xref: /openbmc/linux/net/mac80211/rc80211_minstrel_ht.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/netdevice.h>
9 #include <linux/types.h>
10 #include <linux/skbuff.h>
11 #include <linux/debugfs.h>
12 #include <linux/random.h>
13 #include <linux/moduleparam.h>
14 #include <linux/ieee80211.h>
15 #include <net/mac80211.h>
16 #include "rate.h"
17 #include "rc80211_minstrel.h"
18 #include "rc80211_minstrel_ht.h"
19 
20 #define AVG_AMPDU_SIZE	16
21 #define AVG_PKT_SIZE	1200
22 
23 /* Number of bits for an average sized packet */
24 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25 
26 /* Number of symbols for a packet with (bps) bits per symbol */
27 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28 
29 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30 #define MCS_SYMBOL_TIME(sgi, syms)					\
31 	(sgi ?								\
32 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
33 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
34 	)
35 
36 /* Transmit duration for the raw data part of an average sized packet */
37 #define MCS_DURATION(streams, sgi, bps) \
38 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39 
40 #define BW_20			0
41 #define BW_40			1
42 #define BW_80			2
43 
44 /*
45  * Define group sort order: HT40 -> SGI -> #streams
46  */
47 #define GROUP_IDX(_streams, _sgi, _ht40)	\
48 	MINSTREL_HT_GROUP_0 +			\
49 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
50 	MINSTREL_MAX_STREAMS * _sgi +	\
51 	_streams - 1
52 
53 /* MCS rate information for an MCS group */
54 #define MCS_GROUP(_streams, _sgi, _ht40)				\
55 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
56 	.streams = _streams,						\
57 	.flags =							\
58 		IEEE80211_TX_RC_MCS |					\
59 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
60 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
61 	.duration = {							\
62 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
63 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
64 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
65 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
66 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
67 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
68 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
69 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
70 	}								\
71 }
72 
73 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
74 	(MINSTREL_VHT_GROUP_0 +						\
75 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
76 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
77 	 (_streams) - 1)
78 
79 #define BW2VBPS(_bw, r3, r2, r1)					\
80 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
81 
82 #define VHT_GROUP(_streams, _sgi, _bw)					\
83 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
84 	.streams = _streams,						\
85 	.flags =							\
86 		IEEE80211_TX_RC_VHT_MCS |				\
87 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
88 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
89 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
90 	.duration = {							\
91 		MCS_DURATION(_streams, _sgi,				\
92 			     BW2VBPS(_bw,  117,  54,  26)),		\
93 		MCS_DURATION(_streams, _sgi,				\
94 			     BW2VBPS(_bw,  234, 108,  52)),		\
95 		MCS_DURATION(_streams, _sgi,				\
96 			     BW2VBPS(_bw,  351, 162,  78)),		\
97 		MCS_DURATION(_streams, _sgi,				\
98 			     BW2VBPS(_bw,  468, 216, 104)),		\
99 		MCS_DURATION(_streams, _sgi,				\
100 			     BW2VBPS(_bw,  702, 324, 156)),		\
101 		MCS_DURATION(_streams, _sgi,				\
102 			     BW2VBPS(_bw,  936, 432, 208)),		\
103 		MCS_DURATION(_streams, _sgi,				\
104 			     BW2VBPS(_bw, 1053, 486, 234)),		\
105 		MCS_DURATION(_streams, _sgi,				\
106 			     BW2VBPS(_bw, 1170, 540, 260)),		\
107 		MCS_DURATION(_streams, _sgi,				\
108 			     BW2VBPS(_bw, 1404, 648, 312)),		\
109 		MCS_DURATION(_streams, _sgi,				\
110 			     BW2VBPS(_bw, 1560, 720, 346))		\
111 	}								\
112 }
113 
114 #define CCK_DURATION(_bitrate, _short, _len)		\
115 	(1000 * (10 /* SIFS */ +			\
116 	 (_short ? 72 + 24 : 144 + 48) +		\
117 	 (8 * (_len + 4) * 10) / (_bitrate)))
118 
119 #define CCK_ACK_DURATION(_bitrate, _short)			\
120 	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
121 	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
122 
123 #define CCK_DURATION_LIST(_short)			\
124 	CCK_ACK_DURATION(10, _short),			\
125 	CCK_ACK_DURATION(20, _short),			\
126 	CCK_ACK_DURATION(55, _short),			\
127 	CCK_ACK_DURATION(110, _short)
128 
129 #define CCK_GROUP					\
130 	[MINSTREL_CCK_GROUP] = {			\
131 		.streams = 0,				\
132 		.flags = 0,				\
133 		.duration = {				\
134 			CCK_DURATION_LIST(false),	\
135 			CCK_DURATION_LIST(true)		\
136 		}					\
137 	}
138 
139 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
140 static bool minstrel_vht_only = true;
141 module_param(minstrel_vht_only, bool, 0644);
142 MODULE_PARM_DESC(minstrel_vht_only,
143 		 "Use only VHT rates when VHT is supported by sta.");
144 #endif
145 
146 /*
147  * To enable sufficiently targeted rate sampling, MCS rates are divided into
148  * groups, based on the number of streams and flags (HT40, SGI) that they
149  * use.
150  *
151  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
152  * BW -> SGI -> #streams
153  */
154 const struct mcs_group minstrel_mcs_groups[] = {
155 	MCS_GROUP(1, 0, BW_20),
156 	MCS_GROUP(2, 0, BW_20),
157 #if MINSTREL_MAX_STREAMS >= 3
158 	MCS_GROUP(3, 0, BW_20),
159 #endif
160 
161 	MCS_GROUP(1, 1, BW_20),
162 	MCS_GROUP(2, 1, BW_20),
163 #if MINSTREL_MAX_STREAMS >= 3
164 	MCS_GROUP(3, 1, BW_20),
165 #endif
166 
167 	MCS_GROUP(1, 0, BW_40),
168 	MCS_GROUP(2, 0, BW_40),
169 #if MINSTREL_MAX_STREAMS >= 3
170 	MCS_GROUP(3, 0, BW_40),
171 #endif
172 
173 	MCS_GROUP(1, 1, BW_40),
174 	MCS_GROUP(2, 1, BW_40),
175 #if MINSTREL_MAX_STREAMS >= 3
176 	MCS_GROUP(3, 1, BW_40),
177 #endif
178 
179 	CCK_GROUP,
180 
181 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
182 	VHT_GROUP(1, 0, BW_20),
183 	VHT_GROUP(2, 0, BW_20),
184 #if MINSTREL_MAX_STREAMS >= 3
185 	VHT_GROUP(3, 0, BW_20),
186 #endif
187 
188 	VHT_GROUP(1, 1, BW_20),
189 	VHT_GROUP(2, 1, BW_20),
190 #if MINSTREL_MAX_STREAMS >= 3
191 	VHT_GROUP(3, 1, BW_20),
192 #endif
193 
194 	VHT_GROUP(1, 0, BW_40),
195 	VHT_GROUP(2, 0, BW_40),
196 #if MINSTREL_MAX_STREAMS >= 3
197 	VHT_GROUP(3, 0, BW_40),
198 #endif
199 
200 	VHT_GROUP(1, 1, BW_40),
201 	VHT_GROUP(2, 1, BW_40),
202 #if MINSTREL_MAX_STREAMS >= 3
203 	VHT_GROUP(3, 1, BW_40),
204 #endif
205 
206 	VHT_GROUP(1, 0, BW_80),
207 	VHT_GROUP(2, 0, BW_80),
208 #if MINSTREL_MAX_STREAMS >= 3
209 	VHT_GROUP(3, 0, BW_80),
210 #endif
211 
212 	VHT_GROUP(1, 1, BW_80),
213 	VHT_GROUP(2, 1, BW_80),
214 #if MINSTREL_MAX_STREAMS >= 3
215 	VHT_GROUP(3, 1, BW_80),
216 #endif
217 #endif
218 };
219 
220 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
221 
222 static void
223 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
224 
225 /*
226  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
227  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
228  *
229  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
230  */
231 static u16
232 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
233 {
234 	u16 mask = 0;
235 
236 	if (bw == BW_20) {
237 		if (nss != 3 && nss != 6)
238 			mask = BIT(9);
239 	} else if (bw == BW_80) {
240 		if (nss == 3 || nss == 7)
241 			mask = BIT(6);
242 		else if (nss == 6)
243 			mask = BIT(9);
244 	} else {
245 		WARN_ON(bw != BW_40);
246 	}
247 
248 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
249 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
250 		mask |= 0x300;
251 		break;
252 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
253 		mask |= 0x200;
254 		break;
255 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
256 		break;
257 	default:
258 		mask = 0x3ff;
259 	}
260 
261 	return 0x3ff & ~mask;
262 }
263 
264 /*
265  * Look up an MCS group index based on mac80211 rate information
266  */
267 static int
268 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
269 {
270 	return GROUP_IDX((rate->idx / 8) + 1,
271 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
272 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
273 }
274 
275 static int
276 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
277 {
278 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
279 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
280 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
281 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
282 }
283 
284 static struct minstrel_rate_stats *
285 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
286 		      struct ieee80211_tx_rate *rate)
287 {
288 	int group, idx;
289 
290 	if (rate->flags & IEEE80211_TX_RC_MCS) {
291 		group = minstrel_ht_get_group_idx(rate);
292 		idx = rate->idx % 8;
293 	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
294 		group = minstrel_vht_get_group_idx(rate);
295 		idx = ieee80211_rate_get_vht_mcs(rate);
296 	} else {
297 		group = MINSTREL_CCK_GROUP;
298 
299 		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
300 			if (rate->idx == mp->cck_rates[idx])
301 				break;
302 
303 		/* short preamble */
304 		if (!(mi->groups[group].supported & BIT(idx)))
305 			idx += 4;
306 	}
307 	return &mi->groups[group].rates[idx];
308 }
309 
310 static inline struct minstrel_rate_stats *
311 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
312 {
313 	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
314 }
315 
316 /*
317  * Return current throughput based on the average A-MPDU length, taking into
318  * account the expected number of retransmissions and their expected length
319  */
320 int
321 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
322 		       int prob_ewma)
323 {
324 	unsigned int nsecs = 0;
325 
326 	/* do not account throughput if sucess prob is below 10% */
327 	if (prob_ewma < MINSTREL_FRAC(10, 100))
328 		return 0;
329 
330 	if (group != MINSTREL_CCK_GROUP)
331 		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
332 
333 	nsecs += minstrel_mcs_groups[group].duration[rate];
334 
335 	/*
336 	 * For the throughput calculation, limit the probability value to 90% to
337 	 * account for collision related packet error rate fluctuation
338 	 * (prob is scaled - see MINSTREL_FRAC above)
339 	 */
340 	if (prob_ewma > MINSTREL_FRAC(90, 100))
341 		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
342 								      / nsecs));
343 	else
344 		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
345 }
346 
347 /*
348  * Find & sort topmost throughput rates
349  *
350  * If multiple rates provide equal throughput the sorting is based on their
351  * current success probability. Higher success probability is preferred among
352  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
353  */
354 static void
355 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
356 			       u16 *tp_list)
357 {
358 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
359 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
360 	int j = MAX_THR_RATES;
361 
362 	cur_group = index / MCS_GROUP_RATES;
363 	cur_idx = index  % MCS_GROUP_RATES;
364 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
365 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
366 
367 	do {
368 		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
369 		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
370 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
371 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
372 						    tmp_prob);
373 		if (cur_tp_avg < tmp_tp_avg ||
374 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
375 			break;
376 		j--;
377 	} while (j > 0);
378 
379 	if (j < MAX_THR_RATES - 1) {
380 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
381 		       (MAX_THR_RATES - (j + 1))));
382 	}
383 	if (j < MAX_THR_RATES)
384 		tp_list[j] = index;
385 }
386 
387 /*
388  * Find and set the topmost probability rate per sta and per group
389  */
390 static void
391 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
392 {
393 	struct minstrel_mcs_group_data *mg;
394 	struct minstrel_rate_stats *mrs;
395 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
396 	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
397 	int max_gpr_group, max_gpr_idx;
398 	int max_gpr_tp_avg, max_gpr_prob;
399 
400 	cur_group = index / MCS_GROUP_RATES;
401 	cur_idx = index % MCS_GROUP_RATES;
402 	mg = &mi->groups[index / MCS_GROUP_RATES];
403 	mrs = &mg->rates[index % MCS_GROUP_RATES];
404 
405 	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
406 	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
407 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
408 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
409 
410 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
411 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
412 	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
413 	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
414 	    (max_tp_group != MINSTREL_CCK_GROUP))
415 		return;
416 
417 	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
418 	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
419 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
420 
421 	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
422 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
423 						    mrs->prob_ewma);
424 		if (cur_tp_avg > tmp_tp_avg)
425 			mi->max_prob_rate = index;
426 
427 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
428 							max_gpr_idx,
429 							max_gpr_prob);
430 		if (cur_tp_avg > max_gpr_tp_avg)
431 			mg->max_group_prob_rate = index;
432 	} else {
433 		if (mrs->prob_ewma > tmp_prob)
434 			mi->max_prob_rate = index;
435 		if (mrs->prob_ewma > max_gpr_prob)
436 			mg->max_group_prob_rate = index;
437 	}
438 }
439 
440 
441 /*
442  * Assign new rate set per sta and use CCK rates only if the fastest
443  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
444  * rate sets where MCS and CCK rates are mixed, because CCK rates can
445  * not use aggregation.
446  */
447 static void
448 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
449 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
450 				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
451 {
452 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
453 	int i;
454 
455 	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
456 	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
457 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
458 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
459 
460 	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
461 	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
462 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
463 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
464 
465 	if (tmp_cck_tp > tmp_mcs_tp) {
466 		for(i = 0; i < MAX_THR_RATES; i++) {
467 			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
468 						       tmp_mcs_tp_rate);
469 		}
470 	}
471 
472 }
473 
474 /*
475  * Try to increase robustness of max_prob rate by decrease number of
476  * streams if possible.
477  */
478 static inline void
479 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
480 {
481 	struct minstrel_mcs_group_data *mg;
482 	int tmp_max_streams, group, tmp_idx, tmp_prob;
483 	int tmp_tp = 0;
484 
485 	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
486 			  MCS_GROUP_RATES].streams;
487 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
488 		mg = &mi->groups[group];
489 		if (!mg->supported || group == MINSTREL_CCK_GROUP)
490 			continue;
491 
492 		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
493 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
494 
495 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
496 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
497 				mi->max_prob_rate = mg->max_group_prob_rate;
498 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
499 								tmp_idx,
500 								tmp_prob);
501 		}
502 	}
503 }
504 
505 /*
506  * Update rate statistics and select new primary rates
507  *
508  * Rules for rate selection:
509  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
510  *    probability and throughput during strong fluctuations
511  *  - as long as the max prob rate has a probability of more than 75%, pick
512  *    higher throughput rates, even if the probablity is a bit lower
513  */
514 static void
515 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
516 {
517 	struct minstrel_mcs_group_data *mg;
518 	struct minstrel_rate_stats *mrs;
519 	int group, i, j, cur_prob;
520 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
521 	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
522 
523 	if (mi->ampdu_packets > 0) {
524 		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
525 			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
526 		mi->ampdu_len = 0;
527 		mi->ampdu_packets = 0;
528 	}
529 
530 	mi->sample_slow = 0;
531 	mi->sample_count = 0;
532 
533 	/* Initialize global rate indexes */
534 	for(j = 0; j < MAX_THR_RATES; j++){
535 		tmp_mcs_tp_rate[j] = 0;
536 		tmp_cck_tp_rate[j] = 0;
537 	}
538 
539 	/* Find best rate sets within all MCS groups*/
540 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
541 
542 		mg = &mi->groups[group];
543 		if (!mg->supported)
544 			continue;
545 
546 		mi->sample_count++;
547 
548 		/* (re)Initialize group rate indexes */
549 		for(j = 0; j < MAX_THR_RATES; j++)
550 			tmp_group_tp_rate[j] = group;
551 
552 		for (i = 0; i < MCS_GROUP_RATES; i++) {
553 			if (!(mg->supported & BIT(i)))
554 				continue;
555 
556 			index = MCS_GROUP_RATES * group + i;
557 
558 			mrs = &mg->rates[i];
559 			mrs->retry_updated = false;
560 			minstrel_calc_rate_stats(mrs);
561 			cur_prob = mrs->prob_ewma;
562 
563 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
564 				continue;
565 
566 			/* Find max throughput rate set */
567 			if (group != MINSTREL_CCK_GROUP) {
568 				minstrel_ht_sort_best_tp_rates(mi, index,
569 							       tmp_mcs_tp_rate);
570 			} else if (group == MINSTREL_CCK_GROUP) {
571 				minstrel_ht_sort_best_tp_rates(mi, index,
572 							       tmp_cck_tp_rate);
573 			}
574 
575 			/* Find max throughput rate set within a group */
576 			minstrel_ht_sort_best_tp_rates(mi, index,
577 						       tmp_group_tp_rate);
578 
579 			/* Find max probability rate per group and global */
580 			minstrel_ht_set_best_prob_rate(mi, index);
581 		}
582 
583 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
584 		       sizeof(mg->max_group_tp_rate));
585 	}
586 
587 	/* Assign new rate set per sta */
588 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
589 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
590 
591 	/* Try to increase robustness of max_prob_rate*/
592 	minstrel_ht_prob_rate_reduce_streams(mi);
593 
594 	/* try to sample all available rates during each interval */
595 	mi->sample_count *= 8;
596 
597 #ifdef CONFIG_MAC80211_DEBUGFS
598 	/* use fixed index if set */
599 	if (mp->fixed_rate_idx != -1) {
600 		for (i = 0; i < 4; i++)
601 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
602 		mi->max_prob_rate = mp->fixed_rate_idx;
603 	}
604 #endif
605 
606 	/* Reset update timer */
607 	mi->last_stats_update = jiffies;
608 }
609 
610 static bool
611 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
612 {
613 	if (rate->idx < 0)
614 		return false;
615 
616 	if (!rate->count)
617 		return false;
618 
619 	if (rate->flags & IEEE80211_TX_RC_MCS ||
620 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
621 		return true;
622 
623 	return rate->idx == mp->cck_rates[0] ||
624 	       rate->idx == mp->cck_rates[1] ||
625 	       rate->idx == mp->cck_rates[2] ||
626 	       rate->idx == mp->cck_rates[3];
627 }
628 
629 static void
630 minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
631 {
632 	struct minstrel_mcs_group_data *mg;
633 
634 	for (;;) {
635 		mi->sample_group++;
636 		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
637 		mg = &mi->groups[mi->sample_group];
638 
639 		if (!mg->supported)
640 			continue;
641 
642 		if (++mg->index >= MCS_GROUP_RATES) {
643 			mg->index = 0;
644 			if (++mg->column >= ARRAY_SIZE(sample_table))
645 				mg->column = 0;
646 		}
647 		break;
648 	}
649 }
650 
651 static void
652 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
653 {
654 	int group, orig_group;
655 
656 	orig_group = group = *idx / MCS_GROUP_RATES;
657 	while (group > 0) {
658 		group--;
659 
660 		if (!mi->groups[group].supported)
661 			continue;
662 
663 		if (minstrel_mcs_groups[group].streams >
664 		    minstrel_mcs_groups[orig_group].streams)
665 			continue;
666 
667 		if (primary)
668 			*idx = mi->groups[group].max_group_tp_rate[0];
669 		else
670 			*idx = mi->groups[group].max_group_tp_rate[1];
671 		break;
672 	}
673 }
674 
675 static void
676 minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
677 {
678 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
679 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
680 	u16 tid;
681 
682 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
683 		return;
684 
685 	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
686 		return;
687 
688 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
689 		return;
690 
691 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
692 	if (likely(sta->ampdu_mlme.tid_tx[tid]))
693 		return;
694 
695 	ieee80211_start_tx_ba_session(pubsta, tid, 0);
696 }
697 
698 static void
699 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
700                       struct ieee80211_sta *sta, void *priv_sta,
701                       struct ieee80211_tx_info *info)
702 {
703 	struct minstrel_ht_sta_priv *msp = priv_sta;
704 	struct minstrel_ht_sta *mi = &msp->ht;
705 	struct ieee80211_tx_rate *ar = info->status.rates;
706 	struct minstrel_rate_stats *rate, *rate2;
707 	struct minstrel_priv *mp = priv;
708 	bool last, update = false;
709 	int i;
710 
711 	if (!msp->is_ht)
712 		return mac80211_minstrel.tx_status_noskb(priv, sband, sta,
713 							 &msp->legacy, info);
714 
715 	/* This packet was aggregated but doesn't carry status info */
716 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
717 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
718 		return;
719 
720 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
721 		info->status.ampdu_ack_len =
722 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
723 		info->status.ampdu_len = 1;
724 	}
725 
726 	mi->ampdu_packets++;
727 	mi->ampdu_len += info->status.ampdu_len;
728 
729 	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
730 		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
731 		mi->sample_tries = 1;
732 		mi->sample_count--;
733 	}
734 
735 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
736 		mi->sample_packets += info->status.ampdu_len;
737 
738 	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
739 	for (i = 0; !last; i++) {
740 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
741 		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
742 
743 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
744 
745 		if (last)
746 			rate->success += info->status.ampdu_ack_len;
747 
748 		rate->attempts += ar[i].count * info->status.ampdu_len;
749 	}
750 
751 	/*
752 	 * check for sudden death of spatial multiplexing,
753 	 * downgrade to a lower number of streams if necessary.
754 	 */
755 	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
756 	if (rate->attempts > 30 &&
757 	    MINSTREL_FRAC(rate->success, rate->attempts) <
758 	    MINSTREL_FRAC(20, 100)) {
759 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
760 		update = true;
761 	}
762 
763 	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
764 	if (rate2->attempts > 30 &&
765 	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
766 	    MINSTREL_FRAC(20, 100)) {
767 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
768 		update = true;
769 	}
770 
771 	if (time_after(jiffies, mi->last_stats_update +
772 				(mp->update_interval / 2 * HZ) / 1000)) {
773 		update = true;
774 		minstrel_ht_update_stats(mp, mi);
775 	}
776 
777 	if (update)
778 		minstrel_ht_update_rates(mp, mi);
779 }
780 
781 static void
782 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
783                          int index)
784 {
785 	struct minstrel_rate_stats *mrs;
786 	const struct mcs_group *group;
787 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
788 	unsigned int cw = mp->cw_min;
789 	unsigned int ctime = 0;
790 	unsigned int t_slot = 9; /* FIXME */
791 	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
792 	unsigned int overhead = 0, overhead_rtscts = 0;
793 
794 	mrs = minstrel_get_ratestats(mi, index);
795 	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
796 		mrs->retry_count = 1;
797 		mrs->retry_count_rtscts = 1;
798 		return;
799 	}
800 
801 	mrs->retry_count = 2;
802 	mrs->retry_count_rtscts = 2;
803 	mrs->retry_updated = true;
804 
805 	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
806 	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
807 
808 	/* Contention time for first 2 tries */
809 	ctime = (t_slot * cw) >> 1;
810 	cw = min((cw << 1) | 1, mp->cw_max);
811 	ctime += (t_slot * cw) >> 1;
812 	cw = min((cw << 1) | 1, mp->cw_max);
813 
814 	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
815 		overhead = mi->overhead;
816 		overhead_rtscts = mi->overhead_rtscts;
817 	}
818 
819 	/* Total TX time for data and Contention after first 2 tries */
820 	tx_time = ctime + 2 * (overhead + tx_time_data);
821 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
822 
823 	/* See how many more tries we can fit inside segment size */
824 	do {
825 		/* Contention time for this try */
826 		ctime = (t_slot * cw) >> 1;
827 		cw = min((cw << 1) | 1, mp->cw_max);
828 
829 		/* Total TX time after this try */
830 		tx_time += ctime + overhead + tx_time_data;
831 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
832 
833 		if (tx_time_rtscts < mp->segment_size)
834 			mrs->retry_count_rtscts++;
835 	} while ((tx_time < mp->segment_size) &&
836 	         (++mrs->retry_count < mp->max_retry));
837 }
838 
839 
840 static void
841 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
842                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
843 {
844 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
845 	struct minstrel_rate_stats *mrs;
846 	u8 idx;
847 	u16 flags = group->flags;
848 
849 	mrs = minstrel_get_ratestats(mi, index);
850 	if (!mrs->retry_updated)
851 		minstrel_calc_retransmit(mp, mi, index);
852 
853 	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
854 		ratetbl->rate[offset].count = 2;
855 		ratetbl->rate[offset].count_rts = 2;
856 		ratetbl->rate[offset].count_cts = 2;
857 	} else {
858 		ratetbl->rate[offset].count = mrs->retry_count;
859 		ratetbl->rate[offset].count_cts = mrs->retry_count;
860 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
861 	}
862 
863 	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
864 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
865 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
866 		idx = ((group->streams - 1) << 4) |
867 		      ((index % MCS_GROUP_RATES) & 0xF);
868 	else
869 		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
870 
871 	/* enable RTS/CTS if needed:
872 	 *  - if station is in dynamic SMPS (and streams > 1)
873 	 *  - for fallback rates, to increase chances of getting through
874 	 */
875 	if (offset > 0 ||
876 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
877 	     group->streams > 1)) {
878 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
879 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
880 	}
881 
882 	ratetbl->rate[offset].idx = idx;
883 	ratetbl->rate[offset].flags = flags;
884 }
885 
886 static inline int
887 minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
888 {
889 	int group = rate / MCS_GROUP_RATES;
890 	rate %= MCS_GROUP_RATES;
891 	return mi->groups[group].rates[rate].prob_ewma;
892 }
893 
894 static int
895 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
896 {
897 	int group = mi->max_prob_rate / MCS_GROUP_RATES;
898 	const struct mcs_group *g = &minstrel_mcs_groups[group];
899 	int rate = mi->max_prob_rate % MCS_GROUP_RATES;
900 
901 	/* Disable A-MSDU if max_prob_rate is bad */
902 	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
903 		return 1;
904 
905 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
906 	if (g->duration[rate] > MCS_DURATION(1, 0, 52))
907 		return 500;
908 
909 	/*
910 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
911 	 * data packet size
912 	 */
913 	if (g->duration[rate] > MCS_DURATION(1, 0, 104))
914 		return 1600;
915 
916 	/*
917 	 * If the rate is slower than single-stream MCS7, or if the max throughput
918 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
919 	 * data packet size
920 	 */
921 	if (g->duration[rate] > MCS_DURATION(1, 0, 260) ||
922 	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
923 	     MINSTREL_FRAC(75, 100)))
924 		return 3200;
925 
926 	/*
927 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
928 	 * Since aggregation sessions are started/stopped without txq flush, use
929 	 * the limit here to avoid the complexity of having to de-aggregate
930 	 * packets in the queue.
931 	 */
932 	if (!mi->sta->vht_cap.vht_supported)
933 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
934 
935 	/* unlimited */
936 	return 0;
937 }
938 
939 static void
940 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
941 {
942 	struct ieee80211_sta_rates *rates;
943 	int i = 0;
944 
945 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
946 	if (!rates)
947 		return;
948 
949 	/* Start with max_tp_rate[0] */
950 	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
951 
952 	if (mp->hw->max_rates >= 3) {
953 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
954 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
955 	}
956 
957 	if (mp->hw->max_rates >= 2) {
958 		/*
959 		 * At least 2 tx rates supported, use max_prob_rate next */
960 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
961 	}
962 
963 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
964 	rates->rate[i].idx = -1;
965 	rate_control_set_rates(mp->hw, mi->sta, rates);
966 }
967 
968 static inline int
969 minstrel_get_duration(int index)
970 {
971 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
972 	return group->duration[index % MCS_GROUP_RATES];
973 }
974 
975 static int
976 minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
977 {
978 	struct minstrel_rate_stats *mrs;
979 	struct minstrel_mcs_group_data *mg;
980 	unsigned int sample_dur, sample_group, cur_max_tp_streams;
981 	int tp_rate1, tp_rate2;
982 	int sample_idx = 0;
983 
984 	if (mi->sample_wait > 0) {
985 		mi->sample_wait--;
986 		return -1;
987 	}
988 
989 	if (!mi->sample_tries)
990 		return -1;
991 
992 	sample_group = mi->sample_group;
993 	mg = &mi->groups[sample_group];
994 	sample_idx = sample_table[mg->column][mg->index];
995 	minstrel_set_next_sample_idx(mi);
996 
997 	if (!(mg->supported & BIT(sample_idx)))
998 		return -1;
999 
1000 	mrs = &mg->rates[sample_idx];
1001 	sample_idx += sample_group * MCS_GROUP_RATES;
1002 
1003 	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
1004 	if (minstrel_get_duration(mi->max_tp_rate[0]) >
1005 	    minstrel_get_duration(mi->max_tp_rate[1])) {
1006 		tp_rate1 = mi->max_tp_rate[1];
1007 		tp_rate2 = mi->max_tp_rate[0];
1008 	} else {
1009 		tp_rate1 = mi->max_tp_rate[0];
1010 		tp_rate2 = mi->max_tp_rate[1];
1011 	}
1012 
1013 	/*
1014 	 * Sampling might add some overhead (RTS, no aggregation)
1015 	 * to the frame. Hence, don't use sampling for the highest currently
1016 	 * used highest throughput or probability rate.
1017 	 */
1018 	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1019 		return -1;
1020 
1021 	/*
1022 	 * Do not sample if the probability is already higher than 95%
1023 	 * to avoid wasting airtime.
1024 	 */
1025 	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100))
1026 		return -1;
1027 
1028 	/*
1029 	 * Make sure that lower rates get sampled only occasionally,
1030 	 * if the link is working perfectly.
1031 	 */
1032 
1033 	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1034 		MCS_GROUP_RATES].streams;
1035 	sample_dur = minstrel_get_duration(sample_idx);
1036 	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1037 	    (cur_max_tp_streams - 1 <
1038 	     minstrel_mcs_groups[sample_group].streams ||
1039 	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1040 		if (mrs->sample_skipped < 20)
1041 			return -1;
1042 
1043 		if (mi->sample_slow++ > 2)
1044 			return -1;
1045 	}
1046 	mi->sample_tries--;
1047 
1048 	return sample_idx;
1049 }
1050 
1051 static void
1052 minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
1053 				    struct minstrel_ht_sta *mi, bool val)
1054 {
1055 	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;
1056 
1057 	if (!supported || !mi->cck_supported_short)
1058 		return;
1059 
1060 	if (supported & (mi->cck_supported_short << (val * 4)))
1061 		return;
1062 
1063 	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
1064 	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
1065 }
1066 
1067 static void
1068 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1069                      struct ieee80211_tx_rate_control *txrc)
1070 {
1071 	const struct mcs_group *sample_group;
1072 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1073 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1074 	struct minstrel_ht_sta_priv *msp = priv_sta;
1075 	struct minstrel_ht_sta *mi = &msp->ht;
1076 	struct minstrel_priv *mp = priv;
1077 	int sample_idx;
1078 
1079 	if (rate_control_send_low(sta, priv_sta, txrc))
1080 		return;
1081 
1082 	if (!msp->is_ht)
1083 		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1084 
1085 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1086 	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1087 		minstrel_aggr_check(sta, txrc->skb);
1088 
1089 	info->flags |= mi->tx_flags;
1090 	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
1091 
1092 #ifdef CONFIG_MAC80211_DEBUGFS
1093 	if (mp->fixed_rate_idx != -1)
1094 		return;
1095 #endif
1096 
1097 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1098 	if (mp->hw->max_rates == 1 &&
1099 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1100 		sample_idx = -1;
1101 	else
1102 		sample_idx = minstrel_get_sample_rate(mp, mi);
1103 
1104 	mi->total_packets++;
1105 
1106 	/* wraparound */
1107 	if (mi->total_packets == ~0) {
1108 		mi->total_packets = 0;
1109 		mi->sample_packets = 0;
1110 	}
1111 
1112 	if (sample_idx < 0)
1113 		return;
1114 
1115 	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1116 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1117 	rate->count = 1;
1118 
1119 	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
1120 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1121 		rate->idx = mp->cck_rates[idx];
1122 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1123 		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1124 				       sample_group->streams);
1125 	} else {
1126 		rate->idx = sample_idx % MCS_GROUP_RATES +
1127 			    (sample_group->streams - 1) * 8;
1128 	}
1129 
1130 	rate->flags = sample_group->flags;
1131 }
1132 
1133 static void
1134 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1135 		       struct ieee80211_supported_band *sband,
1136 		       struct ieee80211_sta *sta)
1137 {
1138 	int i;
1139 
1140 	if (sband->band != NL80211_BAND_2GHZ)
1141 		return;
1142 
1143 	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1144 		return;
1145 
1146 	mi->cck_supported = 0;
1147 	mi->cck_supported_short = 0;
1148 	for (i = 0; i < 4; i++) {
1149 		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1150 			continue;
1151 
1152 		mi->cck_supported |= BIT(i);
1153 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1154 			mi->cck_supported_short |= BIT(i);
1155 	}
1156 
1157 	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
1158 }
1159 
1160 static void
1161 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1162 			struct cfg80211_chan_def *chandef,
1163                         struct ieee80211_sta *sta, void *priv_sta)
1164 {
1165 	struct minstrel_priv *mp = priv;
1166 	struct minstrel_ht_sta_priv *msp = priv_sta;
1167 	struct minstrel_ht_sta *mi = &msp->ht;
1168 	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1169 	u16 sta_cap = sta->ht_cap.cap;
1170 	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1171 	int use_vht;
1172 	int n_supported = 0;
1173 	int ack_dur;
1174 	int stbc;
1175 	int i;
1176 
1177 	/* fall back to the old minstrel for legacy stations */
1178 	if (!sta->ht_cap.ht_supported)
1179 		goto use_legacy;
1180 
1181 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1182 
1183 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1184 	if (vht_cap->vht_supported)
1185 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1186 	else
1187 #endif
1188 	use_vht = 0;
1189 
1190 	msp->is_ht = true;
1191 	memset(mi, 0, sizeof(*mi));
1192 
1193 	mi->sta = sta;
1194 	mi->last_stats_update = jiffies;
1195 
1196 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1197 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1198 	mi->overhead += ack_dur;
1199 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1200 
1201 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1202 
1203 	/* When using MRR, sample more on the first attempt, without delay */
1204 	if (mp->has_mrr) {
1205 		mi->sample_count = 16;
1206 		mi->sample_wait = 0;
1207 	} else {
1208 		mi->sample_count = 8;
1209 		mi->sample_wait = 8;
1210 	}
1211 	mi->sample_tries = 4;
1212 
1213 	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
1214 	if (!use_vht) {
1215 		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
1216 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1217 		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1218 
1219 		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
1220 			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1221 	}
1222 
1223 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1224 		u32 gflags = minstrel_mcs_groups[i].flags;
1225 		int bw, nss;
1226 
1227 		mi->groups[i].supported = 0;
1228 		if (i == MINSTREL_CCK_GROUP) {
1229 			minstrel_ht_update_cck(mp, mi, sband, sta);
1230 			continue;
1231 		}
1232 
1233 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1234 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1235 				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
1236 					continue;
1237 			} else {
1238 				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
1239 					continue;
1240 			}
1241 		}
1242 
1243 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1244 		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1245 			continue;
1246 
1247 		nss = minstrel_mcs_groups[i].streams;
1248 
1249 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1250 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1251 			continue;
1252 
1253 		/* HT rate */
1254 		if (gflags & IEEE80211_TX_RC_MCS) {
1255 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1256 			if (use_vht && minstrel_vht_only)
1257 				continue;
1258 #endif
1259 			mi->groups[i].supported = mcs->rx_mask[nss - 1];
1260 			if (mi->groups[i].supported)
1261 				n_supported++;
1262 			continue;
1263 		}
1264 
1265 		/* VHT rate */
1266 		if (!vht_cap->vht_supported ||
1267 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1268 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1269 			continue;
1270 
1271 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1272 			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1273 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1274 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1275 				continue;
1276 			}
1277 		}
1278 
1279 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1280 			bw = BW_40;
1281 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1282 			bw = BW_80;
1283 		else
1284 			bw = BW_20;
1285 
1286 		mi->groups[i].supported = minstrel_get_valid_vht_rates(bw, nss,
1287 				vht_cap->vht_mcs.tx_mcs_map);
1288 
1289 		if (mi->groups[i].supported)
1290 			n_supported++;
1291 	}
1292 
1293 	if (!n_supported)
1294 		goto use_legacy;
1295 
1296 	/* create an initial rate table with the lowest supported rates */
1297 	minstrel_ht_update_stats(mp, mi);
1298 	minstrel_ht_update_rates(mp, mi);
1299 
1300 	return;
1301 
1302 use_legacy:
1303 	msp->is_ht = false;
1304 	memset(&msp->legacy, 0, sizeof(msp->legacy));
1305 	msp->legacy.r = msp->ratelist;
1306 	msp->legacy.sample_table = msp->sample_table;
1307 	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1308 					   &msp->legacy);
1309 }
1310 
1311 static void
1312 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1313 		      struct cfg80211_chan_def *chandef,
1314                       struct ieee80211_sta *sta, void *priv_sta)
1315 {
1316 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1317 }
1318 
1319 static void
1320 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1321 			struct cfg80211_chan_def *chandef,
1322                         struct ieee80211_sta *sta, void *priv_sta,
1323                         u32 changed)
1324 {
1325 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1326 }
1327 
1328 static void *
1329 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1330 {
1331 	struct ieee80211_supported_band *sband;
1332 	struct minstrel_ht_sta_priv *msp;
1333 	struct minstrel_priv *mp = priv;
1334 	struct ieee80211_hw *hw = mp->hw;
1335 	int max_rates = 0;
1336 	int i;
1337 
1338 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1339 		sband = hw->wiphy->bands[i];
1340 		if (sband && sband->n_bitrates > max_rates)
1341 			max_rates = sband->n_bitrates;
1342 	}
1343 
1344 	msp = kzalloc(sizeof(*msp), gfp);
1345 	if (!msp)
1346 		return NULL;
1347 
1348 	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
1349 	if (!msp->ratelist)
1350 		goto error;
1351 
1352 	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
1353 	if (!msp->sample_table)
1354 		goto error1;
1355 
1356 	return msp;
1357 
1358 error1:
1359 	kfree(msp->ratelist);
1360 error:
1361 	kfree(msp);
1362 	return NULL;
1363 }
1364 
1365 static void
1366 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1367 {
1368 	struct minstrel_ht_sta_priv *msp = priv_sta;
1369 
1370 	kfree(msp->sample_table);
1371 	kfree(msp->ratelist);
1372 	kfree(msp);
1373 }
1374 
1375 static void *
1376 minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1377 {
1378 	return mac80211_minstrel.alloc(hw, debugfsdir);
1379 }
1380 
1381 static void
1382 minstrel_ht_free(void *priv)
1383 {
1384 	mac80211_minstrel.free(priv);
1385 }
1386 
1387 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1388 {
1389 	struct minstrel_ht_sta_priv *msp = priv_sta;
1390 	struct minstrel_ht_sta *mi = &msp->ht;
1391 	int i, j, prob, tp_avg;
1392 
1393 	if (!msp->is_ht)
1394 		return mac80211_minstrel.get_expected_throughput(priv_sta);
1395 
1396 	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1397 	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1398 	prob = mi->groups[i].rates[j].prob_ewma;
1399 
1400 	/* convert tp_avg from pkt per second in kbps */
1401 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1402 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1403 
1404 	return tp_avg;
1405 }
1406 
1407 static const struct rate_control_ops mac80211_minstrel_ht = {
1408 	.name = "minstrel_ht",
1409 	.tx_status_noskb = minstrel_ht_tx_status,
1410 	.get_rate = minstrel_ht_get_rate,
1411 	.rate_init = minstrel_ht_rate_init,
1412 	.rate_update = minstrel_ht_rate_update,
1413 	.alloc_sta = minstrel_ht_alloc_sta,
1414 	.free_sta = minstrel_ht_free_sta,
1415 	.alloc = minstrel_ht_alloc,
1416 	.free = minstrel_ht_free,
1417 #ifdef CONFIG_MAC80211_DEBUGFS
1418 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1419 	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
1420 #endif
1421 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1422 };
1423 
1424 
1425 static void __init init_sample_table(void)
1426 {
1427 	int col, i, new_idx;
1428 	u8 rnd[MCS_GROUP_RATES];
1429 
1430 	memset(sample_table, 0xff, sizeof(sample_table));
1431 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1432 		prandom_bytes(rnd, sizeof(rnd));
1433 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1434 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1435 			while (sample_table[col][new_idx] != 0xff)
1436 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1437 
1438 			sample_table[col][new_idx] = i;
1439 		}
1440 	}
1441 }
1442 
1443 int __init
1444 rc80211_minstrel_ht_init(void)
1445 {
1446 	init_sample_table();
1447 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1448 }
1449 
1450 void
1451 rc80211_minstrel_ht_exit(void)
1452 {
1453 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1454 }
1455