1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2023 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 /*
37 * monitor mode reception
38 *
39 * This function cleans up the SKB, i.e. it removes all the stuff
40 * only useful for monitoring.
41 */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 unsigned int present_fcs_len,
44 unsigned int rtap_space)
45 {
46 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
47 struct ieee80211_hdr *hdr;
48 unsigned int hdrlen;
49 __le16 fc;
50
51 if (present_fcs_len)
52 __pskb_trim(skb, skb->len - present_fcs_len);
53 pskb_pull(skb, rtap_space);
54
55 /* After pulling radiotap header, clear all flags that indicate
56 * info in skb->data.
57 */
58 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END |
59 RX_FLAG_RADIOTAP_LSIG |
60 RX_FLAG_RADIOTAP_HE_MU |
61 RX_FLAG_RADIOTAP_HE);
62
63 hdr = (void *)skb->data;
64 fc = hdr->frame_control;
65
66 /*
67 * Remove the HT-Control field (if present) on management
68 * frames after we've sent the frame to monitoring. We
69 * (currently) don't need it, and don't properly parse
70 * frames with it present, due to the assumption of a
71 * fixed management header length.
72 */
73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
74 return skb;
75
76 hdrlen = ieee80211_hdrlen(fc);
77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
78
79 if (!pskb_may_pull(skb, hdrlen)) {
80 dev_kfree_skb(skb);
81 return NULL;
82 }
83
84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
85 hdrlen - IEEE80211_HT_CTL_LEN);
86 pskb_pull(skb, IEEE80211_HT_CTL_LEN);
87
88 return skb;
89 }
90
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
92 unsigned int rtap_space)
93 {
94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
95 struct ieee80211_hdr *hdr;
96
97 hdr = (void *)(skb->data + rtap_space);
98
99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
100 RX_FLAG_FAILED_PLCP_CRC |
101 RX_FLAG_ONLY_MONITOR |
102 RX_FLAG_NO_PSDU))
103 return true;
104
105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
106 return true;
107
108 if (ieee80211_is_ctl(hdr->frame_control) &&
109 !ieee80211_is_pspoll(hdr->frame_control) &&
110 !ieee80211_is_back_req(hdr->frame_control))
111 return true;
112
113 return false;
114 }
115
116 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
118 struct ieee80211_rx_status *status,
119 struct sk_buff *skb)
120 {
121 int len;
122
123 /* always present fields */
124 len = sizeof(struct ieee80211_radiotap_header) + 8;
125
126 /* allocate extra bitmaps */
127 if (status->chains)
128 len += 4 * hweight8(status->chains);
129
130 if (ieee80211_have_rx_timestamp(status)) {
131 len = ALIGN(len, 8);
132 len += 8;
133 }
134 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
135 len += 1;
136
137 /* antenna field, if we don't have per-chain info */
138 if (!status->chains)
139 len += 1;
140
141 /* padding for RX_FLAGS if necessary */
142 len = ALIGN(len, 2);
143
144 if (status->encoding == RX_ENC_HT) /* HT info */
145 len += 3;
146
147 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
148 len = ALIGN(len, 4);
149 len += 8;
150 }
151
152 if (status->encoding == RX_ENC_VHT) {
153 len = ALIGN(len, 2);
154 len += 12;
155 }
156
157 if (local->hw.radiotap_timestamp.units_pos >= 0) {
158 len = ALIGN(len, 8);
159 len += 12;
160 }
161
162 if (status->encoding == RX_ENC_HE &&
163 status->flag & RX_FLAG_RADIOTAP_HE) {
164 len = ALIGN(len, 2);
165 len += 12;
166 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
167 }
168
169 if (status->encoding == RX_ENC_HE &&
170 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
171 len = ALIGN(len, 2);
172 len += 12;
173 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
174 }
175
176 if (status->flag & RX_FLAG_NO_PSDU)
177 len += 1;
178
179 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
180 len = ALIGN(len, 2);
181 len += 4;
182 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
183 }
184
185 if (status->chains) {
186 /* antenna and antenna signal fields */
187 len += 2 * hweight8(status->chains);
188 }
189
190 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) {
191 int tlv_offset = 0;
192
193 /*
194 * The position to look at depends on the existence (or non-
195 * existence) of other elements, so take that into account...
196 */
197 if (status->flag & RX_FLAG_RADIOTAP_HE)
198 tlv_offset +=
199 sizeof(struct ieee80211_radiotap_he);
200 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
201 tlv_offset +=
202 sizeof(struct ieee80211_radiotap_he_mu);
203 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
204 tlv_offset +=
205 sizeof(struct ieee80211_radiotap_lsig);
206
207 /* ensure 4 byte alignment for TLV */
208 len = ALIGN(len, 4);
209
210 /* TLVs until the mac header */
211 len += skb_mac_header(skb) - &skb->data[tlv_offset];
212 }
213
214 return len;
215 }
216
__ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,int link_id,struct sta_info * sta,struct sk_buff * skb)217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 int link_id,
219 struct sta_info *sta,
220 struct sk_buff *skb)
221 {
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223
224 if (link_id >= 0) {
225 status->link_valid = 1;
226 status->link_id = link_id;
227 } else {
228 status->link_valid = 0;
229 }
230
231 skb_queue_tail(&sdata->skb_queue, skb);
232 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work);
233 if (sta)
234 sta->deflink.rx_stats.packets++;
235 }
236
ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,int link_id,struct sta_info * sta,struct sk_buff * skb)237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
238 int link_id,
239 struct sta_info *sta,
240 struct sk_buff *skb)
241 {
242 skb->protocol = 0;
243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb);
244 }
245
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
247 struct sk_buff *skb,
248 int rtap_space)
249 {
250 struct {
251 struct ieee80211_hdr_3addr hdr;
252 u8 category;
253 u8 action_code;
254 } __packed __aligned(2) action;
255
256 if (!sdata)
257 return;
258
259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
260
261 if (skb->len < rtap_space + sizeof(action) +
262 VHT_MUMIMO_GROUPS_DATA_LEN)
263 return;
264
265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
266 return;
267
268 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
269
270 if (!ieee80211_is_action(action.hdr.frame_control))
271 return;
272
273 if (action.category != WLAN_CATEGORY_VHT)
274 return;
275
276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
277 return;
278
279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
280 return;
281
282 skb = skb_copy(skb, GFP_ATOMIC);
283 if (!skb)
284 return;
285
286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb);
287 }
288
289 /*
290 * ieee80211_add_rx_radiotap_header - add radiotap header
291 *
292 * add a radiotap header containing all the fields which the hardware provided.
293 */
294 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
296 struct sk_buff *skb,
297 struct ieee80211_rate *rate,
298 int rtap_len, bool has_fcs)
299 {
300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
301 struct ieee80211_radiotap_header *rthdr;
302 unsigned char *pos;
303 __le32 *it_present;
304 u32 it_present_val;
305 u16 rx_flags = 0;
306 u16 channel_flags = 0;
307 u32 tlvs_len = 0;
308 int mpdulen, chain;
309 unsigned long chains = status->chains;
310 struct ieee80211_radiotap_he he = {};
311 struct ieee80211_radiotap_he_mu he_mu = {};
312 struct ieee80211_radiotap_lsig lsig = {};
313
314 if (status->flag & RX_FLAG_RADIOTAP_HE) {
315 he = *(struct ieee80211_radiotap_he *)skb->data;
316 skb_pull(skb, sizeof(he));
317 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
318 }
319
320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
322 skb_pull(skb, sizeof(he_mu));
323 }
324
325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
327 skb_pull(skb, sizeof(lsig));
328 }
329
330 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) {
331 /* data is pointer at tlv all other info was pulled off */
332 tlvs_len = skb_mac_header(skb) - skb->data;
333 }
334
335 mpdulen = skb->len;
336 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
337 mpdulen += FCS_LEN;
338
339 rthdr = skb_push(skb, rtap_len - tlvs_len);
340 memset(rthdr, 0, rtap_len - tlvs_len);
341 it_present = &rthdr->it_present;
342
343 /* radiotap header, set always present flags */
344 rthdr->it_len = cpu_to_le16(rtap_len);
345 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
346 BIT(IEEE80211_RADIOTAP_CHANNEL) |
347 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
348
349 if (!status->chains)
350 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
351
352 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
353 it_present_val |=
354 BIT(IEEE80211_RADIOTAP_EXT) |
355 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
356 put_unaligned_le32(it_present_val, it_present);
357 it_present++;
358 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
359 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
360 }
361
362 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END)
363 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV);
364
365 put_unaligned_le32(it_present_val, it_present);
366
367 /* This references through an offset into it_optional[] rather
368 * than via it_present otherwise later uses of pos will cause
369 * the compiler to think we have walked past the end of the
370 * struct member.
371 */
372 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
373
374 /* the order of the following fields is important */
375
376 /* IEEE80211_RADIOTAP_TSFT */
377 if (ieee80211_have_rx_timestamp(status)) {
378 /* padding */
379 while ((pos - (u8 *)rthdr) & 7)
380 *pos++ = 0;
381 put_unaligned_le64(
382 ieee80211_calculate_rx_timestamp(local, status,
383 mpdulen, 0),
384 pos);
385 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
386 pos += 8;
387 }
388
389 /* IEEE80211_RADIOTAP_FLAGS */
390 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
391 *pos |= IEEE80211_RADIOTAP_F_FCS;
392 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
393 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
394 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
395 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
396 pos++;
397
398 /* IEEE80211_RADIOTAP_RATE */
399 if (!rate || status->encoding != RX_ENC_LEGACY) {
400 /*
401 * Without rate information don't add it. If we have,
402 * MCS information is a separate field in radiotap,
403 * added below. The byte here is needed as padding
404 * for the channel though, so initialise it to 0.
405 */
406 *pos = 0;
407 } else {
408 int shift = 0;
409 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
410 if (status->bw == RATE_INFO_BW_10)
411 shift = 1;
412 else if (status->bw == RATE_INFO_BW_5)
413 shift = 2;
414 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
415 }
416 pos++;
417
418 /* IEEE80211_RADIOTAP_CHANNEL */
419 /* TODO: frequency offset in KHz */
420 put_unaligned_le16(status->freq, pos);
421 pos += 2;
422 if (status->bw == RATE_INFO_BW_10)
423 channel_flags |= IEEE80211_CHAN_HALF;
424 else if (status->bw == RATE_INFO_BW_5)
425 channel_flags |= IEEE80211_CHAN_QUARTER;
426
427 if (status->band == NL80211_BAND_5GHZ ||
428 status->band == NL80211_BAND_6GHZ)
429 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
430 else if (status->encoding != RX_ENC_LEGACY)
431 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
433 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
434 else if (rate)
435 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
436 else
437 channel_flags |= IEEE80211_CHAN_2GHZ;
438 put_unaligned_le16(channel_flags, pos);
439 pos += 2;
440
441 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
442 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
443 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
444 *pos = status->signal;
445 rthdr->it_present |=
446 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
447 pos++;
448 }
449
450 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
451
452 if (!status->chains) {
453 /* IEEE80211_RADIOTAP_ANTENNA */
454 *pos = status->antenna;
455 pos++;
456 }
457
458 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
459
460 /* IEEE80211_RADIOTAP_RX_FLAGS */
461 /* ensure 2 byte alignment for the 2 byte field as required */
462 if ((pos - (u8 *)rthdr) & 1)
463 *pos++ = 0;
464 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
465 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
466 put_unaligned_le16(rx_flags, pos);
467 pos += 2;
468
469 if (status->encoding == RX_ENC_HT) {
470 unsigned int stbc;
471
472 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
473 *pos = local->hw.radiotap_mcs_details;
474 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
475 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT;
476 if (status->enc_flags & RX_ENC_FLAG_LDPC)
477 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC;
478 pos++;
479 *pos = 0;
480 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
481 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
482 if (status->bw == RATE_INFO_BW_40)
483 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
484 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
485 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
486 if (status->enc_flags & RX_ENC_FLAG_LDPC)
487 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
488 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
489 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
490 pos++;
491 *pos++ = status->rate_idx;
492 }
493
494 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
495 u16 flags = 0;
496
497 /* ensure 4 byte alignment */
498 while ((pos - (u8 *)rthdr) & 3)
499 pos++;
500 rthdr->it_present |=
501 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
502 put_unaligned_le32(status->ampdu_reference, pos);
503 pos += 4;
504 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
505 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
506 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
507 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
509 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
510 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
511 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
512 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
513 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
514 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
515 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
516 put_unaligned_le16(flags, pos);
517 pos += 2;
518 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
519 *pos++ = status->ampdu_delimiter_crc;
520 else
521 *pos++ = 0;
522 *pos++ = 0;
523 }
524
525 if (status->encoding == RX_ENC_VHT) {
526 u16 known = local->hw.radiotap_vht_details;
527
528 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
529 put_unaligned_le16(known, pos);
530 pos += 2;
531 /* flags */
532 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
534 /* in VHT, STBC is binary */
535 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
536 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
537 if (status->enc_flags & RX_ENC_FLAG_BF)
538 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
539 pos++;
540 /* bandwidth */
541 switch (status->bw) {
542 case RATE_INFO_BW_80:
543 *pos++ = 4;
544 break;
545 case RATE_INFO_BW_160:
546 *pos++ = 11;
547 break;
548 case RATE_INFO_BW_40:
549 *pos++ = 1;
550 break;
551 default:
552 *pos++ = 0;
553 }
554 /* MCS/NSS */
555 *pos = (status->rate_idx << 4) | status->nss;
556 pos += 4;
557 /* coding field */
558 if (status->enc_flags & RX_ENC_FLAG_LDPC)
559 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
560 pos++;
561 /* group ID */
562 pos++;
563 /* partial_aid */
564 pos += 2;
565 }
566
567 if (local->hw.radiotap_timestamp.units_pos >= 0) {
568 u16 accuracy = 0;
569 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
570
571 rthdr->it_present |=
572 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
573
574 /* ensure 8 byte alignment */
575 while ((pos - (u8 *)rthdr) & 7)
576 pos++;
577
578 put_unaligned_le64(status->device_timestamp, pos);
579 pos += sizeof(u64);
580
581 if (local->hw.radiotap_timestamp.accuracy >= 0) {
582 accuracy = local->hw.radiotap_timestamp.accuracy;
583 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
584 }
585 put_unaligned_le16(accuracy, pos);
586 pos += sizeof(u16);
587
588 *pos++ = local->hw.radiotap_timestamp.units_pos;
589 *pos++ = flags;
590 }
591
592 if (status->encoding == RX_ENC_HE &&
593 status->flag & RX_FLAG_RADIOTAP_HE) {
594 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
595
596 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
597 he.data6 |= HE_PREP(DATA6_NSTS,
598 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
599 status->enc_flags));
600 he.data3 |= HE_PREP(DATA3_STBC, 1);
601 } else {
602 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
603 }
604
605 #define CHECK_GI(s) \
606 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
607 (int)NL80211_RATE_INFO_HE_GI_##s)
608
609 CHECK_GI(0_8);
610 CHECK_GI(1_6);
611 CHECK_GI(3_2);
612
613 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
614 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
615 he.data3 |= HE_PREP(DATA3_CODING,
616 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
617
618 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
619
620 switch (status->bw) {
621 case RATE_INFO_BW_20:
622 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
623 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
624 break;
625 case RATE_INFO_BW_40:
626 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
627 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
628 break;
629 case RATE_INFO_BW_80:
630 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
631 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
632 break;
633 case RATE_INFO_BW_160:
634 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
635 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
636 break;
637 case RATE_INFO_BW_HE_RU:
638 #define CHECK_RU_ALLOC(s) \
639 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
640 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
641
642 CHECK_RU_ALLOC(26);
643 CHECK_RU_ALLOC(52);
644 CHECK_RU_ALLOC(106);
645 CHECK_RU_ALLOC(242);
646 CHECK_RU_ALLOC(484);
647 CHECK_RU_ALLOC(996);
648 CHECK_RU_ALLOC(2x996);
649
650 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
651 status->he_ru + 4);
652 break;
653 default:
654 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
655 }
656
657 /* ensure 2 byte alignment */
658 while ((pos - (u8 *)rthdr) & 1)
659 pos++;
660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
661 memcpy(pos, &he, sizeof(he));
662 pos += sizeof(he);
663 }
664
665 if (status->encoding == RX_ENC_HE &&
666 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
667 /* ensure 2 byte alignment */
668 while ((pos - (u8 *)rthdr) & 1)
669 pos++;
670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
671 memcpy(pos, &he_mu, sizeof(he_mu));
672 pos += sizeof(he_mu);
673 }
674
675 if (status->flag & RX_FLAG_NO_PSDU) {
676 rthdr->it_present |=
677 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
678 *pos++ = status->zero_length_psdu_type;
679 }
680
681 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
682 /* ensure 2 byte alignment */
683 while ((pos - (u8 *)rthdr) & 1)
684 pos++;
685 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
686 memcpy(pos, &lsig, sizeof(lsig));
687 pos += sizeof(lsig);
688 }
689
690 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
691 *pos++ = status->chain_signal[chain];
692 *pos++ = chain;
693 }
694 }
695
696 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)697 ieee80211_make_monitor_skb(struct ieee80211_local *local,
698 struct sk_buff **origskb,
699 struct ieee80211_rate *rate,
700 int rtap_space, bool use_origskb)
701 {
702 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
703 int rt_hdrlen, needed_headroom;
704 struct sk_buff *skb;
705
706 /* room for the radiotap header based on driver features */
707 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
708 needed_headroom = rt_hdrlen - rtap_space;
709
710 if (use_origskb) {
711 /* only need to expand headroom if necessary */
712 skb = *origskb;
713 *origskb = NULL;
714
715 /*
716 * This shouldn't trigger often because most devices have an
717 * RX header they pull before we get here, and that should
718 * be big enough for our radiotap information. We should
719 * probably export the length to drivers so that we can have
720 * them allocate enough headroom to start with.
721 */
722 if (skb_headroom(skb) < needed_headroom &&
723 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
724 dev_kfree_skb(skb);
725 return NULL;
726 }
727 } else {
728 /*
729 * Need to make a copy and possibly remove radiotap header
730 * and FCS from the original.
731 */
732 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
733 0, GFP_ATOMIC);
734
735 if (!skb)
736 return NULL;
737 }
738
739 /* prepend radiotap information */
740 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
741
742 skb_reset_mac_header(skb);
743 skb->ip_summed = CHECKSUM_UNNECESSARY;
744 skb->pkt_type = PACKET_OTHERHOST;
745 skb->protocol = htons(ETH_P_802_2);
746
747 return skb;
748 }
749
750 /*
751 * This function copies a received frame to all monitor interfaces and
752 * returns a cleaned-up SKB that no longer includes the FCS nor the
753 * radiotap header the driver might have added.
754 */
755 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)756 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
757 struct ieee80211_rate *rate)
758 {
759 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
760 struct ieee80211_sub_if_data *sdata;
761 struct sk_buff *monskb = NULL;
762 int present_fcs_len = 0;
763 unsigned int rtap_space = 0;
764 struct ieee80211_sub_if_data *monitor_sdata =
765 rcu_dereference(local->monitor_sdata);
766 bool only_monitor = false;
767 unsigned int min_head_len;
768
769 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END &&
770 !skb_mac_header_was_set(origskb))) {
771 /* with this skb no way to know where frame payload starts */
772 dev_kfree_skb(origskb);
773 return NULL;
774 }
775
776 if (status->flag & RX_FLAG_RADIOTAP_HE)
777 rtap_space += sizeof(struct ieee80211_radiotap_he);
778
779 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
780 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
781
782 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
783 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
784
785 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END)
786 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space];
787
788 min_head_len = rtap_space;
789
790 /*
791 * First, we may need to make a copy of the skb because
792 * (1) we need to modify it for radiotap (if not present), and
793 * (2) the other RX handlers will modify the skb we got.
794 *
795 * We don't need to, of course, if we aren't going to return
796 * the SKB because it has a bad FCS/PLCP checksum.
797 */
798
799 if (!(status->flag & RX_FLAG_NO_PSDU)) {
800 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
801 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
802 /* driver bug */
803 WARN_ON(1);
804 dev_kfree_skb(origskb);
805 return NULL;
806 }
807 present_fcs_len = FCS_LEN;
808 }
809
810 /* also consider the hdr->frame_control */
811 min_head_len += 2;
812 }
813
814 /* ensure that the expected data elements are in skb head */
815 if (!pskb_may_pull(origskb, min_head_len)) {
816 dev_kfree_skb(origskb);
817 return NULL;
818 }
819
820 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
821
822 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
823 if (only_monitor) {
824 dev_kfree_skb(origskb);
825 return NULL;
826 }
827
828 return ieee80211_clean_skb(origskb, present_fcs_len,
829 rtap_space);
830 }
831
832 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
833
834 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
835 bool last_monitor = list_is_last(&sdata->u.mntr.list,
836 &local->mon_list);
837
838 if (!monskb)
839 monskb = ieee80211_make_monitor_skb(local, &origskb,
840 rate, rtap_space,
841 only_monitor &&
842 last_monitor);
843
844 if (monskb) {
845 struct sk_buff *skb;
846
847 if (last_monitor) {
848 skb = monskb;
849 monskb = NULL;
850 } else {
851 skb = skb_clone(monskb, GFP_ATOMIC);
852 }
853
854 if (skb) {
855 skb->dev = sdata->dev;
856 dev_sw_netstats_rx_add(skb->dev, skb->len);
857 netif_receive_skb(skb);
858 }
859 }
860
861 if (last_monitor)
862 break;
863 }
864
865 /* this happens if last_monitor was erroneously false */
866 dev_kfree_skb(monskb);
867
868 /* ditto */
869 if (!origskb)
870 return NULL;
871
872 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
873 }
874
ieee80211_parse_qos(struct ieee80211_rx_data * rx)875 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
876 {
877 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
879 int tid, seqno_idx, security_idx;
880
881 /* does the frame have a qos control field? */
882 if (ieee80211_is_data_qos(hdr->frame_control)) {
883 u8 *qc = ieee80211_get_qos_ctl(hdr);
884 /* frame has qos control */
885 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
886 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
887 status->rx_flags |= IEEE80211_RX_AMSDU;
888
889 seqno_idx = tid;
890 security_idx = tid;
891 } else {
892 /*
893 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
894 *
895 * Sequence numbers for management frames, QoS data
896 * frames with a broadcast/multicast address in the
897 * Address 1 field, and all non-QoS data frames sent
898 * by QoS STAs are assigned using an additional single
899 * modulo-4096 counter, [...]
900 *
901 * We also use that counter for non-QoS STAs.
902 */
903 seqno_idx = IEEE80211_NUM_TIDS;
904 security_idx = 0;
905 if (ieee80211_is_mgmt(hdr->frame_control))
906 security_idx = IEEE80211_NUM_TIDS;
907 tid = 0;
908 }
909
910 rx->seqno_idx = seqno_idx;
911 rx->security_idx = security_idx;
912 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
913 * For now, set skb->priority to 0 for other cases. */
914 rx->skb->priority = (tid > 7) ? 0 : tid;
915 }
916
917 /**
918 * DOC: Packet alignment
919 *
920 * Drivers always need to pass packets that are aligned to two-byte boundaries
921 * to the stack.
922 *
923 * Additionally, should, if possible, align the payload data in a way that
924 * guarantees that the contained IP header is aligned to a four-byte
925 * boundary. In the case of regular frames, this simply means aligning the
926 * payload to a four-byte boundary (because either the IP header is directly
927 * contained, or IV/RFC1042 headers that have a length divisible by four are
928 * in front of it). If the payload data is not properly aligned and the
929 * architecture doesn't support efficient unaligned operations, mac80211
930 * will align the data.
931 *
932 * With A-MSDU frames, however, the payload data address must yield two modulo
933 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
934 * push the IP header further back to a multiple of four again. Thankfully, the
935 * specs were sane enough this time around to require padding each A-MSDU
936 * subframe to a length that is a multiple of four.
937 *
938 * Padding like Atheros hardware adds which is between the 802.11 header and
939 * the payload is not supported, the driver is required to move the 802.11
940 * header to be directly in front of the payload in that case.
941 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)942 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
943 {
944 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
945 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
946 #endif
947 }
948
949
950 /* rx handlers */
951
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)952 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
953 {
954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
955
956 if (is_multicast_ether_addr(hdr->addr1))
957 return 0;
958
959 return ieee80211_is_robust_mgmt_frame(skb);
960 }
961
962
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)963 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
964 {
965 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
966
967 if (!is_multicast_ether_addr(hdr->addr1))
968 return 0;
969
970 return ieee80211_is_robust_mgmt_frame(skb);
971 }
972
973
974 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)975 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
976 {
977 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
978 struct ieee80211_mmie *mmie;
979 struct ieee80211_mmie_16 *mmie16;
980
981 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
982 return -1;
983
984 if (!ieee80211_is_robust_mgmt_frame(skb) &&
985 !ieee80211_is_beacon(hdr->frame_control))
986 return -1; /* not a robust management frame */
987
988 mmie = (struct ieee80211_mmie *)
989 (skb->data + skb->len - sizeof(*mmie));
990 if (mmie->element_id == WLAN_EID_MMIE &&
991 mmie->length == sizeof(*mmie) - 2)
992 return le16_to_cpu(mmie->key_id);
993
994 mmie16 = (struct ieee80211_mmie_16 *)
995 (skb->data + skb->len - sizeof(*mmie16));
996 if (skb->len >= 24 + sizeof(*mmie16) &&
997 mmie16->element_id == WLAN_EID_MMIE &&
998 mmie16->length == sizeof(*mmie16) - 2)
999 return le16_to_cpu(mmie16->key_id);
1000
1001 return -1;
1002 }
1003
ieee80211_get_keyid(struct sk_buff * skb)1004 static int ieee80211_get_keyid(struct sk_buff *skb)
1005 {
1006 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1007 __le16 fc = hdr->frame_control;
1008 int hdrlen = ieee80211_hdrlen(fc);
1009 u8 keyid;
1010
1011 /* WEP, TKIP, CCMP and GCMP */
1012 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN))
1013 return -EINVAL;
1014
1015 skb_copy_bits(skb, hdrlen + 3, &keyid, 1);
1016
1017 keyid >>= 6;
1018
1019 return keyid;
1020 }
1021
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1022 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1023 {
1024 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1025 char *dev_addr = rx->sdata->vif.addr;
1026
1027 if (ieee80211_is_data(hdr->frame_control)) {
1028 if (is_multicast_ether_addr(hdr->addr1)) {
1029 if (ieee80211_has_tods(hdr->frame_control) ||
1030 !ieee80211_has_fromds(hdr->frame_control))
1031 return RX_DROP_MONITOR;
1032 if (ether_addr_equal(hdr->addr3, dev_addr))
1033 return RX_DROP_MONITOR;
1034 } else {
1035 if (!ieee80211_has_a4(hdr->frame_control))
1036 return RX_DROP_MONITOR;
1037 if (ether_addr_equal(hdr->addr4, dev_addr))
1038 return RX_DROP_MONITOR;
1039 }
1040 }
1041
1042 /* If there is not an established peer link and this is not a peer link
1043 * establisment frame, beacon or probe, drop the frame.
1044 */
1045
1046 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1047 struct ieee80211_mgmt *mgmt;
1048
1049 if (!ieee80211_is_mgmt(hdr->frame_control))
1050 return RX_DROP_MONITOR;
1051
1052 if (ieee80211_is_action(hdr->frame_control)) {
1053 u8 category;
1054
1055 /* make sure category field is present */
1056 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1057 return RX_DROP_MONITOR;
1058
1059 mgmt = (struct ieee80211_mgmt *)hdr;
1060 category = mgmt->u.action.category;
1061 if (category != WLAN_CATEGORY_MESH_ACTION &&
1062 category != WLAN_CATEGORY_SELF_PROTECTED)
1063 return RX_DROP_MONITOR;
1064 return RX_CONTINUE;
1065 }
1066
1067 if (ieee80211_is_probe_req(hdr->frame_control) ||
1068 ieee80211_is_probe_resp(hdr->frame_control) ||
1069 ieee80211_is_beacon(hdr->frame_control) ||
1070 ieee80211_is_auth(hdr->frame_control))
1071 return RX_CONTINUE;
1072
1073 return RX_DROP_MONITOR;
1074 }
1075
1076 return RX_CONTINUE;
1077 }
1078
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1079 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1080 int index)
1081 {
1082 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1083 struct sk_buff *tail = skb_peek_tail(frames);
1084 struct ieee80211_rx_status *status;
1085
1086 if (tid_agg_rx->reorder_buf_filtered &&
1087 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1088 return true;
1089
1090 if (!tail)
1091 return false;
1092
1093 status = IEEE80211_SKB_RXCB(tail);
1094 if (status->flag & RX_FLAG_AMSDU_MORE)
1095 return false;
1096
1097 return true;
1098 }
1099
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1100 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1101 struct tid_ampdu_rx *tid_agg_rx,
1102 int index,
1103 struct sk_buff_head *frames)
1104 {
1105 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1106 struct sk_buff *skb;
1107 struct ieee80211_rx_status *status;
1108
1109 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1110
1111 if (skb_queue_empty(skb_list))
1112 goto no_frame;
1113
1114 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1115 __skb_queue_purge(skb_list);
1116 goto no_frame;
1117 }
1118
1119 /* release frames from the reorder ring buffer */
1120 tid_agg_rx->stored_mpdu_num--;
1121 while ((skb = __skb_dequeue(skb_list))) {
1122 status = IEEE80211_SKB_RXCB(skb);
1123 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1124 __skb_queue_tail(frames, skb);
1125 }
1126
1127 no_frame:
1128 if (tid_agg_rx->reorder_buf_filtered)
1129 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1130 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1131 }
1132
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1133 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1134 struct tid_ampdu_rx *tid_agg_rx,
1135 u16 head_seq_num,
1136 struct sk_buff_head *frames)
1137 {
1138 int index;
1139
1140 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1141
1142 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1143 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1144 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1145 frames);
1146 }
1147 }
1148
1149 /*
1150 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1151 * the skb was added to the buffer longer than this time ago, the earlier
1152 * frames that have not yet been received are assumed to be lost and the skb
1153 * can be released for processing. This may also release other skb's from the
1154 * reorder buffer if there are no additional gaps between the frames.
1155 *
1156 * Callers must hold tid_agg_rx->reorder_lock.
1157 */
1158 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1159
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1160 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1161 struct tid_ampdu_rx *tid_agg_rx,
1162 struct sk_buff_head *frames)
1163 {
1164 int index, i, j;
1165
1166 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1167
1168 /* release the buffer until next missing frame */
1169 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1170 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1171 tid_agg_rx->stored_mpdu_num) {
1172 /*
1173 * No buffers ready to be released, but check whether any
1174 * frames in the reorder buffer have timed out.
1175 */
1176 int skipped = 1;
1177 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1178 j = (j + 1) % tid_agg_rx->buf_size) {
1179 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1180 skipped++;
1181 continue;
1182 }
1183 if (skipped &&
1184 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1185 HT_RX_REORDER_BUF_TIMEOUT))
1186 goto set_release_timer;
1187
1188 /* don't leave incomplete A-MSDUs around */
1189 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1190 i = (i + 1) % tid_agg_rx->buf_size)
1191 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1192
1193 ht_dbg_ratelimited(sdata,
1194 "release an RX reorder frame due to timeout on earlier frames\n");
1195 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1196 frames);
1197
1198 /*
1199 * Increment the head seq# also for the skipped slots.
1200 */
1201 tid_agg_rx->head_seq_num =
1202 (tid_agg_rx->head_seq_num +
1203 skipped) & IEEE80211_SN_MASK;
1204 skipped = 0;
1205 }
1206 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1207 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1208 frames);
1209 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1210 }
1211
1212 if (tid_agg_rx->stored_mpdu_num) {
1213 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1214
1215 for (; j != (index - 1) % tid_agg_rx->buf_size;
1216 j = (j + 1) % tid_agg_rx->buf_size) {
1217 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1218 break;
1219 }
1220
1221 set_release_timer:
1222
1223 if (!tid_agg_rx->removed)
1224 mod_timer(&tid_agg_rx->reorder_timer,
1225 tid_agg_rx->reorder_time[j] + 1 +
1226 HT_RX_REORDER_BUF_TIMEOUT);
1227 } else {
1228 del_timer(&tid_agg_rx->reorder_timer);
1229 }
1230 }
1231
1232 /*
1233 * As this function belongs to the RX path it must be under
1234 * rcu_read_lock protection. It returns false if the frame
1235 * can be processed immediately, true if it was consumed.
1236 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1237 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1238 struct tid_ampdu_rx *tid_agg_rx,
1239 struct sk_buff *skb,
1240 struct sk_buff_head *frames)
1241 {
1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1244 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1245 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1246 u16 head_seq_num, buf_size;
1247 int index;
1248 bool ret = true;
1249
1250 spin_lock(&tid_agg_rx->reorder_lock);
1251
1252 /*
1253 * Offloaded BA sessions have no known starting sequence number so pick
1254 * one from first Rxed frame for this tid after BA was started.
1255 */
1256 if (unlikely(tid_agg_rx->auto_seq)) {
1257 tid_agg_rx->auto_seq = false;
1258 tid_agg_rx->ssn = mpdu_seq_num;
1259 tid_agg_rx->head_seq_num = mpdu_seq_num;
1260 }
1261
1262 buf_size = tid_agg_rx->buf_size;
1263 head_seq_num = tid_agg_rx->head_seq_num;
1264
1265 /*
1266 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1267 * be reordered.
1268 */
1269 if (unlikely(!tid_agg_rx->started)) {
1270 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1271 ret = false;
1272 goto out;
1273 }
1274 tid_agg_rx->started = true;
1275 }
1276
1277 /* frame with out of date sequence number */
1278 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1279 dev_kfree_skb(skb);
1280 goto out;
1281 }
1282
1283 /*
1284 * If frame the sequence number exceeds our buffering window
1285 * size release some previous frames to make room for this one.
1286 */
1287 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1288 head_seq_num = ieee80211_sn_inc(
1289 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1290 /* release stored frames up to new head to stack */
1291 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1292 head_seq_num, frames);
1293 }
1294
1295 /* Now the new frame is always in the range of the reordering buffer */
1296
1297 index = mpdu_seq_num % tid_agg_rx->buf_size;
1298
1299 /* check if we already stored this frame */
1300 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1301 dev_kfree_skb(skb);
1302 goto out;
1303 }
1304
1305 /*
1306 * If the current MPDU is in the right order and nothing else
1307 * is stored we can process it directly, no need to buffer it.
1308 * If it is first but there's something stored, we may be able
1309 * to release frames after this one.
1310 */
1311 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1312 tid_agg_rx->stored_mpdu_num == 0) {
1313 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1314 tid_agg_rx->head_seq_num =
1315 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1316 ret = false;
1317 goto out;
1318 }
1319
1320 /* put the frame in the reordering buffer */
1321 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1322 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1323 tid_agg_rx->reorder_time[index] = jiffies;
1324 tid_agg_rx->stored_mpdu_num++;
1325 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1326 }
1327
1328 out:
1329 spin_unlock(&tid_agg_rx->reorder_lock);
1330 return ret;
1331 }
1332
1333 /*
1334 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1335 * true if the MPDU was buffered, false if it should be processed.
1336 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1337 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1338 struct sk_buff_head *frames)
1339 {
1340 struct sk_buff *skb = rx->skb;
1341 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1342 struct sta_info *sta = rx->sta;
1343 struct tid_ampdu_rx *tid_agg_rx;
1344 u16 sc;
1345 u8 tid, ack_policy;
1346
1347 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1348 is_multicast_ether_addr(hdr->addr1))
1349 goto dont_reorder;
1350
1351 /*
1352 * filter the QoS data rx stream according to
1353 * STA/TID and check if this STA/TID is on aggregation
1354 */
1355
1356 if (!sta)
1357 goto dont_reorder;
1358
1359 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1360 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1361 tid = ieee80211_get_tid(hdr);
1362
1363 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1364 if (!tid_agg_rx) {
1365 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1366 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1367 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1368 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1369 WLAN_BACK_RECIPIENT,
1370 WLAN_REASON_QSTA_REQUIRE_SETUP);
1371 goto dont_reorder;
1372 }
1373
1374 /* qos null data frames are excluded */
1375 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1376 goto dont_reorder;
1377
1378 /* not part of a BA session */
1379 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1380 goto dont_reorder;
1381
1382 /* new, potentially un-ordered, ampdu frame - process it */
1383
1384 /* reset session timer */
1385 if (tid_agg_rx->timeout)
1386 tid_agg_rx->last_rx = jiffies;
1387
1388 /* if this mpdu is fragmented - terminate rx aggregation session */
1389 sc = le16_to_cpu(hdr->seq_ctrl);
1390 if (sc & IEEE80211_SCTL_FRAG) {
1391 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb);
1392 return;
1393 }
1394
1395 /*
1396 * No locking needed -- we will only ever process one
1397 * RX packet at a time, and thus own tid_agg_rx. All
1398 * other code manipulating it needs to (and does) make
1399 * sure that we cannot get to it any more before doing
1400 * anything with it.
1401 */
1402 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1403 frames))
1404 return;
1405
1406 dont_reorder:
1407 __skb_queue_tail(frames, skb);
1408 }
1409
1410 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1411 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1412 {
1413 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1414 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1415
1416 if (status->flag & RX_FLAG_DUP_VALIDATED)
1417 return RX_CONTINUE;
1418
1419 /*
1420 * Drop duplicate 802.11 retransmissions
1421 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1422 */
1423
1424 if (rx->skb->len < 24)
1425 return RX_CONTINUE;
1426
1427 if (ieee80211_is_ctl(hdr->frame_control) ||
1428 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1429 is_multicast_ether_addr(hdr->addr1))
1430 return RX_CONTINUE;
1431
1432 if (!rx->sta)
1433 return RX_CONTINUE;
1434
1435 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1436 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1437 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1438 rx->link_sta->rx_stats.num_duplicates++;
1439 return RX_DROP_UNUSABLE;
1440 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1441 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1442 }
1443
1444 return RX_CONTINUE;
1445 }
1446
1447 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1448 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1449 {
1450 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1451
1452 /* Drop disallowed frame classes based on STA auth/assoc state;
1453 * IEEE 802.11, Chap 5.5.
1454 *
1455 * mac80211 filters only based on association state, i.e. it drops
1456 * Class 3 frames from not associated stations. hostapd sends
1457 * deauth/disassoc frames when needed. In addition, hostapd is
1458 * responsible for filtering on both auth and assoc states.
1459 */
1460
1461 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1462 return ieee80211_rx_mesh_check(rx);
1463
1464 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1465 ieee80211_is_pspoll(hdr->frame_control)) &&
1466 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1467 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1468 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1469 /*
1470 * accept port control frames from the AP even when it's not
1471 * yet marked ASSOC to prevent a race where we don't set the
1472 * assoc bit quickly enough before it sends the first frame
1473 */
1474 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1475 ieee80211_is_data_present(hdr->frame_control)) {
1476 unsigned int hdrlen;
1477 __be16 ethertype;
1478
1479 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1480
1481 if (rx->skb->len < hdrlen + 8)
1482 return RX_DROP_MONITOR;
1483
1484 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1485 if (ethertype == rx->sdata->control_port_protocol)
1486 return RX_CONTINUE;
1487 }
1488
1489 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1490 cfg80211_rx_spurious_frame(rx->sdata->dev,
1491 hdr->addr2,
1492 GFP_ATOMIC))
1493 return RX_DROP_UNUSABLE;
1494
1495 return RX_DROP_MONITOR;
1496 }
1497
1498 return RX_CONTINUE;
1499 }
1500
1501
1502 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1503 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1504 {
1505 struct ieee80211_local *local;
1506 struct ieee80211_hdr *hdr;
1507 struct sk_buff *skb;
1508
1509 local = rx->local;
1510 skb = rx->skb;
1511 hdr = (struct ieee80211_hdr *) skb->data;
1512
1513 if (!local->pspolling)
1514 return RX_CONTINUE;
1515
1516 if (!ieee80211_has_fromds(hdr->frame_control))
1517 /* this is not from AP */
1518 return RX_CONTINUE;
1519
1520 if (!ieee80211_is_data(hdr->frame_control))
1521 return RX_CONTINUE;
1522
1523 if (!ieee80211_has_moredata(hdr->frame_control)) {
1524 /* AP has no more frames buffered for us */
1525 local->pspolling = false;
1526 return RX_CONTINUE;
1527 }
1528
1529 /* more data bit is set, let's request a new frame from the AP */
1530 ieee80211_send_pspoll(local, rx->sdata);
1531
1532 return RX_CONTINUE;
1533 }
1534
sta_ps_start(struct sta_info * sta)1535 static void sta_ps_start(struct sta_info *sta)
1536 {
1537 struct ieee80211_sub_if_data *sdata = sta->sdata;
1538 struct ieee80211_local *local = sdata->local;
1539 struct ps_data *ps;
1540 int tid;
1541
1542 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1543 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1544 ps = &sdata->bss->ps;
1545 else
1546 return;
1547
1548 atomic_inc(&ps->num_sta_ps);
1549 set_sta_flag(sta, WLAN_STA_PS_STA);
1550 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1551 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1552 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1553 sta->sta.addr, sta->sta.aid);
1554
1555 ieee80211_clear_fast_xmit(sta);
1556
1557 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1558 struct ieee80211_txq *txq = sta->sta.txq[tid];
1559 struct txq_info *txqi = to_txq_info(txq);
1560
1561 spin_lock(&local->active_txq_lock[txq->ac]);
1562 if (!list_empty(&txqi->schedule_order))
1563 list_del_init(&txqi->schedule_order);
1564 spin_unlock(&local->active_txq_lock[txq->ac]);
1565
1566 if (txq_has_queue(txq))
1567 set_bit(tid, &sta->txq_buffered_tids);
1568 else
1569 clear_bit(tid, &sta->txq_buffered_tids);
1570 }
1571 }
1572
sta_ps_end(struct sta_info * sta)1573 static void sta_ps_end(struct sta_info *sta)
1574 {
1575 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1576 sta->sta.addr, sta->sta.aid);
1577
1578 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1579 /*
1580 * Clear the flag only if the other one is still set
1581 * so that the TX path won't start TX'ing new frames
1582 * directly ... In the case that the driver flag isn't
1583 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1584 */
1585 clear_sta_flag(sta, WLAN_STA_PS_STA);
1586 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1587 sta->sta.addr, sta->sta.aid);
1588 return;
1589 }
1590
1591 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1592 clear_sta_flag(sta, WLAN_STA_PS_STA);
1593 ieee80211_sta_ps_deliver_wakeup(sta);
1594 }
1595
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1596 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1597 {
1598 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1599 bool in_ps;
1600
1601 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1602
1603 /* Don't let the same PS state be set twice */
1604 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1605 if ((start && in_ps) || (!start && !in_ps))
1606 return -EINVAL;
1607
1608 if (start)
1609 sta_ps_start(sta);
1610 else
1611 sta_ps_end(sta);
1612
1613 return 0;
1614 }
1615 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1616
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1617 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1618 {
1619 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1620
1621 if (test_sta_flag(sta, WLAN_STA_SP))
1622 return;
1623
1624 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1625 ieee80211_sta_ps_deliver_poll_response(sta);
1626 else
1627 set_sta_flag(sta, WLAN_STA_PSPOLL);
1628 }
1629 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1630
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1631 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1632 {
1633 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1634 int ac = ieee80211_ac_from_tid(tid);
1635
1636 /*
1637 * If this AC is not trigger-enabled do nothing unless the
1638 * driver is calling us after it already checked.
1639 *
1640 * NB: This could/should check a separate bitmap of trigger-
1641 * enabled queues, but for now we only implement uAPSD w/o
1642 * TSPEC changes to the ACs, so they're always the same.
1643 */
1644 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1645 tid != IEEE80211_NUM_TIDS)
1646 return;
1647
1648 /* if we are in a service period, do nothing */
1649 if (test_sta_flag(sta, WLAN_STA_SP))
1650 return;
1651
1652 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1653 ieee80211_sta_ps_deliver_uapsd(sta);
1654 else
1655 set_sta_flag(sta, WLAN_STA_UAPSD);
1656 }
1657 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1658
1659 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1660 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1661 {
1662 struct ieee80211_sub_if_data *sdata = rx->sdata;
1663 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1664 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1665
1666 if (!rx->sta)
1667 return RX_CONTINUE;
1668
1669 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1670 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1671 return RX_CONTINUE;
1672
1673 /*
1674 * The device handles station powersave, so don't do anything about
1675 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1676 * it to mac80211 since they're handled.)
1677 */
1678 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1679 return RX_CONTINUE;
1680
1681 /*
1682 * Don't do anything if the station isn't already asleep. In
1683 * the uAPSD case, the station will probably be marked asleep,
1684 * in the PS-Poll case the station must be confused ...
1685 */
1686 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1687 return RX_CONTINUE;
1688
1689 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1690 ieee80211_sta_pspoll(&rx->sta->sta);
1691
1692 /* Free PS Poll skb here instead of returning RX_DROP that would
1693 * count as an dropped frame. */
1694 dev_kfree_skb(rx->skb);
1695
1696 return RX_QUEUED;
1697 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1698 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1699 ieee80211_has_pm(hdr->frame_control) &&
1700 (ieee80211_is_data_qos(hdr->frame_control) ||
1701 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1702 u8 tid = ieee80211_get_tid(hdr);
1703
1704 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1705 }
1706
1707 return RX_CONTINUE;
1708 }
1709
1710 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1711 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1712 {
1713 struct sta_info *sta = rx->sta;
1714 struct link_sta_info *link_sta = rx->link_sta;
1715 struct sk_buff *skb = rx->skb;
1716 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1717 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1718 int i;
1719
1720 if (!sta || !link_sta)
1721 return RX_CONTINUE;
1722
1723 /*
1724 * Update last_rx only for IBSS packets which are for the current
1725 * BSSID and for station already AUTHORIZED to avoid keeping the
1726 * current IBSS network alive in cases where other STAs start
1727 * using different BSSID. This will also give the station another
1728 * chance to restart the authentication/authorization in case
1729 * something went wrong the first time.
1730 */
1731 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1732 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1733 NL80211_IFTYPE_ADHOC);
1734 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1735 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1736 link_sta->rx_stats.last_rx = jiffies;
1737 if (ieee80211_is_data_present(hdr->frame_control) &&
1738 !is_multicast_ether_addr(hdr->addr1))
1739 link_sta->rx_stats.last_rate =
1740 sta_stats_encode_rate(status);
1741 }
1742 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1743 link_sta->rx_stats.last_rx = jiffies;
1744 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1745 !is_multicast_ether_addr(hdr->addr1)) {
1746 /*
1747 * Mesh beacons will update last_rx when if they are found to
1748 * match the current local configuration when processed.
1749 */
1750 link_sta->rx_stats.last_rx = jiffies;
1751 if (ieee80211_is_data_present(hdr->frame_control))
1752 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1753 }
1754
1755 link_sta->rx_stats.fragments++;
1756
1757 u64_stats_update_begin(&link_sta->rx_stats.syncp);
1758 link_sta->rx_stats.bytes += rx->skb->len;
1759 u64_stats_update_end(&link_sta->rx_stats.syncp);
1760
1761 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1762 link_sta->rx_stats.last_signal = status->signal;
1763 ewma_signal_add(&link_sta->rx_stats_avg.signal,
1764 -status->signal);
1765 }
1766
1767 if (status->chains) {
1768 link_sta->rx_stats.chains = status->chains;
1769 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1770 int signal = status->chain_signal[i];
1771
1772 if (!(status->chains & BIT(i)))
1773 continue;
1774
1775 link_sta->rx_stats.chain_signal_last[i] = signal;
1776 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i],
1777 -signal);
1778 }
1779 }
1780
1781 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1782 return RX_CONTINUE;
1783
1784 /*
1785 * Change STA power saving mode only at the end of a frame
1786 * exchange sequence, and only for a data or management
1787 * frame as specified in IEEE 802.11-2016 11.2.3.2
1788 */
1789 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1790 !ieee80211_has_morefrags(hdr->frame_control) &&
1791 !is_multicast_ether_addr(hdr->addr1) &&
1792 (ieee80211_is_mgmt(hdr->frame_control) ||
1793 ieee80211_is_data(hdr->frame_control)) &&
1794 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1795 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1796 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1797 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1798 if (!ieee80211_has_pm(hdr->frame_control))
1799 sta_ps_end(sta);
1800 } else {
1801 if (ieee80211_has_pm(hdr->frame_control))
1802 sta_ps_start(sta);
1803 }
1804 }
1805
1806 /* mesh power save support */
1807 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1808 ieee80211_mps_rx_h_sta_process(sta, hdr);
1809
1810 /*
1811 * Drop (qos-)data::nullfunc frames silently, since they
1812 * are used only to control station power saving mode.
1813 */
1814 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1815 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1816
1817 /*
1818 * If we receive a 4-addr nullfunc frame from a STA
1819 * that was not moved to a 4-addr STA vlan yet send
1820 * the event to userspace and for older hostapd drop
1821 * the frame to the monitor interface.
1822 */
1823 if (ieee80211_has_a4(hdr->frame_control) &&
1824 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1825 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1826 !rx->sdata->u.vlan.sta))) {
1827 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1828 cfg80211_rx_unexpected_4addr_frame(
1829 rx->sdata->dev, sta->sta.addr,
1830 GFP_ATOMIC);
1831 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME;
1832 }
1833 /*
1834 * Update counter and free packet here to avoid
1835 * counting this as a dropped packed.
1836 */
1837 link_sta->rx_stats.packets++;
1838 dev_kfree_skb(rx->skb);
1839 return RX_QUEUED;
1840 }
1841
1842 return RX_CONTINUE;
1843 } /* ieee80211_rx_h_sta_process */
1844
1845 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1846 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1847 {
1848 struct ieee80211_key *key = NULL;
1849 int idx2;
1850
1851 /* Make sure key gets set if either BIGTK key index is set so that
1852 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1853 * Beacon frames and Beacon frames that claim to use another BIGTK key
1854 * index (i.e., a key that we do not have).
1855 */
1856
1857 if (idx < 0) {
1858 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1859 idx2 = idx + 1;
1860 } else {
1861 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1862 idx2 = idx + 1;
1863 else
1864 idx2 = idx - 1;
1865 }
1866
1867 if (rx->link_sta)
1868 key = rcu_dereference(rx->link_sta->gtk[idx]);
1869 if (!key)
1870 key = rcu_dereference(rx->link->gtk[idx]);
1871 if (!key && rx->link_sta)
1872 key = rcu_dereference(rx->link_sta->gtk[idx2]);
1873 if (!key)
1874 key = rcu_dereference(rx->link->gtk[idx2]);
1875
1876 return key;
1877 }
1878
1879 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1880 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1881 {
1882 struct sk_buff *skb = rx->skb;
1883 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1884 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1885 int keyidx;
1886 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1887 struct ieee80211_key *sta_ptk = NULL;
1888 struct ieee80211_key *ptk_idx = NULL;
1889 int mmie_keyidx = -1;
1890 __le16 fc;
1891
1892 if (ieee80211_is_ext(hdr->frame_control))
1893 return RX_CONTINUE;
1894
1895 /*
1896 * Key selection 101
1897 *
1898 * There are five types of keys:
1899 * - GTK (group keys)
1900 * - IGTK (group keys for management frames)
1901 * - BIGTK (group keys for Beacon frames)
1902 * - PTK (pairwise keys)
1903 * - STK (station-to-station pairwise keys)
1904 *
1905 * When selecting a key, we have to distinguish between multicast
1906 * (including broadcast) and unicast frames, the latter can only
1907 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1908 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1909 * then unicast frames can also use key indices like GTKs. Hence, if we
1910 * don't have a PTK/STK we check the key index for a WEP key.
1911 *
1912 * Note that in a regular BSS, multicast frames are sent by the
1913 * AP only, associated stations unicast the frame to the AP first
1914 * which then multicasts it on their behalf.
1915 *
1916 * There is also a slight problem in IBSS mode: GTKs are negotiated
1917 * with each station, that is something we don't currently handle.
1918 * The spec seems to expect that one negotiates the same key with
1919 * every station but there's no such requirement; VLANs could be
1920 * possible.
1921 */
1922
1923 /* start without a key */
1924 rx->key = NULL;
1925 fc = hdr->frame_control;
1926
1927 if (rx->sta) {
1928 int keyid = rx->sta->ptk_idx;
1929 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1930
1931 if (ieee80211_has_protected(fc) &&
1932 !(status->flag & RX_FLAG_IV_STRIPPED)) {
1933 keyid = ieee80211_get_keyid(rx->skb);
1934
1935 if (unlikely(keyid < 0))
1936 return RX_DROP_UNUSABLE;
1937
1938 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1939 }
1940 }
1941
1942 if (!ieee80211_has_protected(fc))
1943 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1944
1945 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1946 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1947 if ((status->flag & RX_FLAG_DECRYPTED) &&
1948 (status->flag & RX_FLAG_IV_STRIPPED))
1949 return RX_CONTINUE;
1950 /* Skip decryption if the frame is not protected. */
1951 if (!ieee80211_has_protected(fc))
1952 return RX_CONTINUE;
1953 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1954 /* Broadcast/multicast robust management frame / BIP */
1955 if ((status->flag & RX_FLAG_DECRYPTED) &&
1956 (status->flag & RX_FLAG_IV_STRIPPED))
1957 return RX_CONTINUE;
1958
1959 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1960 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1961 NUM_DEFAULT_BEACON_KEYS) {
1962 if (rx->sdata->dev)
1963 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1964 skb->data,
1965 skb->len);
1966 return RX_DROP_M_BAD_BCN_KEYIDX;
1967 }
1968
1969 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1970 if (!rx->key)
1971 return RX_CONTINUE; /* Beacon protection not in use */
1972 } else if (mmie_keyidx >= 0) {
1973 /* Broadcast/multicast robust management frame / BIP */
1974 if ((status->flag & RX_FLAG_DECRYPTED) &&
1975 (status->flag & RX_FLAG_IV_STRIPPED))
1976 return RX_CONTINUE;
1977
1978 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1979 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1980 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */
1981 if (rx->link_sta) {
1982 if (ieee80211_is_group_privacy_action(skb) &&
1983 test_sta_flag(rx->sta, WLAN_STA_MFP))
1984 return RX_DROP_MONITOR;
1985
1986 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]);
1987 }
1988 if (!rx->key)
1989 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]);
1990 } else if (!ieee80211_has_protected(fc)) {
1991 /*
1992 * The frame was not protected, so skip decryption. However, we
1993 * need to set rx->key if there is a key that could have been
1994 * used so that the frame may be dropped if encryption would
1995 * have been expected.
1996 */
1997 struct ieee80211_key *key = NULL;
1998 int i;
1999
2000 if (ieee80211_is_beacon(fc)) {
2001 key = ieee80211_rx_get_bigtk(rx, -1);
2002 } else if (ieee80211_is_mgmt(fc) &&
2003 is_multicast_ether_addr(hdr->addr1)) {
2004 key = rcu_dereference(rx->link->default_mgmt_key);
2005 } else {
2006 if (rx->link_sta) {
2007 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2008 key = rcu_dereference(rx->link_sta->gtk[i]);
2009 if (key)
2010 break;
2011 }
2012 }
2013 if (!key) {
2014 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2015 key = rcu_dereference(rx->link->gtk[i]);
2016 if (key)
2017 break;
2018 }
2019 }
2020 }
2021 if (key)
2022 rx->key = key;
2023 return RX_CONTINUE;
2024 } else {
2025 /*
2026 * The device doesn't give us the IV so we won't be
2027 * able to look up the key. That's ok though, we
2028 * don't need to decrypt the frame, we just won't
2029 * be able to keep statistics accurate.
2030 * Except for key threshold notifications, should
2031 * we somehow allow the driver to tell us which key
2032 * the hardware used if this flag is set?
2033 */
2034 if ((status->flag & RX_FLAG_DECRYPTED) &&
2035 (status->flag & RX_FLAG_IV_STRIPPED))
2036 return RX_CONTINUE;
2037
2038 keyidx = ieee80211_get_keyid(rx->skb);
2039
2040 if (unlikely(keyidx < 0))
2041 return RX_DROP_UNUSABLE;
2042
2043 /* check per-station GTK first, if multicast packet */
2044 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta)
2045 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]);
2046
2047 /* if not found, try default key */
2048 if (!rx->key) {
2049 if (is_multicast_ether_addr(hdr->addr1))
2050 rx->key = rcu_dereference(rx->link->gtk[keyidx]);
2051 if (!rx->key)
2052 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2053
2054 /*
2055 * RSNA-protected unicast frames should always be
2056 * sent with pairwise or station-to-station keys,
2057 * but for WEP we allow using a key index as well.
2058 */
2059 if (rx->key &&
2060 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2061 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2062 !is_multicast_ether_addr(hdr->addr1))
2063 rx->key = NULL;
2064 }
2065 }
2066
2067 if (rx->key) {
2068 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2069 return RX_DROP_MONITOR;
2070
2071 /* TODO: add threshold stuff again */
2072 } else {
2073 return RX_DROP_MONITOR;
2074 }
2075
2076 switch (rx->key->conf.cipher) {
2077 case WLAN_CIPHER_SUITE_WEP40:
2078 case WLAN_CIPHER_SUITE_WEP104:
2079 result = ieee80211_crypto_wep_decrypt(rx);
2080 break;
2081 case WLAN_CIPHER_SUITE_TKIP:
2082 result = ieee80211_crypto_tkip_decrypt(rx);
2083 break;
2084 case WLAN_CIPHER_SUITE_CCMP:
2085 result = ieee80211_crypto_ccmp_decrypt(
2086 rx, IEEE80211_CCMP_MIC_LEN);
2087 break;
2088 case WLAN_CIPHER_SUITE_CCMP_256:
2089 result = ieee80211_crypto_ccmp_decrypt(
2090 rx, IEEE80211_CCMP_256_MIC_LEN);
2091 break;
2092 case WLAN_CIPHER_SUITE_AES_CMAC:
2093 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2094 break;
2095 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2096 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2097 break;
2098 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2099 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2100 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2101 break;
2102 case WLAN_CIPHER_SUITE_GCMP:
2103 case WLAN_CIPHER_SUITE_GCMP_256:
2104 result = ieee80211_crypto_gcmp_decrypt(rx);
2105 break;
2106 default:
2107 result = RX_DROP_UNUSABLE;
2108 }
2109
2110 /* the hdr variable is invalid after the decrypt handlers */
2111
2112 /* either the frame has been decrypted or will be dropped */
2113 status->flag |= RX_FLAG_DECRYPTED;
2114
2115 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) &&
2116 rx->sdata->dev))
2117 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2118 skb->data, skb->len);
2119
2120 return result;
2121 }
2122
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2123 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2124 {
2125 int i;
2126
2127 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2128 skb_queue_head_init(&cache->entries[i].skb_list);
2129 }
2130
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2131 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2132 {
2133 int i;
2134
2135 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2136 __skb_queue_purge(&cache->entries[i].skb_list);
2137 }
2138
2139 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2140 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2141 unsigned int frag, unsigned int seq, int rx_queue,
2142 struct sk_buff **skb)
2143 {
2144 struct ieee80211_fragment_entry *entry;
2145
2146 entry = &cache->entries[cache->next++];
2147 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2148 cache->next = 0;
2149
2150 __skb_queue_purge(&entry->skb_list);
2151
2152 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2153 *skb = NULL;
2154 entry->first_frag_time = jiffies;
2155 entry->seq = seq;
2156 entry->rx_queue = rx_queue;
2157 entry->last_frag = frag;
2158 entry->check_sequential_pn = false;
2159 entry->extra_len = 0;
2160
2161 return entry;
2162 }
2163
2164 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2165 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2166 unsigned int frag, unsigned int seq,
2167 int rx_queue, struct ieee80211_hdr *hdr)
2168 {
2169 struct ieee80211_fragment_entry *entry;
2170 int i, idx;
2171
2172 idx = cache->next;
2173 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2174 struct ieee80211_hdr *f_hdr;
2175 struct sk_buff *f_skb;
2176
2177 idx--;
2178 if (idx < 0)
2179 idx = IEEE80211_FRAGMENT_MAX - 1;
2180
2181 entry = &cache->entries[idx];
2182 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2183 entry->rx_queue != rx_queue ||
2184 entry->last_frag + 1 != frag)
2185 continue;
2186
2187 f_skb = __skb_peek(&entry->skb_list);
2188 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2189
2190 /*
2191 * Check ftype and addresses are equal, else check next fragment
2192 */
2193 if (((hdr->frame_control ^ f_hdr->frame_control) &
2194 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2195 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2196 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2197 continue;
2198
2199 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2200 __skb_queue_purge(&entry->skb_list);
2201 continue;
2202 }
2203 return entry;
2204 }
2205
2206 return NULL;
2207 }
2208
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2209 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2210 {
2211 return rx->key &&
2212 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2213 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2214 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2215 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2216 ieee80211_has_protected(fc);
2217 }
2218
2219 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2220 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2221 {
2222 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2223 struct ieee80211_hdr *hdr;
2224 u16 sc;
2225 __le16 fc;
2226 unsigned int frag, seq;
2227 struct ieee80211_fragment_entry *entry;
2228 struct sk_buff *skb;
2229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2230
2231 hdr = (struct ieee80211_hdr *)rx->skb->data;
2232 fc = hdr->frame_control;
2233
2234 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2235 return RX_CONTINUE;
2236
2237 sc = le16_to_cpu(hdr->seq_ctrl);
2238 frag = sc & IEEE80211_SCTL_FRAG;
2239
2240 if (rx->sta)
2241 cache = &rx->sta->frags;
2242
2243 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2244 goto out;
2245
2246 if (is_multicast_ether_addr(hdr->addr1))
2247 return RX_DROP_MONITOR;
2248
2249 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2250
2251 if (skb_linearize(rx->skb))
2252 return RX_DROP_UNUSABLE;
2253
2254 /*
2255 * skb_linearize() might change the skb->data and
2256 * previously cached variables (in this case, hdr) need to
2257 * be refreshed with the new data.
2258 */
2259 hdr = (struct ieee80211_hdr *)rx->skb->data;
2260 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2261
2262 if (frag == 0) {
2263 /* This is the first fragment of a new frame. */
2264 entry = ieee80211_reassemble_add(cache, frag, seq,
2265 rx->seqno_idx, &(rx->skb));
2266 if (requires_sequential_pn(rx, fc)) {
2267 int queue = rx->security_idx;
2268
2269 /* Store CCMP/GCMP PN so that we can verify that the
2270 * next fragment has a sequential PN value.
2271 */
2272 entry->check_sequential_pn = true;
2273 entry->is_protected = true;
2274 entry->key_color = rx->key->color;
2275 memcpy(entry->last_pn,
2276 rx->key->u.ccmp.rx_pn[queue],
2277 IEEE80211_CCMP_PN_LEN);
2278 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2279 u.ccmp.rx_pn) !=
2280 offsetof(struct ieee80211_key,
2281 u.gcmp.rx_pn));
2282 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2283 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2284 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2285 IEEE80211_GCMP_PN_LEN);
2286 } else if (rx->key &&
2287 (ieee80211_has_protected(fc) ||
2288 (status->flag & RX_FLAG_DECRYPTED))) {
2289 entry->is_protected = true;
2290 entry->key_color = rx->key->color;
2291 }
2292 return RX_QUEUED;
2293 }
2294
2295 /* This is a fragment for a frame that should already be pending in
2296 * fragment cache. Add this fragment to the end of the pending entry.
2297 */
2298 entry = ieee80211_reassemble_find(cache, frag, seq,
2299 rx->seqno_idx, hdr);
2300 if (!entry) {
2301 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2302 return RX_DROP_MONITOR;
2303 }
2304
2305 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2306 * MPDU PN values are not incrementing in steps of 1."
2307 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2308 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2309 */
2310 if (entry->check_sequential_pn) {
2311 int i;
2312 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2313
2314 if (!requires_sequential_pn(rx, fc))
2315 return RX_DROP_UNUSABLE;
2316
2317 /* Prevent mixed key and fragment cache attacks */
2318 if (entry->key_color != rx->key->color)
2319 return RX_DROP_UNUSABLE;
2320
2321 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2322 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2323 pn[i]++;
2324 if (pn[i])
2325 break;
2326 }
2327
2328 rpn = rx->ccm_gcm.pn;
2329 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2330 return RX_DROP_UNUSABLE;
2331 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2332 } else if (entry->is_protected &&
2333 (!rx->key ||
2334 (!ieee80211_has_protected(fc) &&
2335 !(status->flag & RX_FLAG_DECRYPTED)) ||
2336 rx->key->color != entry->key_color)) {
2337 /* Drop this as a mixed key or fragment cache attack, even
2338 * if for TKIP Michael MIC should protect us, and WEP is a
2339 * lost cause anyway.
2340 */
2341 return RX_DROP_UNUSABLE;
2342 } else if (entry->is_protected && rx->key &&
2343 entry->key_color != rx->key->color &&
2344 (status->flag & RX_FLAG_DECRYPTED)) {
2345 return RX_DROP_UNUSABLE;
2346 }
2347
2348 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2349 __skb_queue_tail(&entry->skb_list, rx->skb);
2350 entry->last_frag = frag;
2351 entry->extra_len += rx->skb->len;
2352 if (ieee80211_has_morefrags(fc)) {
2353 rx->skb = NULL;
2354 return RX_QUEUED;
2355 }
2356
2357 rx->skb = __skb_dequeue(&entry->skb_list);
2358 if (skb_tailroom(rx->skb) < entry->extra_len) {
2359 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2360 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2361 GFP_ATOMIC))) {
2362 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2363 __skb_queue_purge(&entry->skb_list);
2364 return RX_DROP_UNUSABLE;
2365 }
2366 }
2367 while ((skb = __skb_dequeue(&entry->skb_list))) {
2368 skb_put_data(rx->skb, skb->data, skb->len);
2369 dev_kfree_skb(skb);
2370 }
2371
2372 out:
2373 ieee80211_led_rx(rx->local);
2374 if (rx->sta)
2375 rx->link_sta->rx_stats.packets++;
2376 return RX_CONTINUE;
2377 }
2378
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2379 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2380 {
2381 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2382 return -EACCES;
2383
2384 return 0;
2385 }
2386
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2387 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2388 {
2389 struct sk_buff *skb = rx->skb;
2390 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2391
2392 /*
2393 * Pass through unencrypted frames if the hardware has
2394 * decrypted them already.
2395 */
2396 if (status->flag & RX_FLAG_DECRYPTED)
2397 return 0;
2398
2399 /* Drop unencrypted frames if key is set. */
2400 if (unlikely(!ieee80211_has_protected(fc) &&
2401 !ieee80211_is_any_nullfunc(fc) &&
2402 ieee80211_is_data(fc) && rx->key))
2403 return -EACCES;
2404
2405 return 0;
2406 }
2407
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2408 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2409 {
2410 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2411 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2412 __le16 fc = mgmt->frame_control;
2413
2414 /*
2415 * Pass through unencrypted frames if the hardware has
2416 * decrypted them already.
2417 */
2418 if (status->flag & RX_FLAG_DECRYPTED)
2419 return 0;
2420
2421 /* drop unicast protected dual (that wasn't protected) */
2422 if (ieee80211_is_action(fc) &&
2423 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
2424 return -EACCES;
2425
2426 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2427 if (unlikely(!ieee80211_has_protected(fc) &&
2428 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) {
2429 if (ieee80211_is_deauth(fc) ||
2430 ieee80211_is_disassoc(fc)) {
2431 /*
2432 * Permit unprotected deauth/disassoc frames
2433 * during 4-way-HS (key is installed after HS).
2434 */
2435 if (!rx->key)
2436 return 0;
2437
2438 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2439 rx->skb->data,
2440 rx->skb->len);
2441 }
2442 return -EACCES;
2443 }
2444 /* BIP does not use Protected field, so need to check MMIE */
2445 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2446 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2447 if (ieee80211_is_deauth(fc) ||
2448 ieee80211_is_disassoc(fc))
2449 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2450 rx->skb->data,
2451 rx->skb->len);
2452 return -EACCES;
2453 }
2454 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2455 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2456 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2457 rx->skb->data,
2458 rx->skb->len);
2459 return -EACCES;
2460 }
2461 /*
2462 * When using MFP, Action frames are not allowed prior to
2463 * having configured keys.
2464 */
2465 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2466 ieee80211_is_robust_mgmt_frame(rx->skb)))
2467 return -EACCES;
2468
2469 /* drop unicast public action frames when using MPF */
2470 if (is_unicast_ether_addr(mgmt->da) &&
2471 ieee80211_is_protected_dual_of_public_action(rx->skb))
2472 return -EACCES;
2473 }
2474
2475 return 0;
2476 }
2477
2478 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2479 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2480 {
2481 struct ieee80211_sub_if_data *sdata = rx->sdata;
2482 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2483 bool check_port_control = false;
2484 struct ethhdr *ehdr;
2485 int ret;
2486
2487 *port_control = false;
2488 if (ieee80211_has_a4(hdr->frame_control) &&
2489 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2490 return -1;
2491
2492 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2493 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2494
2495 if (!sdata->u.mgd.use_4addr)
2496 return -1;
2497 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2498 check_port_control = true;
2499 }
2500
2501 if (is_multicast_ether_addr(hdr->addr1) &&
2502 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2503 return -1;
2504
2505 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2506 if (ret < 0)
2507 return ret;
2508
2509 ehdr = (struct ethhdr *) rx->skb->data;
2510 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2511 *port_control = true;
2512 else if (check_port_control)
2513 return -1;
2514
2515 return 0;
2516 }
2517
ieee80211_is_our_addr(struct ieee80211_sub_if_data * sdata,const u8 * addr,int * out_link_id)2518 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata,
2519 const u8 *addr, int *out_link_id)
2520 {
2521 unsigned int link_id;
2522
2523 /* non-MLO, or MLD address replaced by hardware */
2524 if (ether_addr_equal(sdata->vif.addr, addr))
2525 return true;
2526
2527 if (!ieee80211_vif_is_mld(&sdata->vif))
2528 return false;
2529
2530 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) {
2531 struct ieee80211_bss_conf *conf;
2532
2533 conf = rcu_dereference(sdata->vif.link_conf[link_id]);
2534
2535 if (!conf)
2536 continue;
2537 if (ether_addr_equal(conf->addr, addr)) {
2538 if (out_link_id)
2539 *out_link_id = link_id;
2540 return true;
2541 }
2542 }
2543
2544 return false;
2545 }
2546
2547 /*
2548 * requires that rx->skb is a frame with ethernet header
2549 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2550 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2551 {
2552 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2553 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2554 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2555
2556 /*
2557 * Allow EAPOL frames to us/the PAE group address regardless of
2558 * whether the frame was encrypted or not, and always disallow
2559 * all other destination addresses for them.
2560 */
2561 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2562 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) ||
2563 ether_addr_equal(ehdr->h_dest, pae_group_addr);
2564
2565 if (ieee80211_802_1x_port_control(rx) ||
2566 ieee80211_drop_unencrypted(rx, fc))
2567 return false;
2568
2569 return true;
2570 }
2571
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2572 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2573 struct ieee80211_rx_data *rx)
2574 {
2575 struct ieee80211_sub_if_data *sdata = rx->sdata;
2576 struct net_device *dev = sdata->dev;
2577
2578 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2579 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2580 !sdata->control_port_no_preauth)) &&
2581 sdata->control_port_over_nl80211)) {
2582 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2583 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2584
2585 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id);
2586 dev_kfree_skb(skb);
2587 } else {
2588 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2589
2590 memset(skb->cb, 0, sizeof(skb->cb));
2591
2592 /*
2593 * 802.1X over 802.11 requires that the authenticator address
2594 * be used for EAPOL frames. However, 802.1X allows the use of
2595 * the PAE group address instead. If the interface is part of
2596 * a bridge and we pass the frame with the PAE group address,
2597 * then the bridge will forward it to the network (even if the
2598 * client was not associated yet), which isn't supposed to
2599 * happen.
2600 * To avoid that, rewrite the destination address to our own
2601 * address, so that the authenticator (e.g. hostapd) will see
2602 * the frame, but bridge won't forward it anywhere else. Note
2603 * that due to earlier filtering, the only other address can
2604 * be the PAE group address, unless the hardware allowed them
2605 * through in 802.3 offloaded mode.
2606 */
2607 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2608 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2609 ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2610
2611 /* deliver to local stack */
2612 if (rx->list)
2613 list_add_tail(&skb->list, rx->list);
2614 else
2615 netif_receive_skb(skb);
2616 }
2617 }
2618
2619 /*
2620 * requires that rx->skb is a frame with ethernet header
2621 */
2622 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2623 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2624 {
2625 struct ieee80211_sub_if_data *sdata = rx->sdata;
2626 struct net_device *dev = sdata->dev;
2627 struct sk_buff *skb, *xmit_skb;
2628 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2629 struct sta_info *dsta;
2630
2631 skb = rx->skb;
2632 xmit_skb = NULL;
2633
2634 dev_sw_netstats_rx_add(dev, skb->len);
2635
2636 if (rx->sta) {
2637 /* The seqno index has the same property as needed
2638 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2639 * for non-QoS-data frames. Here we know it's a data
2640 * frame, so count MSDUs.
2641 */
2642 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp);
2643 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++;
2644 u64_stats_update_end(&rx->link_sta->rx_stats.syncp);
2645 }
2646
2647 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2648 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2649 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2650 ehdr->h_proto != rx->sdata->control_port_protocol &&
2651 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2652 if (is_multicast_ether_addr(ehdr->h_dest) &&
2653 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2654 /*
2655 * send multicast frames both to higher layers in
2656 * local net stack and back to the wireless medium
2657 */
2658 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2659 if (!xmit_skb)
2660 net_info_ratelimited("%s: failed to clone multicast frame\n",
2661 dev->name);
2662 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2663 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2664 dsta = sta_info_get(sdata, ehdr->h_dest);
2665 if (dsta) {
2666 /*
2667 * The destination station is associated to
2668 * this AP (in this VLAN), so send the frame
2669 * directly to it and do not pass it to local
2670 * net stack.
2671 */
2672 xmit_skb = skb;
2673 skb = NULL;
2674 }
2675 }
2676 }
2677
2678 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2679 if (skb) {
2680 /* 'align' will only take the values 0 or 2 here since all
2681 * frames are required to be aligned to 2-byte boundaries
2682 * when being passed to mac80211; the code here works just
2683 * as well if that isn't true, but mac80211 assumes it can
2684 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2685 */
2686 int align;
2687
2688 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2689 if (align) {
2690 if (WARN_ON(skb_headroom(skb) < 3)) {
2691 dev_kfree_skb(skb);
2692 skb = NULL;
2693 } else {
2694 u8 *data = skb->data;
2695 size_t len = skb_headlen(skb);
2696 skb->data -= align;
2697 memmove(skb->data, data, len);
2698 skb_set_tail_pointer(skb, len);
2699 }
2700 }
2701 }
2702 #endif
2703
2704 if (skb) {
2705 skb->protocol = eth_type_trans(skb, dev);
2706 ieee80211_deliver_skb_to_local_stack(skb, rx);
2707 }
2708
2709 if (xmit_skb) {
2710 /*
2711 * Send to wireless media and increase priority by 256 to
2712 * keep the received priority instead of reclassifying
2713 * the frame (see cfg80211_classify8021d).
2714 */
2715 xmit_skb->priority += 256;
2716 xmit_skb->protocol = htons(ETH_P_802_3);
2717 skb_reset_network_header(xmit_skb);
2718 skb_reset_mac_header(xmit_skb);
2719 dev_queue_xmit(xmit_skb);
2720 }
2721 }
2722
2723 #ifdef CONFIG_MAC80211_MESH
2724 static bool
ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int hdrlen)2725 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata,
2726 struct sk_buff *skb, int hdrlen)
2727 {
2728 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2729 struct ieee80211_mesh_fast_tx_key key = {
2730 .type = MESH_FAST_TX_TYPE_FORWARDED
2731 };
2732 struct ieee80211_mesh_fast_tx *entry;
2733 struct ieee80211s_hdr *mesh_hdr;
2734 struct tid_ampdu_tx *tid_tx;
2735 struct sta_info *sta;
2736 struct ethhdr eth;
2737 u8 tid;
2738
2739 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth));
2740 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6)
2741 ether_addr_copy(key.addr, mesh_hdr->eaddr1);
2742 else if (!(mesh_hdr->flags & MESH_FLAGS_AE))
2743 ether_addr_copy(key.addr, skb->data);
2744 else
2745 return false;
2746
2747 entry = mesh_fast_tx_get(sdata, &key);
2748 if (!entry)
2749 return false;
2750
2751 sta = rcu_dereference(entry->mpath->next_hop);
2752 if (!sta)
2753 return false;
2754
2755 if (skb_linearize(skb))
2756 return false;
2757
2758 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
2759 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]);
2760 if (tid_tx) {
2761 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state))
2762 return false;
2763
2764 if (tid_tx->timeout)
2765 tid_tx->last_tx = jiffies;
2766 }
2767
2768 ieee80211_aggr_check(sdata, sta, skb);
2769
2770 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
2771 &skb->protocol))
2772 hdrlen += ETH_ALEN;
2773 else
2774 skb->protocol = htons(skb->len - hdrlen);
2775 skb_set_network_header(skb, hdrlen + 2);
2776
2777 skb->dev = sdata->dev;
2778 memcpy(ð, skb->data, ETH_HLEN - 2);
2779 skb_pull(skb, 2);
2780 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx,
2781 eth.h_dest, eth.h_source);
2782 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2783 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2784
2785 return true;
2786 }
2787 #endif
2788
2789 static ieee80211_rx_result
ieee80211_rx_mesh_data(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)2790 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta,
2791 struct sk_buff *skb)
2792 {
2793 #ifdef CONFIG_MAC80211_MESH
2794 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2795 struct ieee80211_local *local = sdata->local;
2796 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA;
2797 struct ieee80211_hdr hdr = {
2798 .frame_control = cpu_to_le16(fc)
2799 };
2800 struct ieee80211_hdr *fwd_hdr;
2801 struct ieee80211s_hdr *mesh_hdr;
2802 struct ieee80211_tx_info *info;
2803 struct sk_buff *fwd_skb;
2804 struct ethhdr *eth;
2805 bool multicast;
2806 int tailroom = 0;
2807 int hdrlen, mesh_hdrlen;
2808 u8 *qos;
2809
2810 if (!ieee80211_vif_is_mesh(&sdata->vif))
2811 return RX_CONTINUE;
2812
2813 if (!pskb_may_pull(skb, sizeof(*eth) + 6))
2814 return RX_DROP_MONITOR;
2815
2816 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth));
2817 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr);
2818
2819 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen))
2820 return RX_DROP_MONITOR;
2821
2822 eth = (struct ethhdr *)skb->data;
2823 multicast = is_multicast_ether_addr(eth->h_dest);
2824
2825 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1);
2826 if (!mesh_hdr->ttl)
2827 return RX_DROP_MONITOR;
2828
2829 /* frame is in RMC, don't forward */
2830 if (is_multicast_ether_addr(eth->h_dest) &&
2831 mesh_rmc_check(sdata, eth->h_source, mesh_hdr))
2832 return RX_DROP_MONITOR;
2833
2834 /* forward packet */
2835 if (sdata->crypto_tx_tailroom_needed_cnt)
2836 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2837
2838 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2839 struct mesh_path *mppath;
2840 char *proxied_addr;
2841 bool update = false;
2842
2843 if (multicast)
2844 proxied_addr = mesh_hdr->eaddr1;
2845 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6)
2846 /* has_a4 already checked in ieee80211_rx_mesh_check */
2847 proxied_addr = mesh_hdr->eaddr2;
2848 else
2849 return RX_DROP_MONITOR;
2850
2851 rcu_read_lock();
2852 mppath = mpp_path_lookup(sdata, proxied_addr);
2853 if (!mppath) {
2854 mpp_path_add(sdata, proxied_addr, eth->h_source);
2855 } else {
2856 spin_lock_bh(&mppath->state_lock);
2857 if (!ether_addr_equal(mppath->mpp, eth->h_source)) {
2858 memcpy(mppath->mpp, eth->h_source, ETH_ALEN);
2859 update = true;
2860 }
2861 mppath->exp_time = jiffies;
2862 spin_unlock_bh(&mppath->state_lock);
2863 }
2864
2865 /* flush fast xmit cache if the address path changed */
2866 if (update)
2867 mesh_fast_tx_flush_addr(sdata, proxied_addr);
2868
2869 rcu_read_unlock();
2870 }
2871
2872 /* Frame has reached destination. Don't forward */
2873 if (ether_addr_equal(sdata->vif.addr, eth->h_dest))
2874 goto rx_accept;
2875
2876 if (!--mesh_hdr->ttl) {
2877 if (multicast)
2878 goto rx_accept;
2879
2880 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2881 return RX_DROP_MONITOR;
2882 }
2883
2884 if (!ifmsh->mshcfg.dot11MeshForwarding) {
2885 if (is_multicast_ether_addr(eth->h_dest))
2886 goto rx_accept;
2887
2888 return RX_DROP_MONITOR;
2889 }
2890
2891 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]);
2892
2893 if (!multicast &&
2894 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen))
2895 return RX_QUEUED;
2896
2897 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control,
2898 eth->h_dest, eth->h_source);
2899 hdrlen = ieee80211_hdrlen(hdr.frame_control);
2900 if (multicast) {
2901 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth);
2902
2903 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head +
2904 IEEE80211_ENCRYPT_HEADROOM,
2905 tailroom, GFP_ATOMIC);
2906 if (!fwd_skb)
2907 goto rx_accept;
2908 } else {
2909 fwd_skb = skb;
2910 skb = NULL;
2911
2912 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr)))
2913 return RX_DROP_UNUSABLE;
2914
2915 if (skb_linearize(fwd_skb))
2916 return RX_DROP_UNUSABLE;
2917 }
2918
2919 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr));
2920 memcpy(fwd_hdr, &hdr, hdrlen - 2);
2921 qos = ieee80211_get_qos_ctl(fwd_hdr);
2922 qos[0] = qos[1] = 0;
2923
2924 skb_reset_mac_header(fwd_skb);
2925 hdrlen += mesh_hdrlen;
2926 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen,
2927 &fwd_skb->protocol))
2928 hdrlen += ETH_ALEN;
2929 else
2930 fwd_skb->protocol = htons(fwd_skb->len - hdrlen);
2931 skb_set_network_header(fwd_skb, hdrlen + 2);
2932
2933 info = IEEE80211_SKB_CB(fwd_skb);
2934 memset(info, 0, sizeof(*info));
2935 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2936 info->control.vif = &sdata->vif;
2937 info->control.jiffies = jiffies;
2938 fwd_skb->dev = sdata->dev;
2939 if (multicast) {
2940 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2941 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2942 /* update power mode indication when forwarding */
2943 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2944 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2945 /* mesh power mode flags updated in mesh_nexthop_lookup */
2946 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2947 } else {
2948 /* unable to resolve next hop */
2949 if (sta)
2950 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2951 hdr.addr3, 0,
2952 WLAN_REASON_MESH_PATH_NOFORWARD,
2953 sta->sta.addr);
2954 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2955 kfree_skb(fwd_skb);
2956 goto rx_accept;
2957 }
2958
2959 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2960 ieee80211_add_pending_skb(local, fwd_skb);
2961
2962 rx_accept:
2963 if (!skb)
2964 return RX_QUEUED;
2965
2966 ieee80211_strip_8023_mesh_hdr(skb);
2967 #endif
2968
2969 return RX_CONTINUE;
2970 }
2971
2972 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2973 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2974 {
2975 struct net_device *dev = rx->sdata->dev;
2976 struct sk_buff *skb = rx->skb;
2977 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2978 __le16 fc = hdr->frame_control;
2979 struct sk_buff_head frame_list;
2980 ieee80211_rx_result res;
2981 struct ethhdr ethhdr;
2982 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2983
2984 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2985 check_da = NULL;
2986 check_sa = NULL;
2987 } else switch (rx->sdata->vif.type) {
2988 case NL80211_IFTYPE_AP:
2989 case NL80211_IFTYPE_AP_VLAN:
2990 check_da = NULL;
2991 break;
2992 case NL80211_IFTYPE_STATION:
2993 if (!rx->sta ||
2994 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2995 check_sa = NULL;
2996 break;
2997 case NL80211_IFTYPE_MESH_POINT:
2998 check_sa = NULL;
2999 check_da = NULL;
3000 break;
3001 default:
3002 break;
3003 }
3004
3005 skb->dev = dev;
3006 __skb_queue_head_init(&frame_list);
3007
3008 if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
3009 rx->sdata->vif.addr,
3010 rx->sdata->vif.type,
3011 data_offset, true))
3012 return RX_DROP_UNUSABLE;
3013
3014 if (rx->sta->amsdu_mesh_control < 0) {
3015 s8 valid = -1;
3016 int i;
3017
3018 for (i = 0; i <= 2; i++) {
3019 if (!ieee80211_is_valid_amsdu(skb, i))
3020 continue;
3021
3022 if (valid >= 0) {
3023 /* ambiguous */
3024 valid = -1;
3025 break;
3026 }
3027
3028 valid = i;
3029 }
3030
3031 rx->sta->amsdu_mesh_control = valid;
3032 }
3033
3034 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
3035 rx->sdata->vif.type,
3036 rx->local->hw.extra_tx_headroom,
3037 check_da, check_sa,
3038 rx->sta->amsdu_mesh_control);
3039
3040 while (!skb_queue_empty(&frame_list)) {
3041 rx->skb = __skb_dequeue(&frame_list);
3042
3043 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb);
3044 switch (res) {
3045 case RX_QUEUED:
3046 continue;
3047 case RX_CONTINUE:
3048 break;
3049 default:
3050 goto free;
3051 }
3052
3053 if (!ieee80211_frame_allowed(rx, fc))
3054 goto free;
3055
3056 ieee80211_deliver_skb(rx);
3057 continue;
3058
3059 free:
3060 dev_kfree_skb(rx->skb);
3061 }
3062
3063 return RX_QUEUED;
3064 }
3065
3066 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)3067 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
3068 {
3069 struct sk_buff *skb = rx->skb;
3070 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3071 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3072 __le16 fc = hdr->frame_control;
3073
3074 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
3075 return RX_CONTINUE;
3076
3077 if (unlikely(!ieee80211_is_data(fc)))
3078 return RX_CONTINUE;
3079
3080 if (unlikely(!ieee80211_is_data_present(fc)))
3081 return RX_DROP_MONITOR;
3082
3083 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
3084 switch (rx->sdata->vif.type) {
3085 case NL80211_IFTYPE_AP_VLAN:
3086 if (!rx->sdata->u.vlan.sta)
3087 return RX_DROP_UNUSABLE;
3088 break;
3089 case NL80211_IFTYPE_STATION:
3090 if (!rx->sdata->u.mgd.use_4addr)
3091 return RX_DROP_UNUSABLE;
3092 break;
3093 case NL80211_IFTYPE_MESH_POINT:
3094 break;
3095 default:
3096 return RX_DROP_UNUSABLE;
3097 }
3098 }
3099
3100 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta)
3101 return RX_DROP_UNUSABLE;
3102
3103 if (rx->key) {
3104 /*
3105 * We should not receive A-MSDUs on pre-HT connections,
3106 * and HT connections cannot use old ciphers. Thus drop
3107 * them, as in those cases we couldn't even have SPP
3108 * A-MSDUs or such.
3109 */
3110 switch (rx->key->conf.cipher) {
3111 case WLAN_CIPHER_SUITE_WEP40:
3112 case WLAN_CIPHER_SUITE_WEP104:
3113 case WLAN_CIPHER_SUITE_TKIP:
3114 return RX_DROP_UNUSABLE;
3115 default:
3116 break;
3117 }
3118 }
3119
3120 return __ieee80211_rx_h_amsdu(rx, 0);
3121 }
3122
3123 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)3124 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
3125 {
3126 struct ieee80211_sub_if_data *sdata = rx->sdata;
3127 struct ieee80211_local *local = rx->local;
3128 struct net_device *dev = sdata->dev;
3129 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
3130 __le16 fc = hdr->frame_control;
3131 ieee80211_rx_result res;
3132 bool port_control;
3133 int err;
3134
3135 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
3136 return RX_CONTINUE;
3137
3138 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3139 return RX_DROP_MONITOR;
3140
3141 /*
3142 * Send unexpected-4addr-frame event to hostapd. For older versions,
3143 * also drop the frame to cooked monitor interfaces.
3144 */
3145 if (ieee80211_has_a4(hdr->frame_control) &&
3146 sdata->vif.type == NL80211_IFTYPE_AP) {
3147 if (rx->sta &&
3148 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3149 cfg80211_rx_unexpected_4addr_frame(
3150 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3151 return RX_DROP_MONITOR;
3152 }
3153
3154 err = __ieee80211_data_to_8023(rx, &port_control);
3155 if (unlikely(err))
3156 return RX_DROP_UNUSABLE;
3157
3158 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb);
3159 if (res != RX_CONTINUE)
3160 return res;
3161
3162 if (!ieee80211_frame_allowed(rx, fc))
3163 return RX_DROP_MONITOR;
3164
3165 /* directly handle TDLS channel switch requests/responses */
3166 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3167 cpu_to_be16(ETH_P_TDLS))) {
3168 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3169
3170 if (pskb_may_pull(rx->skb,
3171 offsetof(struct ieee80211_tdls_data, u)) &&
3172 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3173 tf->category == WLAN_CATEGORY_TDLS &&
3174 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3175 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3176 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3177 __ieee80211_queue_skb_to_iface(sdata, rx->link_id,
3178 rx->sta, rx->skb);
3179 return RX_QUEUED;
3180 }
3181 }
3182
3183 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3184 unlikely(port_control) && sdata->bss) {
3185 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3186 u.ap);
3187 dev = sdata->dev;
3188 rx->sdata = sdata;
3189 }
3190
3191 rx->skb->dev = dev;
3192
3193 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3194 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3195 !is_multicast_ether_addr(
3196 ((struct ethhdr *)rx->skb->data)->h_dest) &&
3197 (!local->scanning &&
3198 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3199 mod_timer(&local->dynamic_ps_timer, jiffies +
3200 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3201
3202 ieee80211_deliver_skb(rx);
3203
3204 return RX_QUEUED;
3205 }
3206
3207 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3208 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3209 {
3210 struct sk_buff *skb = rx->skb;
3211 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3212 struct tid_ampdu_rx *tid_agg_rx;
3213 u16 start_seq_num;
3214 u16 tid;
3215
3216 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3217 return RX_CONTINUE;
3218
3219 if (ieee80211_is_back_req(bar->frame_control)) {
3220 struct {
3221 __le16 control, start_seq_num;
3222 } __packed bar_data;
3223 struct ieee80211_event event = {
3224 .type = BAR_RX_EVENT,
3225 };
3226
3227 if (!rx->sta)
3228 return RX_DROP_MONITOR;
3229
3230 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3231 &bar_data, sizeof(bar_data)))
3232 return RX_DROP_MONITOR;
3233
3234 tid = le16_to_cpu(bar_data.control) >> 12;
3235
3236 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3237 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3238 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3239 WLAN_BACK_RECIPIENT,
3240 WLAN_REASON_QSTA_REQUIRE_SETUP);
3241
3242 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3243 if (!tid_agg_rx)
3244 return RX_DROP_MONITOR;
3245
3246 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3247 event.u.ba.tid = tid;
3248 event.u.ba.ssn = start_seq_num;
3249 event.u.ba.sta = &rx->sta->sta;
3250
3251 /* reset session timer */
3252 if (tid_agg_rx->timeout)
3253 mod_timer(&tid_agg_rx->session_timer,
3254 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3255
3256 spin_lock(&tid_agg_rx->reorder_lock);
3257 /* release stored frames up to start of BAR */
3258 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3259 start_seq_num, frames);
3260 spin_unlock(&tid_agg_rx->reorder_lock);
3261
3262 drv_event_callback(rx->local, rx->sdata, &event);
3263
3264 kfree_skb(skb);
3265 return RX_QUEUED;
3266 }
3267
3268 /*
3269 * After this point, we only want management frames,
3270 * so we can drop all remaining control frames to
3271 * cooked monitor interfaces.
3272 */
3273 return RX_DROP_MONITOR;
3274 }
3275
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3276 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3277 struct ieee80211_mgmt *mgmt,
3278 size_t len)
3279 {
3280 struct ieee80211_local *local = sdata->local;
3281 struct sk_buff *skb;
3282 struct ieee80211_mgmt *resp;
3283
3284 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3285 /* Not to own unicast address */
3286 return;
3287 }
3288
3289 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) ||
3290 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) {
3291 /* Not from the current AP or not associated yet. */
3292 return;
3293 }
3294
3295 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3296 /* Too short SA Query request frame */
3297 return;
3298 }
3299
3300 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3301 if (skb == NULL)
3302 return;
3303
3304 skb_reserve(skb, local->hw.extra_tx_headroom);
3305 resp = skb_put_zero(skb, 24);
3306 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3307 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3308 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN);
3309 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3310 IEEE80211_STYPE_ACTION);
3311 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3312 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3313 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3314 memcpy(resp->u.action.u.sa_query.trans_id,
3315 mgmt->u.action.u.sa_query.trans_id,
3316 WLAN_SA_QUERY_TR_ID_LEN);
3317
3318 ieee80211_tx_skb(sdata, skb);
3319 }
3320
3321 static void
ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data * rx)3322 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx)
3323 {
3324 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3325 const struct element *ie;
3326 size_t baselen;
3327
3328 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy,
3329 NL80211_EXT_FEATURE_BSS_COLOR))
3330 return;
3331
3332 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION))
3333 return;
3334
3335 if (rx->sdata->vif.bss_conf.csa_active)
3336 return;
3337
3338 baselen = mgmt->u.beacon.variable - rx->skb->data;
3339 if (baselen > rx->skb->len)
3340 return;
3341
3342 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
3343 mgmt->u.beacon.variable,
3344 rx->skb->len - baselen);
3345 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) &&
3346 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) {
3347 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf;
3348 const struct ieee80211_he_operation *he_oper;
3349 u8 color;
3350
3351 he_oper = (void *)(ie->data + 1);
3352 if (le32_get_bits(he_oper->he_oper_params,
3353 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED))
3354 return;
3355
3356 color = le32_get_bits(he_oper->he_oper_params,
3357 IEEE80211_HE_OPERATION_BSS_COLOR_MASK);
3358 if (color == bss_conf->he_bss_color.color)
3359 ieee80211_obss_color_collision_notify(&rx->sdata->vif,
3360 BIT_ULL(color),
3361 GFP_ATOMIC);
3362 }
3363 }
3364
3365 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3366 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3367 {
3368 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3369 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3370
3371 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3372 return RX_CONTINUE;
3373
3374 /*
3375 * From here on, look only at management frames.
3376 * Data and control frames are already handled,
3377 * and unknown (reserved) frames are useless.
3378 */
3379 if (rx->skb->len < 24)
3380 return RX_DROP_MONITOR;
3381
3382 if (!ieee80211_is_mgmt(mgmt->frame_control))
3383 return RX_DROP_MONITOR;
3384
3385 /* drop too small action frames */
3386 if (ieee80211_is_action(mgmt->frame_control) &&
3387 rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
3388 return RX_DROP_UNUSABLE;
3389
3390 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3391 ieee80211_is_beacon(mgmt->frame_control) &&
3392 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3393 int sig = 0;
3394
3395 /* sw bss color collision detection */
3396 ieee80211_rx_check_bss_color_collision(rx);
3397
3398 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3399 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3400 sig = status->signal;
3401
3402 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3403 rx->skb->data, rx->skb->len,
3404 ieee80211_rx_status_to_khz(status),
3405 sig);
3406 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3407 }
3408
3409 if (ieee80211_drop_unencrypted_mgmt(rx))
3410 return RX_DROP_UNUSABLE;
3411
3412 return RX_CONTINUE;
3413 }
3414
3415 static bool
ieee80211_process_rx_twt_action(struct ieee80211_rx_data * rx)3416 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3417 {
3418 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3419 struct ieee80211_sub_if_data *sdata = rx->sdata;
3420
3421 /* TWT actions are only supported in AP for the moment */
3422 if (sdata->vif.type != NL80211_IFTYPE_AP)
3423 return false;
3424
3425 if (!rx->local->ops->add_twt_setup)
3426 return false;
3427
3428 if (!sdata->vif.bss_conf.twt_responder)
3429 return false;
3430
3431 if (!rx->sta)
3432 return false;
3433
3434 switch (mgmt->u.action.u.s1g.action_code) {
3435 case WLAN_S1G_TWT_SETUP: {
3436 struct ieee80211_twt_setup *twt;
3437
3438 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3439 1 + /* action code */
3440 sizeof(struct ieee80211_twt_setup) +
3441 2 /* TWT req_type agrt */)
3442 break;
3443
3444 twt = (void *)mgmt->u.action.u.s1g.variable;
3445 if (twt->element_id != WLAN_EID_S1G_TWT)
3446 break;
3447
3448 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3449 4 + /* action code + token + tlv */
3450 twt->length)
3451 break;
3452
3453 return true; /* queue the frame */
3454 }
3455 case WLAN_S1G_TWT_TEARDOWN:
3456 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3457 break;
3458
3459 return true; /* queue the frame */
3460 default:
3461 break;
3462 }
3463
3464 return false;
3465 }
3466
3467 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3468 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3469 {
3470 struct ieee80211_local *local = rx->local;
3471 struct ieee80211_sub_if_data *sdata = rx->sdata;
3472 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3473 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3474 int len = rx->skb->len;
3475
3476 if (!ieee80211_is_action(mgmt->frame_control))
3477 return RX_CONTINUE;
3478
3479 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3480 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3481 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3482 return RX_DROP_UNUSABLE;
3483
3484 switch (mgmt->u.action.category) {
3485 case WLAN_CATEGORY_HT:
3486 /* reject HT action frames from stations not supporting HT */
3487 if (!rx->link_sta->pub->ht_cap.ht_supported)
3488 goto invalid;
3489
3490 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3491 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3492 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3493 sdata->vif.type != NL80211_IFTYPE_AP &&
3494 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3495 break;
3496
3497 /* verify action & smps_control/chanwidth are present */
3498 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3499 goto invalid;
3500
3501 switch (mgmt->u.action.u.ht_smps.action) {
3502 case WLAN_HT_ACTION_SMPS: {
3503 struct ieee80211_supported_band *sband;
3504 enum ieee80211_smps_mode smps_mode;
3505 struct sta_opmode_info sta_opmode = {};
3506
3507 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3508 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3509 goto handled;
3510
3511 /* convert to HT capability */
3512 switch (mgmt->u.action.u.ht_smps.smps_control) {
3513 case WLAN_HT_SMPS_CONTROL_DISABLED:
3514 smps_mode = IEEE80211_SMPS_OFF;
3515 break;
3516 case WLAN_HT_SMPS_CONTROL_STATIC:
3517 smps_mode = IEEE80211_SMPS_STATIC;
3518 break;
3519 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3520 smps_mode = IEEE80211_SMPS_DYNAMIC;
3521 break;
3522 default:
3523 goto invalid;
3524 }
3525
3526 /* if no change do nothing */
3527 if (rx->link_sta->pub->smps_mode == smps_mode)
3528 goto handled;
3529 rx->link_sta->pub->smps_mode = smps_mode;
3530 sta_opmode.smps_mode =
3531 ieee80211_smps_mode_to_smps_mode(smps_mode);
3532 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3533
3534 sband = rx->local->hw.wiphy->bands[status->band];
3535
3536 rate_control_rate_update(local, sband, rx->sta, 0,
3537 IEEE80211_RC_SMPS_CHANGED);
3538 cfg80211_sta_opmode_change_notify(sdata->dev,
3539 rx->sta->addr,
3540 &sta_opmode,
3541 GFP_ATOMIC);
3542 goto handled;
3543 }
3544 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3545 struct ieee80211_supported_band *sband;
3546 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3547 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3548 struct sta_opmode_info sta_opmode = {};
3549
3550 /* If it doesn't support 40 MHz it can't change ... */
3551 if (!(rx->link_sta->pub->ht_cap.cap &
3552 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3553 goto handled;
3554
3555 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3556 max_bw = IEEE80211_STA_RX_BW_20;
3557 else
3558 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta);
3559
3560 /* set cur_max_bandwidth and recalc sta bw */
3561 rx->link_sta->cur_max_bandwidth = max_bw;
3562 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta);
3563
3564 if (rx->link_sta->pub->bandwidth == new_bw)
3565 goto handled;
3566
3567 rx->link_sta->pub->bandwidth = new_bw;
3568 sband = rx->local->hw.wiphy->bands[status->band];
3569 sta_opmode.bw =
3570 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta);
3571 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3572
3573 rate_control_rate_update(local, sband, rx->sta, 0,
3574 IEEE80211_RC_BW_CHANGED);
3575 cfg80211_sta_opmode_change_notify(sdata->dev,
3576 rx->sta->addr,
3577 &sta_opmode,
3578 GFP_ATOMIC);
3579 goto handled;
3580 }
3581 default:
3582 goto invalid;
3583 }
3584
3585 break;
3586 case WLAN_CATEGORY_PUBLIC:
3587 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3588 goto invalid;
3589 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3590 break;
3591 if (!rx->sta)
3592 break;
3593 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid))
3594 break;
3595 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3596 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3597 break;
3598 if (len < offsetof(struct ieee80211_mgmt,
3599 u.action.u.ext_chan_switch.variable))
3600 goto invalid;
3601 goto queue;
3602 case WLAN_CATEGORY_VHT:
3603 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3604 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3605 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3606 sdata->vif.type != NL80211_IFTYPE_AP &&
3607 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3608 break;
3609
3610 /* verify action code is present */
3611 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3612 goto invalid;
3613
3614 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3615 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3616 /* verify opmode is present */
3617 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3618 goto invalid;
3619 goto queue;
3620 }
3621 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3622 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3623 goto invalid;
3624 goto queue;
3625 }
3626 default:
3627 break;
3628 }
3629 break;
3630 case WLAN_CATEGORY_BACK:
3631 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3632 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3633 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3634 sdata->vif.type != NL80211_IFTYPE_AP &&
3635 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3636 break;
3637
3638 /* verify action_code is present */
3639 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3640 break;
3641
3642 switch (mgmt->u.action.u.addba_req.action_code) {
3643 case WLAN_ACTION_ADDBA_REQ:
3644 if (len < (IEEE80211_MIN_ACTION_SIZE +
3645 sizeof(mgmt->u.action.u.addba_req)))
3646 goto invalid;
3647 break;
3648 case WLAN_ACTION_ADDBA_RESP:
3649 if (len < (IEEE80211_MIN_ACTION_SIZE +
3650 sizeof(mgmt->u.action.u.addba_resp)))
3651 goto invalid;
3652 break;
3653 case WLAN_ACTION_DELBA:
3654 if (len < (IEEE80211_MIN_ACTION_SIZE +
3655 sizeof(mgmt->u.action.u.delba)))
3656 goto invalid;
3657 break;
3658 default:
3659 goto invalid;
3660 }
3661
3662 goto queue;
3663 case WLAN_CATEGORY_SPECTRUM_MGMT:
3664 /* verify action_code is present */
3665 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3666 break;
3667
3668 switch (mgmt->u.action.u.measurement.action_code) {
3669 case WLAN_ACTION_SPCT_MSR_REQ:
3670 if (status->band != NL80211_BAND_5GHZ)
3671 break;
3672
3673 if (len < (IEEE80211_MIN_ACTION_SIZE +
3674 sizeof(mgmt->u.action.u.measurement)))
3675 break;
3676
3677 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3678 break;
3679
3680 ieee80211_process_measurement_req(sdata, mgmt, len);
3681 goto handled;
3682 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3683 u8 *bssid;
3684 if (len < (IEEE80211_MIN_ACTION_SIZE +
3685 sizeof(mgmt->u.action.u.chan_switch)))
3686 break;
3687
3688 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3689 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3690 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3691 break;
3692
3693 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3694 bssid = sdata->deflink.u.mgd.bssid;
3695 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3696 bssid = sdata->u.ibss.bssid;
3697 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3698 bssid = mgmt->sa;
3699 else
3700 break;
3701
3702 if (!ether_addr_equal(mgmt->bssid, bssid))
3703 break;
3704
3705 goto queue;
3706 }
3707 }
3708 break;
3709 case WLAN_CATEGORY_SELF_PROTECTED:
3710 if (len < (IEEE80211_MIN_ACTION_SIZE +
3711 sizeof(mgmt->u.action.u.self_prot.action_code)))
3712 break;
3713
3714 switch (mgmt->u.action.u.self_prot.action_code) {
3715 case WLAN_SP_MESH_PEERING_OPEN:
3716 case WLAN_SP_MESH_PEERING_CLOSE:
3717 case WLAN_SP_MESH_PEERING_CONFIRM:
3718 if (!ieee80211_vif_is_mesh(&sdata->vif))
3719 goto invalid;
3720 if (sdata->u.mesh.user_mpm)
3721 /* userspace handles this frame */
3722 break;
3723 goto queue;
3724 case WLAN_SP_MGK_INFORM:
3725 case WLAN_SP_MGK_ACK:
3726 if (!ieee80211_vif_is_mesh(&sdata->vif))
3727 goto invalid;
3728 break;
3729 }
3730 break;
3731 case WLAN_CATEGORY_MESH_ACTION:
3732 if (len < (IEEE80211_MIN_ACTION_SIZE +
3733 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3734 break;
3735
3736 if (!ieee80211_vif_is_mesh(&sdata->vif))
3737 break;
3738 if (mesh_action_is_path_sel(mgmt) &&
3739 !mesh_path_sel_is_hwmp(sdata))
3740 break;
3741 goto queue;
3742 case WLAN_CATEGORY_S1G:
3743 if (len < offsetofend(typeof(*mgmt),
3744 u.action.u.s1g.action_code))
3745 break;
3746
3747 switch (mgmt->u.action.u.s1g.action_code) {
3748 case WLAN_S1G_TWT_SETUP:
3749 case WLAN_S1G_TWT_TEARDOWN:
3750 if (ieee80211_process_rx_twt_action(rx))
3751 goto queue;
3752 break;
3753 default:
3754 break;
3755 }
3756 break;
3757 }
3758
3759 return RX_CONTINUE;
3760
3761 invalid:
3762 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3763 /* will return in the next handlers */
3764 return RX_CONTINUE;
3765
3766 handled:
3767 if (rx->sta)
3768 rx->link_sta->rx_stats.packets++;
3769 dev_kfree_skb(rx->skb);
3770 return RX_QUEUED;
3771
3772 queue:
3773 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
3774 return RX_QUEUED;
3775 }
3776
3777 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3778 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3779 {
3780 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3781 struct cfg80211_rx_info info = {
3782 .freq = ieee80211_rx_status_to_khz(status),
3783 .buf = rx->skb->data,
3784 .len = rx->skb->len,
3785 .link_id = rx->link_id,
3786 .have_link_id = rx->link_id >= 0,
3787 };
3788
3789 /* skip known-bad action frames and return them in the next handler */
3790 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3791 return RX_CONTINUE;
3792
3793 /*
3794 * Getting here means the kernel doesn't know how to handle
3795 * it, but maybe userspace does ... include returned frames
3796 * so userspace can register for those to know whether ones
3797 * it transmitted were processed or returned.
3798 */
3799
3800 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3801 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3802 info.sig_dbm = status->signal;
3803
3804 if (ieee80211_is_timing_measurement(rx->skb) ||
3805 ieee80211_is_ftm(rx->skb)) {
3806 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp);
3807 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp);
3808 }
3809
3810 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) {
3811 if (rx->sta)
3812 rx->link_sta->rx_stats.packets++;
3813 dev_kfree_skb(rx->skb);
3814 return RX_QUEUED;
3815 }
3816
3817 return RX_CONTINUE;
3818 }
3819
3820 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3821 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3822 {
3823 struct ieee80211_sub_if_data *sdata = rx->sdata;
3824 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3825 int len = rx->skb->len;
3826
3827 if (!ieee80211_is_action(mgmt->frame_control))
3828 return RX_CONTINUE;
3829
3830 switch (mgmt->u.action.category) {
3831 case WLAN_CATEGORY_SA_QUERY:
3832 if (len < (IEEE80211_MIN_ACTION_SIZE +
3833 sizeof(mgmt->u.action.u.sa_query)))
3834 break;
3835
3836 switch (mgmt->u.action.u.sa_query.action) {
3837 case WLAN_ACTION_SA_QUERY_REQUEST:
3838 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3839 break;
3840 ieee80211_process_sa_query_req(sdata, mgmt, len);
3841 goto handled;
3842 }
3843 break;
3844 }
3845
3846 return RX_CONTINUE;
3847
3848 handled:
3849 if (rx->sta)
3850 rx->link_sta->rx_stats.packets++;
3851 dev_kfree_skb(rx->skb);
3852 return RX_QUEUED;
3853 }
3854
3855 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3856 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3857 {
3858 struct ieee80211_local *local = rx->local;
3859 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3860 struct sk_buff *nskb;
3861 struct ieee80211_sub_if_data *sdata = rx->sdata;
3862 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3863
3864 if (!ieee80211_is_action(mgmt->frame_control))
3865 return RX_CONTINUE;
3866
3867 /*
3868 * For AP mode, hostapd is responsible for handling any action
3869 * frames that we didn't handle, including returning unknown
3870 * ones. For all other modes we will return them to the sender,
3871 * setting the 0x80 bit in the action category, as required by
3872 * 802.11-2012 9.24.4.
3873 * Newer versions of hostapd shall also use the management frame
3874 * registration mechanisms, but older ones still use cooked
3875 * monitor interfaces so push all frames there.
3876 */
3877 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3878 (sdata->vif.type == NL80211_IFTYPE_AP ||
3879 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3880 return RX_DROP_MONITOR;
3881
3882 if (is_multicast_ether_addr(mgmt->da))
3883 return RX_DROP_MONITOR;
3884
3885 /* do not return rejected action frames */
3886 if (mgmt->u.action.category & 0x80)
3887 return RX_DROP_UNUSABLE;
3888
3889 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3890 GFP_ATOMIC);
3891 if (nskb) {
3892 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3893
3894 nmgmt->u.action.category |= 0x80;
3895 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3896 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3897
3898 memset(nskb->cb, 0, sizeof(nskb->cb));
3899
3900 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3901 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3902
3903 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3904 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3905 IEEE80211_TX_CTL_NO_CCK_RATE;
3906 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3907 info->hw_queue =
3908 local->hw.offchannel_tx_hw_queue;
3909 }
3910
3911 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1,
3912 status->band);
3913 }
3914 dev_kfree_skb(rx->skb);
3915 return RX_QUEUED;
3916 }
3917
3918 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3919 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3920 {
3921 struct ieee80211_sub_if_data *sdata = rx->sdata;
3922 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3923
3924 if (!ieee80211_is_ext(hdr->frame_control))
3925 return RX_CONTINUE;
3926
3927 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3928 return RX_DROP_MONITOR;
3929
3930 /* for now only beacons are ext, so queue them */
3931 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
3932
3933 return RX_QUEUED;
3934 }
3935
3936 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3937 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3938 {
3939 struct ieee80211_sub_if_data *sdata = rx->sdata;
3940 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3941 __le16 stype;
3942
3943 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3944
3945 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3946 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3947 sdata->vif.type != NL80211_IFTYPE_OCB &&
3948 sdata->vif.type != NL80211_IFTYPE_STATION)
3949 return RX_DROP_MONITOR;
3950
3951 switch (stype) {
3952 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3953 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3954 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3955 /* process for all: mesh, mlme, ibss */
3956 break;
3957 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3958 if (is_multicast_ether_addr(mgmt->da) &&
3959 !is_broadcast_ether_addr(mgmt->da))
3960 return RX_DROP_MONITOR;
3961
3962 /* process only for station/IBSS */
3963 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3964 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3965 return RX_DROP_MONITOR;
3966 break;
3967 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3968 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3969 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3970 if (is_multicast_ether_addr(mgmt->da) &&
3971 !is_broadcast_ether_addr(mgmt->da))
3972 return RX_DROP_MONITOR;
3973
3974 /* process only for station */
3975 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3976 return RX_DROP_MONITOR;
3977 break;
3978 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3979 /* process only for ibss and mesh */
3980 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3981 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3982 return RX_DROP_MONITOR;
3983 break;
3984 default:
3985 return RX_DROP_MONITOR;
3986 }
3987
3988 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
3989
3990 return RX_QUEUED;
3991 }
3992
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate,ieee80211_rx_result reason)3993 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3994 struct ieee80211_rate *rate,
3995 ieee80211_rx_result reason)
3996 {
3997 struct ieee80211_sub_if_data *sdata;
3998 struct ieee80211_local *local = rx->local;
3999 struct sk_buff *skb = rx->skb, *skb2;
4000 struct net_device *prev_dev = NULL;
4001 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4002 int needed_headroom;
4003
4004 /*
4005 * If cooked monitor has been processed already, then
4006 * don't do it again. If not, set the flag.
4007 */
4008 if (rx->flags & IEEE80211_RX_CMNTR)
4009 goto out_free_skb;
4010 rx->flags |= IEEE80211_RX_CMNTR;
4011
4012 /* If there are no cooked monitor interfaces, just free the SKB */
4013 if (!local->cooked_mntrs)
4014 goto out_free_skb;
4015
4016 /* room for the radiotap header based on driver features */
4017 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
4018
4019 if (skb_headroom(skb) < needed_headroom &&
4020 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
4021 goto out_free_skb;
4022
4023 /* prepend radiotap information */
4024 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
4025 false);
4026
4027 skb_reset_mac_header(skb);
4028 skb->ip_summed = CHECKSUM_UNNECESSARY;
4029 skb->pkt_type = PACKET_OTHERHOST;
4030 skb->protocol = htons(ETH_P_802_2);
4031
4032 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4033 if (!ieee80211_sdata_running(sdata))
4034 continue;
4035
4036 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
4037 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
4038 continue;
4039
4040 if (prev_dev) {
4041 skb2 = skb_clone(skb, GFP_ATOMIC);
4042 if (skb2) {
4043 skb2->dev = prev_dev;
4044 netif_receive_skb(skb2);
4045 }
4046 }
4047
4048 prev_dev = sdata->dev;
4049 dev_sw_netstats_rx_add(sdata->dev, skb->len);
4050 }
4051
4052 if (prev_dev) {
4053 skb->dev = prev_dev;
4054 netif_receive_skb(skb);
4055 return;
4056 }
4057
4058 out_free_skb:
4059 kfree_skb_reason(skb, (__force u32)reason);
4060 }
4061
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)4062 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
4063 ieee80211_rx_result res)
4064 {
4065 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4066 struct ieee80211_supported_band *sband;
4067 struct ieee80211_rate *rate = NULL;
4068
4069 if (res == RX_QUEUED) {
4070 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
4071 return;
4072 }
4073
4074 if (res != RX_CONTINUE) {
4075 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
4076 if (rx->sta)
4077 rx->link_sta->rx_stats.dropped++;
4078 }
4079
4080 if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) ==
4081 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) {
4082 kfree_skb_reason(rx->skb, (__force u32)res);
4083 return;
4084 }
4085
4086 sband = rx->local->hw.wiphy->bands[status->band];
4087 if (status->encoding == RX_ENC_LEGACY)
4088 rate = &sband->bitrates[status->rate_idx];
4089
4090 ieee80211_rx_cooked_monitor(rx, rate, res);
4091 }
4092
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)4093 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
4094 struct sk_buff_head *frames)
4095 {
4096 ieee80211_rx_result res = RX_DROP_MONITOR;
4097 struct sk_buff *skb;
4098
4099 #define CALL_RXH(rxh) \
4100 do { \
4101 res = rxh(rx); \
4102 if (res != RX_CONTINUE) \
4103 goto rxh_next; \
4104 } while (0)
4105
4106 /* Lock here to avoid hitting all of the data used in the RX
4107 * path (e.g. key data, station data, ...) concurrently when
4108 * a frame is released from the reorder buffer due to timeout
4109 * from the timer, potentially concurrently with RX from the
4110 * driver.
4111 */
4112 spin_lock_bh(&rx->local->rx_path_lock);
4113
4114 while ((skb = __skb_dequeue(frames))) {
4115 /*
4116 * all the other fields are valid across frames
4117 * that belong to an aMPDU since they are on the
4118 * same TID from the same station
4119 */
4120 rx->skb = skb;
4121
4122 if (WARN_ON_ONCE(!rx->link))
4123 goto rxh_next;
4124
4125 CALL_RXH(ieee80211_rx_h_check_more_data);
4126 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
4127 CALL_RXH(ieee80211_rx_h_sta_process);
4128 CALL_RXH(ieee80211_rx_h_decrypt);
4129 CALL_RXH(ieee80211_rx_h_defragment);
4130 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
4131 /* must be after MMIC verify so header is counted in MPDU mic */
4132 CALL_RXH(ieee80211_rx_h_amsdu);
4133 CALL_RXH(ieee80211_rx_h_data);
4134
4135 /* special treatment -- needs the queue */
4136 res = ieee80211_rx_h_ctrl(rx, frames);
4137 if (res != RX_CONTINUE)
4138 goto rxh_next;
4139
4140 CALL_RXH(ieee80211_rx_h_mgmt_check);
4141 CALL_RXH(ieee80211_rx_h_action);
4142 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
4143 CALL_RXH(ieee80211_rx_h_action_post_userspace);
4144 CALL_RXH(ieee80211_rx_h_action_return);
4145 CALL_RXH(ieee80211_rx_h_ext);
4146 CALL_RXH(ieee80211_rx_h_mgmt);
4147
4148 rxh_next:
4149 ieee80211_rx_handlers_result(rx, res);
4150
4151 #undef CALL_RXH
4152 }
4153
4154 spin_unlock_bh(&rx->local->rx_path_lock);
4155 }
4156
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)4157 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
4158 {
4159 struct sk_buff_head reorder_release;
4160 ieee80211_rx_result res = RX_DROP_MONITOR;
4161
4162 __skb_queue_head_init(&reorder_release);
4163
4164 #define CALL_RXH(rxh) \
4165 do { \
4166 res = rxh(rx); \
4167 if (res != RX_CONTINUE) \
4168 goto rxh_next; \
4169 } while (0)
4170
4171 CALL_RXH(ieee80211_rx_h_check_dup);
4172 CALL_RXH(ieee80211_rx_h_check);
4173
4174 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
4175
4176 ieee80211_rx_handlers(rx, &reorder_release);
4177 return;
4178
4179 rxh_next:
4180 ieee80211_rx_handlers_result(rx, res);
4181
4182 #undef CALL_RXH
4183 }
4184
4185 static bool
ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta * sta,u8 link_id)4186 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id)
4187 {
4188 return !!(sta->valid_links & BIT(link_id));
4189 }
4190
ieee80211_rx_data_set_link(struct ieee80211_rx_data * rx,u8 link_id)4191 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx,
4192 u8 link_id)
4193 {
4194 rx->link_id = link_id;
4195 rx->link = rcu_dereference(rx->sdata->link[link_id]);
4196
4197 if (!rx->sta)
4198 return rx->link;
4199
4200 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id))
4201 return false;
4202
4203 rx->link_sta = rcu_dereference(rx->sta->link[link_id]);
4204
4205 return rx->link && rx->link_sta;
4206 }
4207
ieee80211_rx_data_set_sta(struct ieee80211_rx_data * rx,struct sta_info * sta,int link_id)4208 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx,
4209 struct sta_info *sta, int link_id)
4210 {
4211 rx->link_id = link_id;
4212 rx->sta = sta;
4213
4214 if (sta) {
4215 rx->local = sta->sdata->local;
4216 if (!rx->sdata)
4217 rx->sdata = sta->sdata;
4218 rx->link_sta = &sta->deflink;
4219 } else {
4220 rx->link_sta = NULL;
4221 }
4222
4223 if (link_id < 0)
4224 rx->link = &rx->sdata->deflink;
4225 else if (!ieee80211_rx_data_set_link(rx, link_id))
4226 return false;
4227
4228 return true;
4229 }
4230
4231 /*
4232 * This function makes calls into the RX path, therefore
4233 * it has to be invoked under RCU read lock.
4234 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)4235 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4236 {
4237 struct sk_buff_head frames;
4238 struct ieee80211_rx_data rx = {
4239 /* This is OK -- must be QoS data frame */
4240 .security_idx = tid,
4241 .seqno_idx = tid,
4242 };
4243 struct tid_ampdu_rx *tid_agg_rx;
4244 int link_id = -1;
4245
4246 /* FIXME: statistics won't be right with this */
4247 if (sta->sta.valid_links)
4248 link_id = ffs(sta->sta.valid_links) - 1;
4249
4250 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id))
4251 return;
4252
4253 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4254 if (!tid_agg_rx)
4255 return;
4256
4257 __skb_queue_head_init(&frames);
4258
4259 spin_lock(&tid_agg_rx->reorder_lock);
4260 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4261 spin_unlock(&tid_agg_rx->reorder_lock);
4262
4263 if (!skb_queue_empty(&frames)) {
4264 struct ieee80211_event event = {
4265 .type = BA_FRAME_TIMEOUT,
4266 .u.ba.tid = tid,
4267 .u.ba.sta = &sta->sta,
4268 };
4269 drv_event_callback(rx.local, rx.sdata, &event);
4270 }
4271
4272 ieee80211_rx_handlers(&rx, &frames);
4273 }
4274
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)4275 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4276 u16 ssn, u64 filtered,
4277 u16 received_mpdus)
4278 {
4279 struct ieee80211_local *local;
4280 struct sta_info *sta;
4281 struct tid_ampdu_rx *tid_agg_rx;
4282 struct sk_buff_head frames;
4283 struct ieee80211_rx_data rx = {
4284 /* This is OK -- must be QoS data frame */
4285 .security_idx = tid,
4286 .seqno_idx = tid,
4287 };
4288 int i, diff;
4289
4290 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4291 return;
4292
4293 __skb_queue_head_init(&frames);
4294
4295 sta = container_of(pubsta, struct sta_info, sta);
4296
4297 local = sta->sdata->local;
4298 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64,
4299 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n",
4300 local->hw.max_rx_aggregation_subframes);
4301
4302 if (!ieee80211_rx_data_set_sta(&rx, sta, -1))
4303 return;
4304
4305 rcu_read_lock();
4306 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4307 if (!tid_agg_rx)
4308 goto out;
4309
4310 spin_lock_bh(&tid_agg_rx->reorder_lock);
4311
4312 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4313 int release;
4314
4315 /* release all frames in the reorder buffer */
4316 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4317 IEEE80211_SN_MODULO;
4318 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4319 release, &frames);
4320 /* update ssn to match received ssn */
4321 tid_agg_rx->head_seq_num = ssn;
4322 } else {
4323 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4324 &frames);
4325 }
4326
4327 /* handle the case that received ssn is behind the mac ssn.
4328 * it can be tid_agg_rx->buf_size behind and still be valid */
4329 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4330 if (diff >= tid_agg_rx->buf_size) {
4331 tid_agg_rx->reorder_buf_filtered = 0;
4332 goto release;
4333 }
4334 filtered = filtered >> diff;
4335 ssn += diff;
4336
4337 /* update bitmap */
4338 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4339 int index = (ssn + i) % tid_agg_rx->buf_size;
4340
4341 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4342 if (filtered & BIT_ULL(i))
4343 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4344 }
4345
4346 /* now process also frames that the filter marking released */
4347 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4348
4349 release:
4350 spin_unlock_bh(&tid_agg_rx->reorder_lock);
4351
4352 ieee80211_rx_handlers(&rx, &frames);
4353
4354 out:
4355 rcu_read_unlock();
4356 }
4357 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4358
4359 /* main receive path */
4360
ieee80211_bssid_match(const u8 * raddr,const u8 * addr)4361 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr)
4362 {
4363 return ether_addr_equal(raddr, addr) ||
4364 is_broadcast_ether_addr(raddr);
4365 }
4366
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4367 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4368 {
4369 struct ieee80211_sub_if_data *sdata = rx->sdata;
4370 struct sk_buff *skb = rx->skb;
4371 struct ieee80211_hdr *hdr = (void *)skb->data;
4372 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4373 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4374 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4375 ieee80211_is_s1g_beacon(hdr->frame_control);
4376
4377 switch (sdata->vif.type) {
4378 case NL80211_IFTYPE_STATION:
4379 if (!bssid && !sdata->u.mgd.use_4addr)
4380 return false;
4381 if (ieee80211_is_first_frag(hdr->seq_ctrl) &&
4382 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4383 return false;
4384 if (multicast)
4385 return true;
4386 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id);
4387 case NL80211_IFTYPE_ADHOC:
4388 if (!bssid)
4389 return false;
4390 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4391 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4392 !is_valid_ether_addr(hdr->addr2))
4393 return false;
4394 if (ieee80211_is_beacon(hdr->frame_control))
4395 return true;
4396 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4397 return false;
4398 if (!multicast &&
4399 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4400 return false;
4401 if (!rx->sta) {
4402 int rate_idx;
4403 if (status->encoding != RX_ENC_LEGACY)
4404 rate_idx = 0; /* TODO: HT/VHT rates */
4405 else
4406 rate_idx = status->rate_idx;
4407 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4408 BIT(rate_idx));
4409 }
4410 return true;
4411 case NL80211_IFTYPE_OCB:
4412 if (!bssid)
4413 return false;
4414 if (!ieee80211_is_data_present(hdr->frame_control))
4415 return false;
4416 if (!is_broadcast_ether_addr(bssid))
4417 return false;
4418 if (!multicast &&
4419 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4420 return false;
4421 if (!rx->sta) {
4422 int rate_idx;
4423 if (status->encoding != RX_ENC_LEGACY)
4424 rate_idx = 0; /* TODO: HT rates */
4425 else
4426 rate_idx = status->rate_idx;
4427 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4428 BIT(rate_idx));
4429 }
4430 return true;
4431 case NL80211_IFTYPE_MESH_POINT:
4432 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4433 return false;
4434 if (multicast)
4435 return true;
4436 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4437 case NL80211_IFTYPE_AP_VLAN:
4438 case NL80211_IFTYPE_AP:
4439 if (!bssid)
4440 return ieee80211_is_our_addr(sdata, hdr->addr1,
4441 &rx->link_id);
4442
4443 if (!is_broadcast_ether_addr(bssid) &&
4444 !ieee80211_is_our_addr(sdata, bssid, NULL)) {
4445 /*
4446 * Accept public action frames even when the
4447 * BSSID doesn't match, this is used for P2P
4448 * and location updates. Note that mac80211
4449 * itself never looks at these frames.
4450 */
4451 if (!multicast &&
4452 !ieee80211_is_our_addr(sdata, hdr->addr1,
4453 &rx->link_id))
4454 return false;
4455 if (ieee80211_is_public_action(hdr, skb->len))
4456 return true;
4457 return ieee80211_is_beacon(hdr->frame_control);
4458 }
4459
4460 if (!ieee80211_has_tods(hdr->frame_control)) {
4461 /* ignore data frames to TDLS-peers */
4462 if (ieee80211_is_data(hdr->frame_control))
4463 return false;
4464 /* ignore action frames to TDLS-peers */
4465 if (ieee80211_is_action(hdr->frame_control) &&
4466 !is_broadcast_ether_addr(bssid) &&
4467 !ether_addr_equal(bssid, hdr->addr1))
4468 return false;
4469 }
4470
4471 /*
4472 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4473 * the BSSID - we've checked that already but may have accepted
4474 * the wildcard (ff:ff:ff:ff:ff:ff).
4475 *
4476 * It also says:
4477 * The BSSID of the Data frame is determined as follows:
4478 * a) If the STA is contained within an AP or is associated
4479 * with an AP, the BSSID is the address currently in use
4480 * by the STA contained in the AP.
4481 *
4482 * So we should not accept data frames with an address that's
4483 * multicast.
4484 *
4485 * Accepting it also opens a security problem because stations
4486 * could encrypt it with the GTK and inject traffic that way.
4487 */
4488 if (ieee80211_is_data(hdr->frame_control) && multicast)
4489 return false;
4490
4491 return true;
4492 case NL80211_IFTYPE_P2P_DEVICE:
4493 return ieee80211_is_public_action(hdr, skb->len) ||
4494 ieee80211_is_probe_req(hdr->frame_control) ||
4495 ieee80211_is_probe_resp(hdr->frame_control) ||
4496 ieee80211_is_beacon(hdr->frame_control);
4497 case NL80211_IFTYPE_NAN:
4498 /* Currently no frames on NAN interface are allowed */
4499 return false;
4500 default:
4501 break;
4502 }
4503
4504 WARN_ON_ONCE(1);
4505 return false;
4506 }
4507
ieee80211_check_fast_rx(struct sta_info * sta)4508 void ieee80211_check_fast_rx(struct sta_info *sta)
4509 {
4510 struct ieee80211_sub_if_data *sdata = sta->sdata;
4511 struct ieee80211_local *local = sdata->local;
4512 struct ieee80211_key *key;
4513 struct ieee80211_fast_rx fastrx = {
4514 .dev = sdata->dev,
4515 .vif_type = sdata->vif.type,
4516 .control_port_protocol = sdata->control_port_protocol,
4517 }, *old, *new = NULL;
4518 u32 offload_flags;
4519 bool set_offload = false;
4520 bool assign = false;
4521 bool offload;
4522
4523 /* use sparse to check that we don't return without updating */
4524 __acquire(check_fast_rx);
4525
4526 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4527 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4528 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4529 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4530
4531 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4532
4533 /* fast-rx doesn't do reordering */
4534 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4535 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4536 goto clear;
4537
4538 switch (sdata->vif.type) {
4539 case NL80211_IFTYPE_STATION:
4540 if (sta->sta.tdls) {
4541 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4542 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4543 fastrx.expected_ds_bits = 0;
4544 } else {
4545 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4546 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4547 fastrx.expected_ds_bits =
4548 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4549 }
4550
4551 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4552 fastrx.expected_ds_bits |=
4553 cpu_to_le16(IEEE80211_FCTL_TODS);
4554 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4555 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4556 }
4557
4558 if (!sdata->u.mgd.powersave)
4559 break;
4560
4561 /* software powersave is a huge mess, avoid all of it */
4562 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4563 goto clear;
4564 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4565 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4566 goto clear;
4567 break;
4568 case NL80211_IFTYPE_AP_VLAN:
4569 case NL80211_IFTYPE_AP:
4570 /* parallel-rx requires this, at least with calls to
4571 * ieee80211_sta_ps_transition()
4572 */
4573 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4574 goto clear;
4575 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4576 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4577 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4578
4579 fastrx.internal_forward =
4580 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4581 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4582 !sdata->u.vlan.sta);
4583
4584 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4585 sdata->u.vlan.sta) {
4586 fastrx.expected_ds_bits |=
4587 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4588 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4589 fastrx.internal_forward = 0;
4590 }
4591
4592 break;
4593 case NL80211_IFTYPE_MESH_POINT:
4594 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS |
4595 IEEE80211_FCTL_TODS);
4596 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4597 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4598 break;
4599 default:
4600 goto clear;
4601 }
4602
4603 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4604 goto clear;
4605
4606 rcu_read_lock();
4607 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4608 if (!key)
4609 key = rcu_dereference(sdata->default_unicast_key);
4610 if (key) {
4611 switch (key->conf.cipher) {
4612 case WLAN_CIPHER_SUITE_TKIP:
4613 /* we don't want to deal with MMIC in fast-rx */
4614 goto clear_rcu;
4615 case WLAN_CIPHER_SUITE_CCMP:
4616 case WLAN_CIPHER_SUITE_CCMP_256:
4617 case WLAN_CIPHER_SUITE_GCMP:
4618 case WLAN_CIPHER_SUITE_GCMP_256:
4619 break;
4620 default:
4621 /* We also don't want to deal with
4622 * WEP or cipher scheme.
4623 */
4624 goto clear_rcu;
4625 }
4626
4627 fastrx.key = true;
4628 fastrx.icv_len = key->conf.icv_len;
4629 }
4630
4631 assign = true;
4632 clear_rcu:
4633 rcu_read_unlock();
4634 clear:
4635 __release(check_fast_rx);
4636
4637 if (assign)
4638 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4639
4640 offload_flags = get_bss_sdata(sdata)->vif.offload_flags;
4641 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED;
4642
4643 if (assign && offload)
4644 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4645 else
4646 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4647
4648 if (set_offload)
4649 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4650
4651 spin_lock_bh(&sta->lock);
4652 old = rcu_dereference_protected(sta->fast_rx, true);
4653 rcu_assign_pointer(sta->fast_rx, new);
4654 spin_unlock_bh(&sta->lock);
4655
4656 if (old)
4657 kfree_rcu(old, rcu_head);
4658 }
4659
ieee80211_clear_fast_rx(struct sta_info * sta)4660 void ieee80211_clear_fast_rx(struct sta_info *sta)
4661 {
4662 struct ieee80211_fast_rx *old;
4663
4664 spin_lock_bh(&sta->lock);
4665 old = rcu_dereference_protected(sta->fast_rx, true);
4666 RCU_INIT_POINTER(sta->fast_rx, NULL);
4667 spin_unlock_bh(&sta->lock);
4668
4669 if (old)
4670 kfree_rcu(old, rcu_head);
4671 }
4672
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4673 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4674 {
4675 struct ieee80211_local *local = sdata->local;
4676 struct sta_info *sta;
4677
4678 lockdep_assert_held(&local->sta_mtx);
4679
4680 list_for_each_entry(sta, &local->sta_list, list) {
4681 if (sdata != sta->sdata &&
4682 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4683 continue;
4684 ieee80211_check_fast_rx(sta);
4685 }
4686 }
4687
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4688 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4689 {
4690 struct ieee80211_local *local = sdata->local;
4691
4692 mutex_lock(&local->sta_mtx);
4693 __ieee80211_check_fast_rx_iface(sdata);
4694 mutex_unlock(&local->sta_mtx);
4695 }
4696
ieee80211_rx_8023(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx,int orig_len)4697 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4698 struct ieee80211_fast_rx *fast_rx,
4699 int orig_len)
4700 {
4701 struct ieee80211_sta_rx_stats *stats;
4702 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4703 struct sta_info *sta = rx->sta;
4704 struct link_sta_info *link_sta;
4705 struct sk_buff *skb = rx->skb;
4706 void *sa = skb->data + ETH_ALEN;
4707 void *da = skb->data;
4708
4709 if (rx->link_id >= 0) {
4710 link_sta = rcu_dereference(sta->link[rx->link_id]);
4711 if (WARN_ON_ONCE(!link_sta)) {
4712 dev_kfree_skb(rx->skb);
4713 return;
4714 }
4715 } else {
4716 link_sta = &sta->deflink;
4717 }
4718
4719 stats = &link_sta->rx_stats;
4720 if (fast_rx->uses_rss)
4721 stats = this_cpu_ptr(link_sta->pcpu_rx_stats);
4722
4723 /* statistics part of ieee80211_rx_h_sta_process() */
4724 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4725 stats->last_signal = status->signal;
4726 if (!fast_rx->uses_rss)
4727 ewma_signal_add(&link_sta->rx_stats_avg.signal,
4728 -status->signal);
4729 }
4730
4731 if (status->chains) {
4732 int i;
4733
4734 stats->chains = status->chains;
4735 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4736 int signal = status->chain_signal[i];
4737
4738 if (!(status->chains & BIT(i)))
4739 continue;
4740
4741 stats->chain_signal_last[i] = signal;
4742 if (!fast_rx->uses_rss)
4743 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i],
4744 -signal);
4745 }
4746 }
4747 /* end of statistics */
4748
4749 stats->last_rx = jiffies;
4750 stats->last_rate = sta_stats_encode_rate(status);
4751
4752 stats->fragments++;
4753 stats->packets++;
4754
4755 skb->dev = fast_rx->dev;
4756
4757 dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4758
4759 /* The seqno index has the same property as needed
4760 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4761 * for non-QoS-data frames. Here we know it's a data
4762 * frame, so count MSDUs.
4763 */
4764 u64_stats_update_begin(&stats->syncp);
4765 stats->msdu[rx->seqno_idx]++;
4766 stats->bytes += orig_len;
4767 u64_stats_update_end(&stats->syncp);
4768
4769 if (fast_rx->internal_forward) {
4770 struct sk_buff *xmit_skb = NULL;
4771 if (is_multicast_ether_addr(da)) {
4772 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4773 } else if (!ether_addr_equal(da, sa) &&
4774 sta_info_get(rx->sdata, da)) {
4775 xmit_skb = skb;
4776 skb = NULL;
4777 }
4778
4779 if (xmit_skb) {
4780 /*
4781 * Send to wireless media and increase priority by 256
4782 * to keep the received priority instead of
4783 * reclassifying the frame (see cfg80211_classify8021d).
4784 */
4785 xmit_skb->priority += 256;
4786 xmit_skb->protocol = htons(ETH_P_802_3);
4787 skb_reset_network_header(xmit_skb);
4788 skb_reset_mac_header(xmit_skb);
4789 dev_queue_xmit(xmit_skb);
4790 }
4791
4792 if (!skb)
4793 return;
4794 }
4795
4796 /* deliver to local stack */
4797 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4798 ieee80211_deliver_skb_to_local_stack(skb, rx);
4799 }
4800
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4801 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4802 struct ieee80211_fast_rx *fast_rx)
4803 {
4804 struct sk_buff *skb = rx->skb;
4805 struct ieee80211_hdr *hdr = (void *)skb->data;
4806 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4807 static ieee80211_rx_result res;
4808 int orig_len = skb->len;
4809 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4810 int snap_offs = hdrlen;
4811 struct {
4812 u8 snap[sizeof(rfc1042_header)];
4813 __be16 proto;
4814 } *payload __aligned(2);
4815 struct {
4816 u8 da[ETH_ALEN];
4817 u8 sa[ETH_ALEN];
4818 } addrs __aligned(2);
4819 struct ieee80211_sta_rx_stats *stats;
4820
4821 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4822 * to a common data structure; drivers can implement that per queue
4823 * but we don't have that information in mac80211
4824 */
4825 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4826 return false;
4827
4828 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4829
4830 /* If using encryption, we also need to have:
4831 * - PN_VALIDATED: similar, but the implementation is tricky
4832 * - DECRYPTED: necessary for PN_VALIDATED
4833 */
4834 if (fast_rx->key &&
4835 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4836 return false;
4837
4838 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4839 return false;
4840
4841 if (unlikely(ieee80211_is_frag(hdr)))
4842 return false;
4843
4844 /* Since our interface address cannot be multicast, this
4845 * implicitly also rejects multicast frames without the
4846 * explicit check.
4847 *
4848 * We shouldn't get any *data* frames not addressed to us
4849 * (AP mode will accept multicast *management* frames), but
4850 * punting here will make it go through the full checks in
4851 * ieee80211_accept_frame().
4852 */
4853 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4854 return false;
4855
4856 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4857 IEEE80211_FCTL_TODS)) !=
4858 fast_rx->expected_ds_bits)
4859 return false;
4860
4861 /* assign the key to drop unencrypted frames (later)
4862 * and strip the IV/MIC if necessary
4863 */
4864 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4865 /* GCMP header length is the same */
4866 snap_offs += IEEE80211_CCMP_HDR_LEN;
4867 }
4868
4869 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) &&
4870 !(status->rx_flags & IEEE80211_RX_AMSDU)) {
4871 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4872 return false;
4873
4874 payload = (void *)(skb->data + snap_offs);
4875
4876 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4877 return false;
4878
4879 /* Don't handle these here since they require special code.
4880 * Accept AARP and IPX even though they should come with a
4881 * bridge-tunnel header - but if we get them this way then
4882 * there's little point in discarding them.
4883 */
4884 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4885 payload->proto == fast_rx->control_port_protocol))
4886 return false;
4887 }
4888
4889 /* after this point, don't punt to the slowpath! */
4890
4891 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4892 pskb_trim(skb, skb->len - fast_rx->icv_len))
4893 goto drop;
4894
4895 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4896 goto drop;
4897
4898 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4899 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4900 RX_QUEUED)
4901 goto drop;
4902
4903 return true;
4904 }
4905
4906 /* do the header conversion - first grab the addresses */
4907 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4908 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4909 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) {
4910 skb_pull(skb, snap_offs - 2);
4911 put_unaligned_be16(skb->len - 2, skb->data);
4912 } else {
4913 skb_postpull_rcsum(skb, skb->data + snap_offs,
4914 sizeof(rfc1042_header) + 2);
4915
4916 /* remove the SNAP but leave the ethertype */
4917 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4918 }
4919 /* push the addresses in front */
4920 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4921
4922 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb);
4923 switch (res) {
4924 case RX_QUEUED:
4925 return true;
4926 case RX_CONTINUE:
4927 break;
4928 default:
4929 goto drop;
4930 }
4931
4932 ieee80211_rx_8023(rx, fast_rx, orig_len);
4933
4934 return true;
4935 drop:
4936 dev_kfree_skb(skb);
4937
4938 if (fast_rx->uses_rss)
4939 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats);
4940 else
4941 stats = &rx->link_sta->rx_stats;
4942
4943 stats->dropped++;
4944 return true;
4945 }
4946
4947 /*
4948 * This function returns whether or not the SKB
4949 * was destined for RX processing or not, which,
4950 * if consume is true, is equivalent to whether
4951 * or not the skb was consumed.
4952 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4953 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4954 struct sk_buff *skb, bool consume)
4955 {
4956 struct ieee80211_local *local = rx->local;
4957 struct ieee80211_sub_if_data *sdata = rx->sdata;
4958 struct ieee80211_hdr *hdr = (void *)skb->data;
4959 struct link_sta_info *link_sta = rx->link_sta;
4960 struct ieee80211_link_data *link = rx->link;
4961
4962 rx->skb = skb;
4963
4964 /* See if we can do fast-rx; if we have to copy we already lost,
4965 * so punt in that case. We should never have to deliver a data
4966 * frame to multiple interfaces anyway.
4967 *
4968 * We skip the ieee80211_accept_frame() call and do the necessary
4969 * checking inside ieee80211_invoke_fast_rx().
4970 */
4971 if (consume && rx->sta) {
4972 struct ieee80211_fast_rx *fast_rx;
4973
4974 fast_rx = rcu_dereference(rx->sta->fast_rx);
4975 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4976 return true;
4977 }
4978
4979 if (!ieee80211_accept_frame(rx))
4980 return false;
4981
4982 if (!consume) {
4983 struct skb_shared_hwtstamps *shwt;
4984
4985 rx->skb = skb_copy(skb, GFP_ATOMIC);
4986 if (!rx->skb) {
4987 if (net_ratelimit())
4988 wiphy_debug(local->hw.wiphy,
4989 "failed to copy skb for %s\n",
4990 sdata->name);
4991 return true;
4992 }
4993
4994 /* skb_copy() does not copy the hw timestamps, so copy it
4995 * explicitly
4996 */
4997 shwt = skb_hwtstamps(rx->skb);
4998 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
4999
5000 /* Update the hdr pointer to the new skb for translation below */
5001 hdr = (struct ieee80211_hdr *)rx->skb->data;
5002 }
5003
5004 if (unlikely(rx->sta && rx->sta->sta.mlo) &&
5005 is_unicast_ether_addr(hdr->addr1) &&
5006 !ieee80211_is_probe_resp(hdr->frame_control) &&
5007 !ieee80211_is_beacon(hdr->frame_control)) {
5008 /* translate to MLD addresses */
5009 if (ether_addr_equal(link->conf->addr, hdr->addr1))
5010 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr);
5011 if (ether_addr_equal(link_sta->addr, hdr->addr2))
5012 ether_addr_copy(hdr->addr2, rx->sta->addr);
5013 /* translate A3 only if it's the BSSID */
5014 if (!ieee80211_has_tods(hdr->frame_control) &&
5015 !ieee80211_has_fromds(hdr->frame_control)) {
5016 if (ether_addr_equal(link_sta->addr, hdr->addr3))
5017 ether_addr_copy(hdr->addr3, rx->sta->addr);
5018 else if (ether_addr_equal(link->conf->addr, hdr->addr3))
5019 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr);
5020 }
5021 /* not needed for A4 since it can only carry the SA */
5022 }
5023
5024 ieee80211_invoke_rx_handlers(rx);
5025 return true;
5026 }
5027
__ieee80211_rx_handle_8023(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)5028 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
5029 struct ieee80211_sta *pubsta,
5030 struct sk_buff *skb,
5031 struct list_head *list)
5032 {
5033 struct ieee80211_local *local = hw_to_local(hw);
5034 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5035 struct ieee80211_fast_rx *fast_rx;
5036 struct ieee80211_rx_data rx;
5037 struct sta_info *sta;
5038 int link_id = -1;
5039
5040 memset(&rx, 0, sizeof(rx));
5041 rx.skb = skb;
5042 rx.local = local;
5043 rx.list = list;
5044 rx.link_id = -1;
5045
5046 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
5047
5048 /* drop frame if too short for header */
5049 if (skb->len < sizeof(struct ethhdr))
5050 goto drop;
5051
5052 if (!pubsta)
5053 goto drop;
5054
5055 if (status->link_valid)
5056 link_id = status->link_id;
5057
5058 /*
5059 * TODO: Should the frame be dropped if the right link_id is not
5060 * available? Or may be it is fine in the current form to proceed with
5061 * the frame processing because with frame being in 802.3 format,
5062 * link_id is used only for stats purpose and updating the stats on
5063 * the deflink is fine?
5064 */
5065 sta = container_of(pubsta, struct sta_info, sta);
5066 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id))
5067 goto drop;
5068
5069 fast_rx = rcu_dereference(rx.sta->fast_rx);
5070 if (!fast_rx)
5071 goto drop;
5072
5073 ieee80211_rx_8023(&rx, fast_rx, skb->len);
5074 return;
5075
5076 drop:
5077 dev_kfree_skb(skb);
5078 }
5079
ieee80211_rx_for_interface(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)5080 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx,
5081 struct sk_buff *skb, bool consume)
5082 {
5083 struct link_sta_info *link_sta;
5084 struct ieee80211_hdr *hdr = (void *)skb->data;
5085 struct sta_info *sta;
5086 int link_id = -1;
5087
5088 /*
5089 * Look up link station first, in case there's a
5090 * chance that they might have a link address that
5091 * is identical to the MLD address, that way we'll
5092 * have the link information if needed.
5093 */
5094 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2);
5095 if (link_sta) {
5096 sta = link_sta->sta;
5097 link_id = link_sta->link_id;
5098 } else {
5099 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5100
5101 sta = sta_info_get_bss(rx->sdata, hdr->addr2);
5102 if (status->link_valid)
5103 link_id = status->link_id;
5104 }
5105
5106 if (!ieee80211_rx_data_set_sta(rx, sta, link_id))
5107 return false;
5108
5109 return ieee80211_prepare_and_rx_handle(rx, skb, consume);
5110 }
5111
5112 /*
5113 * This is the actual Rx frames handler. as it belongs to Rx path it must
5114 * be called with rcu_read_lock protection.
5115 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)5116 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
5117 struct ieee80211_sta *pubsta,
5118 struct sk_buff *skb,
5119 struct list_head *list)
5120 {
5121 struct ieee80211_local *local = hw_to_local(hw);
5122 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5123 struct ieee80211_sub_if_data *sdata;
5124 struct ieee80211_hdr *hdr;
5125 __le16 fc;
5126 struct ieee80211_rx_data rx;
5127 struct ieee80211_sub_if_data *prev;
5128 struct rhlist_head *tmp;
5129 int err = 0;
5130
5131 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
5132 memset(&rx, 0, sizeof(rx));
5133 rx.skb = skb;
5134 rx.local = local;
5135 rx.list = list;
5136 rx.link_id = -1;
5137
5138 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
5139 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
5140
5141 if (ieee80211_is_mgmt(fc)) {
5142 /* drop frame if too short for header */
5143 if (skb->len < ieee80211_hdrlen(fc))
5144 err = -ENOBUFS;
5145 else
5146 err = skb_linearize(skb);
5147 } else {
5148 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
5149 }
5150
5151 if (err) {
5152 dev_kfree_skb(skb);
5153 return;
5154 }
5155
5156 hdr = (struct ieee80211_hdr *)skb->data;
5157 ieee80211_parse_qos(&rx);
5158 ieee80211_verify_alignment(&rx);
5159
5160 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
5161 ieee80211_is_beacon(hdr->frame_control) ||
5162 ieee80211_is_s1g_beacon(hdr->frame_control)))
5163 ieee80211_scan_rx(local, skb);
5164
5165 if (ieee80211_is_data(fc)) {
5166 struct sta_info *sta, *prev_sta;
5167 int link_id = -1;
5168
5169 if (status->link_valid)
5170 link_id = status->link_id;
5171
5172 if (pubsta) {
5173 sta = container_of(pubsta, struct sta_info, sta);
5174 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id))
5175 goto out;
5176
5177 /*
5178 * In MLO connection, fetch the link_id using addr2
5179 * when the driver does not pass link_id in status.
5180 * When the address translation is already performed by
5181 * driver/hw, the valid link_id must be passed in
5182 * status.
5183 */
5184
5185 if (!status->link_valid && pubsta->mlo) {
5186 struct ieee80211_hdr *hdr = (void *)skb->data;
5187 struct link_sta_info *link_sta;
5188
5189 link_sta = link_sta_info_get_bss(rx.sdata,
5190 hdr->addr2);
5191 if (!link_sta)
5192 goto out;
5193
5194 ieee80211_rx_data_set_link(&rx, link_sta->link_id);
5195 }
5196
5197 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
5198 return;
5199 goto out;
5200 }
5201
5202 prev_sta = NULL;
5203
5204 for_each_sta_info(local, hdr->addr2, sta, tmp) {
5205 if (!prev_sta) {
5206 prev_sta = sta;
5207 continue;
5208 }
5209
5210 rx.sdata = prev_sta->sdata;
5211 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id))
5212 goto out;
5213
5214 if (!status->link_valid && prev_sta->sta.mlo)
5215 continue;
5216
5217 ieee80211_prepare_and_rx_handle(&rx, skb, false);
5218
5219 prev_sta = sta;
5220 }
5221
5222 if (prev_sta) {
5223 rx.sdata = prev_sta->sdata;
5224 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id))
5225 goto out;
5226
5227 if (!status->link_valid && prev_sta->sta.mlo)
5228 goto out;
5229
5230 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
5231 return;
5232 goto out;
5233 }
5234 }
5235
5236 prev = NULL;
5237
5238 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
5239 if (!ieee80211_sdata_running(sdata))
5240 continue;
5241
5242 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
5243 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
5244 continue;
5245
5246 /*
5247 * frame is destined for this interface, but if it's
5248 * not also for the previous one we handle that after
5249 * the loop to avoid copying the SKB once too much
5250 */
5251
5252 if (!prev) {
5253 prev = sdata;
5254 continue;
5255 }
5256
5257 rx.sdata = prev;
5258 ieee80211_rx_for_interface(&rx, skb, false);
5259
5260 prev = sdata;
5261 }
5262
5263 if (prev) {
5264 rx.sdata = prev;
5265
5266 if (ieee80211_rx_for_interface(&rx, skb, true))
5267 return;
5268 }
5269
5270 out:
5271 dev_kfree_skb(skb);
5272 }
5273
5274 /*
5275 * This is the receive path handler. It is called by a low level driver when an
5276 * 802.11 MPDU is received from the hardware.
5277 */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)5278 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5279 struct sk_buff *skb, struct list_head *list)
5280 {
5281 struct ieee80211_local *local = hw_to_local(hw);
5282 struct ieee80211_rate *rate = NULL;
5283 struct ieee80211_supported_band *sband;
5284 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5285 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
5286
5287 WARN_ON_ONCE(softirq_count() == 0);
5288
5289 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
5290 goto drop;
5291
5292 sband = local->hw.wiphy->bands[status->band];
5293 if (WARN_ON(!sband))
5294 goto drop;
5295
5296 /*
5297 * If we're suspending, it is possible although not too likely
5298 * that we'd be receiving frames after having already partially
5299 * quiesced the stack. We can't process such frames then since
5300 * that might, for example, cause stations to be added or other
5301 * driver callbacks be invoked.
5302 */
5303 if (unlikely(local->quiescing || local->suspended))
5304 goto drop;
5305
5306 /* We might be during a HW reconfig, prevent Rx for the same reason */
5307 if (unlikely(local->in_reconfig))
5308 goto drop;
5309
5310 /*
5311 * The same happens when we're not even started,
5312 * but that's worth a warning.
5313 */
5314 if (WARN_ON(!local->started))
5315 goto drop;
5316
5317 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
5318 /*
5319 * Validate the rate, unless a PLCP error means that
5320 * we probably can't have a valid rate here anyway.
5321 */
5322
5323 switch (status->encoding) {
5324 case RX_ENC_HT:
5325 /*
5326 * rate_idx is MCS index, which can be [0-76]
5327 * as documented on:
5328 *
5329 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
5330 *
5331 * Anything else would be some sort of driver or
5332 * hardware error. The driver should catch hardware
5333 * errors.
5334 */
5335 if (WARN(status->rate_idx > 76,
5336 "Rate marked as an HT rate but passed "
5337 "status->rate_idx is not "
5338 "an MCS index [0-76]: %d (0x%02x)\n",
5339 status->rate_idx,
5340 status->rate_idx))
5341 goto drop;
5342 break;
5343 case RX_ENC_VHT:
5344 if (WARN_ONCE(status->rate_idx > 11 ||
5345 !status->nss ||
5346 status->nss > 8,
5347 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
5348 status->rate_idx, status->nss))
5349 goto drop;
5350 break;
5351 case RX_ENC_HE:
5352 if (WARN_ONCE(status->rate_idx > 11 ||
5353 !status->nss ||
5354 status->nss > 8,
5355 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
5356 status->rate_idx, status->nss))
5357 goto drop;
5358 break;
5359 case RX_ENC_EHT:
5360 if (WARN_ONCE(status->rate_idx > 15 ||
5361 !status->nss ||
5362 status->nss > 8 ||
5363 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2,
5364 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n",
5365 status->rate_idx, status->nss, status->eht.gi))
5366 goto drop;
5367 break;
5368 default:
5369 WARN_ON_ONCE(1);
5370 fallthrough;
5371 case RX_ENC_LEGACY:
5372 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
5373 goto drop;
5374 rate = &sband->bitrates[status->rate_idx];
5375 }
5376 }
5377
5378 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED))
5379 goto drop;
5380
5381 status->rx_flags = 0;
5382
5383 kcov_remote_start_common(skb_get_kcov_handle(skb));
5384
5385 /*
5386 * Frames with failed FCS/PLCP checksum are not returned,
5387 * all other frames are returned without radiotap header
5388 * if it was previously present.
5389 * Also, frames with less than 16 bytes are dropped.
5390 */
5391 if (!(status->flag & RX_FLAG_8023))
5392 skb = ieee80211_rx_monitor(local, skb, rate);
5393 if (skb) {
5394 if ((status->flag & RX_FLAG_8023) ||
5395 ieee80211_is_data_present(hdr->frame_control))
5396 ieee80211_tpt_led_trig_rx(local, skb->len);
5397
5398 if (status->flag & RX_FLAG_8023)
5399 __ieee80211_rx_handle_8023(hw, pubsta, skb, list);
5400 else
5401 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
5402 }
5403
5404 kcov_remote_stop();
5405 return;
5406 drop:
5407 kfree_skb(skb);
5408 }
5409 EXPORT_SYMBOL(ieee80211_rx_list);
5410
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)5411 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5412 struct sk_buff *skb, struct napi_struct *napi)
5413 {
5414 struct sk_buff *tmp;
5415 LIST_HEAD(list);
5416
5417
5418 /*
5419 * key references and virtual interfaces are protected using RCU
5420 * and this requires that we are in a read-side RCU section during
5421 * receive processing
5422 */
5423 rcu_read_lock();
5424 ieee80211_rx_list(hw, pubsta, skb, &list);
5425 rcu_read_unlock();
5426
5427 if (!napi) {
5428 netif_receive_skb_list(&list);
5429 return;
5430 }
5431
5432 list_for_each_entry_safe(skb, tmp, &list, list) {
5433 skb_list_del_init(skb);
5434 napi_gro_receive(napi, skb);
5435 }
5436 }
5437 EXPORT_SYMBOL(ieee80211_rx_napi);
5438
5439 /* This is a version of the rx handler that can be called from hard irq
5440 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)5441 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5442 {
5443 struct ieee80211_local *local = hw_to_local(hw);
5444
5445 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5446
5447 skb->pkt_type = IEEE80211_RX_MSG;
5448 skb_queue_tail(&local->skb_queue, skb);
5449 tasklet_schedule(&local->tasklet);
5450 }
5451 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5452