xref: /openbmc/linux/net/mac80211/rx.c (revision 034f90b3)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 /*
36  * monitor mode reception
37  *
38  * This function cleans up the SKB, i.e. it removes all the stuff
39  * only useful for monitoring.
40  */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 					   struct sk_buff *skb,
43 					   unsigned int rtap_vendor_space)
44 {
45 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 		if (likely(skb->len > FCS_LEN))
47 			__pskb_trim(skb, skb->len - FCS_LEN);
48 		else {
49 			/* driver bug */
50 			WARN_ON(1);
51 			dev_kfree_skb(skb);
52 			return NULL;
53 		}
54 	}
55 
56 	__pskb_pull(skb, rtap_vendor_space);
57 
58 	return skb;
59 }
60 
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 				     unsigned int rtap_vendor_space)
63 {
64 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 	struct ieee80211_hdr *hdr;
66 
67 	hdr = (void *)(skb->data + rtap_vendor_space);
68 
69 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 			    RX_FLAG_FAILED_PLCP_CRC |
71 			    RX_FLAG_AMPDU_IS_ZEROLEN))
72 		return true;
73 
74 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 		return true;
76 
77 	if (ieee80211_is_ctl(hdr->frame_control) &&
78 	    !ieee80211_is_pspoll(hdr->frame_control) &&
79 	    !ieee80211_is_back_req(hdr->frame_control))
80 		return true;
81 
82 	return false;
83 }
84 
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 			     struct ieee80211_rx_status *status,
88 			     struct sk_buff *skb)
89 {
90 	int len;
91 
92 	/* always present fields */
93 	len = sizeof(struct ieee80211_radiotap_header) + 8;
94 
95 	/* allocate extra bitmaps */
96 	if (status->chains)
97 		len += 4 * hweight8(status->chains);
98 
99 	if (ieee80211_have_rx_timestamp(status)) {
100 		len = ALIGN(len, 8);
101 		len += 8;
102 	}
103 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 		len += 1;
105 
106 	/* antenna field, if we don't have per-chain info */
107 	if (!status->chains)
108 		len += 1;
109 
110 	/* padding for RX_FLAGS if necessary */
111 	len = ALIGN(len, 2);
112 
113 	if (status->flag & RX_FLAG_HT) /* HT info */
114 		len += 3;
115 
116 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 		len = ALIGN(len, 4);
118 		len += 8;
119 	}
120 
121 	if (status->flag & RX_FLAG_VHT) {
122 		len = ALIGN(len, 2);
123 		len += 12;
124 	}
125 
126 	if (status->chains) {
127 		/* antenna and antenna signal fields */
128 		len += 2 * hweight8(status->chains);
129 	}
130 
131 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
133 
134 		/* vendor presence bitmap */
135 		len += 4;
136 		/* alignment for fixed 6-byte vendor data header */
137 		len = ALIGN(len, 2);
138 		/* vendor data header */
139 		len += 6;
140 		if (WARN_ON(rtap->align == 0))
141 			rtap->align = 1;
142 		len = ALIGN(len, rtap->align);
143 		len += rtap->len + rtap->pad;
144 	}
145 
146 	return len;
147 }
148 
149 /*
150  * ieee80211_add_rx_radiotap_header - add radiotap header
151  *
152  * add a radiotap header containing all the fields which the hardware provided.
153  */
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 				 struct sk_buff *skb,
157 				 struct ieee80211_rate *rate,
158 				 int rtap_len, bool has_fcs)
159 {
160 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 	struct ieee80211_radiotap_header *rthdr;
162 	unsigned char *pos;
163 	__le32 *it_present;
164 	u32 it_present_val;
165 	u16 rx_flags = 0;
166 	u16 channel_flags = 0;
167 	int mpdulen, chain;
168 	unsigned long chains = status->chains;
169 	struct ieee80211_vendor_radiotap rtap = {};
170 
171 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 		/* rtap.len and rtap.pad are undone immediately */
174 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
175 	}
176 
177 	mpdulen = skb->len;
178 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 		mpdulen += FCS_LEN;
180 
181 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 	it_present = &rthdr->it_present;
184 
185 	/* radiotap header, set always present flags */
186 	rthdr->it_len = cpu_to_le16(rtap_len);
187 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
190 
191 	if (!status->chains)
192 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
193 
194 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 		it_present_val |=
196 			BIT(IEEE80211_RADIOTAP_EXT) |
197 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 		put_unaligned_le32(it_present_val, it_present);
199 		it_present++;
200 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
202 	}
203 
204 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 				  BIT(IEEE80211_RADIOTAP_EXT);
207 		put_unaligned_le32(it_present_val, it_present);
208 		it_present++;
209 		it_present_val = rtap.present;
210 	}
211 
212 	put_unaligned_le32(it_present_val, it_present);
213 
214 	pos = (void *)(it_present + 1);
215 
216 	/* the order of the following fields is important */
217 
218 	/* IEEE80211_RADIOTAP_TSFT */
219 	if (ieee80211_have_rx_timestamp(status)) {
220 		/* padding */
221 		while ((pos - (u8 *)rthdr) & 7)
222 			*pos++ = 0;
223 		put_unaligned_le64(
224 			ieee80211_calculate_rx_timestamp(local, status,
225 							 mpdulen, 0),
226 			pos);
227 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 		pos += 8;
229 	}
230 
231 	/* IEEE80211_RADIOTAP_FLAGS */
232 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 		*pos |= IEEE80211_RADIOTAP_F_FCS;
234 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 	if (status->flag & RX_FLAG_SHORTPRE)
237 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 	pos++;
239 
240 	/* IEEE80211_RADIOTAP_RATE */
241 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
242 		/*
243 		 * Without rate information don't add it. If we have,
244 		 * MCS information is a separate field in radiotap,
245 		 * added below. The byte here is needed as padding
246 		 * for the channel though, so initialise it to 0.
247 		 */
248 		*pos = 0;
249 	} else {
250 		int shift = 0;
251 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 		if (status->flag & RX_FLAG_10MHZ)
253 			shift = 1;
254 		else if (status->flag & RX_FLAG_5MHZ)
255 			shift = 2;
256 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
257 	}
258 	pos++;
259 
260 	/* IEEE80211_RADIOTAP_CHANNEL */
261 	put_unaligned_le16(status->freq, pos);
262 	pos += 2;
263 	if (status->flag & RX_FLAG_10MHZ)
264 		channel_flags |= IEEE80211_CHAN_HALF;
265 	else if (status->flag & RX_FLAG_5MHZ)
266 		channel_flags |= IEEE80211_CHAN_QUARTER;
267 
268 	if (status->band == IEEE80211_BAND_5GHZ)
269 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 	else if (rate)
275 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
276 	else
277 		channel_flags |= IEEE80211_CHAN_2GHZ;
278 	put_unaligned_le16(channel_flags, pos);
279 	pos += 2;
280 
281 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 		*pos = status->signal;
285 		rthdr->it_present |=
286 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 		pos++;
288 	}
289 
290 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
291 
292 	if (!status->chains) {
293 		/* IEEE80211_RADIOTAP_ANTENNA */
294 		*pos = status->antenna;
295 		pos++;
296 	}
297 
298 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
299 
300 	/* IEEE80211_RADIOTAP_RX_FLAGS */
301 	/* ensure 2 byte alignment for the 2 byte field as required */
302 	if ((pos - (u8 *)rthdr) & 1)
303 		*pos++ = 0;
304 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 	put_unaligned_le16(rx_flags, pos);
307 	pos += 2;
308 
309 	if (status->flag & RX_FLAG_HT) {
310 		unsigned int stbc;
311 
312 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 		*pos++ = local->hw.radiotap_mcs_details;
314 		*pos = 0;
315 		if (status->flag & RX_FLAG_SHORT_GI)
316 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 		if (status->flag & RX_FLAG_40MHZ)
318 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 		if (status->flag & RX_FLAG_HT_GF)
320 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 		if (status->flag & RX_FLAG_LDPC)
322 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 		pos++;
326 		*pos++ = status->rate_idx;
327 	}
328 
329 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 		u16 flags = 0;
331 
332 		/* ensure 4 byte alignment */
333 		while ((pos - (u8 *)rthdr) & 3)
334 			pos++;
335 		rthdr->it_present |=
336 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 		put_unaligned_le32(status->ampdu_reference, pos);
338 		pos += 4;
339 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 		put_unaligned_le16(flags, pos);
352 		pos += 2;
353 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 			*pos++ = status->ampdu_delimiter_crc;
355 		else
356 			*pos++ = 0;
357 		*pos++ = 0;
358 	}
359 
360 	if (status->flag & RX_FLAG_VHT) {
361 		u16 known = local->hw.radiotap_vht_details;
362 
363 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 		put_unaligned_le16(known, pos);
365 		pos += 2;
366 		/* flags */
367 		if (status->flag & RX_FLAG_SHORT_GI)
368 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
369 		/* in VHT, STBC is binary */
370 		if (status->flag & RX_FLAG_STBC_MASK)
371 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
372 		if (status->vht_flag & RX_VHT_FLAG_BF)
373 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
374 		pos++;
375 		/* bandwidth */
376 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
377 			*pos++ = 4;
378 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
379 			*pos++ = 11;
380 		else if (status->flag & RX_FLAG_40MHZ)
381 			*pos++ = 1;
382 		else /* 20 MHz */
383 			*pos++ = 0;
384 		/* MCS/NSS */
385 		*pos = (status->rate_idx << 4) | status->vht_nss;
386 		pos += 4;
387 		/* coding field */
388 		if (status->flag & RX_FLAG_LDPC)
389 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
390 		pos++;
391 		/* group ID */
392 		pos++;
393 		/* partial_aid */
394 		pos += 2;
395 	}
396 
397 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
398 		*pos++ = status->chain_signal[chain];
399 		*pos++ = chain;
400 	}
401 
402 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
403 		/* ensure 2 byte alignment for the vendor field as required */
404 		if ((pos - (u8 *)rthdr) & 1)
405 			*pos++ = 0;
406 		*pos++ = rtap.oui[0];
407 		*pos++ = rtap.oui[1];
408 		*pos++ = rtap.oui[2];
409 		*pos++ = rtap.subns;
410 		put_unaligned_le16(rtap.len, pos);
411 		pos += 2;
412 		/* align the actual payload as requested */
413 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
414 			*pos++ = 0;
415 		/* data (and possible padding) already follows */
416 	}
417 }
418 
419 /*
420  * This function copies a received frame to all monitor interfaces and
421  * returns a cleaned-up SKB that no longer includes the FCS nor the
422  * radiotap header the driver might have added.
423  */
424 static struct sk_buff *
425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
426 		     struct ieee80211_rate *rate)
427 {
428 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
429 	struct ieee80211_sub_if_data *sdata;
430 	int rt_hdrlen, needed_headroom;
431 	struct sk_buff *skb, *skb2;
432 	struct net_device *prev_dev = NULL;
433 	int present_fcs_len = 0;
434 	unsigned int rtap_vendor_space = 0;
435 
436 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
437 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
438 
439 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
440 	}
441 
442 	/*
443 	 * First, we may need to make a copy of the skb because
444 	 *  (1) we need to modify it for radiotap (if not present), and
445 	 *  (2) the other RX handlers will modify the skb we got.
446 	 *
447 	 * We don't need to, of course, if we aren't going to return
448 	 * the SKB because it has a bad FCS/PLCP checksum.
449 	 */
450 
451 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
452 		present_fcs_len = FCS_LEN;
453 
454 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
455 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
456 		dev_kfree_skb(origskb);
457 		return NULL;
458 	}
459 
460 	if (!local->monitors) {
461 		if (should_drop_frame(origskb, present_fcs_len,
462 				      rtap_vendor_space)) {
463 			dev_kfree_skb(origskb);
464 			return NULL;
465 		}
466 
467 		return remove_monitor_info(local, origskb, rtap_vendor_space);
468 	}
469 
470 	/* room for the radiotap header based on driver features */
471 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
472 	needed_headroom = rt_hdrlen - rtap_vendor_space;
473 
474 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
475 		/* only need to expand headroom if necessary */
476 		skb = origskb;
477 		origskb = NULL;
478 
479 		/*
480 		 * This shouldn't trigger often because most devices have an
481 		 * RX header they pull before we get here, and that should
482 		 * be big enough for our radiotap information. We should
483 		 * probably export the length to drivers so that we can have
484 		 * them allocate enough headroom to start with.
485 		 */
486 		if (skb_headroom(skb) < needed_headroom &&
487 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
488 			dev_kfree_skb(skb);
489 			return NULL;
490 		}
491 	} else {
492 		/*
493 		 * Need to make a copy and possibly remove radiotap header
494 		 * and FCS from the original.
495 		 */
496 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
497 
498 		origskb = remove_monitor_info(local, origskb,
499 					      rtap_vendor_space);
500 
501 		if (!skb)
502 			return origskb;
503 	}
504 
505 	/* prepend radiotap information */
506 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
507 
508 	skb_reset_mac_header(skb);
509 	skb->ip_summed = CHECKSUM_UNNECESSARY;
510 	skb->pkt_type = PACKET_OTHERHOST;
511 	skb->protocol = htons(ETH_P_802_2);
512 
513 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
514 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
515 			continue;
516 
517 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
518 			continue;
519 
520 		if (!ieee80211_sdata_running(sdata))
521 			continue;
522 
523 		if (prev_dev) {
524 			skb2 = skb_clone(skb, GFP_ATOMIC);
525 			if (skb2) {
526 				skb2->dev = prev_dev;
527 				netif_receive_skb(skb2);
528 			}
529 		}
530 
531 		prev_dev = sdata->dev;
532 		sdata->dev->stats.rx_packets++;
533 		sdata->dev->stats.rx_bytes += skb->len;
534 	}
535 
536 	if (prev_dev) {
537 		skb->dev = prev_dev;
538 		netif_receive_skb(skb);
539 	} else
540 		dev_kfree_skb(skb);
541 
542 	return origskb;
543 }
544 
545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
546 {
547 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
548 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
549 	int tid, seqno_idx, security_idx;
550 
551 	/* does the frame have a qos control field? */
552 	if (ieee80211_is_data_qos(hdr->frame_control)) {
553 		u8 *qc = ieee80211_get_qos_ctl(hdr);
554 		/* frame has qos control */
555 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
556 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
557 			status->rx_flags |= IEEE80211_RX_AMSDU;
558 
559 		seqno_idx = tid;
560 		security_idx = tid;
561 	} else {
562 		/*
563 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
564 		 *
565 		 *	Sequence numbers for management frames, QoS data
566 		 *	frames with a broadcast/multicast address in the
567 		 *	Address 1 field, and all non-QoS data frames sent
568 		 *	by QoS STAs are assigned using an additional single
569 		 *	modulo-4096 counter, [...]
570 		 *
571 		 * We also use that counter for non-QoS STAs.
572 		 */
573 		seqno_idx = IEEE80211_NUM_TIDS;
574 		security_idx = 0;
575 		if (ieee80211_is_mgmt(hdr->frame_control))
576 			security_idx = IEEE80211_NUM_TIDS;
577 		tid = 0;
578 	}
579 
580 	rx->seqno_idx = seqno_idx;
581 	rx->security_idx = security_idx;
582 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
583 	 * For now, set skb->priority to 0 for other cases. */
584 	rx->skb->priority = (tid > 7) ? 0 : tid;
585 }
586 
587 /**
588  * DOC: Packet alignment
589  *
590  * Drivers always need to pass packets that are aligned to two-byte boundaries
591  * to the stack.
592  *
593  * Additionally, should, if possible, align the payload data in a way that
594  * guarantees that the contained IP header is aligned to a four-byte
595  * boundary. In the case of regular frames, this simply means aligning the
596  * payload to a four-byte boundary (because either the IP header is directly
597  * contained, or IV/RFC1042 headers that have a length divisible by four are
598  * in front of it).  If the payload data is not properly aligned and the
599  * architecture doesn't support efficient unaligned operations, mac80211
600  * will align the data.
601  *
602  * With A-MSDU frames, however, the payload data address must yield two modulo
603  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
604  * push the IP header further back to a multiple of four again. Thankfully, the
605  * specs were sane enough this time around to require padding each A-MSDU
606  * subframe to a length that is a multiple of four.
607  *
608  * Padding like Atheros hardware adds which is between the 802.11 header and
609  * the payload is not supported, the driver is required to move the 802.11
610  * header to be directly in front of the payload in that case.
611  */
612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
613 {
614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
615 	WARN_ONCE((unsigned long)rx->skb->data & 1,
616 		  "unaligned packet at 0x%p\n", rx->skb->data);
617 #endif
618 }
619 
620 
621 /* rx handlers */
622 
623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
624 {
625 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
626 
627 	if (is_multicast_ether_addr(hdr->addr1))
628 		return 0;
629 
630 	return ieee80211_is_robust_mgmt_frame(skb);
631 }
632 
633 
634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
635 {
636 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
637 
638 	if (!is_multicast_ether_addr(hdr->addr1))
639 		return 0;
640 
641 	return ieee80211_is_robust_mgmt_frame(skb);
642 }
643 
644 
645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
647 {
648 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
649 	struct ieee80211_mmie *mmie;
650 	struct ieee80211_mmie_16 *mmie16;
651 
652 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
653 		return -1;
654 
655 	if (!ieee80211_is_robust_mgmt_frame(skb))
656 		return -1; /* not a robust management frame */
657 
658 	mmie = (struct ieee80211_mmie *)
659 		(skb->data + skb->len - sizeof(*mmie));
660 	if (mmie->element_id == WLAN_EID_MMIE &&
661 	    mmie->length == sizeof(*mmie) - 2)
662 		return le16_to_cpu(mmie->key_id);
663 
664 	mmie16 = (struct ieee80211_mmie_16 *)
665 		(skb->data + skb->len - sizeof(*mmie16));
666 	if (skb->len >= 24 + sizeof(*mmie16) &&
667 	    mmie16->element_id == WLAN_EID_MMIE &&
668 	    mmie16->length == sizeof(*mmie16) - 2)
669 		return le16_to_cpu(mmie16->key_id);
670 
671 	return -1;
672 }
673 
674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
675 				 struct sk_buff *skb)
676 {
677 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
678 	__le16 fc;
679 	int hdrlen;
680 	u8 keyid;
681 
682 	fc = hdr->frame_control;
683 	hdrlen = ieee80211_hdrlen(fc);
684 
685 	if (skb->len < hdrlen + cs->hdr_len)
686 		return -EINVAL;
687 
688 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
689 	keyid &= cs->key_idx_mask;
690 	keyid >>= cs->key_idx_shift;
691 
692 	return keyid;
693 }
694 
695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
696 {
697 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
698 	char *dev_addr = rx->sdata->vif.addr;
699 
700 	if (ieee80211_is_data(hdr->frame_control)) {
701 		if (is_multicast_ether_addr(hdr->addr1)) {
702 			if (ieee80211_has_tods(hdr->frame_control) ||
703 			    !ieee80211_has_fromds(hdr->frame_control))
704 				return RX_DROP_MONITOR;
705 			if (ether_addr_equal(hdr->addr3, dev_addr))
706 				return RX_DROP_MONITOR;
707 		} else {
708 			if (!ieee80211_has_a4(hdr->frame_control))
709 				return RX_DROP_MONITOR;
710 			if (ether_addr_equal(hdr->addr4, dev_addr))
711 				return RX_DROP_MONITOR;
712 		}
713 	}
714 
715 	/* If there is not an established peer link and this is not a peer link
716 	 * establisment frame, beacon or probe, drop the frame.
717 	 */
718 
719 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
720 		struct ieee80211_mgmt *mgmt;
721 
722 		if (!ieee80211_is_mgmt(hdr->frame_control))
723 			return RX_DROP_MONITOR;
724 
725 		if (ieee80211_is_action(hdr->frame_control)) {
726 			u8 category;
727 
728 			/* make sure category field is present */
729 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
730 				return RX_DROP_MONITOR;
731 
732 			mgmt = (struct ieee80211_mgmt *)hdr;
733 			category = mgmt->u.action.category;
734 			if (category != WLAN_CATEGORY_MESH_ACTION &&
735 			    category != WLAN_CATEGORY_SELF_PROTECTED)
736 				return RX_DROP_MONITOR;
737 			return RX_CONTINUE;
738 		}
739 
740 		if (ieee80211_is_probe_req(hdr->frame_control) ||
741 		    ieee80211_is_probe_resp(hdr->frame_control) ||
742 		    ieee80211_is_beacon(hdr->frame_control) ||
743 		    ieee80211_is_auth(hdr->frame_control))
744 			return RX_CONTINUE;
745 
746 		return RX_DROP_MONITOR;
747 	}
748 
749 	return RX_CONTINUE;
750 }
751 
752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
753 					    struct tid_ampdu_rx *tid_agg_rx,
754 					    int index,
755 					    struct sk_buff_head *frames)
756 {
757 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
758 	struct sk_buff *skb;
759 	struct ieee80211_rx_status *status;
760 
761 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
762 
763 	if (skb_queue_empty(skb_list))
764 		goto no_frame;
765 
766 	if (!ieee80211_rx_reorder_ready(skb_list)) {
767 		__skb_queue_purge(skb_list);
768 		goto no_frame;
769 	}
770 
771 	/* release frames from the reorder ring buffer */
772 	tid_agg_rx->stored_mpdu_num--;
773 	while ((skb = __skb_dequeue(skb_list))) {
774 		status = IEEE80211_SKB_RXCB(skb);
775 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
776 		__skb_queue_tail(frames, skb);
777 	}
778 
779 no_frame:
780 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
781 }
782 
783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
784 					     struct tid_ampdu_rx *tid_agg_rx,
785 					     u16 head_seq_num,
786 					     struct sk_buff_head *frames)
787 {
788 	int index;
789 
790 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
791 
792 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
793 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
794 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 						frames);
796 	}
797 }
798 
799 /*
800  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
801  * the skb was added to the buffer longer than this time ago, the earlier
802  * frames that have not yet been received are assumed to be lost and the skb
803  * can be released for processing. This may also release other skb's from the
804  * reorder buffer if there are no additional gaps between the frames.
805  *
806  * Callers must hold tid_agg_rx->reorder_lock.
807  */
808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
809 
810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
811 					  struct tid_ampdu_rx *tid_agg_rx,
812 					  struct sk_buff_head *frames)
813 {
814 	int index, i, j;
815 
816 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
817 
818 	/* release the buffer until next missing frame */
819 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
820 	if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
821 	    tid_agg_rx->stored_mpdu_num) {
822 		/*
823 		 * No buffers ready to be released, but check whether any
824 		 * frames in the reorder buffer have timed out.
825 		 */
826 		int skipped = 1;
827 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
828 		     j = (j + 1) % tid_agg_rx->buf_size) {
829 			if (!ieee80211_rx_reorder_ready(
830 					&tid_agg_rx->reorder_buf[j])) {
831 				skipped++;
832 				continue;
833 			}
834 			if (skipped &&
835 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
836 					HT_RX_REORDER_BUF_TIMEOUT))
837 				goto set_release_timer;
838 
839 			/* don't leave incomplete A-MSDUs around */
840 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
841 			     i = (i + 1) % tid_agg_rx->buf_size)
842 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
843 
844 			ht_dbg_ratelimited(sdata,
845 					   "release an RX reorder frame due to timeout on earlier frames\n");
846 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
847 							frames);
848 
849 			/*
850 			 * Increment the head seq# also for the skipped slots.
851 			 */
852 			tid_agg_rx->head_seq_num =
853 				(tid_agg_rx->head_seq_num +
854 				 skipped) & IEEE80211_SN_MASK;
855 			skipped = 0;
856 		}
857 	} else while (ieee80211_rx_reorder_ready(
858 				&tid_agg_rx->reorder_buf[index])) {
859 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
860 						frames);
861 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
862 	}
863 
864 	if (tid_agg_rx->stored_mpdu_num) {
865 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866 
867 		for (; j != (index - 1) % tid_agg_rx->buf_size;
868 		     j = (j + 1) % tid_agg_rx->buf_size) {
869 			if (ieee80211_rx_reorder_ready(
870 					&tid_agg_rx->reorder_buf[j]))
871 				break;
872 		}
873 
874  set_release_timer:
875 
876 		mod_timer(&tid_agg_rx->reorder_timer,
877 			  tid_agg_rx->reorder_time[j] + 1 +
878 			  HT_RX_REORDER_BUF_TIMEOUT);
879 	} else {
880 		del_timer(&tid_agg_rx->reorder_timer);
881 	}
882 }
883 
884 /*
885  * As this function belongs to the RX path it must be under
886  * rcu_read_lock protection. It returns false if the frame
887  * can be processed immediately, true if it was consumed.
888  */
889 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
890 					     struct tid_ampdu_rx *tid_agg_rx,
891 					     struct sk_buff *skb,
892 					     struct sk_buff_head *frames)
893 {
894 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
895 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
896 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
897 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
898 	u16 head_seq_num, buf_size;
899 	int index;
900 	bool ret = true;
901 
902 	spin_lock(&tid_agg_rx->reorder_lock);
903 
904 	/*
905 	 * Offloaded BA sessions have no known starting sequence number so pick
906 	 * one from first Rxed frame for this tid after BA was started.
907 	 */
908 	if (unlikely(tid_agg_rx->auto_seq)) {
909 		tid_agg_rx->auto_seq = false;
910 		tid_agg_rx->ssn = mpdu_seq_num;
911 		tid_agg_rx->head_seq_num = mpdu_seq_num;
912 	}
913 
914 	buf_size = tid_agg_rx->buf_size;
915 	head_seq_num = tid_agg_rx->head_seq_num;
916 
917 	/* frame with out of date sequence number */
918 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
919 		dev_kfree_skb(skb);
920 		goto out;
921 	}
922 
923 	/*
924 	 * If frame the sequence number exceeds our buffering window
925 	 * size release some previous frames to make room for this one.
926 	 */
927 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
928 		head_seq_num = ieee80211_sn_inc(
929 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
930 		/* release stored frames up to new head to stack */
931 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
932 						 head_seq_num, frames);
933 	}
934 
935 	/* Now the new frame is always in the range of the reordering buffer */
936 
937 	index = mpdu_seq_num % tid_agg_rx->buf_size;
938 
939 	/* check if we already stored this frame */
940 	if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
941 		dev_kfree_skb(skb);
942 		goto out;
943 	}
944 
945 	/*
946 	 * If the current MPDU is in the right order and nothing else
947 	 * is stored we can process it directly, no need to buffer it.
948 	 * If it is first but there's something stored, we may be able
949 	 * to release frames after this one.
950 	 */
951 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
952 	    tid_agg_rx->stored_mpdu_num == 0) {
953 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
954 			tid_agg_rx->head_seq_num =
955 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
956 		ret = false;
957 		goto out;
958 	}
959 
960 	/* put the frame in the reordering buffer */
961 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
962 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
963 		tid_agg_rx->reorder_time[index] = jiffies;
964 		tid_agg_rx->stored_mpdu_num++;
965 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
966 	}
967 
968  out:
969 	spin_unlock(&tid_agg_rx->reorder_lock);
970 	return ret;
971 }
972 
973 /*
974  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
975  * true if the MPDU was buffered, false if it should be processed.
976  */
977 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
978 				       struct sk_buff_head *frames)
979 {
980 	struct sk_buff *skb = rx->skb;
981 	struct ieee80211_local *local = rx->local;
982 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
983 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
984 	struct sta_info *sta = rx->sta;
985 	struct tid_ampdu_rx *tid_agg_rx;
986 	u16 sc;
987 	u8 tid, ack_policy;
988 
989 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
990 	    is_multicast_ether_addr(hdr->addr1))
991 		goto dont_reorder;
992 
993 	/*
994 	 * filter the QoS data rx stream according to
995 	 * STA/TID and check if this STA/TID is on aggregation
996 	 */
997 
998 	if (!sta)
999 		goto dont_reorder;
1000 
1001 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1002 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1003 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1004 
1005 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1006 	if (!tid_agg_rx)
1007 		goto dont_reorder;
1008 
1009 	/* qos null data frames are excluded */
1010 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1011 		goto dont_reorder;
1012 
1013 	/* not part of a BA session */
1014 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1015 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1016 		goto dont_reorder;
1017 
1018 	/* not actually part of this BA session */
1019 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1020 		goto dont_reorder;
1021 
1022 	/* new, potentially un-ordered, ampdu frame - process it */
1023 
1024 	/* reset session timer */
1025 	if (tid_agg_rx->timeout)
1026 		tid_agg_rx->last_rx = jiffies;
1027 
1028 	/* if this mpdu is fragmented - terminate rx aggregation session */
1029 	sc = le16_to_cpu(hdr->seq_ctrl);
1030 	if (sc & IEEE80211_SCTL_FRAG) {
1031 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1032 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1033 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1034 		return;
1035 	}
1036 
1037 	/*
1038 	 * No locking needed -- we will only ever process one
1039 	 * RX packet at a time, and thus own tid_agg_rx. All
1040 	 * other code manipulating it needs to (and does) make
1041 	 * sure that we cannot get to it any more before doing
1042 	 * anything with it.
1043 	 */
1044 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1045 					     frames))
1046 		return;
1047 
1048  dont_reorder:
1049 	__skb_queue_tail(frames, skb);
1050 }
1051 
1052 static ieee80211_rx_result debug_noinline
1053 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1054 {
1055 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1056 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1057 
1058 	/*
1059 	 * Drop duplicate 802.11 retransmissions
1060 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1061 	 */
1062 
1063 	if (rx->skb->len < 24)
1064 		return RX_CONTINUE;
1065 
1066 	if (ieee80211_is_ctl(hdr->frame_control) ||
1067 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1068 	    is_multicast_ether_addr(hdr->addr1))
1069 		return RX_CONTINUE;
1070 
1071 	if (rx->sta) {
1072 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1073 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1074 			     hdr->seq_ctrl)) {
1075 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1076 				rx->local->dot11FrameDuplicateCount++;
1077 				rx->sta->num_duplicates++;
1078 			}
1079 			return RX_DROP_UNUSABLE;
1080 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1081 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1082 		}
1083 	}
1084 
1085 	return RX_CONTINUE;
1086 }
1087 
1088 static ieee80211_rx_result debug_noinline
1089 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1090 {
1091 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1092 
1093 	if (unlikely(rx->skb->len < 16)) {
1094 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1095 		return RX_DROP_MONITOR;
1096 	}
1097 
1098 	/* Drop disallowed frame classes based on STA auth/assoc state;
1099 	 * IEEE 802.11, Chap 5.5.
1100 	 *
1101 	 * mac80211 filters only based on association state, i.e. it drops
1102 	 * Class 3 frames from not associated stations. hostapd sends
1103 	 * deauth/disassoc frames when needed. In addition, hostapd is
1104 	 * responsible for filtering on both auth and assoc states.
1105 	 */
1106 
1107 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1108 		return ieee80211_rx_mesh_check(rx);
1109 
1110 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1111 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1112 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1113 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1114 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1115 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1116 		/*
1117 		 * accept port control frames from the AP even when it's not
1118 		 * yet marked ASSOC to prevent a race where we don't set the
1119 		 * assoc bit quickly enough before it sends the first frame
1120 		 */
1121 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1122 		    ieee80211_is_data_present(hdr->frame_control)) {
1123 			unsigned int hdrlen;
1124 			__be16 ethertype;
1125 
1126 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1127 
1128 			if (rx->skb->len < hdrlen + 8)
1129 				return RX_DROP_MONITOR;
1130 
1131 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1132 			if (ethertype == rx->sdata->control_port_protocol)
1133 				return RX_CONTINUE;
1134 		}
1135 
1136 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1137 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1138 					       hdr->addr2,
1139 					       GFP_ATOMIC))
1140 			return RX_DROP_UNUSABLE;
1141 
1142 		return RX_DROP_MONITOR;
1143 	}
1144 
1145 	return RX_CONTINUE;
1146 }
1147 
1148 
1149 static ieee80211_rx_result debug_noinline
1150 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1151 {
1152 	struct ieee80211_local *local;
1153 	struct ieee80211_hdr *hdr;
1154 	struct sk_buff *skb;
1155 
1156 	local = rx->local;
1157 	skb = rx->skb;
1158 	hdr = (struct ieee80211_hdr *) skb->data;
1159 
1160 	if (!local->pspolling)
1161 		return RX_CONTINUE;
1162 
1163 	if (!ieee80211_has_fromds(hdr->frame_control))
1164 		/* this is not from AP */
1165 		return RX_CONTINUE;
1166 
1167 	if (!ieee80211_is_data(hdr->frame_control))
1168 		return RX_CONTINUE;
1169 
1170 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1171 		/* AP has no more frames buffered for us */
1172 		local->pspolling = false;
1173 		return RX_CONTINUE;
1174 	}
1175 
1176 	/* more data bit is set, let's request a new frame from the AP */
1177 	ieee80211_send_pspoll(local, rx->sdata);
1178 
1179 	return RX_CONTINUE;
1180 }
1181 
1182 static void sta_ps_start(struct sta_info *sta)
1183 {
1184 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1185 	struct ieee80211_local *local = sdata->local;
1186 	struct ps_data *ps;
1187 
1188 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1189 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1190 		ps = &sdata->bss->ps;
1191 	else
1192 		return;
1193 
1194 	atomic_inc(&ps->num_sta_ps);
1195 	set_sta_flag(sta, WLAN_STA_PS_STA);
1196 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1197 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1198 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1199 	       sta->sta.addr, sta->sta.aid);
1200 }
1201 
1202 static void sta_ps_end(struct sta_info *sta)
1203 {
1204 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1205 	       sta->sta.addr, sta->sta.aid);
1206 
1207 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1208 		/*
1209 		 * Clear the flag only if the other one is still set
1210 		 * so that the TX path won't start TX'ing new frames
1211 		 * directly ... In the case that the driver flag isn't
1212 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1213 		 */
1214 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1215 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1216 		       sta->sta.addr, sta->sta.aid);
1217 		return;
1218 	}
1219 
1220 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1221 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1222 	ieee80211_sta_ps_deliver_wakeup(sta);
1223 }
1224 
1225 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1226 {
1227 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1228 	bool in_ps;
1229 
1230 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1231 
1232 	/* Don't let the same PS state be set twice */
1233 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1234 	if ((start && in_ps) || (!start && !in_ps))
1235 		return -EINVAL;
1236 
1237 	if (start)
1238 		sta_ps_start(sta_inf);
1239 	else
1240 		sta_ps_end(sta_inf);
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1245 
1246 static ieee80211_rx_result debug_noinline
1247 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1248 {
1249 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1250 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1251 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1252 	int tid, ac;
1253 
1254 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1255 		return RX_CONTINUE;
1256 
1257 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1258 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1259 		return RX_CONTINUE;
1260 
1261 	/*
1262 	 * The device handles station powersave, so don't do anything about
1263 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1264 	 * it to mac80211 since they're handled.)
1265 	 */
1266 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1267 		return RX_CONTINUE;
1268 
1269 	/*
1270 	 * Don't do anything if the station isn't already asleep. In
1271 	 * the uAPSD case, the station will probably be marked asleep,
1272 	 * in the PS-Poll case the station must be confused ...
1273 	 */
1274 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1275 		return RX_CONTINUE;
1276 
1277 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1278 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1279 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1280 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1281 			else
1282 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1283 		}
1284 
1285 		/* Free PS Poll skb here instead of returning RX_DROP that would
1286 		 * count as an dropped frame. */
1287 		dev_kfree_skb(rx->skb);
1288 
1289 		return RX_QUEUED;
1290 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1291 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1292 		   ieee80211_has_pm(hdr->frame_control) &&
1293 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1294 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1295 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1296 		ac = ieee802_1d_to_ac[tid & 7];
1297 
1298 		/*
1299 		 * If this AC is not trigger-enabled do nothing.
1300 		 *
1301 		 * NB: This could/should check a separate bitmap of trigger-
1302 		 * enabled queues, but for now we only implement uAPSD w/o
1303 		 * TSPEC changes to the ACs, so they're always the same.
1304 		 */
1305 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1306 			return RX_CONTINUE;
1307 
1308 		/* if we are in a service period, do nothing */
1309 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1310 			return RX_CONTINUE;
1311 
1312 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1313 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1314 		else
1315 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1316 	}
1317 
1318 	return RX_CONTINUE;
1319 }
1320 
1321 static ieee80211_rx_result debug_noinline
1322 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1323 {
1324 	struct sta_info *sta = rx->sta;
1325 	struct sk_buff *skb = rx->skb;
1326 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1327 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1328 	int i;
1329 
1330 	if (!sta)
1331 		return RX_CONTINUE;
1332 
1333 	/*
1334 	 * Update last_rx only for IBSS packets which are for the current
1335 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1336 	 * current IBSS network alive in cases where other STAs start
1337 	 * using different BSSID. This will also give the station another
1338 	 * chance to restart the authentication/authorization in case
1339 	 * something went wrong the first time.
1340 	 */
1341 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1342 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1343 						NL80211_IFTYPE_ADHOC);
1344 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1345 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1346 			sta->last_rx = jiffies;
1347 			if (ieee80211_is_data(hdr->frame_control) &&
1348 			    !is_multicast_ether_addr(hdr->addr1)) {
1349 				sta->last_rx_rate_idx = status->rate_idx;
1350 				sta->last_rx_rate_flag = status->flag;
1351 				sta->last_rx_rate_vht_flag = status->vht_flag;
1352 				sta->last_rx_rate_vht_nss = status->vht_nss;
1353 			}
1354 		}
1355 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1356 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1357 						NL80211_IFTYPE_OCB);
1358 		/* OCB uses wild-card BSSID */
1359 		if (is_broadcast_ether_addr(bssid))
1360 			sta->last_rx = jiffies;
1361 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1362 		/*
1363 		 * Mesh beacons will update last_rx when if they are found to
1364 		 * match the current local configuration when processed.
1365 		 */
1366 		sta->last_rx = jiffies;
1367 		if (ieee80211_is_data(hdr->frame_control)) {
1368 			sta->last_rx_rate_idx = status->rate_idx;
1369 			sta->last_rx_rate_flag = status->flag;
1370 			sta->last_rx_rate_vht_flag = status->vht_flag;
1371 			sta->last_rx_rate_vht_nss = status->vht_nss;
1372 		}
1373 	}
1374 
1375 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1376 		return RX_CONTINUE;
1377 
1378 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1379 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1380 
1381 	sta->rx_fragments++;
1382 	sta->rx_bytes += rx->skb->len;
1383 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1384 		sta->last_signal = status->signal;
1385 		ewma_add(&sta->avg_signal, -status->signal);
1386 	}
1387 
1388 	if (status->chains) {
1389 		sta->chains = status->chains;
1390 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1391 			int signal = status->chain_signal[i];
1392 
1393 			if (!(status->chains & BIT(i)))
1394 				continue;
1395 
1396 			sta->chain_signal_last[i] = signal;
1397 			ewma_add(&sta->chain_signal_avg[i], -signal);
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Change STA power saving mode only at the end of a frame
1403 	 * exchange sequence.
1404 	 */
1405 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1406 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1407 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1408 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1409 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1410 	    /* PM bit is only checked in frames where it isn't reserved,
1411 	     * in AP mode it's reserved in non-bufferable management frames
1412 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1413 	     */
1414 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1415 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1416 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1417 			if (!ieee80211_has_pm(hdr->frame_control))
1418 				sta_ps_end(sta);
1419 		} else {
1420 			if (ieee80211_has_pm(hdr->frame_control))
1421 				sta_ps_start(sta);
1422 		}
1423 	}
1424 
1425 	/* mesh power save support */
1426 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1427 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1428 
1429 	/*
1430 	 * Drop (qos-)data::nullfunc frames silently, since they
1431 	 * are used only to control station power saving mode.
1432 	 */
1433 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1434 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1435 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1436 
1437 		/*
1438 		 * If we receive a 4-addr nullfunc frame from a STA
1439 		 * that was not moved to a 4-addr STA vlan yet send
1440 		 * the event to userspace and for older hostapd drop
1441 		 * the frame to the monitor interface.
1442 		 */
1443 		if (ieee80211_has_a4(hdr->frame_control) &&
1444 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1445 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1446 		      !rx->sdata->u.vlan.sta))) {
1447 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1448 				cfg80211_rx_unexpected_4addr_frame(
1449 					rx->sdata->dev, sta->sta.addr,
1450 					GFP_ATOMIC);
1451 			return RX_DROP_MONITOR;
1452 		}
1453 		/*
1454 		 * Update counter and free packet here to avoid
1455 		 * counting this as a dropped packed.
1456 		 */
1457 		sta->rx_packets++;
1458 		dev_kfree_skb(rx->skb);
1459 		return RX_QUEUED;
1460 	}
1461 
1462 	return RX_CONTINUE;
1463 } /* ieee80211_rx_h_sta_process */
1464 
1465 static ieee80211_rx_result debug_noinline
1466 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1467 {
1468 	struct sk_buff *skb = rx->skb;
1469 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1470 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1471 	int keyidx;
1472 	int hdrlen;
1473 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1474 	struct ieee80211_key *sta_ptk = NULL;
1475 	int mmie_keyidx = -1;
1476 	__le16 fc;
1477 	const struct ieee80211_cipher_scheme *cs = NULL;
1478 
1479 	/*
1480 	 * Key selection 101
1481 	 *
1482 	 * There are four types of keys:
1483 	 *  - GTK (group keys)
1484 	 *  - IGTK (group keys for management frames)
1485 	 *  - PTK (pairwise keys)
1486 	 *  - STK (station-to-station pairwise keys)
1487 	 *
1488 	 * When selecting a key, we have to distinguish between multicast
1489 	 * (including broadcast) and unicast frames, the latter can only
1490 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1491 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1492 	 * unicast frames can also use key indices like GTKs. Hence, if we
1493 	 * don't have a PTK/STK we check the key index for a WEP key.
1494 	 *
1495 	 * Note that in a regular BSS, multicast frames are sent by the
1496 	 * AP only, associated stations unicast the frame to the AP first
1497 	 * which then multicasts it on their behalf.
1498 	 *
1499 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1500 	 * with each station, that is something we don't currently handle.
1501 	 * The spec seems to expect that one negotiates the same key with
1502 	 * every station but there's no such requirement; VLANs could be
1503 	 * possible.
1504 	 */
1505 
1506 	/*
1507 	 * No point in finding a key and decrypting if the frame is neither
1508 	 * addressed to us nor a multicast frame.
1509 	 */
1510 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1511 		return RX_CONTINUE;
1512 
1513 	/* start without a key */
1514 	rx->key = NULL;
1515 	fc = hdr->frame_control;
1516 
1517 	if (rx->sta) {
1518 		int keyid = rx->sta->ptk_idx;
1519 
1520 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1521 			cs = rx->sta->cipher_scheme;
1522 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1523 			if (unlikely(keyid < 0))
1524 				return RX_DROP_UNUSABLE;
1525 		}
1526 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1527 	}
1528 
1529 	if (!ieee80211_has_protected(fc))
1530 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1531 
1532 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1533 		rx->key = sta_ptk;
1534 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1535 		    (status->flag & RX_FLAG_IV_STRIPPED))
1536 			return RX_CONTINUE;
1537 		/* Skip decryption if the frame is not protected. */
1538 		if (!ieee80211_has_protected(fc))
1539 			return RX_CONTINUE;
1540 	} else if (mmie_keyidx >= 0) {
1541 		/* Broadcast/multicast robust management frame / BIP */
1542 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1543 		    (status->flag & RX_FLAG_IV_STRIPPED))
1544 			return RX_CONTINUE;
1545 
1546 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1547 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1548 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1549 		if (rx->sta)
1550 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1551 		if (!rx->key)
1552 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1553 	} else if (!ieee80211_has_protected(fc)) {
1554 		/*
1555 		 * The frame was not protected, so skip decryption. However, we
1556 		 * need to set rx->key if there is a key that could have been
1557 		 * used so that the frame may be dropped if encryption would
1558 		 * have been expected.
1559 		 */
1560 		struct ieee80211_key *key = NULL;
1561 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1562 		int i;
1563 
1564 		if (ieee80211_is_mgmt(fc) &&
1565 		    is_multicast_ether_addr(hdr->addr1) &&
1566 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1567 			rx->key = key;
1568 		else {
1569 			if (rx->sta) {
1570 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1571 					key = rcu_dereference(rx->sta->gtk[i]);
1572 					if (key)
1573 						break;
1574 				}
1575 			}
1576 			if (!key) {
1577 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1578 					key = rcu_dereference(sdata->keys[i]);
1579 					if (key)
1580 						break;
1581 				}
1582 			}
1583 			if (key)
1584 				rx->key = key;
1585 		}
1586 		return RX_CONTINUE;
1587 	} else {
1588 		u8 keyid;
1589 
1590 		/*
1591 		 * The device doesn't give us the IV so we won't be
1592 		 * able to look up the key. That's ok though, we
1593 		 * don't need to decrypt the frame, we just won't
1594 		 * be able to keep statistics accurate.
1595 		 * Except for key threshold notifications, should
1596 		 * we somehow allow the driver to tell us which key
1597 		 * the hardware used if this flag is set?
1598 		 */
1599 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1600 		    (status->flag & RX_FLAG_IV_STRIPPED))
1601 			return RX_CONTINUE;
1602 
1603 		hdrlen = ieee80211_hdrlen(fc);
1604 
1605 		if (cs) {
1606 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1607 
1608 			if (unlikely(keyidx < 0))
1609 				return RX_DROP_UNUSABLE;
1610 		} else {
1611 			if (rx->skb->len < 8 + hdrlen)
1612 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1613 			/*
1614 			 * no need to call ieee80211_wep_get_keyidx,
1615 			 * it verifies a bunch of things we've done already
1616 			 */
1617 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1618 			keyidx = keyid >> 6;
1619 		}
1620 
1621 		/* check per-station GTK first, if multicast packet */
1622 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1623 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1624 
1625 		/* if not found, try default key */
1626 		if (!rx->key) {
1627 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1628 
1629 			/*
1630 			 * RSNA-protected unicast frames should always be
1631 			 * sent with pairwise or station-to-station keys,
1632 			 * but for WEP we allow using a key index as well.
1633 			 */
1634 			if (rx->key &&
1635 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1636 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1637 			    !is_multicast_ether_addr(hdr->addr1))
1638 				rx->key = NULL;
1639 		}
1640 	}
1641 
1642 	if (rx->key) {
1643 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1644 			return RX_DROP_MONITOR;
1645 
1646 		rx->key->tx_rx_count++;
1647 		/* TODO: add threshold stuff again */
1648 	} else {
1649 		return RX_DROP_MONITOR;
1650 	}
1651 
1652 	switch (rx->key->conf.cipher) {
1653 	case WLAN_CIPHER_SUITE_WEP40:
1654 	case WLAN_CIPHER_SUITE_WEP104:
1655 		result = ieee80211_crypto_wep_decrypt(rx);
1656 		break;
1657 	case WLAN_CIPHER_SUITE_TKIP:
1658 		result = ieee80211_crypto_tkip_decrypt(rx);
1659 		break;
1660 	case WLAN_CIPHER_SUITE_CCMP:
1661 		result = ieee80211_crypto_ccmp_decrypt(
1662 			rx, IEEE80211_CCMP_MIC_LEN);
1663 		break;
1664 	case WLAN_CIPHER_SUITE_CCMP_256:
1665 		result = ieee80211_crypto_ccmp_decrypt(
1666 			rx, IEEE80211_CCMP_256_MIC_LEN);
1667 		break;
1668 	case WLAN_CIPHER_SUITE_AES_CMAC:
1669 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1670 		break;
1671 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1672 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1673 		break;
1674 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1675 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1676 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1677 		break;
1678 	case WLAN_CIPHER_SUITE_GCMP:
1679 	case WLAN_CIPHER_SUITE_GCMP_256:
1680 		result = ieee80211_crypto_gcmp_decrypt(rx);
1681 		break;
1682 	default:
1683 		result = ieee80211_crypto_hw_decrypt(rx);
1684 	}
1685 
1686 	/* the hdr variable is invalid after the decrypt handlers */
1687 
1688 	/* either the frame has been decrypted or will be dropped */
1689 	status->flag |= RX_FLAG_DECRYPTED;
1690 
1691 	return result;
1692 }
1693 
1694 static inline struct ieee80211_fragment_entry *
1695 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1696 			 unsigned int frag, unsigned int seq, int rx_queue,
1697 			 struct sk_buff **skb)
1698 {
1699 	struct ieee80211_fragment_entry *entry;
1700 
1701 	entry = &sdata->fragments[sdata->fragment_next++];
1702 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1703 		sdata->fragment_next = 0;
1704 
1705 	if (!skb_queue_empty(&entry->skb_list))
1706 		__skb_queue_purge(&entry->skb_list);
1707 
1708 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1709 	*skb = NULL;
1710 	entry->first_frag_time = jiffies;
1711 	entry->seq = seq;
1712 	entry->rx_queue = rx_queue;
1713 	entry->last_frag = frag;
1714 	entry->ccmp = 0;
1715 	entry->extra_len = 0;
1716 
1717 	return entry;
1718 }
1719 
1720 static inline struct ieee80211_fragment_entry *
1721 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1722 			  unsigned int frag, unsigned int seq,
1723 			  int rx_queue, struct ieee80211_hdr *hdr)
1724 {
1725 	struct ieee80211_fragment_entry *entry;
1726 	int i, idx;
1727 
1728 	idx = sdata->fragment_next;
1729 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1730 		struct ieee80211_hdr *f_hdr;
1731 
1732 		idx--;
1733 		if (idx < 0)
1734 			idx = IEEE80211_FRAGMENT_MAX - 1;
1735 
1736 		entry = &sdata->fragments[idx];
1737 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1738 		    entry->rx_queue != rx_queue ||
1739 		    entry->last_frag + 1 != frag)
1740 			continue;
1741 
1742 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1743 
1744 		/*
1745 		 * Check ftype and addresses are equal, else check next fragment
1746 		 */
1747 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1748 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1749 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1750 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1751 			continue;
1752 
1753 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1754 			__skb_queue_purge(&entry->skb_list);
1755 			continue;
1756 		}
1757 		return entry;
1758 	}
1759 
1760 	return NULL;
1761 }
1762 
1763 static ieee80211_rx_result debug_noinline
1764 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1765 {
1766 	struct ieee80211_hdr *hdr;
1767 	u16 sc;
1768 	__le16 fc;
1769 	unsigned int frag, seq;
1770 	struct ieee80211_fragment_entry *entry;
1771 	struct sk_buff *skb;
1772 	struct ieee80211_rx_status *status;
1773 
1774 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1775 	fc = hdr->frame_control;
1776 
1777 	if (ieee80211_is_ctl(fc))
1778 		return RX_CONTINUE;
1779 
1780 	sc = le16_to_cpu(hdr->seq_ctrl);
1781 	frag = sc & IEEE80211_SCTL_FRAG;
1782 
1783 	if (is_multicast_ether_addr(hdr->addr1)) {
1784 		rx->local->dot11MulticastReceivedFrameCount++;
1785 		goto out_no_led;
1786 	}
1787 
1788 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1789 		goto out;
1790 
1791 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1792 
1793 	if (skb_linearize(rx->skb))
1794 		return RX_DROP_UNUSABLE;
1795 
1796 	/*
1797 	 *  skb_linearize() might change the skb->data and
1798 	 *  previously cached variables (in this case, hdr) need to
1799 	 *  be refreshed with the new data.
1800 	 */
1801 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1802 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1803 
1804 	if (frag == 0) {
1805 		/* This is the first fragment of a new frame. */
1806 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1807 						 rx->seqno_idx, &(rx->skb));
1808 		if (rx->key &&
1809 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1810 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1811 		    ieee80211_has_protected(fc)) {
1812 			int queue = rx->security_idx;
1813 			/* Store CCMP PN so that we can verify that the next
1814 			 * fragment has a sequential PN value. */
1815 			entry->ccmp = 1;
1816 			memcpy(entry->last_pn,
1817 			       rx->key->u.ccmp.rx_pn[queue],
1818 			       IEEE80211_CCMP_PN_LEN);
1819 		}
1820 		return RX_QUEUED;
1821 	}
1822 
1823 	/* This is a fragment for a frame that should already be pending in
1824 	 * fragment cache. Add this fragment to the end of the pending entry.
1825 	 */
1826 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1827 					  rx->seqno_idx, hdr);
1828 	if (!entry) {
1829 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1830 		return RX_DROP_MONITOR;
1831 	}
1832 
1833 	/* Verify that MPDUs within one MSDU have sequential PN values.
1834 	 * (IEEE 802.11i, 8.3.3.4.5) */
1835 	if (entry->ccmp) {
1836 		int i;
1837 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1838 		int queue;
1839 		if (!rx->key ||
1840 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1841 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1842 			return RX_DROP_UNUSABLE;
1843 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1844 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1845 			pn[i]++;
1846 			if (pn[i])
1847 				break;
1848 		}
1849 		queue = rx->security_idx;
1850 		rpn = rx->key->u.ccmp.rx_pn[queue];
1851 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1852 			return RX_DROP_UNUSABLE;
1853 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1854 	}
1855 
1856 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1857 	__skb_queue_tail(&entry->skb_list, rx->skb);
1858 	entry->last_frag = frag;
1859 	entry->extra_len += rx->skb->len;
1860 	if (ieee80211_has_morefrags(fc)) {
1861 		rx->skb = NULL;
1862 		return RX_QUEUED;
1863 	}
1864 
1865 	rx->skb = __skb_dequeue(&entry->skb_list);
1866 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1867 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1868 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1869 					      GFP_ATOMIC))) {
1870 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1871 			__skb_queue_purge(&entry->skb_list);
1872 			return RX_DROP_UNUSABLE;
1873 		}
1874 	}
1875 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1876 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1877 		dev_kfree_skb(skb);
1878 	}
1879 
1880 	/* Complete frame has been reassembled - process it now */
1881 	status = IEEE80211_SKB_RXCB(rx->skb);
1882 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1883 
1884  out:
1885 	ieee80211_led_rx(rx->local);
1886  out_no_led:
1887 	if (rx->sta)
1888 		rx->sta->rx_packets++;
1889 	return RX_CONTINUE;
1890 }
1891 
1892 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1893 {
1894 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1895 		return -EACCES;
1896 
1897 	return 0;
1898 }
1899 
1900 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1901 {
1902 	struct sk_buff *skb = rx->skb;
1903 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1904 
1905 	/*
1906 	 * Pass through unencrypted frames if the hardware has
1907 	 * decrypted them already.
1908 	 */
1909 	if (status->flag & RX_FLAG_DECRYPTED)
1910 		return 0;
1911 
1912 	/* Drop unencrypted frames if key is set. */
1913 	if (unlikely(!ieee80211_has_protected(fc) &&
1914 		     !ieee80211_is_nullfunc(fc) &&
1915 		     ieee80211_is_data(fc) &&
1916 		     (rx->key || rx->sdata->drop_unencrypted)))
1917 		return -EACCES;
1918 
1919 	return 0;
1920 }
1921 
1922 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1923 {
1924 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1925 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1926 	__le16 fc = hdr->frame_control;
1927 
1928 	/*
1929 	 * Pass through unencrypted frames if the hardware has
1930 	 * decrypted them already.
1931 	 */
1932 	if (status->flag & RX_FLAG_DECRYPTED)
1933 		return 0;
1934 
1935 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1936 		if (unlikely(!ieee80211_has_protected(fc) &&
1937 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1938 			     rx->key)) {
1939 			if (ieee80211_is_deauth(fc) ||
1940 			    ieee80211_is_disassoc(fc))
1941 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1942 							     rx->skb->data,
1943 							     rx->skb->len);
1944 			return -EACCES;
1945 		}
1946 		/* BIP does not use Protected field, so need to check MMIE */
1947 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1948 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1949 			if (ieee80211_is_deauth(fc) ||
1950 			    ieee80211_is_disassoc(fc))
1951 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1952 							     rx->skb->data,
1953 							     rx->skb->len);
1954 			return -EACCES;
1955 		}
1956 		/*
1957 		 * When using MFP, Action frames are not allowed prior to
1958 		 * having configured keys.
1959 		 */
1960 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1961 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
1962 			return -EACCES;
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 static int
1969 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1970 {
1971 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1972 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1973 	bool check_port_control = false;
1974 	struct ethhdr *ehdr;
1975 	int ret;
1976 
1977 	*port_control = false;
1978 	if (ieee80211_has_a4(hdr->frame_control) &&
1979 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1980 		return -1;
1981 
1982 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1983 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1984 
1985 		if (!sdata->u.mgd.use_4addr)
1986 			return -1;
1987 		else
1988 			check_port_control = true;
1989 	}
1990 
1991 	if (is_multicast_ether_addr(hdr->addr1) &&
1992 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1993 		return -1;
1994 
1995 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1996 	if (ret < 0)
1997 		return ret;
1998 
1999 	ehdr = (struct ethhdr *) rx->skb->data;
2000 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2001 		*port_control = true;
2002 	else if (check_port_control)
2003 		return -1;
2004 
2005 	return 0;
2006 }
2007 
2008 /*
2009  * requires that rx->skb is a frame with ethernet header
2010  */
2011 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2012 {
2013 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2014 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2015 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2016 
2017 	/*
2018 	 * Allow EAPOL frames to us/the PAE group address regardless
2019 	 * of whether the frame was encrypted or not.
2020 	 */
2021 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2022 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2023 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2024 		return true;
2025 
2026 	if (ieee80211_802_1x_port_control(rx) ||
2027 	    ieee80211_drop_unencrypted(rx, fc))
2028 		return false;
2029 
2030 	return true;
2031 }
2032 
2033 /*
2034  * requires that rx->skb is a frame with ethernet header
2035  */
2036 static void
2037 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2038 {
2039 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2040 	struct net_device *dev = sdata->dev;
2041 	struct sk_buff *skb, *xmit_skb;
2042 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2043 	struct sta_info *dsta;
2044 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2045 
2046 	skb = rx->skb;
2047 	xmit_skb = NULL;
2048 
2049 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2050 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2051 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2052 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2053 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2054 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2055 			/*
2056 			 * send multicast frames both to higher layers in
2057 			 * local net stack and back to the wireless medium
2058 			 */
2059 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2060 			if (!xmit_skb)
2061 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2062 						    dev->name);
2063 		} else {
2064 			dsta = sta_info_get(sdata, skb->data);
2065 			if (dsta) {
2066 				/*
2067 				 * The destination station is associated to
2068 				 * this AP (in this VLAN), so send the frame
2069 				 * directly to it and do not pass it to local
2070 				 * net stack.
2071 				 */
2072 				xmit_skb = skb;
2073 				skb = NULL;
2074 			}
2075 		}
2076 	}
2077 
2078 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2079 	if (skb) {
2080 		/* 'align' will only take the values 0 or 2 here since all
2081 		 * frames are required to be aligned to 2-byte boundaries
2082 		 * when being passed to mac80211; the code here works just
2083 		 * as well if that isn't true, but mac80211 assumes it can
2084 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2085 		 */
2086 		int align;
2087 
2088 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2089 		if (align) {
2090 			if (WARN_ON(skb_headroom(skb) < 3)) {
2091 				dev_kfree_skb(skb);
2092 				skb = NULL;
2093 			} else {
2094 				u8 *data = skb->data;
2095 				size_t len = skb_headlen(skb);
2096 				skb->data -= align;
2097 				memmove(skb->data, data, len);
2098 				skb_set_tail_pointer(skb, len);
2099 			}
2100 		}
2101 	}
2102 #endif
2103 
2104 	if (skb) {
2105 		/* deliver to local stack */
2106 		skb->protocol = eth_type_trans(skb, dev);
2107 		memset(skb->cb, 0, sizeof(skb->cb));
2108 		if (rx->local->napi)
2109 			napi_gro_receive(rx->local->napi, skb);
2110 		else
2111 			netif_receive_skb(skb);
2112 	}
2113 
2114 	if (xmit_skb) {
2115 		/*
2116 		 * Send to wireless media and increase priority by 256 to
2117 		 * keep the received priority instead of reclassifying
2118 		 * the frame (see cfg80211_classify8021d).
2119 		 */
2120 		xmit_skb->priority += 256;
2121 		xmit_skb->protocol = htons(ETH_P_802_3);
2122 		skb_reset_network_header(xmit_skb);
2123 		skb_reset_mac_header(xmit_skb);
2124 		dev_queue_xmit(xmit_skb);
2125 	}
2126 }
2127 
2128 static ieee80211_rx_result debug_noinline
2129 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2130 {
2131 	struct net_device *dev = rx->sdata->dev;
2132 	struct sk_buff *skb = rx->skb;
2133 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2134 	__le16 fc = hdr->frame_control;
2135 	struct sk_buff_head frame_list;
2136 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2137 
2138 	if (unlikely(!ieee80211_is_data(fc)))
2139 		return RX_CONTINUE;
2140 
2141 	if (unlikely(!ieee80211_is_data_present(fc)))
2142 		return RX_DROP_MONITOR;
2143 
2144 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2145 		return RX_CONTINUE;
2146 
2147 	if (ieee80211_has_a4(hdr->frame_control) &&
2148 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2149 	    !rx->sdata->u.vlan.sta)
2150 		return RX_DROP_UNUSABLE;
2151 
2152 	if (is_multicast_ether_addr(hdr->addr1) &&
2153 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2154 	      rx->sdata->u.vlan.sta) ||
2155 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2156 	      rx->sdata->u.mgd.use_4addr)))
2157 		return RX_DROP_UNUSABLE;
2158 
2159 	skb->dev = dev;
2160 	__skb_queue_head_init(&frame_list);
2161 
2162 	if (skb_linearize(skb))
2163 		return RX_DROP_UNUSABLE;
2164 
2165 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2166 				 rx->sdata->vif.type,
2167 				 rx->local->hw.extra_tx_headroom, true);
2168 
2169 	while (!skb_queue_empty(&frame_list)) {
2170 		rx->skb = __skb_dequeue(&frame_list);
2171 
2172 		if (!ieee80211_frame_allowed(rx, fc)) {
2173 			dev_kfree_skb(rx->skb);
2174 			continue;
2175 		}
2176 		dev->stats.rx_packets++;
2177 		dev->stats.rx_bytes += rx->skb->len;
2178 
2179 		ieee80211_deliver_skb(rx);
2180 	}
2181 
2182 	return RX_QUEUED;
2183 }
2184 
2185 #ifdef CONFIG_MAC80211_MESH
2186 static ieee80211_rx_result
2187 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2188 {
2189 	struct ieee80211_hdr *fwd_hdr, *hdr;
2190 	struct ieee80211_tx_info *info;
2191 	struct ieee80211s_hdr *mesh_hdr;
2192 	struct sk_buff *skb = rx->skb, *fwd_skb;
2193 	struct ieee80211_local *local = rx->local;
2194 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2195 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2196 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2197 	u16 q, hdrlen;
2198 
2199 	hdr = (struct ieee80211_hdr *) skb->data;
2200 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2201 
2202 	/* make sure fixed part of mesh header is there, also checks skb len */
2203 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2204 		return RX_DROP_MONITOR;
2205 
2206 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2207 
2208 	/* make sure full mesh header is there, also checks skb len */
2209 	if (!pskb_may_pull(rx->skb,
2210 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2211 		return RX_DROP_MONITOR;
2212 
2213 	/* reload pointers */
2214 	hdr = (struct ieee80211_hdr *) skb->data;
2215 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2216 
2217 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2218 		return RX_DROP_MONITOR;
2219 
2220 	/* frame is in RMC, don't forward */
2221 	if (ieee80211_is_data(hdr->frame_control) &&
2222 	    is_multicast_ether_addr(hdr->addr1) &&
2223 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2224 		return RX_DROP_MONITOR;
2225 
2226 	if (!ieee80211_is_data(hdr->frame_control) ||
2227 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2228 		return RX_CONTINUE;
2229 
2230 	if (!mesh_hdr->ttl)
2231 		return RX_DROP_MONITOR;
2232 
2233 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2234 		struct mesh_path *mppath;
2235 		char *proxied_addr;
2236 		char *mpp_addr;
2237 
2238 		if (is_multicast_ether_addr(hdr->addr1)) {
2239 			mpp_addr = hdr->addr3;
2240 			proxied_addr = mesh_hdr->eaddr1;
2241 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2242 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2243 			mpp_addr = hdr->addr4;
2244 			proxied_addr = mesh_hdr->eaddr2;
2245 		} else {
2246 			return RX_DROP_MONITOR;
2247 		}
2248 
2249 		rcu_read_lock();
2250 		mppath = mpp_path_lookup(sdata, proxied_addr);
2251 		if (!mppath) {
2252 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2253 		} else {
2254 			spin_lock_bh(&mppath->state_lock);
2255 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2256 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2257 			spin_unlock_bh(&mppath->state_lock);
2258 		}
2259 		rcu_read_unlock();
2260 	}
2261 
2262 	/* Frame has reached destination.  Don't forward */
2263 	if (!is_multicast_ether_addr(hdr->addr1) &&
2264 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2265 		return RX_CONTINUE;
2266 
2267 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2268 	if (ieee80211_queue_stopped(&local->hw, q)) {
2269 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2270 		return RX_DROP_MONITOR;
2271 	}
2272 	skb_set_queue_mapping(skb, q);
2273 
2274 	if (!--mesh_hdr->ttl) {
2275 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2276 		goto out;
2277 	}
2278 
2279 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2280 		goto out;
2281 
2282 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2283 	if (!fwd_skb) {
2284 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2285 				    sdata->name);
2286 		goto out;
2287 	}
2288 
2289 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2290 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2291 	info = IEEE80211_SKB_CB(fwd_skb);
2292 	memset(info, 0, sizeof(*info));
2293 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2294 	info->control.vif = &rx->sdata->vif;
2295 	info->control.jiffies = jiffies;
2296 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2297 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2298 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2299 		/* update power mode indication when forwarding */
2300 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2301 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2302 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2303 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2304 	} else {
2305 		/* unable to resolve next hop */
2306 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2307 				   fwd_hdr->addr3, 0,
2308 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2309 				   fwd_hdr->addr2);
2310 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2311 		kfree_skb(fwd_skb);
2312 		return RX_DROP_MONITOR;
2313 	}
2314 
2315 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2316 	ieee80211_add_pending_skb(local, fwd_skb);
2317  out:
2318 	if (is_multicast_ether_addr(hdr->addr1) ||
2319 	    sdata->dev->flags & IFF_PROMISC)
2320 		return RX_CONTINUE;
2321 	else
2322 		return RX_DROP_MONITOR;
2323 }
2324 #endif
2325 
2326 static ieee80211_rx_result debug_noinline
2327 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2328 {
2329 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2330 	struct ieee80211_local *local = rx->local;
2331 	struct net_device *dev = sdata->dev;
2332 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2333 	__le16 fc = hdr->frame_control;
2334 	bool port_control;
2335 	int err;
2336 
2337 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2338 		return RX_CONTINUE;
2339 
2340 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2341 		return RX_DROP_MONITOR;
2342 
2343 	if (rx->sta) {
2344 		/* The seqno index has the same property as needed
2345 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2346 		 * for non-QoS-data frames. Here we know it's a data
2347 		 * frame, so count MSDUs.
2348 		 */
2349 		rx->sta->rx_msdu[rx->seqno_idx]++;
2350 	}
2351 
2352 	/*
2353 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2354 	 * also drop the frame to cooked monitor interfaces.
2355 	 */
2356 	if (ieee80211_has_a4(hdr->frame_control) &&
2357 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2358 		if (rx->sta &&
2359 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2360 			cfg80211_rx_unexpected_4addr_frame(
2361 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2362 		return RX_DROP_MONITOR;
2363 	}
2364 
2365 	err = __ieee80211_data_to_8023(rx, &port_control);
2366 	if (unlikely(err))
2367 		return RX_DROP_UNUSABLE;
2368 
2369 	if (!ieee80211_frame_allowed(rx, fc))
2370 		return RX_DROP_MONITOR;
2371 
2372 	/* directly handle TDLS channel switch requests/responses */
2373 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2374 						cpu_to_be16(ETH_P_TDLS))) {
2375 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2376 
2377 		if (pskb_may_pull(rx->skb,
2378 				  offsetof(struct ieee80211_tdls_data, u)) &&
2379 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2380 		    tf->category == WLAN_CATEGORY_TDLS &&
2381 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2382 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2383 			rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2384 			skb_queue_tail(&sdata->skb_queue, rx->skb);
2385 			ieee80211_queue_work(&rx->local->hw, &sdata->work);
2386 			if (rx->sta)
2387 				rx->sta->rx_packets++;
2388 
2389 			return RX_QUEUED;
2390 		}
2391 	}
2392 
2393 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2394 	    unlikely(port_control) && sdata->bss) {
2395 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2396 				     u.ap);
2397 		dev = sdata->dev;
2398 		rx->sdata = sdata;
2399 	}
2400 
2401 	rx->skb->dev = dev;
2402 
2403 	dev->stats.rx_packets++;
2404 	dev->stats.rx_bytes += rx->skb->len;
2405 
2406 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2407 	    !is_multicast_ether_addr(
2408 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2409 	    (!local->scanning &&
2410 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2411 			mod_timer(&local->dynamic_ps_timer, jiffies +
2412 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2413 	}
2414 
2415 	ieee80211_deliver_skb(rx);
2416 
2417 	return RX_QUEUED;
2418 }
2419 
2420 static ieee80211_rx_result debug_noinline
2421 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2422 {
2423 	struct sk_buff *skb = rx->skb;
2424 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2425 	struct tid_ampdu_rx *tid_agg_rx;
2426 	u16 start_seq_num;
2427 	u16 tid;
2428 
2429 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2430 		return RX_CONTINUE;
2431 
2432 	if (ieee80211_is_back_req(bar->frame_control)) {
2433 		struct {
2434 			__le16 control, start_seq_num;
2435 		} __packed bar_data;
2436 
2437 		if (!rx->sta)
2438 			return RX_DROP_MONITOR;
2439 
2440 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2441 				  &bar_data, sizeof(bar_data)))
2442 			return RX_DROP_MONITOR;
2443 
2444 		tid = le16_to_cpu(bar_data.control) >> 12;
2445 
2446 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2447 		if (!tid_agg_rx)
2448 			return RX_DROP_MONITOR;
2449 
2450 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2451 
2452 		/* reset session timer */
2453 		if (tid_agg_rx->timeout)
2454 			mod_timer(&tid_agg_rx->session_timer,
2455 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2456 
2457 		spin_lock(&tid_agg_rx->reorder_lock);
2458 		/* release stored frames up to start of BAR */
2459 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2460 						 start_seq_num, frames);
2461 		spin_unlock(&tid_agg_rx->reorder_lock);
2462 
2463 		kfree_skb(skb);
2464 		return RX_QUEUED;
2465 	}
2466 
2467 	/*
2468 	 * After this point, we only want management frames,
2469 	 * so we can drop all remaining control frames to
2470 	 * cooked monitor interfaces.
2471 	 */
2472 	return RX_DROP_MONITOR;
2473 }
2474 
2475 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2476 					   struct ieee80211_mgmt *mgmt,
2477 					   size_t len)
2478 {
2479 	struct ieee80211_local *local = sdata->local;
2480 	struct sk_buff *skb;
2481 	struct ieee80211_mgmt *resp;
2482 
2483 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2484 		/* Not to own unicast address */
2485 		return;
2486 	}
2487 
2488 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2489 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2490 		/* Not from the current AP or not associated yet. */
2491 		return;
2492 	}
2493 
2494 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2495 		/* Too short SA Query request frame */
2496 		return;
2497 	}
2498 
2499 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2500 	if (skb == NULL)
2501 		return;
2502 
2503 	skb_reserve(skb, local->hw.extra_tx_headroom);
2504 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2505 	memset(resp, 0, 24);
2506 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2507 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2508 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2509 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2510 					  IEEE80211_STYPE_ACTION);
2511 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2512 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2513 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2514 	memcpy(resp->u.action.u.sa_query.trans_id,
2515 	       mgmt->u.action.u.sa_query.trans_id,
2516 	       WLAN_SA_QUERY_TR_ID_LEN);
2517 
2518 	ieee80211_tx_skb(sdata, skb);
2519 }
2520 
2521 static ieee80211_rx_result debug_noinline
2522 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2523 {
2524 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2525 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2526 
2527 	/*
2528 	 * From here on, look only at management frames.
2529 	 * Data and control frames are already handled,
2530 	 * and unknown (reserved) frames are useless.
2531 	 */
2532 	if (rx->skb->len < 24)
2533 		return RX_DROP_MONITOR;
2534 
2535 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2536 		return RX_DROP_MONITOR;
2537 
2538 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2539 	    ieee80211_is_beacon(mgmt->frame_control) &&
2540 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2541 		int sig = 0;
2542 
2543 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2544 			sig = status->signal;
2545 
2546 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2547 					    rx->skb->data, rx->skb->len,
2548 					    status->freq, sig);
2549 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2550 	}
2551 
2552 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2553 		return RX_DROP_MONITOR;
2554 
2555 	if (ieee80211_drop_unencrypted_mgmt(rx))
2556 		return RX_DROP_UNUSABLE;
2557 
2558 	return RX_CONTINUE;
2559 }
2560 
2561 static ieee80211_rx_result debug_noinline
2562 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2563 {
2564 	struct ieee80211_local *local = rx->local;
2565 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2566 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2567 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2568 	int len = rx->skb->len;
2569 
2570 	if (!ieee80211_is_action(mgmt->frame_control))
2571 		return RX_CONTINUE;
2572 
2573 	/* drop too small frames */
2574 	if (len < IEEE80211_MIN_ACTION_SIZE)
2575 		return RX_DROP_UNUSABLE;
2576 
2577 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2578 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2579 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2580 		return RX_DROP_UNUSABLE;
2581 
2582 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2583 		return RX_DROP_UNUSABLE;
2584 
2585 	switch (mgmt->u.action.category) {
2586 	case WLAN_CATEGORY_HT:
2587 		/* reject HT action frames from stations not supporting HT */
2588 		if (!rx->sta->sta.ht_cap.ht_supported)
2589 			goto invalid;
2590 
2591 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2592 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2593 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2594 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2595 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2596 			break;
2597 
2598 		/* verify action & smps_control/chanwidth are present */
2599 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2600 			goto invalid;
2601 
2602 		switch (mgmt->u.action.u.ht_smps.action) {
2603 		case WLAN_HT_ACTION_SMPS: {
2604 			struct ieee80211_supported_band *sband;
2605 			enum ieee80211_smps_mode smps_mode;
2606 
2607 			/* convert to HT capability */
2608 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2609 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2610 				smps_mode = IEEE80211_SMPS_OFF;
2611 				break;
2612 			case WLAN_HT_SMPS_CONTROL_STATIC:
2613 				smps_mode = IEEE80211_SMPS_STATIC;
2614 				break;
2615 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2616 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2617 				break;
2618 			default:
2619 				goto invalid;
2620 			}
2621 
2622 			/* if no change do nothing */
2623 			if (rx->sta->sta.smps_mode == smps_mode)
2624 				goto handled;
2625 			rx->sta->sta.smps_mode = smps_mode;
2626 
2627 			sband = rx->local->hw.wiphy->bands[status->band];
2628 
2629 			rate_control_rate_update(local, sband, rx->sta,
2630 						 IEEE80211_RC_SMPS_CHANGED);
2631 			goto handled;
2632 		}
2633 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2634 			struct ieee80211_supported_band *sband;
2635 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2636 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2637 
2638 			/* If it doesn't support 40 MHz it can't change ... */
2639 			if (!(rx->sta->sta.ht_cap.cap &
2640 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2641 				goto handled;
2642 
2643 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2644 				max_bw = IEEE80211_STA_RX_BW_20;
2645 			else
2646 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2647 
2648 			/* set cur_max_bandwidth and recalc sta bw */
2649 			rx->sta->cur_max_bandwidth = max_bw;
2650 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2651 
2652 			if (rx->sta->sta.bandwidth == new_bw)
2653 				goto handled;
2654 
2655 			rx->sta->sta.bandwidth = new_bw;
2656 			sband = rx->local->hw.wiphy->bands[status->band];
2657 
2658 			rate_control_rate_update(local, sband, rx->sta,
2659 						 IEEE80211_RC_BW_CHANGED);
2660 			goto handled;
2661 		}
2662 		default:
2663 			goto invalid;
2664 		}
2665 
2666 		break;
2667 	case WLAN_CATEGORY_PUBLIC:
2668 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2669 			goto invalid;
2670 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2671 			break;
2672 		if (!rx->sta)
2673 			break;
2674 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2675 			break;
2676 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2677 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2678 			break;
2679 		if (len < offsetof(struct ieee80211_mgmt,
2680 				   u.action.u.ext_chan_switch.variable))
2681 			goto invalid;
2682 		goto queue;
2683 	case WLAN_CATEGORY_VHT:
2684 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2685 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2686 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2687 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2688 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2689 			break;
2690 
2691 		/* verify action code is present */
2692 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2693 			goto invalid;
2694 
2695 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2696 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2697 			u8 opmode;
2698 
2699 			/* verify opmode is present */
2700 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2701 				goto invalid;
2702 
2703 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2704 
2705 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2706 						    opmode, status->band,
2707 						    false);
2708 			goto handled;
2709 		}
2710 		default:
2711 			break;
2712 		}
2713 		break;
2714 	case WLAN_CATEGORY_BACK:
2715 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2716 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2717 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2718 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2719 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2720 			break;
2721 
2722 		/* verify action_code is present */
2723 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2724 			break;
2725 
2726 		switch (mgmt->u.action.u.addba_req.action_code) {
2727 		case WLAN_ACTION_ADDBA_REQ:
2728 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2729 				   sizeof(mgmt->u.action.u.addba_req)))
2730 				goto invalid;
2731 			break;
2732 		case WLAN_ACTION_ADDBA_RESP:
2733 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2734 				   sizeof(mgmt->u.action.u.addba_resp)))
2735 				goto invalid;
2736 			break;
2737 		case WLAN_ACTION_DELBA:
2738 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2739 				   sizeof(mgmt->u.action.u.delba)))
2740 				goto invalid;
2741 			break;
2742 		default:
2743 			goto invalid;
2744 		}
2745 
2746 		goto queue;
2747 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2748 		/* verify action_code is present */
2749 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2750 			break;
2751 
2752 		switch (mgmt->u.action.u.measurement.action_code) {
2753 		case WLAN_ACTION_SPCT_MSR_REQ:
2754 			if (status->band != IEEE80211_BAND_5GHZ)
2755 				break;
2756 
2757 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2758 				   sizeof(mgmt->u.action.u.measurement)))
2759 				break;
2760 
2761 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2762 				break;
2763 
2764 			ieee80211_process_measurement_req(sdata, mgmt, len);
2765 			goto handled;
2766 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2767 			u8 *bssid;
2768 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2769 				   sizeof(mgmt->u.action.u.chan_switch)))
2770 				break;
2771 
2772 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2773 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2774 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2775 				break;
2776 
2777 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2778 				bssid = sdata->u.mgd.bssid;
2779 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2780 				bssid = sdata->u.ibss.bssid;
2781 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2782 				bssid = mgmt->sa;
2783 			else
2784 				break;
2785 
2786 			if (!ether_addr_equal(mgmt->bssid, bssid))
2787 				break;
2788 
2789 			goto queue;
2790 			}
2791 		}
2792 		break;
2793 	case WLAN_CATEGORY_SA_QUERY:
2794 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2795 			   sizeof(mgmt->u.action.u.sa_query)))
2796 			break;
2797 
2798 		switch (mgmt->u.action.u.sa_query.action) {
2799 		case WLAN_ACTION_SA_QUERY_REQUEST:
2800 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2801 				break;
2802 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2803 			goto handled;
2804 		}
2805 		break;
2806 	case WLAN_CATEGORY_SELF_PROTECTED:
2807 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2808 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2809 			break;
2810 
2811 		switch (mgmt->u.action.u.self_prot.action_code) {
2812 		case WLAN_SP_MESH_PEERING_OPEN:
2813 		case WLAN_SP_MESH_PEERING_CLOSE:
2814 		case WLAN_SP_MESH_PEERING_CONFIRM:
2815 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2816 				goto invalid;
2817 			if (sdata->u.mesh.user_mpm)
2818 				/* userspace handles this frame */
2819 				break;
2820 			goto queue;
2821 		case WLAN_SP_MGK_INFORM:
2822 		case WLAN_SP_MGK_ACK:
2823 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2824 				goto invalid;
2825 			break;
2826 		}
2827 		break;
2828 	case WLAN_CATEGORY_MESH_ACTION:
2829 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2830 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2831 			break;
2832 
2833 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2834 			break;
2835 		if (mesh_action_is_path_sel(mgmt) &&
2836 		    !mesh_path_sel_is_hwmp(sdata))
2837 			break;
2838 		goto queue;
2839 	}
2840 
2841 	return RX_CONTINUE;
2842 
2843  invalid:
2844 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2845 	/* will return in the next handlers */
2846 	return RX_CONTINUE;
2847 
2848  handled:
2849 	if (rx->sta)
2850 		rx->sta->rx_packets++;
2851 	dev_kfree_skb(rx->skb);
2852 	return RX_QUEUED;
2853 
2854  queue:
2855 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2856 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2857 	ieee80211_queue_work(&local->hw, &sdata->work);
2858 	if (rx->sta)
2859 		rx->sta->rx_packets++;
2860 	return RX_QUEUED;
2861 }
2862 
2863 static ieee80211_rx_result debug_noinline
2864 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2865 {
2866 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2867 	int sig = 0;
2868 
2869 	/* skip known-bad action frames and return them in the next handler */
2870 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2871 		return RX_CONTINUE;
2872 
2873 	/*
2874 	 * Getting here means the kernel doesn't know how to handle
2875 	 * it, but maybe userspace does ... include returned frames
2876 	 * so userspace can register for those to know whether ones
2877 	 * it transmitted were processed or returned.
2878 	 */
2879 
2880 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2881 		sig = status->signal;
2882 
2883 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2884 			     rx->skb->data, rx->skb->len, 0)) {
2885 		if (rx->sta)
2886 			rx->sta->rx_packets++;
2887 		dev_kfree_skb(rx->skb);
2888 		return RX_QUEUED;
2889 	}
2890 
2891 	return RX_CONTINUE;
2892 }
2893 
2894 static ieee80211_rx_result debug_noinline
2895 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2896 {
2897 	struct ieee80211_local *local = rx->local;
2898 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2899 	struct sk_buff *nskb;
2900 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2901 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2902 
2903 	if (!ieee80211_is_action(mgmt->frame_control))
2904 		return RX_CONTINUE;
2905 
2906 	/*
2907 	 * For AP mode, hostapd is responsible for handling any action
2908 	 * frames that we didn't handle, including returning unknown
2909 	 * ones. For all other modes we will return them to the sender,
2910 	 * setting the 0x80 bit in the action category, as required by
2911 	 * 802.11-2012 9.24.4.
2912 	 * Newer versions of hostapd shall also use the management frame
2913 	 * registration mechanisms, but older ones still use cooked
2914 	 * monitor interfaces so push all frames there.
2915 	 */
2916 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2917 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2918 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2919 		return RX_DROP_MONITOR;
2920 
2921 	if (is_multicast_ether_addr(mgmt->da))
2922 		return RX_DROP_MONITOR;
2923 
2924 	/* do not return rejected action frames */
2925 	if (mgmt->u.action.category & 0x80)
2926 		return RX_DROP_UNUSABLE;
2927 
2928 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2929 			       GFP_ATOMIC);
2930 	if (nskb) {
2931 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2932 
2933 		nmgmt->u.action.category |= 0x80;
2934 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2935 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2936 
2937 		memset(nskb->cb, 0, sizeof(nskb->cb));
2938 
2939 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2940 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2941 
2942 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2943 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2944 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2945 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2946 				info->hw_queue =
2947 					local->hw.offchannel_tx_hw_queue;
2948 		}
2949 
2950 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2951 					    status->band);
2952 	}
2953 	dev_kfree_skb(rx->skb);
2954 	return RX_QUEUED;
2955 }
2956 
2957 static ieee80211_rx_result debug_noinline
2958 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2959 {
2960 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2961 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2962 	__le16 stype;
2963 
2964 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2965 
2966 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2967 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2968 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
2969 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2970 		return RX_DROP_MONITOR;
2971 
2972 	switch (stype) {
2973 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2974 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2975 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2976 		/* process for all: mesh, mlme, ibss */
2977 		break;
2978 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2979 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2980 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2981 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2982 		if (is_multicast_ether_addr(mgmt->da) &&
2983 		    !is_broadcast_ether_addr(mgmt->da))
2984 			return RX_DROP_MONITOR;
2985 
2986 		/* process only for station */
2987 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2988 			return RX_DROP_MONITOR;
2989 		break;
2990 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2991 		/* process only for ibss and mesh */
2992 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2993 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2994 			return RX_DROP_MONITOR;
2995 		break;
2996 	default:
2997 		return RX_DROP_MONITOR;
2998 	}
2999 
3000 	/* queue up frame and kick off work to process it */
3001 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3002 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3003 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3004 	if (rx->sta)
3005 		rx->sta->rx_packets++;
3006 
3007 	return RX_QUEUED;
3008 }
3009 
3010 /* TODO: use IEEE80211_RX_FRAGMENTED */
3011 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3012 					struct ieee80211_rate *rate)
3013 {
3014 	struct ieee80211_sub_if_data *sdata;
3015 	struct ieee80211_local *local = rx->local;
3016 	struct sk_buff *skb = rx->skb, *skb2;
3017 	struct net_device *prev_dev = NULL;
3018 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3019 	int needed_headroom;
3020 
3021 	/*
3022 	 * If cooked monitor has been processed already, then
3023 	 * don't do it again. If not, set the flag.
3024 	 */
3025 	if (rx->flags & IEEE80211_RX_CMNTR)
3026 		goto out_free_skb;
3027 	rx->flags |= IEEE80211_RX_CMNTR;
3028 
3029 	/* If there are no cooked monitor interfaces, just free the SKB */
3030 	if (!local->cooked_mntrs)
3031 		goto out_free_skb;
3032 
3033 	/* vendor data is long removed here */
3034 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3035 	/* room for the radiotap header based on driver features */
3036 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3037 
3038 	if (skb_headroom(skb) < needed_headroom &&
3039 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3040 		goto out_free_skb;
3041 
3042 	/* prepend radiotap information */
3043 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3044 					 false);
3045 
3046 	skb_set_mac_header(skb, 0);
3047 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3048 	skb->pkt_type = PACKET_OTHERHOST;
3049 	skb->protocol = htons(ETH_P_802_2);
3050 
3051 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3052 		if (!ieee80211_sdata_running(sdata))
3053 			continue;
3054 
3055 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3056 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3057 			continue;
3058 
3059 		if (prev_dev) {
3060 			skb2 = skb_clone(skb, GFP_ATOMIC);
3061 			if (skb2) {
3062 				skb2->dev = prev_dev;
3063 				netif_receive_skb(skb2);
3064 			}
3065 		}
3066 
3067 		prev_dev = sdata->dev;
3068 		sdata->dev->stats.rx_packets++;
3069 		sdata->dev->stats.rx_bytes += skb->len;
3070 	}
3071 
3072 	if (prev_dev) {
3073 		skb->dev = prev_dev;
3074 		netif_receive_skb(skb);
3075 		return;
3076 	}
3077 
3078  out_free_skb:
3079 	dev_kfree_skb(skb);
3080 }
3081 
3082 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3083 					 ieee80211_rx_result res)
3084 {
3085 	switch (res) {
3086 	case RX_DROP_MONITOR:
3087 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3088 		if (rx->sta)
3089 			rx->sta->rx_dropped++;
3090 		/* fall through */
3091 	case RX_CONTINUE: {
3092 		struct ieee80211_rate *rate = NULL;
3093 		struct ieee80211_supported_band *sband;
3094 		struct ieee80211_rx_status *status;
3095 
3096 		status = IEEE80211_SKB_RXCB((rx->skb));
3097 
3098 		sband = rx->local->hw.wiphy->bands[status->band];
3099 		if (!(status->flag & RX_FLAG_HT) &&
3100 		    !(status->flag & RX_FLAG_VHT))
3101 			rate = &sband->bitrates[status->rate_idx];
3102 
3103 		ieee80211_rx_cooked_monitor(rx, rate);
3104 		break;
3105 		}
3106 	case RX_DROP_UNUSABLE:
3107 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3108 		if (rx->sta)
3109 			rx->sta->rx_dropped++;
3110 		dev_kfree_skb(rx->skb);
3111 		break;
3112 	case RX_QUEUED:
3113 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3114 		break;
3115 	}
3116 }
3117 
3118 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3119 				  struct sk_buff_head *frames)
3120 {
3121 	ieee80211_rx_result res = RX_DROP_MONITOR;
3122 	struct sk_buff *skb;
3123 
3124 #define CALL_RXH(rxh)			\
3125 	do {				\
3126 		res = rxh(rx);		\
3127 		if (res != RX_CONTINUE)	\
3128 			goto rxh_next;  \
3129 	} while (0);
3130 
3131 	spin_lock_bh(&rx->local->rx_path_lock);
3132 
3133 	while ((skb = __skb_dequeue(frames))) {
3134 		/*
3135 		 * all the other fields are valid across frames
3136 		 * that belong to an aMPDU since they are on the
3137 		 * same TID from the same station
3138 		 */
3139 		rx->skb = skb;
3140 
3141 		CALL_RXH(ieee80211_rx_h_check_more_data)
3142 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3143 		CALL_RXH(ieee80211_rx_h_sta_process)
3144 		CALL_RXH(ieee80211_rx_h_decrypt)
3145 		CALL_RXH(ieee80211_rx_h_defragment)
3146 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3147 		/* must be after MMIC verify so header is counted in MPDU mic */
3148 #ifdef CONFIG_MAC80211_MESH
3149 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3150 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3151 #endif
3152 		CALL_RXH(ieee80211_rx_h_amsdu)
3153 		CALL_RXH(ieee80211_rx_h_data)
3154 
3155 		/* special treatment -- needs the queue */
3156 		res = ieee80211_rx_h_ctrl(rx, frames);
3157 		if (res != RX_CONTINUE)
3158 			goto rxh_next;
3159 
3160 		CALL_RXH(ieee80211_rx_h_mgmt_check)
3161 		CALL_RXH(ieee80211_rx_h_action)
3162 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3163 		CALL_RXH(ieee80211_rx_h_action_return)
3164 		CALL_RXH(ieee80211_rx_h_mgmt)
3165 
3166  rxh_next:
3167 		ieee80211_rx_handlers_result(rx, res);
3168 
3169 #undef CALL_RXH
3170 	}
3171 
3172 	spin_unlock_bh(&rx->local->rx_path_lock);
3173 }
3174 
3175 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3176 {
3177 	struct sk_buff_head reorder_release;
3178 	ieee80211_rx_result res = RX_DROP_MONITOR;
3179 
3180 	__skb_queue_head_init(&reorder_release);
3181 
3182 #define CALL_RXH(rxh)			\
3183 	do {				\
3184 		res = rxh(rx);		\
3185 		if (res != RX_CONTINUE)	\
3186 			goto rxh_next;  \
3187 	} while (0);
3188 
3189 	CALL_RXH(ieee80211_rx_h_check_dup)
3190 	CALL_RXH(ieee80211_rx_h_check)
3191 
3192 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3193 
3194 	ieee80211_rx_handlers(rx, &reorder_release);
3195 	return;
3196 
3197  rxh_next:
3198 	ieee80211_rx_handlers_result(rx, res);
3199 
3200 #undef CALL_RXH
3201 }
3202 
3203 /*
3204  * This function makes calls into the RX path, therefore
3205  * it has to be invoked under RCU read lock.
3206  */
3207 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3208 {
3209 	struct sk_buff_head frames;
3210 	struct ieee80211_rx_data rx = {
3211 		.sta = sta,
3212 		.sdata = sta->sdata,
3213 		.local = sta->local,
3214 		/* This is OK -- must be QoS data frame */
3215 		.security_idx = tid,
3216 		.seqno_idx = tid,
3217 		.flags = 0,
3218 	};
3219 	struct tid_ampdu_rx *tid_agg_rx;
3220 
3221 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3222 	if (!tid_agg_rx)
3223 		return;
3224 
3225 	__skb_queue_head_init(&frames);
3226 
3227 	spin_lock(&tid_agg_rx->reorder_lock);
3228 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3229 	spin_unlock(&tid_agg_rx->reorder_lock);
3230 
3231 	ieee80211_rx_handlers(&rx, &frames);
3232 }
3233 
3234 /* main receive path */
3235 
3236 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3237 				 struct ieee80211_hdr *hdr)
3238 {
3239 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3240 	struct sk_buff *skb = rx->skb;
3241 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3242 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3243 	int multicast = is_multicast_ether_addr(hdr->addr1);
3244 
3245 	switch (sdata->vif.type) {
3246 	case NL80211_IFTYPE_STATION:
3247 		if (!bssid && !sdata->u.mgd.use_4addr)
3248 			return false;
3249 		if (!multicast &&
3250 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3251 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3252 			    sdata->u.mgd.use_4addr)
3253 				return false;
3254 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3255 		}
3256 		break;
3257 	case NL80211_IFTYPE_ADHOC:
3258 		if (!bssid)
3259 			return false;
3260 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3261 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3262 			return false;
3263 		if (ieee80211_is_beacon(hdr->frame_control)) {
3264 			return true;
3265 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3266 			return false;
3267 		} else if (!multicast &&
3268 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3269 			if (!(sdata->dev->flags & IFF_PROMISC))
3270 				return false;
3271 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3272 		} else if (!rx->sta) {
3273 			int rate_idx;
3274 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3275 				rate_idx = 0; /* TODO: HT/VHT rates */
3276 			else
3277 				rate_idx = status->rate_idx;
3278 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3279 						 BIT(rate_idx));
3280 		}
3281 		break;
3282 	case NL80211_IFTYPE_OCB:
3283 		if (!bssid)
3284 			return false;
3285 		if (ieee80211_is_beacon(hdr->frame_control)) {
3286 			return false;
3287 		} else if (!is_broadcast_ether_addr(bssid)) {
3288 			ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3289 			return false;
3290 		} else if (!multicast &&
3291 			   !ether_addr_equal(sdata->dev->dev_addr,
3292 					     hdr->addr1)) {
3293 			/* if we are in promisc mode we also accept
3294 			 * packets not destined for us
3295 			 */
3296 			if (!(sdata->dev->flags & IFF_PROMISC))
3297 				return false;
3298 			rx->flags &= ~IEEE80211_RX_RA_MATCH;
3299 		} else if (!rx->sta) {
3300 			int rate_idx;
3301 			if (status->flag & RX_FLAG_HT)
3302 				rate_idx = 0; /* TODO: HT rates */
3303 			else
3304 				rate_idx = status->rate_idx;
3305 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3306 						BIT(rate_idx));
3307 		}
3308 		break;
3309 	case NL80211_IFTYPE_MESH_POINT:
3310 		if (!multicast &&
3311 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3312 			if (!(sdata->dev->flags & IFF_PROMISC))
3313 				return false;
3314 
3315 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3316 		}
3317 		break;
3318 	case NL80211_IFTYPE_AP_VLAN:
3319 	case NL80211_IFTYPE_AP:
3320 		if (!bssid) {
3321 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3322 				return false;
3323 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3324 			/*
3325 			 * Accept public action frames even when the
3326 			 * BSSID doesn't match, this is used for P2P
3327 			 * and location updates. Note that mac80211
3328 			 * itself never looks at these frames.
3329 			 */
3330 			if (!multicast &&
3331 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3332 				return false;
3333 			if (ieee80211_is_public_action(hdr, skb->len))
3334 				return true;
3335 			if (!ieee80211_is_beacon(hdr->frame_control))
3336 				return false;
3337 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3338 		} else if (!ieee80211_has_tods(hdr->frame_control)) {
3339 			/* ignore data frames to TDLS-peers */
3340 			if (ieee80211_is_data(hdr->frame_control))
3341 				return false;
3342 			/* ignore action frames to TDLS-peers */
3343 			if (ieee80211_is_action(hdr->frame_control) &&
3344 			    !ether_addr_equal(bssid, hdr->addr1))
3345 				return false;
3346 		}
3347 		break;
3348 	case NL80211_IFTYPE_WDS:
3349 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3350 			return false;
3351 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3352 			return false;
3353 		break;
3354 	case NL80211_IFTYPE_P2P_DEVICE:
3355 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3356 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3357 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3358 		    !ieee80211_is_beacon(hdr->frame_control))
3359 			return false;
3360 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3361 		    !multicast)
3362 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3363 		break;
3364 	default:
3365 		/* should never get here */
3366 		WARN_ON_ONCE(1);
3367 		break;
3368 	}
3369 
3370 	return true;
3371 }
3372 
3373 /*
3374  * This function returns whether or not the SKB
3375  * was destined for RX processing or not, which,
3376  * if consume is true, is equivalent to whether
3377  * or not the skb was consumed.
3378  */
3379 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3380 					    struct sk_buff *skb, bool consume)
3381 {
3382 	struct ieee80211_local *local = rx->local;
3383 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3384 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3385 	struct ieee80211_hdr *hdr = (void *)skb->data;
3386 
3387 	rx->skb = skb;
3388 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3389 
3390 	if (!prepare_for_handlers(rx, hdr))
3391 		return false;
3392 
3393 	if (!consume) {
3394 		skb = skb_copy(skb, GFP_ATOMIC);
3395 		if (!skb) {
3396 			if (net_ratelimit())
3397 				wiphy_debug(local->hw.wiphy,
3398 					"failed to copy skb for %s\n",
3399 					sdata->name);
3400 			return true;
3401 		}
3402 
3403 		rx->skb = skb;
3404 	}
3405 
3406 	ieee80211_invoke_rx_handlers(rx);
3407 	return true;
3408 }
3409 
3410 /*
3411  * This is the actual Rx frames handler. as it belongs to Rx path it must
3412  * be called with rcu_read_lock protection.
3413  */
3414 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3415 					 struct sk_buff *skb)
3416 {
3417 	struct ieee80211_local *local = hw_to_local(hw);
3418 	struct ieee80211_sub_if_data *sdata;
3419 	struct ieee80211_hdr *hdr;
3420 	__le16 fc;
3421 	struct ieee80211_rx_data rx;
3422 	struct ieee80211_sub_if_data *prev;
3423 	struct sta_info *sta, *tmp, *prev_sta;
3424 	int err = 0;
3425 
3426 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3427 	memset(&rx, 0, sizeof(rx));
3428 	rx.skb = skb;
3429 	rx.local = local;
3430 
3431 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3432 		local->dot11ReceivedFragmentCount++;
3433 
3434 	if (ieee80211_is_mgmt(fc)) {
3435 		/* drop frame if too short for header */
3436 		if (skb->len < ieee80211_hdrlen(fc))
3437 			err = -ENOBUFS;
3438 		else
3439 			err = skb_linearize(skb);
3440 	} else {
3441 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3442 	}
3443 
3444 	if (err) {
3445 		dev_kfree_skb(skb);
3446 		return;
3447 	}
3448 
3449 	hdr = (struct ieee80211_hdr *)skb->data;
3450 	ieee80211_parse_qos(&rx);
3451 	ieee80211_verify_alignment(&rx);
3452 
3453 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3454 		     ieee80211_is_beacon(hdr->frame_control)))
3455 		ieee80211_scan_rx(local, skb);
3456 
3457 	if (ieee80211_is_data(fc)) {
3458 		prev_sta = NULL;
3459 
3460 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
3461 			if (!prev_sta) {
3462 				prev_sta = sta;
3463 				continue;
3464 			}
3465 
3466 			rx.sta = prev_sta;
3467 			rx.sdata = prev_sta->sdata;
3468 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3469 
3470 			prev_sta = sta;
3471 		}
3472 
3473 		if (prev_sta) {
3474 			rx.sta = prev_sta;
3475 			rx.sdata = prev_sta->sdata;
3476 
3477 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3478 				return;
3479 			goto out;
3480 		}
3481 	}
3482 
3483 	prev = NULL;
3484 
3485 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3486 		if (!ieee80211_sdata_running(sdata))
3487 			continue;
3488 
3489 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3490 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3491 			continue;
3492 
3493 		/*
3494 		 * frame is destined for this interface, but if it's
3495 		 * not also for the previous one we handle that after
3496 		 * the loop to avoid copying the SKB once too much
3497 		 */
3498 
3499 		if (!prev) {
3500 			prev = sdata;
3501 			continue;
3502 		}
3503 
3504 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3505 		rx.sdata = prev;
3506 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3507 
3508 		prev = sdata;
3509 	}
3510 
3511 	if (prev) {
3512 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3513 		rx.sdata = prev;
3514 
3515 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3516 			return;
3517 	}
3518 
3519  out:
3520 	dev_kfree_skb(skb);
3521 }
3522 
3523 /*
3524  * This is the receive path handler. It is called by a low level driver when an
3525  * 802.11 MPDU is received from the hardware.
3526  */
3527 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3528 {
3529 	struct ieee80211_local *local = hw_to_local(hw);
3530 	struct ieee80211_rate *rate = NULL;
3531 	struct ieee80211_supported_band *sband;
3532 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3533 
3534 	WARN_ON_ONCE(softirq_count() == 0);
3535 
3536 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3537 		goto drop;
3538 
3539 	sband = local->hw.wiphy->bands[status->band];
3540 	if (WARN_ON(!sband))
3541 		goto drop;
3542 
3543 	/*
3544 	 * If we're suspending, it is possible although not too likely
3545 	 * that we'd be receiving frames after having already partially
3546 	 * quiesced the stack. We can't process such frames then since
3547 	 * that might, for example, cause stations to be added or other
3548 	 * driver callbacks be invoked.
3549 	 */
3550 	if (unlikely(local->quiescing || local->suspended))
3551 		goto drop;
3552 
3553 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3554 	if (unlikely(local->in_reconfig))
3555 		goto drop;
3556 
3557 	/*
3558 	 * The same happens when we're not even started,
3559 	 * but that's worth a warning.
3560 	 */
3561 	if (WARN_ON(!local->started))
3562 		goto drop;
3563 
3564 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3565 		/*
3566 		 * Validate the rate, unless a PLCP error means that
3567 		 * we probably can't have a valid rate here anyway.
3568 		 */
3569 
3570 		if (status->flag & RX_FLAG_HT) {
3571 			/*
3572 			 * rate_idx is MCS index, which can be [0-76]
3573 			 * as documented on:
3574 			 *
3575 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3576 			 *
3577 			 * Anything else would be some sort of driver or
3578 			 * hardware error. The driver should catch hardware
3579 			 * errors.
3580 			 */
3581 			if (WARN(status->rate_idx > 76,
3582 				 "Rate marked as an HT rate but passed "
3583 				 "status->rate_idx is not "
3584 				 "an MCS index [0-76]: %d (0x%02x)\n",
3585 				 status->rate_idx,
3586 				 status->rate_idx))
3587 				goto drop;
3588 		} else if (status->flag & RX_FLAG_VHT) {
3589 			if (WARN_ONCE(status->rate_idx > 9 ||
3590 				      !status->vht_nss ||
3591 				      status->vht_nss > 8,
3592 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3593 				      status->rate_idx, status->vht_nss))
3594 				goto drop;
3595 		} else {
3596 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3597 				goto drop;
3598 			rate = &sband->bitrates[status->rate_idx];
3599 		}
3600 	}
3601 
3602 	status->rx_flags = 0;
3603 
3604 	/*
3605 	 * key references and virtual interfaces are protected using RCU
3606 	 * and this requires that we are in a read-side RCU section during
3607 	 * receive processing
3608 	 */
3609 	rcu_read_lock();
3610 
3611 	/*
3612 	 * Frames with failed FCS/PLCP checksum are not returned,
3613 	 * all other frames are returned without radiotap header
3614 	 * if it was previously present.
3615 	 * Also, frames with less than 16 bytes are dropped.
3616 	 */
3617 	skb = ieee80211_rx_monitor(local, skb, rate);
3618 	if (!skb) {
3619 		rcu_read_unlock();
3620 		return;
3621 	}
3622 
3623 	ieee80211_tpt_led_trig_rx(local,
3624 			((struct ieee80211_hdr *)skb->data)->frame_control,
3625 			skb->len);
3626 	__ieee80211_rx_handle_packet(hw, skb);
3627 
3628 	rcu_read_unlock();
3629 
3630 	return;
3631  drop:
3632 	kfree_skb(skb);
3633 }
3634 EXPORT_SYMBOL(ieee80211_rx);
3635 
3636 /* This is a version of the rx handler that can be called from hard irq
3637  * context. Post the skb on the queue and schedule the tasklet */
3638 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3639 {
3640 	struct ieee80211_local *local = hw_to_local(hw);
3641 
3642 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3643 
3644 	skb->pkt_type = IEEE80211_RX_MSG;
3645 	skb_queue_tail(&local->skb_queue, skb);
3646 	tasklet_schedule(&local->tasklet);
3647 }
3648 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3649