1 /*
2  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/netdevice.h>
9 #include <linux/types.h>
10 #include <linux/skbuff.h>
11 #include <linux/debugfs.h>
12 #include <linux/random.h>
13 #include <linux/moduleparam.h>
14 #include <linux/ieee80211.h>
15 #include <net/mac80211.h>
16 #include "rate.h"
17 #include "sta_info.h"
18 #include "rc80211_minstrel.h"
19 #include "rc80211_minstrel_ht.h"
20 
21 #define AVG_AMPDU_SIZE	16
22 #define AVG_PKT_SIZE	1200
23 
24 /* Number of bits for an average sized packet */
25 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
26 
27 /* Number of symbols for a packet with (bps) bits per symbol */
28 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
29 
30 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
31 #define MCS_SYMBOL_TIME(sgi, syms)					\
32 	(sgi ?								\
33 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
34 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
35 	)
36 
37 /* Transmit duration for the raw data part of an average sized packet */
38 #define MCS_DURATION(streams, sgi, bps) \
39 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
40 
41 #define BW_20			0
42 #define BW_40			1
43 #define BW_80			2
44 
45 /*
46  * Define group sort order: HT40 -> SGI -> #streams
47  */
48 #define GROUP_IDX(_streams, _sgi, _ht40)	\
49 	MINSTREL_HT_GROUP_0 +			\
50 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
51 	MINSTREL_MAX_STREAMS * _sgi +	\
52 	_streams - 1
53 
54 #define _MAX(a, b) (((a)>(b))?(a):(b))
55 
56 #define GROUP_SHIFT(duration)						\
57 	_MAX(0, 16 - __builtin_clz(duration))
58 
59 /* MCS rate information for an MCS group */
60 #define __MCS_GROUP(_streams, _sgi, _ht40, _s)				\
61 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
62 	.streams = _streams,						\
63 	.shift = _s,							\
64 	.flags =							\
65 		IEEE80211_TX_RC_MCS |					\
66 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
67 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
68 	.duration = {							\
69 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s,	\
70 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s,	\
71 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s,	\
72 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s,	\
73 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s,	\
74 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s,	\
75 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s,	\
76 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s	\
77 	}								\
78 }
79 
80 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40)				\
81 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
82 
83 #define MCS_GROUP(_streams, _sgi, _ht40)				\
84 	__MCS_GROUP(_streams, _sgi, _ht40,				\
85 		    MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
86 
87 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
88 	(MINSTREL_VHT_GROUP_0 +						\
89 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
90 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
91 	 (_streams) - 1)
92 
93 #define BW2VBPS(_bw, r3, r2, r1)					\
94 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
95 
96 #define __VHT_GROUP(_streams, _sgi, _bw, _s)				\
97 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
98 	.streams = _streams,						\
99 	.shift = _s,							\
100 	.flags =							\
101 		IEEE80211_TX_RC_VHT_MCS |				\
102 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
103 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
104 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
105 	.duration = {							\
106 		MCS_DURATION(_streams, _sgi,				\
107 			     BW2VBPS(_bw,  117,  54,  26)) >> _s,	\
108 		MCS_DURATION(_streams, _sgi,				\
109 			     BW2VBPS(_bw,  234, 108,  52)) >> _s,	\
110 		MCS_DURATION(_streams, _sgi,				\
111 			     BW2VBPS(_bw,  351, 162,  78)) >> _s,	\
112 		MCS_DURATION(_streams, _sgi,				\
113 			     BW2VBPS(_bw,  468, 216, 104)) >> _s,	\
114 		MCS_DURATION(_streams, _sgi,				\
115 			     BW2VBPS(_bw,  702, 324, 156)) >> _s,	\
116 		MCS_DURATION(_streams, _sgi,				\
117 			     BW2VBPS(_bw,  936, 432, 208)) >> _s,	\
118 		MCS_DURATION(_streams, _sgi,				\
119 			     BW2VBPS(_bw, 1053, 486, 234)) >> _s,	\
120 		MCS_DURATION(_streams, _sgi,				\
121 			     BW2VBPS(_bw, 1170, 540, 260)) >> _s,	\
122 		MCS_DURATION(_streams, _sgi,				\
123 			     BW2VBPS(_bw, 1404, 648, 312)) >> _s,	\
124 		MCS_DURATION(_streams, _sgi,				\
125 			     BW2VBPS(_bw, 1560, 720, 346)) >> _s	\
126 	}								\
127 }
128 
129 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw)				\
130 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi,			\
131 				 BW2VBPS(_bw,  117,  54,  26)))
132 
133 #define VHT_GROUP(_streams, _sgi, _bw)					\
134 	__VHT_GROUP(_streams, _sgi, _bw,				\
135 		    VHT_GROUP_SHIFT(_streams, _sgi, _bw))
136 
137 #define CCK_DURATION(_bitrate, _short, _len)		\
138 	(1000 * (10 /* SIFS */ +			\
139 	 (_short ? 72 + 24 : 144 + 48) +		\
140 	 (8 * (_len + 4) * 10) / (_bitrate)))
141 
142 #define CCK_ACK_DURATION(_bitrate, _short)			\
143 	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
144 	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
145 
146 #define CCK_DURATION_LIST(_short, _s)			\
147 	CCK_ACK_DURATION(10, _short) >> _s,		\
148 	CCK_ACK_DURATION(20, _short) >> _s,		\
149 	CCK_ACK_DURATION(55, _short) >> _s,		\
150 	CCK_ACK_DURATION(110, _short) >> _s
151 
152 #define __CCK_GROUP(_s)					\
153 	[MINSTREL_CCK_GROUP] = {			\
154 		.streams = 1,				\
155 		.flags = 0,				\
156 		.shift = _s,				\
157 		.duration = {				\
158 			CCK_DURATION_LIST(false, _s),	\
159 			CCK_DURATION_LIST(true, _s)	\
160 		}					\
161 	}
162 
163 #define CCK_GROUP_SHIFT					\
164 	GROUP_SHIFT(CCK_ACK_DURATION(10, false))
165 
166 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
167 
168 
169 static bool minstrel_vht_only = true;
170 module_param(minstrel_vht_only, bool, 0644);
171 MODULE_PARM_DESC(minstrel_vht_only,
172 		 "Use only VHT rates when VHT is supported by sta.");
173 
174 /*
175  * To enable sufficiently targeted rate sampling, MCS rates are divided into
176  * groups, based on the number of streams and flags (HT40, SGI) that they
177  * use.
178  *
179  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
180  * BW -> SGI -> #streams
181  */
182 const struct mcs_group minstrel_mcs_groups[] = {
183 	MCS_GROUP(1, 0, BW_20),
184 	MCS_GROUP(2, 0, BW_20),
185 	MCS_GROUP(3, 0, BW_20),
186 	MCS_GROUP(4, 0, BW_20),
187 
188 	MCS_GROUP(1, 1, BW_20),
189 	MCS_GROUP(2, 1, BW_20),
190 	MCS_GROUP(3, 1, BW_20),
191 	MCS_GROUP(4, 1, BW_20),
192 
193 	MCS_GROUP(1, 0, BW_40),
194 	MCS_GROUP(2, 0, BW_40),
195 	MCS_GROUP(3, 0, BW_40),
196 	MCS_GROUP(4, 0, BW_40),
197 
198 	MCS_GROUP(1, 1, BW_40),
199 	MCS_GROUP(2, 1, BW_40),
200 	MCS_GROUP(3, 1, BW_40),
201 	MCS_GROUP(4, 1, BW_40),
202 
203 	CCK_GROUP,
204 
205 	VHT_GROUP(1, 0, BW_20),
206 	VHT_GROUP(2, 0, BW_20),
207 	VHT_GROUP(3, 0, BW_20),
208 	VHT_GROUP(4, 0, BW_20),
209 
210 	VHT_GROUP(1, 1, BW_20),
211 	VHT_GROUP(2, 1, BW_20),
212 	VHT_GROUP(3, 1, BW_20),
213 	VHT_GROUP(4, 1, BW_20),
214 
215 	VHT_GROUP(1, 0, BW_40),
216 	VHT_GROUP(2, 0, BW_40),
217 	VHT_GROUP(3, 0, BW_40),
218 	VHT_GROUP(4, 0, BW_40),
219 
220 	VHT_GROUP(1, 1, BW_40),
221 	VHT_GROUP(2, 1, BW_40),
222 	VHT_GROUP(3, 1, BW_40),
223 	VHT_GROUP(4, 1, BW_40),
224 
225 	VHT_GROUP(1, 0, BW_80),
226 	VHT_GROUP(2, 0, BW_80),
227 	VHT_GROUP(3, 0, BW_80),
228 	VHT_GROUP(4, 0, BW_80),
229 
230 	VHT_GROUP(1, 1, BW_80),
231 	VHT_GROUP(2, 1, BW_80),
232 	VHT_GROUP(3, 1, BW_80),
233 	VHT_GROUP(4, 1, BW_80),
234 };
235 
236 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
237 
238 static void
239 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
240 
241 /*
242  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
243  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
244  *
245  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
246  */
247 static u16
248 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
249 {
250 	u16 mask = 0;
251 
252 	if (bw == BW_20) {
253 		if (nss != 3 && nss != 6)
254 			mask = BIT(9);
255 	} else if (bw == BW_80) {
256 		if (nss == 3 || nss == 7)
257 			mask = BIT(6);
258 		else if (nss == 6)
259 			mask = BIT(9);
260 	} else {
261 		WARN_ON(bw != BW_40);
262 	}
263 
264 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
265 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
266 		mask |= 0x300;
267 		break;
268 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
269 		mask |= 0x200;
270 		break;
271 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
272 		break;
273 	default:
274 		mask = 0x3ff;
275 	}
276 
277 	return 0x3ff & ~mask;
278 }
279 
280 /*
281  * Look up an MCS group index based on mac80211 rate information
282  */
283 static int
284 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
285 {
286 	return GROUP_IDX((rate->idx / 8) + 1,
287 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
288 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
289 }
290 
291 static int
292 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
293 {
294 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
295 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
296 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
297 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
298 }
299 
300 static struct minstrel_rate_stats *
301 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
302 		      struct ieee80211_tx_rate *rate)
303 {
304 	int group, idx;
305 
306 	if (rate->flags & IEEE80211_TX_RC_MCS) {
307 		group = minstrel_ht_get_group_idx(rate);
308 		idx = rate->idx % 8;
309 	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
310 		group = minstrel_vht_get_group_idx(rate);
311 		idx = ieee80211_rate_get_vht_mcs(rate);
312 	} else {
313 		group = MINSTREL_CCK_GROUP;
314 
315 		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
316 			if (rate->idx == mp->cck_rates[idx])
317 				break;
318 
319 		/* short preamble */
320 		if ((mi->supported[group] & BIT(idx + 4)) &&
321 		    (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
322 			idx += 4;
323 	}
324 	return &mi->groups[group].rates[idx];
325 }
326 
327 static inline struct minstrel_rate_stats *
328 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
329 {
330 	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
331 }
332 
333 static unsigned int
334 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
335 {
336 	if (!mi->avg_ampdu_len)
337 		return AVG_AMPDU_SIZE;
338 
339 	return MINSTREL_TRUNC(mi->avg_ampdu_len);
340 }
341 
342 /*
343  * Return current throughput based on the average A-MPDU length, taking into
344  * account the expected number of retransmissions and their expected length
345  */
346 int
347 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
348 		       int prob_ewma)
349 {
350 	unsigned int nsecs = 0;
351 
352 	/* do not account throughput if sucess prob is below 10% */
353 	if (prob_ewma < MINSTREL_FRAC(10, 100))
354 		return 0;
355 
356 	if (group != MINSTREL_CCK_GROUP)
357 		nsecs = 1000 * mi->overhead / minstrel_ht_avg_ampdu_len(mi);
358 
359 	nsecs += minstrel_mcs_groups[group].duration[rate] <<
360 		 minstrel_mcs_groups[group].shift;
361 
362 	/*
363 	 * For the throughput calculation, limit the probability value to 90% to
364 	 * account for collision related packet error rate fluctuation
365 	 * (prob is scaled - see MINSTREL_FRAC above)
366 	 */
367 	if (prob_ewma > MINSTREL_FRAC(90, 100))
368 		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
369 								      / nsecs));
370 	else
371 		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
372 }
373 
374 /*
375  * Find & sort topmost throughput rates
376  *
377  * If multiple rates provide equal throughput the sorting is based on their
378  * current success probability. Higher success probability is preferred among
379  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
380  */
381 static void
382 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
383 			       u16 *tp_list)
384 {
385 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
386 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
387 	int j = MAX_THR_RATES;
388 
389 	cur_group = index / MCS_GROUP_RATES;
390 	cur_idx = index  % MCS_GROUP_RATES;
391 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
392 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
393 
394 	do {
395 		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
396 		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
397 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
398 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
399 						    tmp_prob);
400 		if (cur_tp_avg < tmp_tp_avg ||
401 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
402 			break;
403 		j--;
404 	} while (j > 0);
405 
406 	if (j < MAX_THR_RATES - 1) {
407 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
408 		       (MAX_THR_RATES - (j + 1))));
409 	}
410 	if (j < MAX_THR_RATES)
411 		tp_list[j] = index;
412 }
413 
414 /*
415  * Find and set the topmost probability rate per sta and per group
416  */
417 static void
418 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
419 {
420 	struct minstrel_mcs_group_data *mg;
421 	struct minstrel_rate_stats *mrs;
422 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
423 	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
424 	int max_gpr_group, max_gpr_idx;
425 	int max_gpr_tp_avg, max_gpr_prob;
426 
427 	cur_group = index / MCS_GROUP_RATES;
428 	cur_idx = index % MCS_GROUP_RATES;
429 	mg = &mi->groups[index / MCS_GROUP_RATES];
430 	mrs = &mg->rates[index % MCS_GROUP_RATES];
431 
432 	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
433 	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
434 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
435 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
436 
437 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
438 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
439 	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
440 	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
441 	    (max_tp_group != MINSTREL_CCK_GROUP))
442 		return;
443 
444 	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
445 	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
446 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
447 
448 	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
449 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
450 						    mrs->prob_ewma);
451 		if (cur_tp_avg > tmp_tp_avg)
452 			mi->max_prob_rate = index;
453 
454 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
455 							max_gpr_idx,
456 							max_gpr_prob);
457 		if (cur_tp_avg > max_gpr_tp_avg)
458 			mg->max_group_prob_rate = index;
459 	} else {
460 		if (mrs->prob_ewma > tmp_prob)
461 			mi->max_prob_rate = index;
462 		if (mrs->prob_ewma > max_gpr_prob)
463 			mg->max_group_prob_rate = index;
464 	}
465 }
466 
467 
468 /*
469  * Assign new rate set per sta and use CCK rates only if the fastest
470  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
471  * rate sets where MCS and CCK rates are mixed, because CCK rates can
472  * not use aggregation.
473  */
474 static void
475 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
476 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
477 				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
478 {
479 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
480 	int i;
481 
482 	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
483 	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
484 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
485 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
486 
487 	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
488 	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
489 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
490 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
491 
492 	if (tmp_cck_tp > tmp_mcs_tp) {
493 		for(i = 0; i < MAX_THR_RATES; i++) {
494 			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
495 						       tmp_mcs_tp_rate);
496 		}
497 	}
498 
499 }
500 
501 /*
502  * Try to increase robustness of max_prob rate by decrease number of
503  * streams if possible.
504  */
505 static inline void
506 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
507 {
508 	struct minstrel_mcs_group_data *mg;
509 	int tmp_max_streams, group, tmp_idx, tmp_prob;
510 	int tmp_tp = 0;
511 
512 	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
513 			  MCS_GROUP_RATES].streams;
514 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
515 		mg = &mi->groups[group];
516 		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
517 			continue;
518 
519 		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
520 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
521 
522 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
523 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
524 				mi->max_prob_rate = mg->max_group_prob_rate;
525 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
526 								tmp_idx,
527 								tmp_prob);
528 		}
529 	}
530 }
531 
532 /*
533  * Update rate statistics and select new primary rates
534  *
535  * Rules for rate selection:
536  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
537  *    probability and throughput during strong fluctuations
538  *  - as long as the max prob rate has a probability of more than 75%, pick
539  *    higher throughput rates, even if the probablity is a bit lower
540  */
541 static void
542 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
543 {
544 	struct minstrel_mcs_group_data *mg;
545 	struct minstrel_rate_stats *mrs;
546 	int group, i, j, cur_prob;
547 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
548 	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
549 
550 	if (mi->ampdu_packets > 0) {
551 		if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
552 			mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
553 				MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
554 					      EWMA_LEVEL);
555 		else
556 			mi->avg_ampdu_len = 0;
557 		mi->ampdu_len = 0;
558 		mi->ampdu_packets = 0;
559 	}
560 
561 	mi->sample_slow = 0;
562 	mi->sample_count = 0;
563 
564 	/* Initialize global rate indexes */
565 	for(j = 0; j < MAX_THR_RATES; j++){
566 		tmp_mcs_tp_rate[j] = 0;
567 		tmp_cck_tp_rate[j] = 0;
568 	}
569 
570 	/* Find best rate sets within all MCS groups*/
571 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
572 
573 		mg = &mi->groups[group];
574 		if (!mi->supported[group])
575 			continue;
576 
577 		mi->sample_count++;
578 
579 		/* (re)Initialize group rate indexes */
580 		for(j = 0; j < MAX_THR_RATES; j++)
581 			tmp_group_tp_rate[j] = group;
582 
583 		for (i = 0; i < MCS_GROUP_RATES; i++) {
584 			if (!(mi->supported[group] & BIT(i)))
585 				continue;
586 
587 			index = MCS_GROUP_RATES * group + i;
588 
589 			mrs = &mg->rates[i];
590 			mrs->retry_updated = false;
591 			minstrel_calc_rate_stats(mrs);
592 			cur_prob = mrs->prob_ewma;
593 
594 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
595 				continue;
596 
597 			/* Find max throughput rate set */
598 			if (group != MINSTREL_CCK_GROUP) {
599 				minstrel_ht_sort_best_tp_rates(mi, index,
600 							       tmp_mcs_tp_rate);
601 			} else if (group == MINSTREL_CCK_GROUP) {
602 				minstrel_ht_sort_best_tp_rates(mi, index,
603 							       tmp_cck_tp_rate);
604 			}
605 
606 			/* Find max throughput rate set within a group */
607 			minstrel_ht_sort_best_tp_rates(mi, index,
608 						       tmp_group_tp_rate);
609 
610 			/* Find max probability rate per group and global */
611 			minstrel_ht_set_best_prob_rate(mi, index);
612 		}
613 
614 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
615 		       sizeof(mg->max_group_tp_rate));
616 	}
617 
618 	/* Assign new rate set per sta */
619 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
620 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
621 
622 	/* Try to increase robustness of max_prob_rate*/
623 	minstrel_ht_prob_rate_reduce_streams(mi);
624 
625 	/* try to sample all available rates during each interval */
626 	mi->sample_count *= 8;
627 
628 #ifdef CONFIG_MAC80211_DEBUGFS
629 	/* use fixed index if set */
630 	if (mp->fixed_rate_idx != -1) {
631 		for (i = 0; i < 4; i++)
632 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
633 		mi->max_prob_rate = mp->fixed_rate_idx;
634 	}
635 #endif
636 
637 	/* Reset update timer */
638 	mi->last_stats_update = jiffies;
639 }
640 
641 static bool
642 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
643 {
644 	if (rate->idx < 0)
645 		return false;
646 
647 	if (!rate->count)
648 		return false;
649 
650 	if (rate->flags & IEEE80211_TX_RC_MCS ||
651 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
652 		return true;
653 
654 	return rate->idx == mp->cck_rates[0] ||
655 	       rate->idx == mp->cck_rates[1] ||
656 	       rate->idx == mp->cck_rates[2] ||
657 	       rate->idx == mp->cck_rates[3];
658 }
659 
660 static void
661 minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
662 {
663 	struct minstrel_mcs_group_data *mg;
664 
665 	for (;;) {
666 		mi->sample_group++;
667 		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
668 		mg = &mi->groups[mi->sample_group];
669 
670 		if (!mi->supported[mi->sample_group])
671 			continue;
672 
673 		if (++mg->index >= MCS_GROUP_RATES) {
674 			mg->index = 0;
675 			if (++mg->column >= ARRAY_SIZE(sample_table))
676 				mg->column = 0;
677 		}
678 		break;
679 	}
680 }
681 
682 static void
683 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
684 {
685 	int group, orig_group;
686 
687 	orig_group = group = *idx / MCS_GROUP_RATES;
688 	while (group > 0) {
689 		group--;
690 
691 		if (!mi->supported[group])
692 			continue;
693 
694 		if (minstrel_mcs_groups[group].streams >
695 		    minstrel_mcs_groups[orig_group].streams)
696 			continue;
697 
698 		if (primary)
699 			*idx = mi->groups[group].max_group_tp_rate[0];
700 		else
701 			*idx = mi->groups[group].max_group_tp_rate[1];
702 		break;
703 	}
704 }
705 
706 static void
707 minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
708 {
709 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
710 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
711 	u16 tid;
712 
713 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
714 		return;
715 
716 	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
717 		return;
718 
719 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
720 		return;
721 
722 	tid = ieee80211_get_tid(hdr);
723 	if (likely(sta->ampdu_mlme.tid_tx[tid]))
724 		return;
725 
726 	ieee80211_start_tx_ba_session(pubsta, tid, 0);
727 }
728 
729 static void
730 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
731                       void *priv_sta, struct ieee80211_tx_status *st)
732 {
733 	struct ieee80211_tx_info *info = st->info;
734 	struct minstrel_ht_sta_priv *msp = priv_sta;
735 	struct minstrel_ht_sta *mi = &msp->ht;
736 	struct ieee80211_tx_rate *ar = info->status.rates;
737 	struct minstrel_rate_stats *rate, *rate2;
738 	struct minstrel_priv *mp = priv;
739 	bool last, update = false;
740 	int i;
741 
742 	if (!msp->is_ht)
743 		return mac80211_minstrel.tx_status_ext(priv, sband,
744 						       &msp->legacy, st);
745 
746 	/* This packet was aggregated but doesn't carry status info */
747 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
748 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
749 		return;
750 
751 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
752 		info->status.ampdu_ack_len =
753 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
754 		info->status.ampdu_len = 1;
755 	}
756 
757 	mi->ampdu_packets++;
758 	mi->ampdu_len += info->status.ampdu_len;
759 
760 	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
761 		int avg_ampdu_len = minstrel_ht_avg_ampdu_len(mi);
762 
763 		mi->sample_wait = 16 + 2 * avg_ampdu_len;
764 		mi->sample_tries = 1;
765 		mi->sample_count--;
766 	}
767 
768 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
769 		mi->sample_packets += info->status.ampdu_len;
770 
771 	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
772 	for (i = 0; !last; i++) {
773 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
774 		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
775 
776 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
777 
778 		if (last)
779 			rate->success += info->status.ampdu_ack_len;
780 
781 		rate->attempts += ar[i].count * info->status.ampdu_len;
782 	}
783 
784 	/*
785 	 * check for sudden death of spatial multiplexing,
786 	 * downgrade to a lower number of streams if necessary.
787 	 */
788 	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
789 	if (rate->attempts > 30 &&
790 	    MINSTREL_FRAC(rate->success, rate->attempts) <
791 	    MINSTREL_FRAC(20, 100)) {
792 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
793 		update = true;
794 	}
795 
796 	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
797 	if (rate2->attempts > 30 &&
798 	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
799 	    MINSTREL_FRAC(20, 100)) {
800 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
801 		update = true;
802 	}
803 
804 	if (time_after(jiffies, mi->last_stats_update +
805 				(mp->update_interval / 2 * HZ) / 1000)) {
806 		update = true;
807 		minstrel_ht_update_stats(mp, mi);
808 	}
809 
810 	if (update)
811 		minstrel_ht_update_rates(mp, mi);
812 }
813 
814 static inline int
815 minstrel_get_duration(int index)
816 {
817 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
818 	unsigned int duration = group->duration[index % MCS_GROUP_RATES];
819 	return duration << group->shift;
820 }
821 
822 static void
823 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
824                          int index)
825 {
826 	struct minstrel_rate_stats *mrs;
827 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
828 	unsigned int cw = mp->cw_min;
829 	unsigned int ctime = 0;
830 	unsigned int t_slot = 9; /* FIXME */
831 	unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
832 	unsigned int overhead = 0, overhead_rtscts = 0;
833 
834 	mrs = minstrel_get_ratestats(mi, index);
835 	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
836 		mrs->retry_count = 1;
837 		mrs->retry_count_rtscts = 1;
838 		return;
839 	}
840 
841 	mrs->retry_count = 2;
842 	mrs->retry_count_rtscts = 2;
843 	mrs->retry_updated = true;
844 
845 	tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
846 
847 	/* Contention time for first 2 tries */
848 	ctime = (t_slot * cw) >> 1;
849 	cw = min((cw << 1) | 1, mp->cw_max);
850 	ctime += (t_slot * cw) >> 1;
851 	cw = min((cw << 1) | 1, mp->cw_max);
852 
853 	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
854 		overhead = mi->overhead;
855 		overhead_rtscts = mi->overhead_rtscts;
856 	}
857 
858 	/* Total TX time for data and Contention after first 2 tries */
859 	tx_time = ctime + 2 * (overhead + tx_time_data);
860 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
861 
862 	/* See how many more tries we can fit inside segment size */
863 	do {
864 		/* Contention time for this try */
865 		ctime = (t_slot * cw) >> 1;
866 		cw = min((cw << 1) | 1, mp->cw_max);
867 
868 		/* Total TX time after this try */
869 		tx_time += ctime + overhead + tx_time_data;
870 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
871 
872 		if (tx_time_rtscts < mp->segment_size)
873 			mrs->retry_count_rtscts++;
874 	} while ((tx_time < mp->segment_size) &&
875 	         (++mrs->retry_count < mp->max_retry));
876 }
877 
878 
879 static void
880 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
881                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
882 {
883 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
884 	struct minstrel_rate_stats *mrs;
885 	u8 idx;
886 	u16 flags = group->flags;
887 
888 	mrs = minstrel_get_ratestats(mi, index);
889 	if (!mrs->retry_updated)
890 		minstrel_calc_retransmit(mp, mi, index);
891 
892 	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
893 		ratetbl->rate[offset].count = 2;
894 		ratetbl->rate[offset].count_rts = 2;
895 		ratetbl->rate[offset].count_cts = 2;
896 	} else {
897 		ratetbl->rate[offset].count = mrs->retry_count;
898 		ratetbl->rate[offset].count_cts = mrs->retry_count;
899 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
900 	}
901 
902 	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
903 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
904 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
905 		idx = ((group->streams - 1) << 4) |
906 		      ((index % MCS_GROUP_RATES) & 0xF);
907 	else
908 		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
909 
910 	/* enable RTS/CTS if needed:
911 	 *  - if station is in dynamic SMPS (and streams > 1)
912 	 *  - for fallback rates, to increase chances of getting through
913 	 */
914 	if (offset > 0 ||
915 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
916 	     group->streams > 1)) {
917 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
918 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
919 	}
920 
921 	ratetbl->rate[offset].idx = idx;
922 	ratetbl->rate[offset].flags = flags;
923 }
924 
925 static inline int
926 minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
927 {
928 	int group = rate / MCS_GROUP_RATES;
929 	rate %= MCS_GROUP_RATES;
930 	return mi->groups[group].rates[rate].prob_ewma;
931 }
932 
933 static int
934 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
935 {
936 	int group = mi->max_prob_rate / MCS_GROUP_RATES;
937 	const struct mcs_group *g = &minstrel_mcs_groups[group];
938 	int rate = mi->max_prob_rate % MCS_GROUP_RATES;
939 	unsigned int duration;
940 
941 	/* Disable A-MSDU if max_prob_rate is bad */
942 	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
943 		return 1;
944 
945 	duration = g->duration[rate];
946 	duration <<= g->shift;
947 
948 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
949 	if (duration > MCS_DURATION(1, 0, 52))
950 		return 500;
951 
952 	/*
953 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
954 	 * data packet size
955 	 */
956 	if (duration > MCS_DURATION(1, 0, 104))
957 		return 1600;
958 
959 	/*
960 	 * If the rate is slower than single-stream MCS7, or if the max throughput
961 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
962 	 * data packet size
963 	 */
964 	if (duration > MCS_DURATION(1, 0, 260) ||
965 	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
966 	     MINSTREL_FRAC(75, 100)))
967 		return 3200;
968 
969 	/*
970 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
971 	 * Since aggregation sessions are started/stopped without txq flush, use
972 	 * the limit here to avoid the complexity of having to de-aggregate
973 	 * packets in the queue.
974 	 */
975 	if (!mi->sta->vht_cap.vht_supported)
976 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
977 
978 	/* unlimited */
979 	return 0;
980 }
981 
982 static void
983 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
984 {
985 	struct ieee80211_sta_rates *rates;
986 	int i = 0;
987 
988 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
989 	if (!rates)
990 		return;
991 
992 	/* Start with max_tp_rate[0] */
993 	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
994 
995 	if (mp->hw->max_rates >= 3) {
996 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
997 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
998 	}
999 
1000 	if (mp->hw->max_rates >= 2) {
1001 		/*
1002 		 * At least 2 tx rates supported, use max_prob_rate next */
1003 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1004 	}
1005 
1006 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1007 	rates->rate[i].idx = -1;
1008 	rate_control_set_rates(mp->hw, mi->sta, rates);
1009 }
1010 
1011 static int
1012 minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1013 {
1014 	struct minstrel_rate_stats *mrs;
1015 	struct minstrel_mcs_group_data *mg;
1016 	unsigned int sample_dur, sample_group, cur_max_tp_streams;
1017 	int tp_rate1, tp_rate2;
1018 	int sample_idx = 0;
1019 
1020 	if (mi->sample_wait > 0) {
1021 		mi->sample_wait--;
1022 		return -1;
1023 	}
1024 
1025 	if (!mi->sample_tries)
1026 		return -1;
1027 
1028 	sample_group = mi->sample_group;
1029 	mg = &mi->groups[sample_group];
1030 	sample_idx = sample_table[mg->column][mg->index];
1031 	minstrel_set_next_sample_idx(mi);
1032 
1033 	if (!(mi->supported[sample_group] & BIT(sample_idx)))
1034 		return -1;
1035 
1036 	mrs = &mg->rates[sample_idx];
1037 	sample_idx += sample_group * MCS_GROUP_RATES;
1038 
1039 	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
1040 	if (minstrel_get_duration(mi->max_tp_rate[0]) >
1041 	    minstrel_get_duration(mi->max_tp_rate[1])) {
1042 		tp_rate1 = mi->max_tp_rate[1];
1043 		tp_rate2 = mi->max_tp_rate[0];
1044 	} else {
1045 		tp_rate1 = mi->max_tp_rate[0];
1046 		tp_rate2 = mi->max_tp_rate[1];
1047 	}
1048 
1049 	/*
1050 	 * Sampling might add some overhead (RTS, no aggregation)
1051 	 * to the frame. Hence, don't use sampling for the highest currently
1052 	 * used highest throughput or probability rate.
1053 	 */
1054 	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1055 		return -1;
1056 
1057 	/*
1058 	 * Do not sample if the probability is already higher than 95%,
1059 	 * or if the rate is 3 times slower than the current max probability
1060 	 * rate, to avoid wasting airtime.
1061 	 */
1062 	sample_dur = minstrel_get_duration(sample_idx);
1063 	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100) ||
1064 	    minstrel_get_duration(mi->max_prob_rate) * 3 < sample_dur)
1065 		return -1;
1066 
1067 	/*
1068 	 * Make sure that lower rates get sampled only occasionally,
1069 	 * if the link is working perfectly.
1070 	 */
1071 
1072 	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1073 		MCS_GROUP_RATES].streams;
1074 	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1075 	    (cur_max_tp_streams - 1 <
1076 	     minstrel_mcs_groups[sample_group].streams ||
1077 	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1078 		if (mrs->sample_skipped < 20)
1079 			return -1;
1080 
1081 		if (mi->sample_slow++ > 2)
1082 			return -1;
1083 	}
1084 	mi->sample_tries--;
1085 
1086 	return sample_idx;
1087 }
1088 
1089 static void
1090 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1091                      struct ieee80211_tx_rate_control *txrc)
1092 {
1093 	const struct mcs_group *sample_group;
1094 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1095 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1096 	struct minstrel_ht_sta_priv *msp = priv_sta;
1097 	struct minstrel_ht_sta *mi = &msp->ht;
1098 	struct minstrel_priv *mp = priv;
1099 	int sample_idx;
1100 
1101 	if (rate_control_send_low(sta, priv_sta, txrc))
1102 		return;
1103 
1104 	if (!msp->is_ht)
1105 		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1106 
1107 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1108 	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1109 		minstrel_aggr_check(sta, txrc->skb);
1110 
1111 	info->flags |= mi->tx_flags;
1112 
1113 #ifdef CONFIG_MAC80211_DEBUGFS
1114 	if (mp->fixed_rate_idx != -1)
1115 		return;
1116 #endif
1117 
1118 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1119 	if (mp->hw->max_rates == 1 &&
1120 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1121 		sample_idx = -1;
1122 	else
1123 		sample_idx = minstrel_get_sample_rate(mp, mi);
1124 
1125 	mi->total_packets++;
1126 
1127 	/* wraparound */
1128 	if (mi->total_packets == ~0) {
1129 		mi->total_packets = 0;
1130 		mi->sample_packets = 0;
1131 	}
1132 
1133 	if (sample_idx < 0)
1134 		return;
1135 
1136 	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1137 	sample_idx %= MCS_GROUP_RATES;
1138 
1139 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1140 	    (sample_idx >= 4) != txrc->short_preamble)
1141 		return;
1142 
1143 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1144 	rate->count = 1;
1145 
1146 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1147 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1148 		rate->idx = mp->cck_rates[idx];
1149 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1150 		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1151 				       sample_group->streams);
1152 	} else {
1153 		rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1154 	}
1155 
1156 	rate->flags = sample_group->flags;
1157 }
1158 
1159 static void
1160 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1161 		       struct ieee80211_supported_band *sband,
1162 		       struct ieee80211_sta *sta)
1163 {
1164 	int i;
1165 
1166 	if (sband->band != NL80211_BAND_2GHZ)
1167 		return;
1168 
1169 	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1170 		return;
1171 
1172 	mi->cck_supported = 0;
1173 	mi->cck_supported_short = 0;
1174 	for (i = 0; i < 4; i++) {
1175 		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1176 			continue;
1177 
1178 		mi->cck_supported |= BIT(i);
1179 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1180 			mi->cck_supported_short |= BIT(i);
1181 	}
1182 
1183 	mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1184 }
1185 
1186 static void
1187 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1188 			struct cfg80211_chan_def *chandef,
1189                         struct ieee80211_sta *sta, void *priv_sta)
1190 {
1191 	struct minstrel_priv *mp = priv;
1192 	struct minstrel_ht_sta_priv *msp = priv_sta;
1193 	struct minstrel_ht_sta *mi = &msp->ht;
1194 	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1195 	u16 ht_cap = sta->ht_cap.cap;
1196 	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1197 	int use_vht;
1198 	int n_supported = 0;
1199 	int ack_dur;
1200 	int stbc;
1201 	int i;
1202 	bool ldpc;
1203 
1204 	/* fall back to the old minstrel for legacy stations */
1205 	if (!sta->ht_cap.ht_supported)
1206 		goto use_legacy;
1207 
1208 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1209 
1210 	if (vht_cap->vht_supported)
1211 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1212 	else
1213 		use_vht = 0;
1214 
1215 	msp->is_ht = true;
1216 	memset(mi, 0, sizeof(*mi));
1217 
1218 	mi->sta = sta;
1219 	mi->last_stats_update = jiffies;
1220 
1221 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1222 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1223 	mi->overhead += ack_dur;
1224 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1225 
1226 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1227 
1228 	/* When using MRR, sample more on the first attempt, without delay */
1229 	if (mp->has_mrr) {
1230 		mi->sample_count = 16;
1231 		mi->sample_wait = 0;
1232 	} else {
1233 		mi->sample_count = 8;
1234 		mi->sample_wait = 8;
1235 	}
1236 	mi->sample_tries = 4;
1237 
1238 	if (!use_vht) {
1239 		stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1240 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1241 
1242 		ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1243 	} else {
1244 		stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1245 			IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1246 
1247 		ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1248 	}
1249 
1250 	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1251 	if (ldpc)
1252 		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1253 
1254 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1255 		u32 gflags = minstrel_mcs_groups[i].flags;
1256 		int bw, nss;
1257 
1258 		mi->supported[i] = 0;
1259 		if (i == MINSTREL_CCK_GROUP) {
1260 			minstrel_ht_update_cck(mp, mi, sband, sta);
1261 			continue;
1262 		}
1263 
1264 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1265 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1266 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1267 					continue;
1268 			} else {
1269 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1270 					continue;
1271 			}
1272 		}
1273 
1274 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1275 		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1276 			continue;
1277 
1278 		nss = minstrel_mcs_groups[i].streams;
1279 
1280 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1281 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1282 			continue;
1283 
1284 		/* HT rate */
1285 		if (gflags & IEEE80211_TX_RC_MCS) {
1286 			if (use_vht && minstrel_vht_only)
1287 				continue;
1288 
1289 			mi->supported[i] = mcs->rx_mask[nss - 1];
1290 			if (mi->supported[i])
1291 				n_supported++;
1292 			continue;
1293 		}
1294 
1295 		/* VHT rate */
1296 		if (!vht_cap->vht_supported ||
1297 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1298 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1299 			continue;
1300 
1301 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1302 			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1303 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1304 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1305 				continue;
1306 			}
1307 		}
1308 
1309 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1310 			bw = BW_40;
1311 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1312 			bw = BW_80;
1313 		else
1314 			bw = BW_20;
1315 
1316 		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1317 				vht_cap->vht_mcs.tx_mcs_map);
1318 
1319 		if (mi->supported[i])
1320 			n_supported++;
1321 	}
1322 
1323 	if (!n_supported)
1324 		goto use_legacy;
1325 
1326 	mi->supported[MINSTREL_CCK_GROUP] |= mi->cck_supported_short << 4;
1327 
1328 	/* create an initial rate table with the lowest supported rates */
1329 	minstrel_ht_update_stats(mp, mi);
1330 	minstrel_ht_update_rates(mp, mi);
1331 
1332 	return;
1333 
1334 use_legacy:
1335 	msp->is_ht = false;
1336 	memset(&msp->legacy, 0, sizeof(msp->legacy));
1337 	msp->legacy.r = msp->ratelist;
1338 	msp->legacy.sample_table = msp->sample_table;
1339 	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1340 					   &msp->legacy);
1341 }
1342 
1343 static void
1344 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1345 		      struct cfg80211_chan_def *chandef,
1346                       struct ieee80211_sta *sta, void *priv_sta)
1347 {
1348 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1349 }
1350 
1351 static void
1352 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1353 			struct cfg80211_chan_def *chandef,
1354                         struct ieee80211_sta *sta, void *priv_sta,
1355                         u32 changed)
1356 {
1357 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1358 }
1359 
1360 static void *
1361 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1362 {
1363 	struct ieee80211_supported_band *sband;
1364 	struct minstrel_ht_sta_priv *msp;
1365 	struct minstrel_priv *mp = priv;
1366 	struct ieee80211_hw *hw = mp->hw;
1367 	int max_rates = 0;
1368 	int i;
1369 
1370 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1371 		sband = hw->wiphy->bands[i];
1372 		if (sband && sband->n_bitrates > max_rates)
1373 			max_rates = sband->n_bitrates;
1374 	}
1375 
1376 	msp = kzalloc(sizeof(*msp), gfp);
1377 	if (!msp)
1378 		return NULL;
1379 
1380 	msp->ratelist = kcalloc(max_rates, sizeof(struct minstrel_rate), gfp);
1381 	if (!msp->ratelist)
1382 		goto error;
1383 
1384 	msp->sample_table = kmalloc_array(max_rates, SAMPLE_COLUMNS, gfp);
1385 	if (!msp->sample_table)
1386 		goto error1;
1387 
1388 	return msp;
1389 
1390 error1:
1391 	kfree(msp->ratelist);
1392 error:
1393 	kfree(msp);
1394 	return NULL;
1395 }
1396 
1397 static void
1398 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1399 {
1400 	struct minstrel_ht_sta_priv *msp = priv_sta;
1401 
1402 	kfree(msp->sample_table);
1403 	kfree(msp->ratelist);
1404 	kfree(msp);
1405 }
1406 
1407 static void
1408 minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1409 {
1410 	static const int bitrates[4] = { 10, 20, 55, 110 };
1411 	struct ieee80211_supported_band *sband;
1412 	u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1413 	int i, j;
1414 
1415 	sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1416 	if (!sband)
1417 		return;
1418 
1419 	for (i = 0; i < sband->n_bitrates; i++) {
1420 		struct ieee80211_rate *rate = &sband->bitrates[i];
1421 
1422 		if (rate->flags & IEEE80211_RATE_ERP_G)
1423 			continue;
1424 
1425 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1426 			continue;
1427 
1428 		for (j = 0; j < ARRAY_SIZE(bitrates); j++) {
1429 			if (rate->bitrate != bitrates[j])
1430 				continue;
1431 
1432 			mp->cck_rates[j] = i;
1433 			break;
1434 		}
1435 	}
1436 }
1437 
1438 static void *
1439 minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1440 {
1441 	struct minstrel_priv *mp;
1442 
1443 	mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1444 	if (!mp)
1445 		return NULL;
1446 
1447 	/* contention window settings
1448 	 * Just an approximation. Using the per-queue values would complicate
1449 	 * the calculations and is probably unnecessary */
1450 	mp->cw_min = 15;
1451 	mp->cw_max = 1023;
1452 
1453 	/* number of packets (in %) to use for sampling other rates
1454 	 * sample less often for non-mrr packets, because the overhead
1455 	 * is much higher than with mrr */
1456 	mp->lookaround_rate = 5;
1457 	mp->lookaround_rate_mrr = 10;
1458 
1459 	/* maximum time that the hw is allowed to stay in one MRR segment */
1460 	mp->segment_size = 6000;
1461 
1462 	if (hw->max_rate_tries > 0)
1463 		mp->max_retry = hw->max_rate_tries;
1464 	else
1465 		/* safe default, does not necessarily have to match hw properties */
1466 		mp->max_retry = 7;
1467 
1468 	if (hw->max_rates >= 4)
1469 		mp->has_mrr = true;
1470 
1471 	mp->hw = hw;
1472 	mp->update_interval = 100;
1473 
1474 #ifdef CONFIG_MAC80211_DEBUGFS
1475 	mp->fixed_rate_idx = (u32) -1;
1476 	debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1477 			   &mp->fixed_rate_idx);
1478 #endif
1479 
1480 	minstrel_ht_init_cck_rates(mp);
1481 
1482 	return mp;
1483 }
1484 
1485 static void
1486 minstrel_ht_free(void *priv)
1487 {
1488 	kfree(priv);
1489 }
1490 
1491 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1492 {
1493 	struct minstrel_ht_sta_priv *msp = priv_sta;
1494 	struct minstrel_ht_sta *mi = &msp->ht;
1495 	int i, j, prob, tp_avg;
1496 
1497 	if (!msp->is_ht)
1498 		return mac80211_minstrel.get_expected_throughput(priv_sta);
1499 
1500 	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1501 	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1502 	prob = mi->groups[i].rates[j].prob_ewma;
1503 
1504 	/* convert tp_avg from pkt per second in kbps */
1505 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1506 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1507 
1508 	return tp_avg;
1509 }
1510 
1511 static const struct rate_control_ops mac80211_minstrel_ht = {
1512 	.name = "minstrel_ht",
1513 	.tx_status_ext = minstrel_ht_tx_status,
1514 	.get_rate = minstrel_ht_get_rate,
1515 	.rate_init = minstrel_ht_rate_init,
1516 	.rate_update = minstrel_ht_rate_update,
1517 	.alloc_sta = minstrel_ht_alloc_sta,
1518 	.free_sta = minstrel_ht_free_sta,
1519 	.alloc = minstrel_ht_alloc,
1520 	.free = minstrel_ht_free,
1521 #ifdef CONFIG_MAC80211_DEBUGFS
1522 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1523 #endif
1524 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1525 };
1526 
1527 
1528 static void __init init_sample_table(void)
1529 {
1530 	int col, i, new_idx;
1531 	u8 rnd[MCS_GROUP_RATES];
1532 
1533 	memset(sample_table, 0xff, sizeof(sample_table));
1534 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1535 		prandom_bytes(rnd, sizeof(rnd));
1536 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1537 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1538 			while (sample_table[col][new_idx] != 0xff)
1539 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1540 
1541 			sample_table[col][new_idx] = i;
1542 		}
1543 	}
1544 }
1545 
1546 int __init
1547 rc80211_minstrel_init(void)
1548 {
1549 	init_sample_table();
1550 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1551 }
1552 
1553 void
1554 rc80211_minstrel_exit(void)
1555 {
1556 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1557 }
1558