11; 521 break; 522 case RATE_INFO_BW_40: 523 *pos++ = 1; 524 break; 525 default: 526 *pos++ = 0; 527 } 528 /* MCS/NSS */ 529 *pos = (status->rate_idx << 4) | status->nss; 530 pos += 4; 531 /* coding field */ 532 if (status->enc_flags & RX_ENC_FLAG_LDPC) 533 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 534 pos++; 535 /* group ID */ 536 pos++; 537 /* partial_aid */ 538 pos += 2; 539 } 540 541 if (local->hw.radiotap_timestamp.units_pos >= 0) { 542 u16 accuracy = 0; 543 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 544 545 rthdr->it_present |= 546 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 547 548 /* ensure 8 byte alignment */ 549 while ((pos - (u8 *)rthdr) & 7) 550 pos++; 551 552 put_unaligned_le64(status->device_timestamp, pos); 553 pos += sizeof(u64); 554 555 if (local->hw.radiotap_timestamp.accuracy >= 0) { 556 accuracy = local->hw.radiotap_timestamp.accuracy; 557 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 558 } 559 put_unaligned_le16(accuracy, pos); 560 pos += sizeof(u16); 561 562 *pos++ = local->hw.radiotap_timestamp.units_pos; 563 *pos++ = flags; 564 } 565 566 if (status->encoding == RX_ENC_HE && 567 status->flag & RX_FLAG_RADIOTAP_HE) { 568 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 569 570 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 571 he.data6 |= HE_PREP(DATA6_NSTS, 572 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 573 status->enc_flags)); 574 he.data3 |= HE_PREP(DATA3_STBC, 1); 575 } else { 576 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 577 } 578 579 #define CHECK_GI(s) \ 580 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 581 (int)NL80211_RATE_INFO_HE_GI_##s) 582 583 CHECK_GI(0_8); 584 CHECK_GI(1_6); 585 CHECK_GI(3_2); 586 587 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 588 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 589 he.data3 |= HE_PREP(DATA3_CODING, 590 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 591 592 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 593 594 switch (status->bw) { 595 case RATE_INFO_BW_20: 596 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 597 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 598 break; 599 case RATE_INFO_BW_40: 600 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 601 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 602 break; 603 case RATE_INFO_BW_80: 604 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 605 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 606 break; 607 case RATE_INFO_BW_160: 608 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 609 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 610 break; 611 case RATE_INFO_BW_HE_RU: 612 #define CHECK_RU_ALLOC(s) \ 613 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 614 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 615 616 CHECK_RU_ALLOC(26); 617 CHECK_RU_ALLOC(52); 618 CHECK_RU_ALLOC(106); 619 CHECK_RU_ALLOC(242); 620 CHECK_RU_ALLOC(484); 621 CHECK_RU_ALLOC(996); 622 CHECK_RU_ALLOC(2x996); 623 624 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 625 status->he_ru + 4); 626 break; 627 default: 628 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 629 } 630 631 /* ensure 2 byte alignment */ 632 while ((pos - (u8 *)rthdr) & 1) 633 pos++; 634 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 635 memcpy(pos, &he, sizeof(he)); 636 pos += sizeof(he); 637 } 638 639 if (status->encoding == RX_ENC_HE && 640 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 641 /* ensure 2 byte alignment */ 642 while ((pos - (u8 *)rthdr) & 1) 643 pos++; 644 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 645 memcpy(pos, &he_mu, sizeof(he_mu)); 646 pos += sizeof(he_mu); 647 } 648 649 if (status->flag & RX_FLAG_NO_PSDU) { 650 rthdr->it_present |= 651 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 652 *pos++ = status->zero_length_psdu_type; 653 } 654 655 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 656 /* ensure 2 byte alignment */ 657 while ((pos - (u8 *)rthdr) & 1) 658 pos++; 659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 660 memcpy(pos, &lsig, sizeof(lsig)); 661 pos += sizeof(lsig); 662 } 663 664 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 665 *pos++ = status->chain_signal[chain]; 666 *pos++ = chain; 667 } 668 669 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 670 /* ensure 2 byte alignment for the vendor field as required */ 671 if ((pos - (u8 *)rthdr) & 1) 672 *pos++ = 0; 673 *pos++ = rtap.oui[0]; 674 *pos++ = rtap.oui[1]; 675 *pos++ = rtap.oui[2]; 676 *pos++ = rtap.subns; 677 put_unaligned_le16(rtap.len, pos); 678 pos += 2; 679 /* align the actual payload as requested */ 680 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 681 *pos++ = 0; 682 /* data (and possible padding) already follows */ 683 } 684 } 685 686 static struct sk_buff * 687 ieee80211_make_monitor_skb(struct ieee80211_local *local, 688 struct sk_buff **origskb, 689 struct ieee80211_rate *rate, 690 int rtap_space, bool use_origskb) 691 { 692 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 693 int rt_hdrlen, needed_headroom; 694 struct sk_buff *skb; 695 696 /* room for the radiotap header based on driver features */ 697 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 698 needed_headroom = rt_hdrlen - rtap_space; 699 700 if (use_origskb) { 701 /* only need to expand headroom if necessary */ 702 skb = *origskb; 703 *origskb = NULL; 704 705 /* 706 * This shouldn't trigger often because most devices have an 707 * RX header they pull before we get here, and that should 708 * be big enough for our radiotap information. We should 709 * probably export the length to drivers so that we can have 710 * them allocate enough headroom to start with. 711 */ 712 if (skb_headroom(skb) < needed_headroom && 713 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 714 dev_kfree_skb(skb); 715 return NULL; 716 } 717 } else { 718 /* 719 * Need to make a copy and possibly remove radiotap header 720 * and FCS from the original. 721 */ 722 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 723 724 if (!skb) 725 return NULL; 726 } 727 728 /* prepend radiotap information */ 729 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 730 731 skb_reset_mac_header(skb); 732 skb->ip_summed = CHECKSUM_UNNECESSARY; 733 skb->pkt_type = PACKET_OTHERHOST; 734 skb->protocol = htons(ETH_P_802_2); 735 736 return skb; 737 } 738 739 /* 740 * This function copies a received frame to all monitor interfaces and 741 * returns a cleaned-up SKB that no longer includes the FCS nor the 742 * radiotap header the driver might have added. 743 */ 744 static struct sk_buff * 745 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 746 struct ieee80211_rate *rate) 747 { 748 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 749 struct ieee80211_sub_if_data *sdata; 750 struct sk_buff *monskb = NULL; 751 int present_fcs_len = 0; 752 unsigned int rtap_space = 0; 753 struct ieee80211_sub_if_data *monitor_sdata = 754 rcu_dereference(local->monitor_sdata); 755 bool only_monitor = false; 756 757 if (status->flag & RX_FLAG_RADIOTAP_HE) 758 rtap_space += sizeof(struct ieee80211_radiotap_he); 759 760 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 761 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 762 763 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 764 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 765 766 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 767 } 768 769 /* 770 * First, we may need to make a copy of the skb because 771 * (1) we need to modify it for radiotap (if not present), and 772 * (2) the other RX handlers will modify the skb we got. 773 * 774 * We don't need to, of course, if we aren't going to return 775 * the SKB because it has a bad FCS/PLCP checksum. 776 */ 777 778 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 779 if (unlikely(origskb->len <= FCS_LEN)) { 780 /* driver bug */ 781 WARN_ON(1); 782 dev_kfree_skb(origskb); 783 return NULL; 784 } 785 present_fcs_len = FCS_LEN; 786 } 787 788 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 789 if (!pskb_may_pull(origskb, 2 + rtap_space)) { 790 dev_kfree_skb(origskb); 791 return NULL; 792 } 793 794 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 795 796 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 797 if (only_monitor) { 798 dev_kfree_skb(origskb); 799 return NULL; 800 } 801 802 remove_monitor_info(origskb, present_fcs_len, rtap_space); 803 return origskb; 804 } 805 806 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 807 808 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 809 bool last_monitor = list_is_last(&sdata->u.mntr.list, 810 &local->mon_list); 811 812 if (!monskb) 813 monskb = ieee80211_make_monitor_skb(local, &origskb, 814 rate, rtap_space, 815 only_monitor && 816 last_monitor); 817 818 if (monskb) { 819 struct sk_buff *skb; 820 821 if (last_monitor) { 822 skb = monskb; 823 monskb = NULL; 824 } else { 825 skb = skb_clone(monskb, GFP_ATOMIC); 826 } 827 828 if (skb) { 829 skb->dev = sdata->dev; 830 ieee80211_rx_stats(skb->dev, skb->len); 831 netif_receive_skb(skb); 832 } 833 } 834 835 if (last_monitor) 836 break; 837 } 838 839 /* this happens if last_monitor was erroneously false */ 840 dev_kfree_skb(monskb); 841 842 /* ditto */ 843 if (!origskb) 844 return NULL; 845 846 remove_monitor_info(origskb, present_fcs_len, rtap_space); 847 return origskb; 848 } 849 850 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 851 { 852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 853 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 854 int tid, seqno_idx, security_idx; 855 856 /* does the frame have a qos control field? */ 857 if (ieee80211_is_data_qos(hdr->frame_control)) { 858 u8 *qc = ieee80211_get_qos_ctl(hdr); 859 /* frame has qos control */ 860 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 861 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 862 status->rx_flags |= IEEE80211_RX_AMSDU; 863 864 seqno_idx = tid; 865 security_idx = tid; 866 } else { 867 /* 868 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 869 * 870 * Sequence numbers for management frames, QoS data 871 * frames with a broadcast/multicast address in the 872 * Address 1 field, and all non-QoS data frames sent 873 * by QoS STAs are assigned using an additional single 874 * modulo-4096 counter, [...] 875 * 876 * We also use that counter for non-QoS STAs. 877 */ 878 seqno_idx = IEEE80211_NUM_TIDS; 879 security_idx = 0; 880 if (ieee80211_is_mgmt(hdr->frame_control)) 881 security_idx = IEEE80211_NUM_TIDS; 882 tid = 0; 883 } 884 885 rx->seqno_idx = seqno_idx; 886 rx->security_idx = security_idx; 887 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 888 * For now, set skb->priority to 0 for other cases. */ 889 rx->skb->priority = (tid > 7) ? 0 : tid; 890 } 891 892 /** 893 * DOC: Packet alignment 894 * 895 * Drivers always need to pass packets that are aligned to two-byte boundaries 896 * to the stack. 897 * 898 * Additionally, should, if possible, align the payload data in a way that 899 * guarantees that the contained IP header is aligned to a four-byte 900 * boundary. In the case of regular frames, this simply means aligning the 901 * payload to a four-byte boundary (because either the IP header is directly 902 * contained, or IV/RFC1042 headers that have a length divisible by four are 903 * in front of it). If the payload data is not properly aligned and the 904 * architecture doesn't support efficient unaligned operations, mac80211 905 * will align the data. 906 * 907 * With A-MSDU frames, however, the payload data address must yield two modulo 908 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 909 * push the IP header further back to a multiple of four again. Thankfully, the 910 * specs were sane enough this time around to require padding each A-MSDU 911 * subframe to a length that is a multiple of four. 912 * 913 * Padding like Atheros hardware adds which is between the 802.11 header and 914 * the payload is not supported, the driver is required to move the 802.11 915 * header to be directly in front of the payload in that case. 916 */ 917 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 918 { 919 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 920 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 921 #endif 922 } 923 924 925 /* rx handlers */ 926 927 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 928 { 929 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 930 931 if (is_multicast_ether_addr(hdr->addr1)) 932 return 0; 933 934 return ieee80211_is_robust_mgmt_frame(skb); 935 } 936 937 938 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 939 { 940 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 941 942 if (!is_multicast_ether_addr(hdr->addr1)) 943 return 0; 944 945 return ieee80211_is_robust_mgmt_frame(skb); 946 } 947 948 949 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 950 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 951 { 952 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 953 struct ieee80211_mmie *mmie; 954 struct ieee80211_mmie_16 *mmie16; 955 956 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 957 return -1; 958 959 if (!ieee80211_is_robust_mgmt_frame(skb)) 960 return -1; /* not a robust management frame */ 961 962 mmie = (struct ieee80211_mmie *) 963 (skb->data + skb->len - sizeof(*mmie)); 964 if (mmie->element_id == WLAN_EID_MMIE && 965 mmie->length == sizeof(*mmie) - 2) 966 return le16_to_cpu(mmie->key_id); 967 968 mmie16 = (struct ieee80211_mmie_16 *) 969 (skb->data + skb->len - sizeof(*mmie16)); 970 if (skb->len >= 24 + sizeof(*mmie16) && 971 mmie16->element_id == WLAN_EID_MMIE && 972 mmie16->length == sizeof(*mmie16) - 2) 973 return le16_to_cpu(mmie16->key_id); 974 975 return -1; 976 } 977 978 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 979 struct sk_buff *skb) 980 { 981 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 982 __le16 fc; 983 int hdrlen; 984 u8 keyid; 985 986 fc = hdr->frame_control; 987 hdrlen = ieee80211_hdrlen(fc); 988 989 if (skb->len < hdrlen + cs->hdr_len) 990 return -EINVAL; 991 992 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 993 keyid &= cs->key_idx_mask; 994 keyid >>= cs->key_idx_shift; 995 996 return keyid; 997 } 998 999 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1000 { 1001 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1002 char *dev_addr = rx->sdata->vif.addr; 1003 1004 if (ieee80211_is_data(hdr->frame_control)) { 1005 if (is_multicast_ether_addr(hdr->addr1)) { 1006 if (ieee80211_has_tods(hdr->frame_control) || 1007 !ieee80211_has_fromds(hdr->frame_control)) 1008 return RX_DROP_MONITOR; 1009 if (ether_addr_equal(hdr->addr3, dev_addr)) 1010 return RX_DROP_MONITOR; 1011 } else { 1012 if (!ieee80211_has_a4(hdr->frame_control)) 1013 return RX_DROP_MONITOR; 1014 if (ether_addr_equal(hdr->addr4, dev_addr)) 1015 return RX_DROP_MONITOR; 1016 } 1017 } 1018 1019 /* If there is not an established peer link and this is not a peer link 1020 * establisment frame, beacon or probe, drop the frame. 1021 */ 1022 1023 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1024 struct ieee80211_mgmt *mgmt; 1025 1026 if (!ieee80211_is_mgmt(hdr->frame_control)) 1027 return RX_DROP_MONITOR; 1028 1029 if (ieee80211_is_action(hdr->frame_control)) { 1030 u8 category; 1031 1032 /* make sure category field is present */ 1033 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1034 return RX_DROP_MONITOR; 1035 1036 mgmt = (struct ieee80211_mgmt *)hdr; 1037 category = mgmt->u.action.category; 1038 if (category != WLAN_CATEGORY_MESH_ACTION && 1039 category != WLAN_CATEGORY_SELF_PROTECTED) 1040 return RX_DROP_MONITOR; 1041 return RX_CONTINUE; 1042 } 1043 1044 if (ieee80211_is_probe_req(hdr->frame_control) || 1045 ieee80211_is_probe_resp(hdr->frame_control) || 1046 ieee80211_is_beacon(hdr->frame_control) || 1047 ieee80211_is_auth(hdr->frame_control)) 1048 return RX_CONTINUE; 1049 1050 return RX_DROP_MONITOR; 1051 } 1052 1053 return RX_CONTINUE; 1054 } 1055 1056 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1057 int index) 1058 { 1059 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1060 struct sk_buff *tail = skb_peek_tail(frames); 1061 struct ieee80211_rx_status *status; 1062 1063 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1064 return true; 1065 1066 if (!tail) 1067 return false; 1068 1069 status = IEEE80211_SKB_RXCB(tail); 1070 if (status->flag & RX_FLAG_AMSDU_MORE) 1071 return false; 1072 1073 return true; 1074 } 1075 1076 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1077 struct tid_ampdu_rx *tid_agg_rx, 1078 int index, 1079 struct sk_buff_head *frames) 1080 { 1081 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1082 struct sk_buff *skb; 1083 struct ieee80211_rx_status *status; 1084 1085 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1086 1087 if (skb_queue_empty(skb_list)) 1088 goto no_frame; 1089 1090 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1091 __skb_queue_purge(skb_list); 1092 goto no_frame; 1093 } 1094 1095 /* release frames from the reorder ring buffer */ 1096 tid_agg_rx->stored_mpdu_num--; 1097 while ((skb = __skb_dequeue(skb_list))) { 1098 status = IEEE80211_SKB_RXCB(skb); 1099 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1100 __skb_queue_tail(frames, skb); 1101 } 1102 1103 no_frame: 1104 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1105 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1106 } 1107 1108 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1109 struct tid_ampdu_rx *tid_agg_rx, 1110 u16 head_seq_num, 1111 struct sk_buff_head *frames) 1112 { 1113 int index; 1114 1115 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1116 1117 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1118 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1119 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1120 frames); 1121 } 1122 } 1123 1124 /* 1125 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1126 * the skb was added to the buffer longer than this time ago, the earlier 1127 * frames that have not yet been received are assumed to be lost and the skb 1128 * can be released for processing. This may also release other skb's from the 1129 * reorder buffer if there are no additional gaps between the frames. 1130 * 1131 * Callers must hold tid_agg_rx->reorder_lock. 1132 */ 1133 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1134 1135 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1136 struct tid_ampdu_rx *tid_agg_rx, 1137 struct sk_buff_head *frames) 1138 { 1139 int index, i, j; 1140 1141 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1142 1143 /* release the buffer until next missing frame */ 1144 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1145 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1146 tid_agg_rx->stored_mpdu_num) { 1147 /* 1148 * No buffers ready to be released, but check whether any 1149 * frames in the reorder buffer have timed out. 1150 */ 1151 int skipped = 1; 1152 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1153 j = (j + 1) % tid_agg_rx->buf_size) { 1154 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1155 skipped++; 1156 continue; 1157 } 1158 if (skipped && 1159 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1160 HT_RX_REORDER_BUF_TIMEOUT)) 1161 goto set_release_timer; 1162 1163 /* don't leave incomplete A-MSDUs around */ 1164 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1165 i = (i + 1) % tid_agg_rx->buf_size) 1166 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1167 1168 ht_dbg_ratelimited(sdata, 1169 "release an RX reorder frame due to timeout on earlier frames\n"); 1170 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1171 frames); 1172 1173 /* 1174 * Increment the head seq# also for the skipped slots. 1175 */ 1176 tid_agg_rx->head_seq_num = 1177 (tid_agg_rx->head_seq_num + 1178 skipped) & IEEE80211_SN_MASK; 1179 skipped = 0; 1180 } 1181 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1182 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1183 frames); 1184 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1185 } 1186 1187 if (tid_agg_rx->stored_mpdu_num) { 1188 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1189 1190 for (; j != (index - 1) % tid_agg_rx->buf_size; 1191 j = (j + 1) % tid_agg_rx->buf_size) { 1192 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1193 break; 1194 } 1195 1196 set_release_timer: 1197 1198 if (!tid_agg_rx->removed) 1199 mod_timer(&tid_agg_rx->reorder_timer, 1200 tid_agg_rx->reorder_time[j] + 1 + 1201 HT_RX_REORDER_BUF_TIMEOUT); 1202 } else { 1203 del_timer(&tid_agg_rx->reorder_timer); 1204 } 1205 } 1206 1207 /* 1208 * As this function belongs to the RX path it must be under 1209 * rcu_read_lock protection. It returns false if the frame 1210 * can be processed immediately, true if it was consumed. 1211 */ 1212 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1213 struct tid_ampdu_rx *tid_agg_rx, 1214 struct sk_buff *skb, 1215 struct sk_buff_head *frames) 1216 { 1217 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1218 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1219 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1220 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1221 u16 head_seq_num, buf_size; 1222 int index; 1223 bool ret = true; 1224 1225 spin_lock(&tid_agg_rx->reorder_lock); 1226 1227 /* 1228 * Offloaded BA sessions have no known starting sequence number so pick 1229 * one from first Rxed frame for this tid after BA was started. 1230 */ 1231 if (unlikely(tid_agg_rx->auto_seq)) { 1232 tid_agg_rx->auto_seq = false; 1233 tid_agg_rx->ssn = mpdu_seq_num; 1234 tid_agg_rx->head_seq_num = mpdu_seq_num; 1235 } 1236 1237 buf_size = tid_agg_rx->buf_size; 1238 head_seq_num = tid_agg_rx->head_seq_num; 1239 1240 /* 1241 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1242 * be reordered. 1243 */ 1244 if (unlikely(!tid_agg_rx->started)) { 1245 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1246 ret = false; 1247 goto out; 1248 } 1249 tid_agg_rx->started = true; 1250 } 1251 1252 /* frame with out of date sequence number */ 1253 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1254 dev_kfree_skb(skb); 1255 goto out; 1256 } 1257 1258 /* 1259 * If frame the sequence number exceeds our buffering window 1260 * size release some previous frames to make room for this one. 1261 */ 1262 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1263 head_seq_num = ieee80211_sn_inc( 1264 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1265 /* release stored frames up to new head to stack */ 1266 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1267 head_seq_num, frames); 1268 } 1269 1270 /* Now the new frame is always in the range of the reordering buffer */ 1271 1272 index = mpdu_seq_num % tid_agg_rx->buf_size; 1273 1274 /* check if we already stored this frame */ 1275 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1276 dev_kfree_skb(skb); 1277 goto out; 1278 } 1279 1280 /* 1281 * If the current MPDU is in the right order and nothing else 1282 * is stored we can process it directly, no need to buffer it. 1283 * If it is first but there's something stored, we may be able 1284 * to release frames after this one. 1285 */ 1286 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1287 tid_agg_rx->stored_mpdu_num == 0) { 1288 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1289 tid_agg_rx->head_seq_num = 1290 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1291 ret = false; 1292 goto out; 1293 } 1294 1295 /* put the frame in the reordering buffer */ 1296 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1297 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1298 tid_agg_rx->reorder_time[index] = jiffies; 1299 tid_agg_rx->stored_mpdu_num++; 1300 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1301 } 1302 1303 out: 1304 spin_unlock(&tid_agg_rx->reorder_lock); 1305 return ret; 1306 } 1307 1308 /* 1309 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1310 * true if the MPDU was buffered, false if it should be processed. 1311 */ 1312 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1313 struct sk_buff_head *frames) 1314 { 1315 struct sk_buff *skb = rx->skb; 1316 struct ieee80211_local *local = rx->local; 1317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1318 struct sta_info *sta = rx->sta; 1319 struct tid_ampdu_rx *tid_agg_rx; 1320 u16 sc; 1321 u8 tid, ack_policy; 1322 1323 if (!ieee80211_is_data_qos(hdr->frame_control) || 1324 is_multicast_ether_addr(hdr->addr1)) 1325 goto dont_reorder; 1326 1327 /* 1328 * filter the QoS data rx stream according to 1329 * STA/TID and check if this STA/TID is on aggregation 1330 */ 1331 1332 if (!sta) 1333 goto dont_reorder; 1334 1335 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1336 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1337 tid = ieee80211_get_tid(hdr); 1338 1339 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1340 if (!tid_agg_rx) { 1341 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1342 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1343 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1344 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1345 WLAN_BACK_RECIPIENT, 1346 WLAN_REASON_QSTA_REQUIRE_SETUP); 1347 goto dont_reorder; 1348 } 1349 1350 /* qos null data frames are excluded */ 1351 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1352 goto dont_reorder; 1353 1354 /* not part of a BA session */ 1355 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1356 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1357 goto dont_reorder; 1358 1359 /* new, potentially un-ordered, ampdu frame - process it */ 1360 1361 /* reset session timer */ 1362 if (tid_agg_rx->timeout) 1363 tid_agg_rx->last_rx = jiffies; 1364 1365 /* if this mpdu is fragmented - terminate rx aggregation session */ 1366 sc = le16_to_cpu(hdr->seq_ctrl); 1367 if (sc & IEEE80211_SCTL_FRAG) { 1368 skb_queue_tail(&rx->sdata->skb_queue, skb); 1369 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1370 return; 1371 } 1372 1373 /* 1374 * No locking needed -- we will only ever process one 1375 * RX packet at a time, and thus own tid_agg_rx. All 1376 * other code manipulating it needs to (and does) make 1377 * sure that we cannot get to it any more before doing 1378 * anything with it. 1379 */ 1380 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1381 frames)) 1382 return; 1383 1384 dont_reorder: 1385 __skb_queue_tail(frames, skb); 1386 } 1387 1388 static ieee80211_rx_result debug_noinline 1389 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1390 { 1391 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1392 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1393 1394 if (status->flag & RX_FLAG_DUP_VALIDATED) 1395 return RX_CONTINUE; 1396 1397 /* 1398 * Drop duplicate 802.11 retransmissions 1399 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1400 */ 1401 1402 if (rx->skb->len < 24) 1403 return RX_CONTINUE; 1404 1405 if (ieee80211_is_ctl(hdr->frame_control) || 1406 ieee80211_is_nullfunc(hdr->frame_control) || 1407 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1408 is_multicast_ether_addr(hdr->addr1)) 1409 return RX_CONTINUE; 1410 1411 if (!rx->sta) 1412 return RX_CONTINUE; 1413 1414 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1415 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1416 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1417 rx->sta->rx_stats.num_duplicates++; 1418 return RX_DROP_UNUSABLE; 1419 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1420 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1421 } 1422 1423 return RX_CONTINUE; 1424 } 1425 1426 static ieee80211_rx_result debug_noinline 1427 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1428 { 1429 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1430 1431 /* Drop disallowed frame classes based on STA auth/assoc state; 1432 * IEEE 802.11, Chap 5.5. 1433 * 1434 * mac80211 filters only based on association state, i.e. it drops 1435 * Class 3 frames from not associated stations. hostapd sends 1436 * deauth/disassoc frames when needed. In addition, hostapd is 1437 * responsible for filtering on both auth and assoc states. 1438 */ 1439 1440 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1441 return ieee80211_rx_mesh_check(rx); 1442 1443 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1444 ieee80211_is_pspoll(hdr->frame_control)) && 1445 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1446 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1447 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1448 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1449 /* 1450 * accept port control frames from the AP even when it's not 1451 * yet marked ASSOC to prevent a race where we don't set the 1452 * assoc bit quickly enough before it sends the first frame 1453 */ 1454 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1455 ieee80211_is_data_present(hdr->frame_control)) { 1456 unsigned int hdrlen; 1457 __be16 ethertype; 1458 1459 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1460 1461 if (rx->skb->len < hdrlen + 8) 1462 return RX_DROP_MONITOR; 1463 1464 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1465 if (ethertype == rx->sdata->control_port_protocol) 1466 return RX_CONTINUE; 1467 } 1468 1469 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1470 cfg80211_rx_spurious_frame(rx->sdata->dev, 1471 hdr->addr2, 1472 GFP_ATOMIC)) 1473 return RX_DROP_UNUSABLE; 1474 1475 return RX_DROP_MONITOR; 1476 } 1477 1478 return RX_CONTINUE; 1479 } 1480 1481 1482 static ieee80211_rx_result debug_noinline 1483 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1484 { 1485 struct ieee80211_local *local; 1486 struct ieee80211_hdr *hdr; 1487 struct sk_buff *skb; 1488 1489 local = rx->local; 1490 skb = rx->skb; 1491 hdr = (struct ieee80211_hdr *) skb->data; 1492 1493 if (!local->pspolling) 1494 return RX_CONTINUE; 1495 1496 if (!ieee80211_has_fromds(hdr->frame_control)) 1497 /* this is not from AP */ 1498 return RX_CONTINUE; 1499 1500 if (!ieee80211_is_data(hdr->frame_control)) 1501 return RX_CONTINUE; 1502 1503 if (!ieee80211_has_moredata(hdr->frame_control)) { 1504 /* AP has no more frames buffered for us */ 1505 local->pspolling = false; 1506 return RX_CONTINUE; 1507 } 1508 1509 /* more data bit is set, let's request a new frame from the AP */ 1510 ieee80211_send_pspoll(local, rx->sdata); 1511 1512 return RX_CONTINUE; 1513 } 1514 1515 static void sta_ps_start(struct sta_info *sta) 1516 { 1517 struct ieee80211_sub_if_data *sdata = sta->sdata; 1518 struct ieee80211_local *local = sdata->local; 1519 struct ps_data *ps; 1520 int tid; 1521 1522 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1523 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1524 ps = &sdata->bss->ps; 1525 else 1526 return; 1527 1528 atomic_inc(&ps->num_sta_ps); 1529 set_sta_flag(sta, WLAN_STA_PS_STA); 1530 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1531 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1532 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1533 sta->sta.addr, sta->sta.aid); 1534 1535 ieee80211_clear_fast_xmit(sta); 1536 1537 if (!sta->sta.txq[0]) 1538 return; 1539 1540 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1541 if (txq_has_queue(sta->sta.txq[tid])) 1542 set_bit(tid, &sta->txq_buffered_tids); 1543 else 1544 clear_bit(tid, &sta->txq_buffered_tids); 1545 } 1546 } 1547 1548 static void sta_ps_end(struct sta_info *sta) 1549 { 1550 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1551 sta->sta.addr, sta->sta.aid); 1552 1553 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1554 /* 1555 * Clear the flag only if the other one is still set 1556 * so that the TX path won't start TX'ing new frames 1557 * directly ... In the case that the driver flag isn't 1558 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1559 */ 1560 clear_sta_flag(sta, WLAN_STA_PS_STA); 1561 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1562 sta->sta.addr, sta->sta.aid); 1563 return; 1564 } 1565 1566 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1567 clear_sta_flag(sta, WLAN_STA_PS_STA); 1568 ieee80211_sta_ps_deliver_wakeup(sta); 1569 } 1570 1571 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1572 { 1573 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1574 bool in_ps; 1575 1576 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1577 1578 /* Don't let the same PS state be set twice */ 1579 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1580 if ((start && in_ps) || (!start && !in_ps)) 1581 return -EINVAL; 1582 1583 if (start) 1584 sta_ps_start(sta); 1585 else 1586 sta_ps_end(sta); 1587 1588 return 0; 1589 } 1590 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1591 1592 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1593 { 1594 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1595 1596 if (test_sta_flag(sta, WLAN_STA_SP)) 1597 return; 1598 1599 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1600 ieee80211_sta_ps_deliver_poll_response(sta); 1601 else 1602 set_sta_flag(sta, WLAN_STA_PSPOLL); 1603 } 1604 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1605 1606 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1607 { 1608 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1609 int ac = ieee80211_ac_from_tid(tid); 1610 1611 /* 1612 * If this AC is not trigger-enabled do nothing unless the 1613 * driver is calling us after it already checked. 1614 * 1615 * NB: This could/should check a separate bitmap of trigger- 1616 * enabled queues, but for now we only implement uAPSD w/o 1617 * TSPEC changes to the ACs, so they're always the same. 1618 */ 1619 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1620 tid != IEEE80211_NUM_TIDS) 1621 return; 1622 1623 /* if we are in a service period, do nothing */ 1624 if (test_sta_flag(sta, WLAN_STA_SP)) 1625 return; 1626 1627 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1628 ieee80211_sta_ps_deliver_uapsd(sta); 1629 else 1630 set_sta_flag(sta, WLAN_STA_UAPSD); 1631 } 1632 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1633 1634 static ieee80211_rx_result debug_noinline 1635 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1636 { 1637 struct ieee80211_sub_if_data *sdata = rx->sdata; 1638 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1639 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1640 1641 if (!rx->sta) 1642 return RX_CONTINUE; 1643 1644 if (sdata->vif.type != NL80211_IFTYPE_AP && 1645 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1646 return RX_CONTINUE; 1647 1648 /* 1649 * The device handles station powersave, so don't do anything about 1650 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1651 * it to mac80211 since they're handled.) 1652 */ 1653 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1654 return RX_CONTINUE; 1655 1656 /* 1657 * Don't do anything if the station isn't already asleep. In 1658 * the uAPSD case, the station will probably be marked asleep, 1659 * in the PS-Poll case the station must be confused ... 1660 */ 1661 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1662 return RX_CONTINUE; 1663 1664 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1665 ieee80211_sta_pspoll(&rx->sta->sta); 1666 1667 /* Free PS Poll skb here instead of returning RX_DROP that would 1668 * count as an dropped frame. */ 1669 dev_kfree_skb(rx->skb); 1670 1671 return RX_QUEUED; 1672 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1673 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1674 ieee80211_has_pm(hdr->frame_control) && 1675 (ieee80211_is_data_qos(hdr->frame_control) || 1676 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1677 u8 tid = ieee80211_get_tid(hdr); 1678 1679 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1680 } 1681 1682 return RX_CONTINUE; 1683 } 1684 1685 static ieee80211_rx_result debug_noinline 1686 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1687 { 1688 struct sta_info *sta = rx->sta; 1689 struct sk_buff *skb = rx->skb; 1690 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1691 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1692 int i; 1693 1694 if (!sta) 1695 return RX_CONTINUE; 1696 1697 /* 1698 * Update last_rx only for IBSS packets which are for the current 1699 * BSSID and for station already AUTHORIZED to avoid keeping the 1700 * current IBSS network alive in cases where other STAs start 1701 * using different BSSID. This will also give the station another 1702 * chance to restart the authentication/authorization in case 1703 * something went wrong the first time. 1704 */ 1705 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1706 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1707 NL80211_IFTYPE_ADHOC); 1708 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1709 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1710 sta->rx_stats.last_rx = jiffies; 1711 if (ieee80211_is_data(hdr->frame_control) && 1712 !is_multicast_ether_addr(hdr->addr1)) 1713 sta->rx_stats.last_rate = 1714 sta_stats_encode_rate(status); 1715 } 1716 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1717 sta->rx_stats.last_rx = jiffies; 1718 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1719 /* 1720 * Mesh beacons will update last_rx when if they are found to 1721 * match the current local configuration when processed. 1722 */ 1723 sta->rx_stats.last_rx = jiffies; 1724 if (ieee80211_is_data(hdr->frame_control)) 1725 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1726 } 1727 1728 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1729 ieee80211_sta_rx_notify(rx->sdata, hdr); 1730 1731 sta->rx_stats.fragments++; 1732 1733 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1734 sta->rx_stats.bytes += rx->skb->len; 1735 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1736 1737 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1738 sta->rx_stats.last_signal = status->signal; 1739 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1740 } 1741 1742 if (status->chains) { 1743 sta->rx_stats.chains = status->chains; 1744 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1745 int signal = status->chain_signal[i]; 1746 1747 if (!(status->chains & BIT(i))) 1748 continue; 1749 1750 sta->rx_stats.chain_signal_last[i] = signal; 1751 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1752 -signal); 1753 } 1754 } 1755 1756 /* 1757 * Change STA power saving mode only at the end of a frame 1758 * exchange sequence, and only for a data or management 1759 * frame as specified in IEEE 802.11-2016 11.2.3.2 1760 */ 1761 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1762 !ieee80211_has_morefrags(hdr->frame_control) && 1763 !is_multicast_ether_addr(hdr->addr1) && 1764 (ieee80211_is_mgmt(hdr->frame_control) || 1765 ieee80211_is_data(hdr->frame_control)) && 1766 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1767 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1768 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1769 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1770 if (!ieee80211_has_pm(hdr->frame_control)) 1771 sta_ps_end(sta); 1772 } else { 1773 if (ieee80211_has_pm(hdr->frame_control)) 1774 sta_ps_start(sta); 1775 } 1776 } 1777 1778 /* mesh power save support */ 1779 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1780 ieee80211_mps_rx_h_sta_process(sta, hdr); 1781 1782 /* 1783 * Drop (qos-)data::nullfunc frames silently, since they 1784 * are used only to control station power saving mode. 1785 */ 1786 if (ieee80211_is_nullfunc(hdr->frame_control) || 1787 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1788 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1789 1790 /* 1791 * If we receive a 4-addr nullfunc frame from a STA 1792 * that was not moved to a 4-addr STA vlan yet send 1793 * the event to userspace and for older hostapd drop 1794 * the frame to the monitor interface. 1795 */ 1796 if (ieee80211_has_a4(hdr->frame_control) && 1797 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1798 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1799 !rx->sdata->u.vlan.sta))) { 1800 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1801 cfg80211_rx_unexpected_4addr_frame( 1802 rx->sdata->dev, sta->sta.addr, 1803 GFP_ATOMIC); 1804 return RX_DROP_MONITOR; 1805 } 1806 /* 1807 * Update counter and free packet here to avoid 1808 * counting this as a dropped packed. 1809 */ 1810 sta->rx_stats.packets++; 1811 dev_kfree_skb(rx->skb); 1812 return RX_QUEUED; 1813 } 1814 1815 return RX_CONTINUE; 1816 } /* ieee80211_rx_h_sta_process */ 1817 1818 static ieee80211_rx_result debug_noinline 1819 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1820 { 1821 struct sk_buff *skb = rx->skb; 1822 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1823 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1824 int keyidx; 1825 int hdrlen; 1826 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1827 struct ieee80211_key *sta_ptk = NULL; 1828 int mmie_keyidx = -1; 1829 __le16 fc; 1830 const struct ieee80211_cipher_scheme *cs = NULL; 1831 1832 /* 1833 * Key selection 101 1834 * 1835 * There are four types of keys: 1836 * - GTK (group keys) 1837 * - IGTK (group keys for management frames) 1838 * - PTK (pairwise keys) 1839 * - STK (station-to-station pairwise keys) 1840 * 1841 * When selecting a key, we have to distinguish between multicast 1842 * (including broadcast) and unicast frames, the latter can only 1843 * use PTKs and STKs while the former always use GTKs and IGTKs. 1844 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1845 * unicast frames can also use key indices like GTKs. Hence, if we 1846 * don't have a PTK/STK we check the key index for a WEP key. 1847 * 1848 * Note that in a regular BSS, multicast frames are sent by the 1849 * AP only, associated stations unicast the frame to the AP first 1850 * which then multicasts it on their behalf. 1851 * 1852 * There is also a slight problem in IBSS mode: GTKs are negotiated 1853 * with each station, that is something we don't currently handle. 1854 * The spec seems to expect that one negotiates the same key with 1855 * every station but there's no such requirement; VLANs could be 1856 * possible. 1857 */ 1858 1859 /* start without a key */ 1860 rx->key = NULL; 1861 fc = hdr->frame_control; 1862 1863 if (rx->sta) { 1864 int keyid = rx->sta->ptk_idx; 1865 1866 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1867 cs = rx->sta->cipher_scheme; 1868 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1869 if (unlikely(keyid < 0)) 1870 return RX_DROP_UNUSABLE; 1871 } 1872 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1873 } 1874 1875 if (!ieee80211_has_protected(fc)) 1876 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1877 1878 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1879 rx->key = sta_ptk; 1880 if ((status->flag & RX_FLAG_DECRYPTED) && 1881 (status->flag & RX_FLAG_IV_STRIPPED)) 1882 return RX_CONTINUE; 1883 /* Skip decryption if the frame is not protected. */ 1884 if (!ieee80211_has_protected(fc)) 1885 return RX_CONTINUE; 1886 } else if (mmie_keyidx >= 0) { 1887 /* Broadcast/multicast robust management frame / BIP */ 1888 if ((status->flag & RX_FLAG_DECRYPTED) && 1889 (status->flag & RX_FLAG_IV_STRIPPED)) 1890 return RX_CONTINUE; 1891 1892 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1893 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1894 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1895 if (rx->sta) { 1896 if (ieee80211_is_group_privacy_action(skb) && 1897 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1898 return RX_DROP_MONITOR; 1899 1900 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1901 } 1902 if (!rx->key) 1903 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1904 } else if (!ieee80211_has_protected(fc)) { 1905 /* 1906 * The frame was not protected, so skip decryption. However, we 1907 * need to set rx->key if there is a key that could have been 1908 * used so that the frame may be dropped if encryption would 1909 * have been expected. 1910 */ 1911 struct ieee80211_key *key = NULL; 1912 struct ieee80211_sub_if_data *sdata = rx->sdata; 1913 int i; 1914 1915 if (ieee80211_is_mgmt(fc) && 1916 is_multicast_ether_addr(hdr->addr1) && 1917 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1918 rx->key = key; 1919 else { 1920 if (rx->sta) { 1921 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1922 key = rcu_dereference(rx->sta->gtk[i]); 1923 if (key) 1924 break; 1925 } 1926 } 1927 if (!key) { 1928 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1929 key = rcu_dereference(sdata->keys[i]); 1930 if (key) 1931 break; 1932 } 1933 } 1934 if (key) 1935 rx->key = key; 1936 } 1937 return RX_CONTINUE; 1938 } else { 1939 u8 keyid; 1940 1941 /* 1942 * The device doesn't give us the IV so we won't be 1943 * able to look up the key. That's ok though, we 1944 * don't need to decrypt the frame, we just won't 1945 * be able to keep statistics accurate. 1946 * Except for key threshold notifications, should 1947 * we somehow allow the driver to tell us which key 1948 * the hardware used if this flag is set? 1949 */ 1950 if ((status->flag & RX_FLAG_DECRYPTED) && 1951 (status->flag & RX_FLAG_IV_STRIPPED)) 1952 return RX_CONTINUE; 1953 1954 hdrlen = ieee80211_hdrlen(fc); 1955 1956 if (cs) { 1957 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1958 1959 if (unlikely(keyidx < 0)) 1960 return RX_DROP_UNUSABLE; 1961 } else { 1962 if (rx->skb->len < 8 + hdrlen) 1963 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1964 /* 1965 * no need to call ieee80211_wep_get_keyidx, 1966 * it verifies a bunch of things we've done already 1967 */ 1968 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1969 keyidx = keyid >> 6; 1970 } 1971 1972 /* check per-station GTK first, if multicast packet */ 1973 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1974 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1975 1976 /* if not found, try default key */ 1977 if (!rx->key) { 1978 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1979 1980 /* 1981 * RSNA-protected unicast frames should always be 1982 * sent with pairwise or station-to-station keys, 1983 * but for WEP we allow using a key index as well. 1984 */ 1985 if (rx->key && 1986 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1987 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1988 !is_multicast_ether_addr(hdr->addr1)) 1989 rx->key = NULL; 1990 } 1991 } 1992 1993 if (rx->key) { 1994 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1995 return RX_DROP_MONITOR; 1996 1997 /* TODO: add threshold stuff again */ 1998 } else { 1999 return RX_DROP_MONITOR; 2000 } 2001 2002 switch (rx->key->conf.cipher) { 2003 case WLAN_CIPHER_SUITE_WEP40: 2004 case WLAN_CIPHER_SUITE_WEP104: 2005 result = ieee80211_crypto_wep_decrypt(rx); 2006 break; 2007 case WLAN_CIPHER_SUITE_TKIP: 2008 result = ieee80211_crypto_tkip_decrypt(rx); 2009 break; 2010 case WLAN_CIPHER_SUITE_CCMP: 2011 result = ieee80211_crypto_ccmp_decrypt( 2012 rx, IEEE80211_CCMP_MIC_LEN); 2013 break; 2014 case WLAN_CIPHER_SUITE_CCMP_256: 2015 result = ieee80211_crypto_ccmp_decrypt( 2016 rx, IEEE80211_CCMP_256_MIC_LEN); 2017 break; 2018 case WLAN_CIPHER_SUITE_AES_CMAC: 2019 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2020 break; 2021 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2022 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2023 break; 2024 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2025 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2026 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2027 break; 2028 case WLAN_CIPHER_SUITE_GCMP: 2029 case WLAN_CIPHER_SUITE_GCMP_256: 2030 result = ieee80211_crypto_gcmp_decrypt(rx); 2031 break; 2032 default: 2033 result = ieee80211_crypto_hw_decrypt(rx); 2034 } 2035 2036 /* the hdr variable is invalid after the decrypt handlers */ 2037 2038 /* either the frame has been decrypted or will be dropped */ 2039 status->flag |= RX_FLAG_DECRYPTED; 2040 2041 return result; 2042 } 2043 2044 static inline struct ieee80211_fragment_entry * 2045 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2046 unsigned int frag, unsigned int seq, int rx_queue, 2047 struct sk_buff **skb) 2048 { 2049 struct ieee80211_fragment_entry *entry; 2050 2051 entry = &sdata->fragments[sdata->fragment_next++]; 2052 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2053 sdata->fragment_next = 0; 2054 2055 if (!skb_queue_empty(&entry->skb_list)) 2056 __skb_queue_purge(&entry->skb_list); 2057 2058 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2059 *skb = NULL; 2060 entry->first_frag_time = jiffies; 2061 entry->seq = seq; 2062 entry->rx_queue = rx_queue; 2063 entry->last_frag = frag; 2064 entry->check_sequential_pn = false; 2065 entry->extra_len = 0; 2066 2067 return entry; 2068 } 2069 2070 static inline struct ieee80211_fragment_entry * 2071 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2072 unsigned int frag, unsigned int seq, 2073 int rx_queue, struct ieee80211_hdr *hdr) 2074 { 2075 struct ieee80211_fragment_entry *entry; 2076 int i, idx; 2077 2078 idx = sdata->fragment_next; 2079 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2080 struct ieee80211_hdr *f_hdr; 2081 struct sk_buff *f_skb; 2082 2083 idx--; 2084 if (idx < 0) 2085 idx = IEEE80211_FRAGMENT_MAX - 1; 2086 2087 entry = &sdata->fragments[idx]; 2088 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2089 entry->rx_queue != rx_queue || 2090 entry->last_frag + 1 != frag) 2091 continue; 2092 2093 f_skb = __skb_peek(&entry->skb_list); 2094 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2095 2096 /* 2097 * Check ftype and addresses are equal, else check next fragment 2098 */ 2099 if (((hdr->frame_control ^ f_hdr->frame_control) & 2100 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2101 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2102 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2103 continue; 2104 2105 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2106 __skb_queue_purge(&entry->skb_list); 2107 continue; 2108 } 2109 return entry; 2110 } 2111 2112 return NULL; 2113 } 2114 2115 static ieee80211_rx_result debug_noinline 2116 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2117 { 2118 struct ieee80211_hdr *hdr; 2119 u16 sc; 2120 __le16 fc; 2121 unsigned int frag, seq; 2122 struct ieee80211_fragment_entry *entry; 2123 struct sk_buff *skb; 2124 2125 hdr = (struct ieee80211_hdr *)rx->skb->data; 2126 fc = hdr->frame_control; 2127 2128 if (ieee80211_is_ctl(fc)) 2129 return RX_CONTINUE; 2130 2131 sc = le16_to_cpu(hdr->seq_ctrl); 2132 frag = sc & IEEE80211_SCTL_FRAG; 2133 2134 if (is_multicast_ether_addr(hdr->addr1)) { 2135 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2136 goto out_no_led; 2137 } 2138 2139 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2140 goto out; 2141 2142 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2143 2144 if (skb_linearize(rx->skb)) 2145 return RX_DROP_UNUSABLE; 2146 2147 /* 2148 * skb_linearize() might change the skb->data and 2149 * previously cached variables (in this case, hdr) need to 2150 * be refreshed with the new data. 2151 */ 2152 hdr = (struct ieee80211_hdr *)rx->skb->data; 2153 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2154 2155 if (frag == 0) { 2156 /* This is the first fragment of a new frame. */ 2157 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2158 rx->seqno_idx, &(rx->skb)); 2159 if (rx->key && 2160 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2161 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2162 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2163 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2164 ieee80211_has_protected(fc)) { 2165 int queue = rx->security_idx; 2166 2167 /* Store CCMP/GCMP PN so that we can verify that the 2168 * next fragment has a sequential PN value. 2169 */ 2170 entry->check_sequential_pn = true; 2171 memcpy(entry->last_pn, 2172 rx->key->u.ccmp.rx_pn[queue], 2173 IEEE80211_CCMP_PN_LEN); 2174 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2175 u.ccmp.rx_pn) != 2176 offsetof(struct ieee80211_key, 2177 u.gcmp.rx_pn)); 2178 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2179 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2180 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2181 IEEE80211_GCMP_PN_LEN); 2182 } 2183 return RX_QUEUED; 2184 } 2185 2186 /* This is a fragment for a frame that should already be pending in 2187 * fragment cache. Add this fragment to the end of the pending entry. 2188 */ 2189 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2190 rx->seqno_idx, hdr); 2191 if (!entry) { 2192 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2193 return RX_DROP_MONITOR; 2194 } 2195 2196 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2197 * MPDU PN values are not incrementing in steps of 1." 2198 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2199 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2200 */ 2201 if (entry->check_sequential_pn) { 2202 int i; 2203 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2204 int queue; 2205 2206 if (!rx->key || 2207 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2208 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2209 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2210 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2211 return RX_DROP_UNUSABLE; 2212 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2213 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2214 pn[i]++; 2215 if (pn[i]) 2216 break; 2217 } 2218 queue = rx->security_idx; 2219 rpn = rx->key->u.ccmp.rx_pn[queue]; 2220 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2221 return RX_DROP_UNUSABLE; 2222 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2223 } 2224 2225 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2226 __skb_queue_tail(&entry->skb_list, rx->skb); 2227 entry->last_frag = frag; 2228 entry->extra_len += rx->skb->len; 2229 if (ieee80211_has_morefrags(fc)) { 2230 rx->skb = NULL; 2231 return RX_QUEUED; 2232 } 2233 2234 rx->skb = __skb_dequeue(&entry->skb_list); 2235 if (skb_tailroom(rx->skb) < entry->extra_len) { 2236 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2237 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2238 GFP_ATOMIC))) { 2239 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2240 __skb_queue_purge(&entry->skb_list); 2241 return RX_DROP_UNUSABLE; 2242 } 2243 } 2244 while ((skb = __skb_dequeue(&entry->skb_list))) { 2245 skb_put_data(rx->skb, skb->data, skb->len); 2246 dev_kfree_skb(skb); 2247 } 2248 2249 out: 2250 ieee80211_led_rx(rx->local); 2251 out_no_led: 2252 if (rx->sta) 2253 rx->sta->rx_stats.packets++; 2254 return RX_CONTINUE; 2255 } 2256 2257 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2258 { 2259 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2260 return -EACCES; 2261 2262 return 0; 2263 } 2264 2265 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2266 { 2267 struct sk_buff *skb = rx->skb; 2268 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2269 2270 /* 2271 * Pass through unencrypted frames if the hardware has 2272 * decrypted them already. 2273 */ 2274 if (status->flag & RX_FLAG_DECRYPTED) 2275 return 0; 2276 2277 /* Drop unencrypted frames if key is set. */ 2278 if (unlikely(!ieee80211_has_protected(fc) && 2279 !ieee80211_is_nullfunc(fc) && 2280 ieee80211_is_data(fc) && rx->key)) 2281 return -EACCES; 2282 2283 return 0; 2284 } 2285 2286 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2287 { 2288 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2290 __le16 fc = hdr->frame_control; 2291 2292 /* 2293 * Pass through unencrypted frames if the hardware has 2294 * decrypted them already. 2295 */ 2296 if (status->flag & RX_FLAG_DECRYPTED) 2297 return 0; 2298 2299 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2300 if (unlikely(!ieee80211_has_protected(fc) && 2301 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2302 rx->key)) { 2303 if (ieee80211_is_deauth(fc) || 2304 ieee80211_is_disassoc(fc)) 2305 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2306 rx->skb->data, 2307 rx->skb->len); 2308 return -EACCES; 2309 } 2310 /* BIP does not use Protected field, so need to check MMIE */ 2311 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2312 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2313 if (ieee80211_is_deauth(fc) || 2314 ieee80211_is_disassoc(fc)) 2315 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2316 rx->skb->data, 2317 rx->skb->len); 2318 return -EACCES; 2319 } 2320 /* 2321 * When using MFP, Action frames are not allowed prior to 2322 * having configured keys. 2323 */ 2324 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2325 ieee80211_is_robust_mgmt_frame(rx->skb))) 2326 return -EACCES; 2327 } 2328 2329 return 0; 2330 } 2331 2332 static int 2333 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2334 { 2335 struct ieee80211_sub_if_data *sdata = rx->sdata; 2336 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2337 bool check_port_control = false; 2338 struct ethhdr *ehdr; 2339 int ret; 2340 2341 *port_control = false; 2342 if (ieee80211_has_a4(hdr->frame_control) && 2343 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2344 return -1; 2345 2346 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2347 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2348 2349 if (!sdata->u.mgd.use_4addr) 2350 return -1; 2351 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2352 check_port_control = true; 2353 } 2354 2355 if (is_multicast_ether_addr(hdr->addr1) && 2356 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2357 return -1; 2358 2359 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2360 if (ret < 0) 2361 return ret; 2362 2363 ehdr = (struct ethhdr *) rx->skb->data; 2364 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2365 *port_control = true; 2366 else if (check_port_control) 2367 return -1; 2368 2369 return 0; 2370 } 2371 2372 /* 2373 * requires that rx->skb is a frame with ethernet header 2374 */ 2375 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2376 { 2377 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2378 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2379 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2380 2381 /* 2382 * Allow EAPOL frames to us/the PAE group address regardless 2383 * of whether the frame was encrypted or not. 2384 */ 2385 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2386 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2387 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2388 return true; 2389 2390 if (ieee80211_802_1x_port_control(rx) || 2391 ieee80211_drop_unencrypted(rx, fc)) 2392 return false; 2393 2394 return true; 2395 } 2396 2397 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2398 struct ieee80211_rx_data *rx) 2399 { 2400 struct ieee80211_sub_if_data *sdata = rx->sdata; 2401 struct net_device *dev = sdata->dev; 2402 2403 if (unlikely((skb->protocol == sdata->control_port_protocol || 2404 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && 2405 sdata->control_port_over_nl80211)) { 2406 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2407 bool noencrypt = status->flag & RX_FLAG_DECRYPTED; 2408 2409 cfg80211_rx_control_port(dev, skb, noencrypt); 2410 dev_kfree_skb(skb); 2411 } else { 2412 /* deliver to local stack */ 2413 if (rx->napi) 2414 napi_gro_receive(rx->napi, skb); 2415 else 2416 netif_receive_skb(skb); 2417 } 2418 } 2419 2420 /* 2421 * requires that rx->skb is a frame with ethernet header 2422 */ 2423 static void 2424 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2425 { 2426 struct ieee80211_sub_if_data *sdata = rx->sdata; 2427 struct net_device *dev = sdata->dev; 2428 struct sk_buff *skb, *xmit_skb; 2429 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2430 struct sta_info *dsta; 2431 2432 skb = rx->skb; 2433 xmit_skb = NULL; 2434 2435 ieee80211_rx_stats(dev, skb->len); 2436 2437 if (rx->sta) { 2438 /* The seqno index has the same property as needed 2439 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2440 * for non-QoS-data frames. Here we know it's a data 2441 * frame, so count MSDUs. 2442 */ 2443 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2444 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2445 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2446 } 2447 2448 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2449 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2450 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2451 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2452 if (is_multicast_ether_addr(ehdr->h_dest) && 2453 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2454 /* 2455 * send multicast frames both to higher layers in 2456 * local net stack and back to the wireless medium 2457 */ 2458 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2459 if (!xmit_skb) 2460 net_info_ratelimited("%s: failed to clone multicast frame\n", 2461 dev->name); 2462 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2463 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2464 dsta = sta_info_get(sdata, ehdr->h_dest); 2465 if (dsta) { 2466 /* 2467 * The destination station is associated to 2468 * this AP (in this VLAN), so send the frame 2469 * directly to it and do not pass it to local 2470 * net stack. 2471 */ 2472 xmit_skb = skb; 2473 skb = NULL; 2474 } 2475 } 2476 } 2477 2478 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2479 if (skb) { 2480 /* 'align' will only take the values 0 or 2 here since all 2481 * frames are required to be aligned to 2-byte boundaries 2482 * when being passed to mac80211; the code here works just 2483 * as well if that isn't true, but mac80211 assumes it can 2484 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2485 */ 2486 int align; 2487 2488 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2489 if (align) { 2490 if (WARN_ON(skb_headroom(skb) < 3)) { 2491 dev_kfree_skb(skb); 2492 skb = NULL; 2493 } else { 2494 u8 *data = skb->data; 2495 size_t len = skb_headlen(skb); 2496 skb->data -= align; 2497 memmove(skb->data, data, len); 2498 skb_set_tail_pointer(skb, len); 2499 } 2500 } 2501 } 2502 #endif 2503 2504 if (skb) { 2505 skb->protocol = eth_type_trans(skb, dev); 2506 memset(skb->cb, 0, sizeof(skb->cb)); 2507 2508 ieee80211_deliver_skb_to_local_stack(skb, rx); 2509 } 2510 2511 if (xmit_skb) { 2512 /* 2513 * Send to wireless media and increase priority by 256 to 2514 * keep the received priority instead of reclassifying 2515 * the frame (see cfg80211_classify8021d). 2516 */ 2517 xmit_skb->priority += 256; 2518 xmit_skb->protocol = htons(ETH_P_802_3); 2519 skb_reset_network_header(xmit_skb); 2520 skb_reset_mac_header(xmit_skb); 2521 dev_queue_xmit(xmit_skb); 2522 } 2523 } 2524 2525 static ieee80211_rx_result debug_noinline 2526 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2527 { 2528 struct net_device *dev = rx->sdata->dev; 2529 struct sk_buff *skb = rx->skb; 2530 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2531 __le16 fc = hdr->frame_control; 2532 struct sk_buff_head frame_list; 2533 struct ethhdr ethhdr; 2534 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2535 2536 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2537 check_da = NULL; 2538 check_sa = NULL; 2539 } else switch (rx->sdata->vif.type) { 2540 case NL80211_IFTYPE_AP: 2541 case NL80211_IFTYPE_AP_VLAN: 2542 check_da = NULL; 2543 break; 2544 case NL80211_IFTYPE_STATION: 2545 if (!rx->sta || 2546 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2547 check_sa = NULL; 2548 break; 2549 case NL80211_IFTYPE_MESH_POINT: 2550 check_sa = NULL; 2551 break; 2552 default: 2553 break; 2554 } 2555 2556 skb->dev = dev; 2557 __skb_queue_head_init(&frame_list); 2558 2559 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2560 rx->sdata->vif.addr, 2561 rx->sdata->vif.type, 2562 data_offset)) 2563 return RX_DROP_UNUSABLE; 2564 2565 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2566 rx->sdata->vif.type, 2567 rx->local->hw.extra_tx_headroom, 2568 check_da, check_sa); 2569 2570 while (!skb_queue_empty(&frame_list)) { 2571 rx->skb = __skb_dequeue(&frame_list); 2572 2573 if (!ieee80211_frame_allowed(rx, fc)) { 2574 dev_kfree_skb(rx->skb); 2575 continue; 2576 } 2577 2578 ieee80211_deliver_skb(rx); 2579 } 2580 2581 return RX_QUEUED; 2582 } 2583 2584 static ieee80211_rx_result debug_noinline 2585 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2586 { 2587 struct sk_buff *skb = rx->skb; 2588 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2589 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2590 __le16 fc = hdr->frame_control; 2591 2592 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2593 return RX_CONTINUE; 2594 2595 if (unlikely(!ieee80211_is_data(fc))) 2596 return RX_CONTINUE; 2597 2598 if (unlikely(!ieee80211_is_data_present(fc))) 2599 return RX_DROP_MONITOR; 2600 2601 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2602 switch (rx->sdata->vif.type) { 2603 case NL80211_IFTYPE_AP_VLAN: 2604 if (!rx->sdata->u.vlan.sta) 2605 return RX_DROP_UNUSABLE; 2606 break; 2607 case NL80211_IFTYPE_STATION: 2608 if (!rx->sdata->u.mgd.use_4addr) 2609 return RX_DROP_UNUSABLE; 2610 break; 2611 default: 2612 return RX_DROP_UNUSABLE; 2613 } 2614 } 2615 2616 if (is_multicast_ether_addr(hdr->addr1)) 2617 return RX_DROP_UNUSABLE; 2618 2619 return __ieee80211_rx_h_amsdu(rx, 0); 2620 } 2621 2622 #ifdef CONFIG_MAC80211_MESH 2623 static ieee80211_rx_result 2624 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2625 { 2626 struct ieee80211_hdr *fwd_hdr, *hdr; 2627 struct ieee80211_tx_info *info; 2628 struct ieee80211s_hdr *mesh_hdr; 2629 struct sk_buff *skb = rx->skb, *fwd_skb; 2630 struct ieee80211_local *local = rx->local; 2631 struct ieee80211_sub_if_data *sdata = rx->sdata; 2632 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2633 u16 ac, q, hdrlen; 2634 2635 hdr = (struct ieee80211_hdr *) skb->data; 2636 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2637 2638 /* make sure fixed part of mesh header is there, also checks skb len */ 2639 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2640 return RX_DROP_MONITOR; 2641 2642 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2643 2644 /* make sure full mesh header is there, also checks skb len */ 2645 if (!pskb_may_pull(rx->skb, 2646 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2647 return RX_DROP_MONITOR; 2648 2649 /* reload pointers */ 2650 hdr = (struct ieee80211_hdr *) skb->data; 2651 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2652 2653 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2654 return RX_DROP_MONITOR; 2655 2656 /* frame is in RMC, don't forward */ 2657 if (ieee80211_is_data(hdr->frame_control) && 2658 is_multicast_ether_addr(hdr->addr1) && 2659 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2660 return RX_DROP_MONITOR; 2661 2662 if (!ieee80211_is_data(hdr->frame_control)) 2663 return RX_CONTINUE; 2664 2665 if (!mesh_hdr->ttl) 2666 return RX_DROP_MONITOR; 2667 2668 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2669 struct mesh_path *mppath; 2670 char *proxied_addr; 2671 char *mpp_addr; 2672 2673 if (is_multicast_ether_addr(hdr->addr1)) { 2674 mpp_addr = hdr->addr3; 2675 proxied_addr = mesh_hdr->eaddr1; 2676 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2677 MESH_FLAGS_AE_A5_A6) { 2678 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2679 mpp_addr = hdr->addr4; 2680 proxied_addr = mesh_hdr->eaddr2; 2681 } else { 2682 return RX_DROP_MONITOR; 2683 } 2684 2685 rcu_read_lock(); 2686 mppath = mpp_path_lookup(sdata, proxied_addr); 2687 if (!mppath) { 2688 mpp_path_add(sdata, proxied_addr, mpp_addr); 2689 } else { 2690 spin_lock_bh(&mppath->state_lock); 2691 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2692 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2693 mppath->exp_time = jiffies; 2694 spin_unlock_bh(&mppath->state_lock); 2695 } 2696 rcu_read_unlock(); 2697 } 2698 2699 /* Frame has reached destination. Don't forward */ 2700 if (!is_multicast_ether_addr(hdr->addr1) && 2701 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2702 return RX_CONTINUE; 2703 2704 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2705 q = sdata->vif.hw_queue[ac]; 2706 if (ieee80211_queue_stopped(&local->hw, q)) { 2707 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2708 return RX_DROP_MONITOR; 2709 } 2710 skb_set_queue_mapping(skb, q); 2711 2712 if (!--mesh_hdr->ttl) { 2713 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2714 goto out; 2715 } 2716 2717 if (!ifmsh->mshcfg.dot11MeshForwarding) 2718 goto out; 2719 2720 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2721 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2722 if (!fwd_skb) 2723 goto out; 2724 2725 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2726 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2727 info = IEEE80211_SKB_CB(fwd_skb); 2728 memset(info, 0, sizeof(*info)); 2729 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2730 info->control.vif = &rx->sdata->vif; 2731 info->control.jiffies = jiffies; 2732 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2733 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2734 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2735 /* update power mode indication when forwarding */ 2736 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2737 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2738 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2739 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2740 } else { 2741 /* unable to resolve next hop */ 2742 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2743 fwd_hdr->addr3, 0, 2744 WLAN_REASON_MESH_PATH_NOFORWARD, 2745 fwd_hdr->addr2); 2746 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2747 kfree_skb(fwd_skb); 2748 return RX_DROP_MONITOR; 2749 } 2750 2751 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2752 ieee80211_add_pending_skb(local, fwd_skb); 2753 out: 2754 if (is_multicast_ether_addr(hdr->addr1)) 2755 return RX_CONTINUE; 2756 return RX_DROP_MONITOR; 2757 } 2758 #endif 2759 2760 static ieee80211_rx_result debug_noinline 2761 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2762 { 2763 struct ieee80211_sub_if_data *sdata = rx->sdata; 2764 struct ieee80211_local *local = rx->local; 2765 struct net_device *dev = sdata->dev; 2766 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2767 __le16 fc = hdr->frame_control; 2768 bool port_control; 2769 int err; 2770 2771 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2772 return RX_CONTINUE; 2773 2774 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2775 return RX_DROP_MONITOR; 2776 2777 /* 2778 * Send unexpected-4addr-frame event to hostapd. For older versions, 2779 * also drop the frame to cooked monitor interfaces. 2780 */ 2781 if (ieee80211_has_a4(hdr->frame_control) && 2782 sdata->vif.type == NL80211_IFTYPE_AP) { 2783 if (rx->sta && 2784 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2785 cfg80211_rx_unexpected_4addr_frame( 2786 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2787 return RX_DROP_MONITOR; 2788 } 2789 2790 err = __ieee80211_data_to_8023(rx, &port_control); 2791 if (unlikely(err)) 2792 return RX_DROP_UNUSABLE; 2793 2794 if (!ieee80211_frame_allowed(rx, fc)) 2795 return RX_DROP_MONITOR; 2796 2797 /* directly handle TDLS channel switch requests/responses */ 2798 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2799 cpu_to_be16(ETH_P_TDLS))) { 2800 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2801 2802 if (pskb_may_pull(rx->skb, 2803 offsetof(struct ieee80211_tdls_data, u)) && 2804 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2805 tf->category == WLAN_CATEGORY_TDLS && 2806 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2807 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2808 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2809 schedule_work(&local->tdls_chsw_work); 2810 if (rx->sta) 2811 rx->sta->rx_stats.packets++; 2812 2813 return RX_QUEUED; 2814 } 2815 } 2816 2817 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2818 unlikely(port_control) && sdata->bss) { 2819 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2820 u.ap); 2821 dev = sdata->dev; 2822 rx->sdata = sdata; 2823 } 2824 2825 rx->skb->dev = dev; 2826 2827 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2828 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2829 !is_multicast_ether_addr( 2830 ((struct ethhdr *)rx->skb->data)->h_dest) && 2831 (!local->scanning && 2832 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2833 mod_timer(&local->dynamic_ps_timer, jiffies + 2834 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2835 2836 ieee80211_deliver_skb(rx); 2837 2838 return RX_QUEUED; 2839 } 2840 2841 static ieee80211_rx_result debug_noinline 2842 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2843 { 2844 struct sk_buff *skb = rx->skb; 2845 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2846 struct tid_ampdu_rx *tid_agg_rx; 2847 u16 start_seq_num; 2848 u16 tid; 2849 2850 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2851 return RX_CONTINUE; 2852 2853 if (ieee80211_is_back_req(bar->frame_control)) { 2854 struct { 2855 __le16 control, start_seq_num; 2856 } __packed bar_data; 2857 struct ieee80211_event event = { 2858 .type = BAR_RX_EVENT, 2859 }; 2860 2861 if (!rx->sta) 2862 return RX_DROP_MONITOR; 2863 2864 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2865 &bar_data, sizeof(bar_data))) 2866 return RX_DROP_MONITOR; 2867 2868 tid = le16_to_cpu(bar_data.control) >> 12; 2869 2870 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2871 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2872 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2873 WLAN_BACK_RECIPIENT, 2874 WLAN_REASON_QSTA_REQUIRE_SETUP); 2875 2876 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2877 if (!tid_agg_rx) 2878 return RX_DROP_MONITOR; 2879 2880 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2881 event.u.ba.tid = tid; 2882 event.u.ba.ssn = start_seq_num; 2883 event.u.ba.sta = &rx->sta->sta; 2884 2885 /* reset session timer */ 2886 if (tid_agg_rx->timeout) 2887 mod_timer(&tid_agg_rx->session_timer, 2888 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2889 2890 spin_lock(&tid_agg_rx->reorder_lock); 2891 /* release stored frames up to start of BAR */ 2892 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2893 start_seq_num, frames); 2894 spin_unlock(&tid_agg_rx->reorder_lock); 2895 2896 drv_event_callback(rx->local, rx->sdata, &event); 2897 2898 kfree_skb(skb); 2899 return RX_QUEUED; 2900 } 2901 2902 /* 2903 * After this point, we only want management frames, 2904 * so we can drop all remaining control frames to 2905 * cooked monitor interfaces. 2906 */ 2907 return RX_DROP_MONITOR; 2908 } 2909 2910 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2911 struct ieee80211_mgmt *mgmt, 2912 size_t len) 2913 { 2914 struct ieee80211_local *local = sdata->local; 2915 struct sk_buff *skb; 2916 struct ieee80211_mgmt *resp; 2917 2918 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2919 /* Not to own unicast address */ 2920 return; 2921 } 2922 2923 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2924 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2925 /* Not from the current AP or not associated yet. */ 2926 return; 2927 } 2928 2929 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2930 /* Too short SA Query request frame */ 2931 return; 2932 } 2933 2934 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2935 if (skb == NULL) 2936 return; 2937 2938 skb_reserve(skb, local->hw.extra_tx_headroom); 2939 resp = skb_put_zero(skb, 24); 2940 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2941 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2942 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2943 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2944 IEEE80211_STYPE_ACTION); 2945 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2946 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2947 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2948 memcpy(resp->u.action.u.sa_query.trans_id, 2949 mgmt->u.action.u.sa_query.trans_id, 2950 WLAN_SA_QUERY_TR_ID_LEN); 2951 2952 ieee80211_tx_skb(sdata, skb); 2953 } 2954 2955 static ieee80211_rx_result debug_noinline 2956 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2957 { 2958 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2959 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2960 2961 /* 2962 * From here on, look only at management frames. 2963 * Data and control frames are already handled, 2964 * and unknown (reserved) frames are useless. 2965 */ 2966 if (rx->skb->len < 24) 2967 return RX_DROP_MONITOR; 2968 2969 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2970 return RX_DROP_MONITOR; 2971 2972 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2973 ieee80211_is_beacon(mgmt->frame_control) && 2974 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2975 int sig = 0; 2976 2977 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 2978 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 2979 sig = status->signal; 2980 2981 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2982 rx->skb->data, rx->skb->len, 2983 status->freq, sig); 2984 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2985 } 2986 2987 if (ieee80211_drop_unencrypted_mgmt(rx)) 2988 return RX_DROP_UNUSABLE; 2989 2990 return RX_CONTINUE; 2991 } 2992 2993 static ieee80211_rx_result debug_noinline 2994 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2995 { 2996 struct ieee80211_local *local = rx->local; 2997 struct ieee80211_sub_if_data *sdata = rx->sdata; 2998 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2999 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3000 int len = rx->skb->len; 3001 3002 if (!ieee80211_is_action(mgmt->frame_control)) 3003 return RX_CONTINUE; 3004 3005 /* drop too small frames */ 3006 if (len < IEEE80211_MIN_ACTION_SIZE) 3007 return RX_DROP_UNUSABLE; 3008 3009 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3010 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3011 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3012 return RX_DROP_UNUSABLE; 3013 3014 switch (mgmt->u.action.category) { 3015 case WLAN_CATEGORY_HT: 3016 /* reject HT action frames from stations not supporting HT */ 3017 if (!rx->sta->sta.ht_cap.ht_supported) 3018 goto invalid; 3019 3020 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3021 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3022 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3023 sdata->vif.type != NL80211_IFTYPE_AP && 3024 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3025 break; 3026 3027 /* verify action & smps_control/chanwidth are present */ 3028 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3029 goto invalid; 3030 3031 switch (mgmt->u.action.u.ht_smps.action) { 3032 case WLAN_HT_ACTION_SMPS: { 3033 struct ieee80211_supported_band *sband; 3034 enum ieee80211_smps_mode smps_mode; 3035 struct sta_opmode_info sta_opmode = {}; 3036 3037 /* convert to HT capability */ 3038 switch (mgmt->u.action.u.ht_smps.smps_control) { 3039 case WLAN_HT_SMPS_CONTROL_DISABLED: 3040 smps_mode = IEEE80211_SMPS_OFF; 3041 break; 3042 case WLAN_HT_SMPS_CONTROL_STATIC: 3043 smps_mode = IEEE80211_SMPS_STATIC; 3044 break; 3045 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3046 smps_mode = IEEE80211_SMPS_DYNAMIC; 3047 break; 3048 default: 3049 goto invalid; 3050 } 3051 3052 /* if no change do nothing */ 3053 if (rx->sta->sta.smps_mode == smps_mode) 3054 goto handled; 3055 rx->sta->sta.smps_mode = smps_mode; 3056 sta_opmode.smps_mode = 3057 ieee80211_smps_mode_to_smps_mode(smps_mode); 3058 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3059 3060 sband = rx->local->hw.wiphy->bands[status->band]; 3061 3062 rate_control_rate_update(local, sband, rx->sta, 3063 IEEE80211_RC_SMPS_CHANGED); 3064 cfg80211_sta_opmode_change_notify(sdata->dev, 3065 rx->sta->addr, 3066 &sta_opmode, 3067 GFP_ATOMIC); 3068 goto handled; 3069 } 3070 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3071 struct ieee80211_supported_band *sband; 3072 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3073 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3074 struct sta_opmode_info sta_opmode = {}; 3075 3076 /* If it doesn't support 40 MHz it can't change ... */ 3077 if (!(rx->sta->sta.ht_cap.cap & 3078 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3079 goto handled; 3080 3081 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3082 max_bw = IEEE80211_STA_RX_BW_20; 3083 else 3084 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3085 3086 /* set cur_max_bandwidth and recalc sta bw */ 3087 rx->sta->cur_max_bandwidth = max_bw; 3088 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3089 3090 if (rx->sta->sta.bandwidth == new_bw) 3091 goto handled; 3092 3093 rx->sta->sta.bandwidth = new_bw; 3094 sband = rx->local->hw.wiphy->bands[status->band]; 3095 sta_opmode.bw = 3096 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3097 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3098 3099 rate_control_rate_update(local, sband, rx->sta, 3100 IEEE80211_RC_BW_CHANGED); 3101 cfg80211_sta_opmode_change_notify(sdata->dev, 3102 rx->sta->addr, 3103 &sta_opmode, 3104 GFP_ATOMIC); 3105 goto handled; 3106 } 3107 default: 3108 goto invalid; 3109 } 3110 3111 break; 3112 case WLAN_CATEGORY_PUBLIC: 3113 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3114 goto invalid; 3115 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3116 break; 3117 if (!rx->sta) 3118 break; 3119 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3120 break; 3121 if (mgmt->u.action.u.ext_chan_switch.action_code != 3122 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3123 break; 3124 if (len < offsetof(struct ieee80211_mgmt, 3125 u.action.u.ext_chan_switch.variable)) 3126 goto invalid; 3127 goto queue; 3128 case WLAN_CATEGORY_VHT: 3129 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3130 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3131 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3132 sdata->vif.type != NL80211_IFTYPE_AP && 3133 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3134 break; 3135 3136 /* verify action code is present */ 3137 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3138 goto invalid; 3139 3140 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3141 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3142 /* verify opmode is present */ 3143 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3144 goto invalid; 3145 goto queue; 3146 } 3147 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3148 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3149 goto invalid; 3150 goto queue; 3151 } 3152 default: 3153 break; 3154 } 3155 break; 3156 case WLAN_CATEGORY_BACK: 3157 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3158 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3159 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3160 sdata->vif.type != NL80211_IFTYPE_AP && 3161 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3162 break; 3163 3164 /* verify action_code is present */ 3165 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3166 break; 3167 3168 switch (mgmt->u.action.u.addba_req.action_code) { 3169 case WLAN_ACTION_ADDBA_REQ: 3170 if (len < (IEEE80211_MIN_ACTION_SIZE + 3171 sizeof(mgmt->u.action.u.addba_req))) 3172 goto invalid; 3173 break; 3174 case WLAN_ACTION_ADDBA_RESP: 3175 if (len < (IEEE80211_MIN_ACTION_SIZE + 3176 sizeof(mgmt->u.action.u.addba_resp))) 3177 goto invalid; 3178 break; 3179 case WLAN_ACTION_DELBA: 3180 if (len < (IEEE80211_MIN_ACTION_SIZE + 3181 sizeof(mgmt->u.action.u.delba))) 3182 goto invalid; 3183 break; 3184 default: 3185 goto invalid; 3186 } 3187 3188 goto queue; 3189 case WLAN_CATEGORY_SPECTRUM_MGMT: 3190 /* verify action_code is present */ 3191 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3192 break; 3193 3194 switch (mgmt->u.action.u.measurement.action_code) { 3195 case WLAN_ACTION_SPCT_MSR_REQ: 3196 if (status->band != NL80211_BAND_5GHZ) 3197 break; 3198 3199 if (len < (IEEE80211_MIN_ACTION_SIZE + 3200 sizeof(mgmt->u.action.u.measurement))) 3201 break; 3202 3203 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3204 break; 3205 3206 ieee80211_process_measurement_req(sdata, mgmt, len); 3207 goto handled; 3208 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3209 u8 *bssid; 3210 if (len < (IEEE80211_MIN_ACTION_SIZE + 3211 sizeof(mgmt->u.action.u.chan_switch))) 3212 break; 3213 3214 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3215 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3216 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3217 break; 3218 3219 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3220 bssid = sdata->u.mgd.bssid; 3221 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3222 bssid = sdata->u.ibss.bssid; 3223 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3224 bssid = mgmt->sa; 3225 else 3226 break; 3227 3228 if (!ether_addr_equal(mgmt->bssid, bssid)) 3229 break; 3230 3231 goto queue; 3232 } 3233 } 3234 break; 3235 case WLAN_CATEGORY_SA_QUERY: 3236 if (len < (IEEE80211_MIN_ACTION_SIZE + 3237 sizeof(mgmt->u.action.u.sa_query))) 3238 break; 3239 3240 switch (mgmt->u.action.u.sa_query.action) { 3241 case WLAN_ACTION_SA_QUERY_REQUEST: 3242 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3243 break; 3244 ieee80211_process_sa_query_req(sdata, mgmt, len); 3245 goto handled; 3246 } 3247 break; 3248 case WLAN_CATEGORY_SELF_PROTECTED: 3249 if (len < (IEEE80211_MIN_ACTION_SIZE + 3250 sizeof(mgmt->u.action.u.self_prot.action_code))) 3251 break; 3252 3253 switch (mgmt->u.action.u.self_prot.action_code) { 3254 case WLAN_SP_MESH_PEERING_OPEN: 3255 case WLAN_SP_MESH_PEERING_CLOSE: 3256 case WLAN_SP_MESH_PEERING_CONFIRM: 3257 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3258 goto invalid; 3259 if (sdata->u.mesh.user_mpm) 3260 /* userspace handles this frame */ 3261 break; 3262 goto queue; 3263 case WLAN_SP_MGK_INFORM: 3264 case WLAN_SP_MGK_ACK: 3265 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3266 goto invalid; 3267 break; 3268 } 3269 break; 3270 case WLAN_CATEGORY_MESH_ACTION: 3271 if (len < (IEEE80211_MIN_ACTION_SIZE + 3272 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3273 break; 3274 3275 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3276 break; 3277 if (mesh_action_is_path_sel(mgmt) && 3278 !mesh_path_sel_is_hwmp(sdata)) 3279 break; 3280 goto queue; 3281 } 3282 3283 return RX_CONTINUE; 3284 3285 invalid: 3286 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3287 /* will return in the next handlers */ 3288 return RX_CONTINUE; 3289 3290 handled: 3291 if (rx->sta) 3292 rx->sta->rx_stats.packets++; 3293 dev_kfree_skb(rx->skb); 3294 return RX_QUEUED; 3295 3296 queue: 3297 skb_queue_tail(&sdata->skb_queue, rx->skb); 3298 ieee80211_queue_work(&local->hw, &sdata->work); 3299 if (rx->sta) 3300 rx->sta->rx_stats.packets++; 3301 return RX_QUEUED; 3302 } 3303 3304 static ieee80211_rx_result debug_noinline 3305 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3306 { 3307 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3308 int sig = 0; 3309 3310 /* skip known-bad action frames and return them in the next handler */ 3311 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3312 return RX_CONTINUE; 3313 3314 /* 3315 * Getting here means the kernel doesn't know how to handle 3316 * it, but maybe userspace does ... include returned frames 3317 * so userspace can register for those to know whether ones 3318 * it transmitted were processed or returned. 3319 */ 3320 3321 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3322 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3323 sig = status->signal; 3324 3325 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3326 rx->skb->data, rx->skb->len, 0)) { 3327 if (rx->sta) 3328 rx->sta->rx_stats.packets++; 3329 dev_kfree_skb(rx->skb); 3330 return RX_QUEUED; 3331 } 3332 3333 return RX_CONTINUE; 3334 } 3335 3336 static ieee80211_rx_result debug_noinline 3337 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3338 { 3339 struct ieee80211_local *local = rx->local; 3340 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3341 struct sk_buff *nskb; 3342 struct ieee80211_sub_if_data *sdata = rx->sdata; 3343 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3344 3345 if (!ieee80211_is_action(mgmt->frame_control)) 3346 return RX_CONTINUE; 3347 3348 /* 3349 * For AP mode, hostapd is responsible for handling any action 3350 * frames that we didn't handle, including returning unknown 3351 * ones. For all other modes we will return them to the sender, 3352 * setting the 0x80 bit in the action category, as required by 3353 * 802.11-2012 9.24.4. 3354 * Newer versions of hostapd shall also use the management frame 3355 * registration mechanisms, but older ones still use cooked 3356 * monitor interfaces so push all frames there. 3357 */ 3358 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3359 (sdata->vif.type == NL80211_IFTYPE_AP || 3360 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3361 return RX_DROP_MONITOR; 3362 3363 if (is_multicast_ether_addr(mgmt->da)) 3364 return RX_DROP_MONITOR; 3365 3366 /* do not return rejected action frames */ 3367 if (mgmt->u.action.category & 0x80) 3368 return RX_DROP_UNUSABLE; 3369 3370 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3371 GFP_ATOMIC); 3372 if (nskb) { 3373 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3374 3375 nmgmt->u.action.category |= 0x80; 3376 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3377 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3378 3379 memset(nskb->cb, 0, sizeof(nskb->cb)); 3380 3381 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3382 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3383 3384 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3385 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3386 IEEE80211_TX_CTL_NO_CCK_RATE; 3387 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3388 info->hw_queue = 3389 local->hw.offchannel_tx_hw_queue; 3390 } 3391 3392 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3393 status->band, 0); 3394 } 3395 dev_kfree_skb(rx->skb); 3396 return RX_QUEUED; 3397 } 3398 3399 static ieee80211_rx_result debug_noinline 3400 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3401 { 3402 struct ieee80211_sub_if_data *sdata = rx->sdata; 3403 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3404 __le16 stype; 3405 3406 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3407 3408 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3409 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3410 sdata->vif.type != NL80211_IFTYPE_OCB && 3411 sdata->vif.type != NL80211_IFTYPE_STATION) 3412 return RX_DROP_MONITOR; 3413 3414 switch (stype) { 3415 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3416 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3417 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3418 /* process for all: mesh, mlme, ibss */ 3419 break; 3420 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3421 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3422 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3423 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3424 if (is_multicast_ether_addr(mgmt->da) && 3425 !is_broadcast_ether_addr(mgmt->da)) 3426 return RX_DROP_MONITOR; 3427 3428 /* process only for station */ 3429 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3430 return RX_DROP_MONITOR; 3431 break; 3432 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3433 /* process only for ibss and mesh */ 3434 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3435 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3436 return RX_DROP_MONITOR; 3437 break; 3438 default: 3439 return RX_DROP_MONITOR; 3440 } 3441 3442 /* queue up frame and kick off work to process it */ 3443 skb_queue_tail(&sdata->skb_queue, rx->skb); 3444 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3445 if (rx->sta) 3446 rx->sta->rx_stats.packets++; 3447 3448 return RX_QUEUED; 3449 } 3450 3451 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3452 struct ieee80211_rate *rate) 3453 { 3454 struct ieee80211_sub_if_data *sdata; 3455 struct ieee80211_local *local = rx->local; 3456 struct sk_buff *skb = rx->skb, *skb2; 3457 struct net_device *prev_dev = NULL; 3458 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3459 int needed_headroom; 3460 3461 /* 3462 * If cooked monitor has been processed already, then 3463 * don't do it again. If not, set the flag. 3464 */ 3465 if (rx->flags & IEEE80211_RX_CMNTR) 3466 goto out_free_skb; 3467 rx->flags |= IEEE80211_RX_CMNTR; 3468 3469 /* If there are no cooked monitor interfaces, just free the SKB */ 3470 if (!local->cooked_mntrs) 3471 goto out_free_skb; 3472 3473 /* vendor data is long removed here */ 3474 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3475 /* room for the radiotap header based on driver features */ 3476 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3477 3478 if (skb_headroom(skb) < needed_headroom && 3479 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3480 goto out_free_skb; 3481 3482 /* prepend radiotap information */ 3483 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3484 false); 3485 3486 skb_reset_mac_header(skb); 3487 skb->ip_summed = CHECKSUM_UNNECESSARY; 3488 skb->pkt_type = PACKET_OTHERHOST; 3489 skb->protocol = htons(ETH_P_802_2); 3490 3491 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3492 if (!ieee80211_sdata_running(sdata)) 3493 continue; 3494 3495 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3496 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3497 continue; 3498 3499 if (prev_dev) { 3500 skb2 = skb_clone(skb, GFP_ATOMIC); 3501 if (skb2) { 3502 skb2->dev = prev_dev; 3503 netif_receive_skb(skb2); 3504 } 3505 } 3506 3507 prev_dev = sdata->dev; 3508 ieee80211_rx_stats(sdata->dev, skb->len); 3509 } 3510 3511 if (prev_dev) { 3512 skb->dev = prev_dev; 3513 netif_receive_skb(skb); 3514 return; 3515 } 3516 3517 out_free_skb: 3518 dev_kfree_skb(skb); 3519 } 3520 3521 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3522 ieee80211_rx_result res) 3523 { 3524 switch (res) { 3525 case RX_DROP_MONITOR: 3526 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3527 if (rx->sta) 3528 rx->sta->rx_stats.dropped++; 3529 /* fall through */ 3530 case RX_CONTINUE: { 3531 struct ieee80211_rate *rate = NULL; 3532 struct ieee80211_supported_band *sband; 3533 struct ieee80211_rx_status *status; 3534 3535 status = IEEE80211_SKB_RXCB((rx->skb)); 3536 3537 sband = rx->local->hw.wiphy->bands[status->band]; 3538 if (status->encoding == RX_ENC_LEGACY) 3539 rate = &sband->bitrates[status->rate_idx]; 3540 3541 ieee80211_rx_cooked_monitor(rx, rate); 3542 break; 3543 } 3544 case RX_DROP_UNUSABLE: 3545 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3546 if (rx->sta) 3547 rx->sta->rx_stats.dropped++; 3548 dev_kfree_skb(rx->skb); 3549 break; 3550 case RX_QUEUED: 3551 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3552 break; 3553 } 3554 } 3555 3556 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3557 struct sk_buff_head *frames) 3558 { 3559 ieee80211_rx_result res = RX_DROP_MONITOR; 3560 struct sk_buff *skb; 3561 3562 #define CALL_RXH(rxh) \ 3563 do { \ 3564 res = rxh(rx); \ 3565 if (res != RX_CONTINUE) \ 3566 goto rxh_next; \ 3567 } while (0) 3568 3569 /* Lock here to avoid hitting all of the data used in the RX 3570 * path (e.g. key data, station data, ...) concurrently when 3571 * a frame is released from the reorder buffer due to timeout 3572 * from the timer, potentially concurrently with RX from the 3573 * driver. 3574 */ 3575 spin_lock_bh(&rx->local->rx_path_lock); 3576 3577 while ((skb = __skb_dequeue(frames))) { 3578 /* 3579 * all the other fields are valid across frames 3580 * that belong to an aMPDU since they are on the 3581 * same TID from the same station 3582 */ 3583 rx->skb = skb; 3584 3585 CALL_RXH(ieee80211_rx_h_check_more_data); 3586 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3587 CALL_RXH(ieee80211_rx_h_sta_process); 3588 CALL_RXH(ieee80211_rx_h_decrypt); 3589 CALL_RXH(ieee80211_rx_h_defragment); 3590 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3591 /* must be after MMIC verify so header is counted in MPDU mic */ 3592 #ifdef CONFIG_MAC80211_MESH 3593 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3594 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3595 #endif 3596 CALL_RXH(ieee80211_rx_h_amsdu); 3597 CALL_RXH(ieee80211_rx_h_data); 3598 3599 /* special treatment -- needs the queue */ 3600 res = ieee80211_rx_h_ctrl(rx, frames); 3601 if (res != RX_CONTINUE) 3602 goto rxh_next; 3603 3604 CALL_RXH(ieee80211_rx_h_mgmt_check); 3605 CALL_RXH(ieee80211_rx_h_action); 3606 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3607 CALL_RXH(ieee80211_rx_h_action_return); 3608 CALL_RXH(ieee80211_rx_h_mgmt); 3609 3610 rxh_next: 3611 ieee80211_rx_handlers_result(rx, res); 3612 3613 #undef CALL_RXH 3614 } 3615 3616 spin_unlock_bh(&rx->local->rx_path_lock); 3617 } 3618 3619 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3620 { 3621 struct sk_buff_head reorder_release; 3622 ieee80211_rx_result res = RX_DROP_MONITOR; 3623 3624 __skb_queue_head_init(&reorder_release); 3625 3626 #define CALL_RXH(rxh) \ 3627 do { \ 3628 res = rxh(rx); \ 3629 if (res != RX_CONTINUE) \ 3630 goto rxh_next; \ 3631 } while (0) 3632 3633 CALL_RXH(ieee80211_rx_h_check_dup); 3634 CALL_RXH(ieee80211_rx_h_check); 3635 3636 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3637 3638 ieee80211_rx_handlers(rx, &reorder_release); 3639 return; 3640 3641 rxh_next: 3642 ieee80211_rx_handlers_result(rx, res); 3643 3644 #undef CALL_RXH 3645 } 3646 3647 /* 3648 * This function makes calls into the RX path, therefore 3649 * it has to be invoked under RCU read lock. 3650 */ 3651 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3652 { 3653 struct sk_buff_head frames; 3654 struct ieee80211_rx_data rx = { 3655 .sta = sta, 3656 .sdata = sta->sdata, 3657 .local = sta->local, 3658 /* This is OK -- must be QoS data frame */ 3659 .security_idx = tid, 3660 .seqno_idx = tid, 3661 .napi = NULL, /* must be NULL to not have races */ 3662 }; 3663 struct tid_ampdu_rx *tid_agg_rx; 3664 3665 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3666 if (!tid_agg_rx) 3667 return; 3668 3669 __skb_queue_head_init(&frames); 3670 3671 spin_lock(&tid_agg_rx->reorder_lock); 3672 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3673 spin_unlock(&tid_agg_rx->reorder_lock); 3674 3675 if (!skb_queue_empty(&frames)) { 3676 struct ieee80211_event event = { 3677 .type = BA_FRAME_TIMEOUT, 3678 .u.ba.tid = tid, 3679 .u.ba.sta = &sta->sta, 3680 }; 3681 drv_event_callback(rx.local, rx.sdata, &event); 3682 } 3683 3684 ieee80211_rx_handlers(&rx, &frames); 3685 } 3686 3687 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3688 u16 ssn, u64 filtered, 3689 u16 received_mpdus) 3690 { 3691 struct sta_info *sta; 3692 struct tid_ampdu_rx *tid_agg_rx; 3693 struct sk_buff_head frames; 3694 struct ieee80211_rx_data rx = { 3695 /* This is OK -- must be QoS data frame */ 3696 .security_idx = tid, 3697 .seqno_idx = tid, 3698 }; 3699 int i, diff; 3700 3701 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3702 return; 3703 3704 __skb_queue_head_init(&frames); 3705 3706 sta = container_of(pubsta, struct sta_info, sta); 3707 3708 rx.sta = sta; 3709 rx.sdata = sta->sdata; 3710 rx.local = sta->local; 3711 3712 rcu_read_lock(); 3713 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3714 if (!tid_agg_rx) 3715 goto out; 3716 3717 spin_lock_bh(&tid_agg_rx->reorder_lock); 3718 3719 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3720 int release; 3721 3722 /* release all frames in the reorder buffer */ 3723 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3724 IEEE80211_SN_MODULO; 3725 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3726 release, &frames); 3727 /* update ssn to match received ssn */ 3728 tid_agg_rx->head_seq_num = ssn; 3729 } else { 3730 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3731 &frames); 3732 } 3733 3734 /* handle the case that received ssn is behind the mac ssn. 3735 * it can be tid_agg_rx->buf_size behind and still be valid */ 3736 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3737 if (diff >= tid_agg_rx->buf_size) { 3738 tid_agg_rx->reorder_buf_filtered = 0; 3739 goto release; 3740 } 3741 filtered = filtered >> diff; 3742 ssn += diff; 3743 3744 /* update bitmap */ 3745 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3746 int index = (ssn + i) % tid_agg_rx->buf_size; 3747 3748 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3749 if (filtered & BIT_ULL(i)) 3750 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3751 } 3752 3753 /* now process also frames that the filter marking released */ 3754 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3755 3756 release: 3757 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3758 3759 ieee80211_rx_handlers(&rx, &frames); 3760 3761 out: 3762 rcu_read_unlock(); 3763 } 3764 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3765 3766 /* main receive path */ 3767 3768 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3769 { 3770 struct ieee80211_sub_if_data *sdata = rx->sdata; 3771 struct sk_buff *skb = rx->skb; 3772 struct ieee80211_hdr *hdr = (void *)skb->data; 3773 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3774 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3775 bool multicast = is_multicast_ether_addr(hdr->addr1); 3776 3777 switch (sdata->vif.type) { 3778 case NL80211_IFTYPE_STATION: 3779 if (!bssid && !sdata->u.mgd.use_4addr) 3780 return false; 3781 if (multicast) 3782 return true; 3783 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3784 case NL80211_IFTYPE_ADHOC: 3785 if (!bssid) 3786 return false; 3787 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3788 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3789 return false; 3790 if (ieee80211_is_beacon(hdr->frame_control)) 3791 return true; 3792 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3793 return false; 3794 if (!multicast && 3795 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3796 return false; 3797 if (!rx->sta) { 3798 int rate_idx; 3799 if (status->encoding != RX_ENC_LEGACY) 3800 rate_idx = 0; /* TODO: HT/VHT rates */ 3801 else 3802 rate_idx = status->rate_idx; 3803 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3804 BIT(rate_idx)); 3805 } 3806 return true; 3807 case NL80211_IFTYPE_OCB: 3808 if (!bssid) 3809 return false; 3810 if (!ieee80211_is_data_present(hdr->frame_control)) 3811 return false; 3812 if (!is_broadcast_ether_addr(bssid)) 3813 return false; 3814 if (!multicast && 3815 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3816 return false; 3817 if (!rx->sta) { 3818 int rate_idx; 3819 if (status->encoding != RX_ENC_LEGACY) 3820 rate_idx = 0; /* TODO: HT rates */ 3821 else 3822 rate_idx = status->rate_idx; 3823 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3824 BIT(rate_idx)); 3825 } 3826 return true; 3827 case NL80211_IFTYPE_MESH_POINT: 3828 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3829 return false; 3830 if (multicast) 3831 return true; 3832 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3833 case NL80211_IFTYPE_AP_VLAN: 3834 case NL80211_IFTYPE_AP: 3835 if (!bssid) 3836 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3837 3838 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3839 /* 3840 * Accept public action frames even when the 3841 * BSSID doesn't match, this is used for P2P 3842 * and location updates. Note that mac80211 3843 * itself never looks at these frames. 3844 */ 3845 if (!multicast && 3846 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3847 return false; 3848 if (ieee80211_is_public_action(hdr, skb->len)) 3849 return true; 3850 return ieee80211_is_beacon(hdr->frame_control); 3851 } 3852 3853 if (!ieee80211_has_tods(hdr->frame_control)) { 3854 /* ignore data frames to TDLS-peers */ 3855 if (ieee80211_is_data(hdr->frame_control)) 3856 return false; 3857 /* ignore action frames to TDLS-peers */ 3858 if (ieee80211_is_action(hdr->frame_control) && 3859 !is_broadcast_ether_addr(bssid) && 3860 !ether_addr_equal(bssid, hdr->addr1)) 3861 return false; 3862 } 3863 3864 /* 3865 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3866 * the BSSID - we've checked that already but may have accepted 3867 * the wildcard (ff:ff:ff:ff:ff:ff). 3868 * 3869 * It also says: 3870 * The BSSID of the Data frame is determined as follows: 3871 * a) If the STA is contained within an AP or is associated 3872 * with an AP, the BSSID is the address currently in use 3873 * by the STA contained in the AP. 3874 * 3875 * So we should not accept data frames with an address that's 3876 * multicast. 3877 * 3878 * Accepting it also opens a security problem because stations 3879 * could encrypt it with the GTK and inject traffic that way. 3880 */ 3881 if (ieee80211_is_data(hdr->frame_control) && multicast) 3882 return false; 3883 3884 return true; 3885 case NL80211_IFTYPE_WDS: 3886 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3887 return false; 3888 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3889 case NL80211_IFTYPE_P2P_DEVICE: 3890 return ieee80211_is_public_action(hdr, skb->len) || 3891 ieee80211_is_probe_req(hdr->frame_control) || 3892 ieee80211_is_probe_resp(hdr->frame_control) || 3893 ieee80211_is_beacon(hdr->frame_control); 3894 case NL80211_IFTYPE_NAN: 3895 /* Currently no frames on NAN interface are allowed */ 3896 return false; 3897 default: 3898 break; 3899 } 3900 3901 WARN_ON_ONCE(1); 3902 return false; 3903 } 3904 3905 void ieee80211_check_fast_rx(struct sta_info *sta) 3906 { 3907 struct ieee80211_sub_if_data *sdata = sta->sdata; 3908 struct ieee80211_local *local = sdata->local; 3909 struct ieee80211_key *key; 3910 struct ieee80211_fast_rx fastrx = { 3911 .dev = sdata->dev, 3912 .vif_type = sdata->vif.type, 3913 .control_port_protocol = sdata->control_port_protocol, 3914 }, *old, *new = NULL; 3915 bool assign = false; 3916 3917 /* use sparse to check that we don't return without updating */ 3918 __acquire(check_fast_rx); 3919 3920 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3921 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3922 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3923 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3924 3925 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3926 3927 /* fast-rx doesn't do reordering */ 3928 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3929 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3930 goto clear; 3931 3932 switch (sdata->vif.type) { 3933 case NL80211_IFTYPE_STATION: 3934 if (sta->sta.tdls) { 3935 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3936 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3937 fastrx.expected_ds_bits = 0; 3938 } else { 3939 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3940 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3941 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3942 fastrx.expected_ds_bits = 3943 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3944 } 3945 3946 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 3947 fastrx.expected_ds_bits |= 3948 cpu_to_le16(IEEE80211_FCTL_TODS); 3949 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3950 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3951 } 3952 3953 if (!sdata->u.mgd.powersave) 3954 break; 3955 3956 /* software powersave is a huge mess, avoid all of it */ 3957 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3958 goto clear; 3959 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3960 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3961 goto clear; 3962 break; 3963 case NL80211_IFTYPE_AP_VLAN: 3964 case NL80211_IFTYPE_AP: 3965 /* parallel-rx requires this, at least with calls to 3966 * ieee80211_sta_ps_transition() 3967 */ 3968 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3969 goto clear; 3970 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3971 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3972 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3973 3974 fastrx.internal_forward = 3975 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3976 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3977 !sdata->u.vlan.sta); 3978 3979 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3980 sdata->u.vlan.sta) { 3981 fastrx.expected_ds_bits |= 3982 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3983 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3984 fastrx.internal_forward = 0; 3985 } 3986 3987 break; 3988 default: 3989 goto clear; 3990 } 3991 3992 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3993 goto clear; 3994 3995 rcu_read_lock(); 3996 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3997 if (key) { 3998 switch (key->conf.cipher) { 3999 case WLAN_CIPHER_SUITE_TKIP: 4000 /* we don't want to deal with MMIC in fast-rx */ 4001 goto clear_rcu; 4002 case WLAN_CIPHER_SUITE_CCMP: 4003 case WLAN_CIPHER_SUITE_CCMP_256: 4004 case WLAN_CIPHER_SUITE_GCMP: 4005 case WLAN_CIPHER_SUITE_GCMP_256: 4006 break; 4007 default: 4008 /* we also don't want to deal with WEP or cipher scheme 4009 * since those require looking up the key idx in the 4010 * frame, rather than assuming the PTK is used 4011 * (we need to revisit this once we implement the real 4012 * PTK index, which is now valid in the spec, but we 4013 * haven't implemented that part yet) 4014 */ 4015 goto clear_rcu; 4016 } 4017 4018 fastrx.key = true; 4019 fastrx.icv_len = key->conf.icv_len; 4020 } 4021 4022 assign = true; 4023 clear_rcu: 4024 rcu_read_unlock(); 4025 clear: 4026 __release(check_fast_rx); 4027 4028 if (assign) 4029 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4030 4031 spin_lock_bh(&sta->lock); 4032 old = rcu_dereference_protected(sta->fast_rx, true); 4033 rcu_assign_pointer(sta->fast_rx, new); 4034 spin_unlock_bh(&sta->lock); 4035 4036 if (old) 4037 kfree_rcu(old, rcu_head); 4038 } 4039 4040 void ieee80211_clear_fast_rx(struct sta_info *sta) 4041 { 4042 struct ieee80211_fast_rx *old; 4043 4044 spin_lock_bh(&sta->lock); 4045 old = rcu_dereference_protected(sta->fast_rx, true); 4046 RCU_INIT_POINTER(sta->fast_rx, NULL); 4047 spin_unlock_bh(&sta->lock); 4048 4049 if (old) 4050 kfree_rcu(old, rcu_head); 4051 } 4052 4053 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4054 { 4055 struct ieee80211_local *local = sdata->local; 4056 struct sta_info *sta; 4057 4058 lockdep_assert_held(&local->sta_mtx); 4059 4060 list_for_each_entry_rcu(sta, &local->sta_list, list) { 4061 if (sdata != sta->sdata && 4062 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4063 continue; 4064 ieee80211_check_fast_rx(sta); 4065 } 4066 } 4067 4068 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4069 { 4070 struct ieee80211_local *local = sdata->local; 4071 4072 mutex_lock(&local->sta_mtx); 4073 __ieee80211_check_fast_rx_iface(sdata); 4074 mutex_unlock(&local->sta_mtx); 4075 } 4076 4077 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4078 struct ieee80211_fast_rx *fast_rx) 4079 { 4080 struct sk_buff *skb = rx->skb; 4081 struct ieee80211_hdr *hdr = (void *)skb->data; 4082 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4083 struct sta_info *sta = rx->sta; 4084 int orig_len = skb->len; 4085 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4086 int snap_offs = hdrlen; 4087 struct { 4088 u8 snap[sizeof(rfc1042_header)]; 4089 __be16 proto; 4090 } *payload __aligned(2); 4091 struct { 4092 u8 da[ETH_ALEN]; 4093 u8 sa[ETH_ALEN]; 4094 } addrs __aligned(2); 4095 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4096 4097 if (fast_rx->uses_rss) 4098 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4099 4100 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4101 * to a common data structure; drivers can implement that per queue 4102 * but we don't have that information in mac80211 4103 */ 4104 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4105 return false; 4106 4107 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4108 4109 /* If using encryption, we also need to have: 4110 * - PN_VALIDATED: similar, but the implementation is tricky 4111 * - DECRYPTED: necessary for PN_VALIDATED 4112 */ 4113 if (fast_rx->key && 4114 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4115 return false; 4116 4117 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4118 return false; 4119 4120 if (unlikely(ieee80211_is_frag(hdr))) 4121 return false; 4122 4123 /* Since our interface address cannot be multicast, this 4124 * implicitly also rejects multicast frames without the 4125 * explicit check. 4126 * 4127 * We shouldn't get any *data* frames not addressed to us 4128 * (AP mode will accept multicast *management* frames), but 4129 * punting here will make it go through the full checks in 4130 * ieee80211_accept_frame(). 4131 */ 4132 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4133 return false; 4134 4135 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4136 IEEE80211_FCTL_TODS)) != 4137 fast_rx->expected_ds_bits) 4138 return false; 4139 4140 /* assign the key to drop unencrypted frames (later) 4141 * and strip the IV/MIC if necessary 4142 */ 4143 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4144 /* GCMP header length is the same */ 4145 snap_offs += IEEE80211_CCMP_HDR_LEN; 4146 } 4147 4148 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4149 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4150 goto drop; 4151 4152 payload = (void *)(skb->data + snap_offs); 4153 4154 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4155 return false; 4156 4157 /* Don't handle these here since they require special code. 4158 * Accept AARP and IPX even though they should come with a 4159 * bridge-tunnel header - but if we get them this way then 4160 * there's little point in discarding them. 4161 */ 4162 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4163 payload->proto == fast_rx->control_port_protocol)) 4164 return false; 4165 } 4166 4167 /* after this point, don't punt to the slowpath! */ 4168 4169 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4170 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4171 goto drop; 4172 4173 if (unlikely(fast_rx->sta_notify)) { 4174 ieee80211_sta_rx_notify(rx->sdata, hdr); 4175 fast_rx->sta_notify = false; 4176 } 4177 4178 /* statistics part of ieee80211_rx_h_sta_process() */ 4179 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4180 stats->last_signal = status->signal; 4181 if (!fast_rx->uses_rss) 4182 ewma_signal_add(&sta->rx_stats_avg.signal, 4183 -status->signal); 4184 } 4185 4186 if (status->chains) { 4187 int i; 4188 4189 stats->chains = status->chains; 4190 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4191 int signal = status->chain_signal[i]; 4192 4193 if (!(status->chains & BIT(i))) 4194 continue; 4195 4196 stats->chain_signal_last[i] = signal; 4197 if (!fast_rx->uses_rss) 4198 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4199 -signal); 4200 } 4201 } 4202 /* end of statistics */ 4203 4204 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4205 goto drop; 4206 4207 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4208 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4209 RX_QUEUED) 4210 goto drop; 4211 4212 return true; 4213 } 4214 4215 stats->last_rx = jiffies; 4216 stats->last_rate = sta_stats_encode_rate(status); 4217 4218 stats->fragments++; 4219 stats->packets++; 4220 4221 /* do the header conversion - first grab the addresses */ 4222 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4223 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4224 /* remove the SNAP but leave the ethertype */ 4225 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4226 /* push the addresses in front */ 4227 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4228 4229 skb->dev = fast_rx->dev; 4230 4231 ieee80211_rx_stats(fast_rx->dev, skb->len); 4232 4233 /* The seqno index has the same property as needed 4234 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4235 * for non-QoS-data frames. Here we know it's a data 4236 * frame, so count MSDUs. 4237 */ 4238 u64_stats_update_begin(&stats->syncp); 4239 stats->msdu[rx->seqno_idx]++; 4240 stats->bytes += orig_len; 4241 u64_stats_update_end(&stats->syncp); 4242 4243 if (fast_rx->internal_forward) { 4244 struct sk_buff *xmit_skb = NULL; 4245 if (is_multicast_ether_addr(addrs.da)) { 4246 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4247 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4248 sta_info_get(rx->sdata, addrs.da)) { 4249 xmit_skb = skb; 4250 skb = NULL; 4251 } 4252 4253 if (xmit_skb) { 4254 /* 4255 * Send to wireless media and increase priority by 256 4256 * to keep the received priority instead of 4257 * reclassifying the frame (see cfg80211_classify8021d). 4258 */ 4259 xmit_skb->priority += 256; 4260 xmit_skb->protocol = htons(ETH_P_802_3); 4261 skb_reset_network_header(xmit_skb); 4262 skb_reset_mac_header(xmit_skb); 4263 dev_queue_xmit(xmit_skb); 4264 } 4265 4266 if (!skb) 4267 return true; 4268 } 4269 4270 /* deliver to local stack */ 4271 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4272 memset(skb->cb, 0, sizeof(skb->cb)); 4273 if (rx->napi) 4274 napi_gro_receive(rx->napi, skb); 4275 else 4276 netif_receive_skb(skb); 4277 4278 return true; 4279 drop: 4280 dev_kfree_skb(skb); 4281 stats->dropped++; 4282 return true; 4283 } 4284 4285 /* 4286 * This function returns whether or not the SKB 4287 * was destined for RX processing or not, which, 4288 * if consume is true, is equivalent to whether 4289 * or not the skb was consumed. 4290 */ 4291 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4292 struct sk_buff *skb, bool consume) 4293 { 4294 struct ieee80211_local *local = rx->local; 4295 struct ieee80211_sub_if_data *sdata = rx->sdata; 4296 4297 rx->skb = skb; 4298 4299 /* See if we can do fast-rx; if we have to copy we already lost, 4300 * so punt in that case. We should never have to deliver a data 4301 * frame to multiple interfaces anyway. 4302 * 4303 * We skip the ieee80211_accept_frame() call and do the necessary 4304 * checking inside ieee80211_invoke_fast_rx(). 4305 */ 4306 if (consume && rx->sta) { 4307 struct ieee80211_fast_rx *fast_rx; 4308 4309 fast_rx = rcu_dereference(rx->sta->fast_rx); 4310 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4311 return true; 4312 } 4313 4314 if (!ieee80211_accept_frame(rx)) 4315 return false; 4316 4317 if (!consume) { 4318 skb = skb_copy(skb, GFP_ATOMIC); 4319 if (!skb) { 4320 if (net_ratelimit()) 4321 wiphy_debug(local->hw.wiphy, 4322 "failed to copy skb for %s\n", 4323 sdata->name); 4324 return true; 4325 } 4326 4327 rx->skb = skb; 4328 } 4329 4330 ieee80211_invoke_rx_handlers(rx); 4331 return true; 4332 } 4333 4334 /* 4335 * This is the actual Rx frames handler. as it belongs to Rx path it must 4336 * be called with rcu_read_lock protection. 4337 */ 4338 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4339 struct ieee80211_sta *pubsta, 4340 struct sk_buff *skb, 4341 struct napi_struct *napi) 4342 { 4343 struct ieee80211_local *local = hw_to_local(hw); 4344 struct ieee80211_sub_if_data *sdata; 4345 struct ieee80211_hdr *hdr; 4346 __le16 fc; 4347 struct ieee80211_rx_data rx; 4348 struct ieee80211_sub_if_data *prev; 4349 struct rhlist_head *tmp; 4350 int err = 0; 4351 4352 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4353 memset(&rx, 0, sizeof(rx)); 4354 rx.skb = skb; 4355 rx.local = local; 4356 rx.napi = napi; 4357 4358 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4359 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4360 4361 if (ieee80211_is_mgmt(fc)) { 4362 /* drop frame if too short for header */ 4363 if (skb->len < ieee80211_hdrlen(fc)) 4364 err = -ENOBUFS; 4365 else 4366 err = skb_linearize(skb); 4367 } else { 4368 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4369 } 4370 4371 if (err) { 4372 dev_kfree_skb(skb); 4373 return; 4374 } 4375 4376 hdr = (struct ieee80211_hdr *)skb->data; 4377 ieee80211_parse_qos(&rx); 4378 ieee80211_verify_alignment(&rx); 4379 4380 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4381 ieee80211_is_beacon(hdr->frame_control))) 4382 ieee80211_scan_rx(local, skb); 4383 4384 if (ieee80211_is_data(fc)) { 4385 struct sta_info *sta, *prev_sta; 4386 4387 if (pubsta) { 4388 rx.sta = container_of(pubsta, struct sta_info, sta); 4389 rx.sdata = rx.sta->sdata; 4390 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4391 return; 4392 goto out; 4393 } 4394 4395 prev_sta = NULL; 4396 4397 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4398 if (!prev_sta) { 4399 prev_sta = sta; 4400 continue; 4401 } 4402 4403 rx.sta = prev_sta; 4404 rx.sdata = prev_sta->sdata; 4405 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4406 4407 prev_sta = sta; 4408 } 4409 4410 if (prev_sta) { 4411 rx.sta = prev_sta; 4412 rx.sdata = prev_sta->sdata; 4413 4414 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4415 return; 4416 goto out; 4417 } 4418 } 4419 4420 prev = NULL; 4421 4422 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4423 if (!ieee80211_sdata_running(sdata)) 4424 continue; 4425 4426 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4427 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4428 continue; 4429 4430 /* 4431 * frame is destined for this interface, but if it's 4432 * not also for the previous one we handle that after 4433 * the loop to avoid copying the SKB once too much 4434 */ 4435 4436 if (!prev) { 4437 prev = sdata; 4438 continue; 4439 } 4440 4441 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4442 rx.sdata = prev; 4443 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4444 4445 prev = sdata; 4446 } 4447 4448 if (prev) { 4449 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4450 rx.sdata = prev; 4451 4452 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4453 return; 4454 } 4455 4456 out: 4457 dev_kfree_skb(skb); 4458 } 4459 4460 /* 4461 * This is the receive path handler. It is called by a low level driver when an 4462 * 802.11 MPDU is received from the hardware. 4463 */ 4464 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4465 struct sk_buff *skb, struct napi_struct *napi) 4466 { 4467 struct ieee80211_local *local = hw_to_local(hw); 4468 struct ieee80211_rate *rate = NULL; 4469 struct ieee80211_supported_band *sband; 4470 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4471 4472 WARN_ON_ONCE(softirq_count() == 0); 4473 4474 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4475 goto drop; 4476 4477 sband = local->hw.wiphy->bands[status->band]; 4478 if (WARN_ON(!sband)) 4479 goto drop; 4480 4481 /* 4482 * If we're suspending, it is possible although not too likely 4483 * that we'd be receiving frames after having already partially 4484 * quiesced the stack. We can't process such frames then since 4485 * that might, for example, cause stations to be added or other 4486 * driver callbacks be invoked. 4487 */ 4488 if (unlikely(local->quiescing || local->suspended)) 4489 goto drop; 4490 4491 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4492 if (unlikely(local->in_reconfig)) 4493 goto drop; 4494 4495 /* 4496 * The same happens when we're not even started, 4497 * but that's worth a warning. 4498 */ 4499 if (WARN_ON(!local->started)) 4500 goto drop; 4501 4502 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4503 /* 4504 * Validate the rate, unless a PLCP error means that 4505 * we probably can't have a valid rate here anyway. 4506 */ 4507 4508 switch (status->encoding) { 4509 case RX_ENC_HT: 4510 /* 4511 * rate_idx is MCS index, which can be [0-76] 4512 * as documented on: 4513 * 4514 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4515 * 4516 * Anything else would be some sort of driver or 4517 * hardware error. The driver should catch hardware 4518 * errors. 4519 */ 4520 if (WARN(status->rate_idx > 76, 4521 "Rate marked as an HT rate but passed " 4522 "status->rate_idx is not " 4523 "an MCS index [0-76]: %d (0x%02x)\n", 4524 status->rate_idx, 4525 status->rate_idx)) 4526 goto drop; 4527 break; 4528 case RX_ENC_VHT: 4529 if (WARN_ONCE(status->rate_idx > 9 || 4530 !status->nss || 4531 status->nss > 8, 4532 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4533 status->rate_idx, status->nss)) 4534 goto drop; 4535 break; 4536 case RX_ENC_HE: 4537 if (WARN_ONCE(status->rate_idx > 11 || 4538 !status->nss || 4539 status->nss > 8, 4540 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4541 status->rate_idx, status->nss)) 4542 goto drop; 4543 break; 4544 default: 4545 WARN_ON_ONCE(1); 4546 /* fall through */ 4547 case RX_ENC_LEGACY: 4548 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4549 goto drop; 4550 rate = &sband->bitrates[status->rate_idx]; 4551 } 4552 } 4553 4554 status->rx_flags = 0; 4555 4556 /* 4557 * key references and virtual interfaces are protected using RCU 4558 * and this requires that we are in a read-side RCU section during 4559 * receive processing 4560 */ 4561 rcu_read_lock(); 4562 4563 /* 4564 * Frames with failed FCS/PLCP checksum are not returned, 4565 * all other frames are returned without radiotap header 4566 * if it was previously present. 4567 * Also, frames with less than 16 bytes are dropped. 4568 */ 4569 skb = ieee80211_rx_monitor(local, skb, rate); 4570 if (!skb) { 4571 rcu_read_unlock(); 4572 return; 4573 } 4574 4575 ieee80211_tpt_led_trig_rx(local, 4576 ((struct ieee80211_hdr *)skb->data)->frame_control, 4577 skb->len); 4578 4579 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4580 4581 rcu_read_unlock(); 4582 4583 return; 4584 drop: 4585 kfree_skb(skb); 4586 } 4587 EXPORT_SYMBOL(ieee80211_rx_napi); 4588 4589 /* This is a version of the rx handler that can be called from hard irq 4590 * context. Post the skb on the queue and schedule the tasklet */ 4591 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4592 { 4593 struct ieee80211_local *local = hw_to_local(hw); 4594 4595 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4596 4597 skb->pkt_type = IEEE80211_RX_MSG; 4598 skb_queue_tail(&local->skb_queue, skb); 4599 tasklet_schedule(&local->tasklet); 4600 } 4601 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4602