1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/jiffies.h> 14 #include <linux/slab.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 42 struct sk_buff *skb, 43 unsigned int rtap_vendor_space) 44 { 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 __pskb_pull(skb, rtap_vendor_space); 57 58 return skb; 59 } 60 61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 62 unsigned int rtap_vendor_space) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + rtap_vendor_space); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return true; 73 74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 75 return true; 76 77 if (ieee80211_is_ctl(hdr->frame_control) && 78 !ieee80211_is_pspoll(hdr->frame_control) && 79 !ieee80211_is_back_req(hdr->frame_control)) 80 return true; 81 82 return false; 83 } 84 85 static int 86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 87 struct ieee80211_rx_status *status, 88 struct sk_buff *skb) 89 { 90 int len; 91 92 /* always present fields */ 93 len = sizeof(struct ieee80211_radiotap_header) + 8; 94 95 /* allocate extra bitmaps */ 96 if (status->chains) 97 len += 4 * hweight8(status->chains); 98 99 if (ieee80211_have_rx_timestamp(status)) { 100 len = ALIGN(len, 8); 101 len += 8; 102 } 103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 104 len += 1; 105 106 /* antenna field, if we don't have per-chain info */ 107 if (!status->chains) 108 len += 1; 109 110 /* padding for RX_FLAGS if necessary */ 111 len = ALIGN(len, 2); 112 113 if (status->flag & RX_FLAG_HT) /* HT info */ 114 len += 3; 115 116 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 117 len = ALIGN(len, 4); 118 len += 8; 119 } 120 121 if (status->flag & RX_FLAG_VHT) { 122 len = ALIGN(len, 2); 123 len += 12; 124 } 125 126 if (status->chains) { 127 /* antenna and antenna signal fields */ 128 len += 2 * hweight8(status->chains); 129 } 130 131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 133 134 /* vendor presence bitmap */ 135 len += 4; 136 /* alignment for fixed 6-byte vendor data header */ 137 len = ALIGN(len, 2); 138 /* vendor data header */ 139 len += 6; 140 if (WARN_ON(rtap->align == 0)) 141 rtap->align = 1; 142 len = ALIGN(len, rtap->align); 143 len += rtap->len + rtap->pad; 144 } 145 146 return len; 147 } 148 149 /* 150 * ieee80211_add_rx_radiotap_header - add radiotap header 151 * 152 * add a radiotap header containing all the fields which the hardware provided. 153 */ 154 static void 155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 156 struct sk_buff *skb, 157 struct ieee80211_rate *rate, 158 int rtap_len, bool has_fcs) 159 { 160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 161 struct ieee80211_radiotap_header *rthdr; 162 unsigned char *pos; 163 __le32 *it_present; 164 u32 it_present_val; 165 u16 rx_flags = 0; 166 u16 channel_flags = 0; 167 int mpdulen, chain; 168 unsigned long chains = status->chains; 169 struct ieee80211_vendor_radiotap rtap = {}; 170 171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 173 /* rtap.len and rtap.pad are undone immediately */ 174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 175 } 176 177 mpdulen = skb->len; 178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 179 mpdulen += FCS_LEN; 180 181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 183 it_present = &rthdr->it_present; 184 185 /* radiotap header, set always present flags */ 186 rthdr->it_len = cpu_to_le16(rtap_len); 187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 188 BIT(IEEE80211_RADIOTAP_CHANNEL) | 189 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 190 191 if (!status->chains) 192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 193 194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 195 it_present_val |= 196 BIT(IEEE80211_RADIOTAP_EXT) | 197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 198 put_unaligned_le32(it_present_val, it_present); 199 it_present++; 200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 202 } 203 204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 206 BIT(IEEE80211_RADIOTAP_EXT); 207 put_unaligned_le32(it_present_val, it_present); 208 it_present++; 209 it_present_val = rtap.present; 210 } 211 212 put_unaligned_le32(it_present_val, it_present); 213 214 pos = (void *)(it_present + 1); 215 216 /* the order of the following fields is important */ 217 218 /* IEEE80211_RADIOTAP_TSFT */ 219 if (ieee80211_have_rx_timestamp(status)) { 220 /* padding */ 221 while ((pos - (u8 *)rthdr) & 7) 222 *pos++ = 0; 223 put_unaligned_le64( 224 ieee80211_calculate_rx_timestamp(local, status, 225 mpdulen, 0), 226 pos); 227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 228 pos += 8; 229 } 230 231 /* IEEE80211_RADIOTAP_FLAGS */ 232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 233 *pos |= IEEE80211_RADIOTAP_F_FCS; 234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 235 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 236 if (status->flag & RX_FLAG_SHORTPRE) 237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 238 pos++; 239 240 /* IEEE80211_RADIOTAP_RATE */ 241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 242 /* 243 * Without rate information don't add it. If we have, 244 * MCS information is a separate field in radiotap, 245 * added below. The byte here is needed as padding 246 * for the channel though, so initialise it to 0. 247 */ 248 *pos = 0; 249 } else { 250 int shift = 0; 251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 252 if (status->flag & RX_FLAG_10MHZ) 253 shift = 1; 254 else if (status->flag & RX_FLAG_5MHZ) 255 shift = 2; 256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 257 } 258 pos++; 259 260 /* IEEE80211_RADIOTAP_CHANNEL */ 261 put_unaligned_le16(status->freq, pos); 262 pos += 2; 263 if (status->flag & RX_FLAG_10MHZ) 264 channel_flags |= IEEE80211_CHAN_HALF; 265 else if (status->flag & RX_FLAG_5MHZ) 266 channel_flags |= IEEE80211_CHAN_QUARTER; 267 268 if (status->band == IEEE80211_BAND_5GHZ) 269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 274 else if (rate) 275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 276 else 277 channel_flags |= IEEE80211_CHAN_2GHZ; 278 put_unaligned_le16(channel_flags, pos); 279 pos += 2; 280 281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 284 *pos = status->signal; 285 rthdr->it_present |= 286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 287 pos++; 288 } 289 290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 291 292 if (!status->chains) { 293 /* IEEE80211_RADIOTAP_ANTENNA */ 294 *pos = status->antenna; 295 pos++; 296 } 297 298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 299 300 /* IEEE80211_RADIOTAP_RX_FLAGS */ 301 /* ensure 2 byte alignment for the 2 byte field as required */ 302 if ((pos - (u8 *)rthdr) & 1) 303 *pos++ = 0; 304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 306 put_unaligned_le16(rx_flags, pos); 307 pos += 2; 308 309 if (status->flag & RX_FLAG_HT) { 310 unsigned int stbc; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 313 *pos++ = local->hw.radiotap_mcs_details; 314 *pos = 0; 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 317 if (status->flag & RX_FLAG_40MHZ) 318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 319 if (status->flag & RX_FLAG_HT_GF) 320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 321 if (status->flag & RX_FLAG_LDPC) 322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 325 pos++; 326 *pos++ = status->rate_idx; 327 } 328 329 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 330 u16 flags = 0; 331 332 /* ensure 4 byte alignment */ 333 while ((pos - (u8 *)rthdr) & 3) 334 pos++; 335 rthdr->it_present |= 336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 337 put_unaligned_le32(status->ampdu_reference, pos); 338 pos += 4; 339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 345 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 351 put_unaligned_le16(flags, pos); 352 pos += 2; 353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 354 *pos++ = status->ampdu_delimiter_crc; 355 else 356 *pos++ = 0; 357 *pos++ = 0; 358 } 359 360 if (status->flag & RX_FLAG_VHT) { 361 u16 known = local->hw.radiotap_vht_details; 362 363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 364 put_unaligned_le16(known, pos); 365 pos += 2; 366 /* flags */ 367 if (status->flag & RX_FLAG_SHORT_GI) 368 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 369 /* in VHT, STBC is binary */ 370 if (status->flag & RX_FLAG_STBC_MASK) 371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 372 if (status->vht_flag & RX_VHT_FLAG_BF) 373 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 374 pos++; 375 /* bandwidth */ 376 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 377 *pos++ = 4; 378 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 379 *pos++ = 11; 380 else if (status->flag & RX_FLAG_40MHZ) 381 *pos++ = 1; 382 else /* 20 MHz */ 383 *pos++ = 0; 384 /* MCS/NSS */ 385 *pos = (status->rate_idx << 4) | status->vht_nss; 386 pos += 4; 387 /* coding field */ 388 if (status->flag & RX_FLAG_LDPC) 389 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 390 pos++; 391 /* group ID */ 392 pos++; 393 /* partial_aid */ 394 pos += 2; 395 } 396 397 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 398 *pos++ = status->chain_signal[chain]; 399 *pos++ = chain; 400 } 401 402 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 403 /* ensure 2 byte alignment for the vendor field as required */ 404 if ((pos - (u8 *)rthdr) & 1) 405 *pos++ = 0; 406 *pos++ = rtap.oui[0]; 407 *pos++ = rtap.oui[1]; 408 *pos++ = rtap.oui[2]; 409 *pos++ = rtap.subns; 410 put_unaligned_le16(rtap.len, pos); 411 pos += 2; 412 /* align the actual payload as requested */ 413 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 414 *pos++ = 0; 415 /* data (and possible padding) already follows */ 416 } 417 } 418 419 /* 420 * This function copies a received frame to all monitor interfaces and 421 * returns a cleaned-up SKB that no longer includes the FCS nor the 422 * radiotap header the driver might have added. 423 */ 424 static struct sk_buff * 425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 426 struct ieee80211_rate *rate) 427 { 428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 429 struct ieee80211_sub_if_data *sdata; 430 int rt_hdrlen, needed_headroom; 431 struct sk_buff *skb, *skb2; 432 struct net_device *prev_dev = NULL; 433 int present_fcs_len = 0; 434 unsigned int rtap_vendor_space = 0; 435 436 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 437 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 438 439 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 440 } 441 442 /* 443 * First, we may need to make a copy of the skb because 444 * (1) we need to modify it for radiotap (if not present), and 445 * (2) the other RX handlers will modify the skb we got. 446 * 447 * We don't need to, of course, if we aren't going to return 448 * the SKB because it has a bad FCS/PLCP checksum. 449 */ 450 451 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 452 present_fcs_len = FCS_LEN; 453 454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 455 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 456 dev_kfree_skb(origskb); 457 return NULL; 458 } 459 460 if (!local->monitors) { 461 if (should_drop_frame(origskb, present_fcs_len, 462 rtap_vendor_space)) { 463 dev_kfree_skb(origskb); 464 return NULL; 465 } 466 467 return remove_monitor_info(local, origskb, rtap_vendor_space); 468 } 469 470 /* room for the radiotap header based on driver features */ 471 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 472 needed_headroom = rt_hdrlen - rtap_vendor_space; 473 474 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 475 /* only need to expand headroom if necessary */ 476 skb = origskb; 477 origskb = NULL; 478 479 /* 480 * This shouldn't trigger often because most devices have an 481 * RX header they pull before we get here, and that should 482 * be big enough for our radiotap information. We should 483 * probably export the length to drivers so that we can have 484 * them allocate enough headroom to start with. 485 */ 486 if (skb_headroom(skb) < needed_headroom && 487 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 488 dev_kfree_skb(skb); 489 return NULL; 490 } 491 } else { 492 /* 493 * Need to make a copy and possibly remove radiotap header 494 * and FCS from the original. 495 */ 496 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 497 498 origskb = remove_monitor_info(local, origskb, 499 rtap_vendor_space); 500 501 if (!skb) 502 return origskb; 503 } 504 505 /* prepend radiotap information */ 506 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 507 508 skb_reset_mac_header(skb); 509 skb->ip_summed = CHECKSUM_UNNECESSARY; 510 skb->pkt_type = PACKET_OTHERHOST; 511 skb->protocol = htons(ETH_P_802_2); 512 513 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 514 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 515 continue; 516 517 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 518 continue; 519 520 if (!ieee80211_sdata_running(sdata)) 521 continue; 522 523 if (prev_dev) { 524 skb2 = skb_clone(skb, GFP_ATOMIC); 525 if (skb2) { 526 skb2->dev = prev_dev; 527 netif_receive_skb(skb2); 528 } 529 } 530 531 prev_dev = sdata->dev; 532 sdata->dev->stats.rx_packets++; 533 sdata->dev->stats.rx_bytes += skb->len; 534 } 535 536 if (prev_dev) { 537 skb->dev = prev_dev; 538 netif_receive_skb(skb); 539 } else 540 dev_kfree_skb(skb); 541 542 return origskb; 543 } 544 545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 546 { 547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 549 int tid, seqno_idx, security_idx; 550 551 /* does the frame have a qos control field? */ 552 if (ieee80211_is_data_qos(hdr->frame_control)) { 553 u8 *qc = ieee80211_get_qos_ctl(hdr); 554 /* frame has qos control */ 555 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 556 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 557 status->rx_flags |= IEEE80211_RX_AMSDU; 558 559 seqno_idx = tid; 560 security_idx = tid; 561 } else { 562 /* 563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 564 * 565 * Sequence numbers for management frames, QoS data 566 * frames with a broadcast/multicast address in the 567 * Address 1 field, and all non-QoS data frames sent 568 * by QoS STAs are assigned using an additional single 569 * modulo-4096 counter, [...] 570 * 571 * We also use that counter for non-QoS STAs. 572 */ 573 seqno_idx = IEEE80211_NUM_TIDS; 574 security_idx = 0; 575 if (ieee80211_is_mgmt(hdr->frame_control)) 576 security_idx = IEEE80211_NUM_TIDS; 577 tid = 0; 578 } 579 580 rx->seqno_idx = seqno_idx; 581 rx->security_idx = security_idx; 582 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 583 * For now, set skb->priority to 0 for other cases. */ 584 rx->skb->priority = (tid > 7) ? 0 : tid; 585 } 586 587 /** 588 * DOC: Packet alignment 589 * 590 * Drivers always need to pass packets that are aligned to two-byte boundaries 591 * to the stack. 592 * 593 * Additionally, should, if possible, align the payload data in a way that 594 * guarantees that the contained IP header is aligned to a four-byte 595 * boundary. In the case of regular frames, this simply means aligning the 596 * payload to a four-byte boundary (because either the IP header is directly 597 * contained, or IV/RFC1042 headers that have a length divisible by four are 598 * in front of it). If the payload data is not properly aligned and the 599 * architecture doesn't support efficient unaligned operations, mac80211 600 * will align the data. 601 * 602 * With A-MSDU frames, however, the payload data address must yield two modulo 603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 604 * push the IP header further back to a multiple of four again. Thankfully, the 605 * specs were sane enough this time around to require padding each A-MSDU 606 * subframe to a length that is a multiple of four. 607 * 608 * Padding like Atheros hardware adds which is between the 802.11 header and 609 * the payload is not supported, the driver is required to move the 802.11 610 * header to be directly in front of the payload in that case. 611 */ 612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 613 { 614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 615 WARN_ONCE((unsigned long)rx->skb->data & 1, 616 "unaligned packet at 0x%p\n", rx->skb->data); 617 #endif 618 } 619 620 621 /* rx handlers */ 622 623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 624 { 625 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 626 627 if (is_multicast_ether_addr(hdr->addr1)) 628 return 0; 629 630 return ieee80211_is_robust_mgmt_frame(skb); 631 } 632 633 634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 635 { 636 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 637 638 if (!is_multicast_ether_addr(hdr->addr1)) 639 return 0; 640 641 return ieee80211_is_robust_mgmt_frame(skb); 642 } 643 644 645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 647 { 648 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 649 struct ieee80211_mmie *mmie; 650 struct ieee80211_mmie_16 *mmie16; 651 652 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 653 return -1; 654 655 if (!ieee80211_is_robust_mgmt_frame(skb)) 656 return -1; /* not a robust management frame */ 657 658 mmie = (struct ieee80211_mmie *) 659 (skb->data + skb->len - sizeof(*mmie)); 660 if (mmie->element_id == WLAN_EID_MMIE && 661 mmie->length == sizeof(*mmie) - 2) 662 return le16_to_cpu(mmie->key_id); 663 664 mmie16 = (struct ieee80211_mmie_16 *) 665 (skb->data + skb->len - sizeof(*mmie16)); 666 if (skb->len >= 24 + sizeof(*mmie16) && 667 mmie16->element_id == WLAN_EID_MMIE && 668 mmie16->length == sizeof(*mmie16) - 2) 669 return le16_to_cpu(mmie16->key_id); 670 671 return -1; 672 } 673 674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 675 struct sk_buff *skb) 676 { 677 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 678 __le16 fc; 679 int hdrlen; 680 u8 keyid; 681 682 fc = hdr->frame_control; 683 hdrlen = ieee80211_hdrlen(fc); 684 685 if (skb->len < hdrlen + cs->hdr_len) 686 return -EINVAL; 687 688 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 689 keyid &= cs->key_idx_mask; 690 keyid >>= cs->key_idx_shift; 691 692 return keyid; 693 } 694 695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 696 { 697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 698 char *dev_addr = rx->sdata->vif.addr; 699 700 if (ieee80211_is_data(hdr->frame_control)) { 701 if (is_multicast_ether_addr(hdr->addr1)) { 702 if (ieee80211_has_tods(hdr->frame_control) || 703 !ieee80211_has_fromds(hdr->frame_control)) 704 return RX_DROP_MONITOR; 705 if (ether_addr_equal(hdr->addr3, dev_addr)) 706 return RX_DROP_MONITOR; 707 } else { 708 if (!ieee80211_has_a4(hdr->frame_control)) 709 return RX_DROP_MONITOR; 710 if (ether_addr_equal(hdr->addr4, dev_addr)) 711 return RX_DROP_MONITOR; 712 } 713 } 714 715 /* If there is not an established peer link and this is not a peer link 716 * establisment frame, beacon or probe, drop the frame. 717 */ 718 719 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 720 struct ieee80211_mgmt *mgmt; 721 722 if (!ieee80211_is_mgmt(hdr->frame_control)) 723 return RX_DROP_MONITOR; 724 725 if (ieee80211_is_action(hdr->frame_control)) { 726 u8 category; 727 728 /* make sure category field is present */ 729 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 730 return RX_DROP_MONITOR; 731 732 mgmt = (struct ieee80211_mgmt *)hdr; 733 category = mgmt->u.action.category; 734 if (category != WLAN_CATEGORY_MESH_ACTION && 735 category != WLAN_CATEGORY_SELF_PROTECTED) 736 return RX_DROP_MONITOR; 737 return RX_CONTINUE; 738 } 739 740 if (ieee80211_is_probe_req(hdr->frame_control) || 741 ieee80211_is_probe_resp(hdr->frame_control) || 742 ieee80211_is_beacon(hdr->frame_control) || 743 ieee80211_is_auth(hdr->frame_control)) 744 return RX_CONTINUE; 745 746 return RX_DROP_MONITOR; 747 } 748 749 return RX_CONTINUE; 750 } 751 752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 753 struct tid_ampdu_rx *tid_agg_rx, 754 int index, 755 struct sk_buff_head *frames) 756 { 757 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 758 struct sk_buff *skb; 759 struct ieee80211_rx_status *status; 760 761 lockdep_assert_held(&tid_agg_rx->reorder_lock); 762 763 if (skb_queue_empty(skb_list)) 764 goto no_frame; 765 766 if (!ieee80211_rx_reorder_ready(skb_list)) { 767 __skb_queue_purge(skb_list); 768 goto no_frame; 769 } 770 771 /* release frames from the reorder ring buffer */ 772 tid_agg_rx->stored_mpdu_num--; 773 while ((skb = __skb_dequeue(skb_list))) { 774 status = IEEE80211_SKB_RXCB(skb); 775 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 776 __skb_queue_tail(frames, skb); 777 } 778 779 no_frame: 780 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 781 } 782 783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 784 struct tid_ampdu_rx *tid_agg_rx, 785 u16 head_seq_num, 786 struct sk_buff_head *frames) 787 { 788 int index; 789 790 lockdep_assert_held(&tid_agg_rx->reorder_lock); 791 792 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 795 frames); 796 } 797 } 798 799 /* 800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 801 * the skb was added to the buffer longer than this time ago, the earlier 802 * frames that have not yet been received are assumed to be lost and the skb 803 * can be released for processing. This may also release other skb's from the 804 * reorder buffer if there are no additional gaps between the frames. 805 * 806 * Callers must hold tid_agg_rx->reorder_lock. 807 */ 808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 809 810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 811 struct tid_ampdu_rx *tid_agg_rx, 812 struct sk_buff_head *frames) 813 { 814 int index, i, j; 815 816 lockdep_assert_held(&tid_agg_rx->reorder_lock); 817 818 /* release the buffer until next missing frame */ 819 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && 821 tid_agg_rx->stored_mpdu_num) { 822 /* 823 * No buffers ready to be released, but check whether any 824 * frames in the reorder buffer have timed out. 825 */ 826 int skipped = 1; 827 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 828 j = (j + 1) % tid_agg_rx->buf_size) { 829 if (!ieee80211_rx_reorder_ready( 830 &tid_agg_rx->reorder_buf[j])) { 831 skipped++; 832 continue; 833 } 834 if (skipped && 835 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 836 HT_RX_REORDER_BUF_TIMEOUT)) 837 goto set_release_timer; 838 839 /* don't leave incomplete A-MSDUs around */ 840 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 841 i = (i + 1) % tid_agg_rx->buf_size) 842 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 843 844 ht_dbg_ratelimited(sdata, 845 "release an RX reorder frame due to timeout on earlier frames\n"); 846 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 847 frames); 848 849 /* 850 * Increment the head seq# also for the skipped slots. 851 */ 852 tid_agg_rx->head_seq_num = 853 (tid_agg_rx->head_seq_num + 854 skipped) & IEEE80211_SN_MASK; 855 skipped = 0; 856 } 857 } else while (ieee80211_rx_reorder_ready( 858 &tid_agg_rx->reorder_buf[index])) { 859 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 860 frames); 861 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 862 } 863 864 if (tid_agg_rx->stored_mpdu_num) { 865 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 866 867 for (; j != (index - 1) % tid_agg_rx->buf_size; 868 j = (j + 1) % tid_agg_rx->buf_size) { 869 if (ieee80211_rx_reorder_ready( 870 &tid_agg_rx->reorder_buf[j])) 871 break; 872 } 873 874 set_release_timer: 875 876 mod_timer(&tid_agg_rx->reorder_timer, 877 tid_agg_rx->reorder_time[j] + 1 + 878 HT_RX_REORDER_BUF_TIMEOUT); 879 } else { 880 del_timer(&tid_agg_rx->reorder_timer); 881 } 882 } 883 884 /* 885 * As this function belongs to the RX path it must be under 886 * rcu_read_lock protection. It returns false if the frame 887 * can be processed immediately, true if it was consumed. 888 */ 889 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 890 struct tid_ampdu_rx *tid_agg_rx, 891 struct sk_buff *skb, 892 struct sk_buff_head *frames) 893 { 894 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 895 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 896 u16 sc = le16_to_cpu(hdr->seq_ctrl); 897 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 898 u16 head_seq_num, buf_size; 899 int index; 900 bool ret = true; 901 902 spin_lock(&tid_agg_rx->reorder_lock); 903 904 /* 905 * Offloaded BA sessions have no known starting sequence number so pick 906 * one from first Rxed frame for this tid after BA was started. 907 */ 908 if (unlikely(tid_agg_rx->auto_seq)) { 909 tid_agg_rx->auto_seq = false; 910 tid_agg_rx->ssn = mpdu_seq_num; 911 tid_agg_rx->head_seq_num = mpdu_seq_num; 912 } 913 914 buf_size = tid_agg_rx->buf_size; 915 head_seq_num = tid_agg_rx->head_seq_num; 916 917 /* frame with out of date sequence number */ 918 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 919 dev_kfree_skb(skb); 920 goto out; 921 } 922 923 /* 924 * If frame the sequence number exceeds our buffering window 925 * size release some previous frames to make room for this one. 926 */ 927 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 928 head_seq_num = ieee80211_sn_inc( 929 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 930 /* release stored frames up to new head to stack */ 931 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 932 head_seq_num, frames); 933 } 934 935 /* Now the new frame is always in the range of the reordering buffer */ 936 937 index = mpdu_seq_num % tid_agg_rx->buf_size; 938 939 /* check if we already stored this frame */ 940 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { 941 dev_kfree_skb(skb); 942 goto out; 943 } 944 945 /* 946 * If the current MPDU is in the right order and nothing else 947 * is stored we can process it directly, no need to buffer it. 948 * If it is first but there's something stored, we may be able 949 * to release frames after this one. 950 */ 951 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 952 tid_agg_rx->stored_mpdu_num == 0) { 953 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 954 tid_agg_rx->head_seq_num = 955 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 956 ret = false; 957 goto out; 958 } 959 960 /* put the frame in the reordering buffer */ 961 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 962 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 963 tid_agg_rx->reorder_time[index] = jiffies; 964 tid_agg_rx->stored_mpdu_num++; 965 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 966 } 967 968 out: 969 spin_unlock(&tid_agg_rx->reorder_lock); 970 return ret; 971 } 972 973 /* 974 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 975 * true if the MPDU was buffered, false if it should be processed. 976 */ 977 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 978 struct sk_buff_head *frames) 979 { 980 struct sk_buff *skb = rx->skb; 981 struct ieee80211_local *local = rx->local; 982 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 983 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 984 struct sta_info *sta = rx->sta; 985 struct tid_ampdu_rx *tid_agg_rx; 986 u16 sc; 987 u8 tid, ack_policy; 988 989 if (!ieee80211_is_data_qos(hdr->frame_control) || 990 is_multicast_ether_addr(hdr->addr1)) 991 goto dont_reorder; 992 993 /* 994 * filter the QoS data rx stream according to 995 * STA/TID and check if this STA/TID is on aggregation 996 */ 997 998 if (!sta) 999 goto dont_reorder; 1000 1001 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1002 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1003 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1004 1005 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1006 if (!tid_agg_rx) 1007 goto dont_reorder; 1008 1009 /* qos null data frames are excluded */ 1010 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1011 goto dont_reorder; 1012 1013 /* not part of a BA session */ 1014 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1015 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1016 goto dont_reorder; 1017 1018 /* not actually part of this BA session */ 1019 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1020 goto dont_reorder; 1021 1022 /* new, potentially un-ordered, ampdu frame - process it */ 1023 1024 /* reset session timer */ 1025 if (tid_agg_rx->timeout) 1026 tid_agg_rx->last_rx = jiffies; 1027 1028 /* if this mpdu is fragmented - terminate rx aggregation session */ 1029 sc = le16_to_cpu(hdr->seq_ctrl); 1030 if (sc & IEEE80211_SCTL_FRAG) { 1031 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1032 skb_queue_tail(&rx->sdata->skb_queue, skb); 1033 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1034 return; 1035 } 1036 1037 /* 1038 * No locking needed -- we will only ever process one 1039 * RX packet at a time, and thus own tid_agg_rx. All 1040 * other code manipulating it needs to (and does) make 1041 * sure that we cannot get to it any more before doing 1042 * anything with it. 1043 */ 1044 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1045 frames)) 1046 return; 1047 1048 dont_reorder: 1049 __skb_queue_tail(frames, skb); 1050 } 1051 1052 static ieee80211_rx_result debug_noinline 1053 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1054 { 1055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1056 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1057 1058 /* 1059 * Drop duplicate 802.11 retransmissions 1060 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1061 */ 1062 1063 if (rx->skb->len < 24) 1064 return RX_CONTINUE; 1065 1066 if (ieee80211_is_ctl(hdr->frame_control) || 1067 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1068 is_multicast_ether_addr(hdr->addr1)) 1069 return RX_CONTINUE; 1070 1071 if (rx->sta) { 1072 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1073 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1074 hdr->seq_ctrl)) { 1075 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1076 rx->local->dot11FrameDuplicateCount++; 1077 rx->sta->num_duplicates++; 1078 } 1079 return RX_DROP_UNUSABLE; 1080 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1081 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1082 } 1083 } 1084 1085 return RX_CONTINUE; 1086 } 1087 1088 static ieee80211_rx_result debug_noinline 1089 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1090 { 1091 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1092 1093 if (unlikely(rx->skb->len < 16)) { 1094 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1095 return RX_DROP_MONITOR; 1096 } 1097 1098 /* Drop disallowed frame classes based on STA auth/assoc state; 1099 * IEEE 802.11, Chap 5.5. 1100 * 1101 * mac80211 filters only based on association state, i.e. it drops 1102 * Class 3 frames from not associated stations. hostapd sends 1103 * deauth/disassoc frames when needed. In addition, hostapd is 1104 * responsible for filtering on both auth and assoc states. 1105 */ 1106 1107 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1108 return ieee80211_rx_mesh_check(rx); 1109 1110 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1111 ieee80211_is_pspoll(hdr->frame_control)) && 1112 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1113 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1114 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1115 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1116 /* 1117 * accept port control frames from the AP even when it's not 1118 * yet marked ASSOC to prevent a race where we don't set the 1119 * assoc bit quickly enough before it sends the first frame 1120 */ 1121 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1122 ieee80211_is_data_present(hdr->frame_control)) { 1123 unsigned int hdrlen; 1124 __be16 ethertype; 1125 1126 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1127 1128 if (rx->skb->len < hdrlen + 8) 1129 return RX_DROP_MONITOR; 1130 1131 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1132 if (ethertype == rx->sdata->control_port_protocol) 1133 return RX_CONTINUE; 1134 } 1135 1136 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1137 cfg80211_rx_spurious_frame(rx->sdata->dev, 1138 hdr->addr2, 1139 GFP_ATOMIC)) 1140 return RX_DROP_UNUSABLE; 1141 1142 return RX_DROP_MONITOR; 1143 } 1144 1145 return RX_CONTINUE; 1146 } 1147 1148 1149 static ieee80211_rx_result debug_noinline 1150 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1151 { 1152 struct ieee80211_local *local; 1153 struct ieee80211_hdr *hdr; 1154 struct sk_buff *skb; 1155 1156 local = rx->local; 1157 skb = rx->skb; 1158 hdr = (struct ieee80211_hdr *) skb->data; 1159 1160 if (!local->pspolling) 1161 return RX_CONTINUE; 1162 1163 if (!ieee80211_has_fromds(hdr->frame_control)) 1164 /* this is not from AP */ 1165 return RX_CONTINUE; 1166 1167 if (!ieee80211_is_data(hdr->frame_control)) 1168 return RX_CONTINUE; 1169 1170 if (!ieee80211_has_moredata(hdr->frame_control)) { 1171 /* AP has no more frames buffered for us */ 1172 local->pspolling = false; 1173 return RX_CONTINUE; 1174 } 1175 1176 /* more data bit is set, let's request a new frame from the AP */ 1177 ieee80211_send_pspoll(local, rx->sdata); 1178 1179 return RX_CONTINUE; 1180 } 1181 1182 static void sta_ps_start(struct sta_info *sta) 1183 { 1184 struct ieee80211_sub_if_data *sdata = sta->sdata; 1185 struct ieee80211_local *local = sdata->local; 1186 struct ps_data *ps; 1187 1188 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1189 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1190 ps = &sdata->bss->ps; 1191 else 1192 return; 1193 1194 atomic_inc(&ps->num_sta_ps); 1195 set_sta_flag(sta, WLAN_STA_PS_STA); 1196 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1197 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1198 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1199 sta->sta.addr, sta->sta.aid); 1200 } 1201 1202 static void sta_ps_end(struct sta_info *sta) 1203 { 1204 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1205 sta->sta.addr, sta->sta.aid); 1206 1207 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1208 /* 1209 * Clear the flag only if the other one is still set 1210 * so that the TX path won't start TX'ing new frames 1211 * directly ... In the case that the driver flag isn't 1212 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1213 */ 1214 clear_sta_flag(sta, WLAN_STA_PS_STA); 1215 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1216 sta->sta.addr, sta->sta.aid); 1217 return; 1218 } 1219 1220 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1221 clear_sta_flag(sta, WLAN_STA_PS_STA); 1222 ieee80211_sta_ps_deliver_wakeup(sta); 1223 } 1224 1225 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1226 { 1227 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1228 bool in_ps; 1229 1230 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1231 1232 /* Don't let the same PS state be set twice */ 1233 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1234 if ((start && in_ps) || (!start && !in_ps)) 1235 return -EINVAL; 1236 1237 if (start) 1238 sta_ps_start(sta_inf); 1239 else 1240 sta_ps_end(sta_inf); 1241 1242 return 0; 1243 } 1244 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1245 1246 static ieee80211_rx_result debug_noinline 1247 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1248 { 1249 struct ieee80211_sub_if_data *sdata = rx->sdata; 1250 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1252 int tid, ac; 1253 1254 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1255 return RX_CONTINUE; 1256 1257 if (sdata->vif.type != NL80211_IFTYPE_AP && 1258 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1259 return RX_CONTINUE; 1260 1261 /* 1262 * The device handles station powersave, so don't do anything about 1263 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1264 * it to mac80211 since they're handled.) 1265 */ 1266 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1267 return RX_CONTINUE; 1268 1269 /* 1270 * Don't do anything if the station isn't already asleep. In 1271 * the uAPSD case, the station will probably be marked asleep, 1272 * in the PS-Poll case the station must be confused ... 1273 */ 1274 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1275 return RX_CONTINUE; 1276 1277 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1278 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1279 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1280 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1281 else 1282 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1283 } 1284 1285 /* Free PS Poll skb here instead of returning RX_DROP that would 1286 * count as an dropped frame. */ 1287 dev_kfree_skb(rx->skb); 1288 1289 return RX_QUEUED; 1290 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1291 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1292 ieee80211_has_pm(hdr->frame_control) && 1293 (ieee80211_is_data_qos(hdr->frame_control) || 1294 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1295 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1296 ac = ieee802_1d_to_ac[tid & 7]; 1297 1298 /* 1299 * If this AC is not trigger-enabled do nothing. 1300 * 1301 * NB: This could/should check a separate bitmap of trigger- 1302 * enabled queues, but for now we only implement uAPSD w/o 1303 * TSPEC changes to the ACs, so they're always the same. 1304 */ 1305 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1306 return RX_CONTINUE; 1307 1308 /* if we are in a service period, do nothing */ 1309 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1310 return RX_CONTINUE; 1311 1312 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1313 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1314 else 1315 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1316 } 1317 1318 return RX_CONTINUE; 1319 } 1320 1321 static ieee80211_rx_result debug_noinline 1322 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1323 { 1324 struct sta_info *sta = rx->sta; 1325 struct sk_buff *skb = rx->skb; 1326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1327 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1328 int i; 1329 1330 if (!sta) 1331 return RX_CONTINUE; 1332 1333 /* 1334 * Update last_rx only for IBSS packets which are for the current 1335 * BSSID and for station already AUTHORIZED to avoid keeping the 1336 * current IBSS network alive in cases where other STAs start 1337 * using different BSSID. This will also give the station another 1338 * chance to restart the authentication/authorization in case 1339 * something went wrong the first time. 1340 */ 1341 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1342 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1343 NL80211_IFTYPE_ADHOC); 1344 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1345 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1346 sta->last_rx = jiffies; 1347 if (ieee80211_is_data(hdr->frame_control) && 1348 !is_multicast_ether_addr(hdr->addr1)) { 1349 sta->last_rx_rate_idx = status->rate_idx; 1350 sta->last_rx_rate_flag = status->flag; 1351 sta->last_rx_rate_vht_flag = status->vht_flag; 1352 sta->last_rx_rate_vht_nss = status->vht_nss; 1353 } 1354 } 1355 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1356 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1357 NL80211_IFTYPE_OCB); 1358 /* OCB uses wild-card BSSID */ 1359 if (is_broadcast_ether_addr(bssid)) 1360 sta->last_rx = jiffies; 1361 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1362 /* 1363 * Mesh beacons will update last_rx when if they are found to 1364 * match the current local configuration when processed. 1365 */ 1366 sta->last_rx = jiffies; 1367 if (ieee80211_is_data(hdr->frame_control)) { 1368 sta->last_rx_rate_idx = status->rate_idx; 1369 sta->last_rx_rate_flag = status->flag; 1370 sta->last_rx_rate_vht_flag = status->vht_flag; 1371 sta->last_rx_rate_vht_nss = status->vht_nss; 1372 } 1373 } 1374 1375 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1376 return RX_CONTINUE; 1377 1378 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1379 ieee80211_sta_rx_notify(rx->sdata, hdr); 1380 1381 sta->rx_fragments++; 1382 sta->rx_bytes += rx->skb->len; 1383 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1384 sta->last_signal = status->signal; 1385 ewma_add(&sta->avg_signal, -status->signal); 1386 } 1387 1388 if (status->chains) { 1389 sta->chains = status->chains; 1390 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1391 int signal = status->chain_signal[i]; 1392 1393 if (!(status->chains & BIT(i))) 1394 continue; 1395 1396 sta->chain_signal_last[i] = signal; 1397 ewma_add(&sta->chain_signal_avg[i], -signal); 1398 } 1399 } 1400 1401 /* 1402 * Change STA power saving mode only at the end of a frame 1403 * exchange sequence. 1404 */ 1405 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1406 !ieee80211_has_morefrags(hdr->frame_control) && 1407 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1408 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1409 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1410 /* PM bit is only checked in frames where it isn't reserved, 1411 * in AP mode it's reserved in non-bufferable management frames 1412 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1413 */ 1414 (!ieee80211_is_mgmt(hdr->frame_control) || 1415 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1416 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1417 if (!ieee80211_has_pm(hdr->frame_control)) 1418 sta_ps_end(sta); 1419 } else { 1420 if (ieee80211_has_pm(hdr->frame_control)) 1421 sta_ps_start(sta); 1422 } 1423 } 1424 1425 /* mesh power save support */ 1426 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1427 ieee80211_mps_rx_h_sta_process(sta, hdr); 1428 1429 /* 1430 * Drop (qos-)data::nullfunc frames silently, since they 1431 * are used only to control station power saving mode. 1432 */ 1433 if (ieee80211_is_nullfunc(hdr->frame_control) || 1434 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1435 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1436 1437 /* 1438 * If we receive a 4-addr nullfunc frame from a STA 1439 * that was not moved to a 4-addr STA vlan yet send 1440 * the event to userspace and for older hostapd drop 1441 * the frame to the monitor interface. 1442 */ 1443 if (ieee80211_has_a4(hdr->frame_control) && 1444 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1445 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1446 !rx->sdata->u.vlan.sta))) { 1447 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1448 cfg80211_rx_unexpected_4addr_frame( 1449 rx->sdata->dev, sta->sta.addr, 1450 GFP_ATOMIC); 1451 return RX_DROP_MONITOR; 1452 } 1453 /* 1454 * Update counter and free packet here to avoid 1455 * counting this as a dropped packed. 1456 */ 1457 sta->rx_packets++; 1458 dev_kfree_skb(rx->skb); 1459 return RX_QUEUED; 1460 } 1461 1462 return RX_CONTINUE; 1463 } /* ieee80211_rx_h_sta_process */ 1464 1465 static ieee80211_rx_result debug_noinline 1466 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1467 { 1468 struct sk_buff *skb = rx->skb; 1469 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1471 int keyidx; 1472 int hdrlen; 1473 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1474 struct ieee80211_key *sta_ptk = NULL; 1475 int mmie_keyidx = -1; 1476 __le16 fc; 1477 const struct ieee80211_cipher_scheme *cs = NULL; 1478 1479 /* 1480 * Key selection 101 1481 * 1482 * There are four types of keys: 1483 * - GTK (group keys) 1484 * - IGTK (group keys for management frames) 1485 * - PTK (pairwise keys) 1486 * - STK (station-to-station pairwise keys) 1487 * 1488 * When selecting a key, we have to distinguish between multicast 1489 * (including broadcast) and unicast frames, the latter can only 1490 * use PTKs and STKs while the former always use GTKs and IGTKs. 1491 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1492 * unicast frames can also use key indices like GTKs. Hence, if we 1493 * don't have a PTK/STK we check the key index for a WEP key. 1494 * 1495 * Note that in a regular BSS, multicast frames are sent by the 1496 * AP only, associated stations unicast the frame to the AP first 1497 * which then multicasts it on their behalf. 1498 * 1499 * There is also a slight problem in IBSS mode: GTKs are negotiated 1500 * with each station, that is something we don't currently handle. 1501 * The spec seems to expect that one negotiates the same key with 1502 * every station but there's no such requirement; VLANs could be 1503 * possible. 1504 */ 1505 1506 /* 1507 * No point in finding a key and decrypting if the frame is neither 1508 * addressed to us nor a multicast frame. 1509 */ 1510 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1511 return RX_CONTINUE; 1512 1513 /* start without a key */ 1514 rx->key = NULL; 1515 fc = hdr->frame_control; 1516 1517 if (rx->sta) { 1518 int keyid = rx->sta->ptk_idx; 1519 1520 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1521 cs = rx->sta->cipher_scheme; 1522 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1523 if (unlikely(keyid < 0)) 1524 return RX_DROP_UNUSABLE; 1525 } 1526 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1527 } 1528 1529 if (!ieee80211_has_protected(fc)) 1530 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1531 1532 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1533 rx->key = sta_ptk; 1534 if ((status->flag & RX_FLAG_DECRYPTED) && 1535 (status->flag & RX_FLAG_IV_STRIPPED)) 1536 return RX_CONTINUE; 1537 /* Skip decryption if the frame is not protected. */ 1538 if (!ieee80211_has_protected(fc)) 1539 return RX_CONTINUE; 1540 } else if (mmie_keyidx >= 0) { 1541 /* Broadcast/multicast robust management frame / BIP */ 1542 if ((status->flag & RX_FLAG_DECRYPTED) && 1543 (status->flag & RX_FLAG_IV_STRIPPED)) 1544 return RX_CONTINUE; 1545 1546 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1547 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1548 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1549 if (rx->sta) 1550 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1551 if (!rx->key) 1552 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1553 } else if (!ieee80211_has_protected(fc)) { 1554 /* 1555 * The frame was not protected, so skip decryption. However, we 1556 * need to set rx->key if there is a key that could have been 1557 * used so that the frame may be dropped if encryption would 1558 * have been expected. 1559 */ 1560 struct ieee80211_key *key = NULL; 1561 struct ieee80211_sub_if_data *sdata = rx->sdata; 1562 int i; 1563 1564 if (ieee80211_is_mgmt(fc) && 1565 is_multicast_ether_addr(hdr->addr1) && 1566 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1567 rx->key = key; 1568 else { 1569 if (rx->sta) { 1570 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1571 key = rcu_dereference(rx->sta->gtk[i]); 1572 if (key) 1573 break; 1574 } 1575 } 1576 if (!key) { 1577 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1578 key = rcu_dereference(sdata->keys[i]); 1579 if (key) 1580 break; 1581 } 1582 } 1583 if (key) 1584 rx->key = key; 1585 } 1586 return RX_CONTINUE; 1587 } else { 1588 u8 keyid; 1589 1590 /* 1591 * The device doesn't give us the IV so we won't be 1592 * able to look up the key. That's ok though, we 1593 * don't need to decrypt the frame, we just won't 1594 * be able to keep statistics accurate. 1595 * Except for key threshold notifications, should 1596 * we somehow allow the driver to tell us which key 1597 * the hardware used if this flag is set? 1598 */ 1599 if ((status->flag & RX_FLAG_DECRYPTED) && 1600 (status->flag & RX_FLAG_IV_STRIPPED)) 1601 return RX_CONTINUE; 1602 1603 hdrlen = ieee80211_hdrlen(fc); 1604 1605 if (cs) { 1606 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1607 1608 if (unlikely(keyidx < 0)) 1609 return RX_DROP_UNUSABLE; 1610 } else { 1611 if (rx->skb->len < 8 + hdrlen) 1612 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1613 /* 1614 * no need to call ieee80211_wep_get_keyidx, 1615 * it verifies a bunch of things we've done already 1616 */ 1617 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1618 keyidx = keyid >> 6; 1619 } 1620 1621 /* check per-station GTK first, if multicast packet */ 1622 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1623 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1624 1625 /* if not found, try default key */ 1626 if (!rx->key) { 1627 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1628 1629 /* 1630 * RSNA-protected unicast frames should always be 1631 * sent with pairwise or station-to-station keys, 1632 * but for WEP we allow using a key index as well. 1633 */ 1634 if (rx->key && 1635 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1636 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1637 !is_multicast_ether_addr(hdr->addr1)) 1638 rx->key = NULL; 1639 } 1640 } 1641 1642 if (rx->key) { 1643 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1644 return RX_DROP_MONITOR; 1645 1646 rx->key->tx_rx_count++; 1647 /* TODO: add threshold stuff again */ 1648 } else { 1649 return RX_DROP_MONITOR; 1650 } 1651 1652 switch (rx->key->conf.cipher) { 1653 case WLAN_CIPHER_SUITE_WEP40: 1654 case WLAN_CIPHER_SUITE_WEP104: 1655 result = ieee80211_crypto_wep_decrypt(rx); 1656 break; 1657 case WLAN_CIPHER_SUITE_TKIP: 1658 result = ieee80211_crypto_tkip_decrypt(rx); 1659 break; 1660 case WLAN_CIPHER_SUITE_CCMP: 1661 result = ieee80211_crypto_ccmp_decrypt( 1662 rx, IEEE80211_CCMP_MIC_LEN); 1663 break; 1664 case WLAN_CIPHER_SUITE_CCMP_256: 1665 result = ieee80211_crypto_ccmp_decrypt( 1666 rx, IEEE80211_CCMP_256_MIC_LEN); 1667 break; 1668 case WLAN_CIPHER_SUITE_AES_CMAC: 1669 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1670 break; 1671 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1672 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1673 break; 1674 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1675 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1676 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1677 break; 1678 case WLAN_CIPHER_SUITE_GCMP: 1679 case WLAN_CIPHER_SUITE_GCMP_256: 1680 result = ieee80211_crypto_gcmp_decrypt(rx); 1681 break; 1682 default: 1683 result = ieee80211_crypto_hw_decrypt(rx); 1684 } 1685 1686 /* the hdr variable is invalid after the decrypt handlers */ 1687 1688 /* either the frame has been decrypted or will be dropped */ 1689 status->flag |= RX_FLAG_DECRYPTED; 1690 1691 return result; 1692 } 1693 1694 static inline struct ieee80211_fragment_entry * 1695 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1696 unsigned int frag, unsigned int seq, int rx_queue, 1697 struct sk_buff **skb) 1698 { 1699 struct ieee80211_fragment_entry *entry; 1700 1701 entry = &sdata->fragments[sdata->fragment_next++]; 1702 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1703 sdata->fragment_next = 0; 1704 1705 if (!skb_queue_empty(&entry->skb_list)) 1706 __skb_queue_purge(&entry->skb_list); 1707 1708 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1709 *skb = NULL; 1710 entry->first_frag_time = jiffies; 1711 entry->seq = seq; 1712 entry->rx_queue = rx_queue; 1713 entry->last_frag = frag; 1714 entry->ccmp = 0; 1715 entry->extra_len = 0; 1716 1717 return entry; 1718 } 1719 1720 static inline struct ieee80211_fragment_entry * 1721 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1722 unsigned int frag, unsigned int seq, 1723 int rx_queue, struct ieee80211_hdr *hdr) 1724 { 1725 struct ieee80211_fragment_entry *entry; 1726 int i, idx; 1727 1728 idx = sdata->fragment_next; 1729 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1730 struct ieee80211_hdr *f_hdr; 1731 1732 idx--; 1733 if (idx < 0) 1734 idx = IEEE80211_FRAGMENT_MAX - 1; 1735 1736 entry = &sdata->fragments[idx]; 1737 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1738 entry->rx_queue != rx_queue || 1739 entry->last_frag + 1 != frag) 1740 continue; 1741 1742 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1743 1744 /* 1745 * Check ftype and addresses are equal, else check next fragment 1746 */ 1747 if (((hdr->frame_control ^ f_hdr->frame_control) & 1748 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1749 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1750 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1751 continue; 1752 1753 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1754 __skb_queue_purge(&entry->skb_list); 1755 continue; 1756 } 1757 return entry; 1758 } 1759 1760 return NULL; 1761 } 1762 1763 static ieee80211_rx_result debug_noinline 1764 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1765 { 1766 struct ieee80211_hdr *hdr; 1767 u16 sc; 1768 __le16 fc; 1769 unsigned int frag, seq; 1770 struct ieee80211_fragment_entry *entry; 1771 struct sk_buff *skb; 1772 struct ieee80211_rx_status *status; 1773 1774 hdr = (struct ieee80211_hdr *)rx->skb->data; 1775 fc = hdr->frame_control; 1776 1777 if (ieee80211_is_ctl(fc)) 1778 return RX_CONTINUE; 1779 1780 sc = le16_to_cpu(hdr->seq_ctrl); 1781 frag = sc & IEEE80211_SCTL_FRAG; 1782 1783 if (is_multicast_ether_addr(hdr->addr1)) { 1784 rx->local->dot11MulticastReceivedFrameCount++; 1785 goto out_no_led; 1786 } 1787 1788 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1789 goto out; 1790 1791 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1792 1793 if (skb_linearize(rx->skb)) 1794 return RX_DROP_UNUSABLE; 1795 1796 /* 1797 * skb_linearize() might change the skb->data and 1798 * previously cached variables (in this case, hdr) need to 1799 * be refreshed with the new data. 1800 */ 1801 hdr = (struct ieee80211_hdr *)rx->skb->data; 1802 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1803 1804 if (frag == 0) { 1805 /* This is the first fragment of a new frame. */ 1806 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1807 rx->seqno_idx, &(rx->skb)); 1808 if (rx->key && 1809 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1810 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) && 1811 ieee80211_has_protected(fc)) { 1812 int queue = rx->security_idx; 1813 /* Store CCMP PN so that we can verify that the next 1814 * fragment has a sequential PN value. */ 1815 entry->ccmp = 1; 1816 memcpy(entry->last_pn, 1817 rx->key->u.ccmp.rx_pn[queue], 1818 IEEE80211_CCMP_PN_LEN); 1819 } 1820 return RX_QUEUED; 1821 } 1822 1823 /* This is a fragment for a frame that should already be pending in 1824 * fragment cache. Add this fragment to the end of the pending entry. 1825 */ 1826 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1827 rx->seqno_idx, hdr); 1828 if (!entry) { 1829 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1830 return RX_DROP_MONITOR; 1831 } 1832 1833 /* Verify that MPDUs within one MSDU have sequential PN values. 1834 * (IEEE 802.11i, 8.3.3.4.5) */ 1835 if (entry->ccmp) { 1836 int i; 1837 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1838 int queue; 1839 if (!rx->key || 1840 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1841 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256)) 1842 return RX_DROP_UNUSABLE; 1843 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1844 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1845 pn[i]++; 1846 if (pn[i]) 1847 break; 1848 } 1849 queue = rx->security_idx; 1850 rpn = rx->key->u.ccmp.rx_pn[queue]; 1851 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1852 return RX_DROP_UNUSABLE; 1853 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1854 } 1855 1856 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1857 __skb_queue_tail(&entry->skb_list, rx->skb); 1858 entry->last_frag = frag; 1859 entry->extra_len += rx->skb->len; 1860 if (ieee80211_has_morefrags(fc)) { 1861 rx->skb = NULL; 1862 return RX_QUEUED; 1863 } 1864 1865 rx->skb = __skb_dequeue(&entry->skb_list); 1866 if (skb_tailroom(rx->skb) < entry->extra_len) { 1867 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1868 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1869 GFP_ATOMIC))) { 1870 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1871 __skb_queue_purge(&entry->skb_list); 1872 return RX_DROP_UNUSABLE; 1873 } 1874 } 1875 while ((skb = __skb_dequeue(&entry->skb_list))) { 1876 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1877 dev_kfree_skb(skb); 1878 } 1879 1880 /* Complete frame has been reassembled - process it now */ 1881 status = IEEE80211_SKB_RXCB(rx->skb); 1882 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1883 1884 out: 1885 ieee80211_led_rx(rx->local); 1886 out_no_led: 1887 if (rx->sta) 1888 rx->sta->rx_packets++; 1889 return RX_CONTINUE; 1890 } 1891 1892 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1893 { 1894 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1895 return -EACCES; 1896 1897 return 0; 1898 } 1899 1900 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1901 { 1902 struct sk_buff *skb = rx->skb; 1903 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1904 1905 /* 1906 * Pass through unencrypted frames if the hardware has 1907 * decrypted them already. 1908 */ 1909 if (status->flag & RX_FLAG_DECRYPTED) 1910 return 0; 1911 1912 /* Drop unencrypted frames if key is set. */ 1913 if (unlikely(!ieee80211_has_protected(fc) && 1914 !ieee80211_is_nullfunc(fc) && 1915 ieee80211_is_data(fc) && 1916 (rx->key || rx->sdata->drop_unencrypted))) 1917 return -EACCES; 1918 1919 return 0; 1920 } 1921 1922 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1923 { 1924 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1925 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1926 __le16 fc = hdr->frame_control; 1927 1928 /* 1929 * Pass through unencrypted frames if the hardware has 1930 * decrypted them already. 1931 */ 1932 if (status->flag & RX_FLAG_DECRYPTED) 1933 return 0; 1934 1935 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1936 if (unlikely(!ieee80211_has_protected(fc) && 1937 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1938 rx->key)) { 1939 if (ieee80211_is_deauth(fc) || 1940 ieee80211_is_disassoc(fc)) 1941 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1942 rx->skb->data, 1943 rx->skb->len); 1944 return -EACCES; 1945 } 1946 /* BIP does not use Protected field, so need to check MMIE */ 1947 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1948 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1949 if (ieee80211_is_deauth(fc) || 1950 ieee80211_is_disassoc(fc)) 1951 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1952 rx->skb->data, 1953 rx->skb->len); 1954 return -EACCES; 1955 } 1956 /* 1957 * When using MFP, Action frames are not allowed prior to 1958 * having configured keys. 1959 */ 1960 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1961 ieee80211_is_robust_mgmt_frame(rx->skb))) 1962 return -EACCES; 1963 } 1964 1965 return 0; 1966 } 1967 1968 static int 1969 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1970 { 1971 struct ieee80211_sub_if_data *sdata = rx->sdata; 1972 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1973 bool check_port_control = false; 1974 struct ethhdr *ehdr; 1975 int ret; 1976 1977 *port_control = false; 1978 if (ieee80211_has_a4(hdr->frame_control) && 1979 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1980 return -1; 1981 1982 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1983 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1984 1985 if (!sdata->u.mgd.use_4addr) 1986 return -1; 1987 else 1988 check_port_control = true; 1989 } 1990 1991 if (is_multicast_ether_addr(hdr->addr1) && 1992 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1993 return -1; 1994 1995 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1996 if (ret < 0) 1997 return ret; 1998 1999 ehdr = (struct ethhdr *) rx->skb->data; 2000 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2001 *port_control = true; 2002 else if (check_port_control) 2003 return -1; 2004 2005 return 0; 2006 } 2007 2008 /* 2009 * requires that rx->skb is a frame with ethernet header 2010 */ 2011 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2012 { 2013 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2014 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2015 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2016 2017 /* 2018 * Allow EAPOL frames to us/the PAE group address regardless 2019 * of whether the frame was encrypted or not. 2020 */ 2021 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2022 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2023 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2024 return true; 2025 2026 if (ieee80211_802_1x_port_control(rx) || 2027 ieee80211_drop_unencrypted(rx, fc)) 2028 return false; 2029 2030 return true; 2031 } 2032 2033 /* 2034 * requires that rx->skb is a frame with ethernet header 2035 */ 2036 static void 2037 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2038 { 2039 struct ieee80211_sub_if_data *sdata = rx->sdata; 2040 struct net_device *dev = sdata->dev; 2041 struct sk_buff *skb, *xmit_skb; 2042 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2043 struct sta_info *dsta; 2044 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2045 2046 skb = rx->skb; 2047 xmit_skb = NULL; 2048 2049 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2050 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2051 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2052 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 2053 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2054 if (is_multicast_ether_addr(ehdr->h_dest)) { 2055 /* 2056 * send multicast frames both to higher layers in 2057 * local net stack and back to the wireless medium 2058 */ 2059 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2060 if (!xmit_skb) 2061 net_info_ratelimited("%s: failed to clone multicast frame\n", 2062 dev->name); 2063 } else { 2064 dsta = sta_info_get(sdata, skb->data); 2065 if (dsta) { 2066 /* 2067 * The destination station is associated to 2068 * this AP (in this VLAN), so send the frame 2069 * directly to it and do not pass it to local 2070 * net stack. 2071 */ 2072 xmit_skb = skb; 2073 skb = NULL; 2074 } 2075 } 2076 } 2077 2078 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2079 if (skb) { 2080 /* 'align' will only take the values 0 or 2 here since all 2081 * frames are required to be aligned to 2-byte boundaries 2082 * when being passed to mac80211; the code here works just 2083 * as well if that isn't true, but mac80211 assumes it can 2084 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2085 */ 2086 int align; 2087 2088 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2089 if (align) { 2090 if (WARN_ON(skb_headroom(skb) < 3)) { 2091 dev_kfree_skb(skb); 2092 skb = NULL; 2093 } else { 2094 u8 *data = skb->data; 2095 size_t len = skb_headlen(skb); 2096 skb->data -= align; 2097 memmove(skb->data, data, len); 2098 skb_set_tail_pointer(skb, len); 2099 } 2100 } 2101 } 2102 #endif 2103 2104 if (skb) { 2105 /* deliver to local stack */ 2106 skb->protocol = eth_type_trans(skb, dev); 2107 memset(skb->cb, 0, sizeof(skb->cb)); 2108 if (rx->local->napi) 2109 napi_gro_receive(rx->local->napi, skb); 2110 else 2111 netif_receive_skb(skb); 2112 } 2113 2114 if (xmit_skb) { 2115 /* 2116 * Send to wireless media and increase priority by 256 to 2117 * keep the received priority instead of reclassifying 2118 * the frame (see cfg80211_classify8021d). 2119 */ 2120 xmit_skb->priority += 256; 2121 xmit_skb->protocol = htons(ETH_P_802_3); 2122 skb_reset_network_header(xmit_skb); 2123 skb_reset_mac_header(xmit_skb); 2124 dev_queue_xmit(xmit_skb); 2125 } 2126 } 2127 2128 static ieee80211_rx_result debug_noinline 2129 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2130 { 2131 struct net_device *dev = rx->sdata->dev; 2132 struct sk_buff *skb = rx->skb; 2133 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2134 __le16 fc = hdr->frame_control; 2135 struct sk_buff_head frame_list; 2136 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2137 2138 if (unlikely(!ieee80211_is_data(fc))) 2139 return RX_CONTINUE; 2140 2141 if (unlikely(!ieee80211_is_data_present(fc))) 2142 return RX_DROP_MONITOR; 2143 2144 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2145 return RX_CONTINUE; 2146 2147 if (ieee80211_has_a4(hdr->frame_control) && 2148 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2149 !rx->sdata->u.vlan.sta) 2150 return RX_DROP_UNUSABLE; 2151 2152 if (is_multicast_ether_addr(hdr->addr1) && 2153 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2154 rx->sdata->u.vlan.sta) || 2155 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2156 rx->sdata->u.mgd.use_4addr))) 2157 return RX_DROP_UNUSABLE; 2158 2159 skb->dev = dev; 2160 __skb_queue_head_init(&frame_list); 2161 2162 if (skb_linearize(skb)) 2163 return RX_DROP_UNUSABLE; 2164 2165 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2166 rx->sdata->vif.type, 2167 rx->local->hw.extra_tx_headroom, true); 2168 2169 while (!skb_queue_empty(&frame_list)) { 2170 rx->skb = __skb_dequeue(&frame_list); 2171 2172 if (!ieee80211_frame_allowed(rx, fc)) { 2173 dev_kfree_skb(rx->skb); 2174 continue; 2175 } 2176 dev->stats.rx_packets++; 2177 dev->stats.rx_bytes += rx->skb->len; 2178 2179 ieee80211_deliver_skb(rx); 2180 } 2181 2182 return RX_QUEUED; 2183 } 2184 2185 #ifdef CONFIG_MAC80211_MESH 2186 static ieee80211_rx_result 2187 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2188 { 2189 struct ieee80211_hdr *fwd_hdr, *hdr; 2190 struct ieee80211_tx_info *info; 2191 struct ieee80211s_hdr *mesh_hdr; 2192 struct sk_buff *skb = rx->skb, *fwd_skb; 2193 struct ieee80211_local *local = rx->local; 2194 struct ieee80211_sub_if_data *sdata = rx->sdata; 2195 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2196 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2197 u16 q, hdrlen; 2198 2199 hdr = (struct ieee80211_hdr *) skb->data; 2200 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2201 2202 /* make sure fixed part of mesh header is there, also checks skb len */ 2203 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2204 return RX_DROP_MONITOR; 2205 2206 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2207 2208 /* make sure full mesh header is there, also checks skb len */ 2209 if (!pskb_may_pull(rx->skb, 2210 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2211 return RX_DROP_MONITOR; 2212 2213 /* reload pointers */ 2214 hdr = (struct ieee80211_hdr *) skb->data; 2215 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2216 2217 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2218 return RX_DROP_MONITOR; 2219 2220 /* frame is in RMC, don't forward */ 2221 if (ieee80211_is_data(hdr->frame_control) && 2222 is_multicast_ether_addr(hdr->addr1) && 2223 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2224 return RX_DROP_MONITOR; 2225 2226 if (!ieee80211_is_data(hdr->frame_control) || 2227 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2228 return RX_CONTINUE; 2229 2230 if (!mesh_hdr->ttl) 2231 return RX_DROP_MONITOR; 2232 2233 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2234 struct mesh_path *mppath; 2235 char *proxied_addr; 2236 char *mpp_addr; 2237 2238 if (is_multicast_ether_addr(hdr->addr1)) { 2239 mpp_addr = hdr->addr3; 2240 proxied_addr = mesh_hdr->eaddr1; 2241 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2242 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2243 mpp_addr = hdr->addr4; 2244 proxied_addr = mesh_hdr->eaddr2; 2245 } else { 2246 return RX_DROP_MONITOR; 2247 } 2248 2249 rcu_read_lock(); 2250 mppath = mpp_path_lookup(sdata, proxied_addr); 2251 if (!mppath) { 2252 mpp_path_add(sdata, proxied_addr, mpp_addr); 2253 } else { 2254 spin_lock_bh(&mppath->state_lock); 2255 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2256 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2257 spin_unlock_bh(&mppath->state_lock); 2258 } 2259 rcu_read_unlock(); 2260 } 2261 2262 /* Frame has reached destination. Don't forward */ 2263 if (!is_multicast_ether_addr(hdr->addr1) && 2264 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2265 return RX_CONTINUE; 2266 2267 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2268 if (ieee80211_queue_stopped(&local->hw, q)) { 2269 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2270 return RX_DROP_MONITOR; 2271 } 2272 skb_set_queue_mapping(skb, q); 2273 2274 if (!--mesh_hdr->ttl) { 2275 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2276 goto out; 2277 } 2278 2279 if (!ifmsh->mshcfg.dot11MeshForwarding) 2280 goto out; 2281 2282 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2283 if (!fwd_skb) { 2284 net_info_ratelimited("%s: failed to clone mesh frame\n", 2285 sdata->name); 2286 goto out; 2287 } 2288 2289 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2290 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2291 info = IEEE80211_SKB_CB(fwd_skb); 2292 memset(info, 0, sizeof(*info)); 2293 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2294 info->control.vif = &rx->sdata->vif; 2295 info->control.jiffies = jiffies; 2296 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2297 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2298 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2299 /* update power mode indication when forwarding */ 2300 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2301 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2302 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2303 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2304 } else { 2305 /* unable to resolve next hop */ 2306 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2307 fwd_hdr->addr3, 0, 2308 WLAN_REASON_MESH_PATH_NOFORWARD, 2309 fwd_hdr->addr2); 2310 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2311 kfree_skb(fwd_skb); 2312 return RX_DROP_MONITOR; 2313 } 2314 2315 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2316 ieee80211_add_pending_skb(local, fwd_skb); 2317 out: 2318 if (is_multicast_ether_addr(hdr->addr1) || 2319 sdata->dev->flags & IFF_PROMISC) 2320 return RX_CONTINUE; 2321 else 2322 return RX_DROP_MONITOR; 2323 } 2324 #endif 2325 2326 static ieee80211_rx_result debug_noinline 2327 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2328 { 2329 struct ieee80211_sub_if_data *sdata = rx->sdata; 2330 struct ieee80211_local *local = rx->local; 2331 struct net_device *dev = sdata->dev; 2332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2333 __le16 fc = hdr->frame_control; 2334 bool port_control; 2335 int err; 2336 2337 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2338 return RX_CONTINUE; 2339 2340 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2341 return RX_DROP_MONITOR; 2342 2343 if (rx->sta) { 2344 /* The seqno index has the same property as needed 2345 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2346 * for non-QoS-data frames. Here we know it's a data 2347 * frame, so count MSDUs. 2348 */ 2349 rx->sta->rx_msdu[rx->seqno_idx]++; 2350 } 2351 2352 /* 2353 * Send unexpected-4addr-frame event to hostapd. For older versions, 2354 * also drop the frame to cooked monitor interfaces. 2355 */ 2356 if (ieee80211_has_a4(hdr->frame_control) && 2357 sdata->vif.type == NL80211_IFTYPE_AP) { 2358 if (rx->sta && 2359 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2360 cfg80211_rx_unexpected_4addr_frame( 2361 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2362 return RX_DROP_MONITOR; 2363 } 2364 2365 err = __ieee80211_data_to_8023(rx, &port_control); 2366 if (unlikely(err)) 2367 return RX_DROP_UNUSABLE; 2368 2369 if (!ieee80211_frame_allowed(rx, fc)) 2370 return RX_DROP_MONITOR; 2371 2372 /* directly handle TDLS channel switch requests/responses */ 2373 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2374 cpu_to_be16(ETH_P_TDLS))) { 2375 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2376 2377 if (pskb_may_pull(rx->skb, 2378 offsetof(struct ieee80211_tdls_data, u)) && 2379 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2380 tf->category == WLAN_CATEGORY_TDLS && 2381 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2382 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2383 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW; 2384 skb_queue_tail(&sdata->skb_queue, rx->skb); 2385 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2386 if (rx->sta) 2387 rx->sta->rx_packets++; 2388 2389 return RX_QUEUED; 2390 } 2391 } 2392 2393 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2394 unlikely(port_control) && sdata->bss) { 2395 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2396 u.ap); 2397 dev = sdata->dev; 2398 rx->sdata = sdata; 2399 } 2400 2401 rx->skb->dev = dev; 2402 2403 dev->stats.rx_packets++; 2404 dev->stats.rx_bytes += rx->skb->len; 2405 2406 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2407 !is_multicast_ether_addr( 2408 ((struct ethhdr *)rx->skb->data)->h_dest) && 2409 (!local->scanning && 2410 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2411 mod_timer(&local->dynamic_ps_timer, jiffies + 2412 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2413 } 2414 2415 ieee80211_deliver_skb(rx); 2416 2417 return RX_QUEUED; 2418 } 2419 2420 static ieee80211_rx_result debug_noinline 2421 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2422 { 2423 struct sk_buff *skb = rx->skb; 2424 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2425 struct tid_ampdu_rx *tid_agg_rx; 2426 u16 start_seq_num; 2427 u16 tid; 2428 2429 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2430 return RX_CONTINUE; 2431 2432 if (ieee80211_is_back_req(bar->frame_control)) { 2433 struct { 2434 __le16 control, start_seq_num; 2435 } __packed bar_data; 2436 2437 if (!rx->sta) 2438 return RX_DROP_MONITOR; 2439 2440 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2441 &bar_data, sizeof(bar_data))) 2442 return RX_DROP_MONITOR; 2443 2444 tid = le16_to_cpu(bar_data.control) >> 12; 2445 2446 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2447 if (!tid_agg_rx) 2448 return RX_DROP_MONITOR; 2449 2450 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2451 2452 /* reset session timer */ 2453 if (tid_agg_rx->timeout) 2454 mod_timer(&tid_agg_rx->session_timer, 2455 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2456 2457 spin_lock(&tid_agg_rx->reorder_lock); 2458 /* release stored frames up to start of BAR */ 2459 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2460 start_seq_num, frames); 2461 spin_unlock(&tid_agg_rx->reorder_lock); 2462 2463 kfree_skb(skb); 2464 return RX_QUEUED; 2465 } 2466 2467 /* 2468 * After this point, we only want management frames, 2469 * so we can drop all remaining control frames to 2470 * cooked monitor interfaces. 2471 */ 2472 return RX_DROP_MONITOR; 2473 } 2474 2475 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2476 struct ieee80211_mgmt *mgmt, 2477 size_t len) 2478 { 2479 struct ieee80211_local *local = sdata->local; 2480 struct sk_buff *skb; 2481 struct ieee80211_mgmt *resp; 2482 2483 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2484 /* Not to own unicast address */ 2485 return; 2486 } 2487 2488 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2489 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2490 /* Not from the current AP or not associated yet. */ 2491 return; 2492 } 2493 2494 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2495 /* Too short SA Query request frame */ 2496 return; 2497 } 2498 2499 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2500 if (skb == NULL) 2501 return; 2502 2503 skb_reserve(skb, local->hw.extra_tx_headroom); 2504 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2505 memset(resp, 0, 24); 2506 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2507 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2508 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2509 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2510 IEEE80211_STYPE_ACTION); 2511 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2512 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2513 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2514 memcpy(resp->u.action.u.sa_query.trans_id, 2515 mgmt->u.action.u.sa_query.trans_id, 2516 WLAN_SA_QUERY_TR_ID_LEN); 2517 2518 ieee80211_tx_skb(sdata, skb); 2519 } 2520 2521 static ieee80211_rx_result debug_noinline 2522 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2523 { 2524 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2525 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2526 2527 /* 2528 * From here on, look only at management frames. 2529 * Data and control frames are already handled, 2530 * and unknown (reserved) frames are useless. 2531 */ 2532 if (rx->skb->len < 24) 2533 return RX_DROP_MONITOR; 2534 2535 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2536 return RX_DROP_MONITOR; 2537 2538 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2539 ieee80211_is_beacon(mgmt->frame_control) && 2540 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2541 int sig = 0; 2542 2543 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2544 sig = status->signal; 2545 2546 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2547 rx->skb->data, rx->skb->len, 2548 status->freq, sig); 2549 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2550 } 2551 2552 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2553 return RX_DROP_MONITOR; 2554 2555 if (ieee80211_drop_unencrypted_mgmt(rx)) 2556 return RX_DROP_UNUSABLE; 2557 2558 return RX_CONTINUE; 2559 } 2560 2561 static ieee80211_rx_result debug_noinline 2562 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2563 { 2564 struct ieee80211_local *local = rx->local; 2565 struct ieee80211_sub_if_data *sdata = rx->sdata; 2566 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2567 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2568 int len = rx->skb->len; 2569 2570 if (!ieee80211_is_action(mgmt->frame_control)) 2571 return RX_CONTINUE; 2572 2573 /* drop too small frames */ 2574 if (len < IEEE80211_MIN_ACTION_SIZE) 2575 return RX_DROP_UNUSABLE; 2576 2577 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2578 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2579 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2580 return RX_DROP_UNUSABLE; 2581 2582 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2583 return RX_DROP_UNUSABLE; 2584 2585 switch (mgmt->u.action.category) { 2586 case WLAN_CATEGORY_HT: 2587 /* reject HT action frames from stations not supporting HT */ 2588 if (!rx->sta->sta.ht_cap.ht_supported) 2589 goto invalid; 2590 2591 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2592 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2593 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2594 sdata->vif.type != NL80211_IFTYPE_AP && 2595 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2596 break; 2597 2598 /* verify action & smps_control/chanwidth are present */ 2599 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2600 goto invalid; 2601 2602 switch (mgmt->u.action.u.ht_smps.action) { 2603 case WLAN_HT_ACTION_SMPS: { 2604 struct ieee80211_supported_band *sband; 2605 enum ieee80211_smps_mode smps_mode; 2606 2607 /* convert to HT capability */ 2608 switch (mgmt->u.action.u.ht_smps.smps_control) { 2609 case WLAN_HT_SMPS_CONTROL_DISABLED: 2610 smps_mode = IEEE80211_SMPS_OFF; 2611 break; 2612 case WLAN_HT_SMPS_CONTROL_STATIC: 2613 smps_mode = IEEE80211_SMPS_STATIC; 2614 break; 2615 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2616 smps_mode = IEEE80211_SMPS_DYNAMIC; 2617 break; 2618 default: 2619 goto invalid; 2620 } 2621 2622 /* if no change do nothing */ 2623 if (rx->sta->sta.smps_mode == smps_mode) 2624 goto handled; 2625 rx->sta->sta.smps_mode = smps_mode; 2626 2627 sband = rx->local->hw.wiphy->bands[status->band]; 2628 2629 rate_control_rate_update(local, sband, rx->sta, 2630 IEEE80211_RC_SMPS_CHANGED); 2631 goto handled; 2632 } 2633 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2634 struct ieee80211_supported_band *sband; 2635 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2636 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2637 2638 /* If it doesn't support 40 MHz it can't change ... */ 2639 if (!(rx->sta->sta.ht_cap.cap & 2640 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2641 goto handled; 2642 2643 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2644 max_bw = IEEE80211_STA_RX_BW_20; 2645 else 2646 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2647 2648 /* set cur_max_bandwidth and recalc sta bw */ 2649 rx->sta->cur_max_bandwidth = max_bw; 2650 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2651 2652 if (rx->sta->sta.bandwidth == new_bw) 2653 goto handled; 2654 2655 rx->sta->sta.bandwidth = new_bw; 2656 sband = rx->local->hw.wiphy->bands[status->band]; 2657 2658 rate_control_rate_update(local, sband, rx->sta, 2659 IEEE80211_RC_BW_CHANGED); 2660 goto handled; 2661 } 2662 default: 2663 goto invalid; 2664 } 2665 2666 break; 2667 case WLAN_CATEGORY_PUBLIC: 2668 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2669 goto invalid; 2670 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2671 break; 2672 if (!rx->sta) 2673 break; 2674 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2675 break; 2676 if (mgmt->u.action.u.ext_chan_switch.action_code != 2677 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2678 break; 2679 if (len < offsetof(struct ieee80211_mgmt, 2680 u.action.u.ext_chan_switch.variable)) 2681 goto invalid; 2682 goto queue; 2683 case WLAN_CATEGORY_VHT: 2684 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2685 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2686 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2687 sdata->vif.type != NL80211_IFTYPE_AP && 2688 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2689 break; 2690 2691 /* verify action code is present */ 2692 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2693 goto invalid; 2694 2695 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2696 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2697 u8 opmode; 2698 2699 /* verify opmode is present */ 2700 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2701 goto invalid; 2702 2703 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2704 2705 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2706 opmode, status->band, 2707 false); 2708 goto handled; 2709 } 2710 default: 2711 break; 2712 } 2713 break; 2714 case WLAN_CATEGORY_BACK: 2715 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2716 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2717 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2718 sdata->vif.type != NL80211_IFTYPE_AP && 2719 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2720 break; 2721 2722 /* verify action_code is present */ 2723 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2724 break; 2725 2726 switch (mgmt->u.action.u.addba_req.action_code) { 2727 case WLAN_ACTION_ADDBA_REQ: 2728 if (len < (IEEE80211_MIN_ACTION_SIZE + 2729 sizeof(mgmt->u.action.u.addba_req))) 2730 goto invalid; 2731 break; 2732 case WLAN_ACTION_ADDBA_RESP: 2733 if (len < (IEEE80211_MIN_ACTION_SIZE + 2734 sizeof(mgmt->u.action.u.addba_resp))) 2735 goto invalid; 2736 break; 2737 case WLAN_ACTION_DELBA: 2738 if (len < (IEEE80211_MIN_ACTION_SIZE + 2739 sizeof(mgmt->u.action.u.delba))) 2740 goto invalid; 2741 break; 2742 default: 2743 goto invalid; 2744 } 2745 2746 goto queue; 2747 case WLAN_CATEGORY_SPECTRUM_MGMT: 2748 /* verify action_code is present */ 2749 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2750 break; 2751 2752 switch (mgmt->u.action.u.measurement.action_code) { 2753 case WLAN_ACTION_SPCT_MSR_REQ: 2754 if (status->band != IEEE80211_BAND_5GHZ) 2755 break; 2756 2757 if (len < (IEEE80211_MIN_ACTION_SIZE + 2758 sizeof(mgmt->u.action.u.measurement))) 2759 break; 2760 2761 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2762 break; 2763 2764 ieee80211_process_measurement_req(sdata, mgmt, len); 2765 goto handled; 2766 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2767 u8 *bssid; 2768 if (len < (IEEE80211_MIN_ACTION_SIZE + 2769 sizeof(mgmt->u.action.u.chan_switch))) 2770 break; 2771 2772 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2773 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2774 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2775 break; 2776 2777 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2778 bssid = sdata->u.mgd.bssid; 2779 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2780 bssid = sdata->u.ibss.bssid; 2781 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2782 bssid = mgmt->sa; 2783 else 2784 break; 2785 2786 if (!ether_addr_equal(mgmt->bssid, bssid)) 2787 break; 2788 2789 goto queue; 2790 } 2791 } 2792 break; 2793 case WLAN_CATEGORY_SA_QUERY: 2794 if (len < (IEEE80211_MIN_ACTION_SIZE + 2795 sizeof(mgmt->u.action.u.sa_query))) 2796 break; 2797 2798 switch (mgmt->u.action.u.sa_query.action) { 2799 case WLAN_ACTION_SA_QUERY_REQUEST: 2800 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2801 break; 2802 ieee80211_process_sa_query_req(sdata, mgmt, len); 2803 goto handled; 2804 } 2805 break; 2806 case WLAN_CATEGORY_SELF_PROTECTED: 2807 if (len < (IEEE80211_MIN_ACTION_SIZE + 2808 sizeof(mgmt->u.action.u.self_prot.action_code))) 2809 break; 2810 2811 switch (mgmt->u.action.u.self_prot.action_code) { 2812 case WLAN_SP_MESH_PEERING_OPEN: 2813 case WLAN_SP_MESH_PEERING_CLOSE: 2814 case WLAN_SP_MESH_PEERING_CONFIRM: 2815 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2816 goto invalid; 2817 if (sdata->u.mesh.user_mpm) 2818 /* userspace handles this frame */ 2819 break; 2820 goto queue; 2821 case WLAN_SP_MGK_INFORM: 2822 case WLAN_SP_MGK_ACK: 2823 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2824 goto invalid; 2825 break; 2826 } 2827 break; 2828 case WLAN_CATEGORY_MESH_ACTION: 2829 if (len < (IEEE80211_MIN_ACTION_SIZE + 2830 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2831 break; 2832 2833 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2834 break; 2835 if (mesh_action_is_path_sel(mgmt) && 2836 !mesh_path_sel_is_hwmp(sdata)) 2837 break; 2838 goto queue; 2839 } 2840 2841 return RX_CONTINUE; 2842 2843 invalid: 2844 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2845 /* will return in the next handlers */ 2846 return RX_CONTINUE; 2847 2848 handled: 2849 if (rx->sta) 2850 rx->sta->rx_packets++; 2851 dev_kfree_skb(rx->skb); 2852 return RX_QUEUED; 2853 2854 queue: 2855 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2856 skb_queue_tail(&sdata->skb_queue, rx->skb); 2857 ieee80211_queue_work(&local->hw, &sdata->work); 2858 if (rx->sta) 2859 rx->sta->rx_packets++; 2860 return RX_QUEUED; 2861 } 2862 2863 static ieee80211_rx_result debug_noinline 2864 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2865 { 2866 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2867 int sig = 0; 2868 2869 /* skip known-bad action frames and return them in the next handler */ 2870 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2871 return RX_CONTINUE; 2872 2873 /* 2874 * Getting here means the kernel doesn't know how to handle 2875 * it, but maybe userspace does ... include returned frames 2876 * so userspace can register for those to know whether ones 2877 * it transmitted were processed or returned. 2878 */ 2879 2880 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2881 sig = status->signal; 2882 2883 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2884 rx->skb->data, rx->skb->len, 0)) { 2885 if (rx->sta) 2886 rx->sta->rx_packets++; 2887 dev_kfree_skb(rx->skb); 2888 return RX_QUEUED; 2889 } 2890 2891 return RX_CONTINUE; 2892 } 2893 2894 static ieee80211_rx_result debug_noinline 2895 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2896 { 2897 struct ieee80211_local *local = rx->local; 2898 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2899 struct sk_buff *nskb; 2900 struct ieee80211_sub_if_data *sdata = rx->sdata; 2901 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2902 2903 if (!ieee80211_is_action(mgmt->frame_control)) 2904 return RX_CONTINUE; 2905 2906 /* 2907 * For AP mode, hostapd is responsible for handling any action 2908 * frames that we didn't handle, including returning unknown 2909 * ones. For all other modes we will return them to the sender, 2910 * setting the 0x80 bit in the action category, as required by 2911 * 802.11-2012 9.24.4. 2912 * Newer versions of hostapd shall also use the management frame 2913 * registration mechanisms, but older ones still use cooked 2914 * monitor interfaces so push all frames there. 2915 */ 2916 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2917 (sdata->vif.type == NL80211_IFTYPE_AP || 2918 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2919 return RX_DROP_MONITOR; 2920 2921 if (is_multicast_ether_addr(mgmt->da)) 2922 return RX_DROP_MONITOR; 2923 2924 /* do not return rejected action frames */ 2925 if (mgmt->u.action.category & 0x80) 2926 return RX_DROP_UNUSABLE; 2927 2928 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2929 GFP_ATOMIC); 2930 if (nskb) { 2931 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2932 2933 nmgmt->u.action.category |= 0x80; 2934 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2935 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2936 2937 memset(nskb->cb, 0, sizeof(nskb->cb)); 2938 2939 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2940 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2941 2942 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2943 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2944 IEEE80211_TX_CTL_NO_CCK_RATE; 2945 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2946 info->hw_queue = 2947 local->hw.offchannel_tx_hw_queue; 2948 } 2949 2950 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2951 status->band); 2952 } 2953 dev_kfree_skb(rx->skb); 2954 return RX_QUEUED; 2955 } 2956 2957 static ieee80211_rx_result debug_noinline 2958 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2959 { 2960 struct ieee80211_sub_if_data *sdata = rx->sdata; 2961 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2962 __le16 stype; 2963 2964 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2965 2966 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2967 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2968 sdata->vif.type != NL80211_IFTYPE_OCB && 2969 sdata->vif.type != NL80211_IFTYPE_STATION) 2970 return RX_DROP_MONITOR; 2971 2972 switch (stype) { 2973 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2974 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2975 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2976 /* process for all: mesh, mlme, ibss */ 2977 break; 2978 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2979 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2980 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2981 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2982 if (is_multicast_ether_addr(mgmt->da) && 2983 !is_broadcast_ether_addr(mgmt->da)) 2984 return RX_DROP_MONITOR; 2985 2986 /* process only for station */ 2987 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2988 return RX_DROP_MONITOR; 2989 break; 2990 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2991 /* process only for ibss and mesh */ 2992 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2993 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2994 return RX_DROP_MONITOR; 2995 break; 2996 default: 2997 return RX_DROP_MONITOR; 2998 } 2999 3000 /* queue up frame and kick off work to process it */ 3001 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3002 skb_queue_tail(&sdata->skb_queue, rx->skb); 3003 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3004 if (rx->sta) 3005 rx->sta->rx_packets++; 3006 3007 return RX_QUEUED; 3008 } 3009 3010 /* TODO: use IEEE80211_RX_FRAGMENTED */ 3011 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3012 struct ieee80211_rate *rate) 3013 { 3014 struct ieee80211_sub_if_data *sdata; 3015 struct ieee80211_local *local = rx->local; 3016 struct sk_buff *skb = rx->skb, *skb2; 3017 struct net_device *prev_dev = NULL; 3018 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3019 int needed_headroom; 3020 3021 /* 3022 * If cooked monitor has been processed already, then 3023 * don't do it again. If not, set the flag. 3024 */ 3025 if (rx->flags & IEEE80211_RX_CMNTR) 3026 goto out_free_skb; 3027 rx->flags |= IEEE80211_RX_CMNTR; 3028 3029 /* If there are no cooked monitor interfaces, just free the SKB */ 3030 if (!local->cooked_mntrs) 3031 goto out_free_skb; 3032 3033 /* vendor data is long removed here */ 3034 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3035 /* room for the radiotap header based on driver features */ 3036 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3037 3038 if (skb_headroom(skb) < needed_headroom && 3039 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3040 goto out_free_skb; 3041 3042 /* prepend radiotap information */ 3043 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3044 false); 3045 3046 skb_set_mac_header(skb, 0); 3047 skb->ip_summed = CHECKSUM_UNNECESSARY; 3048 skb->pkt_type = PACKET_OTHERHOST; 3049 skb->protocol = htons(ETH_P_802_2); 3050 3051 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3052 if (!ieee80211_sdata_running(sdata)) 3053 continue; 3054 3055 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3056 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3057 continue; 3058 3059 if (prev_dev) { 3060 skb2 = skb_clone(skb, GFP_ATOMIC); 3061 if (skb2) { 3062 skb2->dev = prev_dev; 3063 netif_receive_skb(skb2); 3064 } 3065 } 3066 3067 prev_dev = sdata->dev; 3068 sdata->dev->stats.rx_packets++; 3069 sdata->dev->stats.rx_bytes += skb->len; 3070 } 3071 3072 if (prev_dev) { 3073 skb->dev = prev_dev; 3074 netif_receive_skb(skb); 3075 return; 3076 } 3077 3078 out_free_skb: 3079 dev_kfree_skb(skb); 3080 } 3081 3082 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3083 ieee80211_rx_result res) 3084 { 3085 switch (res) { 3086 case RX_DROP_MONITOR: 3087 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3088 if (rx->sta) 3089 rx->sta->rx_dropped++; 3090 /* fall through */ 3091 case RX_CONTINUE: { 3092 struct ieee80211_rate *rate = NULL; 3093 struct ieee80211_supported_band *sband; 3094 struct ieee80211_rx_status *status; 3095 3096 status = IEEE80211_SKB_RXCB((rx->skb)); 3097 3098 sband = rx->local->hw.wiphy->bands[status->band]; 3099 if (!(status->flag & RX_FLAG_HT) && 3100 !(status->flag & RX_FLAG_VHT)) 3101 rate = &sband->bitrates[status->rate_idx]; 3102 3103 ieee80211_rx_cooked_monitor(rx, rate); 3104 break; 3105 } 3106 case RX_DROP_UNUSABLE: 3107 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3108 if (rx->sta) 3109 rx->sta->rx_dropped++; 3110 dev_kfree_skb(rx->skb); 3111 break; 3112 case RX_QUEUED: 3113 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3114 break; 3115 } 3116 } 3117 3118 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3119 struct sk_buff_head *frames) 3120 { 3121 ieee80211_rx_result res = RX_DROP_MONITOR; 3122 struct sk_buff *skb; 3123 3124 #define CALL_RXH(rxh) \ 3125 do { \ 3126 res = rxh(rx); \ 3127 if (res != RX_CONTINUE) \ 3128 goto rxh_next; \ 3129 } while (0); 3130 3131 spin_lock_bh(&rx->local->rx_path_lock); 3132 3133 while ((skb = __skb_dequeue(frames))) { 3134 /* 3135 * all the other fields are valid across frames 3136 * that belong to an aMPDU since they are on the 3137 * same TID from the same station 3138 */ 3139 rx->skb = skb; 3140 3141 CALL_RXH(ieee80211_rx_h_check_more_data) 3142 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 3143 CALL_RXH(ieee80211_rx_h_sta_process) 3144 CALL_RXH(ieee80211_rx_h_decrypt) 3145 CALL_RXH(ieee80211_rx_h_defragment) 3146 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 3147 /* must be after MMIC verify so header is counted in MPDU mic */ 3148 #ifdef CONFIG_MAC80211_MESH 3149 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3150 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3151 #endif 3152 CALL_RXH(ieee80211_rx_h_amsdu) 3153 CALL_RXH(ieee80211_rx_h_data) 3154 3155 /* special treatment -- needs the queue */ 3156 res = ieee80211_rx_h_ctrl(rx, frames); 3157 if (res != RX_CONTINUE) 3158 goto rxh_next; 3159 3160 CALL_RXH(ieee80211_rx_h_mgmt_check) 3161 CALL_RXH(ieee80211_rx_h_action) 3162 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3163 CALL_RXH(ieee80211_rx_h_action_return) 3164 CALL_RXH(ieee80211_rx_h_mgmt) 3165 3166 rxh_next: 3167 ieee80211_rx_handlers_result(rx, res); 3168 3169 #undef CALL_RXH 3170 } 3171 3172 spin_unlock_bh(&rx->local->rx_path_lock); 3173 } 3174 3175 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3176 { 3177 struct sk_buff_head reorder_release; 3178 ieee80211_rx_result res = RX_DROP_MONITOR; 3179 3180 __skb_queue_head_init(&reorder_release); 3181 3182 #define CALL_RXH(rxh) \ 3183 do { \ 3184 res = rxh(rx); \ 3185 if (res != RX_CONTINUE) \ 3186 goto rxh_next; \ 3187 } while (0); 3188 3189 CALL_RXH(ieee80211_rx_h_check_dup) 3190 CALL_RXH(ieee80211_rx_h_check) 3191 3192 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3193 3194 ieee80211_rx_handlers(rx, &reorder_release); 3195 return; 3196 3197 rxh_next: 3198 ieee80211_rx_handlers_result(rx, res); 3199 3200 #undef CALL_RXH 3201 } 3202 3203 /* 3204 * This function makes calls into the RX path, therefore 3205 * it has to be invoked under RCU read lock. 3206 */ 3207 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3208 { 3209 struct sk_buff_head frames; 3210 struct ieee80211_rx_data rx = { 3211 .sta = sta, 3212 .sdata = sta->sdata, 3213 .local = sta->local, 3214 /* This is OK -- must be QoS data frame */ 3215 .security_idx = tid, 3216 .seqno_idx = tid, 3217 .flags = 0, 3218 }; 3219 struct tid_ampdu_rx *tid_agg_rx; 3220 3221 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3222 if (!tid_agg_rx) 3223 return; 3224 3225 __skb_queue_head_init(&frames); 3226 3227 spin_lock(&tid_agg_rx->reorder_lock); 3228 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3229 spin_unlock(&tid_agg_rx->reorder_lock); 3230 3231 ieee80211_rx_handlers(&rx, &frames); 3232 } 3233 3234 /* main receive path */ 3235 3236 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3237 struct ieee80211_hdr *hdr) 3238 { 3239 struct ieee80211_sub_if_data *sdata = rx->sdata; 3240 struct sk_buff *skb = rx->skb; 3241 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3242 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3243 int multicast = is_multicast_ether_addr(hdr->addr1); 3244 3245 switch (sdata->vif.type) { 3246 case NL80211_IFTYPE_STATION: 3247 if (!bssid && !sdata->u.mgd.use_4addr) 3248 return false; 3249 if (!multicast && 3250 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3251 if (!(sdata->dev->flags & IFF_PROMISC) || 3252 sdata->u.mgd.use_4addr) 3253 return false; 3254 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3255 } 3256 break; 3257 case NL80211_IFTYPE_ADHOC: 3258 if (!bssid) 3259 return false; 3260 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3261 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3262 return false; 3263 if (ieee80211_is_beacon(hdr->frame_control)) { 3264 return true; 3265 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3266 return false; 3267 } else if (!multicast && 3268 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3269 if (!(sdata->dev->flags & IFF_PROMISC)) 3270 return false; 3271 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3272 } else if (!rx->sta) { 3273 int rate_idx; 3274 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3275 rate_idx = 0; /* TODO: HT/VHT rates */ 3276 else 3277 rate_idx = status->rate_idx; 3278 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3279 BIT(rate_idx)); 3280 } 3281 break; 3282 case NL80211_IFTYPE_OCB: 3283 if (!bssid) 3284 return false; 3285 if (ieee80211_is_beacon(hdr->frame_control)) { 3286 return false; 3287 } else if (!is_broadcast_ether_addr(bssid)) { 3288 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n"); 3289 return false; 3290 } else if (!multicast && 3291 !ether_addr_equal(sdata->dev->dev_addr, 3292 hdr->addr1)) { 3293 /* if we are in promisc mode we also accept 3294 * packets not destined for us 3295 */ 3296 if (!(sdata->dev->flags & IFF_PROMISC)) 3297 return false; 3298 rx->flags &= ~IEEE80211_RX_RA_MATCH; 3299 } else if (!rx->sta) { 3300 int rate_idx; 3301 if (status->flag & RX_FLAG_HT) 3302 rate_idx = 0; /* TODO: HT rates */ 3303 else 3304 rate_idx = status->rate_idx; 3305 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3306 BIT(rate_idx)); 3307 } 3308 break; 3309 case NL80211_IFTYPE_MESH_POINT: 3310 if (!multicast && 3311 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3312 if (!(sdata->dev->flags & IFF_PROMISC)) 3313 return false; 3314 3315 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3316 } 3317 break; 3318 case NL80211_IFTYPE_AP_VLAN: 3319 case NL80211_IFTYPE_AP: 3320 if (!bssid) { 3321 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3322 return false; 3323 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3324 /* 3325 * Accept public action frames even when the 3326 * BSSID doesn't match, this is used for P2P 3327 * and location updates. Note that mac80211 3328 * itself never looks at these frames. 3329 */ 3330 if (!multicast && 3331 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3332 return false; 3333 if (ieee80211_is_public_action(hdr, skb->len)) 3334 return true; 3335 if (!ieee80211_is_beacon(hdr->frame_control)) 3336 return false; 3337 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3338 } else if (!ieee80211_has_tods(hdr->frame_control)) { 3339 /* ignore data frames to TDLS-peers */ 3340 if (ieee80211_is_data(hdr->frame_control)) 3341 return false; 3342 /* ignore action frames to TDLS-peers */ 3343 if (ieee80211_is_action(hdr->frame_control) && 3344 !ether_addr_equal(bssid, hdr->addr1)) 3345 return false; 3346 } 3347 break; 3348 case NL80211_IFTYPE_WDS: 3349 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3350 return false; 3351 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3352 return false; 3353 break; 3354 case NL80211_IFTYPE_P2P_DEVICE: 3355 if (!ieee80211_is_public_action(hdr, skb->len) && 3356 !ieee80211_is_probe_req(hdr->frame_control) && 3357 !ieee80211_is_probe_resp(hdr->frame_control) && 3358 !ieee80211_is_beacon(hdr->frame_control)) 3359 return false; 3360 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3361 !multicast) 3362 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3363 break; 3364 default: 3365 /* should never get here */ 3366 WARN_ON_ONCE(1); 3367 break; 3368 } 3369 3370 return true; 3371 } 3372 3373 /* 3374 * This function returns whether or not the SKB 3375 * was destined for RX processing or not, which, 3376 * if consume is true, is equivalent to whether 3377 * or not the skb was consumed. 3378 */ 3379 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3380 struct sk_buff *skb, bool consume) 3381 { 3382 struct ieee80211_local *local = rx->local; 3383 struct ieee80211_sub_if_data *sdata = rx->sdata; 3384 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3385 struct ieee80211_hdr *hdr = (void *)skb->data; 3386 3387 rx->skb = skb; 3388 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3389 3390 if (!prepare_for_handlers(rx, hdr)) 3391 return false; 3392 3393 if (!consume) { 3394 skb = skb_copy(skb, GFP_ATOMIC); 3395 if (!skb) { 3396 if (net_ratelimit()) 3397 wiphy_debug(local->hw.wiphy, 3398 "failed to copy skb for %s\n", 3399 sdata->name); 3400 return true; 3401 } 3402 3403 rx->skb = skb; 3404 } 3405 3406 ieee80211_invoke_rx_handlers(rx); 3407 return true; 3408 } 3409 3410 /* 3411 * This is the actual Rx frames handler. as it belongs to Rx path it must 3412 * be called with rcu_read_lock protection. 3413 */ 3414 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3415 struct sk_buff *skb) 3416 { 3417 struct ieee80211_local *local = hw_to_local(hw); 3418 struct ieee80211_sub_if_data *sdata; 3419 struct ieee80211_hdr *hdr; 3420 __le16 fc; 3421 struct ieee80211_rx_data rx; 3422 struct ieee80211_sub_if_data *prev; 3423 struct sta_info *sta, *tmp, *prev_sta; 3424 int err = 0; 3425 3426 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3427 memset(&rx, 0, sizeof(rx)); 3428 rx.skb = skb; 3429 rx.local = local; 3430 3431 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3432 local->dot11ReceivedFragmentCount++; 3433 3434 if (ieee80211_is_mgmt(fc)) { 3435 /* drop frame if too short for header */ 3436 if (skb->len < ieee80211_hdrlen(fc)) 3437 err = -ENOBUFS; 3438 else 3439 err = skb_linearize(skb); 3440 } else { 3441 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3442 } 3443 3444 if (err) { 3445 dev_kfree_skb(skb); 3446 return; 3447 } 3448 3449 hdr = (struct ieee80211_hdr *)skb->data; 3450 ieee80211_parse_qos(&rx); 3451 ieee80211_verify_alignment(&rx); 3452 3453 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3454 ieee80211_is_beacon(hdr->frame_control))) 3455 ieee80211_scan_rx(local, skb); 3456 3457 if (ieee80211_is_data(fc)) { 3458 prev_sta = NULL; 3459 3460 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3461 if (!prev_sta) { 3462 prev_sta = sta; 3463 continue; 3464 } 3465 3466 rx.sta = prev_sta; 3467 rx.sdata = prev_sta->sdata; 3468 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3469 3470 prev_sta = sta; 3471 } 3472 3473 if (prev_sta) { 3474 rx.sta = prev_sta; 3475 rx.sdata = prev_sta->sdata; 3476 3477 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3478 return; 3479 goto out; 3480 } 3481 } 3482 3483 prev = NULL; 3484 3485 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3486 if (!ieee80211_sdata_running(sdata)) 3487 continue; 3488 3489 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3490 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3491 continue; 3492 3493 /* 3494 * frame is destined for this interface, but if it's 3495 * not also for the previous one we handle that after 3496 * the loop to avoid copying the SKB once too much 3497 */ 3498 3499 if (!prev) { 3500 prev = sdata; 3501 continue; 3502 } 3503 3504 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3505 rx.sdata = prev; 3506 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3507 3508 prev = sdata; 3509 } 3510 3511 if (prev) { 3512 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3513 rx.sdata = prev; 3514 3515 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3516 return; 3517 } 3518 3519 out: 3520 dev_kfree_skb(skb); 3521 } 3522 3523 /* 3524 * This is the receive path handler. It is called by a low level driver when an 3525 * 802.11 MPDU is received from the hardware. 3526 */ 3527 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3528 { 3529 struct ieee80211_local *local = hw_to_local(hw); 3530 struct ieee80211_rate *rate = NULL; 3531 struct ieee80211_supported_band *sband; 3532 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3533 3534 WARN_ON_ONCE(softirq_count() == 0); 3535 3536 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3537 goto drop; 3538 3539 sband = local->hw.wiphy->bands[status->band]; 3540 if (WARN_ON(!sband)) 3541 goto drop; 3542 3543 /* 3544 * If we're suspending, it is possible although not too likely 3545 * that we'd be receiving frames after having already partially 3546 * quiesced the stack. We can't process such frames then since 3547 * that might, for example, cause stations to be added or other 3548 * driver callbacks be invoked. 3549 */ 3550 if (unlikely(local->quiescing || local->suspended)) 3551 goto drop; 3552 3553 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3554 if (unlikely(local->in_reconfig)) 3555 goto drop; 3556 3557 /* 3558 * The same happens when we're not even started, 3559 * but that's worth a warning. 3560 */ 3561 if (WARN_ON(!local->started)) 3562 goto drop; 3563 3564 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3565 /* 3566 * Validate the rate, unless a PLCP error means that 3567 * we probably can't have a valid rate here anyway. 3568 */ 3569 3570 if (status->flag & RX_FLAG_HT) { 3571 /* 3572 * rate_idx is MCS index, which can be [0-76] 3573 * as documented on: 3574 * 3575 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3576 * 3577 * Anything else would be some sort of driver or 3578 * hardware error. The driver should catch hardware 3579 * errors. 3580 */ 3581 if (WARN(status->rate_idx > 76, 3582 "Rate marked as an HT rate but passed " 3583 "status->rate_idx is not " 3584 "an MCS index [0-76]: %d (0x%02x)\n", 3585 status->rate_idx, 3586 status->rate_idx)) 3587 goto drop; 3588 } else if (status->flag & RX_FLAG_VHT) { 3589 if (WARN_ONCE(status->rate_idx > 9 || 3590 !status->vht_nss || 3591 status->vht_nss > 8, 3592 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3593 status->rate_idx, status->vht_nss)) 3594 goto drop; 3595 } else { 3596 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3597 goto drop; 3598 rate = &sband->bitrates[status->rate_idx]; 3599 } 3600 } 3601 3602 status->rx_flags = 0; 3603 3604 /* 3605 * key references and virtual interfaces are protected using RCU 3606 * and this requires that we are in a read-side RCU section during 3607 * receive processing 3608 */ 3609 rcu_read_lock(); 3610 3611 /* 3612 * Frames with failed FCS/PLCP checksum are not returned, 3613 * all other frames are returned without radiotap header 3614 * if it was previously present. 3615 * Also, frames with less than 16 bytes are dropped. 3616 */ 3617 skb = ieee80211_rx_monitor(local, skb, rate); 3618 if (!skb) { 3619 rcu_read_unlock(); 3620 return; 3621 } 3622 3623 ieee80211_tpt_led_trig_rx(local, 3624 ((struct ieee80211_hdr *)skb->data)->frame_control, 3625 skb->len); 3626 __ieee80211_rx_handle_packet(hw, skb); 3627 3628 rcu_read_unlock(); 3629 3630 return; 3631 drop: 3632 kfree_skb(skb); 3633 } 3634 EXPORT_SYMBOL(ieee80211_rx); 3635 3636 /* This is a version of the rx handler that can be called from hard irq 3637 * context. Post the skb on the queue and schedule the tasklet */ 3638 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3639 { 3640 struct ieee80211_local *local = hw_to_local(hw); 3641 3642 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3643 3644 skb->pkt_type = IEEE80211_RX_MSG; 3645 skb_queue_tail(&local->skb_queue, skb); 3646 tasklet_schedule(&local->tasklet); 3647 } 3648 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3649