1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
4  * Copyright (C) 2019-2021 Intel Corporation
5  */
6 #include <linux/netdevice.h>
7 #include <linux/types.h>
8 #include <linux/skbuff.h>
9 #include <linux/debugfs.h>
10 #include <linux/random.h>
11 #include <linux/moduleparam.h>
12 #include <linux/ieee80211.h>
13 #include <net/mac80211.h>
14 #include "rate.h"
15 #include "sta_info.h"
16 #include "rc80211_minstrel_ht.h"
17 
18 #define AVG_AMPDU_SIZE	16
19 #define AVG_PKT_SIZE	1200
20 
21 /* Number of bits for an average sized packet */
22 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
23 
24 /* Number of symbols for a packet with (bps) bits per symbol */
25 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
26 
27 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
28 #define MCS_SYMBOL_TIME(sgi, syms)					\
29 	(sgi ?								\
30 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
31 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
32 	)
33 
34 /* Transmit duration for the raw data part of an average sized packet */
35 #define MCS_DURATION(streams, sgi, bps) \
36 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
37 
38 #define BW_20			0
39 #define BW_40			1
40 #define BW_80			2
41 
42 /*
43  * Define group sort order: HT40 -> SGI -> #streams
44  */
45 #define GROUP_IDX(_streams, _sgi, _ht40)	\
46 	MINSTREL_HT_GROUP_0 +			\
47 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
48 	MINSTREL_MAX_STREAMS * _sgi +	\
49 	_streams - 1
50 
51 #define _MAX(a, b) (((a)>(b))?(a):(b))
52 
53 #define GROUP_SHIFT(duration)						\
54 	_MAX(0, 16 - __builtin_clz(duration))
55 
56 /* MCS rate information for an MCS group */
57 #define __MCS_GROUP(_streams, _sgi, _ht40, _s)				\
58 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
59 	.streams = _streams,						\
60 	.shift = _s,							\
61 	.bw = _ht40,							\
62 	.flags =							\
63 		IEEE80211_TX_RC_MCS |					\
64 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
65 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
66 	.duration = {							\
67 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s,	\
68 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s,	\
69 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s,	\
70 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s,	\
71 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s,	\
72 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s,	\
73 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s,	\
74 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s	\
75 	}								\
76 }
77 
78 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40)				\
79 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
80 
81 #define MCS_GROUP(_streams, _sgi, _ht40)				\
82 	__MCS_GROUP(_streams, _sgi, _ht40,				\
83 		    MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
84 
85 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
86 	(MINSTREL_VHT_GROUP_0 +						\
87 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
88 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
89 	 (_streams) - 1)
90 
91 #define BW2VBPS(_bw, r3, r2, r1)					\
92 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
93 
94 #define __VHT_GROUP(_streams, _sgi, _bw, _s)				\
95 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
96 	.streams = _streams,						\
97 	.shift = _s,							\
98 	.bw = _bw,							\
99 	.flags =							\
100 		IEEE80211_TX_RC_VHT_MCS |				\
101 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
102 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
103 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
104 	.duration = {							\
105 		MCS_DURATION(_streams, _sgi,				\
106 			     BW2VBPS(_bw,  117,  54,  26)) >> _s,	\
107 		MCS_DURATION(_streams, _sgi,				\
108 			     BW2VBPS(_bw,  234, 108,  52)) >> _s,	\
109 		MCS_DURATION(_streams, _sgi,				\
110 			     BW2VBPS(_bw,  351, 162,  78)) >> _s,	\
111 		MCS_DURATION(_streams, _sgi,				\
112 			     BW2VBPS(_bw,  468, 216, 104)) >> _s,	\
113 		MCS_DURATION(_streams, _sgi,				\
114 			     BW2VBPS(_bw,  702, 324, 156)) >> _s,	\
115 		MCS_DURATION(_streams, _sgi,				\
116 			     BW2VBPS(_bw,  936, 432, 208)) >> _s,	\
117 		MCS_DURATION(_streams, _sgi,				\
118 			     BW2VBPS(_bw, 1053, 486, 234)) >> _s,	\
119 		MCS_DURATION(_streams, _sgi,				\
120 			     BW2VBPS(_bw, 1170, 540, 260)) >> _s,	\
121 		MCS_DURATION(_streams, _sgi,				\
122 			     BW2VBPS(_bw, 1404, 648, 312)) >> _s,	\
123 		MCS_DURATION(_streams, _sgi,				\
124 			     BW2VBPS(_bw, 1560, 720, 346)) >> _s	\
125 	}								\
126 }
127 
128 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw)				\
129 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi,			\
130 				 BW2VBPS(_bw,  117,  54,  26)))
131 
132 #define VHT_GROUP(_streams, _sgi, _bw)					\
133 	__VHT_GROUP(_streams, _sgi, _bw,				\
134 		    VHT_GROUP_SHIFT(_streams, _sgi, _bw))
135 
136 #define CCK_DURATION(_bitrate, _short)			\
137 	(1000 * (10 /* SIFS */ +			\
138 	 (_short ? 72 + 24 : 144 + 48) +		\
139 	 (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate)))
140 
141 #define CCK_DURATION_LIST(_short, _s)			\
142 	CCK_DURATION(10, _short) >> _s,			\
143 	CCK_DURATION(20, _short) >> _s,			\
144 	CCK_DURATION(55, _short) >> _s,			\
145 	CCK_DURATION(110, _short) >> _s
146 
147 #define __CCK_GROUP(_s)					\
148 	[MINSTREL_CCK_GROUP] = {			\
149 		.streams = 1,				\
150 		.flags = 0,				\
151 		.shift = _s,				\
152 		.duration = {				\
153 			CCK_DURATION_LIST(false, _s),	\
154 			CCK_DURATION_LIST(true, _s)	\
155 		}					\
156 	}
157 
158 #define CCK_GROUP_SHIFT					\
159 	GROUP_SHIFT(CCK_DURATION(10, false))
160 
161 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
162 
163 #define OFDM_DURATION(_bitrate)				\
164 	(1000 * (16 /* SIFS + signal ext */ +		\
165 	 16 /* T_PREAMBLE */ +				\
166 	 4 /* T_SIGNAL */ +				\
167 	 4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) /	\
168 	      ((_bitrate) * 4)))))
169 
170 #define OFDM_DURATION_LIST(_s)				\
171 	OFDM_DURATION(60) >> _s,			\
172 	OFDM_DURATION(90) >> _s,			\
173 	OFDM_DURATION(120) >> _s,			\
174 	OFDM_DURATION(180) >> _s,			\
175 	OFDM_DURATION(240) >> _s,			\
176 	OFDM_DURATION(360) >> _s,			\
177 	OFDM_DURATION(480) >> _s,			\
178 	OFDM_DURATION(540) >> _s
179 
180 #define __OFDM_GROUP(_s)				\
181 	[MINSTREL_OFDM_GROUP] = {			\
182 		.streams = 1,				\
183 		.flags = 0,				\
184 		.shift = _s,				\
185 		.duration = {				\
186 			OFDM_DURATION_LIST(_s),		\
187 		}					\
188 	}
189 
190 #define OFDM_GROUP_SHIFT				\
191 	GROUP_SHIFT(OFDM_DURATION(60))
192 
193 #define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT)
194 
195 
196 static bool minstrel_vht_only = true;
197 module_param(minstrel_vht_only, bool, 0644);
198 MODULE_PARM_DESC(minstrel_vht_only,
199 		 "Use only VHT rates when VHT is supported by sta.");
200 
201 /*
202  * To enable sufficiently targeted rate sampling, MCS rates are divided into
203  * groups, based on the number of streams and flags (HT40, SGI) that they
204  * use.
205  *
206  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
207  * BW -> SGI -> #streams
208  */
209 const struct mcs_group minstrel_mcs_groups[] = {
210 	MCS_GROUP(1, 0, BW_20),
211 	MCS_GROUP(2, 0, BW_20),
212 	MCS_GROUP(3, 0, BW_20),
213 	MCS_GROUP(4, 0, BW_20),
214 
215 	MCS_GROUP(1, 1, BW_20),
216 	MCS_GROUP(2, 1, BW_20),
217 	MCS_GROUP(3, 1, BW_20),
218 	MCS_GROUP(4, 1, BW_20),
219 
220 	MCS_GROUP(1, 0, BW_40),
221 	MCS_GROUP(2, 0, BW_40),
222 	MCS_GROUP(3, 0, BW_40),
223 	MCS_GROUP(4, 0, BW_40),
224 
225 	MCS_GROUP(1, 1, BW_40),
226 	MCS_GROUP(2, 1, BW_40),
227 	MCS_GROUP(3, 1, BW_40),
228 	MCS_GROUP(4, 1, BW_40),
229 
230 	CCK_GROUP,
231 	OFDM_GROUP,
232 
233 	VHT_GROUP(1, 0, BW_20),
234 	VHT_GROUP(2, 0, BW_20),
235 	VHT_GROUP(3, 0, BW_20),
236 	VHT_GROUP(4, 0, BW_20),
237 
238 	VHT_GROUP(1, 1, BW_20),
239 	VHT_GROUP(2, 1, BW_20),
240 	VHT_GROUP(3, 1, BW_20),
241 	VHT_GROUP(4, 1, BW_20),
242 
243 	VHT_GROUP(1, 0, BW_40),
244 	VHT_GROUP(2, 0, BW_40),
245 	VHT_GROUP(3, 0, BW_40),
246 	VHT_GROUP(4, 0, BW_40),
247 
248 	VHT_GROUP(1, 1, BW_40),
249 	VHT_GROUP(2, 1, BW_40),
250 	VHT_GROUP(3, 1, BW_40),
251 	VHT_GROUP(4, 1, BW_40),
252 
253 	VHT_GROUP(1, 0, BW_80),
254 	VHT_GROUP(2, 0, BW_80),
255 	VHT_GROUP(3, 0, BW_80),
256 	VHT_GROUP(4, 0, BW_80),
257 
258 	VHT_GROUP(1, 1, BW_80),
259 	VHT_GROUP(2, 1, BW_80),
260 	VHT_GROUP(3, 1, BW_80),
261 	VHT_GROUP(4, 1, BW_80),
262 };
263 
264 const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 };
265 const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
266 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
267 static const u8 minstrel_sample_seq[] = {
268 	MINSTREL_SAMPLE_TYPE_INC,
269 	MINSTREL_SAMPLE_TYPE_JUMP,
270 	MINSTREL_SAMPLE_TYPE_INC,
271 	MINSTREL_SAMPLE_TYPE_JUMP,
272 	MINSTREL_SAMPLE_TYPE_INC,
273 	MINSTREL_SAMPLE_TYPE_SLOW,
274 };
275 
276 static void
277 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
278 
279 /*
280  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
281  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
282  *
283  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
284  */
285 static u16
286 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
287 {
288 	u16 mask = 0;
289 
290 	if (bw == BW_20) {
291 		if (nss != 3 && nss != 6)
292 			mask = BIT(9);
293 	} else if (bw == BW_80) {
294 		if (nss == 3 || nss == 7)
295 			mask = BIT(6);
296 		else if (nss == 6)
297 			mask = BIT(9);
298 	} else {
299 		WARN_ON(bw != BW_40);
300 	}
301 
302 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
303 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
304 		mask |= 0x300;
305 		break;
306 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
307 		mask |= 0x200;
308 		break;
309 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
310 		break;
311 	default:
312 		mask = 0x3ff;
313 	}
314 
315 	return 0x3ff & ~mask;
316 }
317 
318 static bool
319 minstrel_ht_is_legacy_group(int group)
320 {
321 	return group == MINSTREL_CCK_GROUP ||
322 	       group == MINSTREL_OFDM_GROUP;
323 }
324 
325 /*
326  * Look up an MCS group index based on mac80211 rate information
327  */
328 static int
329 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
330 {
331 	return GROUP_IDX((rate->idx / 8) + 1,
332 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
333 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
334 }
335 
336 static int
337 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
338 {
339 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
340 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
341 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
342 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
343 }
344 
345 static struct minstrel_rate_stats *
346 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
347 		      struct ieee80211_tx_rate *rate)
348 {
349 	int group, idx;
350 
351 	if (rate->flags & IEEE80211_TX_RC_MCS) {
352 		group = minstrel_ht_get_group_idx(rate);
353 		idx = rate->idx % 8;
354 		goto out;
355 	}
356 
357 	if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
358 		group = minstrel_vht_get_group_idx(rate);
359 		idx = ieee80211_rate_get_vht_mcs(rate);
360 		goto out;
361 	}
362 
363 	group = MINSTREL_CCK_GROUP;
364 	for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) {
365 		if (!(mi->supported[group] & BIT(idx)))
366 			continue;
367 
368 		if (rate->idx != mp->cck_rates[idx])
369 			continue;
370 
371 		/* short preamble */
372 		if ((mi->supported[group] & BIT(idx + 4)) &&
373 		    (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
374 			idx += 4;
375 		goto out;
376 	}
377 
378 	group = MINSTREL_OFDM_GROUP;
379 	for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++)
380 		if (rate->idx == mp->ofdm_rates[mi->band][idx])
381 			goto out;
382 
383 	idx = 0;
384 out:
385 	return &mi->groups[group].rates[idx];
386 }
387 
388 static inline struct minstrel_rate_stats *
389 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
390 {
391 	return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)];
392 }
393 
394 static inline int minstrel_get_duration(int index)
395 {
396 	const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)];
397 	unsigned int duration = group->duration[MI_RATE_IDX(index)];
398 
399 	return duration << group->shift;
400 }
401 
402 static unsigned int
403 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
404 {
405 	int duration;
406 
407 	if (mi->avg_ampdu_len)
408 		return MINSTREL_TRUNC(mi->avg_ampdu_len);
409 
410 	if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0])))
411 		return 1;
412 
413 	duration = minstrel_get_duration(mi->max_tp_rate[0]);
414 
415 	if (duration > 400 * 1000)
416 		return 2;
417 
418 	if (duration > 250 * 1000)
419 		return 4;
420 
421 	if (duration > 150 * 1000)
422 		return 8;
423 
424 	return 16;
425 }
426 
427 /*
428  * Return current throughput based on the average A-MPDU length, taking into
429  * account the expected number of retransmissions and their expected length
430  */
431 int
432 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
433 		       int prob_avg)
434 {
435 	unsigned int nsecs = 0, overhead = mi->overhead;
436 	unsigned int ampdu_len = 1;
437 
438 	/* do not account throughput if success prob is below 10% */
439 	if (prob_avg < MINSTREL_FRAC(10, 100))
440 		return 0;
441 
442 	if (minstrel_ht_is_legacy_group(group))
443 		overhead = mi->overhead_legacy;
444 	else
445 		ampdu_len = minstrel_ht_avg_ampdu_len(mi);
446 
447 	nsecs = 1000 * overhead / ampdu_len;
448 	nsecs += minstrel_mcs_groups[group].duration[rate] <<
449 		 minstrel_mcs_groups[group].shift;
450 
451 	/*
452 	 * For the throughput calculation, limit the probability value to 90% to
453 	 * account for collision related packet error rate fluctuation
454 	 * (prob is scaled - see MINSTREL_FRAC above)
455 	 */
456 	if (prob_avg > MINSTREL_FRAC(90, 100))
457 		prob_avg = MINSTREL_FRAC(90, 100);
458 
459 	return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs));
460 }
461 
462 /*
463  * Find & sort topmost throughput rates
464  *
465  * If multiple rates provide equal throughput the sorting is based on their
466  * current success probability. Higher success probability is preferred among
467  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
468  */
469 static void
470 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
471 			       u16 *tp_list)
472 {
473 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
474 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
475 	int j = MAX_THR_RATES;
476 
477 	cur_group = MI_RATE_GROUP(index);
478 	cur_idx = MI_RATE_IDX(index);
479 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg;
480 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
481 
482 	do {
483 		tmp_group = MI_RATE_GROUP(tp_list[j - 1]);
484 		tmp_idx = MI_RATE_IDX(tp_list[j - 1]);
485 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
486 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
487 						    tmp_prob);
488 		if (cur_tp_avg < tmp_tp_avg ||
489 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
490 			break;
491 		j--;
492 	} while (j > 0);
493 
494 	if (j < MAX_THR_RATES - 1) {
495 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
496 		       (MAX_THR_RATES - (j + 1))));
497 	}
498 	if (j < MAX_THR_RATES)
499 		tp_list[j] = index;
500 }
501 
502 /*
503  * Find and set the topmost probability rate per sta and per group
504  */
505 static void
506 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index)
507 {
508 	struct minstrel_mcs_group_data *mg;
509 	struct minstrel_rate_stats *mrs;
510 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
511 	int max_tp_group, max_tp_idx, max_tp_prob;
512 	int cur_tp_avg, cur_group, cur_idx;
513 	int max_gpr_group, max_gpr_idx;
514 	int max_gpr_tp_avg, max_gpr_prob;
515 
516 	cur_group = MI_RATE_GROUP(index);
517 	cur_idx = MI_RATE_IDX(index);
518 	mg = &mi->groups[cur_group];
519 	mrs = &mg->rates[cur_idx];
520 
521 	tmp_group = MI_RATE_GROUP(*dest);
522 	tmp_idx = MI_RATE_IDX(*dest);
523 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
524 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
525 
526 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
527 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
528 	max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]);
529 	max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]);
530 	max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg;
531 
532 	if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) &&
533 	    !minstrel_ht_is_legacy_group(max_tp_group))
534 		return;
535 
536 	/* skip rates faster than max tp rate with lower prob */
537 	if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) &&
538 	    mrs->prob_avg < max_tp_prob)
539 		return;
540 
541 	max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate);
542 	max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate);
543 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg;
544 
545 	if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) {
546 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
547 						    mrs->prob_avg);
548 		if (cur_tp_avg > tmp_tp_avg)
549 			*dest = index;
550 
551 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
552 							max_gpr_idx,
553 							max_gpr_prob);
554 		if (cur_tp_avg > max_gpr_tp_avg)
555 			mg->max_group_prob_rate = index;
556 	} else {
557 		if (mrs->prob_avg > tmp_prob)
558 			*dest = index;
559 		if (mrs->prob_avg > max_gpr_prob)
560 			mg->max_group_prob_rate = index;
561 	}
562 }
563 
564 
565 /*
566  * Assign new rate set per sta and use CCK rates only if the fastest
567  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
568  * rate sets where MCS and CCK rates are mixed, because CCK rates can
569  * not use aggregation.
570  */
571 static void
572 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
573 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
574 				 u16 tmp_legacy_tp_rate[MAX_THR_RATES])
575 {
576 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
577 	int i;
578 
579 	tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]);
580 	tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]);
581 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
582 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
583 
584 	tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]);
585 	tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]);
586 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
587 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
588 
589 	if (tmp_cck_tp > tmp_mcs_tp) {
590 		for(i = 0; i < MAX_THR_RATES; i++) {
591 			minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i],
592 						       tmp_mcs_tp_rate);
593 		}
594 	}
595 
596 }
597 
598 /*
599  * Try to increase robustness of max_prob rate by decrease number of
600  * streams if possible.
601  */
602 static inline void
603 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
604 {
605 	struct minstrel_mcs_group_data *mg;
606 	int tmp_max_streams, group, tmp_idx, tmp_prob;
607 	int tmp_tp = 0;
608 
609 	if (!mi->sta->deflink.ht_cap.ht_supported)
610 		return;
611 
612 	group = MI_RATE_GROUP(mi->max_tp_rate[0]);
613 	tmp_max_streams = minstrel_mcs_groups[group].streams;
614 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
615 		mg = &mi->groups[group];
616 		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
617 			continue;
618 
619 		tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate);
620 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg;
621 
622 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
623 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
624 				mi->max_prob_rate = mg->max_group_prob_rate;
625 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
626 								tmp_idx,
627 								tmp_prob);
628 		}
629 	}
630 }
631 
632 static u16
633 __minstrel_ht_get_sample_rate(struct minstrel_ht_sta *mi,
634 			      enum minstrel_sample_type type)
635 {
636 	u16 *rates = mi->sample[type].sample_rates;
637 	u16 cur;
638 	int i;
639 
640 	for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
641 		if (!rates[i])
642 			continue;
643 
644 		cur = rates[i];
645 		rates[i] = 0;
646 		return cur;
647 	}
648 
649 	return 0;
650 }
651 
652 static inline int
653 minstrel_ewma(int old, int new, int weight)
654 {
655 	int diff, incr;
656 
657 	diff = new - old;
658 	incr = (EWMA_DIV - weight) * diff / EWMA_DIV;
659 
660 	return old + incr;
661 }
662 
663 static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in)
664 {
665 	s32 out_1 = *prev_1;
666 	s32 out_2 = *prev_2;
667 	s32 val;
668 
669 	if (!in)
670 		in += 1;
671 
672 	if (!out_1) {
673 		val = out_1 = in;
674 		goto out;
675 	}
676 
677 	val = MINSTREL_AVG_COEFF1 * in;
678 	val += MINSTREL_AVG_COEFF2 * out_1;
679 	val += MINSTREL_AVG_COEFF3 * out_2;
680 	val >>= MINSTREL_SCALE;
681 
682 	if (val > 1 << MINSTREL_SCALE)
683 		val = 1 << MINSTREL_SCALE;
684 	if (val < 0)
685 		val = 1;
686 
687 out:
688 	*prev_2 = out_1;
689 	*prev_1 = val;
690 
691 	return val;
692 }
693 
694 /*
695 * Recalculate statistics and counters of a given rate
696 */
697 static void
698 minstrel_ht_calc_rate_stats(struct minstrel_priv *mp,
699 			    struct minstrel_rate_stats *mrs)
700 {
701 	unsigned int cur_prob;
702 
703 	if (unlikely(mrs->attempts > 0)) {
704 		cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts);
705 		minstrel_filter_avg_add(&mrs->prob_avg,
706 					&mrs->prob_avg_1, cur_prob);
707 		mrs->att_hist += mrs->attempts;
708 		mrs->succ_hist += mrs->success;
709 	}
710 
711 	mrs->last_success = mrs->success;
712 	mrs->last_attempts = mrs->attempts;
713 	mrs->success = 0;
714 	mrs->attempts = 0;
715 }
716 
717 static bool
718 minstrel_ht_find_sample_rate(struct minstrel_ht_sta *mi, int type, int idx)
719 {
720 	int i;
721 
722 	for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
723 		u16 cur = mi->sample[type].sample_rates[i];
724 
725 		if (cur == idx)
726 			return true;
727 
728 		if (!cur)
729 			break;
730 	}
731 
732 	return false;
733 }
734 
735 static int
736 minstrel_ht_move_sample_rates(struct minstrel_ht_sta *mi, int type,
737 			      u32 fast_rate_dur, u32 slow_rate_dur)
738 {
739 	u16 *rates = mi->sample[type].sample_rates;
740 	int i, j;
741 
742 	for (i = 0, j = 0; i < MINSTREL_SAMPLE_RATES; i++) {
743 		u32 duration;
744 		bool valid = false;
745 		u16 cur;
746 
747 		cur = rates[i];
748 		if (!cur)
749 			continue;
750 
751 		duration = minstrel_get_duration(cur);
752 		switch (type) {
753 		case MINSTREL_SAMPLE_TYPE_SLOW:
754 			valid = duration > fast_rate_dur &&
755 				duration < slow_rate_dur;
756 			break;
757 		case MINSTREL_SAMPLE_TYPE_INC:
758 		case MINSTREL_SAMPLE_TYPE_JUMP:
759 			valid = duration < fast_rate_dur;
760 			break;
761 		default:
762 			valid = false;
763 			break;
764 		}
765 
766 		if (!valid) {
767 			rates[i] = 0;
768 			continue;
769 		}
770 
771 		if (i == j)
772 			continue;
773 
774 		rates[j++] = cur;
775 		rates[i] = 0;
776 	}
777 
778 	return j;
779 }
780 
781 static int
782 minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta *mi, int group,
783 				  u32 max_duration)
784 {
785 	u16 supported = mi->supported[group];
786 	int i;
787 
788 	for (i = 0; i < MCS_GROUP_RATES && supported; i++, supported >>= 1) {
789 		if (!(supported & BIT(0)))
790 			continue;
791 
792 		if (minstrel_get_duration(MI_RATE(group, i)) >= max_duration)
793 			continue;
794 
795 		return i;
796 	}
797 
798 	return -1;
799 }
800 
801 /*
802  * Incremental update rates:
803  * Flip through groups and pick the first group rate that is faster than the
804  * highest currently selected rate
805  */
806 static u16
807 minstrel_ht_next_inc_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur)
808 {
809 	u8 type = MINSTREL_SAMPLE_TYPE_INC;
810 	int i, index = 0;
811 	u8 group;
812 
813 	group = mi->sample[type].sample_group;
814 	for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
815 		group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
816 
817 		index = minstrel_ht_group_min_rate_offset(mi, group,
818 							  fast_rate_dur);
819 		if (index < 0)
820 			continue;
821 
822 		index = MI_RATE(group, index & 0xf);
823 		if (!minstrel_ht_find_sample_rate(mi, type, index))
824 			goto out;
825 	}
826 	index = 0;
827 
828 out:
829 	mi->sample[type].sample_group = group;
830 
831 	return index;
832 }
833 
834 static int
835 minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta *mi, int group,
836 				   u16 supported, int offset)
837 {
838 	struct minstrel_mcs_group_data *mg = &mi->groups[group];
839 	u16 idx;
840 	int i;
841 
842 	for (i = 0; i < MCS_GROUP_RATES; i++) {
843 		idx = sample_table[mg->column][mg->index];
844 		if (++mg->index >= MCS_GROUP_RATES) {
845 			mg->index = 0;
846 			if (++mg->column >= ARRAY_SIZE(sample_table))
847 				mg->column = 0;
848 		}
849 
850 		if (idx < offset)
851 			continue;
852 
853 		if (!(supported & BIT(idx)))
854 			continue;
855 
856 		return MI_RATE(group, idx);
857 	}
858 
859 	return -1;
860 }
861 
862 /*
863  * Jump rates:
864  * Sample random rates, use those that are faster than the highest
865  * currently selected rate. Rates between the fastest and the slowest
866  * get sorted into the slow sample bucket, but only if it has room
867  */
868 static u16
869 minstrel_ht_next_jump_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur,
870 			   u32 slow_rate_dur, int *slow_rate_ofs)
871 {
872 	struct minstrel_rate_stats *mrs;
873 	u32 max_duration = slow_rate_dur;
874 	int i, index, offset;
875 	u16 *slow_rates;
876 	u16 supported;
877 	u32 duration;
878 	u8 group;
879 
880 	if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
881 		max_duration = fast_rate_dur;
882 
883 	slow_rates = mi->sample[MINSTREL_SAMPLE_TYPE_SLOW].sample_rates;
884 	group = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group;
885 	for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
886 		u8 type;
887 
888 		group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
889 
890 		supported = mi->supported[group];
891 		if (!supported)
892 			continue;
893 
894 		offset = minstrel_ht_group_min_rate_offset(mi, group,
895 							   max_duration);
896 		if (offset < 0)
897 			continue;
898 
899 		index = minstrel_ht_next_group_sample_rate(mi, group, supported,
900 							   offset);
901 		if (index < 0)
902 			continue;
903 
904 		duration = minstrel_get_duration(index);
905 		if (duration < fast_rate_dur)
906 			type = MINSTREL_SAMPLE_TYPE_JUMP;
907 		else
908 			type = MINSTREL_SAMPLE_TYPE_SLOW;
909 
910 		if (minstrel_ht_find_sample_rate(mi, type, index))
911 			continue;
912 
913 		if (type == MINSTREL_SAMPLE_TYPE_JUMP)
914 			goto found;
915 
916 		if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
917 			continue;
918 
919 		if (duration >= slow_rate_dur)
920 			continue;
921 
922 		/* skip slow rates with high success probability */
923 		mrs = minstrel_get_ratestats(mi, index);
924 		if (mrs->prob_avg > MINSTREL_FRAC(95, 100))
925 			continue;
926 
927 		slow_rates[(*slow_rate_ofs)++] = index;
928 		if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
929 			max_duration = fast_rate_dur;
930 	}
931 	index = 0;
932 
933 found:
934 	mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group = group;
935 
936 	return index;
937 }
938 
939 static void
940 minstrel_ht_refill_sample_rates(struct minstrel_ht_sta *mi)
941 {
942 	u32 prob_dur = minstrel_get_duration(mi->max_prob_rate);
943 	u32 tp_dur = minstrel_get_duration(mi->max_tp_rate[0]);
944 	u32 tp2_dur = minstrel_get_duration(mi->max_tp_rate[1]);
945 	u32 fast_rate_dur = min(min(tp_dur, tp2_dur), prob_dur);
946 	u32 slow_rate_dur = max(max(tp_dur, tp2_dur), prob_dur);
947 	u16 *rates;
948 	int i, j;
949 
950 	rates = mi->sample[MINSTREL_SAMPLE_TYPE_INC].sample_rates;
951 	i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_INC,
952 					  fast_rate_dur, slow_rate_dur);
953 	while (i < MINSTREL_SAMPLE_RATES) {
954 		rates[i] = minstrel_ht_next_inc_rate(mi, tp_dur);
955 		if (!rates[i])
956 			break;
957 
958 		i++;
959 	}
960 
961 	rates = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_rates;
962 	i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_JUMP,
963 					  fast_rate_dur, slow_rate_dur);
964 	j = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_SLOW,
965 					  fast_rate_dur, slow_rate_dur);
966 	while (i < MINSTREL_SAMPLE_RATES) {
967 		rates[i] = minstrel_ht_next_jump_rate(mi, fast_rate_dur,
968 						      slow_rate_dur, &j);
969 		if (!rates[i])
970 			break;
971 
972 		i++;
973 	}
974 
975 	for (i = 0; i < ARRAY_SIZE(mi->sample); i++)
976 		memcpy(mi->sample[i].cur_sample_rates, mi->sample[i].sample_rates,
977 		       sizeof(mi->sample[i].cur_sample_rates));
978 }
979 
980 
981 /*
982  * Update rate statistics and select new primary rates
983  *
984  * Rules for rate selection:
985  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
986  *    probability and throughput during strong fluctuations
987  *  - as long as the max prob rate has a probability of more than 75%, pick
988  *    higher throughput rates, even if the probablity is a bit lower
989  */
990 static void
991 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
992 {
993 	struct minstrel_mcs_group_data *mg;
994 	struct minstrel_rate_stats *mrs;
995 	int group, i, j, cur_prob;
996 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
997 	u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate;
998 	u16 index;
999 	bool ht_supported = mi->sta->deflink.ht_cap.ht_supported;
1000 
1001 	if (mi->ampdu_packets > 0) {
1002 		if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
1003 			mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
1004 				MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
1005 					      EWMA_LEVEL);
1006 		else
1007 			mi->avg_ampdu_len = 0;
1008 		mi->ampdu_len = 0;
1009 		mi->ampdu_packets = 0;
1010 	}
1011 
1012 	if (mi->supported[MINSTREL_CCK_GROUP])
1013 		group = MINSTREL_CCK_GROUP;
1014 	else if (mi->supported[MINSTREL_OFDM_GROUP])
1015 		group = MINSTREL_OFDM_GROUP;
1016 	else
1017 		group = 0;
1018 
1019 	index = MI_RATE(group, 0);
1020 	for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++)
1021 		tmp_legacy_tp_rate[j] = index;
1022 
1023 	if (mi->supported[MINSTREL_VHT_GROUP_0])
1024 		group = MINSTREL_VHT_GROUP_0;
1025 	else if (ht_supported)
1026 		group = MINSTREL_HT_GROUP_0;
1027 	else if (mi->supported[MINSTREL_CCK_GROUP])
1028 		group = MINSTREL_CCK_GROUP;
1029 	else
1030 		group = MINSTREL_OFDM_GROUP;
1031 
1032 	index = MI_RATE(group, 0);
1033 	tmp_max_prob_rate = index;
1034 	for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
1035 		tmp_mcs_tp_rate[j] = index;
1036 
1037 	/* Find best rate sets within all MCS groups*/
1038 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1039 		u16 *tp_rate = tmp_mcs_tp_rate;
1040 		u16 last_prob = 0;
1041 
1042 		mg = &mi->groups[group];
1043 		if (!mi->supported[group])
1044 			continue;
1045 
1046 		/* (re)Initialize group rate indexes */
1047 		for(j = 0; j < MAX_THR_RATES; j++)
1048 			tmp_group_tp_rate[j] = MI_RATE(group, 0);
1049 
1050 		if (group == MINSTREL_CCK_GROUP && ht_supported)
1051 			tp_rate = tmp_legacy_tp_rate;
1052 
1053 		for (i = MCS_GROUP_RATES - 1; i >= 0; i--) {
1054 			if (!(mi->supported[group] & BIT(i)))
1055 				continue;
1056 
1057 			index = MI_RATE(group, i);
1058 
1059 			mrs = &mg->rates[i];
1060 			mrs->retry_updated = false;
1061 			minstrel_ht_calc_rate_stats(mp, mrs);
1062 
1063 			if (mrs->att_hist)
1064 				last_prob = max(last_prob, mrs->prob_avg);
1065 			else
1066 				mrs->prob_avg = max(last_prob, mrs->prob_avg);
1067 			cur_prob = mrs->prob_avg;
1068 
1069 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
1070 				continue;
1071 
1072 			/* Find max throughput rate set */
1073 			minstrel_ht_sort_best_tp_rates(mi, index, tp_rate);
1074 
1075 			/* Find max throughput rate set within a group */
1076 			minstrel_ht_sort_best_tp_rates(mi, index,
1077 						       tmp_group_tp_rate);
1078 		}
1079 
1080 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
1081 		       sizeof(mg->max_group_tp_rate));
1082 	}
1083 
1084 	/* Assign new rate set per sta */
1085 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate,
1086 					 tmp_legacy_tp_rate);
1087 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
1088 
1089 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1090 		if (!mi->supported[group])
1091 			continue;
1092 
1093 		mg = &mi->groups[group];
1094 		mg->max_group_prob_rate = MI_RATE(group, 0);
1095 
1096 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1097 			if (!(mi->supported[group] & BIT(i)))
1098 				continue;
1099 
1100 			index = MI_RATE(group, i);
1101 
1102 			/* Find max probability rate per group and global */
1103 			minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate,
1104 						       index);
1105 		}
1106 	}
1107 
1108 	mi->max_prob_rate = tmp_max_prob_rate;
1109 
1110 	/* Try to increase robustness of max_prob_rate*/
1111 	minstrel_ht_prob_rate_reduce_streams(mi);
1112 	minstrel_ht_refill_sample_rates(mi);
1113 
1114 #ifdef CONFIG_MAC80211_DEBUGFS
1115 	/* use fixed index if set */
1116 	if (mp->fixed_rate_idx != -1) {
1117 		for (i = 0; i < 4; i++)
1118 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
1119 		mi->max_prob_rate = mp->fixed_rate_idx;
1120 	}
1121 #endif
1122 
1123 	/* Reset update timer */
1124 	mi->last_stats_update = jiffies;
1125 	mi->sample_time = jiffies;
1126 }
1127 
1128 static bool
1129 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1130 			 struct ieee80211_tx_rate *rate)
1131 {
1132 	int i;
1133 
1134 	if (rate->idx < 0)
1135 		return false;
1136 
1137 	if (!rate->count)
1138 		return false;
1139 
1140 	if (rate->flags & IEEE80211_TX_RC_MCS ||
1141 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
1142 		return true;
1143 
1144 	for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++)
1145 		if (rate->idx == mp->cck_rates[i])
1146 			return true;
1147 
1148 	for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++)
1149 		if (rate->idx == mp->ofdm_rates[mi->band][i])
1150 			return true;
1151 
1152 	return false;
1153 }
1154 
1155 static void
1156 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
1157 {
1158 	int group, orig_group;
1159 
1160 	orig_group = group = MI_RATE_GROUP(*idx);
1161 	while (group > 0) {
1162 		group--;
1163 
1164 		if (!mi->supported[group])
1165 			continue;
1166 
1167 		if (minstrel_mcs_groups[group].streams >
1168 		    minstrel_mcs_groups[orig_group].streams)
1169 			continue;
1170 
1171 		if (primary)
1172 			*idx = mi->groups[group].max_group_tp_rate[0];
1173 		else
1174 			*idx = mi->groups[group].max_group_tp_rate[1];
1175 		break;
1176 	}
1177 }
1178 
1179 static void
1180 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
1181                       void *priv_sta, struct ieee80211_tx_status *st)
1182 {
1183 	struct ieee80211_tx_info *info = st->info;
1184 	struct minstrel_ht_sta *mi = priv_sta;
1185 	struct ieee80211_tx_rate *ar = info->status.rates;
1186 	struct minstrel_rate_stats *rate, *rate2;
1187 	struct minstrel_priv *mp = priv;
1188 	u32 update_interval = mp->update_interval;
1189 	bool last, update = false;
1190 	int i;
1191 
1192 	/* Ignore packet that was sent with noAck flag */
1193 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1194 		return;
1195 
1196 	/* This packet was aggregated but doesn't carry status info */
1197 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
1198 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
1199 		return;
1200 
1201 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
1202 		info->status.ampdu_ack_len =
1203 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
1204 		info->status.ampdu_len = 1;
1205 	}
1206 
1207 	/* wraparound */
1208 	if (mi->total_packets >= ~0 - info->status.ampdu_len) {
1209 		mi->total_packets = 0;
1210 		mi->sample_packets = 0;
1211 	}
1212 
1213 	mi->total_packets += info->status.ampdu_len;
1214 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
1215 		mi->sample_packets += info->status.ampdu_len;
1216 
1217 	mi->ampdu_packets++;
1218 	mi->ampdu_len += info->status.ampdu_len;
1219 
1220 	last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]);
1221 	for (i = 0; !last; i++) {
1222 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
1223 		       !minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]);
1224 
1225 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
1226 		if (last)
1227 			rate->success += info->status.ampdu_ack_len;
1228 
1229 		rate->attempts += ar[i].count * info->status.ampdu_len;
1230 	}
1231 
1232 	if (mp->hw->max_rates > 1) {
1233 		/*
1234 		 * check for sudden death of spatial multiplexing,
1235 		 * downgrade to a lower number of streams if necessary.
1236 		 */
1237 		rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
1238 		if (rate->attempts > 30 &&
1239 		    rate->success < rate->attempts / 4) {
1240 			minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
1241 			update = true;
1242 		}
1243 
1244 		rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
1245 		if (rate2->attempts > 30 &&
1246 		    rate2->success < rate2->attempts / 4) {
1247 			minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
1248 			update = true;
1249 		}
1250 	}
1251 
1252 	if (time_after(jiffies, mi->last_stats_update + update_interval)) {
1253 		update = true;
1254 		minstrel_ht_update_stats(mp, mi);
1255 	}
1256 
1257 	if (update)
1258 		minstrel_ht_update_rates(mp, mi);
1259 }
1260 
1261 static void
1262 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1263                          int index)
1264 {
1265 	struct minstrel_rate_stats *mrs;
1266 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
1267 	unsigned int cw = mp->cw_min;
1268 	unsigned int ctime = 0;
1269 	unsigned int t_slot = 9; /* FIXME */
1270 	unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
1271 	unsigned int overhead = 0, overhead_rtscts = 0;
1272 
1273 	mrs = minstrel_get_ratestats(mi, index);
1274 	if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) {
1275 		mrs->retry_count = 1;
1276 		mrs->retry_count_rtscts = 1;
1277 		return;
1278 	}
1279 
1280 	mrs->retry_count = 2;
1281 	mrs->retry_count_rtscts = 2;
1282 	mrs->retry_updated = true;
1283 
1284 	tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
1285 
1286 	/* Contention time for first 2 tries */
1287 	ctime = (t_slot * cw) >> 1;
1288 	cw = min((cw << 1) | 1, mp->cw_max);
1289 	ctime += (t_slot * cw) >> 1;
1290 	cw = min((cw << 1) | 1, mp->cw_max);
1291 
1292 	if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) {
1293 		overhead = mi->overhead_legacy;
1294 		overhead_rtscts = mi->overhead_legacy_rtscts;
1295 	} else {
1296 		overhead = mi->overhead;
1297 		overhead_rtscts = mi->overhead_rtscts;
1298 	}
1299 
1300 	/* Total TX time for data and Contention after first 2 tries */
1301 	tx_time = ctime + 2 * (overhead + tx_time_data);
1302 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
1303 
1304 	/* See how many more tries we can fit inside segment size */
1305 	do {
1306 		/* Contention time for this try */
1307 		ctime = (t_slot * cw) >> 1;
1308 		cw = min((cw << 1) | 1, mp->cw_max);
1309 
1310 		/* Total TX time after this try */
1311 		tx_time += ctime + overhead + tx_time_data;
1312 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
1313 
1314 		if (tx_time_rtscts < mp->segment_size)
1315 			mrs->retry_count_rtscts++;
1316 	} while ((tx_time < mp->segment_size) &&
1317 	         (++mrs->retry_count < mp->max_retry));
1318 }
1319 
1320 
1321 static void
1322 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1323                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
1324 {
1325 	int group_idx = MI_RATE_GROUP(index);
1326 	const struct mcs_group *group = &minstrel_mcs_groups[group_idx];
1327 	struct minstrel_rate_stats *mrs;
1328 	u8 idx;
1329 	u16 flags = group->flags;
1330 
1331 	mrs = minstrel_get_ratestats(mi, index);
1332 	if (!mrs->retry_updated)
1333 		minstrel_calc_retransmit(mp, mi, index);
1334 
1335 	if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
1336 		ratetbl->rate[offset].count = 2;
1337 		ratetbl->rate[offset].count_rts = 2;
1338 		ratetbl->rate[offset].count_cts = 2;
1339 	} else {
1340 		ratetbl->rate[offset].count = mrs->retry_count;
1341 		ratetbl->rate[offset].count_cts = mrs->retry_count;
1342 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
1343 	}
1344 
1345 	index = MI_RATE_IDX(index);
1346 	if (group_idx == MINSTREL_CCK_GROUP)
1347 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
1348 	else if (group_idx == MINSTREL_OFDM_GROUP)
1349 		idx = mp->ofdm_rates[mi->band][index %
1350 					       ARRAY_SIZE(mp->ofdm_rates[0])];
1351 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
1352 		idx = ((group->streams - 1) << 4) |
1353 		      (index & 0xF);
1354 	else
1355 		idx = index + (group->streams - 1) * 8;
1356 
1357 	/* enable RTS/CTS if needed:
1358 	 *  - if station is in dynamic SMPS (and streams > 1)
1359 	 *  - for fallback rates, to increase chances of getting through
1360 	 */
1361 	if (offset > 0 ||
1362 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
1363 	     group->streams > 1)) {
1364 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
1365 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
1366 	}
1367 
1368 	ratetbl->rate[offset].idx = idx;
1369 	ratetbl->rate[offset].flags = flags;
1370 }
1371 
1372 static inline int
1373 minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate)
1374 {
1375 	int group = MI_RATE_GROUP(rate);
1376 	rate = MI_RATE_IDX(rate);
1377 	return mi->groups[group].rates[rate].prob_avg;
1378 }
1379 
1380 static int
1381 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
1382 {
1383 	int group = MI_RATE_GROUP(mi->max_prob_rate);
1384 	const struct mcs_group *g = &minstrel_mcs_groups[group];
1385 	int rate = MI_RATE_IDX(mi->max_prob_rate);
1386 	unsigned int duration;
1387 
1388 	/* Disable A-MSDU if max_prob_rate is bad */
1389 	if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100))
1390 		return 1;
1391 
1392 	duration = g->duration[rate];
1393 	duration <<= g->shift;
1394 
1395 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1396 	if (duration > MCS_DURATION(1, 0, 52))
1397 		return 500;
1398 
1399 	/*
1400 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1401 	 * data packet size
1402 	 */
1403 	if (duration > MCS_DURATION(1, 0, 104))
1404 		return 1600;
1405 
1406 	/*
1407 	 * If the rate is slower than single-stream MCS7, or if the max throughput
1408 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
1409 	 * data packet size
1410 	 */
1411 	if (duration > MCS_DURATION(1, 0, 260) ||
1412 	    (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) <
1413 	     MINSTREL_FRAC(75, 100)))
1414 		return 3200;
1415 
1416 	/*
1417 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1418 	 * Since aggregation sessions are started/stopped without txq flush, use
1419 	 * the limit here to avoid the complexity of having to de-aggregate
1420 	 * packets in the queue.
1421 	 */
1422 	if (!mi->sta->deflink.vht_cap.vht_supported)
1423 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
1424 
1425 	/* unlimited */
1426 	return 0;
1427 }
1428 
1429 static void
1430 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1431 {
1432 	struct ieee80211_sta_rates *rates;
1433 	int i = 0;
1434 
1435 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
1436 	if (!rates)
1437 		return;
1438 
1439 	/* Start with max_tp_rate[0] */
1440 	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
1441 
1442 	if (mp->hw->max_rates >= 3) {
1443 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
1444 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
1445 	}
1446 
1447 	if (mp->hw->max_rates >= 2) {
1448 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1449 	}
1450 
1451 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1452 	rates->rate[i].idx = -1;
1453 	rate_control_set_rates(mp->hw, mi->sta, rates);
1454 }
1455 
1456 static u16
1457 minstrel_ht_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1458 {
1459 	u8 seq;
1460 
1461 	if (mp->hw->max_rates > 1) {
1462 		seq = mi->sample_seq;
1463 		mi->sample_seq = (seq + 1) % ARRAY_SIZE(minstrel_sample_seq);
1464 		seq = minstrel_sample_seq[seq];
1465 	} else {
1466 		seq = MINSTREL_SAMPLE_TYPE_INC;
1467 	}
1468 
1469 	return __minstrel_ht_get_sample_rate(mi, seq);
1470 }
1471 
1472 static void
1473 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1474                      struct ieee80211_tx_rate_control *txrc)
1475 {
1476 	const struct mcs_group *sample_group;
1477 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1478 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1479 	struct minstrel_ht_sta *mi = priv_sta;
1480 	struct minstrel_priv *mp = priv;
1481 	u16 sample_idx;
1482 
1483 	info->flags |= mi->tx_flags;
1484 
1485 #ifdef CONFIG_MAC80211_DEBUGFS
1486 	if (mp->fixed_rate_idx != -1)
1487 		return;
1488 #endif
1489 
1490 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1491 	if (mp->hw->max_rates == 1 &&
1492 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1493 		return;
1494 
1495 	if (time_is_after_jiffies(mi->sample_time))
1496 		return;
1497 
1498 	mi->sample_time = jiffies + MINSTREL_SAMPLE_INTERVAL;
1499 	sample_idx = minstrel_ht_get_sample_rate(mp, mi);
1500 	if (!sample_idx)
1501 		return;
1502 
1503 	sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)];
1504 	sample_idx = MI_RATE_IDX(sample_idx);
1505 
1506 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1507 	    (sample_idx >= 4) != txrc->short_preamble)
1508 		return;
1509 
1510 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1511 	rate->count = 1;
1512 
1513 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1514 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1515 		rate->idx = mp->cck_rates[idx];
1516 	} else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) {
1517 		int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]);
1518 		rate->idx = mp->ofdm_rates[mi->band][idx];
1519 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1520 		ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx),
1521 				       sample_group->streams);
1522 	} else {
1523 		rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1524 	}
1525 
1526 	rate->flags = sample_group->flags;
1527 }
1528 
1529 static void
1530 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1531 		       struct ieee80211_supported_band *sband,
1532 		       struct ieee80211_sta *sta)
1533 {
1534 	int i;
1535 
1536 	if (sband->band != NL80211_BAND_2GHZ)
1537 		return;
1538 
1539 	if (sta->deflink.ht_cap.ht_supported &&
1540 	    !ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1541 		return;
1542 
1543 	for (i = 0; i < 4; i++) {
1544 		if (mp->cck_rates[i] == 0xff ||
1545 		    !rate_supported(sta, sband->band, mp->cck_rates[i]))
1546 			continue;
1547 
1548 		mi->supported[MINSTREL_CCK_GROUP] |= BIT(i);
1549 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1550 			mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4);
1551 	}
1552 }
1553 
1554 static void
1555 minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1556 			struct ieee80211_supported_band *sband,
1557 			struct ieee80211_sta *sta)
1558 {
1559 	const u8 *rates;
1560 	int i;
1561 
1562 	if (sta->deflink.ht_cap.ht_supported)
1563 		return;
1564 
1565 	rates = mp->ofdm_rates[sband->band];
1566 	for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) {
1567 		if (rates[i] == 0xff ||
1568 		    !rate_supported(sta, sband->band, rates[i]))
1569 			continue;
1570 
1571 		mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i);
1572 	}
1573 }
1574 
1575 static void
1576 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1577 			struct cfg80211_chan_def *chandef,
1578 			struct ieee80211_sta *sta, void *priv_sta)
1579 {
1580 	struct minstrel_priv *mp = priv;
1581 	struct minstrel_ht_sta *mi = priv_sta;
1582 	struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs;
1583 	u16 ht_cap = sta->deflink.ht_cap.cap;
1584 	struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
1585 	const struct ieee80211_rate *ctl_rate;
1586 	bool ldpc, erp;
1587 	int use_vht;
1588 	int n_supported = 0;
1589 	int ack_dur;
1590 	int stbc;
1591 	int i;
1592 
1593 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1594 
1595 	if (vht_cap->vht_supported)
1596 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1597 	else
1598 		use_vht = 0;
1599 
1600 	memset(mi, 0, sizeof(*mi));
1601 
1602 	mi->sta = sta;
1603 	mi->band = sband->band;
1604 	mi->last_stats_update = jiffies;
1605 
1606 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1607 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1608 	mi->overhead += ack_dur;
1609 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1610 
1611 	ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)];
1612 	erp = ctl_rate->flags & IEEE80211_RATE_ERP_G;
1613 	ack_dur = ieee80211_frame_duration(sband->band, 10,
1614 					   ctl_rate->bitrate, erp, 1,
1615 					   ieee80211_chandef_get_shift(chandef));
1616 	mi->overhead_legacy = ack_dur;
1617 	mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur;
1618 
1619 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1620 
1621 	if (!use_vht) {
1622 		stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1623 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1624 
1625 		ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1626 	} else {
1627 		stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1628 			IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1629 
1630 		ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1631 	}
1632 
1633 	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1634 	if (ldpc)
1635 		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1636 
1637 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1638 		u32 gflags = minstrel_mcs_groups[i].flags;
1639 		int bw, nss;
1640 
1641 		mi->supported[i] = 0;
1642 		if (minstrel_ht_is_legacy_group(i))
1643 			continue;
1644 
1645 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1646 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1647 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1648 					continue;
1649 			} else {
1650 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1651 					continue;
1652 			}
1653 		}
1654 
1655 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1656 		    sta->deflink.bandwidth < IEEE80211_STA_RX_BW_40)
1657 			continue;
1658 
1659 		nss = minstrel_mcs_groups[i].streams;
1660 
1661 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1662 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1663 			continue;
1664 
1665 		/* HT rate */
1666 		if (gflags & IEEE80211_TX_RC_MCS) {
1667 			if (use_vht && minstrel_vht_only)
1668 				continue;
1669 
1670 			mi->supported[i] = mcs->rx_mask[nss - 1];
1671 			if (mi->supported[i])
1672 				n_supported++;
1673 			continue;
1674 		}
1675 
1676 		/* VHT rate */
1677 		if (!vht_cap->vht_supported ||
1678 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1679 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1680 			continue;
1681 
1682 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1683 			if (sta->deflink.bandwidth < IEEE80211_STA_RX_BW_80 ||
1684 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1685 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1686 				continue;
1687 			}
1688 		}
1689 
1690 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1691 			bw = BW_40;
1692 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1693 			bw = BW_80;
1694 		else
1695 			bw = BW_20;
1696 
1697 		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1698 				vht_cap->vht_mcs.tx_mcs_map);
1699 
1700 		if (mi->supported[i])
1701 			n_supported++;
1702 	}
1703 
1704 	minstrel_ht_update_cck(mp, mi, sband, sta);
1705 	minstrel_ht_update_ofdm(mp, mi, sband, sta);
1706 
1707 	/* create an initial rate table with the lowest supported rates */
1708 	minstrel_ht_update_stats(mp, mi);
1709 	minstrel_ht_update_rates(mp, mi);
1710 }
1711 
1712 static void
1713 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1714 		      struct cfg80211_chan_def *chandef,
1715                       struct ieee80211_sta *sta, void *priv_sta)
1716 {
1717 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1718 }
1719 
1720 static void
1721 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1722 			struct cfg80211_chan_def *chandef,
1723                         struct ieee80211_sta *sta, void *priv_sta,
1724                         u32 changed)
1725 {
1726 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1727 }
1728 
1729 static void *
1730 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1731 {
1732 	struct ieee80211_supported_band *sband;
1733 	struct minstrel_ht_sta *mi;
1734 	struct minstrel_priv *mp = priv;
1735 	struct ieee80211_hw *hw = mp->hw;
1736 	int max_rates = 0;
1737 	int i;
1738 
1739 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1740 		sband = hw->wiphy->bands[i];
1741 		if (sband && sband->n_bitrates > max_rates)
1742 			max_rates = sband->n_bitrates;
1743 	}
1744 
1745 	return kzalloc(sizeof(*mi), gfp);
1746 }
1747 
1748 static void
1749 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1750 {
1751 	kfree(priv_sta);
1752 }
1753 
1754 static void
1755 minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband,
1756 			    const s16 *bitrates, int n_rates, u32 rate_flags)
1757 {
1758 	int i, j;
1759 
1760 	for (i = 0; i < sband->n_bitrates; i++) {
1761 		struct ieee80211_rate *rate = &sband->bitrates[i];
1762 
1763 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1764 			continue;
1765 
1766 		for (j = 0; j < n_rates; j++) {
1767 			if (rate->bitrate != bitrates[j])
1768 				continue;
1769 
1770 			dest[j] = i;
1771 			break;
1772 		}
1773 	}
1774 }
1775 
1776 static void
1777 minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1778 {
1779 	static const s16 bitrates[4] = { 10, 20, 55, 110 };
1780 	struct ieee80211_supported_band *sband;
1781 	u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1782 
1783 	memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates));
1784 	sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1785 	if (!sband)
1786 		return;
1787 
1788 	BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates));
1789 	minstrel_ht_fill_rate_array(mp->cck_rates, sband,
1790 				    minstrel_cck_bitrates,
1791 				    ARRAY_SIZE(minstrel_cck_bitrates),
1792 				    rate_flags);
1793 }
1794 
1795 static void
1796 minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band)
1797 {
1798 	static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
1799 	struct ieee80211_supported_band *sband;
1800 	u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1801 
1802 	memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band]));
1803 	sband = mp->hw->wiphy->bands[band];
1804 	if (!sband)
1805 		return;
1806 
1807 	BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates));
1808 	minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband,
1809 				    minstrel_ofdm_bitrates,
1810 				    ARRAY_SIZE(minstrel_ofdm_bitrates),
1811 				    rate_flags);
1812 }
1813 
1814 static void *
1815 minstrel_ht_alloc(struct ieee80211_hw *hw)
1816 {
1817 	struct minstrel_priv *mp;
1818 	int i;
1819 
1820 	mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1821 	if (!mp)
1822 		return NULL;
1823 
1824 	/* contention window settings
1825 	 * Just an approximation. Using the per-queue values would complicate
1826 	 * the calculations and is probably unnecessary */
1827 	mp->cw_min = 15;
1828 	mp->cw_max = 1023;
1829 
1830 	/* maximum time that the hw is allowed to stay in one MRR segment */
1831 	mp->segment_size = 6000;
1832 
1833 	if (hw->max_rate_tries > 0)
1834 		mp->max_retry = hw->max_rate_tries;
1835 	else
1836 		/* safe default, does not necessarily have to match hw properties */
1837 		mp->max_retry = 7;
1838 
1839 	if (hw->max_rates >= 4)
1840 		mp->has_mrr = true;
1841 
1842 	mp->hw = hw;
1843 	mp->update_interval = HZ / 20;
1844 
1845 	minstrel_ht_init_cck_rates(mp);
1846 	for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++)
1847 	    minstrel_ht_init_ofdm_rates(mp, i);
1848 
1849 	return mp;
1850 }
1851 
1852 #ifdef CONFIG_MAC80211_DEBUGFS
1853 static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv,
1854 				    struct dentry *debugfsdir)
1855 {
1856 	struct minstrel_priv *mp = priv;
1857 
1858 	mp->fixed_rate_idx = (u32) -1;
1859 	debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1860 			   &mp->fixed_rate_idx);
1861 }
1862 #endif
1863 
1864 static void
1865 minstrel_ht_free(void *priv)
1866 {
1867 	kfree(priv);
1868 }
1869 
1870 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1871 {
1872 	struct minstrel_ht_sta *mi = priv_sta;
1873 	int i, j, prob, tp_avg;
1874 
1875 	i = MI_RATE_GROUP(mi->max_tp_rate[0]);
1876 	j = MI_RATE_IDX(mi->max_tp_rate[0]);
1877 	prob = mi->groups[i].rates[j].prob_avg;
1878 
1879 	/* convert tp_avg from pkt per second in kbps */
1880 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1881 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1882 
1883 	return tp_avg;
1884 }
1885 
1886 static const struct rate_control_ops mac80211_minstrel_ht = {
1887 	.name = "minstrel_ht",
1888 	.capa = RATE_CTRL_CAPA_AMPDU_TRIGGER,
1889 	.tx_status_ext = minstrel_ht_tx_status,
1890 	.get_rate = minstrel_ht_get_rate,
1891 	.rate_init = minstrel_ht_rate_init,
1892 	.rate_update = minstrel_ht_rate_update,
1893 	.alloc_sta = minstrel_ht_alloc_sta,
1894 	.free_sta = minstrel_ht_free_sta,
1895 	.alloc = minstrel_ht_alloc,
1896 	.free = minstrel_ht_free,
1897 #ifdef CONFIG_MAC80211_DEBUGFS
1898 	.add_debugfs = minstrel_ht_add_debugfs,
1899 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1900 #endif
1901 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1902 };
1903 
1904 
1905 static void __init init_sample_table(void)
1906 {
1907 	int col, i, new_idx;
1908 	u8 rnd[MCS_GROUP_RATES];
1909 
1910 	memset(sample_table, 0xff, sizeof(sample_table));
1911 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1912 		prandom_bytes(rnd, sizeof(rnd));
1913 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1914 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1915 			while (sample_table[col][new_idx] != 0xff)
1916 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1917 
1918 			sample_table[col][new_idx] = i;
1919 		}
1920 	}
1921 }
1922 
1923 int __init
1924 rc80211_minstrel_init(void)
1925 {
1926 	init_sample_table();
1927 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1928 }
1929 
1930 void
1931 rc80211_minstrel_exit(void)
1932 {
1933 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1934 }
1935