xref: /openbmc/linux/net/mac80211/rx.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
37 
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 {
40 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 
42 	u64_stats_update_begin(&tstats->syncp);
43 	tstats->rx_packets++;
44 	tstats->rx_bytes += len;
45 	u64_stats_update_end(&tstats->syncp);
46 }
47 
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			       enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_mgmt(fc)) {
68 		if (len < 24) /* drop incorrect hdr len (mgmt) */
69 			return NULL;
70 		return hdr->addr3;
71 	}
72 
73 	if (ieee80211_is_ctl(fc)) {
74 		if (ieee80211_is_pspoll(fc))
75 			return hdr->addr1;
76 
77 		if (ieee80211_is_back_req(fc)) {
78 			switch (type) {
79 			case NL80211_IFTYPE_STATION:
80 				return hdr->addr2;
81 			case NL80211_IFTYPE_AP:
82 			case NL80211_IFTYPE_AP_VLAN:
83 				return hdr->addr1;
84 			default:
85 				break; /* fall through to the return */
86 			}
87 		}
88 	}
89 
90 	return NULL;
91 }
92 
93 /*
94  * monitor mode reception
95  *
96  * This function cleans up the SKB, i.e. it removes all the stuff
97  * only useful for monitoring.
98  */
99 static void remove_monitor_info(struct sk_buff *skb,
100 				unsigned int present_fcs_len,
101 				unsigned int rtap_space)
102 {
103 	if (present_fcs_len)
104 		__pskb_trim(skb, skb->len - present_fcs_len);
105 	__pskb_pull(skb, rtap_space);
106 }
107 
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 				     unsigned int rtap_space)
110 {
111 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 	struct ieee80211_hdr *hdr;
113 
114 	hdr = (void *)(skb->data + rtap_space);
115 
116 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 			    RX_FLAG_FAILED_PLCP_CRC |
118 			    RX_FLAG_ONLY_MONITOR |
119 			    RX_FLAG_NO_PSDU))
120 		return true;
121 
122 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
123 		return true;
124 
125 	if (ieee80211_is_ctl(hdr->frame_control) &&
126 	    !ieee80211_is_pspoll(hdr->frame_control) &&
127 	    !ieee80211_is_back_req(hdr->frame_control))
128 		return true;
129 
130 	return false;
131 }
132 
133 static int
134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
135 			     struct ieee80211_rx_status *status,
136 			     struct sk_buff *skb)
137 {
138 	int len;
139 
140 	/* always present fields */
141 	len = sizeof(struct ieee80211_radiotap_header) + 8;
142 
143 	/* allocate extra bitmaps */
144 	if (status->chains)
145 		len += 4 * hweight8(status->chains);
146 	/* vendor presence bitmap */
147 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
148 		len += 4;
149 
150 	if (ieee80211_have_rx_timestamp(status)) {
151 		len = ALIGN(len, 8);
152 		len += 8;
153 	}
154 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
155 		len += 1;
156 
157 	/* antenna field, if we don't have per-chain info */
158 	if (!status->chains)
159 		len += 1;
160 
161 	/* padding for RX_FLAGS if necessary */
162 	len = ALIGN(len, 2);
163 
164 	if (status->encoding == RX_ENC_HT) /* HT info */
165 		len += 3;
166 
167 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
168 		len = ALIGN(len, 4);
169 		len += 8;
170 	}
171 
172 	if (status->encoding == RX_ENC_VHT) {
173 		len = ALIGN(len, 2);
174 		len += 12;
175 	}
176 
177 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
178 		len = ALIGN(len, 8);
179 		len += 12;
180 	}
181 
182 	if (status->encoding == RX_ENC_HE &&
183 	    status->flag & RX_FLAG_RADIOTAP_HE) {
184 		len = ALIGN(len, 2);
185 		len += 12;
186 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
187 	}
188 
189 	if (status->encoding == RX_ENC_HE &&
190 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
191 		len = ALIGN(len, 2);
192 		len += 12;
193 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
194 	}
195 
196 	if (status->flag & RX_FLAG_NO_PSDU)
197 		len += 1;
198 
199 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
200 		len = ALIGN(len, 2);
201 		len += 4;
202 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
203 	}
204 
205 	if (status->chains) {
206 		/* antenna and antenna signal fields */
207 		len += 2 * hweight8(status->chains);
208 	}
209 
210 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
211 		struct ieee80211_vendor_radiotap *rtap;
212 		int vendor_data_offset = 0;
213 
214 		/*
215 		 * The position to look at depends on the existence (or non-
216 		 * existence) of other elements, so take that into account...
217 		 */
218 		if (status->flag & RX_FLAG_RADIOTAP_HE)
219 			vendor_data_offset +=
220 				sizeof(struct ieee80211_radiotap_he);
221 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
222 			vendor_data_offset +=
223 				sizeof(struct ieee80211_radiotap_he_mu);
224 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
225 			vendor_data_offset +=
226 				sizeof(struct ieee80211_radiotap_lsig);
227 
228 		rtap = (void *)&skb->data[vendor_data_offset];
229 
230 		/* alignment for fixed 6-byte vendor data header */
231 		len = ALIGN(len, 2);
232 		/* vendor data header */
233 		len += 6;
234 		if (WARN_ON(rtap->align == 0))
235 			rtap->align = 1;
236 		len = ALIGN(len, rtap->align);
237 		len += rtap->len + rtap->pad;
238 	}
239 
240 	return len;
241 }
242 
243 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
244 					 struct sk_buff *skb,
245 					 int rtap_space)
246 {
247 	struct {
248 		struct ieee80211_hdr_3addr hdr;
249 		u8 category;
250 		u8 action_code;
251 	} __packed __aligned(2) action;
252 
253 	if (!sdata)
254 		return;
255 
256 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
257 
258 	if (skb->len < rtap_space + sizeof(action) +
259 		       VHT_MUMIMO_GROUPS_DATA_LEN)
260 		return;
261 
262 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
263 		return;
264 
265 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
266 
267 	if (!ieee80211_is_action(action.hdr.frame_control))
268 		return;
269 
270 	if (action.category != WLAN_CATEGORY_VHT)
271 		return;
272 
273 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
274 		return;
275 
276 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
277 		return;
278 
279 	skb = skb_copy(skb, GFP_ATOMIC);
280 	if (!skb)
281 		return;
282 
283 	skb_queue_tail(&sdata->skb_queue, skb);
284 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
285 }
286 
287 /*
288  * ieee80211_add_rx_radiotap_header - add radiotap header
289  *
290  * add a radiotap header containing all the fields which the hardware provided.
291  */
292 static void
293 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
294 				 struct sk_buff *skb,
295 				 struct ieee80211_rate *rate,
296 				 int rtap_len, bool has_fcs)
297 {
298 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
299 	struct ieee80211_radiotap_header *rthdr;
300 	unsigned char *pos;
301 	__le32 *it_present;
302 	u32 it_present_val;
303 	u16 rx_flags = 0;
304 	u16 channel_flags = 0;
305 	int mpdulen, chain;
306 	unsigned long chains = status->chains;
307 	struct ieee80211_vendor_radiotap rtap = {};
308 	struct ieee80211_radiotap_he he = {};
309 	struct ieee80211_radiotap_he_mu he_mu = {};
310 	struct ieee80211_radiotap_lsig lsig = {};
311 
312 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
313 		he = *(struct ieee80211_radiotap_he *)skb->data;
314 		skb_pull(skb, sizeof(he));
315 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
316 	}
317 
318 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
319 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
320 		skb_pull(skb, sizeof(he_mu));
321 	}
322 
323 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
324 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
325 		skb_pull(skb, sizeof(lsig));
326 	}
327 
328 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
329 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
330 		/* rtap.len and rtap.pad are undone immediately */
331 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
332 	}
333 
334 	mpdulen = skb->len;
335 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
336 		mpdulen += FCS_LEN;
337 
338 	rthdr = skb_push(skb, rtap_len);
339 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
340 	it_present = &rthdr->it_present;
341 
342 	/* radiotap header, set always present flags */
343 	rthdr->it_len = cpu_to_le16(rtap_len);
344 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
345 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
346 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
347 
348 	if (!status->chains)
349 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
350 
351 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
352 		it_present_val |=
353 			BIT(IEEE80211_RADIOTAP_EXT) |
354 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
355 		put_unaligned_le32(it_present_val, it_present);
356 		it_present++;
357 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
358 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
359 	}
360 
361 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
362 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
363 				  BIT(IEEE80211_RADIOTAP_EXT);
364 		put_unaligned_le32(it_present_val, it_present);
365 		it_present++;
366 		it_present_val = rtap.present;
367 	}
368 
369 	put_unaligned_le32(it_present_val, it_present);
370 
371 	pos = (void *)(it_present + 1);
372 
373 	/* the order of the following fields is important */
374 
375 	/* IEEE80211_RADIOTAP_TSFT */
376 	if (ieee80211_have_rx_timestamp(status)) {
377 		/* padding */
378 		while ((pos - (u8 *)rthdr) & 7)
379 			*pos++ = 0;
380 		put_unaligned_le64(
381 			ieee80211_calculate_rx_timestamp(local, status,
382 							 mpdulen, 0),
383 			pos);
384 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
385 		pos += 8;
386 	}
387 
388 	/* IEEE80211_RADIOTAP_FLAGS */
389 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
390 		*pos |= IEEE80211_RADIOTAP_F_FCS;
391 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
392 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
393 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
394 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
395 	pos++;
396 
397 	/* IEEE80211_RADIOTAP_RATE */
398 	if (!rate || status->encoding != RX_ENC_LEGACY) {
399 		/*
400 		 * Without rate information don't add it. If we have,
401 		 * MCS information is a separate field in radiotap,
402 		 * added below. The byte here is needed as padding
403 		 * for the channel though, so initialise it to 0.
404 		 */
405 		*pos = 0;
406 	} else {
407 		int shift = 0;
408 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
409 		if (status->bw == RATE_INFO_BW_10)
410 			shift = 1;
411 		else if (status->bw == RATE_INFO_BW_5)
412 			shift = 2;
413 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
414 	}
415 	pos++;
416 
417 	/* IEEE80211_RADIOTAP_CHANNEL */
418 	put_unaligned_le16(status->freq, pos);
419 	pos += 2;
420 	if (status->bw == RATE_INFO_BW_10)
421 		channel_flags |= IEEE80211_CHAN_HALF;
422 	else if (status->bw == RATE_INFO_BW_5)
423 		channel_flags |= IEEE80211_CHAN_QUARTER;
424 
425 	if (status->band == NL80211_BAND_5GHZ)
426 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
427 	else if (status->encoding != RX_ENC_LEGACY)
428 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
429 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
430 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
431 	else if (rate)
432 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
433 	else
434 		channel_flags |= IEEE80211_CHAN_2GHZ;
435 	put_unaligned_le16(channel_flags, pos);
436 	pos += 2;
437 
438 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
439 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
440 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
441 		*pos = status->signal;
442 		rthdr->it_present |=
443 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
444 		pos++;
445 	}
446 
447 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
448 
449 	if (!status->chains) {
450 		/* IEEE80211_RADIOTAP_ANTENNA */
451 		*pos = status->antenna;
452 		pos++;
453 	}
454 
455 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
456 
457 	/* IEEE80211_RADIOTAP_RX_FLAGS */
458 	/* ensure 2 byte alignment for the 2 byte field as required */
459 	if ((pos - (u8 *)rthdr) & 1)
460 		*pos++ = 0;
461 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
462 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
463 	put_unaligned_le16(rx_flags, pos);
464 	pos += 2;
465 
466 	if (status->encoding == RX_ENC_HT) {
467 		unsigned int stbc;
468 
469 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
470 		*pos++ = local->hw.radiotap_mcs_details;
471 		*pos = 0;
472 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
473 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
474 		if (status->bw == RATE_INFO_BW_40)
475 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
476 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
477 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
478 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
479 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
480 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
481 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
482 		pos++;
483 		*pos++ = status->rate_idx;
484 	}
485 
486 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
487 		u16 flags = 0;
488 
489 		/* ensure 4 byte alignment */
490 		while ((pos - (u8 *)rthdr) & 3)
491 			pos++;
492 		rthdr->it_present |=
493 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
494 		put_unaligned_le32(status->ampdu_reference, pos);
495 		pos += 4;
496 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
497 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
498 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
499 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
500 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
501 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
502 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
503 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
504 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
505 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
506 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
507 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
508 		put_unaligned_le16(flags, pos);
509 		pos += 2;
510 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
511 			*pos++ = status->ampdu_delimiter_crc;
512 		else
513 			*pos++ = 0;
514 		*pos++ = 0;
515 	}
516 
517 	if (status->encoding == RX_ENC_VHT) {
518 		u16 known = local->hw.radiotap_vht_details;
519 
520 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
521 		put_unaligned_le16(known, pos);
522 		pos += 2;
523 		/* flags */
524 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
525 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
526 		/* in VHT, STBC is binary */
527 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
528 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
529 		if (status->enc_flags & RX_ENC_FLAG_BF)
530 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
531 		pos++;
532 		/* bandwidth */
533 		switch (status->bw) {
534 		case RATE_INFO_BW_80:
535 			*pos++ = 4;
536 			break;
537 		case RATE_INFO_BW_160:
538 			*pos++ = 11;
539 			break;
540 		case RATE_INFO_BW_40:
541 			*pos++ = 1;
542 			break;
543 		default:
544 			*pos++ = 0;
545 		}
546 		/* MCS/NSS */
547 		*pos = (status->rate_idx << 4) | status->nss;
548 		pos += 4;
549 		/* coding field */
550 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
551 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
552 		pos++;
553 		/* group ID */
554 		pos++;
555 		/* partial_aid */
556 		pos += 2;
557 	}
558 
559 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
560 		u16 accuracy = 0;
561 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
562 
563 		rthdr->it_present |=
564 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
565 
566 		/* ensure 8 byte alignment */
567 		while ((pos - (u8 *)rthdr) & 7)
568 			pos++;
569 
570 		put_unaligned_le64(status->device_timestamp, pos);
571 		pos += sizeof(u64);
572 
573 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
574 			accuracy = local->hw.radiotap_timestamp.accuracy;
575 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
576 		}
577 		put_unaligned_le16(accuracy, pos);
578 		pos += sizeof(u16);
579 
580 		*pos++ = local->hw.radiotap_timestamp.units_pos;
581 		*pos++ = flags;
582 	}
583 
584 	if (status->encoding == RX_ENC_HE &&
585 	    status->flag & RX_FLAG_RADIOTAP_HE) {
586 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
587 
588 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
589 			he.data6 |= HE_PREP(DATA6_NSTS,
590 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
591 						      status->enc_flags));
592 			he.data3 |= HE_PREP(DATA3_STBC, 1);
593 		} else {
594 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
595 		}
596 
597 #define CHECK_GI(s) \
598 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
599 		     (int)NL80211_RATE_INFO_HE_GI_##s)
600 
601 		CHECK_GI(0_8);
602 		CHECK_GI(1_6);
603 		CHECK_GI(3_2);
604 
605 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
606 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
607 		he.data3 |= HE_PREP(DATA3_CODING,
608 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
609 
610 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
611 
612 		switch (status->bw) {
613 		case RATE_INFO_BW_20:
614 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
615 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
616 			break;
617 		case RATE_INFO_BW_40:
618 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
619 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
620 			break;
621 		case RATE_INFO_BW_80:
622 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
623 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
624 			break;
625 		case RATE_INFO_BW_160:
626 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
627 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
628 			break;
629 		case RATE_INFO_BW_HE_RU:
630 #define CHECK_RU_ALLOC(s) \
631 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
632 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
633 
634 			CHECK_RU_ALLOC(26);
635 			CHECK_RU_ALLOC(52);
636 			CHECK_RU_ALLOC(106);
637 			CHECK_RU_ALLOC(242);
638 			CHECK_RU_ALLOC(484);
639 			CHECK_RU_ALLOC(996);
640 			CHECK_RU_ALLOC(2x996);
641 
642 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
643 					    status->he_ru + 4);
644 			break;
645 		default:
646 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
647 		}
648 
649 		/* ensure 2 byte alignment */
650 		while ((pos - (u8 *)rthdr) & 1)
651 			pos++;
652 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
653 		memcpy(pos, &he, sizeof(he));
654 		pos += sizeof(he);
655 	}
656 
657 	if (status->encoding == RX_ENC_HE &&
658 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
659 		/* ensure 2 byte alignment */
660 		while ((pos - (u8 *)rthdr) & 1)
661 			pos++;
662 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
663 		memcpy(pos, &he_mu, sizeof(he_mu));
664 		pos += sizeof(he_mu);
665 	}
666 
667 	if (status->flag & RX_FLAG_NO_PSDU) {
668 		rthdr->it_present |=
669 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
670 		*pos++ = status->zero_length_psdu_type;
671 	}
672 
673 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
674 		/* ensure 2 byte alignment */
675 		while ((pos - (u8 *)rthdr) & 1)
676 			pos++;
677 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
678 		memcpy(pos, &lsig, sizeof(lsig));
679 		pos += sizeof(lsig);
680 	}
681 
682 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
683 		*pos++ = status->chain_signal[chain];
684 		*pos++ = chain;
685 	}
686 
687 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
688 		/* ensure 2 byte alignment for the vendor field as required */
689 		if ((pos - (u8 *)rthdr) & 1)
690 			*pos++ = 0;
691 		*pos++ = rtap.oui[0];
692 		*pos++ = rtap.oui[1];
693 		*pos++ = rtap.oui[2];
694 		*pos++ = rtap.subns;
695 		put_unaligned_le16(rtap.len, pos);
696 		pos += 2;
697 		/* align the actual payload as requested */
698 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
699 			*pos++ = 0;
700 		/* data (and possible padding) already follows */
701 	}
702 }
703 
704 static struct sk_buff *
705 ieee80211_make_monitor_skb(struct ieee80211_local *local,
706 			   struct sk_buff **origskb,
707 			   struct ieee80211_rate *rate,
708 			   int rtap_space, bool use_origskb)
709 {
710 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
711 	int rt_hdrlen, needed_headroom;
712 	struct sk_buff *skb;
713 
714 	/* room for the radiotap header based on driver features */
715 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
716 	needed_headroom = rt_hdrlen - rtap_space;
717 
718 	if (use_origskb) {
719 		/* only need to expand headroom if necessary */
720 		skb = *origskb;
721 		*origskb = NULL;
722 
723 		/*
724 		 * This shouldn't trigger often because most devices have an
725 		 * RX header they pull before we get here, and that should
726 		 * be big enough for our radiotap information. We should
727 		 * probably export the length to drivers so that we can have
728 		 * them allocate enough headroom to start with.
729 		 */
730 		if (skb_headroom(skb) < needed_headroom &&
731 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
732 			dev_kfree_skb(skb);
733 			return NULL;
734 		}
735 	} else {
736 		/*
737 		 * Need to make a copy and possibly remove radiotap header
738 		 * and FCS from the original.
739 		 */
740 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
741 
742 		if (!skb)
743 			return NULL;
744 	}
745 
746 	/* prepend radiotap information */
747 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
748 
749 	skb_reset_mac_header(skb);
750 	skb->ip_summed = CHECKSUM_UNNECESSARY;
751 	skb->pkt_type = PACKET_OTHERHOST;
752 	skb->protocol = htons(ETH_P_802_2);
753 
754 	return skb;
755 }
756 
757 /*
758  * This function copies a received frame to all monitor interfaces and
759  * returns a cleaned-up SKB that no longer includes the FCS nor the
760  * radiotap header the driver might have added.
761  */
762 static struct sk_buff *
763 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
764 		     struct ieee80211_rate *rate)
765 {
766 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
767 	struct ieee80211_sub_if_data *sdata;
768 	struct sk_buff *monskb = NULL;
769 	int present_fcs_len = 0;
770 	unsigned int rtap_space = 0;
771 	struct ieee80211_sub_if_data *monitor_sdata =
772 		rcu_dereference(local->monitor_sdata);
773 	bool only_monitor = false;
774 	unsigned int min_head_len;
775 
776 	if (status->flag & RX_FLAG_RADIOTAP_HE)
777 		rtap_space += sizeof(struct ieee80211_radiotap_he);
778 
779 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
780 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
781 
782 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
783 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
784 
785 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
786 		struct ieee80211_vendor_radiotap *rtap =
787 			(void *)(origskb->data + rtap_space);
788 
789 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
790 	}
791 
792 	min_head_len = rtap_space;
793 
794 	/*
795 	 * First, we may need to make a copy of the skb because
796 	 *  (1) we need to modify it for radiotap (if not present), and
797 	 *  (2) the other RX handlers will modify the skb we got.
798 	 *
799 	 * We don't need to, of course, if we aren't going to return
800 	 * the SKB because it has a bad FCS/PLCP checksum.
801 	 */
802 
803 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
804 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
805 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
806 				/* driver bug */
807 				WARN_ON(1);
808 				dev_kfree_skb(origskb);
809 				return NULL;
810 			}
811 			present_fcs_len = FCS_LEN;
812 		}
813 
814 		/* also consider the hdr->frame_control */
815 		min_head_len += 2;
816 	}
817 
818 	/* ensure that the expected data elements are in skb head */
819 	if (!pskb_may_pull(origskb, min_head_len)) {
820 		dev_kfree_skb(origskb);
821 		return NULL;
822 	}
823 
824 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
825 
826 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
827 		if (only_monitor) {
828 			dev_kfree_skb(origskb);
829 			return NULL;
830 		}
831 
832 		remove_monitor_info(origskb, present_fcs_len, rtap_space);
833 		return origskb;
834 	}
835 
836 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
837 
838 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
839 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
840 						 &local->mon_list);
841 
842 		if (!monskb)
843 			monskb = ieee80211_make_monitor_skb(local, &origskb,
844 							    rate, rtap_space,
845 							    only_monitor &&
846 							    last_monitor);
847 
848 		if (monskb) {
849 			struct sk_buff *skb;
850 
851 			if (last_monitor) {
852 				skb = monskb;
853 				monskb = NULL;
854 			} else {
855 				skb = skb_clone(monskb, GFP_ATOMIC);
856 			}
857 
858 			if (skb) {
859 				skb->dev = sdata->dev;
860 				ieee80211_rx_stats(skb->dev, skb->len);
861 				netif_receive_skb(skb);
862 			}
863 		}
864 
865 		if (last_monitor)
866 			break;
867 	}
868 
869 	/* this happens if last_monitor was erroneously false */
870 	dev_kfree_skb(monskb);
871 
872 	/* ditto */
873 	if (!origskb)
874 		return NULL;
875 
876 	remove_monitor_info(origskb, present_fcs_len, rtap_space);
877 	return origskb;
878 }
879 
880 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
881 {
882 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
883 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
884 	int tid, seqno_idx, security_idx;
885 
886 	/* does the frame have a qos control field? */
887 	if (ieee80211_is_data_qos(hdr->frame_control)) {
888 		u8 *qc = ieee80211_get_qos_ctl(hdr);
889 		/* frame has qos control */
890 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
891 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
892 			status->rx_flags |= IEEE80211_RX_AMSDU;
893 
894 		seqno_idx = tid;
895 		security_idx = tid;
896 	} else {
897 		/*
898 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
899 		 *
900 		 *	Sequence numbers for management frames, QoS data
901 		 *	frames with a broadcast/multicast address in the
902 		 *	Address 1 field, and all non-QoS data frames sent
903 		 *	by QoS STAs are assigned using an additional single
904 		 *	modulo-4096 counter, [...]
905 		 *
906 		 * We also use that counter for non-QoS STAs.
907 		 */
908 		seqno_idx = IEEE80211_NUM_TIDS;
909 		security_idx = 0;
910 		if (ieee80211_is_mgmt(hdr->frame_control))
911 			security_idx = IEEE80211_NUM_TIDS;
912 		tid = 0;
913 	}
914 
915 	rx->seqno_idx = seqno_idx;
916 	rx->security_idx = security_idx;
917 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
918 	 * For now, set skb->priority to 0 for other cases. */
919 	rx->skb->priority = (tid > 7) ? 0 : tid;
920 }
921 
922 /**
923  * DOC: Packet alignment
924  *
925  * Drivers always need to pass packets that are aligned to two-byte boundaries
926  * to the stack.
927  *
928  * Additionally, should, if possible, align the payload data in a way that
929  * guarantees that the contained IP header is aligned to a four-byte
930  * boundary. In the case of regular frames, this simply means aligning the
931  * payload to a four-byte boundary (because either the IP header is directly
932  * contained, or IV/RFC1042 headers that have a length divisible by four are
933  * in front of it).  If the payload data is not properly aligned and the
934  * architecture doesn't support efficient unaligned operations, mac80211
935  * will align the data.
936  *
937  * With A-MSDU frames, however, the payload data address must yield two modulo
938  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
939  * push the IP header further back to a multiple of four again. Thankfully, the
940  * specs were sane enough this time around to require padding each A-MSDU
941  * subframe to a length that is a multiple of four.
942  *
943  * Padding like Atheros hardware adds which is between the 802.11 header and
944  * the payload is not supported, the driver is required to move the 802.11
945  * header to be directly in front of the payload in that case.
946  */
947 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
948 {
949 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
950 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
951 #endif
952 }
953 
954 
955 /* rx handlers */
956 
957 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
958 {
959 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
960 
961 	if (is_multicast_ether_addr(hdr->addr1))
962 		return 0;
963 
964 	return ieee80211_is_robust_mgmt_frame(skb);
965 }
966 
967 
968 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
969 {
970 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
971 
972 	if (!is_multicast_ether_addr(hdr->addr1))
973 		return 0;
974 
975 	return ieee80211_is_robust_mgmt_frame(skb);
976 }
977 
978 
979 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
980 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
981 {
982 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
983 	struct ieee80211_mmie *mmie;
984 	struct ieee80211_mmie_16 *mmie16;
985 
986 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
987 		return -1;
988 
989 	if (!ieee80211_is_robust_mgmt_frame(skb))
990 		return -1; /* not a robust management frame */
991 
992 	mmie = (struct ieee80211_mmie *)
993 		(skb->data + skb->len - sizeof(*mmie));
994 	if (mmie->element_id == WLAN_EID_MMIE &&
995 	    mmie->length == sizeof(*mmie) - 2)
996 		return le16_to_cpu(mmie->key_id);
997 
998 	mmie16 = (struct ieee80211_mmie_16 *)
999 		(skb->data + skb->len - sizeof(*mmie16));
1000 	if (skb->len >= 24 + sizeof(*mmie16) &&
1001 	    mmie16->element_id == WLAN_EID_MMIE &&
1002 	    mmie16->length == sizeof(*mmie16) - 2)
1003 		return le16_to_cpu(mmie16->key_id);
1004 
1005 	return -1;
1006 }
1007 
1008 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
1009 				  struct sk_buff *skb)
1010 {
1011 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1012 	__le16 fc;
1013 	int hdrlen;
1014 	u8 keyid;
1015 
1016 	fc = hdr->frame_control;
1017 	hdrlen = ieee80211_hdrlen(fc);
1018 
1019 	if (skb->len < hdrlen + cs->hdr_len)
1020 		return -EINVAL;
1021 
1022 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
1023 	keyid &= cs->key_idx_mask;
1024 	keyid >>= cs->key_idx_shift;
1025 
1026 	return keyid;
1027 }
1028 
1029 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1030 {
1031 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1032 	char *dev_addr = rx->sdata->vif.addr;
1033 
1034 	if (ieee80211_is_data(hdr->frame_control)) {
1035 		if (is_multicast_ether_addr(hdr->addr1)) {
1036 			if (ieee80211_has_tods(hdr->frame_control) ||
1037 			    !ieee80211_has_fromds(hdr->frame_control))
1038 				return RX_DROP_MONITOR;
1039 			if (ether_addr_equal(hdr->addr3, dev_addr))
1040 				return RX_DROP_MONITOR;
1041 		} else {
1042 			if (!ieee80211_has_a4(hdr->frame_control))
1043 				return RX_DROP_MONITOR;
1044 			if (ether_addr_equal(hdr->addr4, dev_addr))
1045 				return RX_DROP_MONITOR;
1046 		}
1047 	}
1048 
1049 	/* If there is not an established peer link and this is not a peer link
1050 	 * establisment frame, beacon or probe, drop the frame.
1051 	 */
1052 
1053 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1054 		struct ieee80211_mgmt *mgmt;
1055 
1056 		if (!ieee80211_is_mgmt(hdr->frame_control))
1057 			return RX_DROP_MONITOR;
1058 
1059 		if (ieee80211_is_action(hdr->frame_control)) {
1060 			u8 category;
1061 
1062 			/* make sure category field is present */
1063 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1064 				return RX_DROP_MONITOR;
1065 
1066 			mgmt = (struct ieee80211_mgmt *)hdr;
1067 			category = mgmt->u.action.category;
1068 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1069 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1070 				return RX_DROP_MONITOR;
1071 			return RX_CONTINUE;
1072 		}
1073 
1074 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1075 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1076 		    ieee80211_is_beacon(hdr->frame_control) ||
1077 		    ieee80211_is_auth(hdr->frame_control))
1078 			return RX_CONTINUE;
1079 
1080 		return RX_DROP_MONITOR;
1081 	}
1082 
1083 	return RX_CONTINUE;
1084 }
1085 
1086 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1087 					      int index)
1088 {
1089 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1090 	struct sk_buff *tail = skb_peek_tail(frames);
1091 	struct ieee80211_rx_status *status;
1092 
1093 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1094 		return true;
1095 
1096 	if (!tail)
1097 		return false;
1098 
1099 	status = IEEE80211_SKB_RXCB(tail);
1100 	if (status->flag & RX_FLAG_AMSDU_MORE)
1101 		return false;
1102 
1103 	return true;
1104 }
1105 
1106 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1107 					    struct tid_ampdu_rx *tid_agg_rx,
1108 					    int index,
1109 					    struct sk_buff_head *frames)
1110 {
1111 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1112 	struct sk_buff *skb;
1113 	struct ieee80211_rx_status *status;
1114 
1115 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1116 
1117 	if (skb_queue_empty(skb_list))
1118 		goto no_frame;
1119 
1120 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1121 		__skb_queue_purge(skb_list);
1122 		goto no_frame;
1123 	}
1124 
1125 	/* release frames from the reorder ring buffer */
1126 	tid_agg_rx->stored_mpdu_num--;
1127 	while ((skb = __skb_dequeue(skb_list))) {
1128 		status = IEEE80211_SKB_RXCB(skb);
1129 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1130 		__skb_queue_tail(frames, skb);
1131 	}
1132 
1133 no_frame:
1134 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1135 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1136 }
1137 
1138 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1139 					     struct tid_ampdu_rx *tid_agg_rx,
1140 					     u16 head_seq_num,
1141 					     struct sk_buff_head *frames)
1142 {
1143 	int index;
1144 
1145 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1146 
1147 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1148 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1149 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1150 						frames);
1151 	}
1152 }
1153 
1154 /*
1155  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1156  * the skb was added to the buffer longer than this time ago, the earlier
1157  * frames that have not yet been received are assumed to be lost and the skb
1158  * can be released for processing. This may also release other skb's from the
1159  * reorder buffer if there are no additional gaps between the frames.
1160  *
1161  * Callers must hold tid_agg_rx->reorder_lock.
1162  */
1163 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1164 
1165 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1166 					  struct tid_ampdu_rx *tid_agg_rx,
1167 					  struct sk_buff_head *frames)
1168 {
1169 	int index, i, j;
1170 
1171 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1172 
1173 	/* release the buffer until next missing frame */
1174 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1175 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1176 	    tid_agg_rx->stored_mpdu_num) {
1177 		/*
1178 		 * No buffers ready to be released, but check whether any
1179 		 * frames in the reorder buffer have timed out.
1180 		 */
1181 		int skipped = 1;
1182 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1183 		     j = (j + 1) % tid_agg_rx->buf_size) {
1184 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1185 				skipped++;
1186 				continue;
1187 			}
1188 			if (skipped &&
1189 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1190 					HT_RX_REORDER_BUF_TIMEOUT))
1191 				goto set_release_timer;
1192 
1193 			/* don't leave incomplete A-MSDUs around */
1194 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1195 			     i = (i + 1) % tid_agg_rx->buf_size)
1196 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1197 
1198 			ht_dbg_ratelimited(sdata,
1199 					   "release an RX reorder frame due to timeout on earlier frames\n");
1200 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1201 							frames);
1202 
1203 			/*
1204 			 * Increment the head seq# also for the skipped slots.
1205 			 */
1206 			tid_agg_rx->head_seq_num =
1207 				(tid_agg_rx->head_seq_num +
1208 				 skipped) & IEEE80211_SN_MASK;
1209 			skipped = 0;
1210 		}
1211 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1212 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1213 						frames);
1214 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1215 	}
1216 
1217 	if (tid_agg_rx->stored_mpdu_num) {
1218 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1219 
1220 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1221 		     j = (j + 1) % tid_agg_rx->buf_size) {
1222 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1223 				break;
1224 		}
1225 
1226  set_release_timer:
1227 
1228 		if (!tid_agg_rx->removed)
1229 			mod_timer(&tid_agg_rx->reorder_timer,
1230 				  tid_agg_rx->reorder_time[j] + 1 +
1231 				  HT_RX_REORDER_BUF_TIMEOUT);
1232 	} else {
1233 		del_timer(&tid_agg_rx->reorder_timer);
1234 	}
1235 }
1236 
1237 /*
1238  * As this function belongs to the RX path it must be under
1239  * rcu_read_lock protection. It returns false if the frame
1240  * can be processed immediately, true if it was consumed.
1241  */
1242 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1243 					     struct tid_ampdu_rx *tid_agg_rx,
1244 					     struct sk_buff *skb,
1245 					     struct sk_buff_head *frames)
1246 {
1247 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1248 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1249 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1250 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1251 	u16 head_seq_num, buf_size;
1252 	int index;
1253 	bool ret = true;
1254 
1255 	spin_lock(&tid_agg_rx->reorder_lock);
1256 
1257 	/*
1258 	 * Offloaded BA sessions have no known starting sequence number so pick
1259 	 * one from first Rxed frame for this tid after BA was started.
1260 	 */
1261 	if (unlikely(tid_agg_rx->auto_seq)) {
1262 		tid_agg_rx->auto_seq = false;
1263 		tid_agg_rx->ssn = mpdu_seq_num;
1264 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1265 	}
1266 
1267 	buf_size = tid_agg_rx->buf_size;
1268 	head_seq_num = tid_agg_rx->head_seq_num;
1269 
1270 	/*
1271 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1272 	 * be reordered.
1273 	 */
1274 	if (unlikely(!tid_agg_rx->started)) {
1275 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1276 			ret = false;
1277 			goto out;
1278 		}
1279 		tid_agg_rx->started = true;
1280 	}
1281 
1282 	/* frame with out of date sequence number */
1283 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1284 		dev_kfree_skb(skb);
1285 		goto out;
1286 	}
1287 
1288 	/*
1289 	 * If frame the sequence number exceeds our buffering window
1290 	 * size release some previous frames to make room for this one.
1291 	 */
1292 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1293 		head_seq_num = ieee80211_sn_inc(
1294 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1295 		/* release stored frames up to new head to stack */
1296 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1297 						 head_seq_num, frames);
1298 	}
1299 
1300 	/* Now the new frame is always in the range of the reordering buffer */
1301 
1302 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1303 
1304 	/* check if we already stored this frame */
1305 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1306 		dev_kfree_skb(skb);
1307 		goto out;
1308 	}
1309 
1310 	/*
1311 	 * If the current MPDU is in the right order and nothing else
1312 	 * is stored we can process it directly, no need to buffer it.
1313 	 * If it is first but there's something stored, we may be able
1314 	 * to release frames after this one.
1315 	 */
1316 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1317 	    tid_agg_rx->stored_mpdu_num == 0) {
1318 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1319 			tid_agg_rx->head_seq_num =
1320 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1321 		ret = false;
1322 		goto out;
1323 	}
1324 
1325 	/* put the frame in the reordering buffer */
1326 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1327 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1328 		tid_agg_rx->reorder_time[index] = jiffies;
1329 		tid_agg_rx->stored_mpdu_num++;
1330 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1331 	}
1332 
1333  out:
1334 	spin_unlock(&tid_agg_rx->reorder_lock);
1335 	return ret;
1336 }
1337 
1338 /*
1339  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1340  * true if the MPDU was buffered, false if it should be processed.
1341  */
1342 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1343 				       struct sk_buff_head *frames)
1344 {
1345 	struct sk_buff *skb = rx->skb;
1346 	struct ieee80211_local *local = rx->local;
1347 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1348 	struct sta_info *sta = rx->sta;
1349 	struct tid_ampdu_rx *tid_agg_rx;
1350 	u16 sc;
1351 	u8 tid, ack_policy;
1352 
1353 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1354 	    is_multicast_ether_addr(hdr->addr1))
1355 		goto dont_reorder;
1356 
1357 	/*
1358 	 * filter the QoS data rx stream according to
1359 	 * STA/TID and check if this STA/TID is on aggregation
1360 	 */
1361 
1362 	if (!sta)
1363 		goto dont_reorder;
1364 
1365 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1366 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1367 	tid = ieee80211_get_tid(hdr);
1368 
1369 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1370 	if (!tid_agg_rx) {
1371 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1372 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1373 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1374 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1375 					     WLAN_BACK_RECIPIENT,
1376 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1377 		goto dont_reorder;
1378 	}
1379 
1380 	/* qos null data frames are excluded */
1381 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1382 		goto dont_reorder;
1383 
1384 	/* not part of a BA session */
1385 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1386 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1387 		goto dont_reorder;
1388 
1389 	/* new, potentially un-ordered, ampdu frame - process it */
1390 
1391 	/* reset session timer */
1392 	if (tid_agg_rx->timeout)
1393 		tid_agg_rx->last_rx = jiffies;
1394 
1395 	/* if this mpdu is fragmented - terminate rx aggregation session */
1396 	sc = le16_to_cpu(hdr->seq_ctrl);
1397 	if (sc & IEEE80211_SCTL_FRAG) {
1398 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1399 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1400 		return;
1401 	}
1402 
1403 	/*
1404 	 * No locking needed -- we will only ever process one
1405 	 * RX packet at a time, and thus own tid_agg_rx. All
1406 	 * other code manipulating it needs to (and does) make
1407 	 * sure that we cannot get to it any more before doing
1408 	 * anything with it.
1409 	 */
1410 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1411 					     frames))
1412 		return;
1413 
1414  dont_reorder:
1415 	__skb_queue_tail(frames, skb);
1416 }
1417 
1418 static ieee80211_rx_result debug_noinline
1419 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1420 {
1421 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1422 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1423 
1424 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1425 		return RX_CONTINUE;
1426 
1427 	/*
1428 	 * Drop duplicate 802.11 retransmissions
1429 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1430 	 */
1431 
1432 	if (rx->skb->len < 24)
1433 		return RX_CONTINUE;
1434 
1435 	if (ieee80211_is_ctl(hdr->frame_control) ||
1436 	    ieee80211_is_nullfunc(hdr->frame_control) ||
1437 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1438 	    is_multicast_ether_addr(hdr->addr1))
1439 		return RX_CONTINUE;
1440 
1441 	if (!rx->sta)
1442 		return RX_CONTINUE;
1443 
1444 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1445 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1446 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1447 		rx->sta->rx_stats.num_duplicates++;
1448 		return RX_DROP_UNUSABLE;
1449 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1450 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1451 	}
1452 
1453 	return RX_CONTINUE;
1454 }
1455 
1456 static ieee80211_rx_result debug_noinline
1457 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1458 {
1459 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1460 
1461 	/* Drop disallowed frame classes based on STA auth/assoc state;
1462 	 * IEEE 802.11, Chap 5.5.
1463 	 *
1464 	 * mac80211 filters only based on association state, i.e. it drops
1465 	 * Class 3 frames from not associated stations. hostapd sends
1466 	 * deauth/disassoc frames when needed. In addition, hostapd is
1467 	 * responsible for filtering on both auth and assoc states.
1468 	 */
1469 
1470 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1471 		return ieee80211_rx_mesh_check(rx);
1472 
1473 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1474 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1475 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1476 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1477 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1478 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1479 		/*
1480 		 * accept port control frames from the AP even when it's not
1481 		 * yet marked ASSOC to prevent a race where we don't set the
1482 		 * assoc bit quickly enough before it sends the first frame
1483 		 */
1484 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1485 		    ieee80211_is_data_present(hdr->frame_control)) {
1486 			unsigned int hdrlen;
1487 			__be16 ethertype;
1488 
1489 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1490 
1491 			if (rx->skb->len < hdrlen + 8)
1492 				return RX_DROP_MONITOR;
1493 
1494 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1495 			if (ethertype == rx->sdata->control_port_protocol)
1496 				return RX_CONTINUE;
1497 		}
1498 
1499 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1500 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1501 					       hdr->addr2,
1502 					       GFP_ATOMIC))
1503 			return RX_DROP_UNUSABLE;
1504 
1505 		return RX_DROP_MONITOR;
1506 	}
1507 
1508 	return RX_CONTINUE;
1509 }
1510 
1511 
1512 static ieee80211_rx_result debug_noinline
1513 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1514 {
1515 	struct ieee80211_local *local;
1516 	struct ieee80211_hdr *hdr;
1517 	struct sk_buff *skb;
1518 
1519 	local = rx->local;
1520 	skb = rx->skb;
1521 	hdr = (struct ieee80211_hdr *) skb->data;
1522 
1523 	if (!local->pspolling)
1524 		return RX_CONTINUE;
1525 
1526 	if (!ieee80211_has_fromds(hdr->frame_control))
1527 		/* this is not from AP */
1528 		return RX_CONTINUE;
1529 
1530 	if (!ieee80211_is_data(hdr->frame_control))
1531 		return RX_CONTINUE;
1532 
1533 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1534 		/* AP has no more frames buffered for us */
1535 		local->pspolling = false;
1536 		return RX_CONTINUE;
1537 	}
1538 
1539 	/* more data bit is set, let's request a new frame from the AP */
1540 	ieee80211_send_pspoll(local, rx->sdata);
1541 
1542 	return RX_CONTINUE;
1543 }
1544 
1545 static void sta_ps_start(struct sta_info *sta)
1546 {
1547 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1548 	struct ieee80211_local *local = sdata->local;
1549 	struct ps_data *ps;
1550 	int tid;
1551 
1552 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1553 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1554 		ps = &sdata->bss->ps;
1555 	else
1556 		return;
1557 
1558 	atomic_inc(&ps->num_sta_ps);
1559 	set_sta_flag(sta, WLAN_STA_PS_STA);
1560 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1561 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1562 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1563 	       sta->sta.addr, sta->sta.aid);
1564 
1565 	ieee80211_clear_fast_xmit(sta);
1566 
1567 	if (!sta->sta.txq[0])
1568 		return;
1569 
1570 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1571 		if (txq_has_queue(sta->sta.txq[tid]))
1572 			set_bit(tid, &sta->txq_buffered_tids);
1573 		else
1574 			clear_bit(tid, &sta->txq_buffered_tids);
1575 	}
1576 }
1577 
1578 static void sta_ps_end(struct sta_info *sta)
1579 {
1580 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1581 	       sta->sta.addr, sta->sta.aid);
1582 
1583 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1584 		/*
1585 		 * Clear the flag only if the other one is still set
1586 		 * so that the TX path won't start TX'ing new frames
1587 		 * directly ... In the case that the driver flag isn't
1588 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1589 		 */
1590 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1591 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1592 		       sta->sta.addr, sta->sta.aid);
1593 		return;
1594 	}
1595 
1596 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1597 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1598 	ieee80211_sta_ps_deliver_wakeup(sta);
1599 }
1600 
1601 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1602 {
1603 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1604 	bool in_ps;
1605 
1606 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1607 
1608 	/* Don't let the same PS state be set twice */
1609 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1610 	if ((start && in_ps) || (!start && !in_ps))
1611 		return -EINVAL;
1612 
1613 	if (start)
1614 		sta_ps_start(sta);
1615 	else
1616 		sta_ps_end(sta);
1617 
1618 	return 0;
1619 }
1620 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1621 
1622 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1623 {
1624 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1625 
1626 	if (test_sta_flag(sta, WLAN_STA_SP))
1627 		return;
1628 
1629 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1630 		ieee80211_sta_ps_deliver_poll_response(sta);
1631 	else
1632 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1633 }
1634 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1635 
1636 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1637 {
1638 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1639 	int ac = ieee80211_ac_from_tid(tid);
1640 
1641 	/*
1642 	 * If this AC is not trigger-enabled do nothing unless the
1643 	 * driver is calling us after it already checked.
1644 	 *
1645 	 * NB: This could/should check a separate bitmap of trigger-
1646 	 * enabled queues, but for now we only implement uAPSD w/o
1647 	 * TSPEC changes to the ACs, so they're always the same.
1648 	 */
1649 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1650 	    tid != IEEE80211_NUM_TIDS)
1651 		return;
1652 
1653 	/* if we are in a service period, do nothing */
1654 	if (test_sta_flag(sta, WLAN_STA_SP))
1655 		return;
1656 
1657 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1658 		ieee80211_sta_ps_deliver_uapsd(sta);
1659 	else
1660 		set_sta_flag(sta, WLAN_STA_UAPSD);
1661 }
1662 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1663 
1664 static ieee80211_rx_result debug_noinline
1665 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1666 {
1667 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1668 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1669 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1670 
1671 	if (!rx->sta)
1672 		return RX_CONTINUE;
1673 
1674 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1675 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1676 		return RX_CONTINUE;
1677 
1678 	/*
1679 	 * The device handles station powersave, so don't do anything about
1680 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1681 	 * it to mac80211 since they're handled.)
1682 	 */
1683 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1684 		return RX_CONTINUE;
1685 
1686 	/*
1687 	 * Don't do anything if the station isn't already asleep. In
1688 	 * the uAPSD case, the station will probably be marked asleep,
1689 	 * in the PS-Poll case the station must be confused ...
1690 	 */
1691 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1692 		return RX_CONTINUE;
1693 
1694 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1695 		ieee80211_sta_pspoll(&rx->sta->sta);
1696 
1697 		/* Free PS Poll skb here instead of returning RX_DROP that would
1698 		 * count as an dropped frame. */
1699 		dev_kfree_skb(rx->skb);
1700 
1701 		return RX_QUEUED;
1702 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1703 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1704 		   ieee80211_has_pm(hdr->frame_control) &&
1705 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1706 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1707 		u8 tid = ieee80211_get_tid(hdr);
1708 
1709 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1710 	}
1711 
1712 	return RX_CONTINUE;
1713 }
1714 
1715 static ieee80211_rx_result debug_noinline
1716 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1717 {
1718 	struct sta_info *sta = rx->sta;
1719 	struct sk_buff *skb = rx->skb;
1720 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1721 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1722 	int i;
1723 
1724 	if (!sta)
1725 		return RX_CONTINUE;
1726 
1727 	/*
1728 	 * Update last_rx only for IBSS packets which are for the current
1729 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1730 	 * current IBSS network alive in cases where other STAs start
1731 	 * using different BSSID. This will also give the station another
1732 	 * chance to restart the authentication/authorization in case
1733 	 * something went wrong the first time.
1734 	 */
1735 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1736 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1737 						NL80211_IFTYPE_ADHOC);
1738 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1739 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1740 			sta->rx_stats.last_rx = jiffies;
1741 			if (ieee80211_is_data(hdr->frame_control) &&
1742 			    !is_multicast_ether_addr(hdr->addr1))
1743 				sta->rx_stats.last_rate =
1744 					sta_stats_encode_rate(status);
1745 		}
1746 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1747 		sta->rx_stats.last_rx = jiffies;
1748 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1749 		/*
1750 		 * Mesh beacons will update last_rx when if they are found to
1751 		 * match the current local configuration when processed.
1752 		 */
1753 		sta->rx_stats.last_rx = jiffies;
1754 		if (ieee80211_is_data(hdr->frame_control))
1755 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1756 	}
1757 
1758 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1759 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1760 
1761 	sta->rx_stats.fragments++;
1762 
1763 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1764 	sta->rx_stats.bytes += rx->skb->len;
1765 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1766 
1767 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1768 		sta->rx_stats.last_signal = status->signal;
1769 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1770 	}
1771 
1772 	if (status->chains) {
1773 		sta->rx_stats.chains = status->chains;
1774 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1775 			int signal = status->chain_signal[i];
1776 
1777 			if (!(status->chains & BIT(i)))
1778 				continue;
1779 
1780 			sta->rx_stats.chain_signal_last[i] = signal;
1781 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1782 					-signal);
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * Change STA power saving mode only at the end of a frame
1788 	 * exchange sequence, and only for a data or management
1789 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1790 	 */
1791 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1792 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1793 	    !is_multicast_ether_addr(hdr->addr1) &&
1794 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1795 	     ieee80211_is_data(hdr->frame_control)) &&
1796 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1797 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1798 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1799 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1800 			if (!ieee80211_has_pm(hdr->frame_control))
1801 				sta_ps_end(sta);
1802 		} else {
1803 			if (ieee80211_has_pm(hdr->frame_control))
1804 				sta_ps_start(sta);
1805 		}
1806 	}
1807 
1808 	/* mesh power save support */
1809 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1810 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1811 
1812 	/*
1813 	 * Drop (qos-)data::nullfunc frames silently, since they
1814 	 * are used only to control station power saving mode.
1815 	 */
1816 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1817 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1818 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1819 
1820 		/*
1821 		 * If we receive a 4-addr nullfunc frame from a STA
1822 		 * that was not moved to a 4-addr STA vlan yet send
1823 		 * the event to userspace and for older hostapd drop
1824 		 * the frame to the monitor interface.
1825 		 */
1826 		if (ieee80211_has_a4(hdr->frame_control) &&
1827 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1828 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1829 		      !rx->sdata->u.vlan.sta))) {
1830 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1831 				cfg80211_rx_unexpected_4addr_frame(
1832 					rx->sdata->dev, sta->sta.addr,
1833 					GFP_ATOMIC);
1834 			return RX_DROP_MONITOR;
1835 		}
1836 		/*
1837 		 * Update counter and free packet here to avoid
1838 		 * counting this as a dropped packed.
1839 		 */
1840 		sta->rx_stats.packets++;
1841 		dev_kfree_skb(rx->skb);
1842 		return RX_QUEUED;
1843 	}
1844 
1845 	return RX_CONTINUE;
1846 } /* ieee80211_rx_h_sta_process */
1847 
1848 static ieee80211_rx_result debug_noinline
1849 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1850 {
1851 	struct sk_buff *skb = rx->skb;
1852 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1853 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1854 	int keyidx;
1855 	int hdrlen;
1856 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1857 	struct ieee80211_key *sta_ptk = NULL;
1858 	int mmie_keyidx = -1;
1859 	__le16 fc;
1860 	const struct ieee80211_cipher_scheme *cs = NULL;
1861 
1862 	/*
1863 	 * Key selection 101
1864 	 *
1865 	 * There are four types of keys:
1866 	 *  - GTK (group keys)
1867 	 *  - IGTK (group keys for management frames)
1868 	 *  - PTK (pairwise keys)
1869 	 *  - STK (station-to-station pairwise keys)
1870 	 *
1871 	 * When selecting a key, we have to distinguish between multicast
1872 	 * (including broadcast) and unicast frames, the latter can only
1873 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1874 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1875 	 * unicast frames can also use key indices like GTKs. Hence, if we
1876 	 * don't have a PTK/STK we check the key index for a WEP key.
1877 	 *
1878 	 * Note that in a regular BSS, multicast frames are sent by the
1879 	 * AP only, associated stations unicast the frame to the AP first
1880 	 * which then multicasts it on their behalf.
1881 	 *
1882 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1883 	 * with each station, that is something we don't currently handle.
1884 	 * The spec seems to expect that one negotiates the same key with
1885 	 * every station but there's no such requirement; VLANs could be
1886 	 * possible.
1887 	 */
1888 
1889 	/* start without a key */
1890 	rx->key = NULL;
1891 	fc = hdr->frame_control;
1892 
1893 	if (rx->sta) {
1894 		int keyid = rx->sta->ptk_idx;
1895 
1896 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1897 			cs = rx->sta->cipher_scheme;
1898 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1899 			if (unlikely(keyid < 0))
1900 				return RX_DROP_UNUSABLE;
1901 		}
1902 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1903 	}
1904 
1905 	if (!ieee80211_has_protected(fc))
1906 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1907 
1908 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1909 		rx->key = sta_ptk;
1910 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1911 		    (status->flag & RX_FLAG_IV_STRIPPED))
1912 			return RX_CONTINUE;
1913 		/* Skip decryption if the frame is not protected. */
1914 		if (!ieee80211_has_protected(fc))
1915 			return RX_CONTINUE;
1916 	} else if (mmie_keyidx >= 0) {
1917 		/* Broadcast/multicast robust management frame / BIP */
1918 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1919 		    (status->flag & RX_FLAG_IV_STRIPPED))
1920 			return RX_CONTINUE;
1921 
1922 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1923 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1924 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1925 		if (rx->sta) {
1926 			if (ieee80211_is_group_privacy_action(skb) &&
1927 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1928 				return RX_DROP_MONITOR;
1929 
1930 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1931 		}
1932 		if (!rx->key)
1933 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1934 	} else if (!ieee80211_has_protected(fc)) {
1935 		/*
1936 		 * The frame was not protected, so skip decryption. However, we
1937 		 * need to set rx->key if there is a key that could have been
1938 		 * used so that the frame may be dropped if encryption would
1939 		 * have been expected.
1940 		 */
1941 		struct ieee80211_key *key = NULL;
1942 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1943 		int i;
1944 
1945 		if (ieee80211_is_mgmt(fc) &&
1946 		    is_multicast_ether_addr(hdr->addr1) &&
1947 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1948 			rx->key = key;
1949 		else {
1950 			if (rx->sta) {
1951 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1952 					key = rcu_dereference(rx->sta->gtk[i]);
1953 					if (key)
1954 						break;
1955 				}
1956 			}
1957 			if (!key) {
1958 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1959 					key = rcu_dereference(sdata->keys[i]);
1960 					if (key)
1961 						break;
1962 				}
1963 			}
1964 			if (key)
1965 				rx->key = key;
1966 		}
1967 		return RX_CONTINUE;
1968 	} else {
1969 		u8 keyid;
1970 
1971 		/*
1972 		 * The device doesn't give us the IV so we won't be
1973 		 * able to look up the key. That's ok though, we
1974 		 * don't need to decrypt the frame, we just won't
1975 		 * be able to keep statistics accurate.
1976 		 * Except for key threshold notifications, should
1977 		 * we somehow allow the driver to tell us which key
1978 		 * the hardware used if this flag is set?
1979 		 */
1980 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1981 		    (status->flag & RX_FLAG_IV_STRIPPED))
1982 			return RX_CONTINUE;
1983 
1984 		hdrlen = ieee80211_hdrlen(fc);
1985 
1986 		if (cs) {
1987 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1988 
1989 			if (unlikely(keyidx < 0))
1990 				return RX_DROP_UNUSABLE;
1991 		} else {
1992 			if (rx->skb->len < 8 + hdrlen)
1993 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1994 			/*
1995 			 * no need to call ieee80211_wep_get_keyidx,
1996 			 * it verifies a bunch of things we've done already
1997 			 */
1998 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1999 			keyidx = keyid >> 6;
2000 		}
2001 
2002 		/* check per-station GTK first, if multicast packet */
2003 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2004 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2005 
2006 		/* if not found, try default key */
2007 		if (!rx->key) {
2008 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2009 
2010 			/*
2011 			 * RSNA-protected unicast frames should always be
2012 			 * sent with pairwise or station-to-station keys,
2013 			 * but for WEP we allow using a key index as well.
2014 			 */
2015 			if (rx->key &&
2016 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2017 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2018 			    !is_multicast_ether_addr(hdr->addr1))
2019 				rx->key = NULL;
2020 		}
2021 	}
2022 
2023 	if (rx->key) {
2024 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2025 			return RX_DROP_MONITOR;
2026 
2027 		/* TODO: add threshold stuff again */
2028 	} else {
2029 		return RX_DROP_MONITOR;
2030 	}
2031 
2032 	switch (rx->key->conf.cipher) {
2033 	case WLAN_CIPHER_SUITE_WEP40:
2034 	case WLAN_CIPHER_SUITE_WEP104:
2035 		result = ieee80211_crypto_wep_decrypt(rx);
2036 		break;
2037 	case WLAN_CIPHER_SUITE_TKIP:
2038 		result = ieee80211_crypto_tkip_decrypt(rx);
2039 		break;
2040 	case WLAN_CIPHER_SUITE_CCMP:
2041 		result = ieee80211_crypto_ccmp_decrypt(
2042 			rx, IEEE80211_CCMP_MIC_LEN);
2043 		break;
2044 	case WLAN_CIPHER_SUITE_CCMP_256:
2045 		result = ieee80211_crypto_ccmp_decrypt(
2046 			rx, IEEE80211_CCMP_256_MIC_LEN);
2047 		break;
2048 	case WLAN_CIPHER_SUITE_AES_CMAC:
2049 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2050 		break;
2051 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2052 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2053 		break;
2054 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2055 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2056 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2057 		break;
2058 	case WLAN_CIPHER_SUITE_GCMP:
2059 	case WLAN_CIPHER_SUITE_GCMP_256:
2060 		result = ieee80211_crypto_gcmp_decrypt(rx);
2061 		break;
2062 	default:
2063 		result = ieee80211_crypto_hw_decrypt(rx);
2064 	}
2065 
2066 	/* the hdr variable is invalid after the decrypt handlers */
2067 
2068 	/* either the frame has been decrypted or will be dropped */
2069 	status->flag |= RX_FLAG_DECRYPTED;
2070 
2071 	return result;
2072 }
2073 
2074 static inline struct ieee80211_fragment_entry *
2075 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2076 			 unsigned int frag, unsigned int seq, int rx_queue,
2077 			 struct sk_buff **skb)
2078 {
2079 	struct ieee80211_fragment_entry *entry;
2080 
2081 	entry = &sdata->fragments[sdata->fragment_next++];
2082 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2083 		sdata->fragment_next = 0;
2084 
2085 	if (!skb_queue_empty(&entry->skb_list))
2086 		__skb_queue_purge(&entry->skb_list);
2087 
2088 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2089 	*skb = NULL;
2090 	entry->first_frag_time = jiffies;
2091 	entry->seq = seq;
2092 	entry->rx_queue = rx_queue;
2093 	entry->last_frag = frag;
2094 	entry->check_sequential_pn = false;
2095 	entry->extra_len = 0;
2096 
2097 	return entry;
2098 }
2099 
2100 static inline struct ieee80211_fragment_entry *
2101 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2102 			  unsigned int frag, unsigned int seq,
2103 			  int rx_queue, struct ieee80211_hdr *hdr)
2104 {
2105 	struct ieee80211_fragment_entry *entry;
2106 	int i, idx;
2107 
2108 	idx = sdata->fragment_next;
2109 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2110 		struct ieee80211_hdr *f_hdr;
2111 		struct sk_buff *f_skb;
2112 
2113 		idx--;
2114 		if (idx < 0)
2115 			idx = IEEE80211_FRAGMENT_MAX - 1;
2116 
2117 		entry = &sdata->fragments[idx];
2118 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2119 		    entry->rx_queue != rx_queue ||
2120 		    entry->last_frag + 1 != frag)
2121 			continue;
2122 
2123 		f_skb = __skb_peek(&entry->skb_list);
2124 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2125 
2126 		/*
2127 		 * Check ftype and addresses are equal, else check next fragment
2128 		 */
2129 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2130 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2131 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2132 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2133 			continue;
2134 
2135 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2136 			__skb_queue_purge(&entry->skb_list);
2137 			continue;
2138 		}
2139 		return entry;
2140 	}
2141 
2142 	return NULL;
2143 }
2144 
2145 static ieee80211_rx_result debug_noinline
2146 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2147 {
2148 	struct ieee80211_hdr *hdr;
2149 	u16 sc;
2150 	__le16 fc;
2151 	unsigned int frag, seq;
2152 	struct ieee80211_fragment_entry *entry;
2153 	struct sk_buff *skb;
2154 
2155 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2156 	fc = hdr->frame_control;
2157 
2158 	if (ieee80211_is_ctl(fc))
2159 		return RX_CONTINUE;
2160 
2161 	sc = le16_to_cpu(hdr->seq_ctrl);
2162 	frag = sc & IEEE80211_SCTL_FRAG;
2163 
2164 	if (is_multicast_ether_addr(hdr->addr1)) {
2165 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2166 		goto out_no_led;
2167 	}
2168 
2169 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2170 		goto out;
2171 
2172 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2173 
2174 	if (skb_linearize(rx->skb))
2175 		return RX_DROP_UNUSABLE;
2176 
2177 	/*
2178 	 *  skb_linearize() might change the skb->data and
2179 	 *  previously cached variables (in this case, hdr) need to
2180 	 *  be refreshed with the new data.
2181 	 */
2182 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2183 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2184 
2185 	if (frag == 0) {
2186 		/* This is the first fragment of a new frame. */
2187 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2188 						 rx->seqno_idx, &(rx->skb));
2189 		if (rx->key &&
2190 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2191 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2192 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2193 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2194 		    ieee80211_has_protected(fc)) {
2195 			int queue = rx->security_idx;
2196 
2197 			/* Store CCMP/GCMP PN so that we can verify that the
2198 			 * next fragment has a sequential PN value.
2199 			 */
2200 			entry->check_sequential_pn = true;
2201 			memcpy(entry->last_pn,
2202 			       rx->key->u.ccmp.rx_pn[queue],
2203 			       IEEE80211_CCMP_PN_LEN);
2204 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2205 					      u.ccmp.rx_pn) !=
2206 				     offsetof(struct ieee80211_key,
2207 					      u.gcmp.rx_pn));
2208 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2209 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2210 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2211 				     IEEE80211_GCMP_PN_LEN);
2212 		}
2213 		return RX_QUEUED;
2214 	}
2215 
2216 	/* This is a fragment for a frame that should already be pending in
2217 	 * fragment cache. Add this fragment to the end of the pending entry.
2218 	 */
2219 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2220 					  rx->seqno_idx, hdr);
2221 	if (!entry) {
2222 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2223 		return RX_DROP_MONITOR;
2224 	}
2225 
2226 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2227 	 *  MPDU PN values are not incrementing in steps of 1."
2228 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2229 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2230 	 */
2231 	if (entry->check_sequential_pn) {
2232 		int i;
2233 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2234 		int queue;
2235 
2236 		if (!rx->key ||
2237 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2238 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2239 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2240 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2241 			return RX_DROP_UNUSABLE;
2242 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2243 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2244 			pn[i]++;
2245 			if (pn[i])
2246 				break;
2247 		}
2248 		queue = rx->security_idx;
2249 		rpn = rx->key->u.ccmp.rx_pn[queue];
2250 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2251 			return RX_DROP_UNUSABLE;
2252 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2253 	}
2254 
2255 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2256 	__skb_queue_tail(&entry->skb_list, rx->skb);
2257 	entry->last_frag = frag;
2258 	entry->extra_len += rx->skb->len;
2259 	if (ieee80211_has_morefrags(fc)) {
2260 		rx->skb = NULL;
2261 		return RX_QUEUED;
2262 	}
2263 
2264 	rx->skb = __skb_dequeue(&entry->skb_list);
2265 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2266 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2267 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2268 					      GFP_ATOMIC))) {
2269 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2270 			__skb_queue_purge(&entry->skb_list);
2271 			return RX_DROP_UNUSABLE;
2272 		}
2273 	}
2274 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2275 		skb_put_data(rx->skb, skb->data, skb->len);
2276 		dev_kfree_skb(skb);
2277 	}
2278 
2279  out:
2280 	ieee80211_led_rx(rx->local);
2281  out_no_led:
2282 	if (rx->sta)
2283 		rx->sta->rx_stats.packets++;
2284 	return RX_CONTINUE;
2285 }
2286 
2287 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2288 {
2289 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2290 		return -EACCES;
2291 
2292 	return 0;
2293 }
2294 
2295 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2296 {
2297 	struct sk_buff *skb = rx->skb;
2298 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2299 
2300 	/*
2301 	 * Pass through unencrypted frames if the hardware has
2302 	 * decrypted them already.
2303 	 */
2304 	if (status->flag & RX_FLAG_DECRYPTED)
2305 		return 0;
2306 
2307 	/* Drop unencrypted frames if key is set. */
2308 	if (unlikely(!ieee80211_has_protected(fc) &&
2309 		     !ieee80211_is_nullfunc(fc) &&
2310 		     ieee80211_is_data(fc) && rx->key))
2311 		return -EACCES;
2312 
2313 	return 0;
2314 }
2315 
2316 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2317 {
2318 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2319 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2320 	__le16 fc = hdr->frame_control;
2321 
2322 	/*
2323 	 * Pass through unencrypted frames if the hardware has
2324 	 * decrypted them already.
2325 	 */
2326 	if (status->flag & RX_FLAG_DECRYPTED)
2327 		return 0;
2328 
2329 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2330 		if (unlikely(!ieee80211_has_protected(fc) &&
2331 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2332 			     rx->key)) {
2333 			if (ieee80211_is_deauth(fc) ||
2334 			    ieee80211_is_disassoc(fc))
2335 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2336 							     rx->skb->data,
2337 							     rx->skb->len);
2338 			return -EACCES;
2339 		}
2340 		/* BIP does not use Protected field, so need to check MMIE */
2341 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2342 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2343 			if (ieee80211_is_deauth(fc) ||
2344 			    ieee80211_is_disassoc(fc))
2345 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2346 							     rx->skb->data,
2347 							     rx->skb->len);
2348 			return -EACCES;
2349 		}
2350 		/*
2351 		 * When using MFP, Action frames are not allowed prior to
2352 		 * having configured keys.
2353 		 */
2354 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2355 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2356 			return -EACCES;
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 static int
2363 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2364 {
2365 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2366 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2367 	bool check_port_control = false;
2368 	struct ethhdr *ehdr;
2369 	int ret;
2370 
2371 	*port_control = false;
2372 	if (ieee80211_has_a4(hdr->frame_control) &&
2373 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2374 		return -1;
2375 
2376 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2377 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2378 
2379 		if (!sdata->u.mgd.use_4addr)
2380 			return -1;
2381 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2382 			check_port_control = true;
2383 	}
2384 
2385 	if (is_multicast_ether_addr(hdr->addr1) &&
2386 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2387 		return -1;
2388 
2389 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2390 	if (ret < 0)
2391 		return ret;
2392 
2393 	ehdr = (struct ethhdr *) rx->skb->data;
2394 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2395 		*port_control = true;
2396 	else if (check_port_control)
2397 		return -1;
2398 
2399 	return 0;
2400 }
2401 
2402 /*
2403  * requires that rx->skb is a frame with ethernet header
2404  */
2405 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2406 {
2407 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2408 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2409 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2410 
2411 	/*
2412 	 * Allow EAPOL frames to us/the PAE group address regardless
2413 	 * of whether the frame was encrypted or not.
2414 	 */
2415 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2416 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2417 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2418 		return true;
2419 
2420 	if (ieee80211_802_1x_port_control(rx) ||
2421 	    ieee80211_drop_unencrypted(rx, fc))
2422 		return false;
2423 
2424 	return true;
2425 }
2426 
2427 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2428 						 struct ieee80211_rx_data *rx)
2429 {
2430 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2431 	struct net_device *dev = sdata->dev;
2432 
2433 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2434 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2435 		     sdata->control_port_over_nl80211)) {
2436 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2437 		bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2438 
2439 		cfg80211_rx_control_port(dev, skb, noencrypt);
2440 		dev_kfree_skb(skb);
2441 	} else {
2442 		/* deliver to local stack */
2443 		if (rx->napi)
2444 			napi_gro_receive(rx->napi, skb);
2445 		else
2446 			netif_receive_skb(skb);
2447 	}
2448 }
2449 
2450 /*
2451  * requires that rx->skb is a frame with ethernet header
2452  */
2453 static void
2454 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2455 {
2456 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2457 	struct net_device *dev = sdata->dev;
2458 	struct sk_buff *skb, *xmit_skb;
2459 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2460 	struct sta_info *dsta;
2461 
2462 	skb = rx->skb;
2463 	xmit_skb = NULL;
2464 
2465 	ieee80211_rx_stats(dev, skb->len);
2466 
2467 	if (rx->sta) {
2468 		/* The seqno index has the same property as needed
2469 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2470 		 * for non-QoS-data frames. Here we know it's a data
2471 		 * frame, so count MSDUs.
2472 		 */
2473 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2474 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2475 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2476 	}
2477 
2478 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2479 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2480 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2481 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2482 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2483 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2484 			/*
2485 			 * send multicast frames both to higher layers in
2486 			 * local net stack and back to the wireless medium
2487 			 */
2488 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2489 			if (!xmit_skb)
2490 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2491 						    dev->name);
2492 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2493 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2494 			dsta = sta_info_get(sdata, ehdr->h_dest);
2495 			if (dsta) {
2496 				/*
2497 				 * The destination station is associated to
2498 				 * this AP (in this VLAN), so send the frame
2499 				 * directly to it and do not pass it to local
2500 				 * net stack.
2501 				 */
2502 				xmit_skb = skb;
2503 				skb = NULL;
2504 			}
2505 		}
2506 	}
2507 
2508 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2509 	if (skb) {
2510 		/* 'align' will only take the values 0 or 2 here since all
2511 		 * frames are required to be aligned to 2-byte boundaries
2512 		 * when being passed to mac80211; the code here works just
2513 		 * as well if that isn't true, but mac80211 assumes it can
2514 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2515 		 */
2516 		int align;
2517 
2518 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2519 		if (align) {
2520 			if (WARN_ON(skb_headroom(skb) < 3)) {
2521 				dev_kfree_skb(skb);
2522 				skb = NULL;
2523 			} else {
2524 				u8 *data = skb->data;
2525 				size_t len = skb_headlen(skb);
2526 				skb->data -= align;
2527 				memmove(skb->data, data, len);
2528 				skb_set_tail_pointer(skb, len);
2529 			}
2530 		}
2531 	}
2532 #endif
2533 
2534 	if (skb) {
2535 		skb->protocol = eth_type_trans(skb, dev);
2536 		memset(skb->cb, 0, sizeof(skb->cb));
2537 
2538 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2539 	}
2540 
2541 	if (xmit_skb) {
2542 		/*
2543 		 * Send to wireless media and increase priority by 256 to
2544 		 * keep the received priority instead of reclassifying
2545 		 * the frame (see cfg80211_classify8021d).
2546 		 */
2547 		xmit_skb->priority += 256;
2548 		xmit_skb->protocol = htons(ETH_P_802_3);
2549 		skb_reset_network_header(xmit_skb);
2550 		skb_reset_mac_header(xmit_skb);
2551 		dev_queue_xmit(xmit_skb);
2552 	}
2553 }
2554 
2555 static ieee80211_rx_result debug_noinline
2556 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2557 {
2558 	struct net_device *dev = rx->sdata->dev;
2559 	struct sk_buff *skb = rx->skb;
2560 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2561 	__le16 fc = hdr->frame_control;
2562 	struct sk_buff_head frame_list;
2563 	struct ethhdr ethhdr;
2564 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2565 
2566 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2567 		check_da = NULL;
2568 		check_sa = NULL;
2569 	} else switch (rx->sdata->vif.type) {
2570 		case NL80211_IFTYPE_AP:
2571 		case NL80211_IFTYPE_AP_VLAN:
2572 			check_da = NULL;
2573 			break;
2574 		case NL80211_IFTYPE_STATION:
2575 			if (!rx->sta ||
2576 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2577 				check_sa = NULL;
2578 			break;
2579 		case NL80211_IFTYPE_MESH_POINT:
2580 			check_sa = NULL;
2581 			break;
2582 		default:
2583 			break;
2584 	}
2585 
2586 	skb->dev = dev;
2587 	__skb_queue_head_init(&frame_list);
2588 
2589 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2590 					  rx->sdata->vif.addr,
2591 					  rx->sdata->vif.type,
2592 					  data_offset))
2593 		return RX_DROP_UNUSABLE;
2594 
2595 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2596 				 rx->sdata->vif.type,
2597 				 rx->local->hw.extra_tx_headroom,
2598 				 check_da, check_sa);
2599 
2600 	while (!skb_queue_empty(&frame_list)) {
2601 		rx->skb = __skb_dequeue(&frame_list);
2602 
2603 		if (!ieee80211_frame_allowed(rx, fc)) {
2604 			dev_kfree_skb(rx->skb);
2605 			continue;
2606 		}
2607 
2608 		ieee80211_deliver_skb(rx);
2609 	}
2610 
2611 	return RX_QUEUED;
2612 }
2613 
2614 static ieee80211_rx_result debug_noinline
2615 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2616 {
2617 	struct sk_buff *skb = rx->skb;
2618 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2619 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2620 	__le16 fc = hdr->frame_control;
2621 
2622 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2623 		return RX_CONTINUE;
2624 
2625 	if (unlikely(!ieee80211_is_data(fc)))
2626 		return RX_CONTINUE;
2627 
2628 	if (unlikely(!ieee80211_is_data_present(fc)))
2629 		return RX_DROP_MONITOR;
2630 
2631 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2632 		switch (rx->sdata->vif.type) {
2633 		case NL80211_IFTYPE_AP_VLAN:
2634 			if (!rx->sdata->u.vlan.sta)
2635 				return RX_DROP_UNUSABLE;
2636 			break;
2637 		case NL80211_IFTYPE_STATION:
2638 			if (!rx->sdata->u.mgd.use_4addr)
2639 				return RX_DROP_UNUSABLE;
2640 			break;
2641 		default:
2642 			return RX_DROP_UNUSABLE;
2643 		}
2644 	}
2645 
2646 	if (is_multicast_ether_addr(hdr->addr1))
2647 		return RX_DROP_UNUSABLE;
2648 
2649 	return __ieee80211_rx_h_amsdu(rx, 0);
2650 }
2651 
2652 #ifdef CONFIG_MAC80211_MESH
2653 static ieee80211_rx_result
2654 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2655 {
2656 	struct ieee80211_hdr *fwd_hdr, *hdr;
2657 	struct ieee80211_tx_info *info;
2658 	struct ieee80211s_hdr *mesh_hdr;
2659 	struct sk_buff *skb = rx->skb, *fwd_skb;
2660 	struct ieee80211_local *local = rx->local;
2661 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2662 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2663 	u16 ac, q, hdrlen;
2664 	int tailroom = 0;
2665 
2666 	hdr = (struct ieee80211_hdr *) skb->data;
2667 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2668 
2669 	/* make sure fixed part of mesh header is there, also checks skb len */
2670 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2671 		return RX_DROP_MONITOR;
2672 
2673 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2674 
2675 	/* make sure full mesh header is there, also checks skb len */
2676 	if (!pskb_may_pull(rx->skb,
2677 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2678 		return RX_DROP_MONITOR;
2679 
2680 	/* reload pointers */
2681 	hdr = (struct ieee80211_hdr *) skb->data;
2682 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2683 
2684 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2685 		return RX_DROP_MONITOR;
2686 
2687 	/* frame is in RMC, don't forward */
2688 	if (ieee80211_is_data(hdr->frame_control) &&
2689 	    is_multicast_ether_addr(hdr->addr1) &&
2690 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2691 		return RX_DROP_MONITOR;
2692 
2693 	if (!ieee80211_is_data(hdr->frame_control))
2694 		return RX_CONTINUE;
2695 
2696 	if (!mesh_hdr->ttl)
2697 		return RX_DROP_MONITOR;
2698 
2699 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2700 		struct mesh_path *mppath;
2701 		char *proxied_addr;
2702 		char *mpp_addr;
2703 
2704 		if (is_multicast_ether_addr(hdr->addr1)) {
2705 			mpp_addr = hdr->addr3;
2706 			proxied_addr = mesh_hdr->eaddr1;
2707 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2708 			    MESH_FLAGS_AE_A5_A6) {
2709 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2710 			mpp_addr = hdr->addr4;
2711 			proxied_addr = mesh_hdr->eaddr2;
2712 		} else {
2713 			return RX_DROP_MONITOR;
2714 		}
2715 
2716 		rcu_read_lock();
2717 		mppath = mpp_path_lookup(sdata, proxied_addr);
2718 		if (!mppath) {
2719 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2720 		} else {
2721 			spin_lock_bh(&mppath->state_lock);
2722 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2723 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2724 			mppath->exp_time = jiffies;
2725 			spin_unlock_bh(&mppath->state_lock);
2726 		}
2727 		rcu_read_unlock();
2728 	}
2729 
2730 	/* Frame has reached destination.  Don't forward */
2731 	if (!is_multicast_ether_addr(hdr->addr1) &&
2732 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2733 		return RX_CONTINUE;
2734 
2735 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2736 	q = sdata->vif.hw_queue[ac];
2737 	if (ieee80211_queue_stopped(&local->hw, q)) {
2738 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2739 		return RX_DROP_MONITOR;
2740 	}
2741 	skb_set_queue_mapping(skb, q);
2742 
2743 	if (!--mesh_hdr->ttl) {
2744 		if (!is_multicast_ether_addr(hdr->addr1))
2745 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2746 						     dropped_frames_ttl);
2747 		goto out;
2748 	}
2749 
2750 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2751 		goto out;
2752 
2753 	if (sdata->crypto_tx_tailroom_needed_cnt)
2754 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2755 
2756 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2757 				       sdata->encrypt_headroom,
2758 				  tailroom, GFP_ATOMIC);
2759 	if (!fwd_skb)
2760 		goto out;
2761 
2762 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2763 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2764 	info = IEEE80211_SKB_CB(fwd_skb);
2765 	memset(info, 0, sizeof(*info));
2766 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2767 	info->control.vif = &rx->sdata->vif;
2768 	info->control.jiffies = jiffies;
2769 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2770 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2771 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2772 		/* update power mode indication when forwarding */
2773 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2774 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2775 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2776 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2777 	} else {
2778 		/* unable to resolve next hop */
2779 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2780 				   fwd_hdr->addr3, 0,
2781 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2782 				   fwd_hdr->addr2);
2783 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2784 		kfree_skb(fwd_skb);
2785 		return RX_DROP_MONITOR;
2786 	}
2787 
2788 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2789 	ieee80211_add_pending_skb(local, fwd_skb);
2790  out:
2791 	if (is_multicast_ether_addr(hdr->addr1))
2792 		return RX_CONTINUE;
2793 	return RX_DROP_MONITOR;
2794 }
2795 #endif
2796 
2797 static ieee80211_rx_result debug_noinline
2798 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2799 {
2800 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2801 	struct ieee80211_local *local = rx->local;
2802 	struct net_device *dev = sdata->dev;
2803 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2804 	__le16 fc = hdr->frame_control;
2805 	bool port_control;
2806 	int err;
2807 
2808 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2809 		return RX_CONTINUE;
2810 
2811 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2812 		return RX_DROP_MONITOR;
2813 
2814 	/*
2815 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2816 	 * also drop the frame to cooked monitor interfaces.
2817 	 */
2818 	if (ieee80211_has_a4(hdr->frame_control) &&
2819 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2820 		if (rx->sta &&
2821 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2822 			cfg80211_rx_unexpected_4addr_frame(
2823 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2824 		return RX_DROP_MONITOR;
2825 	}
2826 
2827 	err = __ieee80211_data_to_8023(rx, &port_control);
2828 	if (unlikely(err))
2829 		return RX_DROP_UNUSABLE;
2830 
2831 	if (!ieee80211_frame_allowed(rx, fc))
2832 		return RX_DROP_MONITOR;
2833 
2834 	/* directly handle TDLS channel switch requests/responses */
2835 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2836 						cpu_to_be16(ETH_P_TDLS))) {
2837 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2838 
2839 		if (pskb_may_pull(rx->skb,
2840 				  offsetof(struct ieee80211_tdls_data, u)) &&
2841 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2842 		    tf->category == WLAN_CATEGORY_TDLS &&
2843 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2844 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2845 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2846 			schedule_work(&local->tdls_chsw_work);
2847 			if (rx->sta)
2848 				rx->sta->rx_stats.packets++;
2849 
2850 			return RX_QUEUED;
2851 		}
2852 	}
2853 
2854 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2855 	    unlikely(port_control) && sdata->bss) {
2856 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2857 				     u.ap);
2858 		dev = sdata->dev;
2859 		rx->sdata = sdata;
2860 	}
2861 
2862 	rx->skb->dev = dev;
2863 
2864 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2865 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2866 	    !is_multicast_ether_addr(
2867 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2868 	    (!local->scanning &&
2869 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2870 		mod_timer(&local->dynamic_ps_timer, jiffies +
2871 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2872 
2873 	ieee80211_deliver_skb(rx);
2874 
2875 	return RX_QUEUED;
2876 }
2877 
2878 static ieee80211_rx_result debug_noinline
2879 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2880 {
2881 	struct sk_buff *skb = rx->skb;
2882 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2883 	struct tid_ampdu_rx *tid_agg_rx;
2884 	u16 start_seq_num;
2885 	u16 tid;
2886 
2887 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2888 		return RX_CONTINUE;
2889 
2890 	if (ieee80211_is_back_req(bar->frame_control)) {
2891 		struct {
2892 			__le16 control, start_seq_num;
2893 		} __packed bar_data;
2894 		struct ieee80211_event event = {
2895 			.type = BAR_RX_EVENT,
2896 		};
2897 
2898 		if (!rx->sta)
2899 			return RX_DROP_MONITOR;
2900 
2901 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2902 				  &bar_data, sizeof(bar_data)))
2903 			return RX_DROP_MONITOR;
2904 
2905 		tid = le16_to_cpu(bar_data.control) >> 12;
2906 
2907 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2908 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2909 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2910 					     WLAN_BACK_RECIPIENT,
2911 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2912 
2913 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2914 		if (!tid_agg_rx)
2915 			return RX_DROP_MONITOR;
2916 
2917 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2918 		event.u.ba.tid = tid;
2919 		event.u.ba.ssn = start_seq_num;
2920 		event.u.ba.sta = &rx->sta->sta;
2921 
2922 		/* reset session timer */
2923 		if (tid_agg_rx->timeout)
2924 			mod_timer(&tid_agg_rx->session_timer,
2925 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2926 
2927 		spin_lock(&tid_agg_rx->reorder_lock);
2928 		/* release stored frames up to start of BAR */
2929 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2930 						 start_seq_num, frames);
2931 		spin_unlock(&tid_agg_rx->reorder_lock);
2932 
2933 		drv_event_callback(rx->local, rx->sdata, &event);
2934 
2935 		kfree_skb(skb);
2936 		return RX_QUEUED;
2937 	}
2938 
2939 	/*
2940 	 * After this point, we only want management frames,
2941 	 * so we can drop all remaining control frames to
2942 	 * cooked monitor interfaces.
2943 	 */
2944 	return RX_DROP_MONITOR;
2945 }
2946 
2947 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2948 					   struct ieee80211_mgmt *mgmt,
2949 					   size_t len)
2950 {
2951 	struct ieee80211_local *local = sdata->local;
2952 	struct sk_buff *skb;
2953 	struct ieee80211_mgmt *resp;
2954 
2955 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2956 		/* Not to own unicast address */
2957 		return;
2958 	}
2959 
2960 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2961 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2962 		/* Not from the current AP or not associated yet. */
2963 		return;
2964 	}
2965 
2966 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2967 		/* Too short SA Query request frame */
2968 		return;
2969 	}
2970 
2971 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2972 	if (skb == NULL)
2973 		return;
2974 
2975 	skb_reserve(skb, local->hw.extra_tx_headroom);
2976 	resp = skb_put_zero(skb, 24);
2977 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2978 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2979 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2980 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2981 					  IEEE80211_STYPE_ACTION);
2982 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2983 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2984 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2985 	memcpy(resp->u.action.u.sa_query.trans_id,
2986 	       mgmt->u.action.u.sa_query.trans_id,
2987 	       WLAN_SA_QUERY_TR_ID_LEN);
2988 
2989 	ieee80211_tx_skb(sdata, skb);
2990 }
2991 
2992 static ieee80211_rx_result debug_noinline
2993 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2994 {
2995 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2996 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2997 
2998 	/*
2999 	 * From here on, look only at management frames.
3000 	 * Data and control frames are already handled,
3001 	 * and unknown (reserved) frames are useless.
3002 	 */
3003 	if (rx->skb->len < 24)
3004 		return RX_DROP_MONITOR;
3005 
3006 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3007 		return RX_DROP_MONITOR;
3008 
3009 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3010 	    ieee80211_is_beacon(mgmt->frame_control) &&
3011 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3012 		int sig = 0;
3013 
3014 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3015 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3016 			sig = status->signal;
3017 
3018 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
3019 					    rx->skb->data, rx->skb->len,
3020 					    status->freq, sig);
3021 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3022 	}
3023 
3024 	if (ieee80211_drop_unencrypted_mgmt(rx))
3025 		return RX_DROP_UNUSABLE;
3026 
3027 	return RX_CONTINUE;
3028 }
3029 
3030 static ieee80211_rx_result debug_noinline
3031 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3032 {
3033 	struct ieee80211_local *local = rx->local;
3034 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3035 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3036 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3037 	int len = rx->skb->len;
3038 
3039 	if (!ieee80211_is_action(mgmt->frame_control))
3040 		return RX_CONTINUE;
3041 
3042 	/* drop too small frames */
3043 	if (len < IEEE80211_MIN_ACTION_SIZE)
3044 		return RX_DROP_UNUSABLE;
3045 
3046 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3047 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3048 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3049 		return RX_DROP_UNUSABLE;
3050 
3051 	switch (mgmt->u.action.category) {
3052 	case WLAN_CATEGORY_HT:
3053 		/* reject HT action frames from stations not supporting HT */
3054 		if (!rx->sta->sta.ht_cap.ht_supported)
3055 			goto invalid;
3056 
3057 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3058 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3059 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3060 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3061 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3062 			break;
3063 
3064 		/* verify action & smps_control/chanwidth are present */
3065 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3066 			goto invalid;
3067 
3068 		switch (mgmt->u.action.u.ht_smps.action) {
3069 		case WLAN_HT_ACTION_SMPS: {
3070 			struct ieee80211_supported_band *sband;
3071 			enum ieee80211_smps_mode smps_mode;
3072 			struct sta_opmode_info sta_opmode = {};
3073 
3074 			/* convert to HT capability */
3075 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3076 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3077 				smps_mode = IEEE80211_SMPS_OFF;
3078 				break;
3079 			case WLAN_HT_SMPS_CONTROL_STATIC:
3080 				smps_mode = IEEE80211_SMPS_STATIC;
3081 				break;
3082 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3083 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3084 				break;
3085 			default:
3086 				goto invalid;
3087 			}
3088 
3089 			/* if no change do nothing */
3090 			if (rx->sta->sta.smps_mode == smps_mode)
3091 				goto handled;
3092 			rx->sta->sta.smps_mode = smps_mode;
3093 			sta_opmode.smps_mode =
3094 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3095 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3096 
3097 			sband = rx->local->hw.wiphy->bands[status->band];
3098 
3099 			rate_control_rate_update(local, sband, rx->sta,
3100 						 IEEE80211_RC_SMPS_CHANGED);
3101 			cfg80211_sta_opmode_change_notify(sdata->dev,
3102 							  rx->sta->addr,
3103 							  &sta_opmode,
3104 							  GFP_ATOMIC);
3105 			goto handled;
3106 		}
3107 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3108 			struct ieee80211_supported_band *sband;
3109 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3110 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3111 			struct sta_opmode_info sta_opmode = {};
3112 
3113 			/* If it doesn't support 40 MHz it can't change ... */
3114 			if (!(rx->sta->sta.ht_cap.cap &
3115 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3116 				goto handled;
3117 
3118 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3119 				max_bw = IEEE80211_STA_RX_BW_20;
3120 			else
3121 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3122 
3123 			/* set cur_max_bandwidth and recalc sta bw */
3124 			rx->sta->cur_max_bandwidth = max_bw;
3125 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3126 
3127 			if (rx->sta->sta.bandwidth == new_bw)
3128 				goto handled;
3129 
3130 			rx->sta->sta.bandwidth = new_bw;
3131 			sband = rx->local->hw.wiphy->bands[status->band];
3132 			sta_opmode.bw =
3133 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3134 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3135 
3136 			rate_control_rate_update(local, sband, rx->sta,
3137 						 IEEE80211_RC_BW_CHANGED);
3138 			cfg80211_sta_opmode_change_notify(sdata->dev,
3139 							  rx->sta->addr,
3140 							  &sta_opmode,
3141 							  GFP_ATOMIC);
3142 			goto handled;
3143 		}
3144 		default:
3145 			goto invalid;
3146 		}
3147 
3148 		break;
3149 	case WLAN_CATEGORY_PUBLIC:
3150 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3151 			goto invalid;
3152 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3153 			break;
3154 		if (!rx->sta)
3155 			break;
3156 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3157 			break;
3158 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3159 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3160 			break;
3161 		if (len < offsetof(struct ieee80211_mgmt,
3162 				   u.action.u.ext_chan_switch.variable))
3163 			goto invalid;
3164 		goto queue;
3165 	case WLAN_CATEGORY_VHT:
3166 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3167 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3168 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3169 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3170 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3171 			break;
3172 
3173 		/* verify action code is present */
3174 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3175 			goto invalid;
3176 
3177 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3178 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3179 			/* verify opmode is present */
3180 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3181 				goto invalid;
3182 			goto queue;
3183 		}
3184 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3185 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3186 				goto invalid;
3187 			goto queue;
3188 		}
3189 		default:
3190 			break;
3191 		}
3192 		break;
3193 	case WLAN_CATEGORY_BACK:
3194 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3195 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3196 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3197 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3198 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3199 			break;
3200 
3201 		/* verify action_code is present */
3202 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3203 			break;
3204 
3205 		switch (mgmt->u.action.u.addba_req.action_code) {
3206 		case WLAN_ACTION_ADDBA_REQ:
3207 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3208 				   sizeof(mgmt->u.action.u.addba_req)))
3209 				goto invalid;
3210 			break;
3211 		case WLAN_ACTION_ADDBA_RESP:
3212 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3213 				   sizeof(mgmt->u.action.u.addba_resp)))
3214 				goto invalid;
3215 			break;
3216 		case WLAN_ACTION_DELBA:
3217 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3218 				   sizeof(mgmt->u.action.u.delba)))
3219 				goto invalid;
3220 			break;
3221 		default:
3222 			goto invalid;
3223 		}
3224 
3225 		goto queue;
3226 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3227 		/* verify action_code is present */
3228 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3229 			break;
3230 
3231 		switch (mgmt->u.action.u.measurement.action_code) {
3232 		case WLAN_ACTION_SPCT_MSR_REQ:
3233 			if (status->band != NL80211_BAND_5GHZ)
3234 				break;
3235 
3236 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3237 				   sizeof(mgmt->u.action.u.measurement)))
3238 				break;
3239 
3240 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3241 				break;
3242 
3243 			ieee80211_process_measurement_req(sdata, mgmt, len);
3244 			goto handled;
3245 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3246 			u8 *bssid;
3247 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3248 				   sizeof(mgmt->u.action.u.chan_switch)))
3249 				break;
3250 
3251 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3252 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3253 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3254 				break;
3255 
3256 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3257 				bssid = sdata->u.mgd.bssid;
3258 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3259 				bssid = sdata->u.ibss.bssid;
3260 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3261 				bssid = mgmt->sa;
3262 			else
3263 				break;
3264 
3265 			if (!ether_addr_equal(mgmt->bssid, bssid))
3266 				break;
3267 
3268 			goto queue;
3269 			}
3270 		}
3271 		break;
3272 	case WLAN_CATEGORY_SA_QUERY:
3273 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3274 			   sizeof(mgmt->u.action.u.sa_query)))
3275 			break;
3276 
3277 		switch (mgmt->u.action.u.sa_query.action) {
3278 		case WLAN_ACTION_SA_QUERY_REQUEST:
3279 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3280 				break;
3281 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3282 			goto handled;
3283 		}
3284 		break;
3285 	case WLAN_CATEGORY_SELF_PROTECTED:
3286 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3287 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3288 			break;
3289 
3290 		switch (mgmt->u.action.u.self_prot.action_code) {
3291 		case WLAN_SP_MESH_PEERING_OPEN:
3292 		case WLAN_SP_MESH_PEERING_CLOSE:
3293 		case WLAN_SP_MESH_PEERING_CONFIRM:
3294 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3295 				goto invalid;
3296 			if (sdata->u.mesh.user_mpm)
3297 				/* userspace handles this frame */
3298 				break;
3299 			goto queue;
3300 		case WLAN_SP_MGK_INFORM:
3301 		case WLAN_SP_MGK_ACK:
3302 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3303 				goto invalid;
3304 			break;
3305 		}
3306 		break;
3307 	case WLAN_CATEGORY_MESH_ACTION:
3308 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3309 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3310 			break;
3311 
3312 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3313 			break;
3314 		if (mesh_action_is_path_sel(mgmt) &&
3315 		    !mesh_path_sel_is_hwmp(sdata))
3316 			break;
3317 		goto queue;
3318 	}
3319 
3320 	return RX_CONTINUE;
3321 
3322  invalid:
3323 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3324 	/* will return in the next handlers */
3325 	return RX_CONTINUE;
3326 
3327  handled:
3328 	if (rx->sta)
3329 		rx->sta->rx_stats.packets++;
3330 	dev_kfree_skb(rx->skb);
3331 	return RX_QUEUED;
3332 
3333  queue:
3334 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3335 	ieee80211_queue_work(&local->hw, &sdata->work);
3336 	if (rx->sta)
3337 		rx->sta->rx_stats.packets++;
3338 	return RX_QUEUED;
3339 }
3340 
3341 static ieee80211_rx_result debug_noinline
3342 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3343 {
3344 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3345 	int sig = 0;
3346 
3347 	/* skip known-bad action frames and return them in the next handler */
3348 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3349 		return RX_CONTINUE;
3350 
3351 	/*
3352 	 * Getting here means the kernel doesn't know how to handle
3353 	 * it, but maybe userspace does ... include returned frames
3354 	 * so userspace can register for those to know whether ones
3355 	 * it transmitted were processed or returned.
3356 	 */
3357 
3358 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3359 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3360 		sig = status->signal;
3361 
3362 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3363 			     rx->skb->data, rx->skb->len, 0)) {
3364 		if (rx->sta)
3365 			rx->sta->rx_stats.packets++;
3366 		dev_kfree_skb(rx->skb);
3367 		return RX_QUEUED;
3368 	}
3369 
3370 	return RX_CONTINUE;
3371 }
3372 
3373 static ieee80211_rx_result debug_noinline
3374 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3375 {
3376 	struct ieee80211_local *local = rx->local;
3377 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3378 	struct sk_buff *nskb;
3379 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3380 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3381 
3382 	if (!ieee80211_is_action(mgmt->frame_control))
3383 		return RX_CONTINUE;
3384 
3385 	/*
3386 	 * For AP mode, hostapd is responsible for handling any action
3387 	 * frames that we didn't handle, including returning unknown
3388 	 * ones. For all other modes we will return them to the sender,
3389 	 * setting the 0x80 bit in the action category, as required by
3390 	 * 802.11-2012 9.24.4.
3391 	 * Newer versions of hostapd shall also use the management frame
3392 	 * registration mechanisms, but older ones still use cooked
3393 	 * monitor interfaces so push all frames there.
3394 	 */
3395 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3396 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3397 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3398 		return RX_DROP_MONITOR;
3399 
3400 	if (is_multicast_ether_addr(mgmt->da))
3401 		return RX_DROP_MONITOR;
3402 
3403 	/* do not return rejected action frames */
3404 	if (mgmt->u.action.category & 0x80)
3405 		return RX_DROP_UNUSABLE;
3406 
3407 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3408 			       GFP_ATOMIC);
3409 	if (nskb) {
3410 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3411 
3412 		nmgmt->u.action.category |= 0x80;
3413 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3414 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3415 
3416 		memset(nskb->cb, 0, sizeof(nskb->cb));
3417 
3418 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3419 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3420 
3421 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3422 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3423 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3424 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3425 				info->hw_queue =
3426 					local->hw.offchannel_tx_hw_queue;
3427 		}
3428 
3429 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3430 					    status->band, 0);
3431 	}
3432 	dev_kfree_skb(rx->skb);
3433 	return RX_QUEUED;
3434 }
3435 
3436 static ieee80211_rx_result debug_noinline
3437 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3438 {
3439 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3440 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3441 	__le16 stype;
3442 
3443 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3444 
3445 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3446 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3447 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3448 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3449 		return RX_DROP_MONITOR;
3450 
3451 	switch (stype) {
3452 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3453 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3454 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3455 		/* process for all: mesh, mlme, ibss */
3456 		break;
3457 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3458 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3459 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3460 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3461 		if (is_multicast_ether_addr(mgmt->da) &&
3462 		    !is_broadcast_ether_addr(mgmt->da))
3463 			return RX_DROP_MONITOR;
3464 
3465 		/* process only for station */
3466 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3467 			return RX_DROP_MONITOR;
3468 		break;
3469 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3470 		/* process only for ibss and mesh */
3471 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3472 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3473 			return RX_DROP_MONITOR;
3474 		break;
3475 	default:
3476 		return RX_DROP_MONITOR;
3477 	}
3478 
3479 	/* queue up frame and kick off work to process it */
3480 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3481 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3482 	if (rx->sta)
3483 		rx->sta->rx_stats.packets++;
3484 
3485 	return RX_QUEUED;
3486 }
3487 
3488 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3489 					struct ieee80211_rate *rate)
3490 {
3491 	struct ieee80211_sub_if_data *sdata;
3492 	struct ieee80211_local *local = rx->local;
3493 	struct sk_buff *skb = rx->skb, *skb2;
3494 	struct net_device *prev_dev = NULL;
3495 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3496 	int needed_headroom;
3497 
3498 	/*
3499 	 * If cooked monitor has been processed already, then
3500 	 * don't do it again. If not, set the flag.
3501 	 */
3502 	if (rx->flags & IEEE80211_RX_CMNTR)
3503 		goto out_free_skb;
3504 	rx->flags |= IEEE80211_RX_CMNTR;
3505 
3506 	/* If there are no cooked monitor interfaces, just free the SKB */
3507 	if (!local->cooked_mntrs)
3508 		goto out_free_skb;
3509 
3510 	/* vendor data is long removed here */
3511 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3512 	/* room for the radiotap header based on driver features */
3513 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3514 
3515 	if (skb_headroom(skb) < needed_headroom &&
3516 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3517 		goto out_free_skb;
3518 
3519 	/* prepend radiotap information */
3520 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3521 					 false);
3522 
3523 	skb_reset_mac_header(skb);
3524 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3525 	skb->pkt_type = PACKET_OTHERHOST;
3526 	skb->protocol = htons(ETH_P_802_2);
3527 
3528 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3529 		if (!ieee80211_sdata_running(sdata))
3530 			continue;
3531 
3532 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3533 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3534 			continue;
3535 
3536 		if (prev_dev) {
3537 			skb2 = skb_clone(skb, GFP_ATOMIC);
3538 			if (skb2) {
3539 				skb2->dev = prev_dev;
3540 				netif_receive_skb(skb2);
3541 			}
3542 		}
3543 
3544 		prev_dev = sdata->dev;
3545 		ieee80211_rx_stats(sdata->dev, skb->len);
3546 	}
3547 
3548 	if (prev_dev) {
3549 		skb->dev = prev_dev;
3550 		netif_receive_skb(skb);
3551 		return;
3552 	}
3553 
3554  out_free_skb:
3555 	dev_kfree_skb(skb);
3556 }
3557 
3558 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3559 					 ieee80211_rx_result res)
3560 {
3561 	switch (res) {
3562 	case RX_DROP_MONITOR:
3563 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3564 		if (rx->sta)
3565 			rx->sta->rx_stats.dropped++;
3566 		/* fall through */
3567 	case RX_CONTINUE: {
3568 		struct ieee80211_rate *rate = NULL;
3569 		struct ieee80211_supported_band *sband;
3570 		struct ieee80211_rx_status *status;
3571 
3572 		status = IEEE80211_SKB_RXCB((rx->skb));
3573 
3574 		sband = rx->local->hw.wiphy->bands[status->band];
3575 		if (status->encoding == RX_ENC_LEGACY)
3576 			rate = &sband->bitrates[status->rate_idx];
3577 
3578 		ieee80211_rx_cooked_monitor(rx, rate);
3579 		break;
3580 		}
3581 	case RX_DROP_UNUSABLE:
3582 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3583 		if (rx->sta)
3584 			rx->sta->rx_stats.dropped++;
3585 		dev_kfree_skb(rx->skb);
3586 		break;
3587 	case RX_QUEUED:
3588 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3589 		break;
3590 	}
3591 }
3592 
3593 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3594 				  struct sk_buff_head *frames)
3595 {
3596 	ieee80211_rx_result res = RX_DROP_MONITOR;
3597 	struct sk_buff *skb;
3598 
3599 #define CALL_RXH(rxh)			\
3600 	do {				\
3601 		res = rxh(rx);		\
3602 		if (res != RX_CONTINUE)	\
3603 			goto rxh_next;  \
3604 	} while (0)
3605 
3606 	/* Lock here to avoid hitting all of the data used in the RX
3607 	 * path (e.g. key data, station data, ...) concurrently when
3608 	 * a frame is released from the reorder buffer due to timeout
3609 	 * from the timer, potentially concurrently with RX from the
3610 	 * driver.
3611 	 */
3612 	spin_lock_bh(&rx->local->rx_path_lock);
3613 
3614 	while ((skb = __skb_dequeue(frames))) {
3615 		/*
3616 		 * all the other fields are valid across frames
3617 		 * that belong to an aMPDU since they are on the
3618 		 * same TID from the same station
3619 		 */
3620 		rx->skb = skb;
3621 
3622 		CALL_RXH(ieee80211_rx_h_check_more_data);
3623 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3624 		CALL_RXH(ieee80211_rx_h_sta_process);
3625 		CALL_RXH(ieee80211_rx_h_decrypt);
3626 		CALL_RXH(ieee80211_rx_h_defragment);
3627 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3628 		/* must be after MMIC verify so header is counted in MPDU mic */
3629 #ifdef CONFIG_MAC80211_MESH
3630 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3631 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3632 #endif
3633 		CALL_RXH(ieee80211_rx_h_amsdu);
3634 		CALL_RXH(ieee80211_rx_h_data);
3635 
3636 		/* special treatment -- needs the queue */
3637 		res = ieee80211_rx_h_ctrl(rx, frames);
3638 		if (res != RX_CONTINUE)
3639 			goto rxh_next;
3640 
3641 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3642 		CALL_RXH(ieee80211_rx_h_action);
3643 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3644 		CALL_RXH(ieee80211_rx_h_action_return);
3645 		CALL_RXH(ieee80211_rx_h_mgmt);
3646 
3647  rxh_next:
3648 		ieee80211_rx_handlers_result(rx, res);
3649 
3650 #undef CALL_RXH
3651 	}
3652 
3653 	spin_unlock_bh(&rx->local->rx_path_lock);
3654 }
3655 
3656 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3657 {
3658 	struct sk_buff_head reorder_release;
3659 	ieee80211_rx_result res = RX_DROP_MONITOR;
3660 
3661 	__skb_queue_head_init(&reorder_release);
3662 
3663 #define CALL_RXH(rxh)			\
3664 	do {				\
3665 		res = rxh(rx);		\
3666 		if (res != RX_CONTINUE)	\
3667 			goto rxh_next;  \
3668 	} while (0)
3669 
3670 	CALL_RXH(ieee80211_rx_h_check_dup);
3671 	CALL_RXH(ieee80211_rx_h_check);
3672 
3673 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3674 
3675 	ieee80211_rx_handlers(rx, &reorder_release);
3676 	return;
3677 
3678  rxh_next:
3679 	ieee80211_rx_handlers_result(rx, res);
3680 
3681 #undef CALL_RXH
3682 }
3683 
3684 /*
3685  * This function makes calls into the RX path, therefore
3686  * it has to be invoked under RCU read lock.
3687  */
3688 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3689 {
3690 	struct sk_buff_head frames;
3691 	struct ieee80211_rx_data rx = {
3692 		.sta = sta,
3693 		.sdata = sta->sdata,
3694 		.local = sta->local,
3695 		/* This is OK -- must be QoS data frame */
3696 		.security_idx = tid,
3697 		.seqno_idx = tid,
3698 		.napi = NULL, /* must be NULL to not have races */
3699 	};
3700 	struct tid_ampdu_rx *tid_agg_rx;
3701 
3702 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3703 	if (!tid_agg_rx)
3704 		return;
3705 
3706 	__skb_queue_head_init(&frames);
3707 
3708 	spin_lock(&tid_agg_rx->reorder_lock);
3709 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3710 	spin_unlock(&tid_agg_rx->reorder_lock);
3711 
3712 	if (!skb_queue_empty(&frames)) {
3713 		struct ieee80211_event event = {
3714 			.type = BA_FRAME_TIMEOUT,
3715 			.u.ba.tid = tid,
3716 			.u.ba.sta = &sta->sta,
3717 		};
3718 		drv_event_callback(rx.local, rx.sdata, &event);
3719 	}
3720 
3721 	ieee80211_rx_handlers(&rx, &frames);
3722 }
3723 
3724 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3725 					  u16 ssn, u64 filtered,
3726 					  u16 received_mpdus)
3727 {
3728 	struct sta_info *sta;
3729 	struct tid_ampdu_rx *tid_agg_rx;
3730 	struct sk_buff_head frames;
3731 	struct ieee80211_rx_data rx = {
3732 		/* This is OK -- must be QoS data frame */
3733 		.security_idx = tid,
3734 		.seqno_idx = tid,
3735 	};
3736 	int i, diff;
3737 
3738 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3739 		return;
3740 
3741 	__skb_queue_head_init(&frames);
3742 
3743 	sta = container_of(pubsta, struct sta_info, sta);
3744 
3745 	rx.sta = sta;
3746 	rx.sdata = sta->sdata;
3747 	rx.local = sta->local;
3748 
3749 	rcu_read_lock();
3750 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3751 	if (!tid_agg_rx)
3752 		goto out;
3753 
3754 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3755 
3756 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3757 		int release;
3758 
3759 		/* release all frames in the reorder buffer */
3760 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3761 			   IEEE80211_SN_MODULO;
3762 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3763 						 release, &frames);
3764 		/* update ssn to match received ssn */
3765 		tid_agg_rx->head_seq_num = ssn;
3766 	} else {
3767 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3768 						 &frames);
3769 	}
3770 
3771 	/* handle the case that received ssn is behind the mac ssn.
3772 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3773 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3774 	if (diff >= tid_agg_rx->buf_size) {
3775 		tid_agg_rx->reorder_buf_filtered = 0;
3776 		goto release;
3777 	}
3778 	filtered = filtered >> diff;
3779 	ssn += diff;
3780 
3781 	/* update bitmap */
3782 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3783 		int index = (ssn + i) % tid_agg_rx->buf_size;
3784 
3785 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3786 		if (filtered & BIT_ULL(i))
3787 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3788 	}
3789 
3790 	/* now process also frames that the filter marking released */
3791 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3792 
3793 release:
3794 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3795 
3796 	ieee80211_rx_handlers(&rx, &frames);
3797 
3798  out:
3799 	rcu_read_unlock();
3800 }
3801 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3802 
3803 /* main receive path */
3804 
3805 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3806 {
3807 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3808 	struct sk_buff *skb = rx->skb;
3809 	struct ieee80211_hdr *hdr = (void *)skb->data;
3810 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3811 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3812 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3813 
3814 	switch (sdata->vif.type) {
3815 	case NL80211_IFTYPE_STATION:
3816 		if (!bssid && !sdata->u.mgd.use_4addr)
3817 			return false;
3818 		if (multicast)
3819 			return true;
3820 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3821 	case NL80211_IFTYPE_ADHOC:
3822 		if (!bssid)
3823 			return false;
3824 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3825 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3826 			return false;
3827 		if (ieee80211_is_beacon(hdr->frame_control))
3828 			return true;
3829 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3830 			return false;
3831 		if (!multicast &&
3832 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3833 			return false;
3834 		if (!rx->sta) {
3835 			int rate_idx;
3836 			if (status->encoding != RX_ENC_LEGACY)
3837 				rate_idx = 0; /* TODO: HT/VHT rates */
3838 			else
3839 				rate_idx = status->rate_idx;
3840 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3841 						 BIT(rate_idx));
3842 		}
3843 		return true;
3844 	case NL80211_IFTYPE_OCB:
3845 		if (!bssid)
3846 			return false;
3847 		if (!ieee80211_is_data_present(hdr->frame_control))
3848 			return false;
3849 		if (!is_broadcast_ether_addr(bssid))
3850 			return false;
3851 		if (!multicast &&
3852 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3853 			return false;
3854 		if (!rx->sta) {
3855 			int rate_idx;
3856 			if (status->encoding != RX_ENC_LEGACY)
3857 				rate_idx = 0; /* TODO: HT rates */
3858 			else
3859 				rate_idx = status->rate_idx;
3860 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3861 						BIT(rate_idx));
3862 		}
3863 		return true;
3864 	case NL80211_IFTYPE_MESH_POINT:
3865 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3866 			return false;
3867 		if (multicast)
3868 			return true;
3869 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3870 	case NL80211_IFTYPE_AP_VLAN:
3871 	case NL80211_IFTYPE_AP:
3872 		if (!bssid)
3873 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3874 
3875 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3876 			/*
3877 			 * Accept public action frames even when the
3878 			 * BSSID doesn't match, this is used for P2P
3879 			 * and location updates. Note that mac80211
3880 			 * itself never looks at these frames.
3881 			 */
3882 			if (!multicast &&
3883 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3884 				return false;
3885 			if (ieee80211_is_public_action(hdr, skb->len))
3886 				return true;
3887 			return ieee80211_is_beacon(hdr->frame_control);
3888 		}
3889 
3890 		if (!ieee80211_has_tods(hdr->frame_control)) {
3891 			/* ignore data frames to TDLS-peers */
3892 			if (ieee80211_is_data(hdr->frame_control))
3893 				return false;
3894 			/* ignore action frames to TDLS-peers */
3895 			if (ieee80211_is_action(hdr->frame_control) &&
3896 			    !is_broadcast_ether_addr(bssid) &&
3897 			    !ether_addr_equal(bssid, hdr->addr1))
3898 				return false;
3899 		}
3900 
3901 		/*
3902 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3903 		 * the BSSID - we've checked that already but may have accepted
3904 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3905 		 *
3906 		 * It also says:
3907 		 *	The BSSID of the Data frame is determined as follows:
3908 		 *	a) If the STA is contained within an AP or is associated
3909 		 *	   with an AP, the BSSID is the address currently in use
3910 		 *	   by the STA contained in the AP.
3911 		 *
3912 		 * So we should not accept data frames with an address that's
3913 		 * multicast.
3914 		 *
3915 		 * Accepting it also opens a security problem because stations
3916 		 * could encrypt it with the GTK and inject traffic that way.
3917 		 */
3918 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3919 			return false;
3920 
3921 		return true;
3922 	case NL80211_IFTYPE_WDS:
3923 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3924 			return false;
3925 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3926 	case NL80211_IFTYPE_P2P_DEVICE:
3927 		return ieee80211_is_public_action(hdr, skb->len) ||
3928 		       ieee80211_is_probe_req(hdr->frame_control) ||
3929 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3930 		       ieee80211_is_beacon(hdr->frame_control);
3931 	case NL80211_IFTYPE_NAN:
3932 		/* Currently no frames on NAN interface are allowed */
3933 		return false;
3934 	default:
3935 		break;
3936 	}
3937 
3938 	WARN_ON_ONCE(1);
3939 	return false;
3940 }
3941 
3942 void ieee80211_check_fast_rx(struct sta_info *sta)
3943 {
3944 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3945 	struct ieee80211_local *local = sdata->local;
3946 	struct ieee80211_key *key;
3947 	struct ieee80211_fast_rx fastrx = {
3948 		.dev = sdata->dev,
3949 		.vif_type = sdata->vif.type,
3950 		.control_port_protocol = sdata->control_port_protocol,
3951 	}, *old, *new = NULL;
3952 	bool assign = false;
3953 
3954 	/* use sparse to check that we don't return without updating */
3955 	__acquire(check_fast_rx);
3956 
3957 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3958 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3959 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3960 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3961 
3962 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3963 
3964 	/* fast-rx doesn't do reordering */
3965 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3966 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3967 		goto clear;
3968 
3969 	switch (sdata->vif.type) {
3970 	case NL80211_IFTYPE_STATION:
3971 		if (sta->sta.tdls) {
3972 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3973 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3974 			fastrx.expected_ds_bits = 0;
3975 		} else {
3976 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3977 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3978 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3979 			fastrx.expected_ds_bits =
3980 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3981 		}
3982 
3983 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3984 			fastrx.expected_ds_bits |=
3985 				cpu_to_le16(IEEE80211_FCTL_TODS);
3986 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3987 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3988 		}
3989 
3990 		if (!sdata->u.mgd.powersave)
3991 			break;
3992 
3993 		/* software powersave is a huge mess, avoid all of it */
3994 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3995 			goto clear;
3996 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3997 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3998 			goto clear;
3999 		break;
4000 	case NL80211_IFTYPE_AP_VLAN:
4001 	case NL80211_IFTYPE_AP:
4002 		/* parallel-rx requires this, at least with calls to
4003 		 * ieee80211_sta_ps_transition()
4004 		 */
4005 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4006 			goto clear;
4007 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4008 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4009 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4010 
4011 		fastrx.internal_forward =
4012 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4013 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4014 			 !sdata->u.vlan.sta);
4015 
4016 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4017 		    sdata->u.vlan.sta) {
4018 			fastrx.expected_ds_bits |=
4019 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4020 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4021 			fastrx.internal_forward = 0;
4022 		}
4023 
4024 		break;
4025 	default:
4026 		goto clear;
4027 	}
4028 
4029 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4030 		goto clear;
4031 
4032 	rcu_read_lock();
4033 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4034 	if (key) {
4035 		switch (key->conf.cipher) {
4036 		case WLAN_CIPHER_SUITE_TKIP:
4037 			/* we don't want to deal with MMIC in fast-rx */
4038 			goto clear_rcu;
4039 		case WLAN_CIPHER_SUITE_CCMP:
4040 		case WLAN_CIPHER_SUITE_CCMP_256:
4041 		case WLAN_CIPHER_SUITE_GCMP:
4042 		case WLAN_CIPHER_SUITE_GCMP_256:
4043 			break;
4044 		default:
4045 			/* we also don't want to deal with WEP or cipher scheme
4046 			 * since those require looking up the key idx in the
4047 			 * frame, rather than assuming the PTK is used
4048 			 * (we need to revisit this once we implement the real
4049 			 * PTK index, which is now valid in the spec, but we
4050 			 * haven't implemented that part yet)
4051 			 */
4052 			goto clear_rcu;
4053 		}
4054 
4055 		fastrx.key = true;
4056 		fastrx.icv_len = key->conf.icv_len;
4057 	}
4058 
4059 	assign = true;
4060  clear_rcu:
4061 	rcu_read_unlock();
4062  clear:
4063 	__release(check_fast_rx);
4064 
4065 	if (assign)
4066 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4067 
4068 	spin_lock_bh(&sta->lock);
4069 	old = rcu_dereference_protected(sta->fast_rx, true);
4070 	rcu_assign_pointer(sta->fast_rx, new);
4071 	spin_unlock_bh(&sta->lock);
4072 
4073 	if (old)
4074 		kfree_rcu(old, rcu_head);
4075 }
4076 
4077 void ieee80211_clear_fast_rx(struct sta_info *sta)
4078 {
4079 	struct ieee80211_fast_rx *old;
4080 
4081 	spin_lock_bh(&sta->lock);
4082 	old = rcu_dereference_protected(sta->fast_rx, true);
4083 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4084 	spin_unlock_bh(&sta->lock);
4085 
4086 	if (old)
4087 		kfree_rcu(old, rcu_head);
4088 }
4089 
4090 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4091 {
4092 	struct ieee80211_local *local = sdata->local;
4093 	struct sta_info *sta;
4094 
4095 	lockdep_assert_held(&local->sta_mtx);
4096 
4097 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
4098 		if (sdata != sta->sdata &&
4099 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4100 			continue;
4101 		ieee80211_check_fast_rx(sta);
4102 	}
4103 }
4104 
4105 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4106 {
4107 	struct ieee80211_local *local = sdata->local;
4108 
4109 	mutex_lock(&local->sta_mtx);
4110 	__ieee80211_check_fast_rx_iface(sdata);
4111 	mutex_unlock(&local->sta_mtx);
4112 }
4113 
4114 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4115 				     struct ieee80211_fast_rx *fast_rx)
4116 {
4117 	struct sk_buff *skb = rx->skb;
4118 	struct ieee80211_hdr *hdr = (void *)skb->data;
4119 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4120 	struct sta_info *sta = rx->sta;
4121 	int orig_len = skb->len;
4122 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4123 	int snap_offs = hdrlen;
4124 	struct {
4125 		u8 snap[sizeof(rfc1042_header)];
4126 		__be16 proto;
4127 	} *payload __aligned(2);
4128 	struct {
4129 		u8 da[ETH_ALEN];
4130 		u8 sa[ETH_ALEN];
4131 	} addrs __aligned(2);
4132 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4133 
4134 	if (fast_rx->uses_rss)
4135 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4136 
4137 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4138 	 * to a common data structure; drivers can implement that per queue
4139 	 * but we don't have that information in mac80211
4140 	 */
4141 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4142 		return false;
4143 
4144 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4145 
4146 	/* If using encryption, we also need to have:
4147 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4148 	 *  - DECRYPTED: necessary for PN_VALIDATED
4149 	 */
4150 	if (fast_rx->key &&
4151 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4152 		return false;
4153 
4154 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4155 		return false;
4156 
4157 	if (unlikely(ieee80211_is_frag(hdr)))
4158 		return false;
4159 
4160 	/* Since our interface address cannot be multicast, this
4161 	 * implicitly also rejects multicast frames without the
4162 	 * explicit check.
4163 	 *
4164 	 * We shouldn't get any *data* frames not addressed to us
4165 	 * (AP mode will accept multicast *management* frames), but
4166 	 * punting here will make it go through the full checks in
4167 	 * ieee80211_accept_frame().
4168 	 */
4169 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4170 		return false;
4171 
4172 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4173 					      IEEE80211_FCTL_TODS)) !=
4174 	    fast_rx->expected_ds_bits)
4175 		return false;
4176 
4177 	/* assign the key to drop unencrypted frames (later)
4178 	 * and strip the IV/MIC if necessary
4179 	 */
4180 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4181 		/* GCMP header length is the same */
4182 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4183 	}
4184 
4185 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4186 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4187 			goto drop;
4188 
4189 		payload = (void *)(skb->data + snap_offs);
4190 
4191 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4192 			return false;
4193 
4194 		/* Don't handle these here since they require special code.
4195 		 * Accept AARP and IPX even though they should come with a
4196 		 * bridge-tunnel header - but if we get them this way then
4197 		 * there's little point in discarding them.
4198 		 */
4199 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4200 			     payload->proto == fast_rx->control_port_protocol))
4201 			return false;
4202 	}
4203 
4204 	/* after this point, don't punt to the slowpath! */
4205 
4206 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4207 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4208 		goto drop;
4209 
4210 	if (unlikely(fast_rx->sta_notify)) {
4211 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4212 		fast_rx->sta_notify = false;
4213 	}
4214 
4215 	/* statistics part of ieee80211_rx_h_sta_process() */
4216 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4217 		stats->last_signal = status->signal;
4218 		if (!fast_rx->uses_rss)
4219 			ewma_signal_add(&sta->rx_stats_avg.signal,
4220 					-status->signal);
4221 	}
4222 
4223 	if (status->chains) {
4224 		int i;
4225 
4226 		stats->chains = status->chains;
4227 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4228 			int signal = status->chain_signal[i];
4229 
4230 			if (!(status->chains & BIT(i)))
4231 				continue;
4232 
4233 			stats->chain_signal_last[i] = signal;
4234 			if (!fast_rx->uses_rss)
4235 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4236 						-signal);
4237 		}
4238 	}
4239 	/* end of statistics */
4240 
4241 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4242 		goto drop;
4243 
4244 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4245 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4246 		    RX_QUEUED)
4247 			goto drop;
4248 
4249 		return true;
4250 	}
4251 
4252 	stats->last_rx = jiffies;
4253 	stats->last_rate = sta_stats_encode_rate(status);
4254 
4255 	stats->fragments++;
4256 	stats->packets++;
4257 
4258 	/* do the header conversion - first grab the addresses */
4259 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4260 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4261 	/* remove the SNAP but leave the ethertype */
4262 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4263 	/* push the addresses in front */
4264 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4265 
4266 	skb->dev = fast_rx->dev;
4267 
4268 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4269 
4270 	/* The seqno index has the same property as needed
4271 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4272 	 * for non-QoS-data frames. Here we know it's a data
4273 	 * frame, so count MSDUs.
4274 	 */
4275 	u64_stats_update_begin(&stats->syncp);
4276 	stats->msdu[rx->seqno_idx]++;
4277 	stats->bytes += orig_len;
4278 	u64_stats_update_end(&stats->syncp);
4279 
4280 	if (fast_rx->internal_forward) {
4281 		struct sk_buff *xmit_skb = NULL;
4282 		if (is_multicast_ether_addr(addrs.da)) {
4283 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4284 		} else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4285 			   sta_info_get(rx->sdata, addrs.da)) {
4286 			xmit_skb = skb;
4287 			skb = NULL;
4288 		}
4289 
4290 		if (xmit_skb) {
4291 			/*
4292 			 * Send to wireless media and increase priority by 256
4293 			 * to keep the received priority instead of
4294 			 * reclassifying the frame (see cfg80211_classify8021d).
4295 			 */
4296 			xmit_skb->priority += 256;
4297 			xmit_skb->protocol = htons(ETH_P_802_3);
4298 			skb_reset_network_header(xmit_skb);
4299 			skb_reset_mac_header(xmit_skb);
4300 			dev_queue_xmit(xmit_skb);
4301 		}
4302 
4303 		if (!skb)
4304 			return true;
4305 	}
4306 
4307 	/* deliver to local stack */
4308 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4309 	memset(skb->cb, 0, sizeof(skb->cb));
4310 	if (rx->napi)
4311 		napi_gro_receive(rx->napi, skb);
4312 	else
4313 		netif_receive_skb(skb);
4314 
4315 	return true;
4316  drop:
4317 	dev_kfree_skb(skb);
4318 	stats->dropped++;
4319 	return true;
4320 }
4321 
4322 /*
4323  * This function returns whether or not the SKB
4324  * was destined for RX processing or not, which,
4325  * if consume is true, is equivalent to whether
4326  * or not the skb was consumed.
4327  */
4328 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4329 					    struct sk_buff *skb, bool consume)
4330 {
4331 	struct ieee80211_local *local = rx->local;
4332 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4333 
4334 	rx->skb = skb;
4335 
4336 	/* See if we can do fast-rx; if we have to copy we already lost,
4337 	 * so punt in that case. We should never have to deliver a data
4338 	 * frame to multiple interfaces anyway.
4339 	 *
4340 	 * We skip the ieee80211_accept_frame() call and do the necessary
4341 	 * checking inside ieee80211_invoke_fast_rx().
4342 	 */
4343 	if (consume && rx->sta) {
4344 		struct ieee80211_fast_rx *fast_rx;
4345 
4346 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4347 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4348 			return true;
4349 	}
4350 
4351 	if (!ieee80211_accept_frame(rx))
4352 		return false;
4353 
4354 	if (!consume) {
4355 		skb = skb_copy(skb, GFP_ATOMIC);
4356 		if (!skb) {
4357 			if (net_ratelimit())
4358 				wiphy_debug(local->hw.wiphy,
4359 					"failed to copy skb for %s\n",
4360 					sdata->name);
4361 			return true;
4362 		}
4363 
4364 		rx->skb = skb;
4365 	}
4366 
4367 	ieee80211_invoke_rx_handlers(rx);
4368 	return true;
4369 }
4370 
4371 /*
4372  * This is the actual Rx frames handler. as it belongs to Rx path it must
4373  * be called with rcu_read_lock protection.
4374  */
4375 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4376 					 struct ieee80211_sta *pubsta,
4377 					 struct sk_buff *skb,
4378 					 struct napi_struct *napi)
4379 {
4380 	struct ieee80211_local *local = hw_to_local(hw);
4381 	struct ieee80211_sub_if_data *sdata;
4382 	struct ieee80211_hdr *hdr;
4383 	__le16 fc;
4384 	struct ieee80211_rx_data rx;
4385 	struct ieee80211_sub_if_data *prev;
4386 	struct rhlist_head *tmp;
4387 	int err = 0;
4388 
4389 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4390 	memset(&rx, 0, sizeof(rx));
4391 	rx.skb = skb;
4392 	rx.local = local;
4393 	rx.napi = napi;
4394 
4395 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4396 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4397 
4398 	if (ieee80211_is_mgmt(fc)) {
4399 		/* drop frame if too short for header */
4400 		if (skb->len < ieee80211_hdrlen(fc))
4401 			err = -ENOBUFS;
4402 		else
4403 			err = skb_linearize(skb);
4404 	} else {
4405 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4406 	}
4407 
4408 	if (err) {
4409 		dev_kfree_skb(skb);
4410 		return;
4411 	}
4412 
4413 	hdr = (struct ieee80211_hdr *)skb->data;
4414 	ieee80211_parse_qos(&rx);
4415 	ieee80211_verify_alignment(&rx);
4416 
4417 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4418 		     ieee80211_is_beacon(hdr->frame_control)))
4419 		ieee80211_scan_rx(local, skb);
4420 
4421 	if (ieee80211_is_data(fc)) {
4422 		struct sta_info *sta, *prev_sta;
4423 
4424 		if (pubsta) {
4425 			rx.sta = container_of(pubsta, struct sta_info, sta);
4426 			rx.sdata = rx.sta->sdata;
4427 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4428 				return;
4429 			goto out;
4430 		}
4431 
4432 		prev_sta = NULL;
4433 
4434 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4435 			if (!prev_sta) {
4436 				prev_sta = sta;
4437 				continue;
4438 			}
4439 
4440 			rx.sta = prev_sta;
4441 			rx.sdata = prev_sta->sdata;
4442 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4443 
4444 			prev_sta = sta;
4445 		}
4446 
4447 		if (prev_sta) {
4448 			rx.sta = prev_sta;
4449 			rx.sdata = prev_sta->sdata;
4450 
4451 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4452 				return;
4453 			goto out;
4454 		}
4455 	}
4456 
4457 	prev = NULL;
4458 
4459 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4460 		if (!ieee80211_sdata_running(sdata))
4461 			continue;
4462 
4463 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4464 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4465 			continue;
4466 
4467 		/*
4468 		 * frame is destined for this interface, but if it's
4469 		 * not also for the previous one we handle that after
4470 		 * the loop to avoid copying the SKB once too much
4471 		 */
4472 
4473 		if (!prev) {
4474 			prev = sdata;
4475 			continue;
4476 		}
4477 
4478 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4479 		rx.sdata = prev;
4480 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4481 
4482 		prev = sdata;
4483 	}
4484 
4485 	if (prev) {
4486 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4487 		rx.sdata = prev;
4488 
4489 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4490 			return;
4491 	}
4492 
4493  out:
4494 	dev_kfree_skb(skb);
4495 }
4496 
4497 /*
4498  * This is the receive path handler. It is called by a low level driver when an
4499  * 802.11 MPDU is received from the hardware.
4500  */
4501 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4502 		       struct sk_buff *skb, struct napi_struct *napi)
4503 {
4504 	struct ieee80211_local *local = hw_to_local(hw);
4505 	struct ieee80211_rate *rate = NULL;
4506 	struct ieee80211_supported_band *sband;
4507 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4508 
4509 	WARN_ON_ONCE(softirq_count() == 0);
4510 
4511 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4512 		goto drop;
4513 
4514 	sband = local->hw.wiphy->bands[status->band];
4515 	if (WARN_ON(!sband))
4516 		goto drop;
4517 
4518 	/*
4519 	 * If we're suspending, it is possible although not too likely
4520 	 * that we'd be receiving frames after having already partially
4521 	 * quiesced the stack. We can't process such frames then since
4522 	 * that might, for example, cause stations to be added or other
4523 	 * driver callbacks be invoked.
4524 	 */
4525 	if (unlikely(local->quiescing || local->suspended))
4526 		goto drop;
4527 
4528 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4529 	if (unlikely(local->in_reconfig))
4530 		goto drop;
4531 
4532 	/*
4533 	 * The same happens when we're not even started,
4534 	 * but that's worth a warning.
4535 	 */
4536 	if (WARN_ON(!local->started))
4537 		goto drop;
4538 
4539 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4540 		/*
4541 		 * Validate the rate, unless a PLCP error means that
4542 		 * we probably can't have a valid rate here anyway.
4543 		 */
4544 
4545 		switch (status->encoding) {
4546 		case RX_ENC_HT:
4547 			/*
4548 			 * rate_idx is MCS index, which can be [0-76]
4549 			 * as documented on:
4550 			 *
4551 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4552 			 *
4553 			 * Anything else would be some sort of driver or
4554 			 * hardware error. The driver should catch hardware
4555 			 * errors.
4556 			 */
4557 			if (WARN(status->rate_idx > 76,
4558 				 "Rate marked as an HT rate but passed "
4559 				 "status->rate_idx is not "
4560 				 "an MCS index [0-76]: %d (0x%02x)\n",
4561 				 status->rate_idx,
4562 				 status->rate_idx))
4563 				goto drop;
4564 			break;
4565 		case RX_ENC_VHT:
4566 			if (WARN_ONCE(status->rate_idx > 9 ||
4567 				      !status->nss ||
4568 				      status->nss > 8,
4569 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4570 				      status->rate_idx, status->nss))
4571 				goto drop;
4572 			break;
4573 		case RX_ENC_HE:
4574 			if (WARN_ONCE(status->rate_idx > 11 ||
4575 				      !status->nss ||
4576 				      status->nss > 8,
4577 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4578 				      status->rate_idx, status->nss))
4579 				goto drop;
4580 			break;
4581 		default:
4582 			WARN_ON_ONCE(1);
4583 			/* fall through */
4584 		case RX_ENC_LEGACY:
4585 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4586 				goto drop;
4587 			rate = &sband->bitrates[status->rate_idx];
4588 		}
4589 	}
4590 
4591 	status->rx_flags = 0;
4592 
4593 	/*
4594 	 * key references and virtual interfaces are protected using RCU
4595 	 * and this requires that we are in a read-side RCU section during
4596 	 * receive processing
4597 	 */
4598 	rcu_read_lock();
4599 
4600 	/*
4601 	 * Frames with failed FCS/PLCP checksum are not returned,
4602 	 * all other frames are returned without radiotap header
4603 	 * if it was previously present.
4604 	 * Also, frames with less than 16 bytes are dropped.
4605 	 */
4606 	skb = ieee80211_rx_monitor(local, skb, rate);
4607 	if (!skb) {
4608 		rcu_read_unlock();
4609 		return;
4610 	}
4611 
4612 	ieee80211_tpt_led_trig_rx(local,
4613 			((struct ieee80211_hdr *)skb->data)->frame_control,
4614 			skb->len);
4615 
4616 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4617 
4618 	rcu_read_unlock();
4619 
4620 	return;
4621  drop:
4622 	kfree_skb(skb);
4623 }
4624 EXPORT_SYMBOL(ieee80211_rx_napi);
4625 
4626 /* This is a version of the rx handler that can be called from hard irq
4627  * context. Post the skb on the queue and schedule the tasklet */
4628 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4629 {
4630 	struct ieee80211_local *local = hw_to_local(hw);
4631 
4632 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4633 
4634 	skb->pkt_type = IEEE80211_RX_MSG;
4635 	skb_queue_tail(&local->skb_queue, skb);
4636 	tasklet_schedule(&local->tasklet);
4637 }
4638 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4639