1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
4  */
5 #include <linux/netdevice.h>
6 #include <linux/types.h>
7 #include <linux/skbuff.h>
8 #include <linux/debugfs.h>
9 #include <linux/random.h>
10 #include <linux/moduleparam.h>
11 #include <linux/ieee80211.h>
12 #include <net/mac80211.h>
13 #include "rate.h"
14 #include "sta_info.h"
15 #include "rc80211_minstrel.h"
16 #include "rc80211_minstrel_ht.h"
17 
18 #define AVG_AMPDU_SIZE	16
19 #define AVG_PKT_SIZE	1200
20 
21 #define SAMPLE_SWITCH_THR	100
22 
23 /* Number of bits for an average sized packet */
24 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25 
26 /* Number of symbols for a packet with (bps) bits per symbol */
27 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28 
29 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30 #define MCS_SYMBOL_TIME(sgi, syms)					\
31 	(sgi ?								\
32 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
33 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
34 	)
35 
36 /* Transmit duration for the raw data part of an average sized packet */
37 #define MCS_DURATION(streams, sgi, bps) \
38 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39 
40 #define BW_20			0
41 #define BW_40			1
42 #define BW_80			2
43 
44 /*
45  * Define group sort order: HT40 -> SGI -> #streams
46  */
47 #define GROUP_IDX(_streams, _sgi, _ht40)	\
48 	MINSTREL_HT_GROUP_0 +			\
49 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
50 	MINSTREL_MAX_STREAMS * _sgi +	\
51 	_streams - 1
52 
53 #define _MAX(a, b) (((a)>(b))?(a):(b))
54 
55 #define GROUP_SHIFT(duration)						\
56 	_MAX(0, 16 - __builtin_clz(duration))
57 
58 /* MCS rate information for an MCS group */
59 #define __MCS_GROUP(_streams, _sgi, _ht40, _s)				\
60 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
61 	.streams = _streams,						\
62 	.shift = _s,							\
63 	.bw = _ht40,							\
64 	.flags =							\
65 		IEEE80211_TX_RC_MCS |					\
66 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
67 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
68 	.duration = {							\
69 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s,	\
70 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s,	\
71 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s,	\
72 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s,	\
73 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s,	\
74 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s,	\
75 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s,	\
76 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s	\
77 	}								\
78 }
79 
80 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40)				\
81 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
82 
83 #define MCS_GROUP(_streams, _sgi, _ht40)				\
84 	__MCS_GROUP(_streams, _sgi, _ht40,				\
85 		    MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
86 
87 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
88 	(MINSTREL_VHT_GROUP_0 +						\
89 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
90 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
91 	 (_streams) - 1)
92 
93 #define BW2VBPS(_bw, r3, r2, r1)					\
94 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
95 
96 #define __VHT_GROUP(_streams, _sgi, _bw, _s)				\
97 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
98 	.streams = _streams,						\
99 	.shift = _s,							\
100 	.bw = _bw,							\
101 	.flags =							\
102 		IEEE80211_TX_RC_VHT_MCS |				\
103 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
104 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
105 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
106 	.duration = {							\
107 		MCS_DURATION(_streams, _sgi,				\
108 			     BW2VBPS(_bw,  117,  54,  26)) >> _s,	\
109 		MCS_DURATION(_streams, _sgi,				\
110 			     BW2VBPS(_bw,  234, 108,  52)) >> _s,	\
111 		MCS_DURATION(_streams, _sgi,				\
112 			     BW2VBPS(_bw,  351, 162,  78)) >> _s,	\
113 		MCS_DURATION(_streams, _sgi,				\
114 			     BW2VBPS(_bw,  468, 216, 104)) >> _s,	\
115 		MCS_DURATION(_streams, _sgi,				\
116 			     BW2VBPS(_bw,  702, 324, 156)) >> _s,	\
117 		MCS_DURATION(_streams, _sgi,				\
118 			     BW2VBPS(_bw,  936, 432, 208)) >> _s,	\
119 		MCS_DURATION(_streams, _sgi,				\
120 			     BW2VBPS(_bw, 1053, 486, 234)) >> _s,	\
121 		MCS_DURATION(_streams, _sgi,				\
122 			     BW2VBPS(_bw, 1170, 540, 260)) >> _s,	\
123 		MCS_DURATION(_streams, _sgi,				\
124 			     BW2VBPS(_bw, 1404, 648, 312)) >> _s,	\
125 		MCS_DURATION(_streams, _sgi,				\
126 			     BW2VBPS(_bw, 1560, 720, 346)) >> _s	\
127 	}								\
128 }
129 
130 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw)				\
131 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi,			\
132 				 BW2VBPS(_bw,  117,  54,  26)))
133 
134 #define VHT_GROUP(_streams, _sgi, _bw)					\
135 	__VHT_GROUP(_streams, _sgi, _bw,				\
136 		    VHT_GROUP_SHIFT(_streams, _sgi, _bw))
137 
138 #define CCK_DURATION(_bitrate, _short, _len)		\
139 	(1000 * (10 /* SIFS */ +			\
140 	 (_short ? 72 + 24 : 144 + 48) +		\
141 	 (8 * (_len + 4) * 10) / (_bitrate)))
142 
143 #define CCK_ACK_DURATION(_bitrate, _short)			\
144 	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
145 	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
146 
147 #define CCK_DURATION_LIST(_short, _s)			\
148 	CCK_ACK_DURATION(10, _short) >> _s,		\
149 	CCK_ACK_DURATION(20, _short) >> _s,		\
150 	CCK_ACK_DURATION(55, _short) >> _s,		\
151 	CCK_ACK_DURATION(110, _short) >> _s
152 
153 #define __CCK_GROUP(_s)					\
154 	[MINSTREL_CCK_GROUP] = {			\
155 		.streams = 1,				\
156 		.flags = 0,				\
157 		.shift = _s,				\
158 		.duration = {				\
159 			CCK_DURATION_LIST(false, _s),	\
160 			CCK_DURATION_LIST(true, _s)	\
161 		}					\
162 	}
163 
164 #define CCK_GROUP_SHIFT					\
165 	GROUP_SHIFT(CCK_ACK_DURATION(10, false))
166 
167 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
168 
169 
170 static bool minstrel_vht_only = true;
171 module_param(minstrel_vht_only, bool, 0644);
172 MODULE_PARM_DESC(minstrel_vht_only,
173 		 "Use only VHT rates when VHT is supported by sta.");
174 
175 /*
176  * To enable sufficiently targeted rate sampling, MCS rates are divided into
177  * groups, based on the number of streams and flags (HT40, SGI) that they
178  * use.
179  *
180  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
181  * BW -> SGI -> #streams
182  */
183 const struct mcs_group minstrel_mcs_groups[] = {
184 	MCS_GROUP(1, 0, BW_20),
185 	MCS_GROUP(2, 0, BW_20),
186 	MCS_GROUP(3, 0, BW_20),
187 	MCS_GROUP(4, 0, BW_20),
188 
189 	MCS_GROUP(1, 1, BW_20),
190 	MCS_GROUP(2, 1, BW_20),
191 	MCS_GROUP(3, 1, BW_20),
192 	MCS_GROUP(4, 1, BW_20),
193 
194 	MCS_GROUP(1, 0, BW_40),
195 	MCS_GROUP(2, 0, BW_40),
196 	MCS_GROUP(3, 0, BW_40),
197 	MCS_GROUP(4, 0, BW_40),
198 
199 	MCS_GROUP(1, 1, BW_40),
200 	MCS_GROUP(2, 1, BW_40),
201 	MCS_GROUP(3, 1, BW_40),
202 	MCS_GROUP(4, 1, BW_40),
203 
204 	CCK_GROUP,
205 
206 	VHT_GROUP(1, 0, BW_20),
207 	VHT_GROUP(2, 0, BW_20),
208 	VHT_GROUP(3, 0, BW_20),
209 	VHT_GROUP(4, 0, BW_20),
210 
211 	VHT_GROUP(1, 1, BW_20),
212 	VHT_GROUP(2, 1, BW_20),
213 	VHT_GROUP(3, 1, BW_20),
214 	VHT_GROUP(4, 1, BW_20),
215 
216 	VHT_GROUP(1, 0, BW_40),
217 	VHT_GROUP(2, 0, BW_40),
218 	VHT_GROUP(3, 0, BW_40),
219 	VHT_GROUP(4, 0, BW_40),
220 
221 	VHT_GROUP(1, 1, BW_40),
222 	VHT_GROUP(2, 1, BW_40),
223 	VHT_GROUP(3, 1, BW_40),
224 	VHT_GROUP(4, 1, BW_40),
225 
226 	VHT_GROUP(1, 0, BW_80),
227 	VHT_GROUP(2, 0, BW_80),
228 	VHT_GROUP(3, 0, BW_80),
229 	VHT_GROUP(4, 0, BW_80),
230 
231 	VHT_GROUP(1, 1, BW_80),
232 	VHT_GROUP(2, 1, BW_80),
233 	VHT_GROUP(3, 1, BW_80),
234 	VHT_GROUP(4, 1, BW_80),
235 };
236 
237 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
238 
239 static void
240 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
241 
242 /*
243  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
244  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
245  *
246  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
247  */
248 static u16
249 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
250 {
251 	u16 mask = 0;
252 
253 	if (bw == BW_20) {
254 		if (nss != 3 && nss != 6)
255 			mask = BIT(9);
256 	} else if (bw == BW_80) {
257 		if (nss == 3 || nss == 7)
258 			mask = BIT(6);
259 		else if (nss == 6)
260 			mask = BIT(9);
261 	} else {
262 		WARN_ON(bw != BW_40);
263 	}
264 
265 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
266 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
267 		mask |= 0x300;
268 		break;
269 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
270 		mask |= 0x200;
271 		break;
272 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
273 		break;
274 	default:
275 		mask = 0x3ff;
276 	}
277 
278 	return 0x3ff & ~mask;
279 }
280 
281 /*
282  * Look up an MCS group index based on mac80211 rate information
283  */
284 static int
285 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
286 {
287 	return GROUP_IDX((rate->idx / 8) + 1,
288 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
289 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
290 }
291 
292 static int
293 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
294 {
295 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
296 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
297 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
298 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
299 }
300 
301 static struct minstrel_rate_stats *
302 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
303 		      struct ieee80211_tx_rate *rate)
304 {
305 	int group, idx;
306 
307 	if (rate->flags & IEEE80211_TX_RC_MCS) {
308 		group = minstrel_ht_get_group_idx(rate);
309 		idx = rate->idx % 8;
310 	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
311 		group = minstrel_vht_get_group_idx(rate);
312 		idx = ieee80211_rate_get_vht_mcs(rate);
313 	} else {
314 		group = MINSTREL_CCK_GROUP;
315 
316 		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
317 			if (rate->idx == mp->cck_rates[idx])
318 				break;
319 
320 		/* short preamble */
321 		if ((mi->supported[group] & BIT(idx + 4)) &&
322 		    (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
323 			idx += 4;
324 	}
325 	return &mi->groups[group].rates[idx];
326 }
327 
328 static inline struct minstrel_rate_stats *
329 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
330 {
331 	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
332 }
333 
334 static unsigned int
335 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
336 {
337 	if (!mi->avg_ampdu_len)
338 		return AVG_AMPDU_SIZE;
339 
340 	return MINSTREL_TRUNC(mi->avg_ampdu_len);
341 }
342 
343 /*
344  * Return current throughput based on the average A-MPDU length, taking into
345  * account the expected number of retransmissions and their expected length
346  */
347 int
348 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
349 		       int prob_ewma)
350 {
351 	unsigned int nsecs = 0;
352 
353 	/* do not account throughput if sucess prob is below 10% */
354 	if (prob_ewma < MINSTREL_FRAC(10, 100))
355 		return 0;
356 
357 	if (group != MINSTREL_CCK_GROUP)
358 		nsecs = 1000 * mi->overhead / minstrel_ht_avg_ampdu_len(mi);
359 
360 	nsecs += minstrel_mcs_groups[group].duration[rate] <<
361 		 minstrel_mcs_groups[group].shift;
362 
363 	/*
364 	 * For the throughput calculation, limit the probability value to 90% to
365 	 * account for collision related packet error rate fluctuation
366 	 * (prob is scaled - see MINSTREL_FRAC above)
367 	 */
368 	if (prob_ewma > MINSTREL_FRAC(90, 100))
369 		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
370 								      / nsecs));
371 	else
372 		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
373 }
374 
375 /*
376  * Find & sort topmost throughput rates
377  *
378  * If multiple rates provide equal throughput the sorting is based on their
379  * current success probability. Higher success probability is preferred among
380  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
381  */
382 static void
383 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
384 			       u16 *tp_list)
385 {
386 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
387 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
388 	int j = MAX_THR_RATES;
389 
390 	cur_group = index / MCS_GROUP_RATES;
391 	cur_idx = index  % MCS_GROUP_RATES;
392 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
393 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
394 
395 	do {
396 		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
397 		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
398 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
399 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
400 						    tmp_prob);
401 		if (cur_tp_avg < tmp_tp_avg ||
402 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
403 			break;
404 		j--;
405 	} while (j > 0);
406 
407 	if (j < MAX_THR_RATES - 1) {
408 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
409 		       (MAX_THR_RATES - (j + 1))));
410 	}
411 	if (j < MAX_THR_RATES)
412 		tp_list[j] = index;
413 }
414 
415 /*
416  * Find and set the topmost probability rate per sta and per group
417  */
418 static void
419 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
420 {
421 	struct minstrel_mcs_group_data *mg;
422 	struct minstrel_rate_stats *mrs;
423 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
424 	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
425 	int max_gpr_group, max_gpr_idx;
426 	int max_gpr_tp_avg, max_gpr_prob;
427 
428 	cur_group = index / MCS_GROUP_RATES;
429 	cur_idx = index % MCS_GROUP_RATES;
430 	mg = &mi->groups[index / MCS_GROUP_RATES];
431 	mrs = &mg->rates[index % MCS_GROUP_RATES];
432 
433 	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
434 	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
435 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
436 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
437 
438 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
439 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
440 	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
441 	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
442 	    (max_tp_group != MINSTREL_CCK_GROUP))
443 		return;
444 
445 	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
446 	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
447 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
448 
449 	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
450 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
451 						    mrs->prob_ewma);
452 		if (cur_tp_avg > tmp_tp_avg)
453 			mi->max_prob_rate = index;
454 
455 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
456 							max_gpr_idx,
457 							max_gpr_prob);
458 		if (cur_tp_avg > max_gpr_tp_avg)
459 			mg->max_group_prob_rate = index;
460 	} else {
461 		if (mrs->prob_ewma > tmp_prob)
462 			mi->max_prob_rate = index;
463 		if (mrs->prob_ewma > max_gpr_prob)
464 			mg->max_group_prob_rate = index;
465 	}
466 }
467 
468 
469 /*
470  * Assign new rate set per sta and use CCK rates only if the fastest
471  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
472  * rate sets where MCS and CCK rates are mixed, because CCK rates can
473  * not use aggregation.
474  */
475 static void
476 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
477 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
478 				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
479 {
480 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
481 	int i;
482 
483 	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
484 	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
485 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
486 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
487 
488 	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
489 	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
490 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
491 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
492 
493 	if (tmp_cck_tp_rate && tmp_cck_tp > tmp_mcs_tp) {
494 		for(i = 0; i < MAX_THR_RATES; i++) {
495 			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
496 						       tmp_mcs_tp_rate);
497 		}
498 	}
499 
500 }
501 
502 /*
503  * Try to increase robustness of max_prob rate by decrease number of
504  * streams if possible.
505  */
506 static inline void
507 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
508 {
509 	struct minstrel_mcs_group_data *mg;
510 	int tmp_max_streams, group, tmp_idx, tmp_prob;
511 	int tmp_tp = 0;
512 
513 	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
514 			  MCS_GROUP_RATES].streams;
515 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
516 		mg = &mi->groups[group];
517 		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
518 			continue;
519 
520 		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
521 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
522 
523 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
524 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
525 				mi->max_prob_rate = mg->max_group_prob_rate;
526 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
527 								tmp_idx,
528 								tmp_prob);
529 		}
530 	}
531 }
532 
533 static inline int
534 minstrel_get_duration(int index)
535 {
536 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
537 	unsigned int duration = group->duration[index % MCS_GROUP_RATES];
538 	return duration << group->shift;
539 }
540 
541 static bool
542 minstrel_ht_probe_group(struct minstrel_ht_sta *mi, const struct mcs_group *tp_group,
543 						int tp_idx, const struct mcs_group *group)
544 {
545 	if (group->bw < tp_group->bw)
546 		return false;
547 
548 	if (group->streams == tp_group->streams)
549 		return true;
550 
551 	if (tp_idx < 4 && group->streams == tp_group->streams - 1)
552 		return true;
553 
554 	return group->streams == tp_group->streams + 1;
555 }
556 
557 static void
558 minstrel_ht_find_probe_rates(struct minstrel_ht_sta *mi, u16 *rates, int *n_rates,
559 			     bool faster_rate)
560 {
561 	const struct mcs_group *group, *tp_group;
562 	int i, g, max_dur;
563 	int tp_idx;
564 
565 	tp_group = &minstrel_mcs_groups[mi->max_tp_rate[0] / MCS_GROUP_RATES];
566 	tp_idx = mi->max_tp_rate[0] % MCS_GROUP_RATES;
567 
568 	max_dur = minstrel_get_duration(mi->max_tp_rate[0]);
569 	if (faster_rate)
570 		max_dur -= max_dur / 16;
571 
572 	for (g = 0; g < MINSTREL_GROUPS_NB; g++) {
573 		u16 supported = mi->supported[g];
574 
575 		if (!supported)
576 			continue;
577 
578 		group = &minstrel_mcs_groups[g];
579 		if (!minstrel_ht_probe_group(mi, tp_group, tp_idx, group))
580 			continue;
581 
582 		for (i = 0; supported; supported >>= 1, i++) {
583 			int idx;
584 
585 			if (!(supported & 1))
586 				continue;
587 
588 			if ((group->duration[i] << group->shift) > max_dur)
589 				continue;
590 
591 			idx = g * MCS_GROUP_RATES + i;
592 			if (idx == mi->max_tp_rate[0])
593 				continue;
594 
595 			rates[(*n_rates)++] = idx;
596 			break;
597 		}
598 	}
599 }
600 
601 static void
602 minstrel_ht_rate_sample_switch(struct minstrel_priv *mp,
603 			       struct minstrel_ht_sta *mi)
604 {
605 	struct minstrel_rate_stats *mrs;
606 	u16 rates[MINSTREL_GROUPS_NB];
607 	int n_rates = 0;
608 	int probe_rate = 0;
609 	bool faster_rate;
610 	int i;
611 	u8 random;
612 
613 	/*
614 	 * Use rate switching instead of probing packets for devices with
615 	 * little control over retry fallback behavior
616 	 */
617 	if (mp->hw->max_rates > 1)
618 		return;
619 
620 	/*
621 	 * If the current EWMA prob is >75%, look for a rate that's 6.25%
622 	 * faster than the max tp rate.
623 	 * If that fails, look again for a rate that is at least as fast
624 	 */
625 	mrs = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
626 	faster_rate = mrs->prob_ewma > MINSTREL_FRAC(75, 100);
627 	minstrel_ht_find_probe_rates(mi, rates, &n_rates, faster_rate);
628 	if (!n_rates && faster_rate)
629 		minstrel_ht_find_probe_rates(mi, rates, &n_rates, false);
630 
631 	/* If no suitable rate was found, try to pick the next one in the group */
632 	if (!n_rates) {
633 		int g_idx = mi->max_tp_rate[0] / MCS_GROUP_RATES;
634 		u16 supported = mi->supported[g_idx];
635 
636 		supported >>= mi->max_tp_rate[0] % MCS_GROUP_RATES;
637 		for (i = 0; supported; supported >>= 1, i++) {
638 			if (!(supported & 1))
639 				continue;
640 
641 			probe_rate = mi->max_tp_rate[0] + i;
642 			goto out;
643 		}
644 
645 		return;
646 	}
647 
648 	i = 0;
649 	if (n_rates > 1) {
650 		random = prandom_u32();
651 		i = random % n_rates;
652 	}
653 	probe_rate = rates[i];
654 
655 out:
656 	mi->sample_rate = probe_rate;
657 	mi->sample_mode = MINSTREL_SAMPLE_ACTIVE;
658 }
659 
660 /*
661  * Update rate statistics and select new primary rates
662  *
663  * Rules for rate selection:
664  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
665  *    probability and throughput during strong fluctuations
666  *  - as long as the max prob rate has a probability of more than 75%, pick
667  *    higher throughput rates, even if the probablity is a bit lower
668  */
669 static void
670 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
671 			 bool sample)
672 {
673 	struct minstrel_mcs_group_data *mg;
674 	struct minstrel_rate_stats *mrs;
675 	int group, i, j, cur_prob;
676 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
677 	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
678 
679 	mi->sample_mode = MINSTREL_SAMPLE_IDLE;
680 
681 	if (sample) {
682 		mi->total_packets_cur = mi->total_packets -
683 					mi->total_packets_last;
684 		mi->total_packets_last = mi->total_packets;
685 	}
686 	if (!mp->sample_switch)
687 		sample = false;
688 	if (mi->total_packets_cur < SAMPLE_SWITCH_THR && mp->sample_switch != 1)
689 	    sample = false;
690 
691 	if (mi->ampdu_packets > 0) {
692 		if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
693 			mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
694 				MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
695 					      EWMA_LEVEL);
696 		else
697 			mi->avg_ampdu_len = 0;
698 		mi->ampdu_len = 0;
699 		mi->ampdu_packets = 0;
700 	}
701 
702 	mi->sample_slow = 0;
703 	mi->sample_count = 0;
704 
705 	memset(tmp_mcs_tp_rate, 0, sizeof(tmp_mcs_tp_rate));
706 	memset(tmp_cck_tp_rate, 0, sizeof(tmp_cck_tp_rate));
707 	if (mi->supported[MINSTREL_CCK_GROUP])
708 		for (j = 0; j < ARRAY_SIZE(tmp_cck_tp_rate); j++)
709 			tmp_cck_tp_rate[j] = MINSTREL_CCK_GROUP * MCS_GROUP_RATES;
710 
711 	if (mi->supported[MINSTREL_VHT_GROUP_0])
712 		index = MINSTREL_VHT_GROUP_0 * MCS_GROUP_RATES;
713 	else
714 		index = MINSTREL_HT_GROUP_0 * MCS_GROUP_RATES;
715 
716 	for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
717 		tmp_mcs_tp_rate[j] = index;
718 
719 	/* Find best rate sets within all MCS groups*/
720 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
721 
722 		mg = &mi->groups[group];
723 		if (!mi->supported[group])
724 			continue;
725 
726 		mi->sample_count++;
727 
728 		/* (re)Initialize group rate indexes */
729 		for(j = 0; j < MAX_THR_RATES; j++)
730 			tmp_group_tp_rate[j] = MCS_GROUP_RATES * group;
731 
732 		for (i = 0; i < MCS_GROUP_RATES; i++) {
733 			if (!(mi->supported[group] & BIT(i)))
734 				continue;
735 
736 			index = MCS_GROUP_RATES * group + i;
737 
738 			mrs = &mg->rates[i];
739 			mrs->retry_updated = false;
740 			minstrel_calc_rate_stats(mrs);
741 			cur_prob = mrs->prob_ewma;
742 
743 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
744 				continue;
745 
746 			/* Find max throughput rate set */
747 			if (group != MINSTREL_CCK_GROUP) {
748 				minstrel_ht_sort_best_tp_rates(mi, index,
749 							       tmp_mcs_tp_rate);
750 			} else if (group == MINSTREL_CCK_GROUP) {
751 				minstrel_ht_sort_best_tp_rates(mi, index,
752 							       tmp_cck_tp_rate);
753 			}
754 
755 			/* Find max throughput rate set within a group */
756 			minstrel_ht_sort_best_tp_rates(mi, index,
757 						       tmp_group_tp_rate);
758 
759 			/* Find max probability rate per group and global */
760 			minstrel_ht_set_best_prob_rate(mi, index);
761 		}
762 
763 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
764 		       sizeof(mg->max_group_tp_rate));
765 	}
766 
767 	/* Assign new rate set per sta */
768 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
769 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
770 
771 	/* Try to increase robustness of max_prob_rate*/
772 	minstrel_ht_prob_rate_reduce_streams(mi);
773 
774 	/* try to sample all available rates during each interval */
775 	mi->sample_count *= 8;
776 
777 	if (sample)
778 		minstrel_ht_rate_sample_switch(mp, mi);
779 
780 #ifdef CONFIG_MAC80211_DEBUGFS
781 	/* use fixed index if set */
782 	if (mp->fixed_rate_idx != -1) {
783 		for (i = 0; i < 4; i++)
784 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
785 		mi->max_prob_rate = mp->fixed_rate_idx;
786 		mi->sample_mode = MINSTREL_SAMPLE_IDLE;
787 	}
788 #endif
789 
790 	/* Reset update timer */
791 	mi->last_stats_update = jiffies;
792 }
793 
794 static bool
795 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
796 {
797 	if (rate->idx < 0)
798 		return false;
799 
800 	if (!rate->count)
801 		return false;
802 
803 	if (rate->flags & IEEE80211_TX_RC_MCS ||
804 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
805 		return true;
806 
807 	return rate->idx == mp->cck_rates[0] ||
808 	       rate->idx == mp->cck_rates[1] ||
809 	       rate->idx == mp->cck_rates[2] ||
810 	       rate->idx == mp->cck_rates[3];
811 }
812 
813 static void
814 minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
815 {
816 	struct minstrel_mcs_group_data *mg;
817 
818 	for (;;) {
819 		mi->sample_group++;
820 		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
821 		mg = &mi->groups[mi->sample_group];
822 
823 		if (!mi->supported[mi->sample_group])
824 			continue;
825 
826 		if (++mg->index >= MCS_GROUP_RATES) {
827 			mg->index = 0;
828 			if (++mg->column >= ARRAY_SIZE(sample_table))
829 				mg->column = 0;
830 		}
831 		break;
832 	}
833 }
834 
835 static void
836 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
837 {
838 	int group, orig_group;
839 
840 	orig_group = group = *idx / MCS_GROUP_RATES;
841 	while (group > 0) {
842 		group--;
843 
844 		if (!mi->supported[group])
845 			continue;
846 
847 		if (minstrel_mcs_groups[group].streams >
848 		    minstrel_mcs_groups[orig_group].streams)
849 			continue;
850 
851 		if (primary)
852 			*idx = mi->groups[group].max_group_tp_rate[0];
853 		else
854 			*idx = mi->groups[group].max_group_tp_rate[1];
855 		break;
856 	}
857 }
858 
859 static void
860 minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
861 {
862 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
863 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
864 	u16 tid;
865 
866 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
867 		return;
868 
869 	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
870 		return;
871 
872 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
873 		return;
874 
875 	tid = ieee80211_get_tid(hdr);
876 	if (likely(sta->ampdu_mlme.tid_tx[tid]))
877 		return;
878 
879 	ieee80211_start_tx_ba_session(pubsta, tid, 0);
880 }
881 
882 static void
883 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
884                       void *priv_sta, struct ieee80211_tx_status *st)
885 {
886 	struct ieee80211_tx_info *info = st->info;
887 	struct minstrel_ht_sta_priv *msp = priv_sta;
888 	struct minstrel_ht_sta *mi = &msp->ht;
889 	struct ieee80211_tx_rate *ar = info->status.rates;
890 	struct minstrel_rate_stats *rate, *rate2, *rate_sample = NULL;
891 	struct minstrel_priv *mp = priv;
892 	bool last, update = false;
893 	bool sample_status = false;
894 	int i;
895 
896 	if (!msp->is_ht)
897 		return mac80211_minstrel.tx_status_ext(priv, sband,
898 						       &msp->legacy, st);
899 
900 
901 	/* This packet was aggregated but doesn't carry status info */
902 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
903 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
904 		return;
905 
906 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
907 		info->status.ampdu_ack_len =
908 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
909 		info->status.ampdu_len = 1;
910 	}
911 
912 	mi->ampdu_packets++;
913 	mi->ampdu_len += info->status.ampdu_len;
914 
915 	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
916 		int avg_ampdu_len = minstrel_ht_avg_ampdu_len(mi);
917 
918 		mi->sample_wait = 16 + 2 * avg_ampdu_len;
919 		mi->sample_tries = 1;
920 		mi->sample_count--;
921 	}
922 
923 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
924 		mi->sample_packets += info->status.ampdu_len;
925 
926 	if (mi->sample_mode != MINSTREL_SAMPLE_IDLE)
927 		rate_sample = minstrel_get_ratestats(mi, mi->sample_rate);
928 
929 	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
930 	for (i = 0; !last; i++) {
931 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
932 		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
933 
934 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
935 		if (rate == rate_sample)
936 			sample_status = true;
937 
938 		if (last)
939 			rate->success += info->status.ampdu_ack_len;
940 
941 		rate->attempts += ar[i].count * info->status.ampdu_len;
942 	}
943 
944 	switch (mi->sample_mode) {
945 	case MINSTREL_SAMPLE_IDLE:
946 		break;
947 
948 	case MINSTREL_SAMPLE_ACTIVE:
949 		if (!sample_status)
950 			break;
951 
952 		mi->sample_mode = MINSTREL_SAMPLE_PENDING;
953 		update = true;
954 		break;
955 
956 	case MINSTREL_SAMPLE_PENDING:
957 		if (sample_status)
958 			break;
959 
960 		update = true;
961 		minstrel_ht_update_stats(mp, mi, false);
962 		break;
963 	}
964 
965 
966 	if (mp->hw->max_rates > 1) {
967 		/*
968 		 * check for sudden death of spatial multiplexing,
969 		 * downgrade to a lower number of streams if necessary.
970 		 */
971 		rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
972 		if (rate->attempts > 30 &&
973 		    MINSTREL_FRAC(rate->success, rate->attempts) <
974 		    MINSTREL_FRAC(20, 100)) {
975 			minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
976 			update = true;
977 		}
978 
979 		rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
980 		if (rate2->attempts > 30 &&
981 		    MINSTREL_FRAC(rate2->success, rate2->attempts) <
982 		    MINSTREL_FRAC(20, 100)) {
983 			minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
984 			update = true;
985 		}
986 	}
987 
988 	if (time_after(jiffies, mi->last_stats_update +
989 				(mp->update_interval / 2 * HZ) / 1000)) {
990 		update = true;
991 		minstrel_ht_update_stats(mp, mi, true);
992 	}
993 
994 	if (update)
995 		minstrel_ht_update_rates(mp, mi);
996 }
997 
998 static void
999 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1000                          int index)
1001 {
1002 	struct minstrel_rate_stats *mrs;
1003 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
1004 	unsigned int cw = mp->cw_min;
1005 	unsigned int ctime = 0;
1006 	unsigned int t_slot = 9; /* FIXME */
1007 	unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
1008 	unsigned int overhead = 0, overhead_rtscts = 0;
1009 
1010 	mrs = minstrel_get_ratestats(mi, index);
1011 	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
1012 		mrs->retry_count = 1;
1013 		mrs->retry_count_rtscts = 1;
1014 		return;
1015 	}
1016 
1017 	mrs->retry_count = 2;
1018 	mrs->retry_count_rtscts = 2;
1019 	mrs->retry_updated = true;
1020 
1021 	tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
1022 
1023 	/* Contention time for first 2 tries */
1024 	ctime = (t_slot * cw) >> 1;
1025 	cw = min((cw << 1) | 1, mp->cw_max);
1026 	ctime += (t_slot * cw) >> 1;
1027 	cw = min((cw << 1) | 1, mp->cw_max);
1028 
1029 	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
1030 		overhead = mi->overhead;
1031 		overhead_rtscts = mi->overhead_rtscts;
1032 	}
1033 
1034 	/* Total TX time for data and Contention after first 2 tries */
1035 	tx_time = ctime + 2 * (overhead + tx_time_data);
1036 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
1037 
1038 	/* See how many more tries we can fit inside segment size */
1039 	do {
1040 		/* Contention time for this try */
1041 		ctime = (t_slot * cw) >> 1;
1042 		cw = min((cw << 1) | 1, mp->cw_max);
1043 
1044 		/* Total TX time after this try */
1045 		tx_time += ctime + overhead + tx_time_data;
1046 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
1047 
1048 		if (tx_time_rtscts < mp->segment_size)
1049 			mrs->retry_count_rtscts++;
1050 	} while ((tx_time < mp->segment_size) &&
1051 	         (++mrs->retry_count < mp->max_retry));
1052 }
1053 
1054 
1055 static void
1056 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1057                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
1058 {
1059 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
1060 	struct minstrel_rate_stats *mrs;
1061 	u8 idx;
1062 	u16 flags = group->flags;
1063 
1064 	mrs = minstrel_get_ratestats(mi, index);
1065 	if (!mrs->retry_updated)
1066 		minstrel_calc_retransmit(mp, mi, index);
1067 
1068 	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
1069 		ratetbl->rate[offset].count = 2;
1070 		ratetbl->rate[offset].count_rts = 2;
1071 		ratetbl->rate[offset].count_cts = 2;
1072 	} else {
1073 		ratetbl->rate[offset].count = mrs->retry_count;
1074 		ratetbl->rate[offset].count_cts = mrs->retry_count;
1075 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
1076 	}
1077 
1078 	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
1079 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
1080 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
1081 		idx = ((group->streams - 1) << 4) |
1082 		      ((index % MCS_GROUP_RATES) & 0xF);
1083 	else
1084 		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
1085 
1086 	/* enable RTS/CTS if needed:
1087 	 *  - if station is in dynamic SMPS (and streams > 1)
1088 	 *  - for fallback rates, to increase chances of getting through
1089 	 */
1090 	if (offset > 0 ||
1091 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
1092 	     group->streams > 1)) {
1093 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
1094 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
1095 	}
1096 
1097 	ratetbl->rate[offset].idx = idx;
1098 	ratetbl->rate[offset].flags = flags;
1099 }
1100 
1101 static inline int
1102 minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
1103 {
1104 	int group = rate / MCS_GROUP_RATES;
1105 	rate %= MCS_GROUP_RATES;
1106 	return mi->groups[group].rates[rate].prob_ewma;
1107 }
1108 
1109 static int
1110 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
1111 {
1112 	int group = mi->max_prob_rate / MCS_GROUP_RATES;
1113 	const struct mcs_group *g = &minstrel_mcs_groups[group];
1114 	int rate = mi->max_prob_rate % MCS_GROUP_RATES;
1115 	unsigned int duration;
1116 
1117 	/* Disable A-MSDU if max_prob_rate is bad */
1118 	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
1119 		return 1;
1120 
1121 	duration = g->duration[rate];
1122 	duration <<= g->shift;
1123 
1124 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1125 	if (duration > MCS_DURATION(1, 0, 52))
1126 		return 500;
1127 
1128 	/*
1129 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1130 	 * data packet size
1131 	 */
1132 	if (duration > MCS_DURATION(1, 0, 104))
1133 		return 1600;
1134 
1135 	/*
1136 	 * If the rate is slower than single-stream MCS7, or if the max throughput
1137 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
1138 	 * data packet size
1139 	 */
1140 	if (duration > MCS_DURATION(1, 0, 260) ||
1141 	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
1142 	     MINSTREL_FRAC(75, 100)))
1143 		return 3200;
1144 
1145 	/*
1146 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1147 	 * Since aggregation sessions are started/stopped without txq flush, use
1148 	 * the limit here to avoid the complexity of having to de-aggregate
1149 	 * packets in the queue.
1150 	 */
1151 	if (!mi->sta->vht_cap.vht_supported)
1152 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
1153 
1154 	/* unlimited */
1155 	return 0;
1156 }
1157 
1158 static void
1159 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1160 {
1161 	struct ieee80211_sta_rates *rates;
1162 	u16 first_rate = mi->max_tp_rate[0];
1163 	int i = 0;
1164 
1165 	if (mi->sample_mode == MINSTREL_SAMPLE_ACTIVE)
1166 		first_rate = mi->sample_rate;
1167 
1168 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
1169 	if (!rates)
1170 		return;
1171 
1172 	/* Start with max_tp_rate[0] */
1173 	minstrel_ht_set_rate(mp, mi, rates, i++, first_rate);
1174 
1175 	if (mp->hw->max_rates >= 3) {
1176 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
1177 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
1178 	}
1179 
1180 	if (mp->hw->max_rates >= 2) {
1181 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1182 	}
1183 
1184 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1185 	rates->rate[i].idx = -1;
1186 	rate_control_set_rates(mp->hw, mi->sta, rates);
1187 }
1188 
1189 static int
1190 minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1191 {
1192 	struct minstrel_rate_stats *mrs;
1193 	struct minstrel_mcs_group_data *mg;
1194 	unsigned int sample_dur, sample_group, cur_max_tp_streams;
1195 	int tp_rate1, tp_rate2;
1196 	int sample_idx = 0;
1197 
1198 	if (mp->hw->max_rates == 1 && mp->sample_switch &&
1199 	    (mi->total_packets_cur >= SAMPLE_SWITCH_THR ||
1200 	     mp->sample_switch == 1))
1201 		return -1;
1202 
1203 	if (mi->sample_wait > 0) {
1204 		mi->sample_wait--;
1205 		return -1;
1206 	}
1207 
1208 	if (!mi->sample_tries)
1209 		return -1;
1210 
1211 	sample_group = mi->sample_group;
1212 	mg = &mi->groups[sample_group];
1213 	sample_idx = sample_table[mg->column][mg->index];
1214 	minstrel_set_next_sample_idx(mi);
1215 
1216 	if (!(mi->supported[sample_group] & BIT(sample_idx)))
1217 		return -1;
1218 
1219 	mrs = &mg->rates[sample_idx];
1220 	sample_idx += sample_group * MCS_GROUP_RATES;
1221 
1222 	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
1223 	if (minstrel_get_duration(mi->max_tp_rate[0]) >
1224 	    minstrel_get_duration(mi->max_tp_rate[1])) {
1225 		tp_rate1 = mi->max_tp_rate[1];
1226 		tp_rate2 = mi->max_tp_rate[0];
1227 	} else {
1228 		tp_rate1 = mi->max_tp_rate[0];
1229 		tp_rate2 = mi->max_tp_rate[1];
1230 	}
1231 
1232 	/*
1233 	 * Sampling might add some overhead (RTS, no aggregation)
1234 	 * to the frame. Hence, don't use sampling for the highest currently
1235 	 * used highest throughput or probability rate.
1236 	 */
1237 	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1238 		return -1;
1239 
1240 	/*
1241 	 * Do not sample if the probability is already higher than 95%,
1242 	 * or if the rate is 3 times slower than the current max probability
1243 	 * rate, to avoid wasting airtime.
1244 	 */
1245 	sample_dur = minstrel_get_duration(sample_idx);
1246 	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100) ||
1247 	    minstrel_get_duration(mi->max_prob_rate) * 3 < sample_dur)
1248 		return -1;
1249 
1250 
1251 	/*
1252 	 * For devices with no configurable multi-rate retry, skip sampling
1253 	 * below the per-group max throughput rate, and only use one sampling
1254 	 * attempt per rate
1255 	 */
1256 	if (mp->hw->max_rates == 1 &&
1257 	    (minstrel_get_duration(mg->max_group_tp_rate[0]) < sample_dur ||
1258 	     mrs->attempts))
1259 		return -1;
1260 
1261 	/* Skip already sampled slow rates */
1262 	if (sample_dur >= minstrel_get_duration(tp_rate1) && mrs->attempts)
1263 		return -1;
1264 
1265 	/*
1266 	 * Make sure that lower rates get sampled only occasionally,
1267 	 * if the link is working perfectly.
1268 	 */
1269 
1270 	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1271 		MCS_GROUP_RATES].streams;
1272 	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1273 	    (cur_max_tp_streams - 1 <
1274 	     minstrel_mcs_groups[sample_group].streams ||
1275 	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1276 		if (mrs->sample_skipped < 20)
1277 			return -1;
1278 
1279 		if (mi->sample_slow++ > 2)
1280 			return -1;
1281 	}
1282 	mi->sample_tries--;
1283 
1284 	return sample_idx;
1285 }
1286 
1287 static void
1288 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1289                      struct ieee80211_tx_rate_control *txrc)
1290 {
1291 	const struct mcs_group *sample_group;
1292 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1293 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1294 	struct minstrel_ht_sta_priv *msp = priv_sta;
1295 	struct minstrel_ht_sta *mi = &msp->ht;
1296 	struct minstrel_priv *mp = priv;
1297 	int sample_idx;
1298 
1299 	if (!msp->is_ht)
1300 		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1301 
1302 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1303 	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1304 		minstrel_aggr_check(sta, txrc->skb);
1305 
1306 	info->flags |= mi->tx_flags;
1307 
1308 #ifdef CONFIG_MAC80211_DEBUGFS
1309 	if (mp->fixed_rate_idx != -1)
1310 		return;
1311 #endif
1312 
1313 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1314 	if (mp->hw->max_rates == 1 &&
1315 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1316 		sample_idx = -1;
1317 	else
1318 		sample_idx = minstrel_get_sample_rate(mp, mi);
1319 
1320 	mi->total_packets++;
1321 
1322 	/* wraparound */
1323 	if (mi->total_packets == ~0) {
1324 		mi->total_packets = 0;
1325 		mi->sample_packets = 0;
1326 	}
1327 
1328 	if (sample_idx < 0)
1329 		return;
1330 
1331 	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1332 	sample_idx %= MCS_GROUP_RATES;
1333 
1334 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1335 	    (sample_idx >= 4) != txrc->short_preamble)
1336 		return;
1337 
1338 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1339 	rate->count = 1;
1340 
1341 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1342 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1343 		rate->idx = mp->cck_rates[idx];
1344 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1345 		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1346 				       sample_group->streams);
1347 	} else {
1348 		rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1349 	}
1350 
1351 	rate->flags = sample_group->flags;
1352 }
1353 
1354 static void
1355 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1356 		       struct ieee80211_supported_band *sband,
1357 		       struct ieee80211_sta *sta)
1358 {
1359 	int i;
1360 
1361 	if (sband->band != NL80211_BAND_2GHZ)
1362 		return;
1363 
1364 	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1365 		return;
1366 
1367 	mi->cck_supported = 0;
1368 	mi->cck_supported_short = 0;
1369 	for (i = 0; i < 4; i++) {
1370 		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1371 			continue;
1372 
1373 		mi->cck_supported |= BIT(i);
1374 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1375 			mi->cck_supported_short |= BIT(i);
1376 	}
1377 
1378 	mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1379 }
1380 
1381 static void
1382 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1383 			struct cfg80211_chan_def *chandef,
1384                         struct ieee80211_sta *sta, void *priv_sta)
1385 {
1386 	struct minstrel_priv *mp = priv;
1387 	struct minstrel_ht_sta_priv *msp = priv_sta;
1388 	struct minstrel_ht_sta *mi = &msp->ht;
1389 	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1390 	u16 ht_cap = sta->ht_cap.cap;
1391 	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1392 	int use_vht;
1393 	int n_supported = 0;
1394 	int ack_dur;
1395 	int stbc;
1396 	int i;
1397 	bool ldpc;
1398 
1399 	/* fall back to the old minstrel for legacy stations */
1400 	if (!sta->ht_cap.ht_supported)
1401 		goto use_legacy;
1402 
1403 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1404 
1405 	if (vht_cap->vht_supported)
1406 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1407 	else
1408 		use_vht = 0;
1409 
1410 	msp->is_ht = true;
1411 	memset(mi, 0, sizeof(*mi));
1412 
1413 	mi->sta = sta;
1414 	mi->last_stats_update = jiffies;
1415 
1416 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1417 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1418 	mi->overhead += ack_dur;
1419 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1420 
1421 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1422 
1423 	/* When using MRR, sample more on the first attempt, without delay */
1424 	if (mp->has_mrr) {
1425 		mi->sample_count = 16;
1426 		mi->sample_wait = 0;
1427 	} else {
1428 		mi->sample_count = 8;
1429 		mi->sample_wait = 8;
1430 	}
1431 	mi->sample_tries = 4;
1432 
1433 	if (!use_vht) {
1434 		stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1435 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1436 
1437 		ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1438 	} else {
1439 		stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1440 			IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1441 
1442 		ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1443 	}
1444 
1445 	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1446 	if (ldpc)
1447 		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1448 
1449 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1450 		u32 gflags = minstrel_mcs_groups[i].flags;
1451 		int bw, nss;
1452 
1453 		mi->supported[i] = 0;
1454 		if (i == MINSTREL_CCK_GROUP) {
1455 			minstrel_ht_update_cck(mp, mi, sband, sta);
1456 			continue;
1457 		}
1458 
1459 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1460 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1461 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1462 					continue;
1463 			} else {
1464 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1465 					continue;
1466 			}
1467 		}
1468 
1469 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1470 		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1471 			continue;
1472 
1473 		nss = minstrel_mcs_groups[i].streams;
1474 
1475 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1476 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1477 			continue;
1478 
1479 		/* HT rate */
1480 		if (gflags & IEEE80211_TX_RC_MCS) {
1481 			if (use_vht && minstrel_vht_only)
1482 				continue;
1483 
1484 			mi->supported[i] = mcs->rx_mask[nss - 1];
1485 			if (mi->supported[i])
1486 				n_supported++;
1487 			continue;
1488 		}
1489 
1490 		/* VHT rate */
1491 		if (!vht_cap->vht_supported ||
1492 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1493 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1494 			continue;
1495 
1496 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1497 			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1498 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1499 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1500 				continue;
1501 			}
1502 		}
1503 
1504 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1505 			bw = BW_40;
1506 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1507 			bw = BW_80;
1508 		else
1509 			bw = BW_20;
1510 
1511 		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1512 				vht_cap->vht_mcs.tx_mcs_map);
1513 
1514 		if (mi->supported[i])
1515 			n_supported++;
1516 	}
1517 
1518 	if (!n_supported)
1519 		goto use_legacy;
1520 
1521 	mi->supported[MINSTREL_CCK_GROUP] |= mi->cck_supported_short << 4;
1522 
1523 	/* create an initial rate table with the lowest supported rates */
1524 	minstrel_ht_update_stats(mp, mi, true);
1525 	minstrel_ht_update_rates(mp, mi);
1526 
1527 	return;
1528 
1529 use_legacy:
1530 	msp->is_ht = false;
1531 	memset(&msp->legacy, 0, sizeof(msp->legacy));
1532 	msp->legacy.r = msp->ratelist;
1533 	msp->legacy.sample_table = msp->sample_table;
1534 	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1535 					   &msp->legacy);
1536 }
1537 
1538 static void
1539 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1540 		      struct cfg80211_chan_def *chandef,
1541                       struct ieee80211_sta *sta, void *priv_sta)
1542 {
1543 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1544 }
1545 
1546 static void
1547 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1548 			struct cfg80211_chan_def *chandef,
1549                         struct ieee80211_sta *sta, void *priv_sta,
1550                         u32 changed)
1551 {
1552 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1553 }
1554 
1555 static void *
1556 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1557 {
1558 	struct ieee80211_supported_band *sband;
1559 	struct minstrel_ht_sta_priv *msp;
1560 	struct minstrel_priv *mp = priv;
1561 	struct ieee80211_hw *hw = mp->hw;
1562 	int max_rates = 0;
1563 	int i;
1564 
1565 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1566 		sband = hw->wiphy->bands[i];
1567 		if (sband && sband->n_bitrates > max_rates)
1568 			max_rates = sband->n_bitrates;
1569 	}
1570 
1571 	msp = kzalloc(sizeof(*msp), gfp);
1572 	if (!msp)
1573 		return NULL;
1574 
1575 	msp->ratelist = kcalloc(max_rates, sizeof(struct minstrel_rate), gfp);
1576 	if (!msp->ratelist)
1577 		goto error;
1578 
1579 	msp->sample_table = kmalloc_array(max_rates, SAMPLE_COLUMNS, gfp);
1580 	if (!msp->sample_table)
1581 		goto error1;
1582 
1583 	return msp;
1584 
1585 error1:
1586 	kfree(msp->ratelist);
1587 error:
1588 	kfree(msp);
1589 	return NULL;
1590 }
1591 
1592 static void
1593 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1594 {
1595 	struct minstrel_ht_sta_priv *msp = priv_sta;
1596 
1597 	kfree(msp->sample_table);
1598 	kfree(msp->ratelist);
1599 	kfree(msp);
1600 }
1601 
1602 static void
1603 minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1604 {
1605 	static const int bitrates[4] = { 10, 20, 55, 110 };
1606 	struct ieee80211_supported_band *sband;
1607 	u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1608 	int i, j;
1609 
1610 	sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1611 	if (!sband)
1612 		return;
1613 
1614 	for (i = 0; i < sband->n_bitrates; i++) {
1615 		struct ieee80211_rate *rate = &sband->bitrates[i];
1616 
1617 		if (rate->flags & IEEE80211_RATE_ERP_G)
1618 			continue;
1619 
1620 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1621 			continue;
1622 
1623 		for (j = 0; j < ARRAY_SIZE(bitrates); j++) {
1624 			if (rate->bitrate != bitrates[j])
1625 				continue;
1626 
1627 			mp->cck_rates[j] = i;
1628 			break;
1629 		}
1630 	}
1631 }
1632 
1633 static void *
1634 minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1635 {
1636 	struct minstrel_priv *mp;
1637 
1638 	mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1639 	if (!mp)
1640 		return NULL;
1641 
1642 	mp->sample_switch = -1;
1643 
1644 	/* contention window settings
1645 	 * Just an approximation. Using the per-queue values would complicate
1646 	 * the calculations and is probably unnecessary */
1647 	mp->cw_min = 15;
1648 	mp->cw_max = 1023;
1649 
1650 	/* number of packets (in %) to use for sampling other rates
1651 	 * sample less often for non-mrr packets, because the overhead
1652 	 * is much higher than with mrr */
1653 	mp->lookaround_rate = 5;
1654 	mp->lookaround_rate_mrr = 10;
1655 
1656 	/* maximum time that the hw is allowed to stay in one MRR segment */
1657 	mp->segment_size = 6000;
1658 
1659 	if (hw->max_rate_tries > 0)
1660 		mp->max_retry = hw->max_rate_tries;
1661 	else
1662 		/* safe default, does not necessarily have to match hw properties */
1663 		mp->max_retry = 7;
1664 
1665 	if (hw->max_rates >= 4)
1666 		mp->has_mrr = true;
1667 
1668 	mp->hw = hw;
1669 	mp->update_interval = 100;
1670 
1671 #ifdef CONFIG_MAC80211_DEBUGFS
1672 	mp->fixed_rate_idx = (u32) -1;
1673 	debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1674 			   &mp->fixed_rate_idx);
1675 	debugfs_create_u32("sample_switch", S_IRUGO | S_IWUSR, debugfsdir,
1676 			   &mp->sample_switch);
1677 #endif
1678 
1679 	minstrel_ht_init_cck_rates(mp);
1680 
1681 	return mp;
1682 }
1683 
1684 static void
1685 minstrel_ht_free(void *priv)
1686 {
1687 	kfree(priv);
1688 }
1689 
1690 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1691 {
1692 	struct minstrel_ht_sta_priv *msp = priv_sta;
1693 	struct minstrel_ht_sta *mi = &msp->ht;
1694 	int i, j, prob, tp_avg;
1695 
1696 	if (!msp->is_ht)
1697 		return mac80211_minstrel.get_expected_throughput(priv_sta);
1698 
1699 	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1700 	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1701 	prob = mi->groups[i].rates[j].prob_ewma;
1702 
1703 	/* convert tp_avg from pkt per second in kbps */
1704 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1705 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1706 
1707 	return tp_avg;
1708 }
1709 
1710 static const struct rate_control_ops mac80211_minstrel_ht = {
1711 	.name = "minstrel_ht",
1712 	.tx_status_ext = minstrel_ht_tx_status,
1713 	.get_rate = minstrel_ht_get_rate,
1714 	.rate_init = minstrel_ht_rate_init,
1715 	.rate_update = minstrel_ht_rate_update,
1716 	.alloc_sta = minstrel_ht_alloc_sta,
1717 	.free_sta = minstrel_ht_free_sta,
1718 	.alloc = minstrel_ht_alloc,
1719 	.free = minstrel_ht_free,
1720 #ifdef CONFIG_MAC80211_DEBUGFS
1721 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1722 #endif
1723 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1724 };
1725 
1726 
1727 static void __init init_sample_table(void)
1728 {
1729 	int col, i, new_idx;
1730 	u8 rnd[MCS_GROUP_RATES];
1731 
1732 	memset(sample_table, 0xff, sizeof(sample_table));
1733 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1734 		prandom_bytes(rnd, sizeof(rnd));
1735 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1736 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1737 			while (sample_table[col][new_idx] != 0xff)
1738 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1739 
1740 			sample_table[col][new_idx] = i;
1741 		}
1742 	}
1743 }
1744 
1745 int __init
1746 rc80211_minstrel_init(void)
1747 {
1748 	init_sample_table();
1749 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1750 }
1751 
1752 void
1753 rc80211_minstrel_exit(void)
1754 {
1755 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1756 }
1757