1 /*
2  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/netdevice.h>
9 #include <linux/types.h>
10 #include <linux/skbuff.h>
11 #include <linux/debugfs.h>
12 #include <linux/random.h>
13 #include <linux/moduleparam.h>
14 #include <linux/ieee80211.h>
15 #include <net/mac80211.h>
16 #include "rate.h"
17 #include "sta_info.h"
18 #include "rc80211_minstrel.h"
19 #include "rc80211_minstrel_ht.h"
20 
21 #define AVG_AMPDU_SIZE	16
22 #define AVG_PKT_SIZE	1200
23 
24 /* Number of bits for an average sized packet */
25 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
26 
27 /* Number of symbols for a packet with (bps) bits per symbol */
28 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
29 
30 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
31 #define MCS_SYMBOL_TIME(sgi, syms)					\
32 	(sgi ?								\
33 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
34 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
35 	)
36 
37 /* Transmit duration for the raw data part of an average sized packet */
38 #define MCS_DURATION(streams, sgi, bps) \
39 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
40 
41 #define BW_20			0
42 #define BW_40			1
43 #define BW_80			2
44 
45 /*
46  * Define group sort order: HT40 -> SGI -> #streams
47  */
48 #define GROUP_IDX(_streams, _sgi, _ht40)	\
49 	MINSTREL_HT_GROUP_0 +			\
50 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
51 	MINSTREL_MAX_STREAMS * _sgi +	\
52 	_streams - 1
53 
54 /* MCS rate information for an MCS group */
55 #define MCS_GROUP(_streams, _sgi, _ht40, _s)				\
56 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
57 	.streams = _streams,						\
58 	.shift = _s,							\
59 	.flags =							\
60 		IEEE80211_TX_RC_MCS |					\
61 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
62 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
63 	.duration = {							\
64 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s,	\
65 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s,	\
66 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s,	\
67 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s,	\
68 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s,	\
69 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s,	\
70 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s,	\
71 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s	\
72 	}								\
73 }
74 
75 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
76 	(MINSTREL_VHT_GROUP_0 +						\
77 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
78 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
79 	 (_streams) - 1)
80 
81 #define BW2VBPS(_bw, r3, r2, r1)					\
82 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
83 
84 #define VHT_GROUP(_streams, _sgi, _bw, _s)				\
85 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
86 	.streams = _streams,						\
87 	.shift = _s,							\
88 	.flags =							\
89 		IEEE80211_TX_RC_VHT_MCS |				\
90 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
91 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
92 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
93 	.duration = {							\
94 		MCS_DURATION(_streams, _sgi,				\
95 			     BW2VBPS(_bw,  117,  54,  26)) >> _s,	\
96 		MCS_DURATION(_streams, _sgi,				\
97 			     BW2VBPS(_bw,  234, 108,  52)) >> _s,	\
98 		MCS_DURATION(_streams, _sgi,				\
99 			     BW2VBPS(_bw,  351, 162,  78)) >> _s,	\
100 		MCS_DURATION(_streams, _sgi,				\
101 			     BW2VBPS(_bw,  468, 216, 104)) >> _s,	\
102 		MCS_DURATION(_streams, _sgi,				\
103 			     BW2VBPS(_bw,  702, 324, 156)) >> _s,	\
104 		MCS_DURATION(_streams, _sgi,				\
105 			     BW2VBPS(_bw,  936, 432, 208)) >> _s,	\
106 		MCS_DURATION(_streams, _sgi,				\
107 			     BW2VBPS(_bw, 1053, 486, 234)) >> _s,	\
108 		MCS_DURATION(_streams, _sgi,				\
109 			     BW2VBPS(_bw, 1170, 540, 260)) >> _s,	\
110 		MCS_DURATION(_streams, _sgi,				\
111 			     BW2VBPS(_bw, 1404, 648, 312)) >> _s,	\
112 		MCS_DURATION(_streams, _sgi,				\
113 			     BW2VBPS(_bw, 1560, 720, 346)) >> _s	\
114 	}								\
115 }
116 
117 #define CCK_DURATION(_bitrate, _short, _len)		\
118 	(1000 * (10 /* SIFS */ +			\
119 	 (_short ? 72 + 24 : 144 + 48) +		\
120 	 (8 * (_len + 4) * 10) / (_bitrate)))
121 
122 #define CCK_ACK_DURATION(_bitrate, _short)			\
123 	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
124 	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
125 
126 #define CCK_DURATION_LIST(_short, _s)			\
127 	CCK_ACK_DURATION(10, _short) >> _s,		\
128 	CCK_ACK_DURATION(20, _short) >> _s,		\
129 	CCK_ACK_DURATION(55, _short) >> _s,		\
130 	CCK_ACK_DURATION(110, _short) >> _s
131 
132 #define CCK_GROUP(_s)					\
133 	[MINSTREL_CCK_GROUP] = {			\
134 		.streams = 1,				\
135 		.flags = 0,				\
136 		.shift = _s,				\
137 		.duration = {				\
138 			CCK_DURATION_LIST(false, _s),	\
139 			CCK_DURATION_LIST(true, _s)	\
140 		}					\
141 	}
142 
143 static bool minstrel_vht_only = true;
144 module_param(minstrel_vht_only, bool, 0644);
145 MODULE_PARM_DESC(minstrel_vht_only,
146 		 "Use only VHT rates when VHT is supported by sta.");
147 
148 /*
149  * To enable sufficiently targeted rate sampling, MCS rates are divided into
150  * groups, based on the number of streams and flags (HT40, SGI) that they
151  * use.
152  *
153  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
154  * BW -> SGI -> #streams
155  */
156 const struct mcs_group minstrel_mcs_groups[] = {
157 	MCS_GROUP(1, 0, BW_20, 5),
158 	MCS_GROUP(2, 0, BW_20, 4),
159 	MCS_GROUP(3, 0, BW_20, 4),
160 
161 	MCS_GROUP(1, 1, BW_20, 5),
162 	MCS_GROUP(2, 1, BW_20, 4),
163 	MCS_GROUP(3, 1, BW_20, 4),
164 
165 	MCS_GROUP(1, 0, BW_40, 4),
166 	MCS_GROUP(2, 0, BW_40, 4),
167 	MCS_GROUP(3, 0, BW_40, 4),
168 
169 	MCS_GROUP(1, 1, BW_40, 4),
170 	MCS_GROUP(2, 1, BW_40, 4),
171 	MCS_GROUP(3, 1, BW_40, 4),
172 
173 	CCK_GROUP(8),
174 
175 	VHT_GROUP(1, 0, BW_20, 5),
176 	VHT_GROUP(2, 0, BW_20, 4),
177 	VHT_GROUP(3, 0, BW_20, 4),
178 
179 	VHT_GROUP(1, 1, BW_20, 5),
180 	VHT_GROUP(2, 1, BW_20, 4),
181 	VHT_GROUP(3, 1, BW_20, 4),
182 
183 	VHT_GROUP(1, 0, BW_40, 4),
184 	VHT_GROUP(2, 0, BW_40, 4),
185 	VHT_GROUP(3, 0, BW_40, 4),
186 
187 	VHT_GROUP(1, 1, BW_40, 4),
188 	VHT_GROUP(2, 1, BW_40, 4),
189 	VHT_GROUP(3, 1, BW_40, 4),
190 
191 	VHT_GROUP(1, 0, BW_80, 4),
192 	VHT_GROUP(2, 0, BW_80, 4),
193 	VHT_GROUP(3, 0, BW_80, 4),
194 
195 	VHT_GROUP(1, 1, BW_80, 4),
196 	VHT_GROUP(2, 1, BW_80, 4),
197 	VHT_GROUP(3, 1, BW_80, 4),
198 };
199 
200 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
201 
202 static void
203 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
204 
205 /*
206  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
207  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
208  *
209  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
210  */
211 static u16
212 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
213 {
214 	u16 mask = 0;
215 
216 	if (bw == BW_20) {
217 		if (nss != 3 && nss != 6)
218 			mask = BIT(9);
219 	} else if (bw == BW_80) {
220 		if (nss == 3 || nss == 7)
221 			mask = BIT(6);
222 		else if (nss == 6)
223 			mask = BIT(9);
224 	} else {
225 		WARN_ON(bw != BW_40);
226 	}
227 
228 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
229 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
230 		mask |= 0x300;
231 		break;
232 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
233 		mask |= 0x200;
234 		break;
235 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
236 		break;
237 	default:
238 		mask = 0x3ff;
239 	}
240 
241 	return 0x3ff & ~mask;
242 }
243 
244 /*
245  * Look up an MCS group index based on mac80211 rate information
246  */
247 static int
248 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
249 {
250 	return GROUP_IDX((rate->idx / 8) + 1,
251 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
252 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
253 }
254 
255 static int
256 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
257 {
258 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
259 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
260 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
261 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
262 }
263 
264 static struct minstrel_rate_stats *
265 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
266 		      struct ieee80211_tx_rate *rate)
267 {
268 	int group, idx;
269 
270 	if (rate->flags & IEEE80211_TX_RC_MCS) {
271 		group = minstrel_ht_get_group_idx(rate);
272 		idx = rate->idx % 8;
273 	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
274 		group = minstrel_vht_get_group_idx(rate);
275 		idx = ieee80211_rate_get_vht_mcs(rate);
276 	} else {
277 		group = MINSTREL_CCK_GROUP;
278 
279 		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
280 			if (rate->idx == mp->cck_rates[idx])
281 				break;
282 
283 		/* short preamble */
284 		if ((mi->supported[group] & BIT(idx + 4)) &&
285 		    (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
286 			idx += 4;
287 	}
288 	return &mi->groups[group].rates[idx];
289 }
290 
291 static inline struct minstrel_rate_stats *
292 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
293 {
294 	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
295 }
296 
297 /*
298  * Return current throughput based on the average A-MPDU length, taking into
299  * account the expected number of retransmissions and their expected length
300  */
301 int
302 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
303 		       int prob_ewma)
304 {
305 	unsigned int nsecs = 0;
306 
307 	/* do not account throughput if sucess prob is below 10% */
308 	if (prob_ewma < MINSTREL_FRAC(10, 100))
309 		return 0;
310 
311 	if (group != MINSTREL_CCK_GROUP)
312 		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
313 
314 	nsecs += minstrel_mcs_groups[group].duration[rate] <<
315 		 minstrel_mcs_groups[group].shift;
316 
317 	/*
318 	 * For the throughput calculation, limit the probability value to 90% to
319 	 * account for collision related packet error rate fluctuation
320 	 * (prob is scaled - see MINSTREL_FRAC above)
321 	 */
322 	if (prob_ewma > MINSTREL_FRAC(90, 100))
323 		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
324 								      / nsecs));
325 	else
326 		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
327 }
328 
329 /*
330  * Find & sort topmost throughput rates
331  *
332  * If multiple rates provide equal throughput the sorting is based on their
333  * current success probability. Higher success probability is preferred among
334  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
335  */
336 static void
337 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
338 			       u16 *tp_list)
339 {
340 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
341 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
342 	int j = MAX_THR_RATES;
343 
344 	cur_group = index / MCS_GROUP_RATES;
345 	cur_idx = index  % MCS_GROUP_RATES;
346 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
347 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
348 
349 	do {
350 		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
351 		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
352 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
353 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
354 						    tmp_prob);
355 		if (cur_tp_avg < tmp_tp_avg ||
356 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
357 			break;
358 		j--;
359 	} while (j > 0);
360 
361 	if (j < MAX_THR_RATES - 1) {
362 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
363 		       (MAX_THR_RATES - (j + 1))));
364 	}
365 	if (j < MAX_THR_RATES)
366 		tp_list[j] = index;
367 }
368 
369 /*
370  * Find and set the topmost probability rate per sta and per group
371  */
372 static void
373 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
374 {
375 	struct minstrel_mcs_group_data *mg;
376 	struct minstrel_rate_stats *mrs;
377 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
378 	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
379 	int max_gpr_group, max_gpr_idx;
380 	int max_gpr_tp_avg, max_gpr_prob;
381 
382 	cur_group = index / MCS_GROUP_RATES;
383 	cur_idx = index % MCS_GROUP_RATES;
384 	mg = &mi->groups[index / MCS_GROUP_RATES];
385 	mrs = &mg->rates[index % MCS_GROUP_RATES];
386 
387 	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
388 	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
389 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
390 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
391 
392 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
393 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
394 	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
395 	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
396 	    (max_tp_group != MINSTREL_CCK_GROUP))
397 		return;
398 
399 	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
400 	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
401 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
402 
403 	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
404 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
405 						    mrs->prob_ewma);
406 		if (cur_tp_avg > tmp_tp_avg)
407 			mi->max_prob_rate = index;
408 
409 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
410 							max_gpr_idx,
411 							max_gpr_prob);
412 		if (cur_tp_avg > max_gpr_tp_avg)
413 			mg->max_group_prob_rate = index;
414 	} else {
415 		if (mrs->prob_ewma > tmp_prob)
416 			mi->max_prob_rate = index;
417 		if (mrs->prob_ewma > max_gpr_prob)
418 			mg->max_group_prob_rate = index;
419 	}
420 }
421 
422 
423 /*
424  * Assign new rate set per sta and use CCK rates only if the fastest
425  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
426  * rate sets where MCS and CCK rates are mixed, because CCK rates can
427  * not use aggregation.
428  */
429 static void
430 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
431 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
432 				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
433 {
434 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
435 	int i;
436 
437 	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
438 	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
439 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
440 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
441 
442 	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
443 	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
444 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
445 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
446 
447 	if (tmp_cck_tp > tmp_mcs_tp) {
448 		for(i = 0; i < MAX_THR_RATES; i++) {
449 			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
450 						       tmp_mcs_tp_rate);
451 		}
452 	}
453 
454 }
455 
456 /*
457  * Try to increase robustness of max_prob rate by decrease number of
458  * streams if possible.
459  */
460 static inline void
461 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
462 {
463 	struct minstrel_mcs_group_data *mg;
464 	int tmp_max_streams, group, tmp_idx, tmp_prob;
465 	int tmp_tp = 0;
466 
467 	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
468 			  MCS_GROUP_RATES].streams;
469 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
470 		mg = &mi->groups[group];
471 		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
472 			continue;
473 
474 		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
475 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
476 
477 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
478 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
479 				mi->max_prob_rate = mg->max_group_prob_rate;
480 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
481 								tmp_idx,
482 								tmp_prob);
483 		}
484 	}
485 }
486 
487 /*
488  * Update rate statistics and select new primary rates
489  *
490  * Rules for rate selection:
491  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
492  *    probability and throughput during strong fluctuations
493  *  - as long as the max prob rate has a probability of more than 75%, pick
494  *    higher throughput rates, even if the probablity is a bit lower
495  */
496 static void
497 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
498 {
499 	struct minstrel_mcs_group_data *mg;
500 	struct minstrel_rate_stats *mrs;
501 	int group, i, j, cur_prob;
502 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
503 	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
504 
505 	if (mi->ampdu_packets > 0) {
506 		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
507 			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
508 		mi->ampdu_len = 0;
509 		mi->ampdu_packets = 0;
510 	}
511 
512 	mi->sample_slow = 0;
513 	mi->sample_count = 0;
514 
515 	/* Initialize global rate indexes */
516 	for(j = 0; j < MAX_THR_RATES; j++){
517 		tmp_mcs_tp_rate[j] = 0;
518 		tmp_cck_tp_rate[j] = 0;
519 	}
520 
521 	/* Find best rate sets within all MCS groups*/
522 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
523 
524 		mg = &mi->groups[group];
525 		if (!mi->supported[group])
526 			continue;
527 
528 		mi->sample_count++;
529 
530 		/* (re)Initialize group rate indexes */
531 		for(j = 0; j < MAX_THR_RATES; j++)
532 			tmp_group_tp_rate[j] = group;
533 
534 		for (i = 0; i < MCS_GROUP_RATES; i++) {
535 			if (!(mi->supported[group] & BIT(i)))
536 				continue;
537 
538 			index = MCS_GROUP_RATES * group + i;
539 
540 			mrs = &mg->rates[i];
541 			mrs->retry_updated = false;
542 			minstrel_calc_rate_stats(mrs);
543 			cur_prob = mrs->prob_ewma;
544 
545 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
546 				continue;
547 
548 			/* Find max throughput rate set */
549 			if (group != MINSTREL_CCK_GROUP) {
550 				minstrel_ht_sort_best_tp_rates(mi, index,
551 							       tmp_mcs_tp_rate);
552 			} else if (group == MINSTREL_CCK_GROUP) {
553 				minstrel_ht_sort_best_tp_rates(mi, index,
554 							       tmp_cck_tp_rate);
555 			}
556 
557 			/* Find max throughput rate set within a group */
558 			minstrel_ht_sort_best_tp_rates(mi, index,
559 						       tmp_group_tp_rate);
560 
561 			/* Find max probability rate per group and global */
562 			minstrel_ht_set_best_prob_rate(mi, index);
563 		}
564 
565 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
566 		       sizeof(mg->max_group_tp_rate));
567 	}
568 
569 	/* Assign new rate set per sta */
570 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
571 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
572 
573 	/* Try to increase robustness of max_prob_rate*/
574 	minstrel_ht_prob_rate_reduce_streams(mi);
575 
576 	/* try to sample all available rates during each interval */
577 	mi->sample_count *= 8;
578 
579 #ifdef CONFIG_MAC80211_DEBUGFS
580 	/* use fixed index if set */
581 	if (mp->fixed_rate_idx != -1) {
582 		for (i = 0; i < 4; i++)
583 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
584 		mi->max_prob_rate = mp->fixed_rate_idx;
585 	}
586 #endif
587 
588 	/* Reset update timer */
589 	mi->last_stats_update = jiffies;
590 }
591 
592 static bool
593 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
594 {
595 	if (rate->idx < 0)
596 		return false;
597 
598 	if (!rate->count)
599 		return false;
600 
601 	if (rate->flags & IEEE80211_TX_RC_MCS ||
602 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
603 		return true;
604 
605 	return rate->idx == mp->cck_rates[0] ||
606 	       rate->idx == mp->cck_rates[1] ||
607 	       rate->idx == mp->cck_rates[2] ||
608 	       rate->idx == mp->cck_rates[3];
609 }
610 
611 static void
612 minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
613 {
614 	struct minstrel_mcs_group_data *mg;
615 
616 	for (;;) {
617 		mi->sample_group++;
618 		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
619 		mg = &mi->groups[mi->sample_group];
620 
621 		if (!mi->supported[mi->sample_group])
622 			continue;
623 
624 		if (++mg->index >= MCS_GROUP_RATES) {
625 			mg->index = 0;
626 			if (++mg->column >= ARRAY_SIZE(sample_table))
627 				mg->column = 0;
628 		}
629 		break;
630 	}
631 }
632 
633 static void
634 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
635 {
636 	int group, orig_group;
637 
638 	orig_group = group = *idx / MCS_GROUP_RATES;
639 	while (group > 0) {
640 		group--;
641 
642 		if (!mi->supported[group])
643 			continue;
644 
645 		if (minstrel_mcs_groups[group].streams >
646 		    minstrel_mcs_groups[orig_group].streams)
647 			continue;
648 
649 		if (primary)
650 			*idx = mi->groups[group].max_group_tp_rate[0];
651 		else
652 			*idx = mi->groups[group].max_group_tp_rate[1];
653 		break;
654 	}
655 }
656 
657 static void
658 minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
659 {
660 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
661 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
662 	u16 tid;
663 
664 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
665 		return;
666 
667 	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
668 		return;
669 
670 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
671 		return;
672 
673 	tid = ieee80211_get_tid(hdr);
674 	if (likely(sta->ampdu_mlme.tid_tx[tid]))
675 		return;
676 
677 	ieee80211_start_tx_ba_session(pubsta, tid, 0);
678 }
679 
680 static void
681 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
682                       void *priv_sta, struct ieee80211_tx_status *st)
683 {
684 	struct ieee80211_tx_info *info = st->info;
685 	struct minstrel_ht_sta_priv *msp = priv_sta;
686 	struct minstrel_ht_sta *mi = &msp->ht;
687 	struct ieee80211_tx_rate *ar = info->status.rates;
688 	struct minstrel_rate_stats *rate, *rate2;
689 	struct minstrel_priv *mp = priv;
690 	bool last, update = false;
691 	int i;
692 
693 	if (!msp->is_ht)
694 		return mac80211_minstrel.tx_status_ext(priv, sband,
695 						       &msp->legacy, st);
696 
697 	/* This packet was aggregated but doesn't carry status info */
698 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
699 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
700 		return;
701 
702 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
703 		info->status.ampdu_ack_len =
704 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
705 		info->status.ampdu_len = 1;
706 	}
707 
708 	mi->ampdu_packets++;
709 	mi->ampdu_len += info->status.ampdu_len;
710 
711 	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
712 		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
713 		mi->sample_tries = 1;
714 		mi->sample_count--;
715 	}
716 
717 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
718 		mi->sample_packets += info->status.ampdu_len;
719 
720 	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
721 	for (i = 0; !last; i++) {
722 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
723 		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
724 
725 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
726 
727 		if (last)
728 			rate->success += info->status.ampdu_ack_len;
729 
730 		rate->attempts += ar[i].count * info->status.ampdu_len;
731 	}
732 
733 	/*
734 	 * check for sudden death of spatial multiplexing,
735 	 * downgrade to a lower number of streams if necessary.
736 	 */
737 	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
738 	if (rate->attempts > 30 &&
739 	    MINSTREL_FRAC(rate->success, rate->attempts) <
740 	    MINSTREL_FRAC(20, 100)) {
741 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
742 		update = true;
743 	}
744 
745 	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
746 	if (rate2->attempts > 30 &&
747 	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
748 	    MINSTREL_FRAC(20, 100)) {
749 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
750 		update = true;
751 	}
752 
753 	if (time_after(jiffies, mi->last_stats_update +
754 				(mp->update_interval / 2 * HZ) / 1000)) {
755 		update = true;
756 		minstrel_ht_update_stats(mp, mi);
757 	}
758 
759 	if (update)
760 		minstrel_ht_update_rates(mp, mi);
761 }
762 
763 static inline int
764 minstrel_get_duration(int index)
765 {
766 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
767 	unsigned int duration = group->duration[index % MCS_GROUP_RATES];
768 	return duration << group->shift;
769 }
770 
771 static void
772 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
773                          int index)
774 {
775 	struct minstrel_rate_stats *mrs;
776 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
777 	unsigned int cw = mp->cw_min;
778 	unsigned int ctime = 0;
779 	unsigned int t_slot = 9; /* FIXME */
780 	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
781 	unsigned int overhead = 0, overhead_rtscts = 0;
782 
783 	mrs = minstrel_get_ratestats(mi, index);
784 	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
785 		mrs->retry_count = 1;
786 		mrs->retry_count_rtscts = 1;
787 		return;
788 	}
789 
790 	mrs->retry_count = 2;
791 	mrs->retry_count_rtscts = 2;
792 	mrs->retry_updated = true;
793 
794 	tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
795 
796 	/* Contention time for first 2 tries */
797 	ctime = (t_slot * cw) >> 1;
798 	cw = min((cw << 1) | 1, mp->cw_max);
799 	ctime += (t_slot * cw) >> 1;
800 	cw = min((cw << 1) | 1, mp->cw_max);
801 
802 	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
803 		overhead = mi->overhead;
804 		overhead_rtscts = mi->overhead_rtscts;
805 	}
806 
807 	/* Total TX time for data and Contention after first 2 tries */
808 	tx_time = ctime + 2 * (overhead + tx_time_data);
809 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
810 
811 	/* See how many more tries we can fit inside segment size */
812 	do {
813 		/* Contention time for this try */
814 		ctime = (t_slot * cw) >> 1;
815 		cw = min((cw << 1) | 1, mp->cw_max);
816 
817 		/* Total TX time after this try */
818 		tx_time += ctime + overhead + tx_time_data;
819 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
820 
821 		if (tx_time_rtscts < mp->segment_size)
822 			mrs->retry_count_rtscts++;
823 	} while ((tx_time < mp->segment_size) &&
824 	         (++mrs->retry_count < mp->max_retry));
825 }
826 
827 
828 static void
829 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
830                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
831 {
832 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
833 	struct minstrel_rate_stats *mrs;
834 	u8 idx;
835 	u16 flags = group->flags;
836 
837 	mrs = minstrel_get_ratestats(mi, index);
838 	if (!mrs->retry_updated)
839 		minstrel_calc_retransmit(mp, mi, index);
840 
841 	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
842 		ratetbl->rate[offset].count = 2;
843 		ratetbl->rate[offset].count_rts = 2;
844 		ratetbl->rate[offset].count_cts = 2;
845 	} else {
846 		ratetbl->rate[offset].count = mrs->retry_count;
847 		ratetbl->rate[offset].count_cts = mrs->retry_count;
848 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
849 	}
850 
851 	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
852 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
853 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
854 		idx = ((group->streams - 1) << 4) |
855 		      ((index % MCS_GROUP_RATES) & 0xF);
856 	else
857 		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
858 
859 	/* enable RTS/CTS if needed:
860 	 *  - if station is in dynamic SMPS (and streams > 1)
861 	 *  - for fallback rates, to increase chances of getting through
862 	 */
863 	if (offset > 0 ||
864 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
865 	     group->streams > 1)) {
866 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
867 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
868 	}
869 
870 	ratetbl->rate[offset].idx = idx;
871 	ratetbl->rate[offset].flags = flags;
872 }
873 
874 static inline int
875 minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
876 {
877 	int group = rate / MCS_GROUP_RATES;
878 	rate %= MCS_GROUP_RATES;
879 	return mi->groups[group].rates[rate].prob_ewma;
880 }
881 
882 static int
883 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
884 {
885 	int group = mi->max_prob_rate / MCS_GROUP_RATES;
886 	const struct mcs_group *g = &minstrel_mcs_groups[group];
887 	int rate = mi->max_prob_rate % MCS_GROUP_RATES;
888 	unsigned int duration;
889 
890 	/* Disable A-MSDU if max_prob_rate is bad */
891 	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
892 		return 1;
893 
894 	duration = g->duration[rate];
895 	duration <<= g->shift;
896 
897 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
898 	if (duration > MCS_DURATION(1, 0, 52))
899 		return 500;
900 
901 	/*
902 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
903 	 * data packet size
904 	 */
905 	if (duration > MCS_DURATION(1, 0, 104))
906 		return 1600;
907 
908 	/*
909 	 * If the rate is slower than single-stream MCS7, or if the max throughput
910 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
911 	 * data packet size
912 	 */
913 	if (duration > MCS_DURATION(1, 0, 260) ||
914 	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
915 	     MINSTREL_FRAC(75, 100)))
916 		return 3200;
917 
918 	/*
919 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
920 	 * Since aggregation sessions are started/stopped without txq flush, use
921 	 * the limit here to avoid the complexity of having to de-aggregate
922 	 * packets in the queue.
923 	 */
924 	if (!mi->sta->vht_cap.vht_supported)
925 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
926 
927 	/* unlimited */
928 	return 0;
929 }
930 
931 static void
932 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
933 {
934 	struct ieee80211_sta_rates *rates;
935 	int i = 0;
936 
937 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
938 	if (!rates)
939 		return;
940 
941 	/* Start with max_tp_rate[0] */
942 	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
943 
944 	if (mp->hw->max_rates >= 3) {
945 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
946 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
947 	}
948 
949 	if (mp->hw->max_rates >= 2) {
950 		/*
951 		 * At least 2 tx rates supported, use max_prob_rate next */
952 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
953 	}
954 
955 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
956 	rates->rate[i].idx = -1;
957 	rate_control_set_rates(mp->hw, mi->sta, rates);
958 }
959 
960 static int
961 minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
962 {
963 	struct minstrel_rate_stats *mrs;
964 	struct minstrel_mcs_group_data *mg;
965 	unsigned int sample_dur, sample_group, cur_max_tp_streams;
966 	int tp_rate1, tp_rate2;
967 	int sample_idx = 0;
968 
969 	if (mi->sample_wait > 0) {
970 		mi->sample_wait--;
971 		return -1;
972 	}
973 
974 	if (!mi->sample_tries)
975 		return -1;
976 
977 	sample_group = mi->sample_group;
978 	mg = &mi->groups[sample_group];
979 	sample_idx = sample_table[mg->column][mg->index];
980 	minstrel_set_next_sample_idx(mi);
981 
982 	if (!(mi->supported[sample_group] & BIT(sample_idx)))
983 		return -1;
984 
985 	mrs = &mg->rates[sample_idx];
986 	sample_idx += sample_group * MCS_GROUP_RATES;
987 
988 	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
989 	if (minstrel_get_duration(mi->max_tp_rate[0]) >
990 	    minstrel_get_duration(mi->max_tp_rate[1])) {
991 		tp_rate1 = mi->max_tp_rate[1];
992 		tp_rate2 = mi->max_tp_rate[0];
993 	} else {
994 		tp_rate1 = mi->max_tp_rate[0];
995 		tp_rate2 = mi->max_tp_rate[1];
996 	}
997 
998 	/*
999 	 * Sampling might add some overhead (RTS, no aggregation)
1000 	 * to the frame. Hence, don't use sampling for the highest currently
1001 	 * used highest throughput or probability rate.
1002 	 */
1003 	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1004 		return -1;
1005 
1006 	/*
1007 	 * Do not sample if the probability is already higher than 95%,
1008 	 * or if the rate is 3 times slower than the current max probability
1009 	 * rate, to avoid wasting airtime.
1010 	 */
1011 	sample_dur = minstrel_get_duration(sample_idx);
1012 	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100) ||
1013 	    minstrel_get_duration(mi->max_prob_rate) * 3 < sample_dur)
1014 		return -1;
1015 
1016 	/*
1017 	 * Make sure that lower rates get sampled only occasionally,
1018 	 * if the link is working perfectly.
1019 	 */
1020 
1021 	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1022 		MCS_GROUP_RATES].streams;
1023 	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1024 	    (cur_max_tp_streams - 1 <
1025 	     minstrel_mcs_groups[sample_group].streams ||
1026 	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1027 		if (mrs->sample_skipped < 20)
1028 			return -1;
1029 
1030 		if (mi->sample_slow++ > 2)
1031 			return -1;
1032 	}
1033 	mi->sample_tries--;
1034 
1035 	return sample_idx;
1036 }
1037 
1038 static void
1039 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1040                      struct ieee80211_tx_rate_control *txrc)
1041 {
1042 	const struct mcs_group *sample_group;
1043 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1044 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1045 	struct minstrel_ht_sta_priv *msp = priv_sta;
1046 	struct minstrel_ht_sta *mi = &msp->ht;
1047 	struct minstrel_priv *mp = priv;
1048 	int sample_idx;
1049 
1050 	if (rate_control_send_low(sta, priv_sta, txrc))
1051 		return;
1052 
1053 	if (!msp->is_ht)
1054 		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1055 
1056 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1057 	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1058 		minstrel_aggr_check(sta, txrc->skb);
1059 
1060 	info->flags |= mi->tx_flags;
1061 
1062 #ifdef CONFIG_MAC80211_DEBUGFS
1063 	if (mp->fixed_rate_idx != -1)
1064 		return;
1065 #endif
1066 
1067 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1068 	if (mp->hw->max_rates == 1 &&
1069 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1070 		sample_idx = -1;
1071 	else
1072 		sample_idx = minstrel_get_sample_rate(mp, mi);
1073 
1074 	mi->total_packets++;
1075 
1076 	/* wraparound */
1077 	if (mi->total_packets == ~0) {
1078 		mi->total_packets = 0;
1079 		mi->sample_packets = 0;
1080 	}
1081 
1082 	if (sample_idx < 0)
1083 		return;
1084 
1085 	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1086 	sample_idx %= MCS_GROUP_RATES;
1087 
1088 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1089 	    (sample_idx >= 4) != txrc->short_preamble)
1090 		return;
1091 
1092 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1093 	rate->count = 1;
1094 
1095 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1096 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1097 		rate->idx = mp->cck_rates[idx];
1098 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1099 		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1100 				       sample_group->streams);
1101 	} else {
1102 		rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1103 	}
1104 
1105 	rate->flags = sample_group->flags;
1106 }
1107 
1108 static void
1109 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1110 		       struct ieee80211_supported_band *sband,
1111 		       struct ieee80211_sta *sta)
1112 {
1113 	int i;
1114 
1115 	if (sband->band != NL80211_BAND_2GHZ)
1116 		return;
1117 
1118 	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1119 		return;
1120 
1121 	mi->cck_supported = 0;
1122 	mi->cck_supported_short = 0;
1123 	for (i = 0; i < 4; i++) {
1124 		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1125 			continue;
1126 
1127 		mi->cck_supported |= BIT(i);
1128 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1129 			mi->cck_supported_short |= BIT(i);
1130 	}
1131 
1132 	mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1133 }
1134 
1135 static void
1136 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1137 			struct cfg80211_chan_def *chandef,
1138                         struct ieee80211_sta *sta, void *priv_sta)
1139 {
1140 	struct minstrel_priv *mp = priv;
1141 	struct minstrel_ht_sta_priv *msp = priv_sta;
1142 	struct minstrel_ht_sta *mi = &msp->ht;
1143 	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1144 	u16 ht_cap = sta->ht_cap.cap;
1145 	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1146 	int use_vht;
1147 	int n_supported = 0;
1148 	int ack_dur;
1149 	int stbc;
1150 	int i;
1151 	bool ldpc;
1152 
1153 	/* fall back to the old minstrel for legacy stations */
1154 	if (!sta->ht_cap.ht_supported)
1155 		goto use_legacy;
1156 
1157 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1158 
1159 	if (vht_cap->vht_supported)
1160 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1161 	else
1162 		use_vht = 0;
1163 
1164 	msp->is_ht = true;
1165 	memset(mi, 0, sizeof(*mi));
1166 
1167 	mi->sta = sta;
1168 	mi->last_stats_update = jiffies;
1169 
1170 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1171 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1172 	mi->overhead += ack_dur;
1173 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1174 
1175 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1176 
1177 	/* When using MRR, sample more on the first attempt, without delay */
1178 	if (mp->has_mrr) {
1179 		mi->sample_count = 16;
1180 		mi->sample_wait = 0;
1181 	} else {
1182 		mi->sample_count = 8;
1183 		mi->sample_wait = 8;
1184 	}
1185 	mi->sample_tries = 4;
1186 
1187 	if (!use_vht) {
1188 		stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1189 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1190 
1191 		ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1192 	} else {
1193 		stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1194 			IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1195 
1196 		ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1197 	}
1198 
1199 	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1200 	if (ldpc)
1201 		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1202 
1203 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1204 		u32 gflags = minstrel_mcs_groups[i].flags;
1205 		int bw, nss;
1206 
1207 		mi->supported[i] = 0;
1208 		if (i == MINSTREL_CCK_GROUP) {
1209 			minstrel_ht_update_cck(mp, mi, sband, sta);
1210 			continue;
1211 		}
1212 
1213 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1214 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1215 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1216 					continue;
1217 			} else {
1218 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1219 					continue;
1220 			}
1221 		}
1222 
1223 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1224 		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1225 			continue;
1226 
1227 		nss = minstrel_mcs_groups[i].streams;
1228 
1229 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1230 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1231 			continue;
1232 
1233 		/* HT rate */
1234 		if (gflags & IEEE80211_TX_RC_MCS) {
1235 			if (use_vht && minstrel_vht_only)
1236 				continue;
1237 
1238 			mi->supported[i] = mcs->rx_mask[nss - 1];
1239 			if (mi->supported[i])
1240 				n_supported++;
1241 			continue;
1242 		}
1243 
1244 		/* VHT rate */
1245 		if (!vht_cap->vht_supported ||
1246 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1247 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1248 			continue;
1249 
1250 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1251 			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1252 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1253 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1254 				continue;
1255 			}
1256 		}
1257 
1258 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1259 			bw = BW_40;
1260 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1261 			bw = BW_80;
1262 		else
1263 			bw = BW_20;
1264 
1265 		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1266 				vht_cap->vht_mcs.tx_mcs_map);
1267 
1268 		if (mi->supported[i])
1269 			n_supported++;
1270 	}
1271 
1272 	if (!n_supported)
1273 		goto use_legacy;
1274 
1275 	mi->supported[MINSTREL_CCK_GROUP] |= mi->cck_supported_short << 4;
1276 
1277 	/* create an initial rate table with the lowest supported rates */
1278 	minstrel_ht_update_stats(mp, mi);
1279 	minstrel_ht_update_rates(mp, mi);
1280 
1281 	return;
1282 
1283 use_legacy:
1284 	msp->is_ht = false;
1285 	memset(&msp->legacy, 0, sizeof(msp->legacy));
1286 	msp->legacy.r = msp->ratelist;
1287 	msp->legacy.sample_table = msp->sample_table;
1288 	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1289 					   &msp->legacy);
1290 }
1291 
1292 static void
1293 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1294 		      struct cfg80211_chan_def *chandef,
1295                       struct ieee80211_sta *sta, void *priv_sta)
1296 {
1297 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1298 }
1299 
1300 static void
1301 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1302 			struct cfg80211_chan_def *chandef,
1303                         struct ieee80211_sta *sta, void *priv_sta,
1304                         u32 changed)
1305 {
1306 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1307 }
1308 
1309 static void *
1310 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1311 {
1312 	struct ieee80211_supported_band *sband;
1313 	struct minstrel_ht_sta_priv *msp;
1314 	struct minstrel_priv *mp = priv;
1315 	struct ieee80211_hw *hw = mp->hw;
1316 	int max_rates = 0;
1317 	int i;
1318 
1319 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1320 		sband = hw->wiphy->bands[i];
1321 		if (sband && sband->n_bitrates > max_rates)
1322 			max_rates = sband->n_bitrates;
1323 	}
1324 
1325 	msp = kzalloc(sizeof(*msp), gfp);
1326 	if (!msp)
1327 		return NULL;
1328 
1329 	msp->ratelist = kcalloc(max_rates, sizeof(struct minstrel_rate), gfp);
1330 	if (!msp->ratelist)
1331 		goto error;
1332 
1333 	msp->sample_table = kmalloc_array(max_rates, SAMPLE_COLUMNS, gfp);
1334 	if (!msp->sample_table)
1335 		goto error1;
1336 
1337 	return msp;
1338 
1339 error1:
1340 	kfree(msp->ratelist);
1341 error:
1342 	kfree(msp);
1343 	return NULL;
1344 }
1345 
1346 static void
1347 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1348 {
1349 	struct minstrel_ht_sta_priv *msp = priv_sta;
1350 
1351 	kfree(msp->sample_table);
1352 	kfree(msp->ratelist);
1353 	kfree(msp);
1354 }
1355 
1356 static void
1357 minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1358 {
1359 	static const int bitrates[4] = { 10, 20, 55, 110 };
1360 	struct ieee80211_supported_band *sband;
1361 	u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1362 	int i, j;
1363 
1364 	sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1365 	if (!sband)
1366 		return;
1367 
1368 	for (i = 0; i < sband->n_bitrates; i++) {
1369 		struct ieee80211_rate *rate = &sband->bitrates[i];
1370 
1371 		if (rate->flags & IEEE80211_RATE_ERP_G)
1372 			continue;
1373 
1374 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1375 			continue;
1376 
1377 		for (j = 0; j < ARRAY_SIZE(bitrates); j++) {
1378 			if (rate->bitrate != bitrates[j])
1379 				continue;
1380 
1381 			mp->cck_rates[j] = i;
1382 			break;
1383 		}
1384 	}
1385 }
1386 
1387 static void *
1388 minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1389 {
1390 	struct minstrel_priv *mp;
1391 
1392 	mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1393 	if (!mp)
1394 		return NULL;
1395 
1396 	/* contention window settings
1397 	 * Just an approximation. Using the per-queue values would complicate
1398 	 * the calculations and is probably unnecessary */
1399 	mp->cw_min = 15;
1400 	mp->cw_max = 1023;
1401 
1402 	/* number of packets (in %) to use for sampling other rates
1403 	 * sample less often for non-mrr packets, because the overhead
1404 	 * is much higher than with mrr */
1405 	mp->lookaround_rate = 5;
1406 	mp->lookaround_rate_mrr = 10;
1407 
1408 	/* maximum time that the hw is allowed to stay in one MRR segment */
1409 	mp->segment_size = 6000;
1410 
1411 	if (hw->max_rate_tries > 0)
1412 		mp->max_retry = hw->max_rate_tries;
1413 	else
1414 		/* safe default, does not necessarily have to match hw properties */
1415 		mp->max_retry = 7;
1416 
1417 	if (hw->max_rates >= 4)
1418 		mp->has_mrr = true;
1419 
1420 	mp->hw = hw;
1421 	mp->update_interval = 100;
1422 
1423 #ifdef CONFIG_MAC80211_DEBUGFS
1424 	mp->fixed_rate_idx = (u32) -1;
1425 	debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1426 			   &mp->fixed_rate_idx);
1427 #endif
1428 
1429 	minstrel_ht_init_cck_rates(mp);
1430 
1431 	return mp;
1432 }
1433 
1434 static void
1435 minstrel_ht_free(void *priv)
1436 {
1437 	kfree(priv);
1438 }
1439 
1440 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1441 {
1442 	struct minstrel_ht_sta_priv *msp = priv_sta;
1443 	struct minstrel_ht_sta *mi = &msp->ht;
1444 	int i, j, prob, tp_avg;
1445 
1446 	if (!msp->is_ht)
1447 		return mac80211_minstrel.get_expected_throughput(priv_sta);
1448 
1449 	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1450 	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1451 	prob = mi->groups[i].rates[j].prob_ewma;
1452 
1453 	/* convert tp_avg from pkt per second in kbps */
1454 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1455 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1456 
1457 	return tp_avg;
1458 }
1459 
1460 static const struct rate_control_ops mac80211_minstrel_ht = {
1461 	.name = "minstrel_ht",
1462 	.tx_status_ext = minstrel_ht_tx_status,
1463 	.get_rate = minstrel_ht_get_rate,
1464 	.rate_init = minstrel_ht_rate_init,
1465 	.rate_update = minstrel_ht_rate_update,
1466 	.alloc_sta = minstrel_ht_alloc_sta,
1467 	.free_sta = minstrel_ht_free_sta,
1468 	.alloc = minstrel_ht_alloc,
1469 	.free = minstrel_ht_free,
1470 #ifdef CONFIG_MAC80211_DEBUGFS
1471 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1472 #endif
1473 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1474 };
1475 
1476 
1477 static void __init init_sample_table(void)
1478 {
1479 	int col, i, new_idx;
1480 	u8 rnd[MCS_GROUP_RATES];
1481 
1482 	memset(sample_table, 0xff, sizeof(sample_table));
1483 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1484 		prandom_bytes(rnd, sizeof(rnd));
1485 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1486 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1487 			while (sample_table[col][new_idx] != 0xff)
1488 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1489 
1490 			sample_table[col][new_idx] = i;
1491 		}
1492 	}
1493 }
1494 
1495 int __init
1496 rc80211_minstrel_init(void)
1497 {
1498 	init_sample_table();
1499 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1500 }
1501 
1502 void
1503 rc80211_minstrel_exit(void)
1504 {
1505 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1506 }
1507